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N-CATEGORIES

ABSTRACT

In this thesis, we examine some different types of categories and try to find a place for some

geometrical subjects in category theory. By using functorsand natural transformations we approach

n−categories and higher categories inductively in some different aspects. On the other hand we use

some algebraic topological concepts such as simplicial complexes and simplicial sets and give the

definition in categorical sense. We also explain the relation n−category and homotopy theory.

Keywords: Homotopy, n-category, bicategory, simplex, functor.
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N-KATEGOR İLER

ÖZ

Bu çalışmada, farklı kategori tipleri incelendi ve bazı geometrik cisimlerin kategori teorisindeki

yeri araştırıldı. Funktorlar ve doğal dönüşümler kullanılarak n-kategorilere ve yüksek mertebeden

kategorilere tümevarımsal farklı bakış açıları ile yaklaşıldı. Cebirsel topolojideki bazı kavramlar kul-

lanıldı ve kategori teorisindeki tanımları verildi. Ayrıca n-kategoriler ile homotopi teorisi arasındaki

ilişkiler açıklandı.

Anahtar Sözcükler: Homotopi, n-kategori, bikategori, simplex, funktor.
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CHAPTER ONE

INTRODUCTION

We will give the motivating ideas of the thesis by saying thatcategory theory is the mathematical

study of abstract algebra of functions. Category theory arises from the idea of a system of functions

among some objects. One thinks of the compositiong◦ f as a sort of product of the functionsf andg

and consider abstract algebra of algebras of the sort arising from collections of functions. A category

is just an algebra, consisting of objectsX,Y,Z, ... and morphismsf : X → Y,g : Y→ Z,... that are

closed under composition and satisfy certain conditions.

First, let us explain the historical development of category theory. In 1945 the theory was first for-

mulated in Eilenberg and Mac Lane’s original paper namedGeneral theory of natural equivalences.

Late in 1940s the main applications were originally in the fields of algebraic topology, particularly

homology theory and abstract algebra. In 1950s A. Grothendick et al. began using category the-

ory with a great success in algebraic geometry. In 1960s F.W.Lawvere and others began applying

categories to logic, revealing some deep and surprising connections. Also between 1963 and 1966

Lawvere began by characterizing the category of categories. In 1970s applications were already

appearing in computer science, philosophy and many other areas. Lawvere’s approach, under active

development by various mathematicians, logicians and mathematical physicists, lead to what are now

calledhigher dimensional categories.

In Chapter Two, we start with the definition of category and describe large and small categories.

We continue with some examples and relation between categories and homotopy theory. We show

that functors which can be considered as functions connecting with one object and another object,

constitute the connection of two categories. After that we give some properties of functors and we

investigate the fundamental group of a topological space. We see the relation between topological

spaces and group structures by using the fundamental group.Before searching the representable

functors, we mention natural transformations among functors and also functor category which con-

sists of natural transformations as morphisms.

In Chapter Three we see the constructions in categories by using the cone structures which are

called limits and colimits of a functor in general. Then we give some important examples of limits

and colimits in categories and applications in homotopy theory. After giving the equivalence among

categories which is also called adjunction of two functors,we finish this chapter with the definition

of monads.
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In the last Chapter we start by giving the definition of monoidal categories and some related

examples. Furthermore, we explain the geometric meaning ofsimplicial sets which leads us sim-

plicial complex. We also study subdivisions of simplicial complexes. After all, we see bicategories

and the definition ofn−categories. We explain the relation betweenn−categories and Homotopy

theory. Finally we compare the definition of Zouhair Tamsamani n−categories with the definition of

n−bicategories.



CHAPTER TWO

CATEGORIES, FUNCTORS AND NATURAL TRANSFORMATIONS

2.1 Categories

Here we start with giving the definition of categories. In order to be prepare the next sections,

we define small and locally small categories. We shall list some general categories with their objects

and morphisms in a table implicitly. After explaining the homotopy categoryToph, we shall give the

definitions of some special elements of categories with examples.

Definition 2.1.1. A categoryC consists of:

• A collection of objects denoted by ob(C )

• For every pairX,Y ∈ ob(C ), a collection of morphisms (also referred to as maps or arrows)

with domainX and codomainY, f : X → Y, denoted byC (X,Y) or HomC (X,Y) equipped

with

– for each objectX ∈ ob(C ), an identity mapidX = 1X ∈ C (X,X)

– for eachX,Y,Z ∈ ob(C ), a composition map

◦XYZ : C (Y,Z)×C (X,Y)→ C (X,Z)

(g, f ) 7→ g◦ f = g f

These conditions satisfy the following properties:

a. Unit law: For all morphismf : X→Y andg : Y→ Z composition with identity map 1Y gives

1Y ◦ f = f andg◦1Y = g .

b. Associativity: For given objects and morphisms in the configuration

X
f - Y

g - Z
h- W

have always the equalityh◦ (g◦ f ) = (h◦g)◦ f .

As 2.1.1 if we have collections of objects and morphisms in a category we can think about domain

and codomain as morphisms. LetC0 andC1 denote the collection of objects and morphisms inC

respectively, then we have a diagram

C1

domain

codomain

C0

3
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where the domain function assigns a morphism with its domain(or source) and codomain function

assigns a morphism with its codomain (or target). This motivates the definition.

Definition 2.1.2. Given a categoryC , thedual or oppositecategoryC op is defined by:

• ob(C ) = ob(C op),

• C (X,Y) = C op(Y,X),

• identities inherited,

• f op◦gop = ( f ◦g)op.

It is pointed out here that all of the objects are preserved but the morphisms are reversed. In category

theory for any given property, feature or theorem in terms ofmorphisms, we can immediately obtain

its dual by reversing all the arrows and this is often indicated by prefix "co-". One can say that this is

the principle of the duality. We will see many examples of theduality later on.

In order to define small categories we give the definition of a universe.

Definition 2.1.3. A universeU is a non-empty set which satisfies the followings :

- If x∈U and theny∈ x, y∈U .

- If x,y∈U , then{x,y} ∈U .

- If x∈U , thenP(x) ∈U .

- {xi | i ∈ I ∈U } ⇒
⋃

i∈I xi ∈U .

Definition 2.1.4. A set S is said to beU-smallif it is isomorphic to an element ofU . Let the universe

U be fixed and callu ∈U small set. Then the universeU is the set of all small sets. Similarly, a

function f : u→ v is small whenu andv are small sets.

Definition 2.1.5. A categoryC is small if ob(C ) and all of theC (X,Y) are small sets andlocally

small if eachC (X,Y) is a small set.

Remark2.1.6. the category of all setsSet is not small because the set of its objects is not small set,

otherwise we get a contradiction with the universality of fixedU s.t. U ∈U and this is contrary to

hierarchy, which asserts that there are no infinite chains...Un ∈Un−1 ∈Un−2 ∈ ... ∈U0.

Definition 2.1.7. A categoryC is calleddiscreteif the only morphisms are identities, that is;

C (X,Y) =







{1X} if X = Y ;

/0 otherwise .
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With aid of this definition any set can be considered as a discrete category with the identity

morphisms.

Definition 2.1.8. A subcategoryD of C consists of subcollections

• ob(D) ⊆ ob(C )

• HomD ⊆ HomC

together with composition and identities inherited fromC . We say thatD is a full subcategoryof C

if ∀X,Y ∈D , D(X,Y) = C (X,Y), and aluff subcategoryof C if ob(D) = ob(C ).

In Table 2.1, we give some general categories implicitly where the composition of the maps is

ordinary composition.

Table 2.1 General Categories in Mathematics

objects arrows (or morphisms)

Set all sets all functions between sets

Set∗ all sets each with a selected base point base-point-preserving functions

Mon all monoids all homomorphisms of monoids

Grp all groups all morphisms of groups

Ab all (additive) abelian groups all morphisms of abelian groups

Rng all rings ring morphisms preserving units

CRng all commutative rings ring morphisms preserving units

R-Mod all left modules over the ringR all linear maps between them

Mod-R all right R modules all linear maps between them

K -Mod all modules over the commutative ringK all linear maps between them

Top all topological spaces continuous functions

Top∗ all topological spaces with selected base pointbase-point preserving continuous func-

tions

In table 2.1, one can see thatSet∗ is a subcategory ofSet. Set∗ is not full, because the hom-

set of Set∗ includes just base-point preserving functions, but it is a luff subcategory ofSet since

ob(Set∗)=ob(Set). Now we explain the homotopy categoryToph (also denoted by[Top] ) explicitly

after giving the definition of homotopy.

Definition 2.1.9. Let X,Y be topological spaces andf ,g continuous maps fromX toY. A homotopy

H is a continuous function fromX× I to Y , whereI denotes the unit interval[0,1] , satisfying
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H(x,0) = f (x) andH(x,1) = g(x) for all x ∈ X. If there exists such a functionH then f andg are

said to be homotopic. Moreover, homotopy is an equivalence relation with respect to the followings:

• (reflexive) Let H : X× I → Y be defined byH(x, t) = f (x) for all t ∈ I where f : X → Y is

continuous.H is continuous because it is the composition of the continuous function f and

projection onto the first factor. This means that any continuous function is homotopic to itself.

• (symmetry) H : X× I →Y be any given homotopy such thatH(x,0) = f (x) andH(x,1) = g(x)

where f ,g are continuous functions fromX toY. Let us define a homotopyG : X× I →Y such

thatG(x, t) = H(x,1− t) for all (x, t) ∈ X× I . SinceH is continuous,G is clearly continuous

and homotopy fromg to f . This shows that homotopy is symmetric.

• (transitivity) For given homotopiesH,G : X× I →Y betweenf ,g,h such thatH(x,0) = f (x),

H(x,1) = G(x,0) = g(x) andG(,1) = h(x) let us define a homotopyF : X× I →Y by using

the Glueing Lemma, that is,

F(x, t) =







H(x,2t), t ∈ [0, 1
2];

G(x,2t−1), t ∈ [1
2,1].

So we haveF(x,0) = f (x), F(x,1) = h(x) and this means that homotopy is transitive.

We denote the homotopy class of continuous functions by[ f ]. According to these, before we con-

struct a subcategoryToph of Top whose objects are topological spaces and whose morphisms are the

homotopy equivalence classes of the continuous functions between topological spaces, we should

check whether the composition of the equivalence classes iswell-defined or not.

Theorem 2.1.10.Let X,Y,Z be topological spaces. Suppose that f0 and f1 are homotopic maps

X→Y and that g0 and g1 are homotopic maps Y→ Z. Then g0◦ f0 and g1 ◦ f1 are homotopic maps

X→ Z.

Proof. Let H : X× I → Y be a homotopy fromf0 to f1. Let G = g0 ◦H : X× I → Z then G is

continuous and homotopy fromg0 ◦ f0 to g0 ◦ f1. Let f̃1 : X× I → Y× I be defined byf̃1(x, t) =

( f1(x), t) , it is seen thatf̃1 is continuous and suppose thatF : Y× I → Z is a homotopy fromg0 to

g1. Now we construct a homotopyK = F ◦ f̃1 : X× I → Z. SoK is continuous and homotopy from

g0◦ f1 to g1◦ f1. We have thatg0◦ f0 is homotopic tog0◦ f1 andg0◦ f1 is homotopic tog1◦ f1. Since

homotopy is transitiveg0 ◦ f0 is homotopic tog1 ◦ f1 as desired.

We continue with an example of one object category, whose morphisms are not just identities.
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Example 2.1.11.A monoidis a setM with a binary operation⋆ : M×M→M , obeying the following

axioms;

• Associativity :∀a,b,c∈M ; (a⋆b)⋆c = a⋆ (b⋆c) .

• Identity element : There exist an elemente∈M, such that∀a∈M ; a⋆e= e⋆a = a. One often

sees the additional axiom :

• Closure :∀a,b∈M , a⋆b∈M through , strictly speaking , this axiom is implied by the notion

of the operation .

A monoid is exactly a semigroup with identity element and according to the definition of monoids,

we can construct a category with one objectM. Let us take the elements ofM as arrows this means

that if a∈ M thena : M→ M such thata(m) = a⋆m. The associativity and unit laws are satisfied

clearly according to definition of the binary operation "⋆" . For any categoryC and any objectX ∈C ,

the set ofHomC (X,X) of all arrowsX→ X is a monoid with respect to the composition of arrows.

In the last part of this section, we define some special kinds of objects and morphisms with

examples in general categories.

Definition 2.1.12. An elementT of ob(C ) is calledterminal if ∀X ∈ ob(C ), there exists a unique

morphismk : X→ T and dually an elementI of ob(C ) is calledinitial if ∀X ∈ ob(C ) there exists

a unique morphismk : I → X. If an objectZ is both initial and terminal in a category then it is

callednull objectof this category. For example,Setall one element sets are terminal and the unique

morphism is clearly constant map and similar inTop all one point space are terminal. The empty set

/0 in the categorySet is accepted as initial object.

Definition 2.1.13. A morphismm: X→Y is monicin C , when for any two morphismsf1, f2 :U→X

the equalitym f1 = m f2 implies f1 = f2, in otherwordsm is monic if it is left cancelable. A morphism

e : X→Y is calledepi in C if for any two morphismsg1,g2 : Y→U the equalityg1e= g2e implies

g1 = g2, or e is epi if it is right cancelable. InSetit is clear that monics are injections and sinceg1,g2

are functions then epis must be surjections.

Example 2.1.14.Let us consider the following diagram inMon.

N
e

Z
f

g
(M,e,⋆)

Now supposee is an embedding andf ,g are two monoid homomorphisms which agree on the non-

negative integers. Then
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f (−1) = f (−1)⋆g(1)⋆g(−1) = f (−1)⋆ f (1)⋆g(−1) = g(−1)

so f andg agree on the whole ofZ. This means thate is an epi.

