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NEW SPEECH PROCESSING STRATEGIES BASED ON WAVELET 

PACKET TRANSFORM IN COCHLEAR IMPLANTS 

ABSTRACT 

 

Cochlear implants (CI) improve partial hearing to profoundly deaf people. Many 

investigators from various disciplines made combined efforts for progression on these 

implants. The speech processing strategy in modern CI‟s extracts and encodes 

amplitude information in a number of frequency bands. In thesis study, we proposed 

an approach to improve the performance of speech enhancement techniques based on 

wavelet packet (WP) algorithm. This algorithm has better results on speech 

intelligibility than other existing algorithm and this result has been proved by the 

intelligibility experiments. The WP algorithm was modified to effectiveness of the 

strategies and then an entropy based modification was applied for electrode selection, 

thus this modification increases noise resistance of the new speech processing 

algorithm that proposed in thesis study. 

Keywords: Cochlear implant, wavelet transform, wavelet packet transform, entropy 
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PARÇACIK PAKET DÖNÜŞÜMÜ BAZLI YENİ KOKLEAR IMPLANT 

STRATEJİSİ 

ÖZ 

 

Koklear implant sağırlık derecesindeki duyma kaybı olan insanların duyma 

seviyesini artırmaktadır. Farklı disiplinlerdeki çok sayıda araştırmacı kullanılan bu 

implant üzerinde çalışmalar yapmaktadır. Implant içerisinde kullanılan ses işleme 

algoritmaları genel olarak farklı frekans bandlarındaki sinyal gücünü açığa çıkarmak 

ve bunları kodlamak sureti ile çalışır. Bu çalışmamızda, daha iyi ses işleme 

kapasitesine sahip ve Parçacık Paket Dönüşümü bazlı yeni bir model ve yaklaşım 

öneriyoruz. Önerdiğimiz algoritma, ses anlaşırlığını mevcut algoritmalara göre 

artırmıştır ve bu sonuç yapılan anlaşılma deneyleri ile kanıtlanmıştır. Ayrıca elektrot 

seçiminde Parçacık Paket Dönüşümü entropi yaklaşımı kullanılmış ve bu sayede 

algoritmanın gürültüye karşı dayanımı artırılmıştır. 

Anahtar Sözcükler: Koklear Implant, parçacık dönüşümü,parçacık paket dönüşümü, 

entropi 
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CHAPTER ONE 

INTRODUCTION 

 
 
A particular percentage of the populations in developed countries encounter hearing 

impairment. Cochlear Implant (CI) has been developed to increase the hearing 

capacity for these people. In recent years, adults and children have benefited by usage 

of CI and they affected from improvement of implant techniques as well. Although 

these devices permit increased performance, a significant gap in speech recognition 

still remain between CI listener and people which possess normal listening capability.  

The CI prosthesis is an electronic device intended to directly stimulate the auditory 

nerve in deaf people who have lost the receptor cells in the cochlea (Wilson B., 1993). 

The clinical research for these devices began in the mid 1960‟s by most researchers 

and the prosthesis would assist a limited number of patients accomplish mitigate levels 

of hearing rehabilitation. Key developments have been achieved in the implanted 

stimulating system, signal processing strategies, and patient fitting techniques (G. 

Loeb, 1990). Continued development in these areas, especially signal processing 

strategies, may produce near complete restoration of hearing in a large number of 

patients.  

In most deaf people the auditory transducers have been destroyed. The networks of 

neural connections between the cochlea and the brain have significant functional 

capacity. Multichannel cochlear implants have an important role for damaged hair 

cells by activating the remaining frequency-specific neural pathways in the cochlea 

and central auditory system (J. Millar, Y. Tong & G. Clark, 1984).  

CI system often consists of the following modules: a microphone, a speech 

processor, a transmitter, a receiver and an electrode array as shown Figure 1.1 and 

Figure 1.2 (C. Parkins & S. Anderson 1983).  

The fundamental part of CI is speech processor which provides acceptable 
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stimulation parameters. The characterization of cochlea can be modeled with the 

assistance of time scale analysis of wavelets. Therefore, this study investigates a new 

wavelet based method to apply extraction of these features and proposes to improve 

the interface between the stimulating electrode arrays for N-of-M strategy in cochlear 

implants.  

 

 

                      Figure 1.1 Block diagram of Cochlear implant 

                      (Loizou Phillip, 1998) 

 

 

 

 



3 

 

 
 

 

                                  Figure 1.2 Detail view of Cochlear Implant 

                         (Illustration Courtesy of Advanced Bionics, LLC  

                         Graphic: The Washington    Post - April 13, 2008) 

 

 

Since William House developed the first single channel implant, it responds to 

coarse temporal fluctuations as much as frequency characteristic (W. House & J. 

Urban, 1973; W. House & K. Berliner, 1982). Furthermore, speech recognition was 

restricted to transmitted frequency information and it was inadequate in 

comprehensibility. When multi-channel implants were introduced in the 1980s, several 

questions were raised regarding multi channel stimulation. Most important question 

was: “What kind of information should be transmitted to each electrode?” Depending 

on how researchers tried to address these questions, different types of signal 

processing techniques were developed. The various signal processing strategies 

developed for multi-channel cochlear prosthesis, can be divided into three categories: 
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waveform strategies, feature-extraction strategies and “N-of-M” strategies (B. Wilson, 

1993). These strategies differ in the way that information, is extracted from the speech 

signal and presented to the electrodes. 

Speech strategies play an extraordinarily important role to maximize the complete 

communicative potential of user. In addition, different strategies developed over the 

past two decades intend to improve intelligibility of deaf people as naturally as 

possible. N-of-M strategy divides the speech signal into M subbands and extracts the 

envelope information from each band of signal. N bands which have the largest 

amplitude are then selected for stimulation (N out of M) (W. Nogueira, A. Giese, B. 

Edler & A. Buchner, 2006). 

In this study, the proposed method is different from traditional N of M speech 

strategies. It selects active electrodes by using wavelet entropy changes which are 

determined best tree function on wavelet packet (WP) theory. 

In the literature, there have been various reported studies but there is still significant 

research to be done investigation on wavelet packet transform for speech processing 

applications. A generalization type of the discrete wavelet transform (DWT) called as 

WP analysis enables subband analysis without the constraint of dyadic decomposition. 

Basically, the discrete WP transform performs an adaptive decomposition in frequency 

axis. This particular discrimination may be doned with optimization criterions (L. 

Brechet, M.F. Lucas at all. 2007). 

A new strategy based on the wavelet transform in speech processing might enhance 

the exactness of the cochlear implant in coding speech features. The wavelet transform 

which provides good resolution both in time and frequency is most suitable tool to 

analyze non-stationary signals such as speech signals. Moreover, the power of the 

wavelet transform in analyzing speech strategies of CIs is the fact that the cochlea 

seems to be behaving as parallel with the wavelet transform filter banks. 

The wavelet theory guarantees a unified framework for various signal processing 
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applications such as signal and image denoising, compression, analysis of non-

stationary signal, etc. In speech processing applications, the wavelet transform has 

been intended to improve the speech enhancement quality of classical methods. The 

suggested method in this work is tested on recorded noisy speech from real 

environments. 

WPs were first investigated by Coifman and Meyer as a orthogonal bases for 

L2(R). Realization of a desired signal with a best basis selection method involves the 

introduction of an adequate cost function which provides energy localization to a 

decrising operation (R.R.Coifman & M.V. Wickerhauser, 1992). The cost function 

selection is directly related to the fixed structure of the application. Consequently if 

signal compression, identification or classifications are the interests as an application, 

entropy may reveal desired basis functions. Then, the statistical analysis of 

coefficients taking from these basis functions may be used indicating the original 

signal. Therefore, the WP analysis is effective to the signal localization in time and 

frequency. 

1.1 Main Contribution 

This thesis study will give detailed cochlear implant information, cochlear implant 

companies, speech processing strategies and especially a description of the N-of-M 

strategy and the basis of its development in the chapter two. This section will helps to 

you understand cochlear implant concept and its details. Then the chapter three will 

cover wavelet transformation, thresholding, wavelet packet (WP) algorithm, best tree 

and entropy of the cochlear implant to auditory models. It is core section for literatures 

study because this study lies on new speech processing approach as wavelet packet 

transform and wavelet entropy.  

This is followed by literatures study which is based on the new structure of the 

electrode selection and a more detailed characterization of this new speech processing 

method in the chapter four. Chapter five has results that are based on human 
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experiment of intelligibility and signal processing simulations on sample speech 

signals. 

Finally, conclusion chapter which is chapter six will cover advantages and 

disadvantages of this work, significant points in this study and future works that can 

be handling with another study. 
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CHAPTER TWO 

COCHLEAR IMPLANT 

 

2.1 What is a Cochlear Implant 

A cochlear implant (CI) is a surgically implanted electronic device that provides a 

sense of sound to a person who is profoundly deaf or severely hard of hearing. The 

cochlear implant is often referred to as a bionic ear (Cochlear Implant, 2009). 

The implant consists of an external portion that sits behind the ear and a second 

portion that is surgically placed under the skin as shown Figure 2.1 (National Institute 

on Deafness Other Communication Disorders, 2009). An implant has the following 

parts:  

 A microphone, which picks up sound from the environment.  

 A speech processor, which selects and arranges sounds picked up by the 

microphone.  

 A transmitter and receiver/stimulator, which receive signals from the speech 

processor and convert them into electric impulses.  

 An electrode array, which is a group of electrodes that collects the impulses 

from the stimulator and sends them to different regions of the auditory nerve.  

