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N-CATEGORIES

ABSTRACT

In this thesis, we examine some different types of categai® try to find a place for some
geometrical subjects in category theory. By using funcéms natural transformations we approach
n—categories and higher categories inductively in somerdiffeaspects. On the other hand we use
some algebraic topological concepts such as simplicialppexes and simplicial sets and give the

definition in categorical sense. We also explain the ratatiecategory and homotopy theory.

Keywords: Homotopy, n-category, bicategory, simplex, functor.



N-KATEGOR ILER
Oz

Bu calismada, farkli kategori tipleri incelendi ve bazogeetrik cisimlerin kategori teorisindeki
yeri arastirildi. Funktorlar ve d@l dénistimler kullanilarak n-kategorilere ve yuksek tetseden
kategorilere timevarimsal farkl bakis acilari ile ygiih. Cebirsel topolojideki bazi kavramlar kul-

lanildi ve kategori teorisindeki tanimlari verildi. Ayaa-kategoriler ile homotopi teorisi arasindaki
iliskiler agiklandi.

Anahtar Sozcukler: Homotopi, n-kategori, bikategori, simplex, funktor.
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CHAPTER ONE
INTRODUCTION

We will give the motivating ideas of the thesis by saying ttetegory theory is the mathematical
study of abstract algebra of functions. Category theorsearfrom the idea of a system of functions
among some objects. One thinks of the composigjori as a sort of product of the functiorisandg
and consider abstract algebra of algebras of the sort @fi©im collections of functions. A category
is just an algebra, consisting of obje&sY,Z,... and morphismd : X —Y,g:Y — Z,... that are

closed under composition and satisfy certain conditions.

First, let us explain the historical development of catgdbeory. In 1945 the theory was first for-
mulated in Eilenberg and Mac Lane’s original paper naf@ederal theory of natural equivalences
Late in 1940s the main applications were originally in thédBeof algebraic topology, particularly
homology theory and abstract algebra. In 1950s A. Grotloéneli al. began using category the-
ory with a great success in algebraic geometry. In 1960s EaWyvere and others began applying
categories to logic, revealing some deep and surprisingesiions. Also between 1963 and 1966
Lawvere began by characterizing the category of categoriesl970s applications were already
appearing in computer science, philosophy and many otleasat awvere’s approach, under active
development by various mathematicians, logicians and enaditical physicists, lead to what are now

calledhigher dimensional categories

In Chapter Two, we start with the definition of category andadibe large and small categories.
We continue with some examples and relation between cagsgand homotopy theory. We show
that functors which can be considered as functions comgeetith one object and another object,
constitute the connection of two categories. After that \we gome properties of functors and we
investigate the fundamental group of a topological space.séé the relation between topological
spaces and group structures by using the fundamental grBefore searching the representable
functors, we mention natural transformations among fuiscamd also functor category which con-

sists of natural transformations as morphisms.

In Chapter Three we see the constructions in categoriesiby tfse cone structures which are
called limits and colimits of a functor in general. Then weegsome important examples of limits
and colimits in categories and applications in homotopyitheAfter giving the equivalence among
categories which is also called adjunction of two functers,finish this chapter with the definition

of monads.



In the last Chapter we start by giving the definition of mombidategories and some related
examples. Furthermore, we explain the geometric meanirgngblicial sets which leads us sim-
plicial complex. We also study subdivisions of simplicianeplexes. After all, we see bicategories
and the definition oh—categories. We explain the relation betweencategories and Homotopy

theory. Finally we compare the definition of Zouhair Tamsanma-categories with the definition of

n—bicategories.



CHAPTER TWO
CATEGORIES, FUNCTORS AND NATURAL TRANSFORMATIONS

2.1 Categories

Here we start with giving the definition of categories. Inardo be prepare the next sections,
we define small and locally small categories. We shall lishsgeneral categories with their objects
and morphisms in a table implicitly. After explaining therhotopy categoryfoph, we shall give the

definitions of some special elements of categories with gkesn

Definition 2.1.1. A category% consists of:

e A collection of objects denoted by ¢6)

e For every pairX,Y € ob(%¢), a collection of morphisms (also referred to as maps or ayow
with domainX and codomairy, f : X — Y, denoted by# (X,Y) or Homy(X,Y) equipped
with

— for each objecK € ob(%), an identity mapdx = 1x € ¢(X,X)
— for eachX,Y,Z € ob(%’), a composition map
OXYZ- CK(Y,Z) X CK(X,Y) — CK(X,Z)
(9. f)—gof=gf

These conditions satisfy the following properties:

a. Unit law: For all morphismf : X — Y andg:Y — Z composition with identity mapvlgives

lyof =fandgoly=g.
b. Associativity For given objects and morphisms in the configuration

Xt oy 9,7z ", w

have always the equalityo (go f) = (hog)o f.

As 2.1.1 if we have collections of objects and morphisms iatagory we can think about domain
and codomain as morphisms. L€ and%7 denote the collection of objects and morphismsin

respectively, then we have a diagram

domain
—

G %o

codomain

3



where the domain function assigns a morphism with its dorf@irsource) and codomain function

assigns a morphism with its codomain (or target). This natéis the definition.

Definition 2.1.2. Given a categorys’, thedual or oppositecategorys°P is defined by:

o 0b(%) = ob(%°P),
o C(X,Y)=%€P(Y,X),

identities inherited,

o fPogP = (fog)P.

It is pointed out here that all of the objects are preservediaumorphisms are reversed. In category
theory for any given property, feature or theorem in termsiofphisms, we can immediately obtain
its dual by reversing all the arrows and this is often indidaby prefix "co-". One can say that this is

the principle of the duality. We will see many examples ofdinality later on.

In order to define small categories we give the definition ofigerse.

Definition 2.1.3. A universeU is a non-empty set which satisfies the followings :

If xeU and therye x,y e U.

- If x,y e U, then{x,y} € U.

If xeU, thenZ(x) € U.

{x[ieleU} = U xeU.

Definition 2.1.4. A set S is said to b -smallif it is isomorphic to an element &f . Let the universe
U be fixed and calu € U small set. Then the univerdé is the set of all small sets. Similarly, a

function f : u — vis small wheru andv are small sets.

Definition 2.1.5. A category%’ is smallif ob(¢’) and all of the?’(X,Y) are small sets anidcally

smallif each?’(X,Y) is a small set.

Remark2.1.6 the category of all setSetis not small because the set of its objects is not small set,
otherwise we get a contradiction with the universality otfiXJ s.t. U € U and this is contrary to
hierarchy, which asserts that there are no infinite chaildg € U,_1 € Up_» € ... € Uq.
Definition 2.1.7. A category%’ is calleddiscreteif the only morphisms are identities, that is;

{Ix} fX=Y;

E(X,Y)=
0 otherwise .



With aid of this definition any set can be considered as a elisccategory with the identity

morphisms.

Definition 2.1.8. A subcategory? of % consists of subcollections

o 0b(2Z) C ob(¥%)

e Homy C Homy

together with composition and identities inherited frémWe say that? is afull subcategoryof ¥

if VX,Y € 2, 2(X,Y) =% (X,Y), and aluff subcategoryof

€ if 0b(2) = ob(%).

In Table 2.1, we give some general categories implicitly ighide composition of the maps is

ordinary composition.

Table 2.1 General Categories in Mathematics

objects

arrows (or morphisms)

Set all sets

all functions between sets

Set, all sets each with a selected base point

base-point-preserving functions

Mon all monoids

all homomorphisms of monoids

Grp all groups

all morphisms of groups

Ab all (additive) abelian groups

all morphisms of abelian groups

Rng all rings

ring morphisms preserving units

CRng | all commutative rings

ring morphisms preserving units

Z-Mod | all left modules over the ring?

all linear maps between them

Mod-# | all right % modules

all linear maps between them

£ -Mod | all modules over the commutative ring

all linear maps between them

Top all topological spaces

continuous functions

Top. all topological spaces with selected base pg

ivase-point preserving continuous furn

tions

In table 2.1, one can see thaet, is a subcategory dbet Set, is not full, because the hom-

set of Set, includes just base-point preserving functions, but it isifa $ubcategory ofSet since

ob(Set.)=ob(Sef). Now we explain the homotopy categofgph (also denoted bjTop]) explicitly

after giving the definition of homotopy.

Definition 2.1.9. Let X,Y be topological spaces ariclg continuous maps frorX toY. A homotopy

H is a continuous function fronX x 1 to Y , wherel de

notes the unit intervdD, 1] , satisfying



H(x,0) = f(x) andH (x,1) = g(x) for all x € X. If there exists such a functiad then f andg are

said to be homotopic. Moreover, homotopy is an equivalealzion with respect to the followings:

o (reflexivg LetH : X x| — Y be defined byH (x,t) = f(x) for allt € | wheref : X — Y is
continuous. H is continuous because it is the composition of the contiaufonction f and

projection onto the first factor. This means that any comtirsufunction is homotopic to itself.

e (symmetryH : X x| — Y be any given homotopy such thd{x, 0) = f(x) andH (x,1) = g(x)
wheref, g are continuous functions froiX toY. Let us define a homotopg : X x | — Y such
thatG(x,t) = H(x,1—t) for all (x,t) € X x 1. SinceH is continuousG is clearly continuous

and homotopy frong to f. This shows that homotopy is symmetric.

e (transitivity) For given homotopiesl,G: X x | — Y betweenf, g, h such that (x,0) = f(x),
H(x,1) = G(x,0) = g(x) andG(,1) = h(x) let us define a homotopl : X x | — Y by using

the Glueing Lemma, that is,

H(x,2t), te|0
F(xt) =
{ G(x2t—1), tel[,

Nl

li
).

So we havé-(x,0) = f(x), F(x,1) = h(x) and this means that homotopy is transitive.

=

We denote the homotopy class of continuous functiongfhy According to these, before we con-
struct a subcategorioph of Top whose objects are topological spaces and whose morphigntisear
homotopy equivalence classes of the continuous functietwdzn topological spaces, we should

check whether the composition of the equivalence classesliglefined or not.

Theorem 2.1.10.Let X,Y,Z be topological spaces. Suppose thgtafid f, are homotopic maps
X —Y and that g and g are homotopic maps ¥~ Z. Then go fg and g o f; are homotopic maps

X—Z.

Proof. LetH : X x| — Y be a homotopy fromfg to f;. LetG=gpoH : X x| — ZthenGis
continuous and homotopy fromy o fo to goo f1. Let f1: X x| — Y x| be defined byfy(x,t) =
(f1(x),t) , it is seen thatf; is continuous and suppose tifat Y x | — Z is a homotopy frongg to
g1. Now we construct a homotop¢ = F o f; : X x | — Z. SoK is continuous and homotopy from
goo f1 tog; o f1. We have thagyy o fp is homotopic tayo f; andggo f1 is homotopic ta; o f1. Since

homotopy is transitivg o fg is homotopic tag; o f; as desired. O

We continue with an example of one object category, whosghisms are not just identities.



Example 2.1.11.A monoidis a setM with a binary operatios: M x M — M , obeying the following

axioms;

e Associativity :Va,b,ce M ; (axb)xc=ax(bxc).

e |dentity element : There exist an elemerd M, such that/ac M ; axe=exa=a. One often

sees the additional axiom :

e Closure :Ya,be M , axb € M through , strictly speaking , this axiom is implied by theioot

of the operation .

A monoid is exactly a semigroup with identity element andoading to the definition of monoids,
we can construct a category with one objkttLet us take the elements bf as arrows this means
that if a€ M thena: M — M such thata(m) = axm. The associativity and unit laws are satisfied
clearly according to definition of the binary operatiofi ' For any category” and any objecK € %,

the set oHomy, (X, X) of all arrowsX — X is a monoid with respect to the composition of arrows.

In the last part of this section, we define some special kirfdgbfects and morphisms with

examples in general categories.

Definition 2.1.12. An elementT of ob(%’) is calledterminalif ¥X € ob(%), there exists a unique
morphismk : X — T and dually an elemeritof ob(%’) is calledinitial if ¥X € ob(%") there exists

a unique morphisnk : | — X. If an objectZ is both initial and terminal in a category then it is
callednull objectof this category. For exampl8etall one element sets are terminal and the unique
morphism is clearly constant map and similaifop all one point space are terminal. The empty set

0 in the categonetis accepted as initial object.

