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İZMİR



M.Sc. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled ”THE DUAL EULER PARAMETERS” completed
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THE DUAL EULER PARAMETERS

ABSTRACT

E.Study mapping states the one to one correspondence between lines of the real three space

and the points of the Dual Unit Sphere. In this study, using the Study mapping we obtain

the relation between the Euler parameters of the Dual Unit Sphere and the screws of the

corresponding motion in the real three space. In the last chapter, the exponential mapping is

used to obtain the relation between the dual orthogonal matrices and the dual skew-symmetric

matrices for the rotations of the Dual Unit Sphere.

Keywords: Study mapping, Dual Unit Sphere, Euler parameters, dual orthogonal matrix,

skew-symmetric matrix, exponential mapping.
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DUAL EULER PARAMETRELERİ

ÖZ

Study dönüşümü, reel üç boyutlu doǧrular uzayıyla dual birim kürenin noktaları arasında

birebir eşleme belirtir. Bu çalışmada, Study dönüşümünü kullanarak, dual kürenin Euler

parametreleriyle üç boyutlu reel uzaydaki vida hareketi arasındaki ilişkiyi elde ettik. Son

bölümde ise dual birim kürenin dönmelerine ait dual ortogonal matrislerle dual anti-simetrik

matrisler arasındaki ilişkiyi üstel dönüşümü kullanarak elde ettik.

Anahtar Sözcükler: Study dönüşümü, dual birim küre, Euler parametreleri, dual ortogonal

matris, anti-simetrik matris, üstel dönüşüm.
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CHAPTER ONE

INTRODUCTION

In Chapter One, we discuss the basic properties of dual numbers and dual quantities (dual

vectors, dual functions, dual matrices, etc.) using the fundamental definitions of algebra.

The representation of a line is simply done by the normalized Plücker vector. This vector

is a point on a unit sphere in D3. There exists a one to one correspondence between the points

on the dual unit sphere and oriented straight lines in R3 which is given by E. Study. This

discussion is given in Chapter Two. Furthermore we study dual angle between dual vectors on

the dual unit sphere which express the spatial relationship between skew lines in space.

In Chapter Three, using the E. Study mapping we study dual rotations on the dual unit

sphere instead of the transformations in real space. Then using Cayley mapping we obtain dual

Rodrigues parameters and the dual Euler parameters. We rewrite the dual Euler parameters by

the components of dual Rodrigues vector b̂ and the rotation angle φ̂ . The dual quaternion Ẑ

with the dual Euler parameters and the screw ŵ for the motion in space are defined. Using the

dual quaternion Ẑ and the screw ŵ we find the transformed screw w′. In addition, we compute

the coordinates of transformed screw depending on the components of dual Rodrigues vector

and the dual angle of the corresponding dual spherical motion.

Exponential mapping is an alternative method of Cayley mapping for finding the relation

between the rotation matrices and the skew symmetric matrices. This is the main idea of

Chapter Four.

1.1 Dual Numbers

Dual numbers were originally conceived by an English mathematician W.K. Clifford more

than a century ago (Clifford (1873)). In late 1940’s and early 1950’s, these numbers began to be

used in the area of screw calculus by a few scientist. Though 1960’s and 1970’s, dual numbers

were extensively applied in the analysis of spatial mechanisms by several investigators. In

1980’s, as researches in robotics area have progressed rapidly, these numbers are brought into

attentions of some robotics researchers and have been used in the formulation of homogeneous

1
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transformation matrices and kinematic equations (Karger & Novak (1985)).

Their first applications to kinematics being attributed to both Kotel’nikov (1895) and Study

(1903). A comprehensive analysis of dual numbers and their applications to the kinematic

analysis of spatial linkages was conducted by Yang (1963) and Yang & Freudenstein (1964).

Veldkamp (1976) and Bottema & Roth (1978) include treatment of theoretical kinematics using

dual numbers.

Dual numbers have the form â = a + εa∗ where ε2 = 0. In this chapter we will discuss

the properties of dual numbers and dual quantities and define the dual number algebra. All

formal operations involving dual numbers are identical to those of ordinary algebra, while

taking into account that ε2 = ε3 = ... = 0. Dual numbers are performed using the laws of

conventional algebra in a way similar to complex numbers. On the other hand there is a

fundamental difference from complex numbers. As purely dual numbers do not have an

inverse, every non-zero complex number has an inverse.

The algebra of dual vectors is analogical with that of the 3-dimensional usual vectors but

with components existing of dual numbers. One of the most important properties dual vectors

have is that all of the vector identities of real 3× 1 vectors carry over to dual vectors. This

property is called the principle of transference (Dimentberg (1965), Bottema & Roth (1978),

Martinez & Duffy. (1994)). From the principle of transference, dual vectors satisfy all the

identities of real vectors.

Functions of dual numbers can be expanded into functions of real numbers by Taylor’s series

expansion with ε2 = ε3 = ... = 0.

Definition 1.1.1. A dual number A can be defined as an ordered pair

A = (a,a∗) (1.1.1)

of real numbers a and a∗, with operations of addition and multiplication defined as follows.

Dual numbers of the form (0,a∗) are called pure dual numbers. The real numbers a and a∗

in expression (1.1.1) are called the real part and the dual part of A, respectively. We can write

simply,

ReA = a, DuA = a∗.
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Let us define the set of all dual numbers by

D= {(a,a∗) : a,a∗ ∈ R}.

Two dual numbers (a,a∗) and (b,b∗) are equal whenever they have the same real part and the

same dual part. That is,

(a,a∗) = (b,b∗) i f f a = b and a∗ = b∗ (1.1.2)

The addition operation, ⊕, is defined for the dual numbers A = (a,a∗) and B = (b,b∗) as

follows;

(a,a∗)⊕ (b,b∗) = (a+b, a∗+b∗) (1.1.3)

and the multiplication operation, ⊗, is defined by the equation

(a,a∗)⊗ (b,b∗) = (ab, ab∗+a∗b) (1.1.4)

In particular (a,0)⊕ (0,a∗) and (0,1)⊗ (a∗,0) = (0,a∗). Hence

(a,a∗) = (a,0)⊕ (0,1)⊗ (a∗,0) (1.1.5)

Any ordered pair (a,0) is to be identified as the real number a, and so the set of dual numbers

includes real numbers as a subset. Moreover, the operations defined by equations (1.1.3) and

(1.1.4) become the usual operations of addition and multiplication when restricted to the real

numbers :

(a,0)⊕ (b,0) = (a+b, 0+0) = (a+b,0)

(a,0)⊗ (b,0) = (ab, a.0+0.b) = (ab,0).

The dual number system is thus a natural extension of the real number system.

Thinking of a real number as either a or (a,0) and letting ε denote the pure dual number (0,1),
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we can rewrite equation (1.1.5) as

(a,a∗) = (a,0)⊕ ε⊗ (a∗,0).

That is,

(a,a∗) = a+ εa∗. (1.1.6)

Also we can note that,

ε2 = (0,1)⊗ (0,1) = (0.0, 0.1+1.0) = (0,0).

That is, ε2 = 0 and it is clear that ε2 = ε3 = ... = εn = 0.

In view of identity (1.1.6), equations (1.1.3) and (1.1.4) become

(a+ εa∗)+(b+ εb∗) = (a+b)+ ε(a∗+b∗), (1.1.7)

(a+ εa∗)(b+ εb∗) = (ab+ ε2a∗b∗)+ ε(ab∗+a∗b)

= ab+ ε(ab∗+a∗b),

and also the reciprocal of a dual number (a+ εa∗) is

1
a+ εa∗

=
1

a+ εa∗
a− εa∗

a− εa∗
=

a− εa∗

a2

where a 6= 0, i.e., a+ εa∗ is not a pure dual number.

Observe that the right-hand sides of these equations can be obtained by formally

manipulating the terms on the left as if they involved only real numbers and by replacing ε2 by

0 when it occurs.

1.2 Algebraic Properties

Theorem 1.2.1. The set of dual numbers with respect to addition, (D,⊕) is an abelian group.
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Proof. 1) It is clear that addition is closed on D. For all A,B ∈D we have A⊕B ∈D. 2) For all

A = (a,a∗), B = (b,b∗), C = (c,c∗) ∈ D addition is associative,

(A⊕B)⊕C =
(
(a,a∗)⊕ (b,b∗)

)
⊕ (c,c∗)

= (a+b,a∗+b∗)⊕ (c,c∗)

=
(
(a+b)+ c,(a∗+b∗)+ c∗)

=
(

a+(b+ c),a∗+(b∗+ c∗))

= (a,a∗)⊕ (b+ c,b∗+ c∗)

= A⊕ (B⊕C).

3) 0 = (0,0) ∈ D is the additive identity in D. ∀(a,a∗) ∈ D we have the requirement

(a,a∗)⊕ (0,0) = (a+0,a∗+0) = (a,a∗).

4) For each (a,a∗) ∈ D, (−a,−a∗) is the additive inverse. That is,

(a,a∗)⊕ (−a,−a∗) =
(

a+(−a),a∗+(−a∗)
)

= (0,0).

If A = (a,a∗) ∈ D then we denote (−a,−a∗) ∈ D by −A. Thus, (D,⊕) is a group.

Furthermore,

5) For all A,B we have A⊕B = B⊕A. That is,

(a,a∗)⊕ (b,b∗) = (a+b, a∗+b∗) = (b+a, b∗+a∗) = (b,b∗)⊕ (a,a∗).

Therefore, we can say that (D,⊕) is an abelian group.

Theorem 1.2.2. The set of dual numbers with respect to addition and multiplication, (D,⊕,⊗),

is a commutative ring with identity.

Proof. We can follow two steps;

i) (D,⊕) is an abelian group.
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ii) Multiplication is associative and it has distributive property over addition and (1,0) is the

multiplicative identity.

R1) (D,⊕) is an abelian group. R2) It is clear that multiplication is closed on D. For all

A,B ∈ D, we have

A⊗B ∈ D.