7 
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              Figure 2.1 Cochlear Implant 

              (Medical illustrations by NIH, Medical Arts & Photography Branch) 

 

 

An implant does not restore normal hearing. Instead, it can give a deaf person a 

useful representation of sounds in the environment and help him or her to understand 

speech. 
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2.2 Single Channel Implants 

 

Single-channel implants provide electrical stimulation in the cochlea using a single 

electrode. These implants are simple in design and their cost lower than multi-channel 

implants. They are also preferred because they do not require much hardware and 

conceivably all the electronics could be packaged into a behind-the-ear device.  

Single-channel implants were first implanted in human subjects in the early 1970s. 

At the time, there was a lot of skepticism about whether single-channel stimulation 

could really work (W. House, 1985). These early efforts led to, among other devices, 

the House/3M single-channel implant and the Vienna/3M single-channel implant 

(Loizou Phillip, 1998) 

2.3 Multi Channel Implants 

Multi-channel implants provide electrical stimulation in the cochlea using an array 

of electrodes. An electrode array is used so that different auditory nerve fibers can be 

stimulated at different places in the cochlea, thereby exploiting the place mechanism 

for coding frequencies. Electrodes are responsible for each the frequency of the signal. 

Electrodes near the base of the cochlea are stimulated with high frequency signals, 

while electrodes near the apex are stimulated with low frequency signals. 

When multi-channel implants were developed, researchers faced several questions 

regarding multi-channel stimulation: 

1. How many electrodes should be used?  If one channel of stimulation is not 

sufficient for speech perception, then how many channels are needed to obtain high 

levels of speech understanding?  

2. Since more than one electrode will be stimulated, what kind of information 

should be transmitted to each electrode? Should it be some type of spectral feature or 

attribute of the speech signal that is known to be important for speech perception (e.g., 
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first and second formants). or some type of waveform derived by filtering the original 

speech signal into several frequency bands?  

Researchers experimented with different number of electrodes. Some devices used 

a large number of electrodes (22) but only stimulated a few, while other devices used a 

few electrodes (4-8) and stimulated all of them. The answer to the question on how 

many channels are needed to obtain high levels of speech understanding is still the 

subject of argument (R. Shannon, F. Zeng, V. Kamath, J. Wygonski & M. Ekelid, 

1995; M. Dorman, P. Loizou, & D. Rainey, 1997).  

The various signal processing strategies developed for multi-channel cochlear can 

be collected into two main categories:  

1. Waveform strategies 

2. Feature-extraction strategies 

These strategies extract the speech information from the speech signal and present 

to the electrodes. The waveform strategies use some type of waveform (in analog or 

pulsatile form) derived by filtering the speech signal into different frequency bands. 

The feature extraction strategies use some type of spectral features, such as formants, 

derived using feature extraction algorithms. 

2.4 Cochlear Implant Companies 

There are several different manufacturers of cochlear implants that have been 

approved by the FDA for use in the United States and Turkey (Ashley Nicole Norkus, 

2007). These are 3M/House Cochlear Implant, Advanced Bionics, Med El Corporation 

and Cochlear Corporation (Chute, P.M., Nevins & M.E., 2002; Christiansen, J.B, 

Leigh & I. W., 2002).  

3M/House CI were a single channel cochlear implant and were the first approved 

by the FDA for use in postlingually deaf adults. Advanced Bionics is located in 
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California and started producing implants in 1995. They have been through several 

generations of cochlear implants including both internal and external devices. Med El 

Corporation is based out of Australia and they have been producing cochlear implants 

since the early 1980s. Cochlear is located in Australia and they were the first to 

produce multi channel cochlear implants in the world in the early 1980s. 

2.5 External Components  

The microphone, speech processor, transmitter and power supply are all parts of the 

external devices of the cochlear implant (Moore, J.A., Teagle & H.F.B., 2002; Ashley 

Nicole Norkus 2007; Nevins, M.E., Chute & P. M. 1996).  

Batteries are the power supply for the cochlear implant. They can be either 

rechargeable or alkaline depending on the type of device that is used. Cables deliver 

the sound from the microphone to the speech processor. Coils contain magnets that 

hold the implant to the head and transfer the signals from the speech processor via 

radio waves through the skin into the internal device. Microphone picks up the 

incoming signals. It is important part of cochlear implant because it affects quality of 

speech signals. The speech processor is an electronic device that filters the input signal 

from the microphone and converts it into a series of electrical signals to be delivered to 

the internal device within the cochlea, it keeps speech processing algorithm in its 

memory and behind the Ear (BTE) Processor a speech processor that sits on the ear 

and is much smaller than the body-worn processor. Body-worn Processor is a speech 

processor that is worn on the belt or in a special harness and is pager sized. 

2.6 Internal Components 

The parts of the cochlear implant are placed under the skin with surgery operation 

(Chute, P.M., Nevins & M.E., 2002; Ashley Nicole Norkus 2007). 

A channel is a single electrode that responsible for appropriate frequency range on 
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cochlea. An electrode actively delivers the signal to the cochlear nerve endings, it puts 

into inner ear with surgery operation. Electrode positioning system guides the 

electrodes into the cochlea (Advanced Bionics Corporation, 2000). Internal receiver 

part of the implant is placed under the skin behind the ear that includes that magnet 

and antenna.  

2.7 Speech Processing Strategies in Cochlear Implant 

2.7.1 Compressed-Analog (CA) approach 

 

The compressed-analog (CA) approach was originally used in the Ineraid device 

manufactured by Symbion, Inc. (Eddington, D., 1980). The signal is first compressed 

using an automatic gain control and then filtered into four contiguous frequency 

bands, with center frequencies at 0.5, 1, 2 and 3.4 kHz. The filtered waveforms go 

through adjustable gain controls and then sent directly through a percutaneous 

connection to four intracochlear electrodes. The filtered waveforms are delivered 

simultaneously to four electrodes in analog form. The CA approach, used in the 

Ineraid device, was very successful because it enabled many patients to obtain open-

set speech understanding (Dorman, M., M. Hannley, K. Dankowski, L. Smith & G. 

McCandless, 1989).  

 

2.7.2 Continuous Interleaved Sampling (CIS) 
 

Researchers at the Research Triangle Institute (RTI) developed the Continuous 

Interleaved Sampling (CIS) approach (Wilson, B., C. Finley, D. Lawson, R. Wolford, 

D. Eddington & W. Rabinowitz, 1991) which addressed the channel interaction issue 

by using non-simultaneous, interleaved pulses. Trains of biphasic pulses are delivered 

to the electrodes in a non-overlapping fashion, in a way such that only one electrode is 

stimulated at a time. The amplitudes of the pulses are derived by extracting the 

envelopes of bandpassed waveforms. The signal is first pre-emphasized and passed 

through a bank of band pass filters (Figure 2.2). The envelopes of the filtered 

waveforms are then extracted by full-wave rectification and low-pass filtering. The 



13 

 

 
 

envelope outputs are finally compressed and then used to modulate biphasic pulses. A 

non-linear compression function (e.g., logarithmic) is used to ensure that the envelope 

outputs fit the patient's dynamic range of electrically evoked hearing. The rate at 

which the pulses are delivered to the electrodes has been found to have a major impact 

on speech recognition (intelligibility). High pulse-rate stimulation typically yields 

better performance than low pulse rate stimulation. Comparison between the CA and 

CIS approach revealed higher levels of speech recognition with the CIS approach 

(Wilson B., C. Finley, D. Lawson, R. Wolford, D. Eddington & W. Rabinowitz, 

1991). 

 

 

        Figure 2.2 Detailed block diagram of CIS speech strategy in cochlear implant 

                 (Loizou Phillip, 1998). 
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2.7.3 N-Of-M Speech Processor for Cochlear Implants 

In these strategies, the signal is filtered into m frequency bands, and the processor 

selects, out of m envelope outputs, the n (n<m) envelope outputs with the largest 

energy (Figure 2.3). Only the electrodes corresponding to the n selected outputs are 

stimulated at each cycle. For example, in a 6-of-22 strategy, from a maximum of 

twenty two channel outputs, only the six channel outputs with the largest amplitudes 

are selected for stimulation at each cycle. The “N-of-M” strategy can be considered to 

be a hybrid strategy in that it combines a feature representation with a waveform 

representation as shown Figure 2.4. 

 

               Figure 2.3 Detailed block diagram of N of M speech strategy in cochlear implant  

               (Loizou, P., 1998). 
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           Figure 2.4 Block diagram of N of M speech strategy in cochlear implant  

          (Loizou, P., 1998). 
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CHAPTER THREE 

WAVELET BASED METHODS 

 

Many speech enhancement techniques discussed are based on the spectral 

information obtained through the short time Fourier transform analysis of the signal 

(Xiaolong Yuan, 2003). These are all frequency-based methods intending to preserve 

the slow-varying short time spectral characteristics of the speech such as the low-

frequency harmonics of vowels, which is still not enough to maintain speech quality 

after the processing. We also wish the speech enhancement algorithm to preserve 

instantaneous properties such as the attack of the plosives (i.e., the stop consonants 

like b, d, g, p, t, k. that are transient, non-continuant sounds produced by building up 

pressure behind a total constriction somewhere along the vocal tract, and suddenly 

releasing this pressure (Deller, J. R., Proakis, J.G., Hansen & J.H.L., 1994). As a 

powerful time-frequency tool, the wavelet transform has established a reputation as a 

tool for signal analysis: having high frequency-resolution (and low time-resolution) for 

the low frequency content of the signal while having low frequency- resolution (and 

high time-resolution) for the high frequency content of the signal. The wavelet 

transform can be regarded as a bank of band-pass filters with constant Q factor (the 

ratio of the bandwidth and the central frequency). Through appropriate choice of a 

mother wavelet that both has finite effective support width in the time domain and 

concentrating property in the frequency domain, the wavelet analysis has a distinct 

ability to detect local features of the signal in both time and frequency, such as the 

plosive fine structures of the speech and other transient, instantaneous and dynamic 

speech components that contribute significantly to the quality of the speech (Quatieri 

,2001). We will first introduce the basic concepts of the classic wavelet transform and 

its relationship to the Fourier transform.  