Definition 2.1.13. A morphismm: X — Y ismonicin %, when for any two morphismf, fo: U — X
the equalitym f; = mf, implies f; = f,, in otherwordanis monic if it is left cancelable. A morphism
e: X — Y is calledepiin ¢ if for any two morphismsy1,g2 : Y — U the equalityg;e = goe implies
01 = 0o, oreis epiifitis right cancelable. Ii$etit is clear that monics are injections and simgeg,

are functions then epis must be surjections.

Example 2.1.14.Let us consider the following diagram Mon.
f

NLZHQ- (M>e>*)

Now supposee is an embedding anél, g are two monoid homomorphisms which agree on the non-

negative integers. Then



f(=1) = f(=1)»9(1)»9(-1) = F(=1)* f(1)x9(-1) =9(-1)

so f andg agree on the whole &. This means thatis an epi.

Definition 2.1.15. A morphismf € € (X,Y) is anisomorphismf 3g € € (Y, X) such thagf = 1x
and fg = 1y. Moreoverf is calledinvertible andg is aninverseof f. For instance, irmfoph given
two topological spaceX,Y the morphismf : X — Y is calledhomotopy equivalendéthere exists a
continuous morphisrg: Y — X satisfying thatf o g is homotopic to ¢ andgo f is homotopic to {.

If there exists such a homotopy equivalerfdeetweenX,Y then it is said thakK andY arehomotopy
equivalentor of the same homotopy typAnother example of the isomorphisms is the bijections in

the categonset

2.2 Functors and Natural Transformations

In this section we try to give the relation between two catiesgowith using the functors. Functors
are really important because they are like bridge betwegntao of the mathematical part such
that topology and algebra. For example, we use the functocerstruct fundamental group of a
topological space and this helps us to solve some problerichwhn not be solved easier. Then we
meet with natural transformations as we see in the nextwecthis gives us an idea to approach to
then— categoriesand we discribe the functor category. After these we willieiYfoneda embedding

which is our second aim in this section.

2.2.1 Functors

Definition 2.2.1. Now we can think about the categaBat in which the objects are categories and
the morphisms are the mappings between categories. Theénimmpin such a category are known

asfunctors

We know that a category’ consists of objects and morphisms. So any funEtofs” — 2 must
carry objects of¢” to objects 0ofZ and morphisms o¥ to morphisms of7, such that the following
diagram are commutative.

F : ¢€——9
ob X - FX
morp. f[l—»]Ff

Y FY



We can combine objects and morphisms in one diagram so we get

X o EX

|

Y—F>FY

Before giving an example of functor let us look some of itspamies. (Baez & Shulman (2006))

LetF : ¥ — 2 be a functory f,g € € (X, X’) whereX, X' € ob(¥), if we have thaf f =Fg

implies f = g, thenF is calledfaithful. This means thdt is an injection on morphisms.

ForF : ¢ — 2 if Vhe 2(FX,FX’) there exists a morphisrh € ¢ (X, X') for every pair of

ob(%’), thenF is calledfull and this means th&t is surjection on morphisms.

A functor F : ¥ — 2 is essentially surjectiven objects if and only i’Y € 2, 93X € ¥ such

thatFX =Y.

In mathematics we are often interested in equipping thinigjs @xtra structure, staff, or prop-

erties. So we can also consider the functors with four difieparts :

F forgets nothingf it is an equivalence of categories thatHss faithfull, full and essentially

surjective. For example identity functor.

F forgets at most propertie$ it is faithfull and full. For example Ab — Grp which forgets
the property of being abelian, but a homomorphism of abejranps is just a homomorphism

between groups that happen to be abelian.

F forgets at most structunéit is faithfull. For example, the functor frorfiop to Set, it forgets

the structure of being topological space, but it is stilitfaill.

F forgets at most stafif it is arbitrary. For exampleSetx Set— Set, where we just throw out

the second set, is not even faithfull.

Definition 2.2.2. A contravariantfunctorF : ¢ — 2 is a functoré®? — 2, that is,

on objectsX — FX
on morphisms(f : X —=Y)— (Ff:FY — FX)
identities are preserved

F(gof)=FfoFg
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A non-contravariantfunctor is sometimes reffered to asavariantfunctor and the following dia-

grams are commutative.

X Y X Y
FX FY FX FY
Ff Ff
covariant contravariant

Example 2.2.3.Let X be a topological space ahde the intervalO, 1], a continuous magp from | to
X starting atk and ending &y, that is,a : | — X such thatr (0) = xanda (1) =yfor x,y € X, is called
path If a patha has the same starting and ending points; suchahat— X, a(0) = a(1) =x € X,
thena is calleda loop with base poinikg. A homotopy between two patlts and 3 is a continuous

function such thaH : | x | — X for s,t € | satisfies the followings:

H(s,0) =a(s),H(s1) = B(s)
H(O,t) =%, H(L,t) =x1

Herexg is the starting point ang; is the ending point of the two curves. Given any two path with
same starting and ending point if there exists such a camtmdunction then the curves are said to
be homotopic. By the same procedure 2.1.9 homotopy is alegainalence relation on paths. The
homotopy class of a pathh denoted by|a]. Let xg be the base point oX, the set of all homotopy
classes of loops with base poixg forms the fundamental group of at a base pointg and it is
denoted byi11(X,xg) or simply M1 (X) where the binary operation is defined by the composition of
the paths, that is,

[a] «[B] = [Bea]

The composition of paths is given with respect to the paramet |, since the ending point of the
first path is the starting point of the second one, they canuedgat the common point and we can

formulate it by dividing the interval | into the two parts
o (2t te[0,i];
Boa 4 9@ [0.3]
B(2t—1), te[3.1].

The identity element of the fundamental group is the consteap at the base poirg and the inverse
homotopy class of a path is [a] ! = [a~1] = [a(1—1)] the homotopy class of the inverseaffor

t €1, thatis,a 1 follows a backwards.
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If f:(X,%)— (Y,Yo) is a continuous base point preserving function, suchtbaf) = yo for the
base pointsg € X andyp € Y respectively, then every loop X with base poinky can be composed
with f to yield a loop inY with the base poinyy. Let a is a loop inX atXg, sincef is continuous
foa isaloopinY atyg. This composition is compatible with the homotopy equinakerelation and
with the composition of loops. Hence we can define a group moonphism which is callethduced

homomorphism

f* : I-Il(x7x0) - I-Il(Y7y0)

[a] — [fod]

This operation is compatible with the composition of fuans, that is, leff : (X,x9) — (Y,Yo) and
g: (Y,yo) — (Z,29) be continuous base preserving functions then the compositi the induced

mapsf, andg. is defined by the composition of the mapsndg such that

g0 f: nl(X7XO) — nl(Z;ZO)
g.o f.[a] =[gofoa]

According to these construction of induced map, the opmndii; can be consider as a covariant
functor betweeTOP,, andGrp.
M, . TOP, —— Grp

oh  (X,%0) K% Mi(X, %) (X, %0) — 2 M1(X, %)
(X7XO) I_Il(X>XO) f f,
morp. fI'—'If* (Y,Yo) Ma(Y,Yo)

(Y, ¥o) Ma(Y,Yo)
For any induced homomorphisif = g.. , we have thaf andg are homotopic relative t¢xy} and
this means that the functdt; is not faithfull. Moreover, one can abandon the group stmecof
M1(X,Xo) thenl; can be thought as a forgetfull functor betw&edP, andSET.., which forgets the

structure.

2.2.2 Natural Transformation

Definition 2.2.4. Given two functors F,G% — &, anatural transformatioror : F — G is a function

which assigns each objeXtof " a morphisnoyx = a X : FX — GX of & in such that every morphism
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f: X — X"in ¢ yields the diagram

X FX -2 GX

f{ Ff{ le

X' FX' —» GX'
C{x/

which is commutative.
There are two different types of composition of the natuwahsformations.

i Horizontal : Suppose that/, #,% are categories arg, G,F',G’ are functors, where : F — G
andp : F' — G’ are natural transformations as in the diagram;

A /E/\

o Yo B B €

\Gﬂ \G,/

SinceF,F’ are functors andr, 8 are natural transformations, the following diagram must be

commutative and each of the squares commutes.

X —+ FX - 6x . Fex) B elex)

f\ Ff\ Gf\ F/(Gf)l {G/(Gf)

_ _ = e
Y ——~ FY GY —+ F'(GY) 5~ G(GY)

ay

HenceBoa : F'oF — G oGis natural.

i Vertical : Let <7, % be given categories arfe G,H functors Let us construct the composition of
F

two 2-cell such thatd@% ; sincea andf are natural, the following diagram commutes
N
H
for X,Y € .7,
Fa—" GX - Hx
Ff\ Gf\ \Hf
FY e GY v HY

Hence the composition of the vertical two 2-cellgisa : F — H.
One can consider the particular cases of the horizontal ositign :

F H
e lyoa:HF —HGsuchthat ;; " a” "~ | ¢ Which we will write asHa : HF — HG
\C;j \Hﬂ

F
s.t. MT}?\QL'%
\C;%
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F G
e Bolg:GF - HFs.t 7 i 2 g < Which we will write asBF : GF — HF
o e B B €
\F/ \Hﬂ

G
S.t. ML'%@%
H

Proposition 2.2.5. Given categories, functors and natural transformationghie following figure,

F S
/YN S aN
NREANTE

H w

we have the equality
(B'oB)-(a’ca)=(B"-a’)o(B-a)
which is calledthe middle four interchange law

Proof. We give the proof by using the components of the natural toam&tions. On the right side

we have

[(B'-a")o (B-a)lx = (B'-a )ux o S(B- &)x = Byx © Ay © SBx 0 Sax

and on the left side

[(B'oB)-(a’oa)]x = Byx o TBx o Agy 0 Sax

So we should show thaty,y o Sz, = TBx o dgy. By the naturality o’ we have that

!

SGX— X | TGX

SBx {Tﬁx
SHX THX

commutes. ]

Example 2.2.6.One can construct two different group structure for givep @@mmutative ringk.
First, let GL,(K) be the set ofh x n matrix with entries in the commutative rirl§, while YM €
GLy(K) determinant oM is a unit inK, this means that the elements®E,(K) are non-singular.
Hence the elements @L,(K) are compatible with the associativity condition of beinguy and

GLn(K) has a unit element with respect to matrix multiplicationctsthat the diagonals are units
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element ofK and the other entries are zero. 6&,(K) is a group of matrix which is called the

general linear group.

Second, le{K)* denote the set of units &. (K)* has clearly a group structure with respect to
multiplication ofK. One can easily see th@l, and(—)* can be thought as functors betwegRng
andGrp. Because the determinant is defined by the same formulal fooraimutative rings<, each
morphismf : K — K’ of commutative rings leads us to a commutative diagram

GLa(K) 2% (K)*

GLn(f)l l(f)*
GLa(K) o K
This states that the transformatidet: GL, — (—)* is natural between two functo@Rng — Grp.

Definition 2.2.7. A category®% is called agroupoidif every arrow of#” is an isomorphism.

Example 2.2.8.Let ¥ be a groupoid and suppose that for each objecf ¥ an arrowpy in ¢
with domainX is given. Then we have a collectign= {ux|X € ob(%")}. Let us define a functor

F : ¢ — ¢ which acts on objects by (X) = cod(ux ). We can consider the following fark : X —Y;
X — cod(ux) = F(X)
Hx luerF(ux)
Y —= cod(py) = F(Y),
where the diagram commutes because the horizontal apg\asd iy behave as the functér. And
now we replaceX,Y, ux by id(X),id(Y) andid(uyx) in the left vertical arrow, respectively. Since

the diagram commutes for &l € ob(%’) the collectionu becomes a natural transformation between

identity functor and-.

2.2.3 Functor Category

Definition 2.2.9. Given categorie&’ andZ the functor categor{#, 2] or ¢ consists of :

objects are functorb : 4 — 2

morphisms are natural transformatioms F — G, such that :

identities are natural transformations 1F — F, this means that for any : ¥ — 2 1¢ has

the componentsgk : FX — FX; VX € €

the composition of the natural transformations is the gattbne.
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For given any two functors the set of the morphisms of thetiurzategory is denoted By, Z7](F, G).

Definition 2.2.10. A natural isomorphisnur : F — G is an isomorphism in the functor category; that
is, there exist® : G — F such thatr - = 1 and - a = 1. Moreover two natural transformations

areequalif and only if all their components are equal.