R3) Multiplication is associative. That is, for all A,B,C ∈ D

(A⊗B)⊗C =
(
(a,a∗)⊗ (b,b∗)

)
⊗ (c,c∗)

= (ab, ab∗+a∗b)⊗ (c,c∗)

= (abc, abc∗+ab∗c+a∗bc)

= (a,a∗)⊗ (bc, bc∗+b∗c)

= A⊗ (B⊗C).

R4) Multiplication is distributive over addition. That is,

(A⊕B)⊗C =
(
(a,a∗)⊕ (b,b∗)

)
⊗ (c,c∗)

= (a+b, a∗+b∗)⊗ (c,c∗)

=
(
(a+b)c, (a∗+b∗)c+(a+b)c∗

)

= (ac+bc, a∗c+ac∗+b∗c+bc∗)

= (ac, a∗c+ac∗)⊕ (bc, b∗c+bc∗)

= A⊗C⊕B⊗C f or all A,B,C ∈ D.

Hence the right distributive property holds. Similarly A⊗ (B⊕C) = A⊗ B⊕ A⊗C for all

A,B,C ∈ D, the left distributive property holds.

Thus (D,⊕,⊗) is a ring. Moreover;

R5) For all A,B ∈ D, we have

A⊗B = (a,a∗)⊗ (b,b∗) = (ab, ab∗+a∗b) = (ba, ba∗+b∗a) = B⊗A.
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Multiplication is commutative. Also, R6) (1,0) ∈ D is the identity element with respect to

multiplication;

(a,a∗)⊗ (1,0) = (1,0)⊗ (a,a∗) = (a,a∗), ∀A = (a,a∗) ∈ D.

Thus, (D,⊕,⊗) is a commutative ring with identity.

1.3 Dual Vectors

Definition 1.3.1. If v,v∗ ∈ R3 then we can define a dual vector v̂ in three dimensional dual

space D3, by v̂ = v+ εv∗ (Here in after hat over a quantity, such as number, angle, vector, etc.,

will denote the dual version of that quantity).

The set D3 is defined by D3 = {a+ εa∗ : a,a∗ ∈ R3, ε2 = 0}.

The standard algebraic properties for vectors in R3 can also be defined in D3. Given

v̂,ŵ ∈ D3 and d̂ ∈ D, where v̂ = v+ εv∗, ŵ = w+ εw∗ and λ̂ = λ + ελ ∗ with v,v∗,w,w∗ ∈ R3,

λ ,λ ∗ ∈ R

(i) Equality

v̂ = ŵ i f f v = w and v∗ = w∗

(ii) Addition of Dual Vectors

v̂+ ŵ = (v+ εv∗)+(w+ εw∗) = (v+w)+ ε(v∗+ εw∗)

(iii) Multiplication of a Dual Vector by a Dual Number

λ̂ .v̂ = (λ + ελ ∗)(v+ εv∗)

= λv+ ελv∗+ ελ ∗v+ ε2λ ∗v∗

= λv+ ε(λv∗+λ ∗v)
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(iv) Inner Product of Dual Vectors

v̂.ŵ = (v+ εv∗)(w+ εw∗)

= vw+ εvw∗+ εv∗w+ ε2v∗w∗

= vw+ ε(vw∗+ v∗w)

= wv+ ε(w∗v+wv∗)

= ŵ.v̂ (inner product is commutative)

(v) Cross Product of Dual Vectors

v̂× ŵ = (v+ εv∗)× (w+ εw∗)

= v×w+(v×w∗+ εv∗×w)

6= ŵ× v̂ (cross product is not commutative)

Since, for some nonzero û, v̂ ∈ D we have ûv̂ = 0 (e.g., 2ε .3ε = 6ε2 = 0). D is not a field

(û and v̂ are zero divisors).

The set D3 satisfies all the axioms of vectors spaces, but its domain D is only a ring and not

a field this is why D3 is a D-module. However the elements of D3 are also called dual vectors.

Theorem 1.3.2. (D3,⊕) is an abelian group.

Proof. 1) It is clear that addition is closed on D3. For all â, b̂ ∈ D3 we have

â+ b̂ = (a1 + εa∗1, a2 + εa∗2, a3 + εa∗3)+(b1 + εb∗1, b2 + εb∗2, b3 + εb∗3)

=
(

a1 +b1 + ε(a∗1 +b∗1), a2 +b2 + ε(a∗2 +b∗2), a3 +b3 + ε(a∗3 +b∗3)
)
∈ D3

2) For all â = (a1 + εa∗1, a2 + εa∗2, a3 + εa∗3), b̂ = (b1 + εb∗1, b2 + εb∗2, b3 + εb∗3),

ĉ = (c1 + εc∗1, c2 + εc∗2, c3 + εc∗3), addition is associative;

(â⊕ b̂)⊕ ĉ =
(

a1 +b1 + ε(a∗1 +b∗1),a2 +b2 + ε(a∗2 +b∗2),a3 +b3 + ε(a∗3 +b∗3)
)

⊕ (c1 + εc∗1,c2 + εc∗2,c3 + εc∗3)
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=
(
(a1 +b1)+ c1 + ε((a∗1 +b∗1)+ c∗1),(a2 +b2)+ c2 + ε((a∗2 +b∗2)+ c∗2),

(a3 +b3)+ c3 + ε((a∗3 +b∗3)+ c∗3)
)

=
(

a1 +(b1 + c1)+ ε(a∗1 +(b∗1 + c∗1)),a2 +(b2 + c2)+ ε(a∗2 +(b∗2 + c∗2)),

a3 +(b3 + c3)+ ε(a∗3 +(b∗3 + c∗3))
)

= (a1 + εa∗1,a2 + εa∗2,a3 + εa∗3)⊕
(
(b1 + c1)+ ε(b∗1 + c∗1),(b2 + c2)

+ ε(b∗2 + c∗2),(b3 + c3)+ ε(b∗3 + c∗3)
)

= â⊕ (b̂⊕ ĉ).

3) 0 = (0+ ε.0, 0+ ε.0, 0+ ε.0) ∈ D3 is the additive identity in D3.

4) For each â ∈ D3, −â is the additive inverse. That is,

â+(−â) = (a1 + εa∗1, a2 + εa∗2, a3 + εa∗3)+(−a1− εa∗1, −a2− εa∗2, −a3− εa∗3)

=
(

a1−a1 + ε(a1−a∗1), a2−a2 + ε(a2−a∗2), a3−a3 + ε(a3−a∗3)
)

= (0,0,0).

5) For all â,b̂ we have â⊕ b̂ = b̂⊕ â. In other words,

â⊕ b̂ = (a1 + εa∗1, a2 + εa∗2, a3 + εa∗3)⊕ (b1 + εb∗1, b2 + εb∗2,b3 + εb∗3)

=
(

a1 +b1 + ε(a∗1 +b∗1), a2 +b2 + ε(a∗2 +b∗2), a3 +b3 + ε(a∗3 +b∗3)
)

=
(

b1 +a1 + ε(b∗1 +a∗1), b2 +a2 + ε(b∗2 +a∗2), b3 +a3 + ε(b∗3 +a∗3)
)

= (b1 + εb∗1 +a1 + εa∗1, b2 + εb∗2 +a2 + εa∗2, b3 + εb∗3 +a3 + εa∗3)

= (b1 + εb∗1, b2 + εb∗2, b3 + εb∗3)⊕ (a1 + εa∗1, a2 + εa∗2, a3 + εa∗3)

= b̂⊕ â.

Therefore, we can say that (D3,⊕) is an abelian group.

Definition 1.3.3. Since D is a ring the additive abelian group D is a (left) D - module together

with a function D × D→ D such that for all d̂, ê ∈ D and â, b̂ ∈ D.

(i) d̂(â+ b̂) = d̂â+ d̂b̂

(ii) (d̂ + ê)â = d̂â+ êâ
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(iii) d̂(êâ) = (d̂ê)â

If D has an identity element 1D and

(iv) 1D â = â for all â ∈ D
then D is said to be a unitary D - module

Theorem 1.3.4. Since D is a ring the additive abelian group D3 is a (left) D - module together

with a function D × D3 → D3 such that for all d̂, ê ∈ D and â, b̂ ∈ D3.

(i) d̂(â+ b̂) = d̂â+ d̂b̂

(ii) (d̂ + ê)â = d̂â+ êâ

(iii) d̂(êâ) = (d̂ê)â

If D has an identity element 1D and

(iv) 1D â = â for all â ∈ D3 then D3 is said to be a unitary D - module.

D3 = {â = a+ εa∗| a,a∗ ∈ R3, ε2 = 0}

Proof.

(i) d̂(â+ b̂) = d̂
(
(a1 + εa∗1, a2 + εa∗2, a3 + εa∗3)+(b1 + εb∗1, b2 + εb∗2, b3 + εb∗3)

)

= d̂
(

a1 +b1 + ε(a∗1 +b∗1), a2 +b2 + ε(a∗2 +b∗2), a3 +b3 + ε(a∗3 +b∗3)
)

= (d1 + εd∗1 , d2 + εd∗2 , d3 + εd∗3)
(

a1 +b1 + ε(a∗1 +b∗1), a2 +b2

+ ε(a∗2 +b∗2), a3 +b3 + ε(a∗3 +b∗3)
)

= (d1 + εd∗1)
(

a1 +b1 + ε(a∗1 +b∗1)
)

+(d2 + εd∗2)
(

a2 +b2 + ε(a∗2 +b∗2)
)

+(d3 + εd∗3)
(

a3 +b3 + ε(a∗3 +b∗3)
)

= d1(a1 +b1)+ ε
(

d1(a∗1 +b∗1)+d∗1(a1 +b1)
)

+d2(a2 +b2)

+ ε
(

d2(a∗2 +b∗2)+d∗2(a2 +b2)
)

+d3(a3 +b3)

+ ε
(

d3(a∗3 +b∗3)+d∗3(a3 +b3)
)