 

16 
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3.1 Continuous Wavelet Transform 

The Fourier transform has long been the most important underpinning for 

frequency-domain signal processing. The theory on wavelet transform, which 

originated as a branch of applied mathematics in the 1980‟s, was first introduced into 

the signal processing field thanks to the efforts of French mathematicians I. 

Daubechies and S. Mallat (Mallat, S., 1998; Daubechies ,1992). Today, intertwined 

with multi- resolution and filter bank theory, wavelets analysis plays an important role 

in time-frequency analysis. 

3.1.1 Wavelet Introduction 

 
The word “wavelet” literally means “a small wave”. A wavelet is a function that 

has finite energy and zero mean. It is a powerful tool for the analysis of transient, non-

stationary characteristics such as drift, trends, abrupt changes, beginning and ends of 

events, breakdown points, and discontinuities in higher derivatives and self-similarity 

(Xiaolong Yuan, 2003). We have available many kinds of wavelets: Haar, Mortlet, 

Daubeshies, etc.; they look different and have different properties: orthogonal, bi-

orthogonal, normalized etc. For example, the Morlet wavelet is illustrated in Figure 

3.1, with a solid line as its real part and a dashed line as its imaginary part. 

It is a complex exponential function at frequency 0  with Gaussian envelope 

 𝜑 𝑡 = 𝑒
−𝑡

2 𝑒𝑗𝜔0𝑡         (3-1) 

Wavelet analysis is one way to localize events in time (or space) and frequency. 

The goal of wavelet analysis is to create a set of basis functions (i.e., expansion 

functions) so that the transform will give an informative, efficient and useful 

description of the target signal. In a nutshell, the continuous wavelet transform (CWT) 

is nothing but a set of the inner products of the observed signal 𝑓 𝑡  with the shifted 

and scaled mother wavelets 𝜑𝑎,𝜏 𝑡 =
1

 𝑎
𝜑  

𝑡−𝜏

𝑎
  where 𝜏 and 𝑎 represent the time 
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shift and scale variables. 

 𝑓 𝑡 , 𝜑𝑎,𝜏 𝑡  = 𝑊𝑇𝑓 𝑎, 𝜏 =
1

 𝑎
 𝑓 𝑡 𝜑∗  

𝑡−𝜏

𝑎
 𝑑𝑡    (3-2) 

If 𝜀 =    𝜑 𝑡  2𝑑𝑡 is the energy of the basic mother wavelet, the shifted and dilated 

wavelets 𝜑𝑎,𝜏 𝑡 =
1

 𝑎
𝜑  

𝑡−𝜏

𝑎
  maintaining the same energy due to the scaling 

factor
1

 𝑎
: 

𝜀 ′ =   
1

 𝑎
𝜑  

𝑡−𝜏

𝑎
   

2

𝑑𝑡 =
1

𝑎
  𝜑  

𝑡−𝜏

𝑎
   

2

𝑑𝑡 = 𝜀    (3-3) 

In order to have an inverse transform, any mother wavelet chosen must satisfy the 

admissibility condition that means: 

𝑐𝜑 =  
 Γ 𝜔  2

𝜔

+∞

0
𝑑𝜔 < +∞        (3-4) 

where Γ 𝜔 denotes the mother wavelet in the frequency domain. This condition 

implies at least two things about a valid mother wavelet:  

1. Γ 𝜔  has band-pass property  

2. 𝜑 𝑡  has an oscillatory characteristic 

After satisfying the admissibility condition, the inverse transform is given by: 

𝑓 𝑡 =
1

𝐶𝜑
  𝑊𝑇𝑓 𝑎, 𝜏 𝜑 𝑡 𝑑𝜏

𝑑𝑎

𝑎2

+∞

−∞

+∞

0
      (3-5) 
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     Figure 3.1 The Morlet wavelet in the time domain 

 

3.1.2 Comparison with Short Time Fourier Transform (STFT)  

To understand the major advantages of wavelet transforms, let us first review the 

short time Fourier transform (STFT) that is the most used spectral analysis method in 

speech signal processing. 

𝐹 𝜔, 𝜏 =  𝑓 𝑡 𝑤 𝑡 − 𝜏 𝑒−𝑗𝜔𝑡 𝑑𝑡
+∞

−∞
      (3-6) 

where 𝑓 𝑡  is the target signal and  𝑤 𝑡 − 𝜏  is the moving window. The limitation 

of the standard Fourier transform is that it extracts the frequency content of the signal 

only but not the frequency changes with respect to time. This is partially solved 
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through the STFT by using sliding analysis windows. However the STFT uses a fixed 

window length and still cannot always simultaneously resolve short-lived events and 

closely spaced long-duration tones in speech (Quatieri, 2001). This drawback is rooted 

in the well-known uncertainty principle that limits time-frequency resolution:  

𝐷 𝑥 𝐵 𝑥 >
1

4
 where the product of time duration 𝐷 𝑥  and bandwidth 𝐵 𝑥  of a 

signal x must exceed a constant. 

The wavelet transform minimizes the limitation of the uncertainty principle by 

varying the length of the moving window with variant scaling factor. Ideally, long 

windows are employed on low frequency parts of the speech signal for good frequency 

resolution and short windows are employed on high frequency components of the 

speech signal, say the attack of the glottal pulse and plosives of speech, for good time 

resolution. The wavelet transform succeeds in adjusting time and frequency resolution 

without defeating the uncertainty principle. 

3.1.3 Implementation of Continuous Wavelet Transform  

To calculate the inner product of the CWT, normally we need to resort to numerical 

integration using computers. The simplest way is to discretize time and shift as 

follows: 𝑡 = 𝑛𝑇𝑠 and 𝜏 = 𝑘𝑇𝑠   and 𝑇𝑠  is the sampling interval. Then Eq. 3.2 becomes: 

𝑊𝑇𝑓 𝑎, 𝑘𝑇𝑠 =
𝑇𝑠

 𝑎
 𝑓 𝑛𝑇𝑠 𝜑  

 𝑛−𝑘 𝑇𝑠

𝑎
 𝑛    (3-7) 

For each value of the scale, we obtain a set of wavelet coefficients under this 

specific scale. There are some other existing fast algorithms for the continuous wavelet 

transform such as algorithm a‟trous (Holschneider M., 1989). chirp-z transforms 

(Jones D., 1991). Mellin transform (Bertrand J., 1990). a under the admissibility 

condition: 

𝑐𝜑 =  
 Ψ 𝜔  2

𝜔
𝑑𝜔

+∞

0
< +∞        (3-8) 
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the two-dimensional wavelet coefficients 𝑊𝑇𝑓 𝑎, 𝑘𝑇𝑠  are a complete, stable yet 

redundant representation of the one dimensional signal. In order to speed up 

computation and save memory, we wish to discretize the scale  𝑎 and shift 𝜏 in an 

efficient way to form a new set of wavelet coefficients. 

3.2 Discrete Wavelet Transform  

One drawback of the CWT is that the representation of the signal is often 

redundant.  

Unlike the continuous wavelet transform, which can operate on every scale, the 

discrete wavelet transform (DWT) chooses a subset of scales and positions to 

calculate. A sample version of the wavelet coefficients 𝑊𝑇𝑓 𝑎, 𝜏  can reconstruct the 

original signal in an efficient way if the family of dilated and shifted mother wavelets 

of selected a and τ constitute an orthonogonal and complete basis (Daubechies, 1992). 

A common sampling practice is that for each scale 𝑎𝑚 = 𝑎0
𝑚  for m = 0, 1, 2, 3…N, the 

sampling interval is 𝜏𝑚 = 𝜏0𝑎0
𝑚  for m=0, 1, 2, 3…N. One particular natural case is 

when 𝑎0 = 2 so that the sampling rate of the shift decreases by a factor of two as the 

scale increases by a factor of two (Quatieri, 2001). This is so called dyadic or octave 

sampling and it allows the implementation of a fast dyadic wavelet transform and its 

inverse with filter banks. High-pass filter removes the low-frequency components of 

the signal and the corresponding filter parameters become the detailing part of the 

wavelet coefficients. Low-pass filter removes the high frequency components of the 

signal and the corresponding filter parameters become the smoothing part of the 

wavelet coefficients. Partly due to the efficient implementation and auditory and visual 

cortex-like properties of dyadic wavelets, a large part of wavelet theory has involved 

finding dyadic wavelet bases that are orthogonal and that are useful in a variety of 

applications (Mallat S., 1998).  
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3.3 Multi-resolution Analysis of Discrete Wavelet Transform  

The multi-resolution analysis concept was initiated by Meyer (Meyer Y., 1992) and 

Mallat (Mallat S., 1989) and provides a natural framework for the understanding of 

wavelet bases. In the dyadic wavelet transform, the basis functions are two parts: the 

scaling functions Ψ 𝑡  and the wavelet functions 𝜑 𝑡 . 