Proposition 2.2.11.a : F — G is a natural isomorphism if and only if each componext: FX —

GX is an isomorphism ity
Proof. Supposeax is a natural isomorphism, and |Btbe its inverse. Then we have

a-B=1g = (a-B)x =1lex = ax-Px = lox
and

B-a=1 = (B-a)x =1rx = Bx-ax =1fx .

So Bx is an inverse foiox for eachX € 4. Thus each component is an isomorphism. Conversely,
if each componendrk is an isomorphism, then I@x be the corresponding inverses for eack 4.

Now givenf € €(X,X'), sincea is natural we have that

FX -2, GX

e

FX — GX

a.
X
commutes, that isGf) o ax=a,- o (F f). Let us compose both side wiflx and,: respectively, the

we get
BX/ o(Gf)oaXoBX :BX/ Oax/ O(Ff)OBx.
Sincefx andB, are the inverses afx anda, respectively, it follows

By o (Gf)olex =1y o (Ff)oBx
S0Py o (Gf) = (Ff)opx

Hence the following diagram is commutative

GX P Ex

o e

GXB—X/>FX
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So we can define the natural transformat®with componentgx and clearlyg is an inverse foo

, SO is a natural isomorphism. O

Definition 2.2.12. Given any two categorieg’ and % theequivalencef these categories consists of
two functorsF, G and two natural isomorphisms such tkats — 2 ,G: 2 — ¢ anda : 14 — GF,
B:FG— 14. Here we mean thdG, GF are clearly the composition of functors ang,1, are
the identities. There is also similar construction in thetise of adjunction. If there exists such an
equivalence then we say that two categofieand & areequivalent It can be shown that if a functor

F is full, faithfull and essentially surjective théhis an equivalence of categories.

2.24 Representables

Let % be a category and X %, using the hom-set, we can define a functor

HX =% (X, —): ¢ — Setwith following data;

() HX(Y) =2 (X.Y)

(i) g€ €(Y,2),HX(9) =€(g,1) : €(X,Y) — € (X,Z) is defined by the composition, such that
H*(9)(f) =€(g,1)(f) =go f.

So it is easily seen that this functor is covariant and welgafallowing commutative diagram,
f

Ix

X X
N—— <
«

- >
gof

Now if we put the second parameter as constant value we gttexrfonctor

Hx = ¢ (—,X) : €°P — Set and data;

(i) Hx(Y)=%(Y,X)

(i) fe€°P(Y,Z),Hx(g)(f)=%¢(1,9) : ¢(Y,X) — €¢(Z,X) is defined by the composition, such
thatHx (g)(f) = € (1,9) = go f where the following diagrams commute ;

Y ™ @y, X)

_9,

f { {%(1,9) — f Ix

N— <
X ——— X

Z——€(Z,X)

X gof
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and this functor is contravariant.

Definition 2.2.13. The functorsH*X andHx are known asepresentableand for eactX € € one can
get the functoHy, so we have a assignatioh— Hy and we can extend this assignation to a functor

known as theéroneda embedding

H. : €

[€°P, Set
X ——— Hy
(f:X—=Y) > (Hf : Hx — Hy)
whereH; is the natural transformation with components
(Hf)u : HxU —— HyU
e €U,X)— ¢(U)Y)
h—— foh
We need to check that this is a well-defined natural transdtiom, that is

(Hf)u=fo—

%(U,X) Z(U.Y)
ng——ogl {va——og
(U, X) Z(U"Y)

- >
(Hf)U/:fo—

commutes.But along the two legs we just have :

h—— foh h
I and [
(foh)og hogr— fo(hog)

so the naturality condition just says that composition soamtive .

Definition 2.2.14. A functor F : ¥°P — Setis representablef it is a natural isomorphic tady for
someX € %, and arepresentatiorfor F is an objectX € ¥ together with a natural isomorphism
a : Hyx — F . Dually, a functorF : ¥ — Setis representable iF = H*X for someX € %, and a

representation foF is an objeciX with a natural isomorphismx : HX — F.

For naturality ofa we have a squarevif :V — W € % ;

E(W,X) % FW

fo——ofl {Ff

E(V,X) —= FV
\

which must be commutative. Before we end this section, we givimportant lemma which is called

Yoneda lemma .



18

Lemma 2.2.15.Let € be a locally small category, F¢°P — Set. Then there is an isomorphism
FX = [¢°P,Set](Hx,F) , which is natural in X and F , that is
FY — [4°P, Set](Hy,F) FX — [¢°P,Set](Hx,F)
Ff\ {_on and ax{ {90—
FX —» [¢°P,Set] (Hx,F) GX —» [¢°P, Set](Hx, G)

commute for all . X —Y and for all@ : F — G respectively .

Proof. Givenxe FX letxX € [¢°P,Sef(Hx, F) be defined by components; férc €°P %y : ¢ (V,X) —
FV such thatxy (f) = F f(x). SinceF is a contravariant functof; f is a map fromFX to FV. So

giveng:W — V in €°P andx,x" the diagram

TV, X) Y~ Ry

CK(W)() - FW

Xw
Soif f € €(V,X) thenFg(Xv(f)) =Fg(Ff(x)) = F(fog)(x). Given anya € [¢°P,Sef(Hx,F), let
a € FX be defined byad = ax(1x). Remember thatxd e %' (X,X) anday : € (X,X) — FX. Now
for x € FX anda € [¢°P,Set(Hx,F) we have a natural transformatiorafid an elemend € FX.

But we should check that whethér= () or not.
% =%x(1x) = Fix(X) = 1gx(x) = x and

& =ax(lx) = ay:€(V,X) — FV thatis forf € €(V,X) & = Ff(&) = F f(ax(1x)). More-
over, because of the commutativity of the following diagram haveay (1x o f) = F f(ax(1x)) as
required.

C(X,X) 2~ FX

—ofl LFf

C(V,X) 5 FV
Here we check that the operation "™ is natural. lfetY — X be a map ing°P. We will test the
following diagram.

FX — [¢°P,Sef(Hx,F)

Ffl [

FY — [¢°P,Sef(Hy,F)

A~

In two way we havex — X+— XoH¢ andx+— F f(x) — F f(x). Explicitly;

H a
eV Y) M o) M py
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g— fog—F(fog)(x)
and

~

Ff(x):%(V,Y)— FV such thag — Fg(F f(x)).

We know thatFgoF f = F(f og). So the first diagram in the theorem commutes. Givenéany —
G we should check the second diagram. XetF X we havex — X— 8 oXandx— 6x(X) — BXA(X).

According to thesef oXy (f) = By o F f(x) andBx (x)(f) = Gfo Bx(x) forany f € €(V,X). We can

associate this result with the naturality®&uch that

FX —%- Gx

Ffl lef

FV T‘ GV
Hence the second diagram commutes. O

Definition 2.2.16. Given a categorys” and an objecX € ob(%), let M(X) be the class of pairs
(Y,f), wheref : Y — X is a monomorphism. Two elemefit, f) and(Z,g) of M(X) are deemed
equivalent if there exists an isomorphigpn Y — Z such thatf = go ¢. A representative class of
monomorphisms iM(X) is a subclass d¥1(X) that is a system of representatives for this equivalence
relation. ¢ is said to be wellpowered provided that each of its objectseheepresentative class of
monomorphisms which is a set. Similai(X) denotes the class of pdif,Y) such thatf : X — Y

is an epimorphism. Two element$,Y) and(g,Z) of E(X) are deemed equivalent if there exists
an epimorphismp : Y — Z such thatg = @o f. A representative class of epimorphismsE(X) is

a subclass oE(X) that is a system of representatives for the equivalencéaelas’ is said to be
cowellpowered provided that each of its objects has a reptasve class of epimorphisms which
is a set.Set,Gp,Ab,Topare wellpowered and cowellpowered. The category of ordinaibers are

wellpowered but not cowellpowered.

Before we give a definition of another category constructediding the functors, we need some

extra definitions and a motivation.

Definition 2.2.17. Let ¥ be a category and € ob(%), the category(z, %) is called the category
of objects under with objects all pairs< f,x > and monomorphismB:< f,x >—< g,y > those
morphismsh : x — y of ¢ for which ho f = g. Thus an object ofz | %) is just a morphism i’

with domainz and a morphism ofz, ') is a commutative triangle with top vertexthat is

e objects of(z2,%) : {< f,x>|f :z— x; for x€ ob(¥)}
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e morphisms ofz | %) :

whereh € ¥ (x,y) and diagram commutes.

e Since the composition of two commutative diagrams must Inencotative in the category’,
the composition of the morphisms {iz | ¥’) is clearly defined, that is, for any maps<
fx>—<f . X >andh i< ' ,X >—< f' X >;for< fx> < f x> <f X >cob(z]

%) the following diagram commutes.

e One can verify that the associativity and unit law hold irs ttitegory because the composition

is the same as the composition in the categdry

Using the similar idea one can construct the cate@ty z) which is called the category of objects
over z with objects all pairs< x, f > and morphism#$ :< x, f >—<y,g > . Here objects are just

morphisms ing with codomainz and morphisms are all commutative diagram forx — z and

x—>h y
V4

Now letS: 2 — % be a functor from the category to ¢, we can define a categofy | S) of objects

g.y—z

S-underz, such that

e objects of(z| S) : all pairs< f,d > ford € ob(2) andf € €(z Sd)

e morphisms ofz| S) : for any morphismé: d — d and the pairs f,d >, < f.d >¢ ob(z] S

the following commutative diagram,

'

Sd——5,—sd

Sh

Also with the dual notation one can construct a cateddry z) which is called the category-over

z, wherez € ob(¢’) andT is a functor fromZ to ¢ such that
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e objects of(T | z) : all pairs< d, f > ford € ob(Z) andf € ¥(Td,2)

e morphisms of T | z) : for any morphismé: d — d’ and the pairscd, f >, <d , f >cob(T |

z) the following commutative diagram,

Definition 2.2.18. By combining the four types of categories given above,Ti€s: ¥ — % be

functors, the categoryT | S) is calledthe comma categorgnd consists of :

91 ¢ > g9

e Ob(T | S :thetriple< x,y, f > wherex,y € ob(Z) andf € € (Tx Sy

e Hom(T | S): the pair< k,h >, such that the diagram commutes

Tk /
TX—— TX

T

Sy—g SY
wherek € 2(x,X) ,he 2(y,y).

e The composite< k,h > o < k' ,h > is < kok’,hoh >, when the compositions are defined in
9.

Let S=T = 1, wherely is the identity functor of¢’, then(1, | 1) is exactly the category™
of all morphisms ofg’. Moreover, takingl,S: ¢ — % as a constant functor with the rangend
y € ob(%’) respectively; note that constant functors carries mompbi® the identity morphism of the
object in the range; thefT | S) is the category with objects all morphisrhs x — y and morphisms

only the identity morphisms, in otherword® | S) is the seHom, (X, y).

Example 2.2.19.Let K is a commutative ring an@Rng denotes the category of all commutative
rings. A K—algebrais the ringR with identity and a ring homomorphisrh: K — R mapping %k

to 1r (identity of K to identity of R) such that the subrinfK) of R is contained in the center of
R, that is, f(K) = {a € Rra=ar ¥r € R}. LetRandR be two commutative ringsA K-algebra
homomorphisnbetweerR andR is a ring homomorphisng : R — R mapping % to 1y such that
¢(k-r)=Kk-¢(r) for all ke K andr € R. According to these definitions, the categol{/| CRng) is

the category of alk —algebras, with the composition of the ring homomorphismSRng.



CHAPTER THREE
CONSTRUCTIONS IN CATEGORIES

3.1 Limit and Colimit

A lot of important properties of categories can be formuldtg requiring that limits or colimits
of certain kind do exist meaning that certain functor areespntable. Here we will define limits
and colimits. Later we try to explain the relation betweea tone structure and functor. Then we
will give the definition some special kinds of limit and coltsisuch that pullback or equalisers with
giving examples in homotopy theory. After we investigateapaetrised limits, we will deal with

dinatural transformations which are a different kinds dfuna transformations.

Definition 3.1.1. Let F : ¥ — % be a functor from a category to a categorys and letX be an
object of €. A universal arrowfrom X to F consists of a paifA, ¢) whereA is an object of7 and

@: X — F(A) is amorphism irg” such that the following universal mapping property is $ietis

WhenevelY is an object of7 and f : X — F(Y) is a morphism ir#’, then there exists a unique

morphismg : A — Y such that the following diagram commutes .