Definition 2.1.15. A morphism f ∈ C (X,Y) is an isomorphismif ∃g∈ C (Y,X) such thatg f = 1X

and f g = 1Y. Moreover f is calledinvertible andg is an inverseof f . For instance, inToph given

two topological spacesX,Y the morphismf : X→Y is calledhomotopy equivalenceif there exists a

continuous morphismg : Y→X satisfying thatf ◦g is homotopic to 1Y andg◦ f is homotopic to 1Y.

If there exists such a homotopy equivalencef betweenX,Y then it is said thatX andY arehomotopy

equivalentor of the same homotopy type. Another example of the isomorphisms is the bijections in

the categorySet.

2.2 Functors and Natural Transformations

In this section we try to give the relation between two categories with using the functors. Functors

are really important because they are like bridge between any two of the mathematical part such

that topology and algebra. For example, we use the functors to construct fundamental group of a

topological space and this helps us to solve some problems which can not be solved easier. Then we

meet with natural transformations as we see in the next sections this gives us an idea to approach to

then−categoriesand we discribe the functor category. After these we will define Yoneda embedding

which is our second aim in this section.

2.2.1 Functors

Definition 2.2.1. Now we can think about the categoryCat in which the objects are categories and

the morphisms are the mappings between categories. The morphisms in such a category are known

asfunctors.

We know that a categoryC consists of objects and morphisms. So any functorF : C →D must

carry objects ofC to objects ofD and morphisms ofC to morphisms ofD , such that the following

diagram are commutative.

F : C - D

ob. X
F- FX

morp. -

Y

f
?

FY

F f
?
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We can combine objects and morphisms in one diagram so we get

X
F

> FX

Y

f
∨

F
> FY

F f
∨

Before giving an example of functor let us look some of its properties. (Baez & Shulman (2006))

• Let F : C →D be a functor,∀ f ,g∈ C (X,X′) whereX,X′ ∈ ob(C ), if we have thatF f = Fg

implies f = g , thenF is calledfaithful. This means thatF is an injection on morphisms.

• For F : C → D if ∀h∈ D(FX,FX′) there exists a morphismf ∈ C (X,X′) for every pair of

ob(C ), thenF is calledfull and this means thatF is surjection on morphisms.

• A functor F : C →D is essentially surjectiveon objects if and only if∀Y ∈ D , ∃X ∈ C such

thatFX ∼= Y.

• In mathematics we are often interested in equipping things with extra structure, staff, or prop-

erties. So we can also consider the functors with four different parts :

- F forgets nothingif it is an equivalence of categories that isF is faithfull, full and essentially

surjective. For example identity functor.

- F forgets at most propertiesif it is faithfull and full. For example,Ab → Grp which forgets

the property of being abelian, but a homomorphism of abeliangroups is just a homomorphism

between groups that happen to be abelian.

- F forgets at most structureif it is faithfull. For example, the functor fromTop to Set, it forgets

the structure of being topological space, but it is still faithfull.

- F forgets at most staffif it is arbitrary. For example,Set×Set→Set, where we just throw out

the second set, is not even faithfull.

Definition 2.2.2. A contravariantfunctorF : C →D is a functorC op→D , that is,

• on objects,X→ FX

• on morphisms,( f : X→Y) 7→ (F f : FY→ FX)

• identities are preserved

• F(g◦ f ) = F f ◦Fg
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A non-contravariantfunctor is sometimes reffered to as acovariant functor and the following dia-

grams are commutative.

X
f - Y X

f - Y

FX

F
?

F f
- FY

F
?

FX

F
?

�
F f

FY

F
?

covariant contravariant

Example 2.2.3.Let X be a topological space andI be the interval[0,1], a continuous mapα from I to

X starting atx and ending aty, that is,α : I→X such thatα(0) = x andα(1) = y for x,y∈X, is called

path. If a pathα has the same starting and ending points; such thatα : I → X, α(0) = α(1) = x∈ X,

thenα is calleda loopwith base pointx0. A homotopy between two pathsα andβ is a continuous

function such thatH : I × I → X for s, t ∈ I satisfies the followings:

H(s,0) = α(s) , H(s,1) = β (s)

H(0, t) = x0 , H(1, t) = x1

Herex0 is the starting point andx1 is the ending point of the two curves. Given any two path with

same starting and ending point if there exists such a continuous function then the curves are said to

be homotopic. By the same procedure 2.1.9 homotopy is also anequivalence relation on paths. The

homotopy class of a pathα denoted by[α ]. Let x0 be the base point ofX, the set of all homotopy

classes of loops with base pointx0 forms the fundamental group ofX at a base pointx0 and it is

denoted byΠ1(X,x0) or simplyΠ1(X) where the binary operation is defined by the composition of

the paths, that is,

[α ]∗ [β ] = [β ◦α ]

The composition of paths is given with respect to the parameter t ∈ I , since the ending point of the

first path is the starting point of the second one, they can be glued at the common point and we can

formulate it by dividing the interval I into the two parts

β ◦α =







α(2t), t ∈ [0,1
2];

β (2t−1), t∈ [ 1
2,1].

The identity element of the fundamental group is the constant map at the base pointx0 and the inverse

homotopy class of a pathα is [α ]−1 = [α−1] = [α(1− t)] the homotopy class of the inverse ofα for

t ∈ I , that is,α−1 follows α backwards.
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If f : (X,x0)→ (Y,y0) is a continuous base point preserving function, such thatf (x0) = y0 for the

base pointsx0 ∈ X andy0 ∈Y respectively, then every loop inX with base pointx0 can be composed

with f to yield a loop inY with the base pointy0. Let α is a loop inX at x0, since f is continuous

f ◦α is a loop inY aty0. This composition is compatible with the homotopy equivalence relation and

with the composition of loops. Hence we can define a group homomorphism which is calledinduced

homomorphism;

f∗ : Π1(X,x0)→Π1(Y,y0)

[α ] 7→ [ f ◦α ]

This operation is compatible with the composition of functions, that is, letf : (X,x0)→ (Y,y0) and

g : (Y,y0)→ (Z,z0) be continuous base preserving functions then the composition of the induced

mapsf∗ andg∗ is defined by the composition of the mapsf andg such that

g∗ ◦ f∗ : Π1(X,x0)→Π1(Z,z0)

g∗ ◦ f∗[α ] = [g◦ f ◦α ]

According to these construction of induced map, the operation Π1 can be consider as a covariant

functor betweenTOP∗ andGrp .

Π1 : TOP∗ - Grp

ob. (X,x0)
Π1- Π1(X,x0) (X,x0)

Π1 - Π1(X,x0)

(X,x0) Π1(X,x0)

morp. - (Y,y0)

f
?

Π1

- Π1(Y,y0)

f∗
?

(Y,y0)

f
?

Π1(Y,y0)

f∗
?

For any induced homomorphismf∗ = g∗ , we have thatf andg are homotopic relative to{x0} and

this means that the functorΠ1 is not faithfull. Moreover, one can abandon the group structure of

Π1(X,x0) thenΠ1 can be thought as a forgetfull functor betweenTOP∗ andSET∗, which forgets the

structure.

2.2.2 Natural Transformation

Definition 2.2.4. Given two functors F,G :C →D , anatural transformationα : F→G is a function

which assigns each objectX of C a morphismαX = αX : FX→GX of D in such that every morphism
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f : X→ X′ in C yields the diagram

X FX
αX- GX

X′

f
?

FX′

F f
?

αX′

- GX′

G f
?

which is commutative.

There are two different types of composition of the natural transformations.

i Horizontal : Suppose thatA ,B,C are categories andF,G,F
′
,G

′
are functors, whereα : F → G

andβ : F ′→G′ are natural transformations as in the diagram;

A

F

G

α B

F
′

G
′

β C

SinceF,F ′ are functors andα ,β are natural transformations, the following diagram must be

commutative and each of the squares commutes.

X
F- FX

αX- GX
F- ′F ′(GX)

βGX- G′(GX)

Y

f
?

F
- FY

F f
?

αY

- GY

G f
?

F ′
- F ′(GY)

F ′(G f)
?

βGY

- G′(GY)

G′(G f)
?

Henceβ ◦α : F ′ ◦F → G′ ◦G is natural.

ii Vertical : Let A ,B be given categories andF,G,H functors Let us construct the composition of

two 2-cell such thatA

F

α

H

βG
B ; sinceα andβ are natural, the following diagram commutes

for X,Y ∈A ,

Fa
αX- GX

βX- HX

FY

F f
?

αY

- GY

G f
?

βY

- HY

H f
?

.

Hence the composition of the vertical two 2-cells isβ ·α : F → H.

One can consider the particular cases of the horizontal composition :

• 1H ◦α : HF→ HG such thatA
F

G

α B

H

H

1H C which we will write asHα : HF→ HG

s.t. A

F

G

α B
H

C .
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• β ◦1F : GF→ HF s.t. A

F

F

1F B

G

H

β C which we will write asβF : GF→ HF

s.t. A
F

B

G

H

β C .

Proposition 2.2.5. Given categories, functors and natural transformations inthe following figure,

A

F

α

H

βG
B

S

α ′

W

β ′T C

we have the equality

(β ′ ◦β ) · (α ′ ◦α)=(β ′ ·α ′)◦ (β ·α)

which is calledthe middle four interchange law.

Proof. We give the proof by using the components of the natural transformations. On the right side

we have

[(β ′ ·α ′)◦ (β ·α)]X = (β ′ ·α ′)HX ◦S(β ·α)X = β ′HX ◦α ′HX ◦SβX ◦SαX

and on the left side

[(β ′ ◦β ) · (α ′ ◦α)]X = β ′HX ◦TβX ◦α ′GX ◦SαX

So we should show thatα ′HX ◦SβX
= TβX ◦α ′GX. By the naturality ofα ′ we have that

SGX
α ′GX - TGX

SHX

SβX

?

α ′HX

- THX

TβX

?

commutes.

Example 2.2.6.One can construct two different group structure for given any commutative ringK.

First, let GLn(K) be the set ofn× n matrix with entries in the commutative ringK, while ∀M ∈

GLn(K) determinant ofM is a unit inK, this means that the elements ofGLn(K) are non-singular.

Hence the elements ofGLn(K) are compatible with the associativity condition of being group and

GLn(K) has a unit element with respect to matrix multiplication, such that the diagonals are units
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element ofK and the other entries are zero. SoGLn(K) is a group of matrix which is called the

general linear group.

Second, let(K)∗ denote the set of units ofK. (K)∗ has clearly a group structure with respect to

multiplication ofK. One can easily see thatGLn and(−)∗ can be thought as functors betweenCRng

andGrp . Because the determinant is defined by the same formula for all commutative ringsK, each

morphism f : K→ K
′
of commutative rings leads us to a commutative diagram

GLn(K)
detK- (K)∗

GLn(K
′
)

GLn( f )
?

det
K
′

- (K
′
)∗

( f )∗
?

This states that the transformationdet : GLn→ (−)∗ is natural between two functorsCRng→Grp .

Definition 2.2.7. A categoryC is called agroupoid if every arrow ofC is an isomorphism.

Example 2.2.8. Let C be a groupoid and suppose that for each objectX of C an arrowµX in C

with domainX is given. Then we have a collectionµ = {µX |X ∈ ob(C )}. Let us define a functor

F : C →C which acts on objects byF(X) = cod(µX). We can consider the following forµX : X→Y;

X
µX- cod(µX) = F(X)

Y

µX

? µY- cod(µY) = F(Y),

µF(X)=F(µX)
?

where the diagram commutes because the horizontal arrowsµX andµY behave as the functorF. And

now we replaceX,Y,µX by id(X), id(Y) and id(µX) in the left vertical arrow, respectively. Since

the diagram commutes for allX ∈ ob(C ) the collectionµ becomes a natural transformation between

identity functor andF.

2.2.3 Functor Category

Definition 2.2.9. Given categoriesC andD the functor category[C ,D ] or DC consists of :

• objects are functorsF : C →D

• morphisms are natural transformationsα : F →G, such that :

• identities are natural transformations 1F : F → F, this means that for anyF : C → D 1F has

the components 1FX : FX→ FX; ∀X ∈ C ;

• the composition of the natural transformations is the vertical one.
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For given any two functors the set of the morphisms of the functor category is denoted by[C ,D ](F,G).

Definition 2.2.10. A natural isomorphismα : F→G is an isomorphism in the functor category; that

is, there existsβ : G→ F such thatα ·β = 1G andβ ·α = 1F . Moreover two natural transformations

areequalif and only if all their components are equal.

Proposition 2.2.11.α : F →G is a natural isomorphism if and only if each componentαX : FX→

GX is an isomorphism inD

Proof. Supposeα is a natural isomorphism, and letβ be its inverse. Then we have

α ·β = 1G =⇒ (α ·β )X = 1GX =⇒ αX ·βX = 1GX

and

β ·α = 1F =⇒ (β ·α)X = 1FX =⇒ βX ·αX = 1FX .

SoβX is an inverse forαX for eachX ∈ C . Thus each component is an isomorphism. Conversely,

if each componentαX is an isomorphism, then letβX be the corresponding inverses for eachX ∈ C .

Now given f ∈ C (X,X
′
), sinceα is natural we have that

FX
αX- GX

FX
′

F f
?

α
X
′

- GX
′

G f
?

commutes, that is(G f)◦αX=αX′ ◦ (F f ). Let us compose both side withβX andβX′ respectively, the

we get

βX′ ◦ (G f)◦αX ◦βX = βX′ ◦αX′ ◦ (F f )◦βX.

SinceβX andβX′ are the inverses ofαX andαX′ respectively, it follows

βX′ ◦ (G f)◦1GX = 1FX′ ◦ (F f )◦βX

soβX′ ◦ (G f) = (F f )◦βX

Hence the following diagram is commutative

GX
βX- FX

GX
′

G f
?

β
X
′

- FX
′

F f
?

.
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So we can define the natural transformationβ with componentsβX and clearlyβ is an inverse forα

, soα is a natural isomorphism.