Ψ𝑚,𝜏 𝑡 = 2−
𝑚

2 Ψ0 2−𝑚 𝑡 − 𝜏  𝑤𝑕𝑒𝑟𝑒 𝑚 𝜖𝑍, 𝜏 = 𝑛 ∗ 2𝑚𝜖𝑍    (3-9) 

𝜑𝑚,𝜏 = 𝑎0

−
𝑚

2            (3-10) 

The scaling function can be obtained as a sum of copies (dilated, shifted, scaled 

versions) of itself as illustrated in Eq.3.11, 

Ψ0 𝑡 =  𝐶𝜏Ψ 2𝑡 − 𝜏 𝐿
𝜏=0        (3-11) 

and the wavelet function 𝜑0 𝑡 can be then obtained from the scaling 

function Ψ0 𝑡  as follows: 

𝜑0 =   −1 𝜏+∞
−∞ 𝐶1−𝜏Ψ

0 2𝑡 − 𝜏       (3-12) 

Where 𝐶𝜏  can be seen as the low-pass filter coefficients and 𝐶1−𝜏  can be seen as the 

high-pass filter coefficients and where L–1 is related to the number of vanishing 

moments in the scaling function Ψ0 𝑡  . They two together constitute a quadrature 

mirror filter (QMF) and an extensive study of the QMF can be found in (Monzon, 

1994). The simple relation of two filter coefficients is as follows: 

𝐶𝜏 𝜏 =  −1 𝜏𝐶1−𝜏 𝐿 − 1 − 𝜏        (3-13) 

Having the basis for decomposition, we can write the dyadic wavelet transform as 

follows: 

𝑓 𝑡 =  𝑐𝑗 ,𝜏𝜑
0

𝜏  𝑡 − 𝜏 +   𝑑𝑗 ,𝑘𝜑
0 𝑎0

𝑚 ∗ 𝑡 − 𝜏 𝐽
𝑚=1𝜏    (3-14) 
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Where 𝜙 is the scaling function and 𝜑 is the wavelet function, 𝑎0 = 2,𝑚 =

1,2,3…𝑁 and 𝜏 = 𝜏0 ∗ 𝑎0
𝑚 . The above equation shows how a signal can be 

decomposed into the summation of approximations (low frequency components of the 

signal) and details (high frequency components of the signal) at different resolutions. 

3.4 Wavelet Thresholding  

As wavelet analysis has its basis emulating the front-end auditory periphery (Mallat 

S., 1998). efforts have been made to take advantage this signal-processing tool for 

speech enhancement. The most used approach is based on the non-linear thresholding 

of the wavelet coefficients (Donoho D. L., 1995). which bridges the multi-resolution 

analysis and non-linear filtering.  

3.4.1 Principle  

Donoho proposed this powerful wavelet-based approach as follows (Donoho D. L., 

1995):  

Let y be a finite length observation sequence of the signal x that is corrupted by 

zero-mean white Gaussian noise n with variance 𝜎2:  

𝑦 = 𝑥 + 𝑛           (3-15) 

In the wavelet domain, this gives: 

𝑊𝑦 = 𝑊𝑥 + 𝑊𝑛              (3-16) 

The clean signal x can be estimated in the following way: 

𝑥 = 𝑊−1𝑋𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 𝑊−1𝑌𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑      (3-17) 

where 𝑌𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑  represents the wavelet coefficients after thresholding and 𝑊−1 

denotes the inverse wavelet transform. The approach capitalizes on the fact that an 
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appropriate transform (i.e., wavelet transform) projects the signal onto the transformed 

domain where the signal energy is concentrated in a small number of coefficients, 

while the noise is evenly distributed across the transformed domain. There are 

generally two ways of thresholding: one is called hard thresholding (Eq.3.18) and the 

other is called soft thresholding (Eq.3.19). Figure 3.2 is an illustration of this 

technique. 

 

Figure 3.2 Wavelet thresholding a) No threshold, b) Hard Threshold, c) Soft Theshhold 

 

𝑇𝑕𝑎𝑟𝑑  𝑋, 𝑇 =  
𝑋                                        𝑋 > 𝑇
0                                        𝑋 < 𝑇

     (3-18) 

 

𝑇𝑠𝑜𝑓𝑡  𝑋, 𝑇 =  
𝑠𝑔𝑛 𝑋  𝑋 − 𝑇             𝑋 > 𝑇

0                                        𝑋 < 𝑇
    (3-19) 
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Where X represents the wavelet coefficients before thresholding and T is the 

threshold. Both of these two methods suffer from distortion of the speech because they 

set coefficients to zero that may carry useful information, resulting in observable sharp 

time frequency discontinuities in the speech spectrogram. Various modifications have 

been made. For example, Sheikhzadeh (Sheikhzadeh, 2001) proposed using an 

exponential function to attenuate coefficients that are smaller than the threshold value 

in a nonlinear manner to avoid creating abrupt changes. Other data compression 

functions can also be chosen such as the μ-law: 

𝑇𝑕𝑎𝑟𝑑  𝑋, 𝑇 =

 
 

 
𝑋                                                                𝑋 > 𝑇

𝑇 
  1+𝜇 

𝑋
𝑇  

𝜇
𝑠𝑔𝑛 𝑋                            𝑋 < 𝑇

 
 

 

   (3-20) 

 

Where X is the wavelet coefficients and T is the threshold value. 

3.4.2 How to Choose the Threshold  

The choosing of the threshold value can be determined in many ways. Donoho 

derived the following formula based on white Gaussian noise assumption: 

𝑇 = 𝜎 2 log 𝑁           (3-21) 

where T is the threshold value, N is the length of the noisy signal y, and 

σ=MAD/0.6745, with MAD denoting the absolute median estimated on the first scale 

of the wavelet coefficients.  

Johnstone and Silverman (Johnstone & Silverman,  1997) proposed the level 

dependent threshold method to deal with correlated noise, where for each frequency 

interval the threshold is proportional to the standard deviation of the noise in that 

interval. 
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𝜆𝑎 = 𝜎𝑎 2 log 𝑁𝑎         (3-22) 

with 𝜎𝑎 =
𝑀𝐴𝐷𝑎

0.6745
, 𝑁𝑎  is the number of samples in scale a, and 𝑀𝐴𝐷𝑎  is the absolute 

median estimated at scale a. 

3.4.3 Four Types of Threshold Selection Rules  

1. Threshold selection rule based on Stein‟s unbiased estimate of the risk  

Different estimation rules could be compared on the basis of their resulting mean-

square error (MSE) or more formally, the risk  

 

𝑅 𝑠, 𝑇 = 𝐸   𝑠 −
^

s  

2

       (3-23) 

 

(Stein, S. M., 1981) has, under quite general conditions, derived an unbiased 

estimator of such a risk for a Gaussian estimator. 

2. Heuristic threshold selection rule  

This is a heuristic variant of the first option (Mathworks, 1998).  

3. Fixed form threshold selection rule  

This rule uses the universal threshold shown by Eq.3.21.  

4. Minimax performance threshold selection rule  

The minimax rule uses a fixed threshold chosen to yield minimax performance for 

mean square error against an ideal procedure. The derived formula is as follows (Guo, 

2000) : 𝑇 = 0.3936 + 0.1829 ∗
log  𝑁 

𝑙𝑜𝑛𝑔  2 
   where N is the length of the signal. 
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3.5 Wavelet Packet Algorithm 

The wavelet packet (WP) transform is a direct expansion of the traditional discrete 

wavelet transform. Most importantly, it has well localization both in time and 

frequency domain. WP decomposition was first introduced by Coifman, Meyer and 

Wickerhauser (C. Herley & M. Vetterly, 1994).  

Orthonormal basis which best represents the function under a definite criterion, is 

available for WP representation. It is emphasize that WP expansion is signal 

dependent. An algorithm for a given signal invents the best set of basis functions so 

that the decomposition of the signal. Choosing a basis implies choosing a tree structure 

of a dydic filter bank which obtains the transform coefficients (R.R. Coifman & M.V. 

Wickerhauser). Therefore, the demonstration of the decomposition is simple a 

computationally efficient.  

WP analysis for a time series can be summarized as follows (S. Mallat, 1999). A 

space 𝑉𝑗   of a multiresolution analysis in L2(R) is analyzed in a lower resolution space 

𝑉𝑗+1 added a detail space𝑊𝑗+1. Dividing the orthogonal basis  ∅𝑗  𝑡 − 2𝑗𝑛   
𝑛𝜖𝑍

 of in to 

new orthogonal basis constitutes  ∅𝑗+1 𝑡 − 2𝑗+1𝑛   
𝑛𝜖𝑍

 of 𝑉𝑗  and  𝜓𝑗+1 𝑡 −

2𝑗+1𝑛   
𝑛𝜖𝑍

 of 𝑊𝑗+1 . 

The decompositions of 𝜙𝑗+1 and 𝜓𝑗 +1 are denoted by a pair of conjugate mirror 

filter h[n] and 𝑔 𝑛 =  −1 1−𝑛𝑕 1 − 𝑛 .  

Theorem 1: 

Let  ∅𝑗  𝑡 − 2𝑗𝑛   
𝑛𝜖𝑍

 be an orthonormal basis of a space 𝑈𝑗 . Let h and g a pair of 

conjugate mirror filters. This relation is defined by 

𝜃𝑗+1
0  𝑡 =  𝑕 𝑛 𝜃𝑗 𝑡 − 2𝑗𝑛  +∞

𝑛=−∞        (3-24) 

and 
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 𝜃𝑗+1
1  𝑡 =  𝑔 𝑛 𝜃𝑗 𝑡 − 2𝑗𝑛  +∞

𝑛=−∞                                      (3-25) 

The family 

 𝜃𝑗+1
0  𝑡 − 2𝑗+1𝑛  , 𝜃𝑗+1

1  𝑡 − 2𝑗+1𝑛   
𝑛𝜖𝑍

     (3-26)                                                                                    

  

is an orthonormal basis of 𝑈𝑗 . 