X —2 - F(A) A
fl / E
F(Y) Y

Definition 3.1.2. Let I and% be two categories and : I — % a functor. Here we use the small
categoryl for indexing. Aconeof F is an objectN of ¢, together with a family of morphisms
k : N — F(l), one for each objedt in I such that for every morphisni: | — 1" in I, we have

F(f)ok =k asin the diagram

Definition 3.1.3. A limit of a functor is just a universal cone. In detail, a cghek;) of a functor
F :1— % is alimit of that functor if and only if for any coneN, p,) of F, there exists precisely one

morphismu: N — L such thak ocu= p, forall I.
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We may say that in the diagram the morphisp$actor through L with unique factorizatiamwhich

is called the mediating morphism. It is possible that a fanEtdoes not have a limit at all. However,
if it has two limits then there existsumiqueisomorphism between the respective limit objects which
commutes with the respective cone maps. This isomorphisgivén by the unique factorization

from one limit to the other. Thus limits are unique up to isoplasm and can be denoted h@F.

Definition 3.1.4. Given anyY € %, one can define theonstant functorAY from I to € such that
Vi e, AY(l) =Y andVf e I, AY(f) = 1y.
A—: € — [,F]
Y — AY
X AX
f{l—» lm

Y AY

Alimit L for F can be thought as a representation for the fonfit, ¢|(A—,F) : €°P — Set that
is, there is a natural isomorphismwith H_ = [I, '](A—,F) and we can also denote the limit object
L = J,Fl. So we have an isomorphis#i(—, [, FI) = [[,¢](A—,F). Let us make it explicitly what
the functor on the right hand side, callGtand how we can get a universal cone :
G: ¢°°P —— Set

Y = [LE](AY,F)

Y [I,Z](AX,F)
fll—>le
X [L,E](AY,F)

Now we try to explain what does a natural transformatiovi — F look like. We have :

e for each E T, a morphism
k ((AY)l — FI
Y ——FI
o forallul —1'inl;
(AY)l —> FI
(AY)ul J/Fu
(AY) — FI'

commutes by naturality , that is

v X

Fu

FI FI’
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commutes.

So such a natural transformation is precisely a cone Bvesith Y as a vertex. Now, consider a
representation as above, anddebe its natural isomorphism. Then we have
ay € (Y,L) — [LZ](AY,F)
f——Ff(aLl)

that is, the natural transformation is completely deteedibya_ 1, . Now, we have a cone given by
a1y = (ki)ie1. So given anotheY and f : Y — L on the left hand side, we ha¥ef (ai 1,) with the
components; o f, hence we have a bijective correspondence morphisms amd cverr , that is,
starting on the right hand side , given any cépg) <1 there exists a unique morphisin Y — L such

thatp, = kj o f for all I; thus (k; )i<r is @ universal cone ovét.

Definition 3.1.5. A category% is calledcompletdf and only if every functof- : I — %, wherel is
any small category, has a limit, that is "all small limitsdhexist". Similarly, if every such functor

with I finite has a limit, ther¥’ is said to havdinite limits

Definition 3.1.6. Also with using the dual notation of limit we can get colimftaofunctorF where
the morphisms; are reversed. The notation of colimitlisnF or f' FI and the diagram shape is the

following.

/
F(l)————F(1")
One says tha¥ is cocompletaf and only if every functor- : I — % has a colimit that is all small

colimits in ¢ exist.

Definition 3.1.7. Let I be a category such that it has just two objects 1 and 2 and tvediglarrows
and let F be a functor frorito % . Then we have a diagram # such thate = e and a cone over

this diagram is

Note thatm = fe = geas all triangles commute; so in fact we can rewrite this monply as

f
E—>F(1) = F(Q2) =fe=ge
g

The limit object overF in this diagram is called aaqualiserand it is a universal cone. Given any

cone
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there exists a unique factorizatidihh whereh = eh as in the diagram;

'f € F(1) :g: F(2)
Jh /
C

In the category of sets; the equaliser is given by theEset {x € F(1)|f(x) = g(x)} and by the
inclusion mage of the subseE in F(1). With the similar idea we can define a func®rl — % and

a co-cone over the diagram is

and the colimit object ove in this diagram is called eoequaliserand it is a universal cone.
F(1) =F@2) ==cC —cf=cg

In the category of sets, the coequalizer is given by the gonbteC = F(2)/ ~ and by the canonical
mapc: F(2) — C, where~ is the minimal equivalence relation &1(2) that identifiesf (x) andg(x)

forall x € F(1).

Definition 3.1.8. A pullbackis a limit of shape

oe<———0

A diagram of this shape i is

E
lg

A cone over this diagram is
f/
P——E
g’l g
X Hf' B

commuting. A pullback is the universal such; so given any mtative square as above we have

~——m
«Q

(o8]
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a uniqueh such thagh = a, and f 'h = b. We say thag is a pullback forg over f, and thatf’ is a

pullback for f overg. Dually pushoutis a colimit of shape

In Setthe pushout off andg always exists; it is the disjoint unio| |Y with the elementd (x) and

g(x) identified for eactx € X.

Example 3.1.9. Suppose that two squares in the following rectangle aréackl. We can show that

the rectangle is also a pullback.

A—-B—9%-.C
D—h>E—r>F

kog=ro |, since right square is pullback
kogo f =rojof jtaking the composition of both side with
hoi = jof, since the left square is pullback
kogo f =rohoi, by using the last equality

(roh)oi=ko(go f), this shows the rectangle is pullback.

As an application of pullbacks and pushouts we give someitefia in Top using in the Homo-

topy theory.

Definition 3.1.10. (May (1999)) The morphism: A — X is acofibrationif and only if it satisfies
the homotopy extension property , that is, if the square msmatative for the homotoply then there

exists a homotopyl_: XxI =Y.
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Hereip(x) = (x,0). The triangle in the upsite is a pushout. In general, we @etinet pushouB Lig X
wherei : A— X andg: A— B. One can get the isomorphisfBLIgX) x | = (Bx |)Ugx (X x ). This
isomorphism shows thatif. A — X is a cofibration and) : A — B is a morphism then the inclusion
B — BLgX is also a cofibration. This means that a pushout of a cofibrasi@lso a cofibration.
If AC X andi: A— X is a cofibration then the structud; = X LJ; (Ax I) is called themapping
cylinder. Since the pushouts are universal there exists a unique eta@énY andM;. Now let

f : X —Y be a morphism then we can define a new strudiliye= Y ¢ (X x |) such that two space
X andY are pasted along the image sefofSo we have the compositiog b M; — - v Where
i(X)=(x,1),r(y) =yandr(x,s) = f(x) onX xI. If i : Y — Mg is an inclusion themoi = id and
id ~ior, that is, we can define the homotopy M; x | — M; such that it is surjective frorvis to
i(Y) whereh(y,t) =y andh((x,s),t) = (x,(1—t)s). This gives a deformation dfl; ontoY with the

following diagram.

-

lo

Mf Mf><|

One can define a deformation iy onto X with using the inclusiorj.

Definition 3.1.11. (May (1999)) The map : E — Bis afibrationif and only if it satisfy the covering
homotopy property, that is, with given magthe homotopyh: Y x | — B can be lifted a homotopy
h:Y x| — E asinthe following diagram.

f

Y E
iol e \Lp
- h
Y x| ?‘ B

Hereh must make the diagram commutative. Such a fibration is célle@wicz fibration. If we take
Y in diagram as the cubl' then this special case is called the Serre fibrations. Itaardhat the
diagram is a pullback. Usually for a giveg:. E — B andg: A — B we use the notatioA x4 E for
the pullback. So ipis a fibration and): A — B is a map then the mapx4E — Ais also a fibration.
Now let us define a spadé, = E x,B' = {(¢,3)|B(0) = p(e)} C E x B' whereB' = {B|B:1 —B

is a path}. This space is called the mapping path space. Now we haveeadia

ExpB =>E

S
BB——B
here the mapg; and s are the projections with respect to first and second factpeetively. Sd\,

is the pullback of the maps andpg as in the diagram. The map N, — E' is called the path lifting
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function which satisfies for a mdp: E' — Ny kos=id such thas(e, 3)(0) = eandpos(e,B) = B.

For a given any morphism: Y — N is determined with the mapis: Y — E andh:Y — B'. So the
lifting of h can be considered &s= sog. Hence one can show thatpf. E — B is a covering themp

is a fibration with a unique path lifting functiombecause the lifts of paths are determined with the

initial point and the functiors.

Now we turn back to the category theory and continue givirapgxe of special limits.

Example 3.1.12.Let 1 be discrete as in 3.1.3. Then the limit of shdpe called aproductdenoted
by N and the colimit is calledoproductdenoted by I. Let & denote the category of partial ordered

sets, that is

e Objects are setX,Y,Z,.......

e Let X andY are sets then we have :

0, XY

P(X,Y) =
fxy, iFX CY.

Consider the discrete categarhand the functof- : I — £2. The limit object ofF is the greatest
lower bound of the setS(l,), the intersection of the s&t(l,) and we can consider this object as a
product of these sets i&¥. Also the coproduct is the union of the sétd,,).

n n n n

[TF )= F k) LIF ()= JF )
k=1 k=1 k=1 k=1
F(liy) — - —F(l,) F(liy) — - —F(l,)

Definition 3.1.13. A category% is calledcartesian closedf it has a terminal object, any two objects

have a product if¥” and any two objects have an exponential (a morphisif).in

Proposition 3.1.14. Given a functor . ¥°P x & — Set such that each F—,A) : ¥°P — Set has a
representatiorop : ¢ (—,Ua) — F(—,A), then there is a unique way to extend-AU, to a functor

U : .o/ — ¥ such that thexp are components of a natural transformatioR +U — F.

Proof. Let us construdt on morphisms that is given arfy. A— Bwe seelJ f : Uy — Ug. In order

to satisfy the naturality condition am, we need

@(—.Un) 2 F(—,A)

N

%(—.Up) ~% F(—,B)
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to commute.Since the horizontal morphisms are isomorpisme get a unique morphism on left
Hu, — Hug making the diagram commute. The Yoneda embedding is fullfaitikiful. So there
exists a unigue morphistd f : Uy — Ug inducing it. It only remains to check thbk is functorial,

that is, it will makea a natural transformation.

e First we check thatd (15) = 1y,. We know thatU (1a) is the unique morphism making the
naturality square commute. So it suffices to show thatrhakes the square commute. We

have the diagram

%(—,Ua) 2 F(—,A)

lUAOl l/F(J-A)

Cg( 7UA) F( s/ ‘)
aa
which commutes as required.

e Now we check that(go f) =UgoUf forgiven o " . g 9. . We consider the fol-

lowing diagram

@(—.Up) & F(—,A)

HUfJ/ J/F(*f)

¢(—.Ug) > F(—,B)
Hugl lF(ﬂg)
¢(~,Uc) = F(-,0)
Since each square commutes, the rectangle commutes. Timsibenon the right hand side

is F(—,go f) and by the definition it induces a unique midp_. on the left hand side. So

gof
we haveHy,,, = Hy, o Hy; = Hugu, by functoriality, but the Yoneda embedding is full and

faithful. Then we havéJ (go f) =UgoUs as required.

Here we construct a functor which assigks: Ua and a representation which is called a parametrised

representation.

Proposition 3.1.15.Define F: I x &7 — % such that each F—,A) : I — % has a specified limit iy,
that is, ¢ (—, J F(I,A)) = [I,¢](A—,F(—,A)). Then there is unique way to extend-Af, F(l,A)

to a functor« — ¥ such that

Y, [F(1,A) = [LEI(AY,F(—,A)
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natural in Y and A.

Now we can restate the definition of a limit to get

¢(Y, ) Fl)= [[€(Y,Fl).

Let us explain what it means. First, the right hand side idithi of the functor#’(Y,F—) : T — Set
SinceSetis complete, this functor certainly has a limjt¢'(Y,F1) looks like all tuples(a ), cr such
thatVl, o € €(Y,Fl) andvu:1 — 1", Fuoq) = a;. So, this is, precisely a cone oveérthat is
L€ (Y,FI)=[L,Z](AY,F). By parametrised limits we have a functr |, ¢ (Y,Fl). So

L E(Y,Fl)=[LEIAY,F)=Z(Y, [ Fl)

is natural inY andF.