Definition 2.2.12. Given any two categoriesC andD theequivalenceof these categories consists of

two functorsF,G and two natural isomorphisms such thatF : C →D , G : D→C andα : 1C →GF,

β : FG→ 1D . Here we mean thatFG, GF are clearly the composition of functors and 1C ,1D are

the identities. There is also similar construction in the section of adjunction. If there exists such an

equivalence then we say that two categoriesC andD areequivalent. It can be shown that if a functor

F is full, faithfull and essentially surjective thenF is an equivalence of categories.

2.2.4 Representables

Let C be a category and X∈ C , using the hom-set, we can define a functor

HX = C (X,−) : C → Setwith following data;

(i) HX(Y) = C (X,Y)

(ii) g∈ C (Y,Z) , HX(g) = C (g,1) : C (X,Y)→ C (X,Z) is defined by the composition, such that

HX(g)( f ) = C (g,1)( f ) = g◦ f .

So it is easily seen that this functor is covariant and we get the following commutative diagram,

X
f - Y

X

1X

?

g◦ f
- Z

g
?

Now if we put the second parameter as constant value we get another functor

HX = C (−,X) : C op→ Set, and data;

(i) HX(Y) = C (Y,X)

(ii) f ∈ C op(Y,Z) , HX(g)( f ) = C (1,g) : C (Y,X)→ C (Z,X) is defined by the composition, such

thatHX(g)( f ) = C (1,g) = g◦ f where the following diagrams commute ;

Y
HX- C (Y,X) Y

g - X

==⇒

Z

f
?

HX

- C (Z,X)

C (1,g)
?

Z

f
6

g◦ f
- X

1X

?
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and this functor is contravariant.

Definition 2.2.13. The functorsHX andHX are known asrepresentablesand for eachX ∈ C one can

get the functorHX, so we have a assignationX 7→HX and we can extend this assignation to a functor

known as theYoneda embedding.

H• : C - [C op,Set]

X - HX

( f : X→Y) - (H f : HX→ HY)

whereH f is the natural transformation with components

(H f )U : HXU - HYU

i.e C (U,X) - C (U,Y)

h - f ◦h

We need to check that this is a well-defined natural transformation, that is

C (U,X)
(H f )U= f◦−- C (U,Y)

C (U ′,X)

HXg=−◦g
?

(H f )U ′= f◦−
- C (U ′,Y)

HYg=−◦g
?

commutes.But along the two legs we just have :

h - f ◦h h

and

( f ◦h)◦g
?

h◦g
?

- f ◦ (h◦g)

so the naturality condition just says that composition is associative .

Definition 2.2.14. A functor F : C op→ Set is representableif it is a natural isomorphic toHX for

someX ∈ C , and arepresentationfor F is an objectX ∈ C together with a natural isomorphism

α : HX → F . Dually, a functorF : C → Set is representable ifF ∼= HX for someX ∈ C , and a

representation forF is an objectX with a natural isomorphismα : HX→ F.

For naturality ofα we have a square :∀ f : V→W ∈ C ;

C (W,X)
αW- FW

C (V,X)

HX f=−◦ f
?

αV

- FV

F f
?

which must be commutative. Before we end this section, we give an important lemma which is called

Yoneda lemma .
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Lemma 2.2.15. Let C be a locally small category, F: C op→ Set. Then there is an isomorphism

FX ∼= [C op,Set](HX,F) , which is natural in X and F , that is

FY - [C op,Set](HY,F) FX - [C op,Set](HX,F)

and

FX

F f
?

- [C op,Set](HX,F)

−◦H f

?
GX

θX

?
- [C op,Set](HX,G)

θ◦−
?

commute for all f: X→Y and for allθ : F →G respectively .

Proof. Givenx∈FX let x̂∈ [C op,Set](HX,F) be defined by components; forV ∈C op x̂V : C (V,X)→

FV such that ˆxV( f ) = F f (x). SinceF is a contravariant functor,F f is a map fromFX to FV. So

giveng : W→V in C op andx̂v,x̂W the diagram

C (V,X)
x̂V

−◦g

FV

Fg

C (W,X)
x̂W

FW

So if f ∈ C (V,X) thenFg(x̂V( f )) = Fg(F f (x)) = F( f ◦g)(x). Given anyα ∈ [C op,Set](HX,F), let

α̂ ∈ FX be defined byα̂ = αX(1X). Remember that 1X ∈ C (X,X) andαX : C (X,X)→ FX. Now

for x ∈ FX andα ∈ [C op,Set](HX ,F) we have a natural transformation ˆx and an element̂α ∈ FX.

But we should check that whether(̂̂) = () or not.

ˆ̂x = x̂X(1X) = F1X(x) = 1FX(x) = x and

α̂ = αX(1X) =⇒ ˆ̂αV : C (V,X)→ FV that is for f ∈ C (V,X) ˆ̂α = F f (α̂) = F f (αX(1X)). More-

over, because of the commutativity of the following diagramwe haveαV(1X ◦ f ) = F f (αX(1X)) as

required.

C (X,X)
αX

−◦ f

FX

F f

C (V,X) αV
FV

Here we check that the operation "̂" is natural. Letf : Y→ X be a map inC op. We will test the

following diagram.

FX > [C op,Set](HX,F)

FY

F f
∨

> [C op,Set](HY,F)

−◦H f

∨

In two way we havex 7→ x̂ 7→ x̂◦H f andx 7→ F f (x) 7→ ˆF f (x). Explicitly;

C (V,Y)
(H f )V

C (V,X)
x̂V

FV
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g 7→ f ◦g 7→ F( f ◦g)(x)

and

ˆF f (x) : C (V,Y)→ FV such thatg 7→ Fg(F f (x)).

We know thatFg◦F f = F( f ◦g). So the first diagram in the theorem commutes. Given anyθ : F→

G we should check the second diagram. Letx∈ FX we havex 7→ x̂ 7→ θ ◦ x̂ andx 7→ θX(x) 7→ ˆθX(x).

According to these,θ ◦ x̂V( f ) = θV ◦F f (x) and ˆθX(x)( f ) = G f ◦θX(x) for any f ∈ C (V,X). We can

associate this result with the naturality ofθ such that

FX
θX

F f

GX

G f

FV θV
GV

Hence the second diagram commutes.

Definition 2.2.16. Given a categoryC and an objectX ∈ ob(C ), let M(X) be the class of pairs

(Y, f ) , where f : Y→ X is a monomorphism. Two element(Y, f ) and(Z,g) of M(X) are deemed

equivalent if there exists an isomorphismφ : Y→ Z such thatf = g◦ φ . A representative class of

monomorphisms inM(X) is a subclass ofM(X) that is a system of representatives for this equivalence

relation. C is said to be wellpowered provided that each of its objects has a representative class of

monomorphisms which is a set. SimilarlyE(X) denotes the class of pair( f ,Y) such thatf : X→Y

is an epimorphism. Two elements( f ,Y) and(g,Z) of E(X) are deemed equivalent if there exists

an epimorphismφ : Y→ Z such thatg = φ ◦ f . A representative class of epimorphisms inE(X) is

a subclass ofE(X) that is a system of representatives for the equivalence relation. C is said to be

cowellpowered provided that each of its objects has a representative class of epimorphisms which

is a set.Set,Gp,Ab,Topare wellpowered and cowellpowered. The category of ordinalnumbers are

wellpowered but not cowellpowered.

Before we give a definition of another category constructed by using the functors, we need some

extra definitions and a motivation.

Definition 2.2.17. Let C be a category andz∈ ob(C ), the category(z,C ) is called the category

of objects underz with objects all pairs< f ,x > and monomorphismsh :< f ,x >→< g,y > those

morphismsh : x→ y of C for which h◦ f = g. Thus an object of(z↓ C ) is just a morphism inC

with domainzand a morphism of(z,C ) is a commutative triangle with top vertexz, that is

• objects of(z,C ) : {< f ,x > | f : z→ x; for x∈ ob(C )}
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• morphisms of(z↓ C ) :

z
f g

x
h

y

whereh∈ C (x,y) and diagram commutes.

• Since the composition of two commutative diagrams must be commutative in the categoryC ,

the composition of the morphisms in(z ↓ C ) is clearly defined, that is, for any mapsh :<

f ,x >→< f
′
,x
′
> andh

′
:< f

′
,x
′
>→< f

′′
,x
′′
> ; for < f ,x >, < f

′
,x
′
>, < f

′′
,x
′′
>∈ ob(z↓

C ) the following diagram commutes.

z
f

f
′ f

′′

x
h x

′

h
′ x

′′

• One can verify that the associativity and unit law hold in this category because the composition

is the same as the composition in the categoryC

Using the similar idea one can construct the category(C ↑ z) which is called the category of objects

over z with objects all pairs< x, f > and morphismsh :< x, f >→< y,g > . Here objects are just

morphisms inC with codomainz and morphisms are all commutative diagram forf : x→ z and

g : y→ z

x h

f

y

g

z

Now letS: D→C be a functor from the categoryD to C , we can define a category(z↓S) of objects

S-underz, such that

• objects of(z↓ S) : all pairs< f ,d > for d ∈ ob(D) and f ∈ C (z,Sd)

• morphisms of(z↓S) : for any morphismsh : d→d
′
and the pairs< f ,d >,< f ,d

′
>∈ ob(z↓S)

the following commutative diagram,

z
f f

′

Sd
Sh Sd

′

Also with the dual notation one can construct a category(T ↓ z) which is called the categoryT-over

z, wherez∈ ob(C ) andT is a functor fromD to C such that
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• objects of(T ↓ z) : all pairs< d, f > for d ∈ ob(D) and f ∈ C (Td,z)

• morphisms of(T ↓ z) : for any morphismsh : d→ d
′
and the pairs< d, f >,< d

′
, f
′
>∈ ob(T ↓

z) the following commutative diagram,

Td
h

f

Td
′

f
′

z

Definition 2.2.18. By combining the four types of categories given above, letT,S : D → C be

functors, the category(T ↓ S) is calledthe comma categoryand consists of :

D
T- C � S

D

• ob(T ↓ S) : the triple< x,y, f > wherex,y∈ ob(D) and f ∈ C (Tx,Sy)

• Hom(T ↓ S) : the pair< k,h >, such that the diagram commutes

Tx
Tk- Tx

′

Sy

f
?

Sh
- Sy

′

f
′

?

wherek∈D(x,x
′
) , h∈D(y,y

′
).

• The composite< k,h > ◦< k
′
,h
′
> is < k◦k

′
,h◦h

′
> , when the compositions are defined in

D .

Let S= T = 1C where1C is the identity functor ofC , then(1C ↓ 1C ) is exactly the categoryC 2

of all morphisms ofC . Moreover, takingT,S : C → C as a constant functor with the rangex and

y∈ ob(C ) respectively; note that constant functors carries morphisms to the identity morphism of the

object in the range; then(T ↓ S) is the category with objects all morphismsf : x→ y and morphisms

only the identity morphisms, in otherwords(T ↓ S) is the setHomC (x,y).

Example 2.2.19.Let K is a commutative ring andCRng denotes the category of all commutative

rings. A K−algebra is the ringR with identity and a ring homomorphismf : K → R mapping 1K

to 1R (identity of K to identity of R) such that the subringf (K) of R is contained in the center of

R, that is, f (K) = {a ∈ R|ra = ar ∀r ∈ R}. Let R andR
′
be two commutative rings.A K-algebra

homomorphismbetweenR andR
′
is a ring homomorphismϕ : R→ R

′
mapping 1R to 1R′ such that

ϕ(k· r) = k·ϕ(r) for all k∈ K andr ∈R. According to these definitions, the category(K ↓CRng) is

the category of allK−algebras, with the composition of the ring homomorphisms inCRng.



CHAPTER THREE

CONSTRUCTIONS IN CATEGORIES

3.1 Limit and Colimit

A lot of important properties of categories can be formulated by requiring that limits or colimits

of certain kind do exist meaning that certain functor are representable. Here we will define limits

and colimits. Later we try to explain the relation between the cone structure and functor. Then we

will give the definition some special kinds of limit and colimits such that pullback or equalisers with

giving examples in homotopy theory. After we investigate parametrised limits, we will deal with

dinatural transformations which are a different kinds of natural transformations.

Definition 3.1.1. Let F : D → C be a functor from a categoryD to a categoryC and letX be an

object ofC . A universal arrowfrom X to F consists of a pair(A,φ) whereA is an object ofD and

φ : X→ F(A) is a morphism inC such that the following universal mapping property is satisfied:

WheneverY is an object ofD and f : X→ F(Y) is a morphism inC , then there exists a unique

morphismg : A→Y such that the following diagram commutes .

X
φ

f

F(A) A

g

F(Y) Y

Definition 3.1.2. Let I andC be two categories andF : I→ C a functor. Here we use the small

categoryI for indexing. A coneof F is an objectN of C , together with a family of morphisms

kI : N→ F(I), one for each objectI in I such that for every morphismf : I → I
′

in I, we have

F( f )◦kI = kI ′ as in the diagram

N
kI

k
I
′

F(I)
F f F(I

′
)

Definition 3.1.3. A limit of a functor is just a universal cone. In detail, a cone(L,kI ) of a functor

F : I→ C is a limit of that functor if and only if for any cone(N, pI ) of F, there exists precisely one

morphismu : N→ L such thatkI ◦u = pI for all I.

N

u

pI pI ′L

kI kI ′

F(I)
F f

F(I ′)

22
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We may say that in the diagram the morphismspI factor through L with unique factorizationu which

is called the mediating morphism. It is possible that a functor F does not have a limit at all. However,

if it has two limits then there exists auniqueisomorphism between the respective limit objects which

commutes with the respective cone maps. This isomorphism isgiven by the unique factorization

from one limit to the other. Thus limits are unique up to isomorphism and can be denoted bylim
←−

F.

Definition 3.1.4. Given anyY ∈ C , one can define theconstant functor△Y from I to C such that

∀I ∈ I,△Y(I) = Y and∀ f ∈ I,△Y( f ) = 1Y.

△− : C - [I,C ]

Y - △Y

X △X

-

Y

f
?

△Y

△ f
?