This theorem proves that we can set  𝑈𝑗 = 𝑊𝑗  and divide these detail spaces to 

create new bases. The recursive slicing of vector spaces is evidenced in a binary tree. 

If the signal is approximated at the scale 2L, it is associated the approximation space 

VL to the root of the tree. This space permits an orthonormal basis of scaling functions  

 ∅𝐿 𝑡 − 2𝐿𝑛   
𝑛𝜖𝑍

 with ∅𝐿 𝑡 = 2
−𝐿

2 ∅ 2−𝐿𝑡 . 

Any node of the binary tree is labeled by (j, k). where j-L  0 is the depth of the 

node on the tree, and k is the number of nodes. A space 𝑊𝑗
𝑘  allowing an orthonormal 

basis  𝜓𝑗
𝑘 𝑡 − 2𝑗𝑛   

𝑛𝜖𝑍
 is associated to each node (j, k) by going down the tree. At the 

root, it has 𝑊𝐿
0 = 𝑉𝐿  and𝜓𝐿

0 = 𝜙𝐿. The WP orthogonal bases at the nodes are defined 

by 

𝜓𝑗+1
2𝑘  𝑡 =  𝑕 𝑛 𝜓𝑗

𝑘 𝑡 − 2𝑗𝑛  +∞
𝑛=−∞                                      (3-27) 

and 

𝜓𝑗+1
2𝑘+1 𝑡 =  𝑔 𝑛 𝜓𝑗

𝑘 𝑡 − 2𝑗𝑛  +∞
𝑛=−∞       (3-28) 

because of  𝜓𝑗
𝑘 𝑡 − 2𝑗𝑛   

𝑛𝜖𝑍
  is orthonormal 

 𝑕 𝑛 =  𝜓𝑗+1
2𝑘+1 𝑡 , 𝜓𝑗

𝑘 𝑡 − 2𝑗𝑛          (3-29)  

and 
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𝑔 𝑛 =  𝜓𝑗+1
2𝑘+1 𝑡 , 𝜓𝑗

𝑘 𝑡 − 2𝑗𝑛          (3-30) 

Therefore, this recursive splitting determines a binary tree of wavelet packet spaces 

which defined as 

𝑊𝑗 +1
2𝑘 ⊕𝑊𝑗+1

2𝑘+1 = 𝑊𝑗
𝑘          (3-31) 

We illustrate 𝑥  𝑛 = 𝑥 −𝑛  and the signal 𝑥  𝑛  is given by injecting a zero 

between each sample. Respectively, the decomposition and reconstruction coefficients 

are constituted by 

𝑑𝑗+1
2𝑘  𝑡 = 𝑑𝑗

𝑘 ∗ 𝑕  2𝑡  and 𝑑𝑗+1
2𝑘+1 𝑡 = 𝑑𝑗

𝑘 ∗ 𝑔  2𝑡       (3-32) 

𝑑𝑗
𝑘 𝑡 = 𝑑 𝑗+1

2𝑘 ∗ 𝑕 2𝑡 + 𝑑 𝑗+1
2𝑘+1 ∗ 𝑔 2𝑡       (3-33) 

To sub sampling the convolution of 𝑑𝑗
𝑘  with 𝑕  and𝑔 , the coefficients can be 

obtained. Iterating these equations the all branches of the tree are computed by WP 

coefficients. This is given in Figure 3.3.  
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       Figure 3.3 (a) Wavelet packet decomposition with down sampling, (b) Wavelet packet   

       reconstruction with up sampling 

3.5.1 Best Tree 

Best tree (Coifman, R.R. & M.V. Wickerhauser, 1992) function is a one- or two-

dimensional wavelet packet analysis function that computes the optimal sub tree of an 

initial tree with respect to an entropy type criterion. The resulting tree may be much 

smaller than the initial one. Following the organization of the wavelet packets library, 

it is natural to count the decompositions issued from a given orthogonal wavelet. A 

signal of length N = 2L can be expanded in α different ways, where α is the number of 

binary sub trees of a complete binary tree of depth L where𝑎 ≥ 2
𝑁

2 . This number 

may be very large, and since explicit enumeration is generally intractable, it is 

interesting to find an optimal decomposition with respect to a convenient criterion, 

computable by an efficient algorithm. We are looking for a minimum of the criterion. 
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3.5.2 Algorithm 

Consider the one-dimensional case. Starting with the root node, the best tree is 

calculated using the following scheme. A node N is split into two nodes N1 and N2 if 

and only if the sum of the entropy of N1 and N2 is lower than the entropy of N. This is 

a local criterion based only on the information available at the node N. Several entropy 

type criteria can be used. If the entropy function is an additive function along the 

wavelet packet coefficients, this algorithm leads to the best tree. Starting from an 

initial tree T and using the merging side of this algorithm, we obtain the best tree 

among all the binary sub trees of T (Mathworks, 1998). 

3.5.3 Entropy 

Entropy provides a complexity measure of a time series, such as discretized speech 

signal. 

3.5.4 Shannon Entropy  

The Shannon entropy equation provides a way to estimate the average minimum 

number of bits needed to encode a string of symbols, based on the frequency of the 

symbols (Schneier, Shannon & Claude E., January, 1951).  

 𝐻 𝑋 = − 𝑝𝑖 log2 𝑝𝑖
𝑁−1
𝑖=0        (3-34) 

In the Shannon entropy equation, pi is the probability of a given symbol. To 

calculate log2 from another log base (e.g., log10 or loge):  
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CHAPTER FOUR 

NEW SPEECH PROCESSING STRATEGIES METHODS 

 
4.1 Speech Processing 

4.1.1 Windowing 

In signal processing, a window function (or apodization function) is a function that 

is zero-valued outside of some chosen interval. For speech processing the signal is 

assumed which is short-time stationary and perform a Fourier transform on these small 

blocks. Solution: multiple the signal by a window function that is zero outside some 

defined range (Eric W. Weisstein, 2003). 

The Hanning window (Blackman, R. B. & Tukey, J. W., 1959; W. H., Flannery, B. 

P., Teukolsky, S. A. & Vetterling, W. T., 1992) is a general purpose window for the 

analysis of continuous signals and should be used in most cases, because it has the best 

overall filter characteristic. We separate the signal with windowing process.  

The Hann function, named after the Austrian meteorologist Julius von Hann, is a 

discrete probability mass function given by 

𝜔 𝑛 = 0.5  1 − cos  
2𝜋𝑛

𝑁−1
       (4-1)  

 

4.1.2 Noise Theory and Performance Criteria 

Assuming that the speech signal, X, and the noise, N, are additive, the noisy speech, 

y, is modeled as 

Y = X + N         (4-2) 

32 
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It is generally adopted that the speech is not correlated with noise; this is a 

reasonable assumption in most cases when the signal and noise are generated by 

independent sources. Noise equation can be write easily as 

N = Y – X         (4-3) 

The performance criteria is SNR value which is estimated by this formula 

𝑆𝑁𝑅 𝑌, 𝑌  = 10 log  
 𝑌 2

2

 𝑌−𝑌  2
2  𝑑𝐵      (4-4) 

where Y input signal, 𝑌  output signal and  related transfer block as shown Figure 4.1. 

 

 

 
                      Figure 4.1 Block diagram of the transfer function of SNR enhancement 

 

We assume 𝑌  approximately equals original signal X therefore Y – 𝑌  equals N. 

Generally, the form of noise is classified as white noise and colored noise. 

4.1.2.1 White Noise 

Pure white noise (Saeed V. Vaseghi, 2000; Bell D.A., 1960; Bennett W.R, 1960) is 

a theoretical concept, since it would need to have infinite power to cover an infinite 

range of frequencies. Furthermore, a discrete-time signal by necessity has to be band-

limited, with its highest frequency less than half the sampling rate. A more practical 

concept is band-limited white noise, defined as a noise with a flat spectrum in a 

limited bandwidth. The spectrum of band-limited white noise with a bandwidth of B 

Hz is given by 
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𝑃𝑁𝑁 𝑓 =  
𝜎2 ,                                𝑓 ≤ 𝐵
0,                            𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

    (4-5) 

 

4.1.2.2 Cloured Noise 

Although the concept of white noise provides a reasonably realistic and 

mathematically convenient and useful approximation to some predominant noise 

processes encountered in telecommunications systems, many other noise processes are 

nonwhite. The term „coloured noise‟ (Saeed V. Vaseghi, 2000; Bell D.A., 1960; 

Bennett W.R., 1960) refers to any broadband noise with a non-white spectrum. For 

example most audio frequency noise, such as the noise from moving cars, noise from 

computer fans, electric drill noise and people talking in the background, has a 

nonwhite predominantly low frequency spectrum. Also, a white noise passing through 

a channel is „coloured‟ by the shape of the frequency response of the channel. Two 

classic varieties of coloured noise are so-called „pink noise‟ and „brown noise‟, shown 

in Figure 4.2 and Figure 4.3. 