= d1a1 +d1b1 + εd1a∗1 + εd1b∗1 + εd∗1a1 + εd∗1b1 +d2a2 +d2b2 + εd2a∗2

+ εd2b∗2 + εd∗2a2 + εd∗2b2 +d3a3 +d3b3 + εd3a∗3 + εd3b∗3 + εd∗3a3 + εd∗3b3

= d1a1 + ε(d1a∗1 +d∗1a1)+d1b1 + ε(d1b∗1 +d∗1b1)+d2a2 + ε(d2a∗2 +d∗2a2)

+d2b2 + ε(d2b∗2 +d∗2b2)+d3a3 + ε(d3a∗3 +d∗3a3)+d3b3 + ε(d3b∗3 +d∗3b3)

= d̂â+ d̂b̂.
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(ii) (d̂ + ê)â =
(
(d1 + εd∗1 , d2 + εd∗2 , d3 + εd∗3)+(e1 + εe∗1, e2 + εe∗2, e3 + εe∗3)

)

(a1 + εa∗1, a2 + εa∗2, a3 + εa∗3)

=
(

d1 + e1 + ε(d∗1 + e∗1), d2 + e2 + ε(d∗2 + e∗2), d3 + e3 + ε(d∗3 + e∗3)
)

(a1 + εa∗1, a2 + εa∗2, a3 + εa∗3)

= (d1 + e1)a1 + ε
(
(d∗1 + e∗1)a1 +(d1 + e1)a∗1

)
+(d2 + e2)a2

+ ε
(
(d∗2 + e∗2)a2 +(d2 + e2)a∗2

)
+(d3 + e3)a3

+ ε
(
(d∗3 + e∗3)a3 +(d3 + e3)a∗3

)

= d1a1 + ε(d∗1a1 +d1a∗1)+ e1a1 + ε(e∗1a1 + e1a∗1)+d2a2

+ ε(d∗2a2 +d2a∗2)+ e2a2 + ε(e∗2a2 + e2a∗2)+d3a3 + ε(d∗3a3 +d3a∗3)

+ e3a3 + ε(e∗3a3 + e3a∗3)

= d̂â+ êâ.

(iii) d̂(êâ) = (d1 + εd∗1 , d2 + εd∗2 , d3 + εd∗3)
(
(e1 + εe∗1, e2 + εe∗2, e3 + εe∗3)

(a1 + εa∗1, a2 + εa∗2,a3 + εa∗3)
)

= (d1 + εd∗1 , d2 + εd∗2 , d3 + εd∗3)
(

e1a1 + ε(e∗1a1 + e1a∗1), e2a2

+ ε(e∗2a2 + e2a∗2), e3a3 + ε(e∗3a3 + e3a∗3)
)

= d1(e1a1)+ ε
(

d1(e∗1a1 + e1a∗1)+d∗1(e1a1)
)

+d2(e2a2)

+ ε
(

d2(e∗2a2 + e2a∗2)+d∗2(e2a2)
)

+d3(e3a3)

+ ε
(

d3(e∗3a3 + e3a∗3)+d∗3(e3a3)
)

= (d1e1)a1 + ε
(
(d1e∗1)a1 +(d1e1)a∗1 +(d∗1e1)a1

)
+(d2e2)a2

+ ε
(
(d2e∗2)a2 +(d2e2)a∗2 +(d∗2e2)a2

)
+(d3e3)a3

+ ε
(
(d3e∗3)a3 +(d3e3)a∗3 +(d∗3e3)a3

)

= (d1e1)a1 + ε
(
(d1e∗1 +d∗1e1)a1 +(d1e1)a∗1

)
+(d2e2)a2

+ ε
(
(d2e∗2 +d∗2e2)a2 +(d2e2)a∗2

)
+(d3e3)a3

+ ε
(
(d3e∗3 +d∗3e3)a3 +(d3e3)a∗3

)

= (d̂ê)â.
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If D has an identity element 1D and

(iv) 1D â = 1D(a1 + εa∗1, a2 + εa∗2, a3 + εa∗3)

=
(

1D(a1 + εa∗1), 1D(a2 + εa∗2), 1D(a3 + εa∗3)
)

= (1Da1 +1Dεa∗1, 1Da2 +1Dεa∗2, 1Da3 +1Dεa∗3)

= (a1 + εa∗1, a2 + εa∗2, a3 + εa∗3)

= â f or all â ∈ D3.

1.4 The Norm of a Dual Vector

Definition 1.4.1. D3 is a linear space over the real numbers with dimension 6. This bilinear

form defines a kind of degenerate scalar product. It induces a "norm" which will be denoted by

‖.‖.

‖v̂‖ = (vv)1/2 =
[
(v+ εv∗)(v+ εv∗)

] 1
2

= [vv+2εvv∗+ ε2v∗v∗]
1
2 = [vv+2εvv∗]

1
2

= (‖v‖2 +2εvv∗)
1
2 = ‖v‖

(
1+2ε

vv∗

‖v‖2

) 1
2

= ‖v‖
[(

1+ ε
vv∗

‖v‖2

)2] 1
2
= ‖v‖

(
1+ ε

vv∗

‖v‖2

)

= ‖v‖+ ε
vv∗

‖v‖ =
(
‖v‖, vv∗

‖v‖
)
.
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1.5 Dual Unit Vectors

Definition 1.5.1. If the norm of a dual vector is (1,0) then this dual vector is called the dual

unit vector. If v̂ = v+ εv∗ is a dual unit vector then

‖v̂‖= v+ ε
vv∗

‖v‖ =
(
‖v‖, vv∗

‖v‖
)

= (1,0)

and which implies ‖v‖= 1 and vv∗ = 0.

1.6 Dual Functions

Definition 1.6.1. Let D and Y be the sets of dual numbers. A dual function f from a dual set

Y is a rule that assigns a unique element f (x̂) ∈ Y to each element x̂ ∈ D.

A symbolic way to say ’ŷ is a dual function of x̂’ is writing

ŷ = f (x̂) (ŷ equals f o f x̂)

In this notation, the symbol f represents the dual function. The letter x̂, called the

independent variable, represents the input value of f , and ŷ, the dependent variable, represents

the corresponding output value of f at x̂.

The set D of all possible input values is called the domain of the dual function. The set of

all values of f (x̂) as x̂ varies throughout D is called the range of the dual function. The range

may not include every element in the dual set Y.

Assume that ŷ = y+ εy∗ is the value of the function f at x̂ = x+ εx∗. In other words;

y+ εy∗ = f (x+ εx∗).

Here real part, y, and a dual part, y∗, of ŷ depend on the real variables x and x∗. (y and y∗ depend

on two variables x and x∗). For example, if we take f (x̂) = (x̂)2, then
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f (x̂) = f (x+ εx∗) = (x+ εx∗)2 = x2 + ε2xx∗ since ε2 = 0. Thus, y = x2 and y∗ = 2xx∗.

This simple example shows that a function of a dual variable can be expressed in terms of a

pair of real valued functions of real variables x and x∗, now let us examine f (x̂) as ;

f (x̂) = f (x,x∗)+ ε f ∗(x,x∗)

where x̂ = x + εx∗ is a dual variable, f and f ∗ are two, generally different, functions of two

variables, x and x∗.

Hence similar to the real case we can think of the Taylor series expansion of a dual function

with ε2 = ε3 = ... = 0. Let f (x̂) be a differentiable function. A function of a single dual number

is given by

f (x̂) = f (x+ εx∗) = f (x)+ εx∗ f ′(x)

provided that the function f (x) has the derivative f ′(x).

We can obtain this result similar to the real case by the Taylor series expansion of

f (x̂) :

f (x̂) = f (x0)+
(x̂− x0)

1!
f ′(x0)+ ...+

(x̂− x0)n

n!
f (n)(x0)+ ...

If we write x̂ as x̂ = x+ εx∗ and apply Taylor series expansion at x0 = 0 then (Maclaurin series

of f (x̂) is given by)

f (x+ εx∗) = f (0)+
(x+ εx∗)

1!
f ′(0)+ ...+

(x+ εx∗)n

n!
f (n)(0)+ ...

= f (0)+
(x+ εx∗)

1!
f ′(0)+ ...+

xn +nεxn−1x∗

n!
f (n)(0)+ ...

=
(

f (0)+
x
1!

f ′(0)+ ...+
xn

n!
f (n)(0)+ ...

)

+ εx∗
(

f ′(0)+ ...+
xn−1

(n−1)!
f (n)(0)+ ...

)

where the first part of the expression is the Taylor series expansion of f (x) and the second part
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is the Taylor series expansion of f ′(x). Thus we have

f (x̂) = f (x+ εx∗) = f (x)+ εx∗ f ′(x). (1.6.1)

This result is also useful in computing basic functions of dual numbers such as following

examples.

Example 1.6.2.

sin x̂ = x̂− x̂3

3!
+

x̂5

5!
− ... = x+ εx∗− (x3 +3x2εx∗)

3!
+

(x5 +5x4εx∗)
5!

− ...

=
(

x− x3

3!
+

x5

5!
− ...

)

︸ ︷︷ ︸
sinx

+εx∗
(

1− x2

2!
+

x4

4!
− ...

)

︸ ︷︷ ︸
cosx

Hence,

sin x̂ = sin(x+ εx∗) = sinx+ εx∗ cosx

Similarly,

cos(x+ εx∗) = cosx− εx∗ sinx,

tan(x+ εx∗) = tanx+ εx∗(1+ tan2 x),

cot(x+ εx∗) = cotx− εx∗ csc2 x = cotx− εx∗(1+ cot2 x).

Also using the Taylor series expansion of a dual function, a dual number raised to a power is

given by

(x̂)n = (x+ εx∗)n = xn + εnx∗xn−1

where n can be any real number.

In particular, when n = 2;

(x̂)2 = (x+ εx∗)2 = x2 +2εxx∗

and when n = 1
2 ;

(x̂)
1
2 =

√
x̂ =

√
x+ εx∗ =

√
x+ ε

x∗

2
√

x
.
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The Taylor series expansion also allows us to write the dual form of exponential and logarithmic

functions, for example;

ex̂ = e(x+εx∗) = ex eεx∗ = ex(1+ εx∗) = ex + εx∗ex,

ln x̂ = ln(x+ εx∗) = lnx+ ε
x∗

x
.