A limit L for F can be thought as a representation for the functor [I,C ](△−,F) : C op→ Set, that

is, there is a natural isomorphismα with HL
∼= [I,C ](△−,F) and we can also denote the limit object

L =
∫

I FI . So we have an isomorphismC (−,
∫

I FI)∼= [I,C ](△−,F). Let us make it explicitly what

the functor on the right hand side, call itG and how we can get a universal cone :

G : C
op > Set

Y > [I,C ](△Y,F)

Y [I,C ](△X,F)

>

X

f
∨

[I,C ](△Y,F)

G f
∨

Now we try to explain what does a natural transformation△Y→ F look like. We have :

• for each I∈ I , a morphism

kI :(△Y)I > FI

Y > FI

• for all u:I → I
′
in I ;

(△Y)I > FI

(△Y)I
′

(△Y)u
∨

> FI
′

Fu
∨

commutes by naturality , that is

Y
kI kI ′

FI
Fu FI ′
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commutes.

So such a natural transformation is precisely a cone overF with Y as a vertex. Now, consider a

representation as above, and letα be its natural isomorphism. Then we have

αY :C (Y,L) > [I,C ](△Y,F)

f > F f (αL1L)

that is, the natural transformation is completely determined byαL1L. Now, we have a cone given by

αL1L = (kI )I∈I. So given anotherY and f : Y→ L on the left hand side, we haveF f (αL1L) with the

componentskI ◦ f , hence we have a bijective correspondence morphisms and cones overF , that is,

starting on the right hand side , given any cone(pI )I∈I there exists a unique morphismf : Y→ L such

that pI = kI ◦ f for all I; thus(kI )I∈I is a universal cone overF.

Definition 3.1.5. A categoryC is calledcompleteif and only if every functorF : I→ C , whereI is

any small category, has a limit, that is "all small limits inC exist". Similarly, if every such functor

with I finite has a limit, thenC is said to havefinite limits.

Definition 3.1.6. Also with using the dual notation of limit we can get colimit of a functorF where

the morphismskI are reversed. The notation of colimit isLim−−→F or
∫ I FI and the diagram shape is the

following.

N

u

L

F(I)
F f

pI

kI

F(I ′)
k

I
′

p
I
′

One says thatC is cocompleteif and only if every functorF : I→ C has a colimit that is all small

colimits inC exist.

Definition 3.1.7. Let I be a category such that it has just two objects 1 and 2 and two parallel arrows

and let F be a functor fromI to C . Then we have a diagram inC such that•⇉ • and a cone over

this diagram is

E
e m

F(1)
f

g
F(2)

Note thatm = f e= geas all triangles commute; so in fact we can rewrite this more simply as

E
e
> F(1)

f
>

g
> F(2) ⇒ f e= ge.

The limit object overF in this diagram is called anequaliserand it is a universal cone. Given any

cone

C
h
> F(1)

f
>

g
> F(2)
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there exists a unique factorization∃!h̄ whereh = eh̄ as in the diagram;

E
e F(1)

f

g
F(2)

C

∃!h̄
h

In the category of sets; the equaliser is given by the setE = {x ∈ F(1)| f (x) = g(x)} and by the

inclusion mapeof the subsetE in F(1). With the similar idea we can define a functorG : I→ C and

a co-cone over the diagram is

C

F(1)

m

f

g
F(2).

c

and the colimit object overG in this diagram is called acoequaliserand it is a universal cone.

F(1)
f
>

g
> F(2)

c
> C ⇒c f = cg.

In the category of sets, the coequalizer is given by the quotient setC = F(2)/∼ and by the canonical

mapc : F(2)→C, where∼ is the minimal equivalence relation onF(2) that identifiesf (x) andg(x)

for all x∈ F(1).

Definition 3.1.8. A pullback is a limit of shape

•

• •

A diagram of this shape inC is

E

g

X
f

B

A cone over this diagram is

P
f
′

g
′

E

g

X
f

B

commuting. A pullback is the universal such; so given any commutative square as above we have

Z

a

b

∃!h

P
f
′

g
′

E

g

X
f

B
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a uniqueh such thatg
′
h = a, and f

′
h = b. We say thatg

′
is a pullback forg over f , and thatf

′
is a

pullback for f overg. Dually pushoutis a colimit of shape

• •

•

and pushout is the universal such that in the following commutative diagram.

X
f

g

Y

b

g
′

A
f
′

a

P

∃!k

Z

In Setthe pushout off andg always exists; it is the disjoint unionA
⊔

Y with the elementsf (x) and

g(x) identified for eachx∈ X.

Example 3.1.9.Suppose that two squares in the following rectangle are pullback. We can show that

the rectangle is also a pullback.

A
f

> B
g

> C

D

i
∨

h
> E

j
∨

r
> F

k
∨

k◦g = r ◦ j , since right square is pullback

k◦g◦ f = r ◦ j ◦ f ,taking the composition of both side withf

h◦ i = j ◦ f , since the left square is pullback

k◦g◦ f = r ◦h◦ i , by using the last equality

(r ◦h)◦ i = k◦ (g◦ f ) , this shows the rectangle is pullback.

As an application of pullbacks and pushouts we give some definitions in Top using in the Homo-

topy theory.

Definition 3.1.10. (May (1999)) The morphismi : A→ X is a cofibration if and only if it satisfies

the homotopy extension property , that is, if the square is commutative for the homotopyh then there

exists a homotopȳh : X× I →Y.

A
i0

i

A× I

h

i×1Y

X

f

i0
X× I

h̄
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Herei0(x) = (x,0). The triangle in the upsite is a pushout. In general, we denote the pushoutB⊔g X

wherei : A→X andg : A→B. One can get the isomorphism(B⊔gX)× I ∼= (B× I)⊔g× (X× I). This

isomorphism shows that ifi : A→ X is a cofibration andg : A→ B is a morphism then the inclusion

B→ B⊔g X is also a cofibration. This means that a pushout of a cofibration is also a cofibration.

If A⊂ X and i : A→ X is a cofibration then the structureMi ≡ X ⊔i (A× I) is called themapping

cylinder. Since the pushouts are universal there exists a unique map betweenY andMi. Now let

f : X→Y be a morphism then we can define a new structureM f ≡Y⊔ f (X× I) such that two space

X andY are pasted along the image set off . So we have the compositionX
j

M f
r

Y where

j(x) = (x,1) , r(y) = y andr(x,s) = f (x) on X× I . If i : Y→M f is an inclusion thenr ◦ i = id and

id ≃ i ◦ r, that is, we can define the homotopyh : M f × I →M f such that it is surjective fromM f to

i(Y) whereh(y, t) = y andh((x,s), t) = (x,(1− t)s). This gives a deformation ofM f ontoY with the

following diagram.

Y
i0

i

Y× I

i×1M f

M f

id

i0
M f × I

One can define a deformation ofM f ontoX with using the inclusionj.

Definition 3.1.11. (May (1999)) The mapp : E→B is afibration if and only if it satisfy the covering

homotopy property, that is, with given mapp the homotopyh : Y× I → B can be lifted a homotopy

h̃ : Y× I → E as in the following diagram.

Y
f

i0

E

p

Y× I
h

h̃

B

Hereh̃ must make the diagram commutative. Such a fibration is calledHurewicz fibration. If we take

Y in diagram as the cubeIn then this special case is called the Serre fibrations. It is clear that the

diagram is a pullback. Usually for a givenp : E→ B andg : A→ B we use the notationA×g E for

the pullback. So ifp is a fibration andg : A→B is a map then the mapA×gE→A is also a fibration.

Now let us define a spaceNp≡ E×p BI = {(e,β )|β (0) = p(e)} ⊂ E×BI whereBI = {β |β : I → B

is a path}. This space is called the mapping path space. Now we have a diagram

E×p BI π1
> E

BI

π2
∨

p0
> B

p
∨

here the mapsπ1 andπ2 are the projections with respect to first and second factor respectively. SoNp

is the pullback of the mapsp andp0 as in the diagram. The maps : Np→ EI is called the path lifting
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function which satisfies for a mapk : EI →Np k◦s= id such thats(e,β )(0) = eandp◦s(e,β ) = β .

For a given any morphismg : Y→Np is determined with the mapsf : Y→ E andh : Y→ BI . So the

lifting of h can be considered ash̃ = s◦g. Hence one can show that ifp : E→ B is a covering thenp

is a fibration with a unique path lifting functions because the lifts of paths are determined with the

initial point and the functions.

Now we turn back to the category theory and continue giving example of special limits.

Example 3.1.12.Let I be discrete as in 3.1.3. Then the limit of shapeI is called aproductdenoted

by Π and the colimit is calledcoproductdenoted by⊔. Let P denote the category of partial ordered

sets, that is

• Objects are setsX,Y,Z, .......

• Let X andY are sets then we have :

P(X,Y) =







/0, if X * Y;

fXY, if X ⊆ Y.

Consider the discrete categoryI and the functorF : I→P. The limit object ofF is the greatest

lower bound of the setsF(In), the intersection of the setF(In) and we can consider this object as a

product of these sets inP. Also the coproduct is the union of the setsF(In).

n

∏
k=1

F(Ik) =
n

⋂

k=1

F(Ik)
n

⊔

k=1

F(Ik) =
n

⋃

k=1

F(Ik)

F(Ik1) ... F(Ikn) F(Ik1) ... F(Ikn)

Definition 3.1.13. A categoryC is calledcartesian closedif it has a terminal object, any two objects

have a product inC and any two objects have an exponential (a morphism) inC .

Proposition 3.1.14.Given a functor F: C op×A → Set such that each F(−,A) : C op→ Set has a

representationαA : C (−,UA)→ F(−,A), then there is a unique way to extend A7→UA to a functor

U : A → C such that theαA are components of a natural transformation H• ◦U → F.

Proof. Let us constructU on morphisms that is given anyf : A→B we seekU f : UA→UB. In order

to satisfy the naturality condition onα , we need

C (−,UA)
αA

> F(−,A)

C (−,UB)
∨ αB

> F(−,B)

F(−, f )
∨
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to commute.Since the horizontal morphisms are isomorphisms, we get a unique morphism on left

HUA → HUB making the diagram commute. The Yoneda embedding is full andfaithful. So there

exists a unique morphismU f : UA→UB inducing it. It only remains to check thatU is functorial,

that is, it will makeα a natural transformation.

• First we check thatU(1A) = 1UA. We know thatU(1A) is the unique morphism making the

naturality square commute. So it suffices to show that 1UA makes the square commute. We

have the diagram

C (−,UA)
αA

> F(−,A)

C (−,UA)

1UA◦−
∨

αA

> F(−,A)

F(−,1A)
∨

which commutes as required.

• Now we check thatU(g◦ f ) = Ug◦U f for given A
f

B
g

C . We consider the fol-

lowing diagram

C (−,UA)
αA

> F(−,A)

C (−,UB)

HUf
∨ αB

> F(−,B)

F(−, f )
∨

C (−,UC)

HUg
∨ αC

> F(−,C)

F(−,g)
∨

Since each square commutes, the rectangle commutes. The composite on the right hand side

is F(−,g◦ f ) and by the definition it induces a unique mapHUg◦ f on the left hand side. So

we haveHUg◦ f = HUg ◦HU f = HUg◦U f by functoriality, but the Yoneda embedding is full and

faithful. Then we haveU(g◦ f ) = Ug◦U f as required.

Here we construct a functor which assignsA 7→UA and a representation which is called a parametrised

representation.

Proposition 3.1.15.Define F: I×A →C such that each F(−,A) : I→C has a specified limit inC ,

that is,C (−,
∫

I F(I ,A)) ∼= [I,C ](△−,F(−,A)). Then there is unique way to extend A7→
∫

I F(I ,A)

to a functorA → C such that

C (Y,
∫

I F(I ,A))∼= [I,C ](△Y,F(−,A))
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natural in Y and A.

Now we can restate the definition of a limit to get

C (Y,
∫

I FI)∼=
∫

I C (Y,FI) .

Let us explain what it means. First, the right hand side is thelimit of the functorC (Y,F−) : I→ Set.

SinceSet is complete, this functor certainly has a limit.
∫

I C (Y,FI) looks like all tuples(αI )I∈I such

that ∀I ,αI ∈ C (Y,FI) and∀u : I → I
′

, Fu◦αI = αI ′ . So, this is, precisely a cone overF that is
∫

I C (Y,FI) = [I,C ](△Y,F). By parametrised limits we have a functorY 7→
∫

I C (Y,FI). So

∫

I C (Y,FI) = [I,C ](△Y,F)∼= C (Y,
∫

I FI)

is natural inY andF.

Definition 3.1.16. Let I
G

C
F

D be given. We can consider limits overG and limits over

FG. Suppose we have a limit cone forG (

∫

I
GI

kI GI)I∈I
. We sayF preservesthis limit if

(F
∫

I
GI

FkI FGI)I∈I
is a limit cone forFG in D . Note that it must preserve projections.

Definition 3.1.17. SupposeFG : I→D has a limit cone. We sayF reflectsthis limit if any cone that

goes to a limit cone was already a limit cone itself. That is, given a cone(Z
fI

GI)I∈I
such that

(FZ
F fI

FGI)I∈I
is a limit cone forFG, then (Z

fI
GI)I∈I

is also a limit cone.

Definition 3.1.18. SupposeFG : I→D has a limit cone. We sayF createsthis limit if there exists a

cone (Z
fI

GI)I∈I
such that(FZ

F fI
FGI)I∈I

is a limit cone forFG and additionallyF reflects

limits. That is, given a limit forFG, there is a unique lift to a limit forG up to isomorphism.

Remark3.1.19. Representable functors and all full and faitfull functor preserve limits.