 

Figure 4.2 (a) A pink noise signal and (b) its magnitude spectrum 
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Figure 4.3 (a) A brown noise signal and (b) its magnitude spectrum 

 

4.2 New Speech Processing Strategies Methods 

4.2.1 Algorithm 

New speech processing method (Figure 4.4) is constituted five blocks which are 

windowing, wavelet packet transform, construct optimum tree, and determine channels 

outputs, electrodes selection, stimuli (constructed signal). Each block is explained step 

by step below. Each step is handled with MATLAB environment and simulation codes 

are provided in Appendix section. 

𝑆𝑛 = 𝑆 ∗𝑊𝑛 ≫ 𝐶𝑖,𝑗 = 𝜓𝑛  𝑆𝑛  ≫ 𝐶𝑖,𝑗
′ = Λ 𝐶𝑖,𝑗  ≫ 𝐸𝑘 = 𝑀 𝐶𝑖 ,𝑗

′     (4-6) 
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Figure 4.4 Block diagram of New Speech Processing method 

 

4.2.2 Windowing 

Windowing is useful operator in order to eliminate the sparks from signal. In our 

study the speech signal is separated for speech processing by Hanning window and its 

window length is 8 ms. 

𝑆𝑛 = 𝑆 ∗𝑊𝑛       (4-7) 

where  𝑆 speech signal and 𝑊𝑛  is windowing operator. 

 

4.2.3 Wavelet Packet Transform 

A wavelet transform iterates the decomposition of the smooth part into a smooth 

part and details while leaving the details intact. In wavelet packet transforms, the 

details are further decomposed into a "smooth" part plus "details". This block is very 

important because selected mother wavelet and processing level change our resolution 

results in signal processing. Mother wavelet is selected with experimentally then 
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decided to use db10 wavelet all process and processing level is 8.  

𝐶𝑖 ,𝑗 = 𝜓𝑛  𝑆𝑛          (4-8) 

where 𝜓𝑛  wavelet packet operator and after this operation we have wavelet 

coefficients 𝐶𝑖,𝑗 . 

4.2.4 Determine Optimum Tree 

In this block which is first process to clean noise components from speech signals. 

Optimum tree is decided by using Shannon entropy into WPT to clean unnecessary 

nodes from wavelet packet tree, in this way noise parts are eliminated from speech 

signal and reduce channel interaction between neighbor channels owing to determine 

clean channel outputs. 

This process is most innovation in speech strategies in cochlear implant because 

noise very big problem for success of cochlear implant strategy. This parts helps to us 

select more accurately cochlear implant electrode during process. 

This part can simply present as by   

𝐶𝑖 ,𝑗
′ = Λ 𝐶𝑖 ,𝑗          (4-9) 

where Λ is bets tree operator and this operator rearrange our wavelet coefficients. 𝐶𝑖,𝑗
′  

is new wavelet coefficients after Λ operation. 

4.2.5 Determine Channels Outputs and Mapping 

The mapping applied to optimum tree and channels outputs are determined from 

mapping function. Mapping function refers relations of between electrodes and 

wavelet packet transforms outputs nodes. You can find relation of between electrodes 

and nodes in the Table 5.1, where number of electrode is cochlear implant electrode 
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identifier ; this study has 22 electrodes for stimuli simulation, F1 and F2 electrodes 

are defined cochlear implant electrodes cut-off frequencies that derived by equation 

(5-6). F1 and F2 wavelet nodes are defined WPT nodes cut-off frequencies that 

derived by WPT tree. Finally number of node is WPT node that matches with band-

width values between cochlear implant electrodes. This node can be combination of 

several WPT nodes such as number 8 in the table.  

Mapping operation is defined as   

𝐸𝑘 = 𝑀 𝐶𝑖,𝑗
′          (4-10) 

where 𝐸𝑘  is electrode output and 𝑀 is mapping operator (Table 5.1). 

We calculate channels bandwidths, F1 and F2 for human cochlea; the frequency-

position function can be described as the following equation 

𝑓 = 𝐴 10𝑎𝑥 − 𝑘           (4-11) 

Where f represents frequency in Hz, x is expressed as a proportion of basilar length 

(from 0 to l) A=165.4 and a=2.1. Then we map all channel to node or nodes group for 

determine channels outputs. 
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Table 4.1 Cochlear Implant electrodes and wavelet packet transform node mapping list. First column 

indicates cochlear implant electrode number, second column indicates cut – off frequencies of cochlear 

implant electrodes, sixth column indicates: cut – off frequencies of wavelet nodes, seventh column 

indicates Wavelet Packet Transform nodes 

Number of 

Electrode 

F1 

(electrodes) 

F2 

(electrodes) 
Bandwidth 

Number of 

Node 

F1 

(wavelet 

nodes) 

F2 

(wavelet 

nodes) 

1 150 201.53 51.533 257 125 187.5 

2 201.53 262.05 60.518 258 187.5 250 

3 262.05 333.12 71.07 259 250 312.5 

4 333.12 416.58 83.462 260 312.5 375 

5 416.58 514.6 98.015 130 375 500 

6 514.6 629.7 115.11 131 500 625 

7 629.7 764.88 135.18 132 625 750 

8 764.88 923.62 158.74 267-268-269 750 937.5 

9 923.62 1110 186.42 270-271-272 937.5 1125 

10 1110 1329 218.93 136-137 1125 1375 

11 1329 1586.1 257.1 138-139 1375 1625 

12 1586.1 1888 301.93 140-141 1625 1875 

13 1888 2242.6 354.57 142-143-144 1875 2250 

14 2242.6 2659 416.4 72-73 2250 2750 

15 2659 3148 489 74-75 2750 3250 

16 3148 3722.3 574.27 37 3000 3500 

17 3722.3 4396.6 674.4 38-39 3500 4500 

18 4396.6 5188.6 791.99 80-81-82-83 4250 5250 

19 5188.6 6118.7 930.08 20 5000 6000 

20 6118.7 7211 1092.2 43-44-45 6000 7500 

21 7211 8493.7 1282.7 22-23 7000 9000 

22 8493.7 10000 1506.3 11 8000 10000 
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4.2.6 Electrodes Selection 

Electrodes selection phase is same as traditional N of M strategy. In our study six 

channels are selected for stimuli using largest amplitudes in channel outputs. 

Therefore in our study N = 6, M =22. 

4.2.7 Stimuli (constructed signal) 

The six amplitudes of the spectral maxima are finally logarithmically compressed 

to fit the patient's electrical dynamic range, and transmitted to the six selected 

electrodes through a radio-frequency link. In our study this process is simulated by 

adding operation. In order to construct the signal from output channels selected output 

signal are added respectively. 
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CHAPTER FIVE 

RESULTS 

 
5.1 Process Output and Selected Electrodes 

In this research, the output waveforms are constructed using N of M selection 

approach. New speech processing strategy waveform, as shown the Figure 5.2, looks 

like similar original signal Figure 5.1 than traditional N of M method waveform Figure 

5.3. Both signals are produced by using MATLAB simulation codes that are given in 

the Appendix chapter and graphical illustrations are prepared by SFS 4/Windows.  

As shown from the graphs, traditional N of M removes some high frequency 

component that are between 25ms and 75ms at wide-band spectrogram, high 

frequency components are very important for intelligibility and consonant recognition 

such as “s”, “ş”, “f”, etc. New method keeps high frequency component using WPT 

because WPT analyzes high-frequency component as well as low frequency 

component. Another effect is mother wavelet selection; db10 is more effective high 

frequency analysis that figured out by experimentally. 

“Determine Optimum Tree” block eliminate noise and unnecessary components in 

speech signal therefore, we can obtain better result than N of M for electrode selection. 

New strategy output electrodes (channels) more accurate than N of M and it conduces 

to reduce interaction between neighbor channels, selection result for the word “good” 

is shown below Figure 5.4 and Figure 5.5. New method electrodes have high-

frequency presenting electrodes than traditional N of M method; this is parallel with 

spectrogram results for each signal.  

41 
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Figure 5.1 Signal waveforms, wide-band spectrogram and narrow-band spectrogram for original signal. 

 

 

Figure 5.2 Signal waveforms, wide-band spectrogram and narrow-band spectrogram for New Speech 

Processing method. 
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Figure 5.3 Signal waveforms, wide-band spectrogram and narrow-band spectrogram N of M strategy. 

 

Figure 5.4 Frame number vs. Cochlear Implant electrodes mapping for new method. Each 

frame has six selected electrodes. 
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Figure 5.5 Frame number vs. Cochlear Implant electrodes mapping for traditional N of M 

method. Each frame has six selected electrodes. 

5.2 Intelligibility 

Twenty normal-hearing listeners between the ages of 23 to 33, with an average of 

24.3 years, participated in the experiment.  All subjects were native speakers of 

Turkish and had air conduction thresholds better than 20 dB HL at octave frequencies 

ranging from 250 to 6000 Hz bilaterally. The immittance test results from 

tympanograms and acoustic reflex thresholds were consistent with normal middle ear 

function in both ears. 

For the practice session, twenty-five words were used for each algorithm (Table 

5.1). purpose of usage two different lists during intelligibility test is avoiding from 

recall effect that appears if listeners listen same list during experiment. These words 

are phonetically balanced and difficult level is adjusted same for both list. In order to 

prepare these lists, vowel and consonant usage frequencies in Turkish Language and 
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Turkish Language characteristics were considered, number of vowel and consonant in 

each list as defined at frequency tables Table 5.2 and Table 5.3. This information 

extracts from all Turkish words that has three letters in Turkish Language Association 

Dictionary.   