Definition 3.1.16. Let | _G_ @ _F 9 be given. We can consider limits ov&rand limits over

FG. Suppose we have a limit cone f@ (/GI ke Gl)jer - We sayF preserveshis limit if
|
F/GI Pl FGI),¢; is @ limit cone forFGin 7. Note that it must preserve projections.

Definition 3.1.17. Supposd=-G: 1 — Z has a limit cone. We sdy reflectsthis limit if any cone that
goes to a limit cone was already a limit cone itself. Thatisega cone(z . gJ),_, such that

(FZ—L FGIY,.; is alimit cone forF G, then (z __". )y, is also a limit cone.

Definition 3.1.18. Supposd-G : I — Z has a limit cone. We say createsthis limit if there exists a
cone (z " GI),; suchthat(rz " Fg)),, is alimit cone forF G and additionallyF reflects

limits. That is, given a limit fol=G, there is a unique lift to a limit foG up to isomorphism.
Remark3.1.19 Representable functors and all full and faitfull functoegerve limits.

Definition 3.1.20. Given any two category’, 2 and bifunctorsS'T : ¥°P x ¢ — 2 adinatural
transformationa : S— T is a collection of morphisms such theX € ob(%4) a morphismay :

S(X,X) — T(X,X) and forf : X — Y in € the following diagram

(X, X) —2X T(X,X)

sV T(1,f)

S(Y, X) T(X,Y)

sﬁ -

S(Y,Y) —=T(Y.Y)
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is commutative. IfSis dummy in the second variable amds dummy in the first variable then the
dinatural transformatiom : S— T is a natural transformation between functors such $ats’ —
2 andTy : €°P — 2. In addition, letSis not dummy andl is dummy in both variable, that is,
VX € ob(%’) T(X,X) =D € ob(Z). Thena looks like a dinatural transformation betwe8rand
D € ob(2). Such a functor is calledxtranaturalor supernaturaltransformation. It satisfies the

following diagram.

sy, x) 22 5y y)

S(fvl)i lav

S(X,X) ——=D

This diagram looks like that the right hand side of the hexagocollapsed. In the dual notion
one can consider the dinatural transformatHnD — T and then the test diagram is obtained from

collapsing the left hand side of the hexagon.

Definition 3.1.21. Let S: ¥°P x ¥ — 2 be a functor. Thend of this functor is a dinatural trans-
formationw such thate € ob(Z) andw: E — S This natural transformation is sometimes called
wedge. Ends are special kinds of limits and they are unitef¢amean that/3 : X — S there exists
uniqueh: X — E where the components of two dinatural transformationsfgafia = wah for all

Acob(?¢), that is, for eachf : A— Bin % all the quadrilaterals in the following diagram commute.

SA,A)
S(1L,f)

¢ S(AB

S(fl

S(B,B)

In general, to show the end of the func®we use just the objed and the notatiory, S(A,A). It
can be considered the dual notion of ends which is calteshdsuch that an objed and a dinatural

transformationa : S— D with S(A,A) — [ASAA) =D.

3.2 Adjunctions and Monads

We know that every group structure is mapped to the set stidiy functors. But the main
problem is that whether there exist group structures foryesets or not. In this section we will
define adjunctions and we will try to find an answer to this peob After all we will give examples

in topology.
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3.2.1 Adjunction

Definition 3.2.1. An adjunctionbetween two categorieg and Z consists of two functorf : ¢ —
2 andG: 2 — % and a natural isomorphismy : Homy, (F—,—) — Hom,(—,G—) consisting of
bijections : iy : Homy(FX,Y) — Homg (X, GY) for all objects X in¢ and Y in 2. In order
to interprety a natural isomorphismone must recognizélomy,(F—,—) and Homy(—,G—) as
functors. In fact, they are both bifunctors frgaPP x 2 to Setas we have seen. Explicitly, the
naturality of means that for all morphismis: X — X' in ¢ and all morphismg:Y — Y’ in 2 the

following diagram commutes :

Homg(X,GY) 228 Hom, (X! GY)

lﬂx,vl l‘l’xhw

!/ !/
Hom (FX.Y) foers Homy (FX'Y')

One can give another way to define adjunctions with usingswamtd counit which we will explain
now. An adjunction between two categoriesand & consists of two functor§ : ¥ — 2 and

G: 9 — ¥ and two natural transformationg: 1, — GF , € : FG — 14 called theunit and the
co-unitof the adjunction, respectively. These must satisfy

1 =eFoFn F FGF F

1 =GeonG:G GFG G

where } and % are the identity transformations éhandG respectively. These equations are some-

times called the zig-zag equations because of the app&addrie corresponding string diagrams.
In component form these equations are ;

idrx =&rx o F(Nx)

idgy =G(&y) o Nay

for each X in¥ and each Y inZ .

Let us explain this with some example.

Example 3.2.2.Let Sbe any set an& ! any set disjoint fron such that there is a bijection from
Sto S1. Using this bijection for each € Slet us denote the corresponding elemestS! by s~2

and similarly for each € S! the corresponding elemest Sby t~— so that the inverse of * in

S will be sin S, that is,(s71)~1 = s. Now we take a singleton set not containedSin St and

we call this set {1} and we assume that'l= 1. For anyx € SUS U {1} letx* = x. A word on
Sis by definition a sequence;, s, ss,...) wheres € SUS U {1} ands = 1 for all i sufficiently
large. We mean that for each sequence there is@rch thats = 1 fori > n.Thus we can think of

a word as a finite product of elements®and their inverses. Here we allow the repetitions. To be

sure of the uniqueness of this expression we consider theéswanich have no obvious cancellations
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between adjacent terms. The word is said to be reducgahift 5 for all i with s #1 and ifsc=1

for somek then for alli > k s = 1. The reduced word (1,1,1,1,...) is called the empty woudian
denoted by 1. By simplifying the notation by writing the reed word(s;*,s?,s5,...,,1,1,1,...)

we write fors € Sandg = +1 thatsis2s...s. Now by definition, reduced word$!r&r..rd
ands;'s?sy...s are equal if and only ih=mandd = €i, 1<i <n. LetF(S) be a set of reduced
words onSand embedinto F(S) by s— (s,1,1,1,...). Under this injection we identif{d with its
image and henceforth considgas a subset df (S). Note that ifS= 0 theF(S) = {1}. So we can
construct the binary operation &1(S), but we should be sure that the binary product of two reduced
word is again a reduced word. Although the definition appé&afse complicated it is simply the
formal rule for successive cancellation of juxtaposed temhich are inverses of each other. Let

rrdr rdn andss2s?...s be reduced words and assume first that n. Letk be the smallest

—Om-k+1

integer in the range £ k < m+1 such that;ﬁk F k1

. Then the product of these reduced words

is defined to be:
ook s, ifk<m;
(P (S S = st if k=m+1< n;
1, if k=m+1 and m=n.
The product is defined similarly when > n, so in either case it results in a reduced word. We can
easily see that 1 is the identity and the inverse of the retluwmed s;'s2s3*...s& is the reduced word

s, s, ®2s;%. .5, 5. Now let us define for eachie SUS U {1} os: F(S) — F(S) by

05(S1'Sy'S5" ST { ssPgsy.s, if st £s

S2s..s, if st =s1.
Since gq o Os is identity map ofF (S) — F(S) , os is a permutation of(S). Let A(F) be the
subgroup of the symmetric group on the B€6) which is generated byos|s € S}. Then the map
SISPSY. S > 0fl o oflo .. 0 0ft is a set bijection betweeR(S) and A(S) which respects their
binary operations. SincA(S) is a group, hence associative, sd-i€S). SoF(S) is a group under
the binary operation we defined akdis a functor fromSetto Grp according to our construction.
Let us defindJ : Grp — Setas a forgetfull functor which forgets the group structusg.us consider
UF(S). Applying F first and thenU does not yield the original s& but we get a fundamental
relationship betwee andUF (S) which we define above unitg} : S— UF(S) that simply sends
each element o8 to itself in UF(S) and this function satisfies the universal property ; givey an
functiong: S— U (G), for G € ob(Grp), there is a unique group homomorphismF (S) — G such
thatU (h)on = g. In other wordsUF (S) is the best possible solution to the problem of inserting
elements ofinto a group. Composing andF in the opposite order, we get a couaitFU (G) — G
satisfying the universal property; for any group homomésphg : F(S) — G, there is a unique

function f : S— U(G) such thats o F(h) = go FU (G) constitutes the best possible solution to the
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problem of finding a representation @fas a quotient of a free group and we can express these with
the commutative diagrams as follow :

Nu(G) Fns

U(G) UFU(G) F(S ———=FUF(S§
\ erG \ lss
U(G) F(S

Example 3.2.3. (Munkres (1975)) Our another example is construction aoradijon between the
category of completely regular spaces and the categoryeotdmpact Hausdorff spac€&Haus.
First let us denote the category of completely regular spage®R. Let X € ob(% %) andCx be
the set of all continuous functions frokito the interval[0, 1], simply we denote this set . Our
first problem is that either there is an embeddiig X — Y for Y € CHaus or not. We take for
every f € C a copy|0,1]s of [0,1]. This gives us a family of mapk: X — [0,1]¢, with its diagonal
mapF = A¢ccf : X — [0,1]C. Because F is diagonal map of continuous functions, it isicoaus.
The space0, 1] is compact according to Tychonoff's theorem and Hausdb¥i.should show that
F : X — FXis a homeomorphism. For¥+# yin X then there is a continuous functidn X — [0, 1]
with f(x) =0 andf(y) = 1. Then thef —th coordinate of(x) is O and thef —th coordinate of-(y)

is 1, soF (x) # F(y). This means théef is injective. LetU be open inX. In order to show thaEU is
open inFX we takex € U and seek an open 8tin [0, 1] such thafF (x) € ONFX C FU. We take a
continuous functiorf : X — [0, 1] such thatf (x) = 0 andf (y) = 1 fory € X U and letO = 11; ([0, 1)).
The f —th coordinate ofF X, which is f(x), is 0, soF (x) € O. If y is such thaf(y) € O then we
must havef (y) < 1, hencey e U; we findONFX C FU. So we show thaf is a homeomorphism. In
general this embedding denoted Bynd the closure g8X in [0,1]C is a compactification oK, we
call it the Cech-Stone compactificationXfand we denote it g8X. Of course there exist other ways
to construct the compactification &f. For example the unit sphef is a compactification oR?
by adding just one point for infinite. This compactification is called one point compactification
Alexsandorrf compactificatiorLetY andZ be two compactification of the completely regular space
X. We callY a larger compactification of thanZ if there is a continuous magpfromY to Z such
thatg(x) = x for all x € X. We writeY > Z or Z<Y. This relation> is almost partial order but not
unique. IfY andZ are compactifications of with Y > Z andZ>Y thenY andZ are homeomorphic
and the homeomorphisim can be chosen in such a way thek) = x for all x € X. We call two
compactifications equivalent if there exists such a homephiem. The compactificatiofiX is the
largest compactification, that is, ¥f is a compactification of the completely regular spxcehen
BX>Y and this gives us the first characterizationBof. The second characterization is that fet
be a continuous function froX to [0,1] then there exist a continuous functifrf : BX — [0, 1]
such thatB f [x= f and every compactification with this property is equivalen8X. LetU be a
forgetfull functor fromCHaus to €% then the extension property mak@sa functor from¢# to

CHaus such tha{B is left adjoint ofU where the bijectiony : Hom(BX,Y) — Hom(X,UY) is clear
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with our explanation and natural K1 andY.

Example 3.2.4.Let F : Grp — Grp x Grp be the diagonal functor which assigns to every group
X the pair (X,X) in the product categoi@rp x Grp andG: Grp x Grp — Grp the functor which
assigns to each palil1, YY) the product groufy; x Yo. The universal property of the product group
shows thats is the right-adjoint td=. the co-unit gives the natural projections from the prodifct

the factors.