Definition 3.1.20. Given any two categoryC ,D and bifunctorsS,T : C op×C → D a dinatural

transformationα : S→ T is a collection of morphisms such that∀X ∈ ob(C ) a morphismαX :

S(X,X)→ T(X,X) and for f : X→Y in C the following diagram

S(X,X)
αX T(X,X)

T(1, f )

S(Y,X)

S( f ,1)

S(1, f )

T(X,Y)

S(Y,Y) αY
T(Y,Y)

T( f ,1)
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is commutative. IfS is dummy in the second variable andT is dummy in the first variable then the

dinatural transformationα : S→ T is a natural transformation between functors such thatS0 : C →

D andT0 : C op→ D . In addition, letS is not dummy andT is dummy in both variable, that is,

∀X ∈ ob(C ) T(X,X) = D ∈ ob(D). Thenα looks like a dinatural transformation betweenS and

D ∈ ob(D). Such a functor is calledextranaturalor supernaturaltransformation. It satisfies the

following diagram.

S(Y,X)
S(1, f )

> S(Y,Y)

S(X,X)

S( f ,1)
∨

αX
> D

αY

∨

This diagram looks like that the right hand side of the hexagon is collapsed. In the dual notion

one can consider the dinatural transformationβ : D→ T and then the test diagram is obtained from

collapsing the left hand side of the hexagon.

Definition 3.1.21. Let S : C op×C → D be a functor. Theendof this functor is a dinatural trans-

formationw such thatE ∈ ob(D) andw : E→ S. This natural transformation is sometimes called

wedge. Ends are special kinds of limits and they are universal. We mean that∀β : X→S, there exists

uniqueh : X→ E where the components of two dinatural transformations satisfy βA = wAh for all

A∈ ob(C ), that is, for eachf : A→ B in C all the quadrilaterals in the following diagram commute.

X
βA

h
βB

S(A,A)
S(1, f )

S(A,B)

E

wA

wB
S(B,B)

S( f ,1)

In general, to show the end of the functorSwe use just the objectE and the notation
∫

AS(A,A). It

can be considered the dual notion of ends which is calledcoendsuch that an objectD and a dinatural

transformationα : S→ D with S(A,A)→
∫ AS(A,A) = D.

3.2 Adjunctions and Monads

We know that every group structure is mapped to the set structure by functors. But the main

problem is that whether there exist group structures for every sets or not. In this section we will

define adjunctions and we will try to find an answer to this problem. After all we will give examples

in topology.
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3.2.1 Adjunction

Definition 3.2.1. An adjunctionbetween two categoriesC andD consists of two functorsF : C →

D andG : D → C and a natural isomorphismψ : HomD(F−,−)→ HomC (−,G−) consisting of

bijections : ψX,Y : HomD(FX,Y)→ HomC (X,GY) for all objects X inC and Y in D . In order

to interpretψ a natural isomorphism, one must recognizeHomD(F−,−) and HomC (−,G−) as

functors. In fact, they are both bifunctors fromC op×D to Set as we have seen. Explicitly, the

naturality ofψ means that for all morphismsf : X→ X
′
in C and all morphismsg : Y→Y

′
in D the

following diagram commutes :

HomC (X,GY)
Hom( f ,Gg)

> HomC (X′,GY′)

HomD(FX,Y)

ψX,Y

∨

Hom(F f ,g)
> HomD(FX′,Y′)

ψX′ ,Y′

∨

One can give another way to define adjunctions with using units and counit which we will explain

now. An adjunction between two categoriesC and D consists of two functorsF : C → D and

G : D → C and two natural transformationsη : 1C → GF , ε : FG→ 1D called theunit and the

co-unitof the adjunction, respectively. These must satisfy

1F =εF ◦Fη :F > FGF > F

1G =Gε ◦ηG :G > GFG > G

where 1F and 1G are the identity transformations onF andG respectively. These equations are some-

times called the zig-zag equations because of the appearance of the corresponding string diagrams.

In component form these equations are ;

idFX =εFX ◦F(ηX)

idGY =G(εY)◦ηGY

for each X inC and each Y inD .

Let us explain this with some example.

Example 3.2.2.Let Sbe any set andS−1 any set disjoint fromSsuch that there is a bijection from

S to S−1. Using this bijection for eachs∈ S let us denote the corresponding elementt ∈ S−1 by s−1

and similarly for eacht ∈ S−1 the corresponding elements∈ S by t−1 so that the inverse ofs−1 in

S−1 will be s in S, that is,(s−1)−1 = s. Now we take a singleton set not contained inS∪S−1 and

we call this set {1} and we assume that 1−1 = 1. For anyx∈ S∪S−1∪{1} let x1 = x. A word on

S is by definition a sequence(s1,s2,s3, ...) wheresi ∈ S∪S−1∪{1} andsi = 1 for all i sufficiently

large. We mean that for each sequence there is ann such thatsi = 1 for i ≥ n.Thus we can think of

a word as a finite product of elements ofSand their inverses. Here we allow the repetitions. To be

sure of the uniqueness of this expression we consider the words which have no obvious cancellations
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between adjacent terms. The word is said to be reduced ifsi+1 6= si for all i with si 6= 1 and ifsk = 1

for somek then for all i ≥ k si = 1. The reduced word (1,1,1,1,...) is called the empty word and is

denoted by 1. By simplifying the notation by writing the reduced word(sε1
1 ,sε2

2 ,sε3
3 , ...,sεn

n ,1,1,1, ...)

we write forsi ∈ Sandεi = ±1 thatsε1
1 sε2

2 sε3
3 ...sεn

n . Now by definition, reduced wordsrδ1
1 rδ2

2 rδ3
3 ...rδm

m

andsε1
1 sε2

2 sε3
3 ...sεn

n are equal if and only ifn = mandδi = ε i , 1≤ i ≤ n . Let F(S) be a set of reduced

words onSand embedS into F(S) by s 7→ (s,1,1,1, ...). Under this injection we identifySwith its

image and henceforth considerSas a subset ofF(S). Note that ifS= /0 theF(S) = {1}. So we can

construct the binary operation onF(S), but we should be sure that the binary product of two reduced

word is again a reduced word. Although the definition appearsto be complicated it is simply the

formal rule for successive cancellation of juxtaposed terms which are inverses of each other. Let

rδ1
1 rδ2

2 rδ3
3 ...rδm

m andsε1
1 sε2

2 sε3
3 ...sεn

n be reduced words and assume first thatm≤ n. Let k be the smallest

integer in the range 1≤ k≤m+1 such thatsεk
k 6= r−δm−k+1

m−k+1 . Then the product of these reduced words

is defined to be:

(rδ1
1 rδ2

2 rδ3
3 ...rδm

m )(sε1
1 sε2

2 sε3
3 ...sεn

n ) =



















rδ1
1 ...rδm−k+1

m−k+1sεk
k ...sεn

n , if k≤ m;

sεm+1
m+1...s

εn
n , if k=m+1≤ n;

1, if k=m+1 and m=n.

The product is defined similarly whenm≥ n, so in either case it results in a reduced word. We can

easily see that 1 is the identity and the inverse of the reduced wordsε1
1 sε2

2 sε3
3 ...sεn

n is the reduced word

s−ε1
1 s−ε2

2 s−ε3
3 ...s−εn

n . Now let us define for eachs∈ S∪S1∪{1} σs : F(S)→ F(S) by

σs(s
ε1
1 sε2

2 sε3
3 ...sεn

n ) =







s·sε1
1 sε2

2 sε3
3 ...sεn

n , if sε1
1 6= s−1;

sε2
2 sε3

3 ...sεn
n , if sε1

1 = s−1.

Sinceσs1 ◦ σs is identity map ofF(S) → F(S) , σs is a permutation ofF(S). Let A(F) be the

subgroup of the symmetric group on the setF(S) which is generated by{σs|s∈ S}. Then the map

sε1
1 sε2

2 sε3
3 ...sεn

n 7→ σ ε1
s1
◦σ ε1

s1
◦ ... ◦ σ ε1

sn
is a set bijection betweenF(S) and A(S) which respects their

binary operations. SinceA(S) is a group, hence associative, so isF(S). SoF(S) is a group under

the binary operation we defined andF is a functor fromSet to Grp according to our construction.

Let us defineU : Grp → Setas a forgetfull functor which forgets the group structure.Let us consider

UF(S). Applying F first and thenU does not yield the original setS, but we get a fundamental

relationship betweenS andUF(S) which we define above units;η : S→UF(S) that simply sends

each element ofS to itself in UF(S) and this function satisfies the universal property ; given any

functiong : S→U(G), for G∈ ob(Grp), there is a unique group homomorphismh : F(S)→G such

thatU(h) ◦η = g. In other words,UF(S) is the best possible solution to the problem of inserting

elements ofSinto a group. ComposingU andF in the opposite order, we get a counitε : FU(G)→G

satisfying the universal property; for any group homomorphism g : F(S)→ G, there is a unique

function f : S→U(G) such thatε ◦F(h) = g◦FU(G) constitutes the best possible solution to the
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problem of finding a representation ofG as a quotient of a free group and we can express these with

the commutative diagrams as follow :

U(G)
ηU(G)

UFU(G)

UεG

F(S)
FηS FUF(S)

εS

U(G) F(S)

Example 3.2.3. (Munkres (1975)) Our another example is construction an adjunction between the

category of completely regular spaces and the category of the compact Hausdorff spacesCHaus.

First let us denote the category of completely regular spaces by CR. Let X ∈ ob(C R) andCX be

the set of all continuous functions fromX to the interval[0,1], simply we denote this set byC. Our

first problem is that either there is an embeddingF : X → Y for Y ∈ CHaus or not. We take for

every f ∈C a copy[0,1] f of [0,1]. This gives us a family of mapsf : X→ [0,1] f , with its diagonal

mapF =△ f∈C f : X→ [0,1]C. Because F is diagonal map of continuous functions, it is continuous.

The space[0,1]C is compact according to Tychonoff’s theorem and Hausdorff.We should show that

F : X→ FX is a homeomorphism. For ifx 6= y in X then there is a continuous functionf : X→ [0,1]

with f (x) = 0 and f (y) = 1. Then thef − th coordinate ofF(x) is 0 and thef − th coordinate ofF(y)

is 1, soF(x) 6= F(y). This means thatF is injective. LetU be open inX. In order to show thatFU is

open inFX we takex∈U and seek an open setO in [0,1]C such thatF(x) ∈O∩FX⊆ FU . We take a

continuous functionf : X→ [0,1] such thatf (x) = 0 andf (y) = 1 for y∈X U and letO= π−1
f ([0,1)).

The f − th coordinate ofFX, which is f (x), is 0, soF(x) ∈ O. If y is such thatF(y) ∈ O then we

must havef (y) < 1, hencey∈U ; we findO∩FX⊆ FU . So we show thatF is a homeomorphism. In

general this embedding denoted byβ and the closure ofβX in [0,1]C is a compactification ofX, we

call it the Cech-Stone compactification ofX and we denote it asβX. Of course there exist other ways

to construct the compactification ofX. For example the unit sphereS2 is a compactification ofR2

by adding just one point for infinite∞. This compactification is called one point compactificationor

Alexsandorrf compactification. LetY andZ be two compactification of the completely regular space

X. We callY a larger compactification ofX thanZ if there is a continuous mapg from Y to Z such

thatg(x) = x for all x∈ X. We writeY D Z or ZEY. This relationD is almost partial order but not

unique. IfY andZ are compactifications ofX with YDZ andZDY thenY andZ are homeomorphic

and the homeomorphismh can be chosen in such a way thath(x) = x for all x ∈ X. We call two

compactifications equivalent if there exists such a homeomorphism. The compactificationβX is the

largest compactification, that is, ifY is a compactification of the completely regular spaceX, then

βX DY and this gives us the first characterization ofβX. The second characterization is that letf

be a continuous function fromX to [0,1] then there exist a continuous functionβ f : βX → [0,1]

such thatβ f ↾X= f and every compactification with this property is equivalentto βX. Let U be a

forgetfull functor fromCHaus to C R then the extension property makesβ a functor fromC R to

CHaussuch thatβ is left adjoint ofU where the bijectionψ : Hom(βX,Y)→ Hom(X,UY) is clear
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with our explanation and natural inX andY.

Example 3.2.4. Let F : Grp → Grp ×Grp be the diagonal functor which assigns to every group

X the pair (X,X) in the product categoryGrp ×Grp andG : Grp ×Grp → Grp the functor which

assigns to each pair(Y1,Y2) the product groupY1×Y2. The universal property of the product group

shows thatG is the right-adjoint toF. the co-unit gives the natural projections from the productof

the factors.

Example 3.2.5. For a spaceX the suspension SXis the quotient ofX× I obtaining by collapsing

X×{0} to a point andX×{1} to another point. If we think that these points are the chosenbase

point and collapse the line segment{x0}× I to the point{x0}×{0} then the new space is homotopy

equivalent toSX. We call this new space thereduced suspensionΣX. If we identify the points{0}

and{1} in I then we have an identification spaceS1 = I/{0,1} . Let {0} = {+1} is the base point

of S1 then the reduced suspension spaceΣX is actually the same as the smash productX∧S1. Let us

explain the smash product of two spaceX andY. Inside a productX×Y there are copies ofX andY

namely with chosen base pointsX×{y0} and{0}×Y for pointsx0∈X andy0∈Y. The two copies of

X andY in X×Y intersect only at the point(x0,y0). So their union can be identified with the wedge

sum ofX andY, that is, take the quotient of the disjoint unionX⊔Y obtained by identifyingx0 andy0

to a single point. Then the smash productX∧Y is defined to be the quotientX×Y/X∨Y. SinceΣX

andX∧S1 are both the quotient ofX× I with X×∂ I ∪{x0}× I collapsed to a point we can think that

ΣX = X×S1. Now letΩX denote the loop space ofX, that is,ΩX = {α |α : I→X;α(0) = α(1) = x0}

wherex0 ∈ X is the chosen base point. Since we stick together the starting and end points of a path

in ΩX one may think the points ofΩX as a continuous function fromS1 to X andΩX = (X,x0)
S1

.

From these explanation one can think thatΣ andΩ are adjoint functors from the category of pointed

compactly generated Haussdorf spacesCHaus∗ to itself such that

ΣX = X∧S1 andΩX = (X,x0)
S1

.