In conclusion, all formal operations of dual numbers are the same as those of ordinary

algebra followed by setting ε2 = ε3 = ... = 0.

1.7 Dual Matrix

Definition 1.7.1. Dual matrices can be defined likewise, i.e., if A and A∗ are two real n× n

matrices, Â is defined as

Â = A+ εA∗.

3×3 homogeneous dual transformation matrices play an important role in the kinematics and

dynamics of robot manipulators.

Definition 1.7.2. Transpose of a dual matrix is defined as follows:

ÂT = (A+ εA∗)T = AT + ε(A∗)T

where the superscripts T denote transposes of dual and real matrices.

Definition 1.7.3. An identity dual matrix, denoted by I, is defined, as follows:

I = I + ε0

(where I is a real identity matrix and 0 is a null matrix).

Definition 1.7.4. The inverse of a dual matrix Â is defined by a dual matrix Â−1 such that

Â−1Â = ÂÂ−1 = I where I is an identity dual matrix.



CHAPTER TWO

THE STUDY MAPPING

The dual representations of a line is simply the Plücker vector written as a dual unit vector.

This vector is a point on a unit sphere in D3 which is also the image of the Plücker quadric

in D3. This representation has all the geometric structure offered by the Plücker coordinates

with a simplified computational structure. The computational problem of computing points on

a quadric in P5 is reduced to a problem in a dual form spherical geometry. This is the result

of the transfer principle first proposed by Kotel’nikov (1895) and discovered independently

by Study (1903). The transfer principle simply states that for any operation defined for a real

vector space, there is a dual version with similar interpretation (see Dimentberg (1965) for a

discussion of the transfer principle).

In the kinematics and dynamics of robot manipulators, a straight line is one of the

fundamental geometrical concepts. The dual number algebra provides us with a particularly

simple way of representing a straight line.

The dual unit vector is required for the dual representation of a line. The Plücker vector

representation of a line is given by a vector directed along the line and a moment vector.

The points on the dual unit sphere represent lines in R3. There exist a one to one

correspondence between the points on D.U.S. and oriented straight lines in R3 (Study

mapping).

Dual numbers are particularly useful for expression of dual angles, which are, in turn, useful

for expressing the spatial relationship between skew lines in space. Skew straight lines in space

are separated by a perpendicular distance, d, and the projection of one line onto the other along

that perpendicular forms an angle, θ . The dual angle describing the relationship is θ̂ = θ +εd.

2.1 Dual Unit Sphere (D.U.S)

Definition 2.1.1. Dual unit vectors define points on a sphere in D3. This sphere is referred to

as the dual unit sphere.

17
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In other words, the set of all dual vectors

{v̂ = v+ εv∗ | ‖v̂‖= (1,0); v, v∗ ∈ R3}

is called the dual unit sphere (D.U.S) in D3.

2.2 Oriented Lines

Definition 2.2.1. An oriented line ` which is also called a spear can be defined by a point p ∈ `

and a unit direction vector g. On the other hand, a unit force on ` with respect to the origin O

defines the moment vector g∗. The norm of the moment vector is the smallest distance from

line to the origin where physically the moment vector g∗ is defined by g∗ = p×g.

O

>

µ

:

g

g∗
p

`

Study mapping
¸

ĝ = (g,g∗)

O

6

-

ª

U

Figure 2.1 Plücker coordinates.

The coordinates (g,g∗) = (g, p × g) of the line ` with the six components

(g1,g2,g3,g1
∗,g2

∗,g3
∗) are called the Plücker coordinates of line `. Since g is a unit vector
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and v∗ (the moment vector), is orthogonal to g, we have

g.g = 1 and g.g∗ = 0.

E. Study first combined the two parts of the Plücker coordinate vector of a line into a dual

vector by letting

ĝ = g+ εg∗. (2.2.1)

If we compute the norm of (2.2.1), we get

‖ĝ‖2 = ĝ.ĝ = g.g+2εgg∗ = 1

where ε2 = 0, g has unit length and g and g∗ are orthogonal.

If we substitute the unit dual vector ĝ at the center of the D.U.S, it is clear that the unit dual

vector ĝ corresponds to a point (g,g∗) on the D.U.S. Since the coordinates of the dual point

(g,g∗) are the Plücker coordinates of the oriented line `, the oriented line corresponds to a dual

point on the D.U.S. (Pottmann & Wallner (2001)).

2.3 The Study Mapping

The mapping which assigns to an oriented line of Euclidean space the dual vector

ĝ = g + εg∗, where (g,g∗) are its Plücker coordinates, is called the Study mapping.

Therefore the Study mapping constitutes a one to one correspondence between the oriented

lines of R3 space and the dual points of the D.U.S. (Its image is called the Study model of

oriented lines of R3). Moreover the D.U.S is also called the Study sphere.

The angle between the dual vectors is called a dual angle. (The dual angle is useful for

expressing the spatial relationship between skew lines in space). Let us denote the angle

between the dual unit vectors ĝ = g+ εg∗ and ĥ = h+ εh∗ by ϕ̂ = ϕ + εϕ∗.

The scalar product of two dual unit vectors ĝ, ĥ has a simple geometric meaning in terms of

the spears (G, H respectively) they represent:
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We define the distance d(G,H) between two lines G,H in R3 as the smallest distance

between points g ∈ G and h ∈ H. The minimum value is attained if g,h are the points where

the common perpendicular of G,H meets G and H, respectively.(cf. figure 2.2)

The common perpendicular of an ordered pair (G,H) of spears can be given an

orientation: If (g,g∗) and (h,h∗) are the Plücker coordinates of G and H, respectively, the

common perpendicular N is given an orientation by the vector g×h.

Definition 2.3.1. The dual angle of two spears G,H is defined by

ˆ̂ (G,H) = ^(G,H)+ εd(G,H).

Lemma 2.3.2. The scalar product in D3 is a Euclidean invariant. If G,H are two lines whose

Study images are ĝ, ĥ, then there is the equation

ĝ.ĥ = cos ϕ̂ = cosϕ− εd sinϕ

where ϕ = ^(G,H), ϕ̂ = ˆ̂ (G,H), and d = d(G,H).

Lemma 2.3.3. The dual angle is defined as

ϕ̂ = ϕ + εϕ∗

where ϕ (real component of ϕ̂) is projected angle between lines G and H and ϕ∗ (dual

component of ϕ̂) is the shortest distance between the lines G and H (length of common

perpendicular) Muller (1963).

Proof. Assume that g,h are the points where their common perpendicular meets the lines G,H.

The scalar product of ĝ and ĥ is computed by the following:

ĝ.ĥ = g.h+ ε(g.h∗+g∗.h)

and

ĝ.ĥ = ‖ĝ‖.‖ĥ‖.cos ϕ̂ = cos ϕ̂ = cosϕ− εϕ∗ sinϕ
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Therefore

ĝ.ĥ = g.h+ ε(g.h∗+g∗.h) = cosϕ− εϕ∗ sinϕ (2.3.1)

Using the equality of dual numbers (1.1.2), we have

g.h = cosϕ.

Now we will investigate the dual part ϕ∗ of the dual angle ϕ̂ .

We know that the dual unit vectors ĝ and ĥ represent two oriented lines G and H,

respectively. If we take a unit vector which is perpendicular to both G and H then we can

denote it by

n =∓ g×h
‖g×h‖ .

A straight line passing through the shortest distance between the oriented lines G and H

intersects these lines at two points, say x and y, respectively. Also the vectorial moments of the

lines G and H with respect to the origin are g∗ = x×g and h∗ = y×h, respectively. Hence we

can compute the scalar product of h and g∗, and the scalar product of g and h∗;

g∗.h = (x×g).h = (x,g,h) = x(g×h) (2.3.2)

g.h∗ = g.(y×h) =−(y,g,h) =−y(g×h) (2.3.3)

The sum of (2.3.2) and (2.3.3) we have,

g∗.h+g.h∗ = (x− y)(g×h) (2.3.4)

If the shortest distance between the lines G and H is denoted by ψ , then the oriented distance

is defined by

x− y = ψ.n =∓ψ
g×h
‖g×h‖ (2.3.5)
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Substituting (2.3.5) into (2.3.4) we get,

g.h∗+g∗.h =∓ψ
(g×h)2

‖g×h‖ =∓ψ‖g×h‖=∓ψ sinϕ (2.3.6)

From (2.3.1) and (2.3.6) we take

−ϕ∗ sinϕ =∓ψ sinϕ (2.3.7)

Depending on the orientation of n we can take the suitable sign and obtain the shortest

distance ψ is equal to ϕ∗.

G H

¸ Kg hKh

1 1

] Á

g∗ h∗

ĝ ĥ
φ

φ ∗
φ̂

O

Figure 2.2 The geometric meaning of the dual angle.

2.4 The Dual Angle of Spears

As a summary we can investigate the positions of oriented straight lines, G and H

corresponding to dual unit vectors ĝ and ĥ, respectively. If we denote the dual angle

between the dual unit vectors ĝ and ĥ of D.U.S by ϕ̂ = ϕ +εϕ∗ then ϕ is the angle between the

corresponding oriented straight lines (if these lines are skew, ϕ is the projected angle) and ϕ∗
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is the shortest distance between these lines.

As a consequence, when we consider the formula (2.3.1) we have the following cases:

1) If ĝ.ĥ = 0 i.e ϕ = π
2 and ϕ∗ = 0 then G and H represent perpendicular intersecting

straight lines in R3.

2) If ĝ.ĥ is equal to a pure dual number or g.h = 0 i.e ϕ = π
2 and ϕ∗ 6= 0 then oriented

straight lines G and H represent skew lines which have perpendicular projections in R3.

3) If the dual part of ĝ.ĥ is equal to zero, i.e g∗.h + g.h∗ = 0 or ϕ∗ = 0 then G and H

represent intersecting straight lines.

4) If ĝ.ĥ has a real part equal to +1 or −1 and dual part different from zero then g and h

represent parallel lines in R3.

5) If ĝ.ĥ has only real part equal to +1 or −1 then G and H represent coincident two lines

in R3.