All words as per list are simulated by appropriate method which are new method 

and traditional N of M strategy. Simulated words are listened to listeners directly by 

head-set and requested to type to excel sheet from listener what understood when they 

was listening words. Intelligibility criteria were calculated as 

𝐼𝑛𝑡𝑡𝑒𝑙𝑖𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑙𝑒𝑡𝑡𝑒𝑟

𝐴𝑙𝑙 𝑙𝑒𝑡𝑡𝑒𝑟 𝑖𝑛 𝑡𝑕𝑒 𝑙𝑖𝑠𝑡
  𝑋 100 

For example, each list has 75 letters (25 words and each word has 3 letters) and if 

listener understands 50 correct letter from whole list intelligibility should be % 66.66. 

Test results showed us that new method has better intelligibility from traditional N 

of M strategy as a result of practice session on Table 5.4 and as shown Figure 5.6. The 

values which are average percentage of intelligibility for male, female listeners per 

algorithm are given in the Table 5.4.   

Table 5.1 List of intelligibility test samples 

List of New Speech Method List of N of M Method 

ben bir 

bin bor 

cin cıs 

çığ çim 

dar dal 

der dev 

dur din 

dür dul 

fay fiş 

giz göl 

hat hız 

kal kal 
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kil kan 

kol kin 

muş mey 

nal nem 

nem pul 

pas ret 

sil sar 

sön ser 

şık şık 

tel tan 

tim tar 

yan yağ 

yer yün 

 

Table 5.2 Vowel frequency table 

Vowel Frequency 

a 7 

e 5 

ı 3 

i 5 

o 1 

ö 1 

u 2 

ü 1 

 

 

Table 5.3 Consonant frequency table 

Conson

ant 

First position 

frequency 

End position 

frequency 

b 2 0 

c 1 0 

ç 1 0 

d 4 0 

f 0 1 

g 1 0 

ğ 0 1 

h 1 0 
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j 0 0 

k 2 2 

l 0 5 

m 1 2 

n 1 5 

p 0 1 

r 1 5 

s 2 1 

ş 1 1 

t 2 1 

v 0 1 

y 2 1 

z 0 1 

 

 

Table 5.4 Average values of intelligibility test result for each algorithm 

 Sex Age Range Number of Attendees Intelligibility (%) 

New 

Male 23 – 29 8 81.93 

Female 23 – 33 12 79.17 

Total 23 – 33 20 80.55 

N of M 

Male 23 – 29 8 77.60 

Female 23 – 33 12 75.21 

Total 23 – 33 20 76.40 
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Figure 5.6 Graphical presentation of intelligibility test result 

 

 

5.3 Noise Resistance Comparison 

Another test is SNR enhancement test. In our test the samples are contaminated 

with different noise types which are pink, F-16, factory and volvo noise and the noise 

level is 5 DB. Then we applied new selection method and traditional N of M method 

to whole samples and compared SNR changes by using SNR enhancement method. As 

shown Figure 5.7 new selection method gives better result than traditional N of M 

method.  

Male Female Total

New 81,93 79,17 80,55

N of M 77,6 75,21 76,4
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Figure 5.7 SNR comparison for “good” word. The sample is contaminated with different type 

real noises which are “F 16 cockpit”, “Factory”, “Pink”, “Volvo cockpit”. 
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CHAPTER SIX 

CONCLUSION 

6.1 General Results 

In this study, an improved speech processing system that works in wavelet domain 

was proposed for digital hearing aid applications. The core of the system is based on 

the WPT and also used the energy of the wavelet coefficients. By applying several 

different tests, we investigated on the effect of intelligibility and noise resistance for 

the suggested speech processing method. Then, we presented a new electrode selection 

algorithm which depends on wavelet entropy distribution. The proposed electrode 

selection increased the noise performance and intelligibility. Additionally, the 

performance of the proposed methods is better than traditional and recent published 

methods. Further studies can be done on the improving intelligibility in the speech 

enhancement systems. 

“Determine optimum tree” by using best three function is significant part of this 

study because this part eliminates noise and unnecessary components from speech 

signal. It helps to improve intelligibility of speech in noisy environments such as 

roads, train stations, conference halls, etc…  

Unfortunately, using wavelet packet transform and best tree function increase 

speech processing time and it is not sufficient real-time application yet. This study 

cannot be use into current cochlear implant speech processors. 

During the human experiments session normal-hearing people are used and all 

result based on only normal-hearing people as well, patients who are using cochlear 

implant should use for more accurate result for intelligibility. This might give us more 

accurate results. 

 

 

50 



51 

 

 
 

6.2. Future Plan 

For this thesis study, three topics below might be considered for future study. First 

of all is using hybrid mother wavelet during wavelet decomposition process. 

Daubechies family could be use for low-pass filter decomposition and Symlet family 

for high-pass filter decomposition. Second one is deciding mother wavelet due to 

speech signal characteristic at run-time. It might be give better results for speech 

intelligibility. Last topic is bionic wavelet usage instead of wavelet packet transform in 

entire speech processing. Bionic wavelet concept is new and it has better time-

frequency resolution then wavelet packet transform. 
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APPENDIX 

Matlab Code for New Speech Processing Method 

 
clear all; 

phrase=['']; 

[file,path]=uigetfile('*.*',phrase); 

infile=[path file];  

[wavedata,fs,bits] = wavread(infile); 

subband = 22; 

dlength = length(wavedata); 

block=8e-3*fs;  

x=0; 

z=floor(block); 

S=1; 

csdata = zeros(dlength,1); 

while(S<=ceil(dlength/z)); 

    if (z+x) > dlength 

     xbuffer=wavedata(x+1:dlength); 

        [A,B] = ProcessSignal(xbuffer, fs); 

        csdata(x+1:dlength) = A; 

        numberOfElectode(S,:) = B; 

    else 

     xbuffer=wavedata(x+1:z+x); 

        [A,B] = ProcessSignal(xbuffer, fs); 

        csdata(x+1:z+x) = A; 

        numberOfElectode(S,:) = B; 

    end 

 x=x+z; 

 S=S+1;  
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end %end of while loop  

subplot(2,1,1). plot(wavedata); title('Original Signal') 

ylabel('Magnitude'); 

subplot(2,1,2). plot(csdata); title('Constructed Signal') 

xlabel('Discrete Index') 

sound(csdata,fs) 

wavwrite(csdata, fs, 'C:\ \deneme.wav'); 

 

 

function [rsig,numberOfElectode]= ProcessSignal(wavedata,fs) 

T = wpdec(wavedata,8,'db10','log energy'); 

[T,E,N] = besttree(T); 

 

MAP = GenerateMAP; 

N = allnodes(T); 

electrodes = zeros(22,length(wavedata)); 

 

for i = 1 : length(MAP) 

    for j = 1 : length(N) 

        if MAP(i,2) == N(j) 

            temp = wprcoef(T,N(j)); 

            electrodes(MAP(i,1).:) = electrodes(MAP(i,1).:)+temp'; 

        end 

    end 

end 

 

for i = 1 : 22 

   Ent(i) = mean(electrodes(i,:).^2); 

end 
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rsig = zeros(1,length(wavedata)); 

p = 1; 

numberOfElectode = 0; 

for k=1:6    

    if (max(Ent) ~= 0) 

        index = find(Ent == max(Ent)); 

        rsig = rsig + electrodes(index,:); 

        Ent(index) = 0; 

        numberOfElectode(p) = index; 

        p = p+1; 

    end 

end 
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Matlab Code for the Traditional N of M speech Processing Method 

 

clear;      % clear all variables 

      % sound sampling rate 

 

channel=22;    % number of channels 

phrase='Load *.wav File'; 

[file,path]=uigetfile('*.*',phrase); 

infile=[path file];  

[wavedata,srate,bits]=wavread(infile); 

wavedata=wavedata-mean(wavedata); 

srate=22050; 

N=length(wavedata);   % length of sound record 

dt=1/srate;      % sampling interval 

df=1./(dt.*N);     % frequency interval 

fmax=df.*N./2;     % maximum frequency 

d=.5*srate;      % frequency scalar 

t=(1: N)*dt-dt;    % time array 

f=(1: N)*df-df;    % frequency array 

f1=(0:511)*d/512;      % frequency array for sampled spectrum 

Tmax=N*dt;      % time length of sound 

record 

 

block=6e-3*srate;    %4ms time block 

tfout(1:N)=0;     %array used for output 

%------------------------PLOT------------ 

figure(1) 

subplot(2,1,1).plot(t, wavedata); 

title('Original Time Waveform'); 

xlabel('Time (sec)'); % label x axis 



62 

 

 
 

ylabel('Amplitude');  % label y axis 

axis([0 Tmax min(wavedata) max(wavedata)]); % set axis limits 

 

subplot(2,1,2).specgram(wavedata,[],srate,[],[]); 

title('Spectrogram of Original Sound'); 

 

%------------------------PLOT------------ 

 

 

sound(wavedata, srate);   % First time 

 

 

 