The unitX → ΩΣX of the adjunction sendx ∈ X to the function< x,− >: I → ΣX, it has a vivid

geometric picture ; it sends each pointx ∈ X to that generator of the cone which passes throughx,

this generator is a loop from the north pole to the south pole but they are same. Hence a point of

ΩΣX. By iterationΣn is a left adjoint ofΩn :CHaus∗→ CHaus∗ . Adjunction has a unitX→ΩnΣnX

which can be written as a composite

X ΩΣX
ΩηΣX

ΩΩΣΣX ... .
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3.2.2 Monads and Algebras

Definition 3.2.6. If C is a category, amonadonC consists of a functorT : C →C together with two

natural transformationsη : 1C → T (where 1C denotes the identity functor onC ) andµ : T2→ T

hereT2 is the composition ofT with itself, that isT2 = T ◦T. these are required the following

coherence conditions :

• µ ◦Tµ = µ ◦µT as natural transformationT3→ T

• µ ◦Tη = µ ◦ ηT = 1T as natural transformationsT → T and here 1T denotes the identity

transformation fromT to T .

T3 Tµ
> T2 T

ηT
> T2

T2

µT
∨

µ
> T

µ
∨

T2

Tη
∨

µ
> T

µ
∨

Example 3.2.7. We can construct a monad on the category ofSet. Let X be an object ofSet and

T(X) is the power set of X where for any functionf from X to Y in SetT( f ) be the function between

power sets induced by taking direct images underf . For every set X we have a mapηX : X→ T(X)

, which assigns to every elementx of X the singleton{x}. A function µX : T(T(X))→ T(X) can

be given as follows : ifY is a set whose elements are subsets ofX , then taking the union of these

subsets gives a subsetηX(Y) of X . So these data describe a monad.

Note that given an adjunction(F,G,η ,ε) : C ⇆ D we can always define a monad with using

the units and counits of this adjunction such that takeT = GF : D → D . So we have a natural

transformationη : idD ⇒ T and a natural transformationµ : T2⇒ T where the componentsµD for

D ∈ obD are

T2(D) = GFGF(D)
G(εF(D))

GF(D) = T(D) .

Conversly every monad arises from and adjunction, but in more than one way. Essentially, there are a

maximal and a minimal solution to the problem of finding an adjunction from which a given monad.

Definition 3.2.8. Suppose that(T,η ,µ) is given monad on a categoryC . A T-algebra(X,k) is an

objectX of C together with an arrowk : T(X)→ X of C called structure map of the algebra such

that the diagrams

T2X
Tk

> Tx

TX

µX

∨

k
> X

k
∨
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and

X
ηX

1X

TX

k

X

commutes. A morphismf : (X,k)→ (Y,h) of T−algebras is an arrowf : X→Y of C such that the

diagram

TX
T f

> TY

X

k
∨

f
> Y

h
∨

commutes.

The categoryC T of T−algebras and their morphisms is called theEilenberg-Moorecategory of

the monadT. Given the monad, we can also define another category which iscalled theKleisli

category of monadT CT . Its objects are the objects ofC and its arrows fromX to Y are the arrows

f : X→ T(Y) in C . The identity on an objectX is the unitηX and the compositeg◦ f : X→ T(Z) of

two arrowsf : X→ T(Y) andg : Y→ T(Z) is given byg◦ f = µZ ◦Tg◦ f .

Theorem 3.2.9.There is an adjunction between T−Alg andC which brings about the given monad

T.

Proof. (van Oosten (2002)) There is an obvious forgetfull functorUT : T −Alg→ C which takes

(X,h) to X. We claim thatUT has a left adjointFT . FT assigns to an objectX the T−algebra

T2(X)
µX

T(X) ; to X
f

Y the mapT( f ); this is an algebra map because of the mat-

urality of µ . That T2(X)
µX

T(X) is an algebra follows from the defining axioms for a

monadT. Now given any arrowg : X → UT(Y,h) we let g̃ : (T(X),µX)→ (Y,h) be the arrow

T(X)
T(g)

T(Y)
h

Y . This is a map of algebras since

T2(X)
T2(g)

µX

T2(Y)
T(h)

µY

T(Y)

h

T(X) g T(Y)
h

Y

commutes. The left hand square is the naturality ofµ ; the right hand square is because(Y,h)

is a T−algebra. Conversely, given a map of algebrasf : (T(X),µX)→ (Y,h) we have an arrow

f̃ : X → Y by taking the compositeX
ηX

T(X)
f

Y . Now f̃ : T(X)→ Y is the composite

T(X)
TηX

T2(X)
T( f )

T(Y)
h

Y . Since f is aT−algebra map, that is

T(X)
TηX

T2(X)
µX

T(X)
f

Y which is f by the monad laws. Conversely; ˜g : X→Y is the

composite X
ηX

T(X)
T(g)

T(Y)
h

Y . By the naturality ofη and the fact that(Y,h) is a
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T−algebra, we conclude that˜̃g = g. So we have a naturel 1-1 correspondence

C (X,UT(Y,h)) ≃ T−Alg(FT(X),(Y,h)) and our adjunction. The compositeUTFT is the functor

T, and that unitη of the adjunction is the unit ofT, for the counitε of FT →UT we have that

T2 = UTFTUTFT UTεFT

UTFT = T is our multiplication.



CHAPTER FOUR

SIMPLICIAL CATEGORIES AND N-CATEGORIES

4.1 Monoidal Categories

In this section we will give some definitions which we will usein simplicial category.

Definition 4.1.1. A monoidal categoryis a categoryM equipped with;

• A binary functor⊗ : M ×M →M called the tensor product or the monoidal product.

• An objectI called the unit object.

• Three natural isomorphism subject to certain coherence condition expressing the fact that the

tensor operation;

– is associative : there is a natural isomorphismα , calledassociativitywith components

αA,B,C : (A⊗B)⊗C→ A⊗ (B⊗C).

– hasI left and right identity : there are two natural isomorphismλ andρ , respectively

calledleft andright identity, with componentsλA : I ⊗A→ A andρA : A⊗ I → A.

The coherence conditions for these natural transformations follow:

• for all A,B,C andD in M , in the diagram :

((A⊗B)⊗C)⊗D
αA,B,C⊗D

> (A⊗ (B⊗C))⊗D
αA,B⊗C,D

> A⊗ ((B⊗C)⊗D)

(A⊗B)⊗ (C⊗D)

αA⊗B,C,D

∨

αA,B,C⊗D

> A⊗ (B⊗ (C⊗D))

A⊗αB,C,D

∨

• for all A andB in M , in diagram

(A⊗ I)⊗B
αA,I ,B

ρA⊗B

A⊗ (I⊗B)

A⊗λB

a⊗B

commutes.

It follows from these three conditions that any such diagramcommutes; this is Mac Lane’s co-

herence theorem. This is related to the fact that every monoidal category is monodially equivalent to

39
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a strict monoidal category. Let’s consider the strict monoidal category. This is a monoidal category

where the natural isomorphisms are identities.

Definition 4.1.2. One can construct for any strict monoidal categoryM the free strict monoidal

categoryΣ(M ) as follows :

• Its objects are lists (finite sequences)A1, ......,Am of objects ofM ;

• there are arrows between two objectsA1, ....,Am andB1, ....,Bn if and only if m= n, and then

the arrows are lists of arrowsfi : Ai→ Bi of M wherei = 1,2, ....,m;

• the tensor product of two objectsA1, ...,Am andB1, .....,Bn is the concatenationA1, .....,Am,B1, ....,Bn

of the two lists, and, similarly, the tensor product of two morphisms is given by the concatena-

tion of lists. The operationΣ can be considered as functor fromM to Σ(M ).

Example 4.1.3.Any category with standard categorical products and terminal object is a monoidal

category, with the categorical product as tensor and the terminal object as identity. However, in many

monoidal categories, the tensor product is neither a categorical product nor coproduct.

Definition 4.1.4. A braided monoidal categoryis a monoidal categoryM equipped with abraid-

ing; that is, there is a natural isomorphismγA,B : A⊗B→ B⊗A for which the following hexagonal

diagrams commute:

A⊗ (B⊗C)
γ

(B⊗C)⊗A

α

(A⊗B)⊗C

α

γ⊗1

B⊗ (C⊗A)

(B⊗A)⊗C α B⊗ (A⊗C)

1⊗γ

Definition 4.1.5. A symmetric monoidal categoryis a braided monoidal category whose braiding

satisfiesγA,BγB,A = 1A⊗B for all objectsA and B. In a braided monoidal category, the braidings

always commutes with the units as in the diagram :

A⊗ I
γ

ρ

I ⊗A

λ

A

Definition 4.1.6. A monoidC in a monoidal category< M ,⊗, I is an objectC ∈ ob(M ) together

with two morphismsµ : C⊗C→C andη : I →C such that the diagrams

C⊗ (C⊗C)
α

1⊗µ

(C⊗C)⊗C
µ⊗1

C⊗C

µ

C⊗C µ C
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I ⊗C
η⊗1

λ

C⊗C

µ

C⊗ I
1⊗η

ρ

C

are commute. A morphismf :< C,µ ,η >→< C′,µ ′ ,η ′ > of monoids is a morphism such that

f µ = µ ′( f ⊗ f ) : C⊗C→C′ and f η = η ′ : I →C′ .

With these morphisms the monoids inM constitute a categoryMonM whose objects are the monoids

in M . The operation< C,µ ,η > 7→C defines a forgetfull functorU : MonM→M .

4.2 Simplicial Category

First of all, we will give definition of simplicial category.Secondly, we try to explain the mor-

phisms in this category. Finally, we will give the geometricinterpretation of simplicial sets and we

will define the subdivision of simplicial complexes.

Definition 4.2.1. The simplicial category∆ is defined as the small category whose objects are all

finite ordinal numbers[n] = {0,1,2, ...,n− 1} and whose maps are all monotone functions, that is,

all functions f : [n]→ [m] such that 0≤ i ≤ j < n imply f (i) ≤ f ( j). The empty set /0= [0] is the

initial object of the simplicial category and [1] is the terminal object, that is, for any[n] there exist

unique mapsk andu satisfying thatk : [0]→ [n] andu : [n]→ [1]. Ordinal addition is a bifunctor,

which we denote it by⊕ : ∆×∆→ ∆, defined on ordinals[n], [m] as the usual sum[n+ m] and on

arrows f : [n]→ [n′] andg : [m]→ [m′] as

( f ⊕g)(i) =







f (i), 0≤ i < n;

n′⊕g(i−n), n≤ i < n⊕ m.
(4.2.1)

Moreover; since [1] is terminal and [0] is initial in∆ there are unique arrowsµ : [2] → [1] and

η : [0]→ [1], with these arrows the triple< ∆,⊕, [0] > is a strict monoidal category and for the same

reason these arrows form a monoid< [1],µ ,η > in ∆.

Proposition 4.2.2. (Mac Lane (1998)) Given a monoid< C,µ ′ ,η ′ > in a strict monoidal category

< M ,⊗, I > there is a unique morphism F:< ∆,⊕, [0] >→< M ,⊗, I > such that F([1]) = c, Fµ =

µ ′ and Fη = η ′ as in the figure

[0]
η- [1] �µ

[2] = [1]⊕ [1] < ∆,⊕, [0] >

I
?

........

η ′
- C

?

........
�

µ ′
C⊗C

?

........
< M ,⊗, I >

F
?

........
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Proof. First we should show that the arrows of∆ are exactly the iterated formal product. Writeµ(k)

for the unique arrowµ(k) : [k]→ [1]; thusµ(0) = η , µ(1) is the identity (here we use the notation1

for identity to not mixed with the ordinal number 1) andµ(2) = µ : [2]→ [1] let us considerµ(3);

µ(3) = µ(µ ⊕1) = µ(1⊕µ) : [3]→ [1]

This equality holds because it means just the general associative law, that is,

µ⊕1 =







µ(i), i=0,1;

1⊕1(i−2), i=2.

1⊕µ =







1(i), i=0;

1⊕µ(i−1), i=1,2.

Since[1] is terminal object in∆ ; one can get the equation by using iteration

µn(µ(k1)⊕ ........⊕µ(kn)) = µ(k1+......+kn) .

Moreover, if f : [m]→ [n] is any monotone function, letmi be the number of elements in the subset

f−1(i) of [m] then we obtain the equality,

f = µ(m0)⊕µ(m1)⊕ ....⊕µmn−1 ; where∑n−1
i=0 mi = m

This shows that any mapf in ∆ is a sum of iterated products constructed fromµ andη . Now consider

the functor required in the proposition. SinceF([1]) = C andF is to be a morphism of monoidal

categories,F must haveF([n]) = C(n); this determines the object function ofF. Next,Fµ = µ ′ and

Fη = η ′ imply thatFµ(n) = µ ′(n) and the representation of any arrowf in ∆ determines the arrow

functionF f of F. ThusF is unique and since in∆ composition is given by the equation

" µn(µ(k1)⊕ ........⊕µ(kn)) = µ(k1+......+kn) " which correspond exactly to the general associative law

valid in M , this showF is a functor.

There is another description of the arrows of∆, which starts by observing that a monotone function

f : [n]→ [n
′
] be factored asf = g◦h whereh : [n]→ [n

′′
] is surjective and monotone;g : [n

′′
]→ [n

′
]

is monotone and injective. This injective functiong will be determined just by giving the image set

of g,which is a subset of[n
′′
] ordinals in the set[n

′
].



43

In particular, from[n] to [n+1] there exactlyn+1 map which are monotone injective denoted by

δ n
i whose image omitsi, thus

δ n
i : [n]→ [n+1] ; δ n

i {0,1, ....,n−1} = {0,1, .., î , ...,n}

where the hat means that i is to be omitted.We display all these arrows as

[0]
δ 0

0- [1]
δ 1

0-

δ 1
1

- [2]
--- [3] , ....., δ0, .....,δn : [n] - [n+1].