CHAPTER THREE

THE DUAL EULER PARAMETERS

3.1 Cayley Formula

As we have mentioned before, we examine the rotations of dual unit sphere instead of the

rigid body motion in R3 space (The Study mapping). The trajectory of the rigid body motion is

represented by a dual curve on the dual unit sphere. We can obtain this curve by the rotations

of a moving dual unit sphere on the fixed dual unit sphere with the same center. This is why

we are dealing with rotations of the dual unit sphere. This is also a rigid transformation. Hence

any point x̂ on the moving dual unit sphere determines the point X̂ on the fixed dual unit sphere

by a dual rotation matrix Â such that

X̂ = Âx̂.

Because of the rigidity of this transformation we have ‖X̂‖= ‖x̂‖ that is,

‖X̂‖2 = X̂T X̂ = (Âx̂)T Âx̂ = x̂T ÂT Âx̂ = x̂T x̂ = ‖x̂‖2

which yields ÂT Â = I, thus Â is an orthogonal dual matrix.

On the other hand, equality of norms ‖X̂‖ =
√

X̂T X̂ =
√

x̂T ÂT Âx̂ =
√

x̂T x̂ = ‖x̂‖ implies

X̂T X̂ = x̂T x̂ and then we have

(X̂− x̂)T (X̂ + x̂) = X̂T X̂ + X̂T x̂− x̂T X̂− x̂T x̂ = X̂T x̂− x̂T X̂ = 0

where X̂T x̂ = â ∈ D (â denotes any dual number) and x̂T X̂ = âT = â ∈ D. This expresses the

orthogonality of (X̂− x̂) and (X̂ + x̂).

Since X̂ = Âx̂,

X̂ + x̂ = (Â+ I)x̂ or x̂ = (Â+ I)−1(X̂ + x̂) and (X̂− x̂) = (Â− I)x̂.

24
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Hence we can compute

X̂− x̂ = (Â− I)(Â+ I)−1(X̂ + x̂).

Let us denote (Â− I)(Â + I)−1 by B̂. Since X̂ − x̂ is orthogonal to X̂ + x̂. B̂(X̂ + x̂) is

orthogonal to X̂ + x̂. For a general dual vector v̂, B̂v̂ is orthogonal to v̂. Then we have

v̂T B̂v̂ = ∑(b̂i j + b̂ ji)v̂iv̂j = 0.

This relation holds for every v̂ hence b̂ii = 0 and b̂i j = −b̂ ji. Which implies the property

B̂ =−B̂T , that is, B̂ is skew symmetric.

On the other hand skew symmetry of B̂ provides (I − B̂) not to be singular. A simple

computation yields

B̂ = (Â− I)(Â+ I)−1 ⇒ B̂(Â+ I) = (Â− I)

⇒ B̂+ I = Â− B̂Â⇒ (I + B̂)(I− B̂)−1 = Â

Hence we get the Cayley Formula for the dual case:

Â = (I + B̂)(I− B̂)−1.

Let us compute ÂT ;

ÂT = (I + B̂)T ((I− B̂)−1)T

= (I + B̂T )(I− B̂T )−1.

Thus we have

ÂT = (I− B̂)(I + B̂)−1

since B̂ is skew symmetric.
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In fact

ÂÂT = ÂT Â = I.

Hence every skew symmetric dual matrix B̂ determines an orthogonal dual matrix Â.

If we define the skew symmetric dual matrix B̂ by

B̂ =




0 −b̂3 b̂2

b̂3 0 −b̂1

−b̂2 b̂1 0




then instead of B̂v̂ (v̂ is a dual vector on the D.U.S.) one can use b̂× v̂ where

b̂ = (b̂1, b̂2, b̂3). Hence

B̂v̂ = b̂× v̂.

3.2 Rodrigues’ Equations

Given an orthogonal dual matrix Â we can obtain a skew symmetric dual matrix B̂ by the

Cayley’s formula. It is clear that the relation

X̂− x̂ = B̂(X̂ + x̂)

between the fixed and the moving frame coordinates can be written in the form

X̂− x̂ = b̂× (X̂ + x̂)

This is analogous to the Rodrigues equations in the real case. Let us call b̂ the dual

Rodrigues vector. Now we define a dual hyperplane perpendicular to b̂ and denote the

projections of X̂ and x̂ on this dual plane by X̂ ′ and x̂′. Let φ̂ be the angle between X̂ ′ and

x̂′ (φ̂ is the vertex angle of the rhombus formed by X̂ ′ and x̂′ so φ̂ is the rotation angle).
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X x¾

6

b

X +x

X′ x′:y

X−x

φ

Figure 3.1 The rhombus formed by x and X.

It is clear that X̂ − x̂ = b̂ × (X̂ + x̂) implies X̂ ′ − x̂′ = b̂ × (X̂ ′ + x̂′). The norm of

X̂− x̂ = b̂× (X̂ + x̂) is ‖X̂ ′− x̂′‖= ‖b̂‖‖X̂ ′+ x̂′‖. Hence

‖b̂‖=
‖X̂ ′− x̂′‖
‖X̂ ′+ x̂′‖ .

It is easy to verify from the figure 3.1 that

‖X̂ ′− x̂′‖
‖X̂ ′+ x̂′‖ = tan

φ̂
2

.

Therefore

‖b̂‖= tan
φ̂
2

. (3.2.1)

Using the algebra of dual numbers properties we obtain from (3.2.1);

‖b̂‖= ‖b‖+ ε
b.b∗

‖b‖ (3.2.2)
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and using (1.6.1) we have

tan
φ̂
2

= tan
φ
2

+ ε
φ ∗

2

(
1+ tan2 φ

2

)
(3.2.3)

The equality of (3.2.2) and (3.2.3) implies

‖b‖+ ε
bb∗

‖b‖ = tan
φ
2

+ ε
φ ∗

2

(
1+ tan2 φ

2

)
(3.2.4)

Thus we have from (3.2.4) the norm of the real Rodrigues vector

‖b‖= tan
φ
2

(3.2.5)

and
b.b∗

‖b‖ =
φ ∗

2

(
1+ tan2 φ

2

)
. (3.2.6)

Let us denote the unit vector parallel to b by s then s = b
‖b‖ where s = (s1,s2,s3) the unit

Rodrigues vector. So (3.2.6) yields;

s.b∗ =
φ ∗

2

(
1+ tan2 φ

2

)
(3.2.7)

On the other hand let us define the dual Rodrigues vector by ŝ where ŝ = b̂
‖b̂‖ . Using the

properties of the dual numbers we have

ŝ = s+ εs∗ =
b̂
‖b̂‖ =

b
‖b‖ + ε

(
b∗

‖b‖ −
b(b.b∗)
‖b‖3

)
(3.2.8)

where s = (s1,s2,s3) and s∗ = (s∗1,s
∗
2,s

∗
3). Hence

ĉ0 = cos
φ̂
2

, ĉ1 = sin
φ̂
2

ŝ1, ĉ2 = sin
φ̂
2

ŝ2, ĉ3 = sin
φ̂
2

ŝ2

are known as the dual Euler parameters.
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3.3 Quaternions

A quaternion is sometimes referred to as a "hyper complex number". Quaternions and dual

numbers were combined and generalized to form what is referred to as "Clifford Algebra"

as first discussed by Clifford in 1882. A modern text on quaternions is given by Kuipers

(1999). Applications to kinematic analysis is discussed by Yang and Blaschke (1960). A

comprehensive introduction to dual quaternions is to be found in (McCarthy (1990)), while an

abstract treatment is found in (Chevallier (1991)).

Definition 3.3.1. A quaternion Q is defined as a complex number depending on four units

1, i, j,k:

Q = c0 + c1i+ c2 j + c3k, (3.3.1)

ci (i = 0,1,2,3) are real numbers called the components of Q. The addition of quaternions is

defined by

Q+Q′ = (c0 + c1i+ c2 j + c3k)+(c′0 + c′1i+ c′2 j + c′3k)

= (c0 + c′0)+(c1 + c′1)i+(c2 + c′2) j +(c3 + c′3)k. (3.3.2)

The multiplication of two quaternions is distributive with respect to summation and is defined

by the following rules for the multiplication of the units:

1i = i1 = 1, 1 j = j1 = j, 1k = k1 = k,

i2 = j2 = k2 =−1, (3.3.3)

jk =−k j = i, ki =−ik = j, i j =− ji = k.

Hence

QQ′ = (c0 + c1i+ c2 j + c3k)(c′0 + c′1i+ c′2 j + c′3k)

= (c0c′0− c1c′1− c2c′2− c3c′3)+(c0c′1 + c1c′0 + c2c′3− c3c′2)i

+(c0c′2 + c2c′0 + c3c′1− c1c′3) j +(c0c′3 + c3c′0 + c1c′2− c2c′1)k. (3.3.4)

From (3.3.3) it follows that the multiplication is not commutative.
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If (c0,c1,c2,c3) is a quaternion Q the conjugate quaternion Q̄ is defined by

(c0,−c1,−c2,−c3). From (3.3.4) it follows that QQ̄ = Q̄Q = c2
0 + c2

1 + c2
2 + c2

3, a non-negative

number called the norm of Q. If the norm is equal to 1 then Q is called a unit quaternion.

For a quaternion with c0 = 0 the components (c1,c2,c3) may be considered as those of a

Euclidean vector; such a quaternion is called a vector quaternion.

Definition 3.3.2. A dual quaternion Q̂ can be written as Q̂ = ĉ0 + iĉ1 + jĉ2 + kĉ3, where ĉ0

is the scalar part (dual number), (ĉ1, ĉ2, ĉ3) is the vector part (dual vector), and i, j,k are

the usual quaternion units. The dual unit ε commutes with quaternion units, for example

iε = εi. A dual quaternion can be also considered as the sum of two ordinary quaternions,

Q̂ = Q + εQ∗. Conjugation of a dual quaternion is defined using classical quaternion

conjugation: ˆ̄Q = Q̄+ εQ̄∗.