[b1, a1]=cheby2(3,30,[50/d 450/d]);   % First channel 

[b2, a2]=cheby2(3,30,[250/d 650/d]);  % Second channel 

[b3, a3]=cheby2(3,30,[450/d 850/d]);  % Third channel 

[b4, a4]=cheby2(3,30,[650/d 1050/d]);  % Fourth channel 

[b5, a5]=cheby2(3,30,[850/d 1250/d]);  % Fifth channel 

[b6, a6]=cheby2(3,30,[1050/d 1450/d]);  % Sixth channel 

[b7, a7]=cheby2(3,30,[1250/d 1650/d]);  % Seventh channel 

[b8, a8]=cheby2(3,30,[1450/d 1900/d]);  % Eighth channel 

[b9, a9]=cheby2(3,30,[1650/d 2150/d]);  % Ninth channel 

[b10, a10]=cheby2(3,30,[1900/d 2500/d]); % Tenth channel 

[b11, a11]=cheby2(3,30,[2150/d 2900/d]); % Eleventh channel 

[b12, a12]=cheby2(3,30,[2500/d 3300/d]); % Twelfth channel 

[b13, a13]=cheby2(3,30,[2900/d 3800/d]); % Thriteenth channel 

[b14, a14]=cheby2(3,30,[3300/d 4500/d]); % Fourteenth channel 

[b15, a15]=cheby2(3,30,[3800/d 5400/d]); % Fifteenth channel 

[b16, a16]=cheby2(3,30,[4500/d 6300/d]); % Sixteenth channel 

[b17, a17]=cheby2(3,30,[5000/d 7000/d]); % Seventeenth channel 
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[b18, a18]=cheby2(3,30,[6300/d 7500/d]); % Eightteenth channel 

[b19, a19]=cheby2(3,30,[7000/d 7800/d]); % Nineteenth channel 

[b20, a20]=cheby2(3,30,[7500/d 8300/d]); % Twentyteenth channel 

[b21, a21]=cheby2(3,30,[7800/d 8700/d]); % Twenty-first channel 

[b22, a22]=cheby2(3,30,[8300/d 10000/d]); % Twenty-second channel 

 

 

 

[blow, alow]=cheby2(8,30,200/d); %envelope filter 

 

 

x=0; 

z=floor(block); 

S=1; 

while(S<floor(N/z)); 

 xnbuffer(x+1:z+x)=wavedata(x+1:z+x).*hanning(z);  

      

     out1n=filter(b1, a1, xnbuffer(x+1:z+x)); 

 out2n=filter(b2, a2, xnbuffer(x+1:z+x)); 

 out3n=filter(b3, a3, xnbuffer(x+1:z+x)); 

 out4n=filter(b4, a4, xnbuffer(x+1:z+x)); 

 out5n=filter(b5, a5, xnbuffer(x+1:z+x)); 

 out6n=filter(b6, a6, xnbuffer(x+1:z+x)); 

 out7n=filter(b7, a7, xnbuffer(x+1:z+x)); 

 out8n=filter(b8, a8, xnbuffer(x+1:z+x));  

 out9n=filter(b9, a9, xnbuffer(x+1:z+x)); 

 out10n=filter(b10, a10, xnbuffer(x+1:z+x)); 

 out11n=filter(b11, a11, xnbuffer(x+1:z+x)); 

 out12n=filter(b12, a12, xnbuffer(x+1:z+x)); 

 out13n=filter(b13, a13, xnbuffer(x+1:z+x)); 
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 out14n=filter(b14, a14, xnbuffer(x+1:z+x)); 

 out15n=filter(b15, a15, xnbuffer(x+1:z+x)); 

 out16n=filter(b16, a16, xnbuffer(x+1:z+x)); 

     out17n=filter(b16, a16, xnbuffer(x+1:z+x)); 

     out18n=filter(b16, a16, xnbuffer(x+1:z+x)); 

     out19n=filter(b16, a16, xnbuffer(x+1:z+x)); 

     out20n=filter(b16, a16, xnbuffer(x+1:z+x)); 

     out21n=filter(b16, a16, xnbuffer(x+1:z+x)); 

     out22n=filter(b16, a16, xnbuffer(x+1:z+x)); 

     

    rout1n=abs(out1n); 

    low1n=filter(blow, alow, rout1n); 

    rout2n=abs(out2n); 

    low2n=filter(blow, alow, rout2n); 

    rout3n=abs(out3n); 

    low3n=filter(blow, alow, rout3n); 

    rout4n=abs(out4n); 

    low4n=filter(blow, alow, rout4n); 

    rout5n=abs(out5n); 

    low5n=filter(blow, alow, rout5n); 

    rout6n=abs(out6n); 

    low6n=filter(blow, alow, rout6n); 

    rout7n=abs(out7n); 

    low7n=filter(blow, alow, rout7n); 

    rout8n=abs(out8n); 

    low8n=filter(blow, alow, rout8n); 

    rout9n=abs(out9n); 

    low9n=filter(blow, alow, rout9n); 

    rout10n=abs(out10n); 

    low10n=filter(blow, alow, rout10n); 
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    rout11n=abs(out11n); 

    low11n=filter(blow, alow, rout11n); 

    rout12n=abs(out12n); 

    low12n=filter(blow, alow, rout12n); 

    rout13n=abs(out13n); 

    low13n=filter(blow, alow, rout13n); 

    rout14n=abs(out14n); 

    low14n=filter(blow, alow, rout14n); 

    rout15n=abs(out15n); 

    low15n=filter(blow, alow, rout15n); 

    rout16n=abs(out16n); 

    low16n=filter(blow, alow, rout16n); 

    rout17n=abs(out17n); 

    low17n=filter(blow, alow, rout16n); 

    rout18n=abs(out18n); 

    low18n=filter(blow, alow, rout16n); 

    rout19n=abs(out19n); 

    low19n=filter(blow, alow, rout16n); 

    rout20n=abs(out20n); 

    low20n=filter(blow, alow, rout16n); 

    rout21n=abs(out21n); 

    low21n=filter(blow, alow, rout16n); 

    rout22n=abs(out22n); 

    low22n=filter(blow, alow, rout16n); 

     

 

     

    En(1)=sum(low1n.^2); 

 En(2)=sum(low2n.^2); 

 En(3)=sum(low3n.^2); 
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 En(4)=sum(low4n.^2); 

 En(5)=sum(low5n.^2); 

 En(6)=sum(low6n.^2); 

 En(7)=sum(low7n.^2); 

 En(8)=sum(low8n.^2); 

 En(9)=sum(low9n.^2); 

 En(10)=sum(low10n.^2); 

 En(11)=sum(low11n.^2); 

 En(12)=sum(low12n.^2); 

 En(13)=sum(low13n.^2); 

 En(14)=sum(low14n.^2); 

 En(15)=sum(low15n.^2); 

 En(16)=sum(low16n.^2); 

    En(17)=sum(low17n.^2); 

    En(18)=sum(low18n.^2); 

    En(19)=sum(low19n.^2); 

    En(20)=sum(low20n.^2); 

    En(21)=sum(low21n.^2); 

    En(22)=sum(low22n.^2); 

     

    Ebuf = En; %buffuring En 

    

 

       kl = 1;  

        for k=1:6   % select max six output 

      find=max(En);      

      for p=1:channel   

          if find==En(p)  

             En(p)=0; 

                index(S,k) = p; 
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                kl = kl+1; 

          end 

      end 

        end 

         

 

fout1n=0;fout2n=0;fout3n=0;fout4n=0;fout5n=0;fout6n=0;fout7n=0;fout8n=0; 

%clear output 

fout9n=0;fout10n=0;fout11n=0;fout12n=0;fout13n=0;fout14n=0;fout15n=0;fout16

n=0; 

     

 

    if En(1)==0; %construct processed speech 

    fout1n=out1n; 

 end 

 

 if En(2)==0; 

    fout2n=out2n; 

    end   

     

 if En(3)==0; 

    fout3n=out3n; 

    end 

     

 if En(4)==0; 

    fout4n=out4n; 

    end 

     

 if En(5)==0; 

    fout5n=out5n; 
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    end 

     

    if En(6)==0; 

    fout6n=out6n; 

    end 

     

    if En(7)==0; 

    fout7n=out7n; 

    end 

     

    if En(8)==0; 

    fout8n=out8n; 

    end 

     

    if En(9)==0; 

    fout9n=out9n; 

    end 

     

    if En(10)==0; 

    fout10n=out10n; 

    end 

     

    if En(11)==0; 

    fout11n=out11n; 

    end 

     

    if En(12)==0; 

    fout12n=out12n; 

    end 
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    if En(13)==0; 

    fout13n=out13n; 

    end 

     

    if En(14)==0; 

    fout14n=out14n; 

    end 

     

    if En(15)==0; 

    fout15n=out15n; 

    end 

     

    if En(16)==0; 

    fout16n=out16n; 

    end 

     

    if En(17)==0; 

       fout17n=out17n; 

    end 

     

    if En(18)==0; 

       fout18n=out18n; 

    end 

     

    if En(19)==0; 

       fout19n=out19n; 

    end 

     

    if En(20)==0; 

       fout20n=out20n; 
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    end 

     

    if En(21)==0; 

       fout21n=out21n; 

    end 

     

    if En(22)==0; 

       fout22n=out22n; 

    end 

   

 foutn=fout1n+fout2n+fout3n+fout4n+fout5n+fout6n+fout7n+fout8n+fout9n+f

out10n+fout11n+fout12n+fout13n+fout14n+fout15n+fout16n+fout17n+fout18n+fout

19n+fout20n+fout21n+fout22n;%add process 

 

tfoutn(x+1:z+x)=foutn; 

 x=x+z; 

 S=S+1;  

end  

index 

  

amp1=sum(wavedata.^2); 

amp2=sum(tfoutn.^2); 

tfoutn=tfoutn*sqrt(amp1/amp2); 

 

subplot(2,1,1).plot(tfoutn); 

title('Synthesized Time Waveform'); 

xlabel('Time (sec)'); 

ylabel('Amplitude'); 

 

subplot(2,1,2).specgram(tfoutn,[],srate,[],[]); 
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title('Spectrogram of Synthesized Sound');  

 

sound(tfoutn, srate); %play output speech 

 

wavwrite(tfoutn, srate, 'Please provide directory information 

here\f16sample_NofM.wav'); 

 

 