On the other hand; a monotoneh : [n]→ [n
′′
] which is surjective is determined by the subset{ j |

h( j) = h( j +1); 0≤ j ≤ n−2} of thosen−n
′′

argument j at whichh does not increase. In particular

there aren such arrows[n+1]→ [n]; for i = 0, ....,n−1 they are

σn
i : [n+1]→ [n] whereσn

i (i) = σn
i (i +1)

We display them as

[0] � [1] �σ1
0 [2] �σ2

0
�

σ2
1

[3]
��� [4] , ....., σ0, .....,σn−1 : [n+1] - [n].

These maps may also be expressed in terms ofµ andη . Indeedδ 0
0 : [0]→ [1] is η andσ2

0 : [2]→ [1]

is µ and the descriptions of the morphisms show that

δ n
i = 1i⊕η⊕1n−i : [n] - [n+1] i = 0,1, ...,n

σn
i =1i⊕µ⊕1n−i−1 : [n+1] - [n] i = 0,1, ...,n−1

Lemma 4.2.3. In ∆, any arrow f : [n]→ [n
′
] has a unique representation

f = δi1 ◦δi2 ◦ ....◦δik ◦σ j1 ◦σ j2....◦σ jh

where the ordinal numbers h and k satisfy[n− h+ k] = [n
′
] while the string of subscripts i and j

satisfy

n
′
> i1 > ... > ik ≥ 0 ; n−1 > jh > ... > j1≥ 0

Proof. (Mac Lane (1998)) By induction oni ∈ [n], any monotonef is determined by its image, a

subset of[n
′
], an by the set of thosej ∈ [n] at which does increase[ f (i) = f ( j +1)]. Puttingi1, ..., ik,

in reverse order, for those elements of[n
′
] not in the image andj1, ..., jh, in order, for the elements

j of [n] where f does not increase, it follows that the functions on both sides of the equation are

equal.
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In simplical category the morphismsδ andσ satisfy the following axioms :

δiδ j = δ j+1δi f or i ≤ j (4.2.2)

σ jσi = σiσ j+1 f or i ≤ j (4.2.3)

σ jδi =



















δiσ j−1, if i < j;

1n, if i=j or i=j+1;

δi−1σ j , if i > j+1.

(4.2.4)

These identities may be verified directly by checking the image of both sides with the given condition,

For instance,δiδ j : [n]→ [n+2] for any i ≤ j the image;

δiδ j({0,1, .., i, ..., j, j +1, j +2, ...,n−1}) = δi({0,1, ..., i, ..., ĵ , j +1, ...,n})

= {0,1, ..., î , ..., j, ˆj +1, ...,n+1},

δ j+1δi({0,1, .., i, ..., j, j +1, j +2, ...,n−1}) = δ j+1({0,1, ..., î , ..., j, j +1, ...,n})

= {0,1, ..., î , ..., j, ˆj +1, ...,n+1},

where the hat means that the number is omitted. Since the image are equal and the functions are

injective, the equality holds. One can verify the others with similar idea.

Definition 4.2.4. In Rn+1 the standard n-simplex is the subset given by

∆n+1 = {(t0, t1, ..., tn) ∈ Rn+1| ∑n
i=0 ti = 1 ; ∀i t i ≥ 0}

the vertices of the standard n-simplex are the points

e0 = (1,0,0, ...,0),

e1 = (0,1,0, ...,0),

e2 = (0,0,1, ...,0),

...

en = (0,0,0, ...,1).

For example, the standard 2-simplex△3 in R3 in figure 4.1, One can construct with arbitrary n+1

points{v0,v1...,vn} in Rn+1 n-simplex by using the canonical map
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Figure 4.1 Standart 2-simplex.

(t0, t1, ..., tn) 7−→ ∑n
i=0 tivi

The coefficientsti are called the barycentric coordinates of a point in the n-simplex, this general

simplex is often calledaffine n-simplexand the canonical map is calledan affine transformation.

According the definition of standard n-simplex, we have a functor ∆ : ∆→ TOP ; on objects

[n+1] 7→ △n+1 ; on arrows( f : [n+1]→ [m+1]) 7→ (∆ f : ∆n+1→ ∆m+1) where the map defined by

∆ f (t0, t1, ..., tn) = (s0,s1, ...,sm) ; sj = ∑ f (i)= j ti .

Here we should be carefull about the notation,∆n+1 has dimension n and n+1 vertices, while∆ f is

the affine map which sends the vertexi of ∆n+1 to the vertexf (i) of ∆m+1 and∆ is a subcategory of

TOP, but the geometric dimension is one less than the arithmeticone used in∆ . By ∆∗ we denote

the full subcategory of∆ whit objects all the positive ordinals {1,2,3,...} omitting only 0 .After here

we use the notation∆ instead of∆∗ so that∆ has objects such that[n] = {0,1,2, ...,n} for all n≥ 0

and for the standard n-simplex we will use∆n .

Definition 4.2.5. Simplicial setsare contravariant functorsK : ∆op→ Set and the natural transfor-

mations between simplicial sets are called simplicial maps. If we write this functor as

[n+1] 7→ Kn ; δi 7→ di andσi 7→ sj

so thatKn is in geometric dimensionn, then the simplicial sets may be described in the traditional

way as a list ofK0,K1, ...,Kn, ... objects ofSetwith arrowsdi : Kn→ Kn−1 for i = 0,1, ...,n andn > 0
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andsi : Kn→ Kn+1 for i = 0,1, ...,n andn≥ 0 called face and degeneracy operators respectively.

These arrows satisfy the properties dual to properties 4.2.2, 4.2.3, 4.2.4 ofδ andσ ;

did j+1 = d jdi f or i ≤ j (4.2.5)

sj+1si = sisj f or i ≤ j (4.2.6)

disj =



















sj−1di , if i < j;

1, if i=j or i=j+1;

sjdi−1, if i > j+1.

(4.2.7)

So with this information we have that for anyα : [m]→ [n] there existsKα : Kn→ Km.

Let us use any small categoryC instead of the categorySet in the image of the functor such that

K : ∆op→ C then this functorK is called the simplicial object in the categoryC and it satisfies the

conditions listed above for simplicial sets.

Definition 4.2.6. (May (1992))Asimplicial map f: K→ K
′
is a natural transformation which com-

mutes with the face and degeneracy operators; that is,f consists offn : Kn→ K
′

n and

fndi = di fn+1,

fnsi = si fn−1.

We denote bysSetthe category of simplicial sets with the natural transformations as simplicial maps.

The simplicial standard n-simplexis the simplicial set∆[n] = Hom(−, [n]), that is,∆[n] is the

result of applying∆ to [n], so forα : [m]→ [n] , ∆[α ] : ∆[m]→ ∆[n] . Owing to the Yoneda lemma,

if K a simplicial set and ifx∈ Kn, then there exists one and only one simplicial map∆x : ∆[n]→ K

that takesid[n] to x. Hence the categorysSetis complete and cocomplete(3.1.5), wellpowered and

cowellpowered (2.2.16).

Definition 4.2.7. Let K be a simplicial set then one writesx∈ K when one meansx∈
⋃

n Kn. With

this understanding, anx ∈ K is said to bedegenerateif there exists an epimorphismα 6= id and a

y∈ K such thatx = (Kα)y , otherwisex∈ K is said to benondegenerate. The elements ofK0 which

are represents the vertexes ofK are nondegenerate. Everyx ∈ K admits a unique representation

x = (Kα)y, whereα is an epimorphism and y is nondegenerate. The nondegenerateelements in∆[n]

are the mononorphismsα : [m]→ [n] (m≤ n) .

Definition 4.2.8. A simplicial subsetof a simplicial setK is a simplicial setL such thatL is a

subfunctorof K that is Ln ⊂ Kn for all n and the inclusionL→ K is a simplicial map. We use the

notationL⊂ K.
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Then-skeletonof a simplicial setK is the simplicial subsetK(n) (n≥ 0) of K defined by stipulating

that K(n)
p is the set of allx ∈ Kp for which there exists an epimorphismα : [p]→ [q] (q≤ n) and a

y ∈ Kp such thatx = (Kα)y. ThereforeK(n)
p = Kp (p ≤ n); furthermore,K(0) ⊂ K(1) ⊂ ... and

K = colimK(n) (3.1.6). A proper simplicial subset of∆[n] is contained in∆[n](n−1), the frontier

∆̇[n] of ∆[n]. Of course,∆̇[0] = /0. K(0) is isomorphic toK0 ·∆[0]. In general, letK#
n be the set of

nondegenerate elements ofKn. Fix a collection{∆[n]x : x∈ K#
n} of simplicial standard n-simplexes

indexed byK#
n then the simplicial maps∆x : ∆[n]→ K (x∈ K#

n) determine an arrowK#
n ·∆[n]→ K(n)

and the commutative diagram

K#
n · ∆̇[n] - K(n−1)

K#
n ·∆[n]

?
- K(n)

?

is a pushout square. Note that∆̇[n] is a coequalizer. For proof consider the diagram
⊔

0≤i< j≤n

∆[n−2]i, j
u

v

⊔

0≤i≤n

∆[n−1]i

whereu is defined by the∆[δ n−1
i ] then the∆[δ n

i ] define a simplicial mapf :
⊔

0≤i≤n ∆[n−1]i → ∆[n]

that induces an isomorphismcoeq(u,v)→ ∆̇[n].

Definition 4.2.9. The realization functor Γ∆− is a functor fromsSetto Top such thatΓ∆− ◦∆ = ∆−

this means that it assigns to a simplicial setK a topological space|K| =
∫ nKn ·∆n, the geometric

realizationof K, and to a simplicial mapf : K→L a continuous function| f | : |K|→ |L|, thegeometric

realization of f . In particular,|∆[n]| = ∆n and|∆[α ]| = ∆α . There is an explicit description of|K|:

EquipKn with discrete topology andKn×∆n with the product topology then|K| be identified with

the quotient
⊔

nKn×∆n/∼, the equivalence relation being generated by writing((Kα)x, t)∼ (x,∆α t)

. These relations are respected by every simplicial mapf : K → L. Denote by[x, t] the equivalence

class corresponding to(x, t). The projection(x, t)→ [x, t] of
⊔

n Kn×∆n onto |K| restricts to a map
⊔

nK#
n ×∆◦n→ |K| that is a set theoretic bijection. Consequently, if we attach x ∈ K#

n the subset

ex of |K| consisting of all[x, t] (t ∈ ∆◦n), then the collection{ex : x∈ K#
n(n≥ 0)} partitions|K|. It

follows from this that a simplicial mapf : K→ L is injective if and only if its geometric realization

| f | : |K| → |L| is injective and one can say this condition also for surjective maps. Being a left

adjoint, the functor| − | : sSet→ Top preserves colimits. So, by taking the geometric realization

of the diagram
⊔

0≤i< j≤n

∆[n−2]i, j
u

v

⊔

0≤i≤n

∆[n−1]i , and unraveling the definitions, one find that

|∆̇[n]| can be identified witḣ∆n.

Definition 4.2.10. Givenn, let ∆̄[n] be the simplicial set defined by the following conditions:

a. ∆̄[n] assigns to an object[p] the set∆̄[n]p of all finite sequenceµ = (µ0, ...,µp) of monomor-

phisms in∆ having codomain[n] such that∀i, j(0≤ i ≤ j ≤ p) there is a monomorphismµi j

with µi = µ j ◦µi j .
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b. ∆̄[n] assigns to a morphismα : [q]→ [p] the map∆̄[n]p→ ∆̄[n]q taking µ to µ ◦α , that is ,

(µ0, ...µp)→ (µα(0), ...,µα(q)).

We call ∆̄ the functor∆→ sSetthat sends[n] to ∆̄[n] andα : [m]→ [n] to ∆̄[α ] : ∆̄[m]→ ∆̄[n]. The

associated realization functorΓ∆̄ is a functorsSet→ sSetsuch thatΓ∆̄ ◦ ∆ = ∆̄. It assigns to a

simplicial setK a simplicial setSdK=
∫ [n] Kn · ∆̄[n], thesubdivisionof K, and to a simplicial map

f : X→Y a simplicial mapSd f : SdX→ SdY, the subdivision off . In particular,Sd∆[n] = ∆̄[n] and

Sd∆[α ] = ∆̄[α ]. On the other hand, the realization functorΓ∆ associated with the Yoneda embedding

∆ is naturally isomorphic to the identity functorid on sSet. If dn : ∆̄[n]→ ∆[n] is the simplicial map

that sendsµ = (µ0, ...,µp) ∈ ∆̄[n]p to dnµ ∈ ∆[n]p : dnµ(i) = µi(mi), hereµi : [mi]→ [n] ,then thedn

determine a natural transformationd : ∆̄→∆, which by functoriality, leads to a natural transformation

d : Γ∆̄→ Γ∆. Thus,∀K,L and∀ f : K→ L, there is a commutative diagram

SdK
dK- K

SdL

Sd f
?

dL

- L

f
?

Now given n, we write ∆̄n for the geometric realization of̄∆[n] (|∆̄[n]|) and ∆̄α for |∆̄[α ]|. The

elements of∆̄n are equivalence classes[µ , t]. Any two representative ofµ , t are related by a finite

chain of elementary equivalences involving omission ofµi and ti if ti = 0 and replacement ofti

and ti+1 by ti + ti+1 if µi+1 = µi . Every [µ , t] has a canonical representative, this means that[µ , t]

can be represented by a pair(µ , t) : µ = (µ0, ...,µn) ∈ ∆̄[n]n with µi : [i]→ [n] for 0≤ i ≤ n and

t = (t0, ..., tn) ∈ ∆n. So µn = id[n] and there exists a permutationπ of {01,2, ...,n} such that∀i,

µi([i]) = {π(0), ...,π(i)}.

Let M∆ denote the set of monomorphisms in the simplicial category∆. Given α ∈ M∆ sayα :

[m]→ [n], putb(α) = 1
m+1 ∑m

i=0eα(i) ∈Rn+1.