Q̂ is a unit quaternion if ∑ ĉ2
i = 1, which implies ∑ci

2 = 1, ∑cic∗i = 0; Q̂ is a vector quaternion

if ĉ0 = 0, hence c0=c0
∗ = 0.

Just like ordinary quaternions, dual quaternions are also associative, distributive, but not

commutative.

3.4 Euler Parameters

Rotations in real space can be identified by assembling the Euler parameters c0,c1,c2,c3 of

a rotation into the quaternion

Z = c0 + c1i+ c2 j + c3k

or explicitly

Z = cos
φ
2

+ s1 sin
φ
2

i+ s2 sin
φ
2

j + s3 sin
φ
2

k.

On the other hand a vector x = (x,y,z) ∈ R3 is defined as the vector quaternion

x = xi+ y j + zk.
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6

I µ
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x x′

φ

6
s

Figure 3.2 The rotation of x.

The rotation is now given by the quaternion equation

x′ = ZxZ̄

where

Z̄ = c0− c1i− c2 j− c3k

is the conjugate of Z.

A spatial displacement can be identified by a coordinate transformation [T ] in terms of

a rotation matrix [A] and a distance d, [T ] = [A,d]. This coordinate transformation can be

represented by a dual quaternion

Ẑ = cos
φ̂
2

+ ŝ1 sin
φ̂
2

i+ ŝ2 sin
φ̂
2

j + ŝ3 sin
φ̂
2

k.

The dual quaternion Ẑ is sum of the real Z and Z∗ components where Z is the quaternion

obtained from rotation A and Z∗ is the quaternion obtained from

Z∗ =
1
2

DZ

where D is the quaternion, D = d1i+d2 j+d3k, formed from the translation vector d =(d1,d2,d3).
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The components of the dual quaternion Ẑ are known as the dual Euler parameters of the spatial

displacement. Using the dual Euler parameters, we can represent the dual orthogonal matrix Â

by

[Â] = I +2sin
φ̂
2

cos
φ̂
2

[Ŝ]+2sin2 φ̂
2

[Ŝ2]

If we identify a screw w = (w,v) where w is the angular velocity and v is the linear velocity by

a dual vector ŵ = w+εv as the dual quaternion ŵ = (w1 +εv1)i+(w2 +εv2) j+(w3 +εv3)k in

above transformation [T ] then we get the final screw ŵ′ = (w′,v′) (where w′ is the transformed

angular velocity and v′ is the transformed linear velocity) which is defined as by ŵ′ = w′+ εv′

ŵ′ = Ẑŵ ˆ̄Z

where ˆ̄Z is the conjugate of Ẑ.

6

-

ª

O

Screw axis

I
v

w

µ v′

w′
]

9

>
[T ] = [A,d]

Figure 3.3 Screw transformation

In this chapter, using the E. Study mapping we transfer the motion in R3 space on the Dual

Unit Sphere. Instead of the transformation matrix [T ] in real space we use the corresponding

dual rotation matrix Â on the D.U.S. and using the Cayley mapping we find dual Rodrigues

parameters and the dual Euler parameters. The dual Euler parameters here are obtained by

using the dual Rodrigues vector b̂ and the rotation angle φ̂ . Then we investigate the results of
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the dual Euler parameters in the real space.

Defining Ẑ = ĉ0 + ĉ1i + ĉ2 j + ĉ3k with the dual Euler parameters and the screw in the

corresponding spatial displacement by ŵ = w + εv, the final screw (or the transformed screw)

ŵ′ = w′ + εv′ is obtained again by ŵ′ = Ẑŵ ˆ̄Z but transformed screw has the coordinates

depending on the dual Rodrigues vector b̂ and the dual angle φ̂ of the corresponding dual

spherical motion.

K ¸v v′

E. Study

6

6

b̂

ŝ

¾

w

7o6
x̂ x̂′

O
I

w′

φ̂

>

Figure 3.4 The relation between the rotation of D.U.S. and the screw transformation.

ĉi = ci + εci
∗ = sin

φ̂
2

ŝi = sin
φ̂
2

b̂i

‖b‖

=

(
sin

φ
2

+ ε
φ ∗

2
cos

φ
2

)(
bi

‖b‖ + ε
(

bi
∗

‖b‖ −
bi (bb∗)
‖b‖3

))

=
bi

‖b‖ sin
φ
2

+ ε

(
φ ∗

2
cos

φ
2

bi

‖b‖ + sin
φ
2

(
bi
∗

‖b‖ −
bi(bb∗)
‖b‖3

))

=
bi

tan φ
2

sin
φ
2

+ ε

(
φ ∗

2
cos

φ
2

bi

tan φ
2

+ sin
φ
2

(
bi
∗

tan φ
2

− bi(bb∗)
tan3 φ

2

))
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= bi cos
φ
2

+ ε

(
φ ∗

2
cos

φ
2

cot
φ
2

bi + cos
φ
2

bi
∗− (cos3 φ

2 ) bi(bb∗)
sin2 φ

2

)

= bi cos
φ
2

+ ε

(
φ ∗

2
cos

φ
2

cot
φ
2

bi + cos
φ
2

bi
∗− cos

φ
2

cot2
φ
2

bi(bb∗)

)

= bi cos
φ
2

+ ε cos
φ
2

(
bi cot

φ
2

(
φ ∗

2
−bi(bb∗)cot

φ
2

)
+bi

∗
)

, i = 1,2,3.

Using (3.2.5) and (3.2.6) we have

bb∗ =
φ ∗

2
tan

φ
2

(
1+ tan2 φ

2

)
(3.4.1)

Hence we have from (3.4.1)

ĉi = ci + εci
∗

= bi cos
φ
2

+ ε cos
φ
2

(
bi cot

φ
2

(
φ ∗

2
−

(φ ∗

2
tan

φ
2

(
1+ tan2 φ

2
))

cot
φ
2

)
+bi

∗
)

= bi cos
φ
2

+ ε cos
φ
2

(
bi cot

φ
2

(
φ ∗

2
− φ ∗

2

(
1+ tan2 φ

2

))
+bi

∗
)

= bi cos
φ
2

+ ε cos
φ
2

(
bi cot

φ
2

φ ∗

2

(
1−1− tan2 φ

2

)
+bi

∗
)

= bi cos
φ
2

+ ε cos
φ
2

(
bi
∗−bi

φ ∗

2
tan

φ
2

)

= bi cos
φ
2

+ ε

(
bi
∗ cos

φ
2
−bi

φ ∗

2
sin

φ
2

)
, i = 1,2,3.

Ẑŵ ˆ̄Z = ŵ′ (3.4.2)

ẐŵZ̄ = (ĉ0 + ĉ1i+ ĉ2 j + ĉ3k)
(
(w1 + εv1)i+(w2 + εv2) j +(w3 + εv3)k

)

(ĉ0− ĉ1i− ĉ2 j− ĉ3k)
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= (ĉ0 + ĉ1i+ ĉ2 j + ĉ3k)
{(

(c1 + εc1
∗)(w1 + εv1)+(c2 + εc2

∗)(w2 + εv2)

+(c3 + εc3
∗)(w3 + εv3)

)
+

(
(c0 + εc0

∗)(w1 + εv1)− (c3 + εc3
∗)(w2 + εv2)

+(c2 + εc2
∗)(w3 + εv3)

)
i+

(
(c0 + εc0

∗)(w2 + εv2)− (c1 + εc1
∗)(w3 + εv3)

+(c3 + εc3
∗)(w1 + εv1)

)
j +

(
(c0 + εc0

∗)(w3 + εv3)− (c2 + εc2
∗)(w1 + εv1)

+(c1 + εc1
∗)(w2 + εv2)

)
k
}

=
{

ĉ0

(
ĉ1ŵ1 + ĉ2ŵ2 + ĉ3ŵ3

)
− ĉ1

(
ĉ0ŵ1− ĉ3ŵ2 + ĉ2ŵ3

)

− ĉ2

(
ĉ0ŵ2− ĉ1ŵ3 + ĉ3ŵ1

)
− ĉ3

(
ĉ0ŵ3− ĉ2ŵ1 + ĉ1ŵ2

)}

+
{

ĉ1

(
ĉ1ŵ1 + ĉ2ŵ2 + ĉ3ŵ3

)
+ ĉ0

(
ĉ0ŵ1− ĉ3ŵ2 + ĉ2ŵ3

)

+ ĉ2

(
ĉ0ŵ3− ĉ2ŵ1 + ĉ1ŵ2

)
− ĉ3

(
ĉ0ŵ2 + ĉ1 + ŵ3 + ĉ3ŵ1

)}
i

+
{

ĉ2

(
ĉ1ŵ1− ĉ2ŵ2 + ĉ3ŵ3

)
+ ĉ0

(
ĉ0ŵ2− ĉ1ŵ3 + ĉ3ŵ1

)

+ ĉ3

(
ĉ0ŵ1− ĉ3ŵ2 + ĉ2ŵ3

)
− ĉ1

(
ĉ0ŵ3− ĉ2ŵ1 + ĉ1ŵ2

)}
j

+
{

ĉ3

(
ĉ1ŵ1 + ĉ2ŵ2 + ĉ3ŵ3

)
+ ĉ0

(
ĉ0ŵ3− ĉ2ŵ1 + ĉ1ŵ2

)

+ ĉ1

(
ĉ0ŵ2− ĉ1ŵ3 + ĉ3ŵ1

)
− ĉ2

(
ĉ0ŵ1− ĉ3ŵ2 + ĉ2ŵ3

)}
k

=
{(

ĉ2
0 + ĉ2

1 + ĉ2
2 + ĉ2

3

)
ŵ1 +

(
2ĉ1ĉ2−2ĉ0ĉ3

)
ŵ2 +

(
2ĉ1ĉ3−2ĉ0ĉ2

)
ŵ3

}
i

+
{(

2ĉ1ĉ2 +2ĉ0ĉ3

)
ŵ1 +

(
ĉ2

0− ĉ2
1 + ĉ2

2− ĉ2
3

)
ŵ2 +

(
2ĉ2ĉ3−2ĉ0ĉ1

)
ŵ3

}
j

+
{(

2ĉ1ĉ3−2ĉ0ĉ2

)
ŵ1 +

(
2ĉ2ĉ3 +2ĉ0ĉ1

)
ŵ2 +

(
ĉ2

0− ĉ2
1− ĉ2

2 + ĉ2
3

)
ŵ3

}
k

= ŵ′1i+ ŵ′2 j + ŵ′3k where ŵ′i = w′i + εv′i , i = 1,2,3.