Example 3.2.5. For a spaceX the suspension SXs the quotient oiX x | obtaining by collapsing
X x {0} to a point andX x {1} to another point. If we think that these points are the chdrese
point and collapse the line segmdnt} x | to the point{Xy} x {0} then the new space is homotopy
equivalent taSX. We call this new space threduced suspensianX. If we identify the points{0}
and{1} in | then we have an identification spa8e=1/{0,1} . Let {0} = {+1} is the base point
of S' then the reduced suspension spageis actually the same as the smash prodtcetS'. Let us
explain the smash product of two spa€andY. Inside a producK x Y there are copies of andY
namely with chosen base pois< {yo} and{0} x Y for pointsxy € X andyp € Y. The two copies of
X andY in X x Y intersect only at the poir(i, Yo). So their union can be identified with the wedge
sum ofX andY, that is, take the quotient of the disjoint unigmlY obtained by identifyingg andyg

to a single point. Then the smash prodXct Y is defined to be the quotieMtx Y /X VY. SinceZX
andX A St are both the quotient of x | with X x d1 U {Xo} x | collapsed to a point we can think that
X =X x St. Now letQX denote the loop space ¥f thatis,QX = {a|a : | — X;a(0)=a (1) =xo}
wherexg € X is the chosen base point. Since we stick together the gjaatid end points of a path
in QX one may think the points d2X as a continuous function froi® to X and QX = (X,xo)sl.
From these explanation one can think thatndQ are adjoint functors from the category of pointed

compactly generated Haussdorf spaCékaus, to itself such that

X =XAStandQX = (X,%0)S.

The unitX — QX of the adjunction send € X to the function< x,— >: 1 — X, it has a vivid
geometric picture ; it sends each poi X to that generator of the cone which passes thraygh
this generator is a loop from the north pole to the south patettiey are same. Hence a point of
Q> X. By iterationX" is a left adjoint ofQ" :CHaus,— CHaus, . Adjunction has a uniX — Q"z"X

which can be written as a composite

QnzX
X Q>X QQX5X —— -
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3.2.2 Monadsand Algebras

Definition 3.2.6. If ¥ is a category, aonadon % consists of a functorf : ¥ — % together with two
natural transformationg : 1, — T (where 1, denotes the identity functor o& ) andp : T2 — T
hereT? is the composition off with itself, that isT? = T o T. these are required the following

coherence conditions :

e HoTu = pouT as natural transformatiof® — T

e HoTn = uonT = 17 as natural transformations — T and here # denotes the identity

transformation fronT to T .

T3 _TH. T2 A

Ao

T2— =T T2 —>T
u u

Example 3.2.7.We can construct a monad on the categonypet Let X be an object oSetand
T(X) is the power set of X where for any functidrfrom X to Y in SetT(f) be the function between
power sets induced by taking direct images unidefor every set X we have a mag : X — T(X)
, which assigns to every elemexbf X the singleton{x}. A function ux : T(T (X)) — T(X) can
be given as follows : ifY is a set whose elements are subsetX gfthen taking the union of these

subsets gives a subsgt(Y) of X . So these data describe a monad.

Note that given an adjunctio(F,G,n,€) : ¥ = % we can always define a monad with using
the units and counits of this adjunction such that tdke GF : ¥ — 2. So we have a natural
transformatior : idy, = T and a natural transformatiqm: T2 = T where the componenisp for
D € 0bZ are

GS
T2(D) = GFGF(D) ——2

Conversly every monad arises from and adjunction, but irertitain one way. Essentially, there are a

maximal and a minimal solution to the problem of finding aruadfion from which a given monad.

Definition 3.2.8. Suppose thafT,n, 1) is given monad on a catego#. A T-algebra(X,k) is an
objectX of ¥ together with an arrow : T(X) — X of ¥ called structure map of the algebra such

that the diagrams

T2 5 Tx
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and

commutes. A morphisnfi : (X,k) — (Y,h) of T—algebras is an arro : X — Y of ¢ such that the

diagram
TX 1 TY
X — Y
commutes.

The category¢’™ of T—algebras and their morphisms is called Eikenberg-Moorecategory of
the monadT. Given the monad, we can also define another category whichllisd theKleisli
category of monad %7. Its objects are the objects &f and its arrows fronX to Y are the arrows
f: X —=T(Y)in¥. The identity on an objec is the unitnx and the compositgo f : X — T(Z) of
two arrowsf : X — T(Y)andg:Y — T(Z) is given bygo f = pizoTgo f.

Theorem 3.2.9.There is an adjunction betweenTAlg and%” which brings about the given monad
T.

Proof. (van Oosten (2002)) There is an obvious forgetfull fundidr: T — Alg — % which takes

(X,h) to X. We claim thatUT has a left adjoinFT. FT assigns to an object the T —algebra

Hx

T2(X) T(X):t0 x _ "y the mapT (f); this is an algebra map because of the mat-

urality of u. That T2(X) Hx T(X) is an algebra follows from the defining axioms for a

monadT. Now given any arrowng : X — UT(Y,h) we letg: (T(X),ux) — (Y,h) be the arrow

T(X) T T(Y) _h _ v . Thisis a map of algebras since

T2x) % 12(y) T Ty
Hxl IJYJ/ hJ/
T(X) T(Y) Y

commutes. The left hand square is the naturalityuofthe right hand square is becau@éh)
is a T—algebra. Conversely, given a map of algebfas(T (X), ux) — (Y,h) we have an arrow

f: X — Y by taking the compositey 7% T(X) " _y. Now f:T(X)—Y is the composite

T(X) ﬂﬂ—z(x) T(P) T(Y) "~y . Sincef is aT—algebra map, that is
T(X) ﬂﬂ—z(x) BT (x) "y which is f by the monad laws. Conversely; X — Y is the

composite y X T(X) T T(Y) h .y . By the naturality of and the fact thatY,h) is a
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T—algebra, we conclude th§t= g. So we have a naturel 1-1 correspondence
€ (X,UT(Y,h)) ~ T —Alg(FT(X), (Y,h)) and our adjunction. The composite' FT is the functor
T, and that unit) of the adjunction is the unit oF, for the counits of FT — U T we have that

T2 _UTETyTeT L8FL _ jTET _ 7 is our multiplication. O



CHAPTER FOUR
SIMPLICIAL CATEGORIES AND N-CATEGORIES

4.1 Monoidal Categories

In this section we will give some definitions which we will usesimplicial category.

Definition 4.1.1. A monoidal categorys a category# equipped with;

e A binary functor® : . # x .# — .# called the tensor product or the monoidal product.
e An objectl called the unit object.

e Three natural isomorphism subject to certain coherencdition expressing the fact that the

tensor operation;
— is associative : there is a natural isomorphigmcalled associativitywith components
apgc: (A®B)®C— A® (B®C).

— hasl left and right identity : there are two natural isomorphignand p, respectively

calledleft andright identity, with componentda : | ® A— Aandpa: A1 — A.
The coherence conditions for these natural transformsfioliow:

e for all A/B,C andD in.# , in the diagram :

(A®B)®C)®@D 222 (AR (B®C))®D 222 Ag ((B®C)® D)

aA@B‘C‘DJ/ lA®OIB‘c‘D

(A®B)® (C®D) A® (B® (C®D))

0aBCaD

e forall AandBin .#, in diagram

(A1) ®B daie A® (1 ®B)
a®B

commutes.

It follows from these three conditions that any such diag@mmutes; this is Mac Lane’s co-

herence theorem. This is related to the fact that every ndahoategory is monodially equivalent to

39
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a strict monoidal category. Let’s consider the strict mdabategory. This is a monoidal category

where the natural isomorphisms are identities.

Definition 4.1.2. One can construct for any strict monoidal catego#y the free strict monoidal

categoryZ(.#) as follows :

e Its objects are lists (finite sequencds)...... ,Anm of objects of #;

e there are arrows between two objeéts....,An andBy,...., By if and only if m=n, and then

the arrows are lists of arrowfs : Aj — B; of .#Z wherei=1,2,.....m;

¢ the tensor product of two objedts, ..., Ay, andBy, ....., B, is the concatenatiofy, ....., Am, B, ...., Bn
of the two lists, and, similarly, the tensor product of tworgtisms is given by the concatena-

tion of lists. The operatiox can be considered as functor frowf to Z(.#).

Example 4.1.3. Any category with standard categorical products and testhobject is a monoidal
category, with the categorical product as tensor and tinginet object as identity. However, in many

monoidal categories, the tensor product is neither a ceateg@roduct nor coproduct.

Definition 4.1.4. A braided monoidal categoris a monoidal category# equipped with éraid-
ing; that is, there is a natural isomorphigme : A® B — B® A for which the following hexagonal

diagrams commute:

A® (B®C) (B®C)®A
(A®B)®C B® (C®A)
yo1 1oy
(B®A)®C———> B® (AxC)

Definition 4.1.5. A symmetric monoidal categoig a braided monoidal category whose braiding
satisfiesyagysa = lagpe for all objectsA andB. In a braided monoidal category, the braidings

always commutes with the units as in the diagram :
y
Al l®A

4

Definition 4.1.6. A monoidC in a monoidal category. .#,®,| is an objectC € ob(.#') together

with two morphismsut : C®C — C andn : | — C such that the diagrams

C®(C®C) 2~ (CaC)ac " -cac

. ﬂi

CwC C
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1 1
loC 12 coc< T col

AL

C

are commute. A morphisrh:< C,u,n >—<C,u’,n > of monoids is a morphism such that
fu=p(fof):Ce®C—Candfn=n":1-C".

With these morphisms the monoids i constitute a categofylon_, whose objects are the monoids

in .. The operation< C, 4, n >+— C defines a forgetfull functdd : Mon _,— .# .

4.2 Simplicial Category

First of all, we will give definition of simplicial categorySecondly, we try to explain the mor-
phisms in this category. Finally, we will give the geomeiriterpretation of simplicial sets and we

will define the subdivision of simplicial complexes.

Definition 4.2.1. The simplicial categoryA is defined as the small category whose objects are all
finite ordinal numbergn] = {0,1,2,...,n— 1} and whose maps are all monotone functions, that is,
all functionsf : [n] — [m] such that 0<i < j <nimply f(i) < f(j). The empty set 8 [0] is the
initial object of the simplicial category and [1] is the témal object, that is, for anyn| there exist
unique mapk andu satisfying that : [0] — [n] andu: [n] — [1]. Ordinal additionis a bifunctor,
which we denote it byd : A x A — A, defined on ordinal$n], [m] as the usual surfn+ m| and on

arrowsf : [n] — [n'] andg: [m] — [M] as

. f(i), 0o<i<n;
U®9m){ (4.2.1)

naeg(i—n), n<i<ngém.
Moreover; since [1] is terminal and [O] is initial iA there are unique arrows : [2] — [1] and

n : [0] — [1], with these arrows the triple A, &, [0] > is a strict monoidal category and for the same

reason these arrows form a moneid1], u,n > in A.

Proposition 4.2.2. (Mac Lane (1998)) Given a monoid C, ', n’ > in a strict monoidal category
< ,®,| >there is a unique morphism K A, &, [0] >—< .#,®,| > suchthat K[1]) =c, Fu =
u and Fn = n’ as in the figure
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Proof. First we should show that the arrows/fre exactly the iterated formal product. Wrji&
for the unique arrowu® : [k — [1]; thusu©@ = n, u is the identity (here we use the notatitn

for identity to not mixed with the ordinal number 1) apt? = 1 : [2] — [1] let us consideu(®);

O =p(pel)=p(lep): 3 -1

This equality holds because it means just the general agseciaw, that is,

u(i), i=0,1;
pol— (i)
191(i—2), i=2.
1(i), i=0;
Loy — (i)

lou(i-1), i=1,2.