Lemma 4.2.11.For each n≥ 0, the assignment[µ , t]→∑p
i=0 tib(µi) is a welldefined homeomorphism

hn : ∆̄n→ ∆n.

Proof. (see Warner (2000))

Remark4.2.12. Geometrically,∆̄n is the barycentric subdivision of∆n.

Before we finish the section, we give a theorem, which is called subdivision theorem.

Theorem 4.2.13.Let K be a simplicial set then there is a homeomorphism hK : |SdK| → |K|.

Proof. (see Warner (2000))
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Figure 4.1 Barycentric subdivision of the 2-simplex.

4.3 Bicategories and n-categories

Definition 4.3.1. A bicategoryB consists of the following data :

• Collectionob(B), the elements of this collection are called the0-cells(A,B, ...)

• CategoriesB(A,B) , whose objects are morphisms between the 0-cells and called1-cells. The

morphisms ofB(A,B) are called2-cells, such that A

f

g

α B whereA,B ∈ ob(B), f ,g ∈

ob(B(A,B)) andα ∈ HomB(A,B).

• Functors

cABC : B(B,C)×B(A,B)→B(A,C)

(g, f ) 7→ g◦ f = g f

(β ,α) 7→ β ∗α

Here "∗" means that the horizontal composition in 2.2.2. Let1 denote the category with one

object and identity morphism, then the functorIA : 1→B(A,A) is a 1-cellA→ A . IA looks

like the identity map of the 0-cellA but it is not quite real identity.

• Although we write the compositions of the 1 and 2-cells in usual order, inB the horizontal

composition is not strictly associative, but associative only "up to" a natural isomorphism be-

tween iterated composite functors and also the purported identity mapsIA are required to act

as identities for the horizontal composition only up to natural isomorphisms. Now we try to

explain these isomorphisms with their components. LetA,B,C,D ∈ ob(B) and f ,g,h are the
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1-cells inB(A,B),B(B,C) andB(C,D) respectively, then we have the following diagrams

B(C,D)×B(B,C)×B(A,B)
1×cABC

cBCD×1

B(C,D)×B(A,C)

cACDaABCD

B(B,D)×B(A,B) cABD
B(A,D)

B(C,D)×1

1×IA
∼

1×B(C,D)

1×IA
∼

B(A,B)×B(A,A) cAAB

ρAB

B(A,B) B(B,B)×B(A,B) cABB

λAB

B(A,B)

ahg f : (hg) f ∼ h(g f)

ρ f : f ◦ IA
∼ f

λ f : IB◦ f ∼ f

So there exist some axioms for this transformations such that the following diagrams must be

commute.

((kh)g) f a∗1

a

(k(hg)) f
a

(kh)(g f)

a

k((hg) f )

1∗a

k(h(g f))

(gI) f a

ρ∗1

g(I f )

λ∗1

g f

Remark4.3.2. If we have(hg) f = h(g f) and I f = f = f I and similarly for composition of 2-cell.

Then the categoryB is as expected called 2-category. In this case the axioms hold automatically.

Example 4.3.3.Remember the functor category for given two categoriesC andD . If we recreate

the data of this category such that the objects are the given categories, 1-cells are the functors and

2-cells are the natural transformation then obviously thiscategory is strict bicategory or as we said
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just 2-category. Also there is another exampleCat in the definition of functors which consists of all

1-categories as objects and clearly 1-cells as functor, 2-cells natural transformations. In the section

of functors we refer the equivalences in the categoryCat. Also ın any bicategoryB an equivalence

(usually called internal) consists of a pair of 1-cellsf ∈ B(A,B),g ∈ B(B,A) together with two

isomorphismα andβ in B(A,A) andB(B,B) respectively such thatα : 1A→ g◦ f andβ : f ◦g→ 1B

are natural.

One can define the opposite bicategory of a bicategoryB such that all 1-cells are reversed but not

2-cells. So now the question is what are the morphisms between two bicategory which we call also

functors.

Definition 4.3.4. Since in any bicategory composition is associative up to a natural isomorphism,

any functorF from B to B′ consists of the following data:

• FunctionF : ob(B)→ ob(B′)

• FunctorsFAB : B(A,B)→B′(FA,FB)

• Natural transformations

B(B,C)×B(A,B)
c

FBC×FAB

B(A,C)

FACφABC

B
′(FC,FB)×B

′(FA,FB) c B
′(FA,FC)

and

1
IA

B(A,A)

FAAφA

1
I
′
FA

B
′(FA,FA)

Thus 2-cellsφg f : Fg◦F f → F(g◦ f ) andφA : I
′

FA→ FIA. It is clear that the morphisms carried by

F must satiesfy the axioms written in the definition of bicategories. The exists a familiar variants

of this operation. IfφABC andφA are natural isomorphisms so thatFg◦F f ∼= F(g◦ f ) andFI ∼= I
′
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thenF is called ahomomorphism. If the natural transformations are identities then we callF a strict

homomorphism.

The functors between bicategories gives us an idea for inductive definition ofn-categories. To

define 2-categories, where the natural transformations areidentities, we think the hom-sets as cate-

gories. We can sure that for every 1-category there exists a two category. The definition of discrete

categories supports this because of letting the 2-cells andtransformations be identity. Now we are

allowed to give the definition ofn-categories.

Definition 4.3.5. A strict n−category consists of the following data:

• 0-cells as objectX,Y,Z, ...

• 1-cells are the morphisms between any two 0-cells,• •

• 2- cells are the morphisms between two 1-cells between two 0-cells , • •

• ...

• for each step there exist composition functors similar withfunctor in the definition of bicate-

gories but the axioms are more complicated.

Although this definition seems elementary, there is a remarkable relation between Homotopy

theory andn−categories. (Baez (1997)) LetX be a topological space andPX denote the path category

of this space.PX consists of the following data:

• objects: for anyx,y∈ X the pathsα : I → X such thatα(0) = x andα(1) = y.

• morphisms: Homotopies between two paths with same startingand end points as in the section

of functors.

By iterating this procedure, 2-cells are homotopies between homotopies and 3-cells are homotopies

between homotopies between homotopies and so on. In homotopy theory, we are interested in the

property of map which are preserved by homotopies. So if we rearrange the example such that

• objects are topological spacesX,Y,Z...

• 1-cells are the continuous functions between topological spaces.

• 2- cells are homotopies between two functionsf ,g : X→Y such thatH : X× I →Y satisfies
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H(−,0) = f andH(−,1) = g.

Now we have a 2-category and we are able to start the procedurewith topological spaces. By itera-

tion, we can see that the categoryTop has an−category structure. In fact, we are able to think that for

any largen this procedure works, soTop has aw−category structure. Here the most important fact

that we use the unit interval[0,1]. If we think the unit interval[0,1] as an arrow from 0 to 1, then this

abstract arrow can be seen such an arrow in the graph of a category. Moreover, an attractive property

of this arrow is that it can be reversed easily. By this advantage; one thinks that the homotopy theory

is a part of the word ofn−categories. Namely for every topological space there exists aw−category

Π(X) . The objects of this category are the pointsx of X and 1-cells are the paths, 2-cells are paths of

paths and so on. But according the property of the unit interval all the j−morphisms are equivalences

in this category. Hence we call this category asw−groupoid. Also one thinks the converse of this

idea such that for everyw−groupoid we are able to obtain a topological spaceN(G). Maybe this

topological spaceN(G) can be pictured geometrically as intervals, squares,triangle, cubes and so on.

In the section of functors we saw the property of the fundamental groupΠ1. In generalΠ can be

thought as a weakw−fuctor fromTop to w−Gpd and by the way we should able to show that inCat

the categoriesTop andw−Gpd are equivalent. In short, working in homotopy theory is the same as

working aboutw−groupoids.

After all, we understand thatn−category structure occurs by using the effects of functors and

natural transformations on a given(n−1)categories. This means that we use the induction method.

But this procedure is commented in different ways. For example, Peter May have used operads to

definen−categories and Baez and Dolan have used opetopes which are invented by them in 1997.

Although it is hard to understand these strategies, one of the main ideas is to paste diagrams according

to the route of the maps. This means that maps which are glued must have same source and target.

Here we try to explain Tamsamanin−categories.

Definition 4.3.6. (Dupont (1978)) It is convenient to interprete each[n] ∈ ob(∆) as a category by

defining that the morphisms are the inequalities "≤" .Then ∆ becomes a full subcategory ofCat

formed by the categories[0], [1], [2], .... The nerve of a (small) categoryC is, by definition the

simplicial sets :

NC : (∆)op→ Set

[n]→ HomCat([n],C ) .



54

There are natural identifications:

NC0 = ob(C )

NC1 =
⊔

X,Y∈NC0

HomC (X,Y)

and more generally for composable mapsfi : Xi+1→ Xi , wherei = 0,1, ...,k−1 for k≥ 1, NCk is

the set of the strings such that

X0 �f0 X1 �f1 X2 �f2
....... �fk−2 Xk−1 �fk−1 Xk

Furthermore ; let( f0, f1, ..., fk−1) denote the string defined above. One can define the morphisms

ε andη such thatε = NC(δ ) andη = NC(σ) whereεi : NC([n])→ NC([n−1]) andη : NC([n])→

NC([n+1]) are given by

εi( f0, f1, ..., fk−1) =



















( f1, f2, ..., fk−1), i = 0 ;

( f0, f1, ..., fi ◦ fi+1, ..., fk−1), 0 < i < k-1 ;

( f0, f1, ..., fk−2), i = k-1

and

ηi( f0, f1, ..., fk−1) = ( f0, f1, ... fi , id, fi+1, ..., fk−1) for i = 0,1, ...,k−1 .

Functors between categories turn into simplicial maps between their nerves, and the whole con-

struction defines a functor from categories to simplicial sets. This functor is fully faithful. The sim-

plicial sets that arise as nerves of categories are characterised by strict Segal condition: the natural

maps

NCp+q→ NCp×NC0 NCq ∀p,q

are isomorphisms. This means that the target of the last arrow is the source of the first arrow.

Definition 4.3.7. (Kock (2006)) Define a Tamsamani 0-category to be a set. A weakn−category

in the sense of Tamsamani is defined inductively as a functorNC : ∆op→ (n− 1)wCat such that

NC0 is discrete and satisfying the (nonstrict) Segal condition, namely, that the morphismsNCp+q→

NCp×NC0 NCq should be equimorphisms in (n-1)wCat, the category of weak (n - 1)-categories.

Equimorphism means fully faithful and essentially surjective, notions which are also defined induc-

tively. Note that an equimorphism is not in general invertible, so there is no longer any well-defined
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composition likeNC1←NC1×NC0 NC1. This map is now defined only up to homotopy. It exists only

in as much as we regard the equimorphism

NC2 NC1×NC0 NC1

as invertible. The new structure is rather this:

NC1 NC1×NC0 NC1

NC2

∼=

Before we end this section, we want to attract attention to the relation between the definitions of

bicategories and Tamsamani weakn−categories. As we see in 4.3.7, Tamsamani weak 2-categories

are similar with the definition of bicategories in 4.3.1, (Leinster (2002)). Now we try to explain this

similarity.

First take a weak 2-categoryNC : ∆op→ Cat and let us construct a bicategoryB. The object set

of B is the setNC0. Let us define two functorss, t : NC1→ NC0 as source and target respectively.

These functors express the categoryNC1 as a disjoint union
⊔

A,B∈NC0
B(A,B) of categories; the

1-cells fromA to B are objects ofB(A,B) and the 2-cells are the morphisms.

Vertical composition of 2-cells inB is composition in eachB(A,B). To define horizontal com-

position of 1- and 2-cells, first choose for eachk a pseudo-inverse

NC1×NC0 ...×NC0 NC1
ψk- NCk

to the Segal mapφk and choose natural isomorphismsηk : 1→ψk◦φk andεk : φk◦ψk→ 1. Horizontal

composition is then given as

NC1×NC0 NC1
ψ2- NC2

NC(δ )- NC1

whereδ : [1] → [2] is the injection whose image omits 1∈ [2]. The associativity isomorphisms

are built up fromηk’s andεk’s and the pentagon in 4.3.1 commutes just as long as the equivalence

(φk,ψk,ηk,εk) was chosen to be an adjunction too. Identities work similarly. So we construct a

bicategory.

Conversely, let us take a bicategoryB and construct a weak 2-categoryNC : (∆2)op→ Set (its

"2-nerve") as follows. An element ofNCj,k is a quadruple

((au)0≤u≤ j ,( f z
uv)0≤u<v≤ j,0≤z≤k,(αz

uv)0≤u<v≤ j,1≤z≤k,(ιz
uvw)0≤u<v<w≤ j,0≤z≤k)



where

• au is an object ofB.

• f z
uv : au→ av is a 1-cell ofB.

• αz
uv : f z−1

uv → f z
uv is a 2-cell ofB

• ιz
uvw : f z

vw ◦ f z
uv→ f z

uw is an invertible 2-cell ofB such thatιz
uvw◦ (αz

vw ∗ αz
uv) = αz

uw ◦ ιz−1
uvw

whenever 0≤ u < v < w≤ j , 1≤ z≤ k andιz
uwx◦ (1 f z

wx ∗ ιz
uvw)◦(associativity isomorphism in

B)=ιz
uvx◦ (ιz

uwx∗1f z
uv) whenever 0≤ u < v < w < x≤ j, 0≤ z≤ k.

• • •

j = 2,k = 3

This defines the functorNC on objects∆2; it is defined on maps by a combination of inserting

identities and forgetting data. To get a rough picture ofNC let us consider the analogous construction

for strict 2-categories, in which we insists that the isomorphismsιz
uvw are actually equalities. Then

an element ofNCj,k is a grid of jk 2-cell of width j and eightk. So passing from a bicategory to

a weak 2-category and back again gives a bicategory which is isomorphic to the original one and

passing from a weak 2-category to a bicategory and back againgives a weak 2-category equivalent

to the original one.

56
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