Transformed angular velocity : w′ = (w′1,w
′
2,w

′
3) and Transformed linear velocity :

v′ = (v′1,v
′
2,v

′
3) where ŵ′ = w′+ εv′. Hence using

ĉ0 = c0 + εc0
∗ = cos

φ̂
2

= cos
φ
2
− ε

φ ∗

2
sin

φ
2

,

ĉ1 = c1 + εc1
∗ = b1 cos

φ
2

+ ε

(
b1
∗ cos

φ
2
−b1

φ ∗

2
sin

φ
2

)
,
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ĉ2 = c2 + εc2
∗ = b2 cos

φ
2

+ ε

(
b2
∗ cos

φ
2
−b2

φ ∗

2
sin

φ
2

)
,

ĉ3 = c3 + εc3
∗ = b3 cos

φ
2

+ ε

(
b3
∗ cos

φ
2
−b3

φ ∗

2
sin

φ
2

)
,

we get the angular velocity w′ as,

w′1 = cos2 φ
2

(
w1(1+b2

1−b2
2−b2

3)+(2b2 +2b1b3)w3 +(−2b3 +2b1b2)w2

)
,

w′2 = cos2 φ
2

(
w2(1+b2

2−b2
1−b2

3)+(2b3 +2b1b2)w1 +(−2b1 +2b1b3)w3

)
,

w′3 = cos2 φ
2

(
w3(1+b2

3−b2
1−b2

2)+(2b1 +2b2b3)w3 +(−2b2 +2b1b3)w1

)
.

Similarly we obtain the linear velocity v′ as,

v′1 = w1

(
2cos

φ
2

(
− φ ∗

2
sin

φ
2

+b1c∗1−b2c∗2−b3c∗3

))
+ v1

(
cos2 φ

2

(
1+b2

1−b2
2−b2

3

))

+w2

(
2cos

φ
2

(
b1c∗2−b2c∗1− c∗3 +

φ ∗

2
b3 sin

φ
2

))
+ v2

(
2cos2 φ

2

(
b1b2−b3

))

+w3

(
2cos

φ
2

(
b1c∗3 +b3c∗1 + c∗2−

φ ∗

2
b2 sin

φ
2

))
+ v3

(
2cos2 φ

2

(
b1b3 +b2

))
,

v′2 = w1

(
2cos

φ
2

(
b1c∗2 +b2c∗1 + c∗3−

φ ∗

2
b3 sin

φ
2

))
+ v1

(
2cos2 φ

2

(
b1b2 +b3

))

+w2

(
2cos

φ
2

(
− φ ∗

2
sin

φ
2
−b1c∗1 +b2c∗2−b3c∗3

))
+ v2

(
cos2 φ

2

(
1−b2

1 +b2
2−b2

3

))

+w3

(
2cos

φ
2

(
b2c∗3 +b3c∗2− c∗1 +

φ ∗

2
b1 sin

φ
2

))
+ v3

(
2cos2 φ

2

(
b2b3−b1

))
,

v′3 = w1

(
2cos

φ
2

(
b1c∗3 +b3c∗1− c∗2 +

φ ∗

2
b2 sin

φ
2

))
+ v1

(
2cos2 φ

2

(
b1b3−b2

))

+w2

(
2cos

φ
2

(
b2c∗3 +b3c∗2 + c∗1−

φ ∗

2
b1 sin

φ
2

))
+ v2

(
2cos2 φ

2

(
b2b3 +b1

))

+w3

(
2cos

φ
2

(
− φ ∗

2
sin

φ
2
−b1c∗1−b2c∗2 +b3c∗3

))
+ v3

(
cos2 φ

2

(
1−b2

1−b2
2 +b2

3

))
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where

ci∗= b∗i cos
φ
2
−bi

φ ∗

2
sin

φ
2

.

3.5 Conclusion

The rotation of the D.U.S. is given by a dual orthogonal matrix Â. Using the Cayley

Mapping we obtain the skew symmetric matrix B̂ from Â. The components of B̂ determines

the dual Rodrigues vector b̂ and the components of b̂, that is, b̂1, b̂2, b̂3 are called the dual

Rodrigues parameters. The dual Euler parameters ĉ0, ĉ1, ĉ2, ĉ3 are obtained from the dual

Rodrigues parameters. The dual quaternion Ẑ is obtained from the dual Euler parameters.

The transformation in R3 space, which corresponds to the rotation of the D.U.S., provides the

transformation of corresponding screws by the formula ŵ′ = Ẑŵ ˆ̄Z.

As a result we obtain the coordinates of the transformed screw ŵ′ in terms of the dual

Rodrigues parameters of the corresponding dual rotation and the initial screw ŵ.



CHAPTER FOUR

THE EXPONENTIAL MAPPING

4.1 The Dual Matrix Exponential

The exponential mapping is an alternative method for finding a relation between the

rotation matrices and the skew symmetric matrices (Mampetta (Spring 2006)). In this

chapter we examine the exponential mapping from so(3)×D (the set of dual 3× 3 skew

symmetric matrices) to SO(3)×D (the set of dual 3×3 orthogonal or rotation matrices) (Park

(1994)) and (Selig (2004)). Using logarithm function we obtain the skew symmetric matrix B̂

from the orthogonal matrix Â as in the case of Cayley mapping.

The direct calculation shows that a 3×3 skew symmetric dual matrix (Gallier & Xu (2002))

B̂ =




0 −b̂3 b̂2

b̂3 0 −b̂1

−b̂2 b̂1 0




satisfies a cubic equation

B̂3 + θ̂ 2B̂ = 0,

where θ̂ 2 = b̂2
1 + b̂2

2 + b̂2
3, B̂ = B+ εB∗, θ̂ = θ + εθ ∗, b̂i = bi + εbi

∗ i = 1,2,3.

det(B̂− λ̂ I) = 0⇒

∣∣∣∣∣∣∣∣∣

−λ̂ −b̂3 b̂2

b̂3 −λ̂ −b̂1

−b̂2 b̂1 −λ̂

∣∣∣∣∣∣∣∣∣
= 0

−λ̂ (λ̂ + b̂2
1)+ b̂3(−λ̂ b̂3− b̂1b̂2)+ b̂2(b̂3b̂1− λ̂ b̂2) = 0

−λ̂
3− λ̂ b̂2

1− λ̂ b̂2
3− b̂1b̂2b̂3 + b̂2b̂3b̂1− λ̂ b̂2

2 = 0

−λ̂
3− λ̂ (b̂2

1 + b̂2
2 + b̂2

3) = 0

λ̂ 3 + λ̂ (b̂2
1 + b̂2

2 + b̂2
3) = 0

⇒ B̂3 + B̂(b̂2
1 + b̂2

2 + b̂2
3) = 0

38
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⇒ B̂3 + B̂θ̂ 2 = 0 where θ̂ 2 = b̂2
1 + b̂2

2 + b̂2
3.

A systematic approach will be developed to find the exponential in so(3)× D. This

involves writing the skew symmetric matrix as a sum of mutually annihilating idempotents

(Selig (2005)).

Consider the three matrices

P̂0 =
1

θ̂ 2
(B̂− iθ̂ I3)(B̂+ iθ̂ I3)

=
1

θ̂ 2
(B̂2 + θ̂ 2I3) =

1
θ̂ 2

B̂2 + I3

P̂+ =
−1
2θ̂ 2

B̂(B̂− iθ̂ I3) =
−1
2θ̂ 2

B̂2 +
i

2θ̂
B̂

P̂− =
−1
2θ̂ 2

B̂(B̂+ iθ̂ I3) =
−1
2θ̂ 2

B̂2− i
2θ̂

B̂

P̂0 =
1

θ̂ 2
(B̂− iθ̂ I3)(B̂+ iθ̂ I3)

B̂+ iθ̂ I3 =




0 −b̂3 b̂2

b̂3 0 −b̂1

−b̂2 b̂1 0


 + i




θ̂ 0 0

0 θ̂ 0

0 0 θ̂


 =




iθ̂ −b̂3 b̂2

b̂3 iθ̂ −b̂1

−b̂2 b̂1 iθ̂




Similarly,

B̂− iθ̂ I3 =




−iθ̂ −b̂3 b̂2

b̂3 −iθ̂ −b̂1

−b̂2 b̂1 −iθ̂


 .

P̂0 =
1

θ̂ 2
(B̂+ iθ̂ I3)(B̂− iθ̂ I3)

=
1

θ̂ 2




iθ̂ −b̂3 b̂2

b̂3 iθ̂ −b̂1

−b̂2 b̂1 iθ̂







−iθ̂ −b̂3 b̂2

b̂3 −iθ̂ −b̂1

−b̂2 b̂1 −iθ̂
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=
1

θ̂ 2




−i2θ̂ 2− b̂2
3− b̂2

2 −ib̂3θ̂ + iθ̂ b̂3 + b̂1b̂2 ib̂2θ̂ + b̂1b̂3− iθ̂ b̂2

−iθ̂ b̂3 + iθ̂ b̂3 + b̂1b̂2 −b̂2
3− i2θ̂ 2− b̂2

1 b̂2b̂3− iθ̂ b̂1 + b̂1iθ̂

iθ̂ b̂2 + b̂3b̂1− b̂2iθ̂ b̂2b̂3− iθ̂ b̂1 + b̂1iθ̂ −b̂2
2− b̂2

1− i2θ̂ 2




=
1

θ̂ 2




θ̂ 2− b̂2
3− b̂2

2 b̂1b̂2 b̂1b̂3

b̂1b̂2 θ̂ 2− b̂2
1− b̂2

3 b̂2b̂3

b̂3b̂1 b̂2b̂3 −b̂2
2− b̂2

1 + θ̂ 2




=




1+ ε.0 0 0

0 1+ ε.0 0

0 0 1+ ε .0


+

1
θ̂ 2




−b̂2
3− b̂2

2 b̂1b̂2 b̂1b̂3

b̂1b̂2 −b̂2
1− b̂2

3 b̂2b̂3

b̂3b̂1 b̂2b̂3 −b̂2
2− b̂2

1




= Î3 +
1

θ̂ 2
B̂2

since

B̂2 =




0 −b̂3 b̂2

b̂3 0 −b̂1

−b̂2 b̂1 0







0 −b̂3 b̂2

b̂3 0 −b̂1

−b̂2 b̂1 0




=




−b̂2
3− b̂2

2 b̂1b̂2 b̂1b̂3

b̂1b̂2 −b̂2
1− b̂2

3 b̂2b̂3

b̂3b̂1 b̂2b̂3 −b̂2
2− b̂2

1




Similarly, P̂+ and P̂− are hold.