Since[1] is terminal object im\ ; one can get the equation by using iteration

Moreover, if f : [m] — [n] is any monotone function, lety be the number of elements in the subset

f=1(i) of [m] then we obtain the equality,
f=pMmoum g . oum; wheresdm =m

This shows that any mapin A is a sum of iterated products constructed frarandn. Now consider

the functor required in the proposition. SinE€[1]) = C andF is to be a morphism of monoidal
categoriesF must haverF ([n]) = C("; this determines the object function Bf Next, Fu =y’ and

Fn =n"imply thatFu™ = '™ and the representation of any arrdwin A determines the arrow
functionF f of F. ThusF is unique and since i composition is given by the equation
(e @ utkn)) = plkat-+k) * which correspond exactly to the general associative law

valid in .Z, this showF is a functor. O

There is another description of the arrow@pivhich starts by observing that a monotone function
f : [n] — [n] be factored ag = goh whereh: [n] — [n'] is surjective and monotone;: [n'] — [n]
is monotone and injective. This injective functigrwill be determined just by giving the image set

of g,which is a subset dh'] ordinals in the sefn].
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In particular, from[n] to [n+ 1] there exactlyn+ 1 map which are monotone injective denoted by

4" whose image omits thus

3" :[n—[n+1;30,1,...,n—1} ={0,1,...i,...,n}

where the hat means that i is to be omitted.We display alkthews as

[0]&[1]%[2]5’[3], ..... , B0, errens O[N] — [N+ 1],

On the other hand; a monotome [n] — [n'] which is surjective is determined by the sub$g]
h(j)=h(j+1);0< j <n-—2} of thosen— n’ argument j at whicth does not increase. In particular

there aren such arrowgn+ 1] — [n]; fori =0,....,n—1 they are

o : [n+1] — [n] whereg"(i) = g"(i+ 1)

We display them as

2

[0]4—[1]i[]%[]‘£[4], ..... , v O 1t [N+ 1] — [1]

These maps may also be expressed in termsafdn. Indeedd : [0] — [1] isn andd? : [2] — [1]
is u and the descriptions of the morphisms show that
"= Lien®lyi:[n —— n+1 i=0,1,...n
o'=lLeousli1:[n+1 — [n| i=01,...n-1

Lemma 4.2.3.In A, any arrow f: [n] — [n] has a unique representation

f=34,08,0....08,00j,00j,....00j,

where the ordinal numbers h and k satigfy— h+ k] = [n] while the string of subscripts i and |

satisfy

Nn>ig>..>ik>0;Nn—1>jy>..>j1>0

Proof. (Mac Lane (1998)) By induction onhe [n|, any monotonef is determined by its image, a
subset ofn], an by the set of thospe [n] at which does increagé (i) = f(j + 1)]. Puttingiy, ..., ik,

in reverse order, for those elements[of not in the image angh, ..., jn, in order, for the elements
j of [n] where f does not increase, it follows that the functions on bothssidiethe equation are

equal. O
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In simplical category the morphisndsand o satisfy the following axioms :

60 = 918 for i< (4.2.2)

0j0; = 0i0j41 for i< (4.2.3)
&0j-1, ifi <j;

o4 = 1n, if i=j or i=j+1; (4.2.4)

5_10), ifi >+,

These identities may be verified directly by checking thegenaf both sides with the given condition,

For instanced d; : [n] — [n+ 2] for anyi < j the image;

56({0,1, i,y s j4+1j+2,.on=1}) = &{0,1,...,i,r, [, + 1,0}
= {0,1,...,0,.00 ], ] +1,...,n+ 1},
5i+16({0,1, i,y j 41, j+2,.on=1}) = &11({0,1,....0 0, +1,.0})
= {0,1,...,0 .0 j, ]+ 1, ..,n+1},

where the hat means that the number is omitted. Since theeim@gequal and the functions are

injective, the equality holds. One can verify the otherdwgimilar idea.

Definition 4.2.4. In R™? the standard n-simplex is the subset given by

Ani1={(to,t1,...,tn) € R™H 3ot =1, Vit; > O}

the vertices of the standard n-simplex are the points

€& = (170707"'70)7
€ = (071707"'70)7

€& = (0707 17"'70)7

e = (0,0,0,...,1).

For example, the standard 2-simplé in R? in figure 4.1, One can construct with arbitrary n+1

points {vo,Vv1...,vn} in R"* n-simplex by using the canonical map
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Figure 4.1 Standart 2-simplex.

(to,t1,....Tn) — Y{Lotivi

The coefficients; are called the barycentric coordinates of a point in thenmpiX, this general

simplex is often calle@ffine n-simplexand the canonical map is callad affine transformation.

According the definition of standard n-simplex, we have afanA : A — TOP ; on objects

[N+ 1] — Apig;onarrows(f : [n+1] — [m+1]) — (Af : A1 — Ame1) where the map defined by

At (to,ta, -, tn) = (S0,S1,--+,Sm) 5 S = Yt (iy=jti -

Here we should be carefull about the notatidn, ; has dimension n and n+1 vertices, while is
the affine map which sends the verieof A, 1 to the vertexf (i) of Ay1 andA is a subcategory of
TOP, but the geometric dimension is one less than the arithroegcused i\ . By A* we denote
the full subcategory of whit objects all the positive ordinals {1,2,3,...} omitgronly O .After here
we use the notatioA instead ofA* so thatA has objects such that] = {0,1,2,...,n} foralln>0

and for the standard n-simplex we will u&g .

Definition 4.2.5. Simplicial setsare contravariant functors : A°? — Setand the natural transfor-

mations between simplicial sets are called simplicial m#pse write this functor as

N+1]—Kpn; & — d andg; — s;

so thatKy is in geometric dimension, then the simplicial sets may be described in the traditiona

way as a list 0Kg, K4, ..., Ky, ... objects ofSetwith arrowsd; : K, — K,_; fori=0,1,....nandn >0
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ands : Ky, — K1 fori =0,1,...,n andn > 0 called face and degeneracy operators respectively.

These arrows satisfy the properties dual to propertie 422.3, 4.2.4 ob ando;

ddjr1 = djdi  for i< (4.2.5)

Sji+18 = ss; for i< (4.2.6)
Sj,]_di, ifi <j;

ds; = 1, if i=j or i=j+1; (4.2.7)

sidi_q1, ifi >j+1.
So with this information we have that for any: [m] — [n] there existKa : Kn — K.

Let us use any small categasy instead of the categor§etin the image of the functor such that
K : A°P — ¥ then this functoK is called the simplicial object in the catego#yand it satisfies the

conditions listed above for simplicial sets.

Definition 4.2.6. (May (1992))Asimplicial map f: K — K is a natural transformation which com-

mutes with the face and degeneracy operators; thatdensists off, : K, — K;] and

fadi = difqpa,
fis = sfh1.

We denote bgSetthe category of simplicial sets with the natural transfaiores as simplicial maps.

The simplicial standard n-simpleis the simplicial sefA[n] = Hom(—,[n]), that is,A[n] is the
result of applyingA to [n], so fora : [m] — [n] , Ala] : A[m] — A[n] . Owing to the Yoneda lemma,
if K a simplicial set and ik € Ky, then there exists one and only one simplicial Mgp A[n] — K
that takedd|, to x. Hence the categorgSetis complete and cocomplete(3.1.5), wellpowered and

cowellpowered (2.2.16).

Definition 4.2.7. Let K be a simplicial set then one writes= K when one means ¢ | J,K,. With
this understanding, axe K is said to bedegeneratef there exists an epimorphism # id and a
y € K such thax = (Ka )y, otherwisex € K is said to benondegenerateThe elements dko which
are represents the vertexeskfare nondegenerate. Evexye K admits a unique representation
x= (Ka)y, wherea is an epimorphism and y is nondegenerate. The nondegemégatents in\[n]

are the mononorphisnws : [m| — [n] (m<n) .

Definition 4.2.8. A simplicial subsetof a simplicial setK is a simplicial setL such thatL is a
subfunctorof K that isL,, C K for all n and the inclusiorL — K is a simplicial map. We use the

notationL C K.
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Then-skeletorof a simplicial seK is the simplicial subsé€(™ (n> 0) of K defined by stipulating
thatK,()n> is the set of allk € Ky, for which there exists an epimorphisen: [p] — [q] (@ <n) and a
y € K, such thatx = (Ka)y. ThereforeK{” = K, (p < n); furthermore,K© ¢ K ¢ ... and
K = colimK(™ (3.1.6). A proper simplicial subset &[n] is contained inA[n]("™Y, the frontier
A[n] of An]. Of course A[0] = 0. K9 is isomorphic toKo-A[0]. In general, leK? be the set of
nondegenerate elementskf. Fix a collection{A[n]y : x € K¥} of simplicial standard n-simplexes
indexed byK# then the simplicial mapa, : An] — K (x € K¥) determine an arrou( - Aln] — K
and the commutative diagram

K#.Aln] — KD

.

K#. Aln) — K™
is a pushout square. Note ttix{h] is a coequalizer. For proof consider the diagram

|_| A[H—Z]i.ju: |_| A[n—l]i

0<i<j<n v 0<i<n
whereu is defined by thé\[3" ] then theA[d"] define a simplicial mag : | Joj<nAn— 1)i — Aln]

that induces an isomorphisooequ,v) — A[n].

Definition 4.2.9. Therealizationfunctor - is a functor fromsSetto Top such that - cA = A~
this means that it assigns to a simplicial et topological spac¢K| = ["Kp - A", the geometric
realizationof K, and to a simplicial ma : K — L a continuous functionf | : |[K| — |L|, thegeometric
realization of f. In particular,|A[n]| = A" and|A[a]| = AY. There is an explicit description ¢K|:
Equip K, with discrete topology an#, x A" with the product topology thefK| be identified with
the quotient |,Kn x A"/ ~, the equivalence relation being generated by wriiftgo )x, t) ~ (X, A9t)

. These relations are respected by every simplicial inal — L. Denote by|x,t] the equivalence
class corresponding t,t). The projection(x,t) — [x,t] of | |,Kn x A" onto |K| restricts to a map
Lo K# x A" — |K| that is a set theoretic bijection. Consequently, if we &ttae K the subset
e of |[K| consisting of alljx,t] (t € A°"), then the collectior{ey : x € Kf#(n > 0)} partitions|K|. It
follows from this that a simplicial map : K — L is injective if and only if its geometric realization
|f| : |[K| — |L]| is injective and one can say this condition also for sunyectnaps. Being a left
adjoint, the functor — | : sSet— Top preserves colimits. So, by taking the geometric realimatio

of the diagram | | AIN—2)ij %~ | | Aln—1]i , and unraveling the definitions, one find that
0<i<j<n Y 0<i<n

|A[n]| can be identified witiA".

Definition 4.2.10. Givenn, let A[n| be the simplicial set defined by the following conditions:

a. Aln] assigns to an objedp] the setA[n], of all finite sequences = (Lo, ..., 4p) of Monomor-
phisms inA having codomairin] such thatvi, j(0 <i < j < p) there is a monomorphism;;

with L = pj o tij.
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b. Aln] assigns to a morphism : [g] — [p| the map&[n]p — E[n]q takingu to poa, that is
(Hos ---Hp) = (Ha(0): -+ Ha(q))-

We call A the functorA — sSetthat sendsn] to Aln] anda : [m] — [n] to A[a] : A[m] — A[n]. The
associated realization functéry is a functorsSet— sSetsuch thatl' yo A = A. It assigns to a
simplicial setk a simplicial setSdK= [" K, - A[n], the subdivisionof K, and to a simplicial map

f : X — Y asimplicial mapSd f: SdX— SdY, the subdivision off. In particular,SdA[n] = A[n] and
SdA[a] = A[a]. On the other hand, the realization funciorassociated with the Yoneda embedding
A is naturally isomorphic to the identity functat onsSet If dy: A_[n] — A[n] is the simplicial map
that sendgt = (o, ..., Up) € A_[n]p to dapt € Aln]p @ dapt(i) = pi(my), hereyy; : [m] — [n] ,then thed,
determine a natural transformatidn — A, which by functoriality, leads to a natural transformation

d:T'3z—Ta. ThusVK,L andVf : K — L, there is a commutative diagram

SdK % K

Sdf{ {f

SdLT L
Now givenn, we write A" for the geometric realization afn] (JA[n]|) and A? for |Ala]|. The
elements ofA" are equivalence class@s,t]. Any two representative dfi,t are related by a finite
chain of elementary equivalences involving omissionupfandt; if tt = 0 and replacement df
andti 1 by tj +t1 if gii1 = . Every[u,t] has a canonical representative, this means [fhat
can be represented by a p&jr,t) : 4 = (Uo, ..., tn) € A[n]n with i 2 [i] — [n] for 0 <i < n and
t = (to,...,tn) € A". S0 = idj, and there exists a permutationof {01,2,...,n} such thatvi,

Hi([i]) = {m(©0),..., 7(i) }-

Let Ma denote the set of monomorphisms in the simplicial catedornGivena € Mp saya :
[m] — [n], putb(a) = 7 SMoeq) € R™.
Lemma4.2.11.For each n> 0, the assignmerjt,t] — P tib() is a welldefined homeomorphism

hn A_n—>An

Proof. (see Warner (2000)) O

Remark4.2.12 Geometrically,&n is the barycentric subdivision &".

Before we finish the section, we give a theorem, which is daliédivision theorem

Theorem 4.2.13.Let K be a simplicial set then there is a homeomorphigm|8dK — |K|.