It is easy to see that these matrices annihilate each other since, for example,

P̂0P̂+ =
−1
2θ̂ 4

B̂(B̂+ iθ̂ I3)(B̂− iθ̂ I3)2

=
−1
2θ̂ 4

(B̂3 + θ̂ 2B̂)(B̂− iθ̂ I3)

= 0

using the cubic equation satisfied by B̂.
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In general we have that, P̂0P̂+ = 0, P̂0P̂− = 0 and P̂+P̂− = 0.

These dual annihilating matrices can be found by expanding the reciprocal of the cubic into

partial fractions (Sobczyk (1997)). One consequence of this is that the sum of the dual matrices

is the identity matrix

P̂0 + P̂+ + P̂− = I3.

This can also be checked by direct computation.That is;

P̂0 + P̂+ + P̂− =
(

1
θ̂ 2

B̂2 + I3

)
+

( −1
2θ̂ 2

B̂2 +
i

2θ̂
B̂
)

+
( −1

2θ̂ 2
B̂2− −i

2θ̂
B̂
)

= I3.

The fact that these dual annihilating matrices are idempotents is now easily proved, for

instance,

P̂0 = I3P̂0 = (P̂0 + P̂+ + P̂−)P̂0 = P̂2
0 + P̂+P̂0 + P̂−P̂0 = P̂2

0

and in general, P̂2
0 = P̂0, P̂2

+ = P̂+ and P̂2− = P̂−.

The final property we need is that a linear combination of the idempotents gives us back B̂,

B̂ = iθ̂ P̂−− iθ̂ P̂+.

iθ̂ P̂−− iθ̂ P̂+ = iθ̂
( −1

2θ̂ 2
B̂2 +

i
2θ̂

B̂
)
− iθ̂

( −1
2θ̂ 2

B̂2 +
i

2θ̂
B̂
)

=
−i
2θ̂

B̂+
1
2

B̂+
i

2θ̂
B̂2 +

1
2

B̂

= B̂.

The point of these manipulations is that if we raise B̂ to some power then because the
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’P̂’ matrices are mutually annihilating there are no cross terms. Moreover since the ’P̂’s are

idempotent only their coefficients are effected by the power

B̂n = (iθ̂ P̂−− iθ̂ P̂+)n = (−iθ̂)nP̂+ +(iθ̂)nP̂−.

Hence the exponential of the dual matrix B̂ can be found as

eB̂ = P̂0 + e−iθ̂ P̂+ + eiθ̂ P̂−.

That is,

eB̂ = I3 + B̂+
B̂2

2!
+

B̂3

3!
+ ...+

B̂n

n!
+ ...

= I3 +(iθ̂ P̂−− iθ̂ P̂+)+
(iθ̂ P̂−− iθ̂ P̂+)2

2!
+ ...+

(iθ̂ P̂−− iθ̂ P̂+)n

n!
+ ...

= I3 + iθ̂ P̂−− iθ̂ P̂+ +
(iθ̂ P̂−)2−2iP̂−iθ̂ P̂+ +(−iθ̂ P̂+)2

2!
+ ...

+
(iθ̂)nP̂−+(−iθ̂)nP̂+

n!
+ ...

= I3 + iθ̂ P̂−− iθ̂ P̂+ +
((iθ̂)2P̂−+(−iθ̂)2P̂+)

2!
+ ...+

((iθ̂)nP̂−+(−iθ̂)nP̂+)
n!

= (P̂0 + P̂+ + P̂−)+ iθ̂ P̂−− iθ̂ P̂+ +
(iθ̂)2

2!
P̂−+

(−iθ̂)2

2!
P̂+ + ...

+
(iθ̂)n

n!
P̂−+

(−iθ̂)n

n!
P̂+ + ...

= P̂0 + P̂+

(
1− iθ̂ +

(−iθ̂)2

2!
+ ...+

(−iθ̂)n

n!
+ ...

)

+ P̂−

(
1+ iθ̂ +

(iθ̂)2

2!
+ ...+

(iθ̂)n

n!
+ ...

)

= P̂0 + e−iθ̂ P̂+ + eiθ̂ P̂−.
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Now we can replace the idempotents by their definitions in terms of B̂ to get

eB̂ =
1

θ̂ 2
B̂2 + I3 + e−iθ̂

(
− 1

2θ̂ 2
B̂2 +

i
2θ̂

B̂
)

+ eiθ̂
(
− 1

2θ̂ 2
B̂2− i

2θ̂
B̂
)

= I3 +
i

2θ̂
(e−iθ̂ − eiθ̂ )B̂− 1

2θ̂ 2
(eiθ̂ + e−iθ̂ −2)B̂2.

Finally, replacing the complex exponential by trigonometric functions we have

eB̂ = I3 +
1
θ̂

sin θ̂ B̂+
1

θ̂ 2
(1− cos θ̂)B̂2.

That is,

eB̂ = I3 +
i

2θ̂
(e−iθ̂ − eiθ̂ )B̂− 1

2θ̂ 2
(e−iθ̂ + eiθ̂ −2)B̂2

= I3 +
i

2θ̂
(cos θ̂ − isin θ̂ − cos θ̂ − isin θ̂)B̂

− 1
2θ̂ 2

(cos θ̂ − isin θ̂ + cos θ̂ + isin θ̂ −2)B̂2

= I3 +
i

2θ̂
(−2isin θ̂)B̂− 1

2θ̂ 2
(2cos θ̂ −2)B̂2

= I3 +
1
θ̂

sin θ̂ B̂+
1

θ̂ 2
(1− cos θ̂)B̂2

since eiθ̂ = cos θ̂ + isin θ̂ and e−iθ̂ = cos θ̂ − isin θ̂ .

The inverse function, the logarithm, is not hard to find. Suppose that we are given an

arbitrary 3×3 special orthogonal dual matrix, that is, an element of SO(3). Â say. We can find

the angle θ̂ and the anti-symmetric matrix B̂ as follows. Notice that Tr(Î3) = 3, Tr(B̂) = 0 and

Tr(B̂2) =−2θ̂ 2. Comparing Â with the exponential of a Lie algebra element, we have

Â = eB̂ = I3 +
1
θ̂

sin θ̂ B̂+
1

θ̂ 2
(1− cos θ̂)B̂2,

so the trace of Â gives
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Tr(Â) = Tr(I3)+
1
θ̂

sin θ̂ Tr(B̂)+
1

θ̂ 2
(1− cos θ̂) Tr(B̂2)

= 3+
1
θ̂

.0+
1

θ̂ 2
(1− cos θ̂)(−2θ̂ 2)

= 3−2+2cos θ̂

= 1+2cos θ̂ .

Then we have

θ̂ = arccos
(Tr(Â)−1

2

)
. (4.1.1)

To find the anti-symmetric matrix B̂ observe that since the matrix B̂ is anti-symmetric, its

square B̂2 must be symmetric like I3. Hence, if we compute Â− ÂT we will obtain

Â− ÂT =
(

I3 +
1
θ̂

sin θ̂ B̂+
1

θ̂ 2
(1− cos θ̂)B̂2

)
−

(
Î3 +

1
θ̂

sin θ̂ B̂T +
1

θ̂ 2
(1− cos θ̂)(B̂T )2

)

=
1
θ̂

sin θ̂(B̂− B̂T )+
1

θ̂ 2
(1− cos θ̂)

(
B̂2− (B̂T )2

)

=
1
θ̂

sin θ̂ 2B̂

=
2
θ̂

sin θ̂ B̂

since

B̂− B̂T =




0 −b̂3 b̂2

b̂3 0 −b̂1

−b̂2 b̂1 0


−




0 b̂3 −b̂2

−b̂3 0 b̂1

b̂2 −b̂1 0




=




0 −2b̂3 2b̂2

2b̂3 0 2b̂1

−2b̂2 2b̂1 0
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= 2




0 −b̂3 b̂2

b̂3 0 −b̂1

−b̂2 b̂1 0




= 2 B̂

and

B̂2− (B̂T )2 =




−b̂2
3− b̂2

2 b̂1b̂2 b̂1b̂3

b̂1b̂2 −b̂2
1− b̂2

3 b̂2b̂3

b̂3b̂1 b̂2b̂3 −b̂2
2− b̂2

1


−




−b̂2
3− b̂2

2 b̂1b̂2 b̂1b̂3

b̂1b̂2 −b̂2
1− b̂2

3 b̂2b̂3

b̂3b̂1 b̂2b̂3 −b̂2
2− b̂2

1




= 0.

Thus we have

Â− ÂT =
2
θ̂

sin θ̂ B̂

and then

B̂ =
θ̂

2sin θ̂
(Â− ÂT ). (4.1.2)

Substituting (4.1.1) into (4.1.2) we obtain

B̂ =
arccos

(
Tr(Â)−1

2

)

2sinarccos
(

Tr(Â)−1
2

)(Â− ÂT ).

In other words, the logarithm is given by

B̂ = log(Â) =
θ̂

2sin θ̂
(Â− ÂT ).

The method fails when θ̂ =±π , since sinπ = 0.
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