Proof. (see Warner (2000)) O
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Figure 4.1 Barycentric subdivision of the 2-simplex.

4.3 Bicategories and n-categories

Definition 4.3.1. A bicategory# consists of the following data :

e Collectionob(#), the elements of this collection are called @reells(A,B, ...)

e Categories”(A,B) , whose objects are morphisms between the 0-cells and dalttetls The
f

morphisms of%#(A,B) are called2-cells such thatA/@? B WhereA B € ob(#), f,g e
~_F

g
ob(#(A,B)) anda € Homya ).

e Functors
Casc: #(B,C) x A(A,B) — #A(A,C)
(9. f)—gof=gf
(B,a)— Bxa
Here %" means that the horizontal composition in 2.2.2. Letenote the category with one

object and identity morphism, then the functgr. 1 — Z(A,A) is a 1-cellA — A . |a looks
like the identity map of the 0-cel\ but it is not quite real identity.

e Although we write the compositions of the 1 and 2-cells inalsarder, in% the horizontal
composition is not strictly associative, but associatingy up to" a natural isomorphism be-
tween iterated composite functors and also the purporteatitg mapsia are required to act
as identities for the horizontal composition only up to makisomorphisms. Now we try to

explain these isomorphisms with their components. A& C,D € ob(#) and f,g,h are the
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1-cells in#(A,B),%(B,C) and%#(C, D) respectively, then we have the following diagrams

B(C,D) x B(B,C) x B(A,B) — e %(C,D) x B(A,C)
CBCDXl ABCD CacD
2A(B,D) x B(A,B) v P(A,D)
A(C,D)x1 1x A(C,D)
1xla Q 1xla 9
Pr8 Ang

B(AB) x B(AA) B(A,B) %(B,B) x B(A,B) B(A,B)

CanB CaBB

angt : (hg) f ~— h(g)

pf:folA;—f

Af:lBOf;f

So there exist some axioms for this transformations sudttteefollowing diagrams must be

commute.
/( o)f e (k(hg)) \
(kh)(gf) k((hg)f)
\ 1xa
(h(gf))
Ghf —————qg(If)
N A

gf

Remark4.3.2 If we have(hg)f = h(gf) andlf = f = fl and similarly for composition of 2-cell.

Then the category? is as expected called 2-category. In this case the axiongsaudbmatically.

Example 4.3.3. Remember the functor category for given two categodieand 2. If we recreate
the data of this category such that the objects are the gayaries, 1-cells are the functors and

2-cells are the natural transformation then obviously tligegory is strict bicategory or as we said
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just 2-category. Also there is another exam@k in the definition of functors which consists of all
1-categories as objects and clearly 1-cells as functoell2-natural transformations. In the section
of functors we refer the equivalences in the catedoay. Also Iin any bicategory? an equivalence
(usually called internal) consists of a pair of 1-cefl& #(A,B),g € #(B,A) together with two
isomorphismo andp in Z(A,A) and% (B, B) respectively such that : 15 — go f and: fog—1p

are natural.

One can define the opposite bicategory of a bicategduch that all 1-cells are reversed but not
2-cells. So now the question is what are the morphisms betivee bicategory which we call also

functors.

Definition 4.3.4. Since in any bicategory composition is associative up totarakisomorphism,

any functorF from % to %’ consists of the following data:

e FunctionF : ob(#) — ob(#’)
e FunctorsFag: #(A,B) — #'(FA,FB)

e Natural transformations

%(B,C) x B(A,B) ¢ B(A.C)
FecxFag / Fac
OnBC
%#'(FC,FB) x #'(FA,FB) = % (FA,FC)
and
1 ' B(AA)
/ i
O
1 A’ (FA,FA)

’
IFA

Thus 2-cellsgy : FgoF f — F(go f) andgn : I/FA — Fla. Itis clear that the morphisms carried by
F must satiesfy the axioms written in the definition of bicatégs. The exists a familiar variants

of this operation. Ifgxgc and g are natural isomorphisms so tHago F f =~ F(go f) andFI = I
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thenF is called ahomomorphismif the natural transformations are identities then we Eadl strict

homomorphism.

The functors between bicategories gives us an idea for tvéudefinition ofn-categories. To
define 2-categories, where the natural transformation&artdities, we think the hom-sets as cate-
gories. We can sure that for every 1-category there exisi®aategory. The definition of discrete
categories supports this because of letting the 2-cellsdramdformations be identity. Now we are

allowed to give the definition af-categories.

Definition 4.3.5. A strict n—category consists of the following data:

O-cells as objecK,Y,Z, ...

1-cells are the morphisms between any two 0-cells, . o

2- cells are the morphisms between two 1-cells between toalf-, o /F °

~_~+7

for each step there exist composition functors similar vidtictor in the definition of bicate-

gories but the axioms are more complicated.

Although this definition seems elementary, there is a reatdekrelation between Homotopy
theory anch—categories. (Baez (1997)) L&tbe a topological space aRX denote the path category

of this spacePX consists of the following data:

e objects: for any,y € X the pathsy : | — X such thato (0) = xanda (1) =y.

e morphisms: Homotopies between two paths with same staatidgend points as in the section

of functors.

By iterating this procedure, 2-cells are homotopies betwesmotopies and 3-cells are homotopies
between homotopies between homotopies and so on. In hoyntitepry, we are interested in the

property of map which are preserved by homotopies. So if wgaage the example such that

e objects are topological spacksY,Z...
e 1-cells are the continuous functions between topologicatss.

e 2- cells are homotopies between two functidng : X — Y such thaH : X x | — Y satisfies
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H(—,0)=fandH(—,1) =g.

Now we have a 2-category and we are able to start the procedtiréopological spaces. By itera-
tion, we can see that the categdigp has an—category structure. In fact, we are able to think that for
any largen this procedure works, stop has aw—category structure. Here the most important fact
that we use the unit intervé0, 1]. If we think the unit interval0, 1] as an arrow from 0 to 1, then this
abstract arrow can be seen such an arrow in the graph of acatédpreover, an attractive property
of this arrow is that it can be reversed easily. By this adag@t one thinks that the homotopy theory
is a part of the word oh—categories. Namely for every topological space there £xigt—category
M(X) . The objects of this category are the poixtsf X and 1-cells are the paths, 2-cells are paths of
paths and so on. But according the property of the unit iateall the j—morphisms are equivalences
in this category. Hence we call this categoryvasgroupoid. Also one thinks the converse of this
idea such that for everw—groupoid we are able to obtain a topological sphlt&). Maybe this
topological spac&l(G) can be pictured geometrically as intervals, squaresgigarcubes and so on.
In the section of functors we saw the property of the fundaaiegroupll;. In generalll can be
thought as a weak—fuctor fromTop to w—Gpd and by the way we should able to show thaCiat

the categorie§op andw—Gpd are equivalent. In short, working in homotopy theory is thme as

working aboutw—groupoids.

After all, we understand that—category structure occurs by using the effects of functos a
natural transformations on a givén— 1)categories. This means that we use the induction method.
But this procedure is commented in different ways. For eXaeter May have used operads to
definen—categories and Baez and Dolan have used opetopes whichvargdd by them in 1997.
Although it is hard to understand these strategies, onesafitin ideas is to paste diagrams according
to the route of the maps. This means that maps which are glusti ilave same source and target.

Here we try to explain Tamsamami-categories.

Definition 4.3.6. (Dupont (1978)) It is convenient to interprete edohe ob(A) as a category by
defining that the morphisms are the inequalities’' "Then A becomes a full subcategory Gfat
formed by the categorie], [1],[2],.... Thenerveof a (small) categorys is, by definition the

simplicial sets :

NC: (A)°P — Set
In] — Homea([N], %) -
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There are natural identifications:

NGy = ob(%)

NCi= || Homg(X.Y)
X,YENCy

and more generally for composable mdpsX;.; — X , wherei =0,1,....k—1 fork > 1, NC is

the set of the strings such that

fo f f2 fk2 fe1
Xo X1 Xo —— ... — X1 ~— Xk

Furthermore ; let fo, f1,..., f_1) denote the string defined above. One can define the morphisms
€ andn such that = NC(d) andn = NC(o) whereg; : NC([n]) — NC([n—1]) andn : NC([n]) —
NC([n+1]) are given by

(fl, fz,...,fkfl), i=0;
&(fo. fro fie) = ¢ (o, frpoe, fio fin, o, ficr), O0<i<k-1;
(fo, fl, cens fk_z), i=k-1

and

Ni(fo, f1, ey fet) = (To, f1, o fiid, fisq, ooy fier) fOr i = 0,1, k— 1.

Functors between categories turn into simplicial maps éeiwtheir nerves, and the whole con-
struction defines a functor from categories to simplicias.s&his functor is fully faithful. The sim-
plicial sets that arise as nerves of categories are chassrdeby strict Segal condition: the natural

maps

are isomorphisms. This means that the target of the laswasrthe source of the first arrow.

Definition 4.3.7. (Kock (2006)) Define a Tamsamani O-category to be a set. A weatategory
in the sense of Tamsamani is defined inductively as a furd@r A°P — (n— 1)wCat such that
NG is discrete and satisfying the (nonstrict) Segal condjtiamely, that the morphism$Cy 4 —
NC, xng, NCq should be equimorphisms in (nvifat, the category of weak (n - 1)-categories.
Equimorphism means fully faithful and essentially suijggtnotions which are also defined induc-

tively. Note that an equimorphism is not in general inveetilso there is no longer any well-defined
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composition likeNC; < NC; xng, NCy. This map is now defined only up to homotopy. It exists only

in as much as we regard the equimorphism
NC2 —_— NC]_ XNG NC]_
as invertible. The new structure is rather this:

NC]_ NC]_ XNGy NC]_

~F

NG,

Before we end this section, we want to attract attention ¢éaréfation between the definitions of
bicategories and Tamsamani waakcategories. As we see in 4.3.7, Tamsamani weak 2-categories
are similar with the definition of bicategories in 4.3.1, ifister (2002)). Now we try to explain this

similarity.

First take a weak 2-categolNC : A°P — Cat and let us construct a bicategow. The object set
of % is the setNC,. Let us define two functorst : NC; — NCp as source and target respectively.
These functors express the categbl§; as a disjoint unior} s genc, Z(A,B) of categories; the

1-cells fromA to B are objects of4(A, B) and the 2-cells are the morphisms.

Vertical composition of 2-cells it¥8 is composition in eacl8 (A, B). To define horizontal com-

position of 1- and 2-cells, first choose for edch pseudo-inverse
NC]_ XNGy «++ XNGy NC]_ ﬂ NO,(

to the Segal map and choose natural isomorphisms. 1 — gk o @ ande : ¢ o Y — 1. Horizontal

compoaosition is then given as

NGy xng NCL % NG, ML Ne

whered : [1] — [2] is the injection whose image omits€l[2]. The associativity isomorphisms
are built up fromny’s and g’s and the pentagon in 4.3.1 commutes just as long as theaeunoe
(@, Yk, Nk, &) was chosen to be an adjunction too. Identities work sinyilaBo we construct a

bicategory.

Conversely, let us take a bicategas and construct a weak 2-categdiC : (A?)°P — Set (its

"2-nerve") as follows. An element ®C; \ is a quadruple

((au)o<usj; (f&)o<u<v<0<z<ks (Ady)o<u<v<ji<z<k, (IGww)o<u<v<wsjo<z<k)



where

a, is an object of#.

f3, :au — ayis a 1-cell ofA.

az,: fz;t — f2,is a 2-cell of #

12 2,0 f2, — f2, is an invertible 2-cell of% such thatiZ,,o (a3, * aZ,) = a2, 0 1Z}

whenever Ku<v<w< j,1<z<kandij,o (15, * 15, o(associativity isomorphism in

B)=15x0 (1aux* 112,) whenever Ku<v<w<x<j,0<z<k

j=2k=3

This defines the functdNC on objectsA?; it is defined on maps by a combination of inserting
identities and forgetting data. To get a rough pictur&lGflet us consider the analogous construction
for strict 2-categories, in which we insists that the isopimismsi?,,, are actually equalities. Then
an element oNC; is a grid of jk 2-cell of width j and eightk. So passing from a bicategory to
a weak 2-category and back again gives a bicategory whictoisorphic to the original one and
passing from a weak 2-category to a bicategory and back afas a weak 2-category equivalent

to the original one.
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