
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

ARCHAEOLOGICAL IMAGING AND

VISUALIZATION

by

Özcan KINALI

October, 2009

İZMİR

ARCHAEOLOGICAL IMAGING AND

VISUALIZATION

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Computer Engineering, Computer Engineering Program

by

Özcan KINALI

October, 2009

İZMİR

ii

M.Sc THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “ARCHAEOLOGICAL IMAGING AND

VISUALIZATION” completed by ÖZCAN KINALI under supervision of

ASSIST. PROF. DR. ADİL ALPKOÇAK and we certify that in our opinion it is

fully adequate, in scope and in quality, as a thesis for the degree of Master of

Science.

Assist. Prof. Dr. Adil ALPKOÇAK

Supervisor

 (Jury Member) (Jury Member)

Prof.Dr. Cahit HELVACI
Director

Graduate School of Natural and Applied Sciences

iii

ACKNOWLEDGMENTS

I would like to thank my supervisor Assist. Prof. Dr. Adil ALPKOÇAK for his

kind suggestions, guidance and all the other valuable supports.

I would also thank to Prof. Dr. Mahmut DRAHOR and Res. Assist. Meriç

BERGE for their comments, suggestions and feedback.

I have special thanks to my family for all their support, patience, comments,

guidance and everything rest than these during my thesis study; especially to my

mother Huri, my father Hikmet and my brother Orhan.

Özcan KINALI

iv

ARCHAEOLOGICAL IMAGING AND VISUALIZATION

ABSTRACT

The main goal of this thesis is to develop a sophisticated visualization application

that can be better used by geophysicists, geologists and archaeologists to explore and

understand the spatial visualization of data collected from the historical site.

Application has functionalities such as rotating, zooming and cutting the 3D

visualization of data from the historical site. Additionally, it is also possible to make

some geophysical values transparent for getting a better understanding about the

historical site. Application also has capability such as taking snap-shot and recording

video abilities.

Visualization process can be repeated by using different interpolation and

colormap settings. Maximum geophysical data limit value can be defined and

changed in application, so users can adjust the insignificant data values and get start

the visualization process. System was developed by using Java programming

language in Eclipse Platform and VTK (Visualization ToolKit) is used to generate

three dimensional graphics.

Keywords: Imaging, Visualization, Archaeology, VTK, Interpolation, Histogram

Equalization, 3D Graphics, IDW.

v

ARKEOLOJİK GÖRÜNTÜLEME VE GÖRSELLEŞTİRME

ÖZ

Bu tezin ana amacı, gelişmiş bir görüntüleme uygulaması geliştirerek,

jeofizikçilerin, jeologların ve arkeologların tarihsel alanları daha iyi araştırmasını ve

anlamasını sağlamaktır. Uygulama, üç boyutlu olarak görselleştirilen tarihi

alanlardan elde edilen verinin döndürülmesi, yakınlaştırılması ve bazı alanların ilgili

bölgelerinin kesilmesi gibi işlevselliklere sahiptir. Bunun yanında, tarihi alanı daha

iyi anlayabilmek için bazı jeofizik değerlerinin saydam yapılması da

sağlanabilmektedir. Uygulama ayrıca, snap-shot alma ve video kaydetme gibi

yeteneklere de sahiptir.

Görselleştirme süreci farklı interpolasyon ve colormap ayarları kullanarak

tekrarlanabilir. Uygulamada, maksimum jeofiziksel veri limiti tanımlanabilir ve

değiştirilebilir, böylece kullanıcılar önemsiz veri değerlerini belirleyerek,

görselleştirme sürecini başlatabilir. Sistem, Eclipse platformunda Java programlama

dili kullanılarak geliştirilmiştir ve üç boyutlu grafikler elde edebilmek için de VTK

(Visualization ToolKit) kullanılmıştır.

Anahtar Sözcükler: Görüntüleme, Görselleştirme, Arkeoloji, VTK,

Interpolasyon, Histogram Eşitleme, 3D Grafikler, IDW.

vi

CONTENTS

Page

M.Sc THESIS EXAMINATION RESULT FORM... ii

ACKNOWLEDGMENTS ..iii

ABSTRACT.. iv

ÖZ .. v

CHAPTER ONE - INTRODUCTION ... 1

CHAPTER TWO - BACKGROUND AND PRELIMINARIES 3

2.1 Histogram equalization .. 3

2.1.1 A Simple 8x8 2D Image .. 5

2.2 Interpolation.. 8

2.2.1 Trilinear Interpolation.. 9

2.2.2 Cosine Interpolation... 12

2.2.3 Cubic Interpolation .. 13

2.2.4 Nearest Neighbor Interpolation ... 14

CHAPTER THREE - VTK AND IDW .. 16

3.1 VTK Architecture.. 16

3.1.1 VTK Core .. 17

3.1.2 VTK Interpreted Layer .. 17

3.2 IDW ... 19

vii

CHAPTER FOUR - APPLICATION DESIGN AND DEVELOPMENT 21

4.1 Reading and Equalizing the Values... 22

4.2 Color Mapping Process.. 23

4.3 Building the Point Array .. 26

4.4 Interpolation Process ... 26

4.5 Building the Image Data and the Visualization Process .. 26

4.5.1 vtkVolume ... 28

4.5.2 vtkPiecewiseFunction .. 29

4.5.3 vtkColorTransferFunction ... 31

4.5.4 vtkVolumeProperty.. 32

4.5.5 vtkVolumeMapper ... 32

4.5.6 Finishing the Visualization Process, Rendering Concepts 32

4.6 Snap-Shot Process ... 33

4.7 RecordingVideo Process .. 34

4.8 GUI Forms and Some Explanation About the Application...................................... 35

4.8.1 Starting the Application ... 35

4.8.2 ColorMap Operations .. 38

4.8.3 Main Visualization Window.. 40

4.8.3.1 Visualization Window... 41

4.8.3.2 Cutting Operations Window .. 42

4.8.3.3 Choose Geophysical Data Window .. 43

4.8.3.4 Operation Shortcuts Window... 44

4.8.3.5 Data Window ... 45

4.8.4 Main Visualization Window Menu.. 46

4.8.4.1 File Menu... 47

4.8.4.2 Render Menu.. 47

4.8.4.3 Options Menu... 48

viii

4.8.4.4 Video Menu ... 48

4.8.4.5 Window Menu.. 49

CHAPTER FIVE - CONCLUSION AND FUTURE WORK.............................. 50

REFERENCES... 51

1

CHAPTER ONE

INTRODUCTION

Visualization is a part of our everyday life. From weather maps to the exciting 3D

graphics of the entertainment industry, examples of visualization abound.

Visualization engages the primary human sensory apparatus, vision, as well as the

processing power of the human mind. The result is a simple, effective and high-

bandwidth medium for communicating complex information. Different terminology

is used to describe visualization.

Scientific visualization is the formal name given to the field in computer science

that encompasses user interface, data representation and processing algorithms,

visual representations and other sensory presentation such as sound or touch. Data

visualization is another phrase used to describe visualization. Although rigorous

definitions have not been accepted data visualization generally connotes application

of statistical methods outside the realm of visualization. On the other hand, data

visualization implies applications beyond the sciences and engineering. In this thesis,

the term data visualization is used instead of the more specific scientific

visualization.

Computer imaging techniques have become an important diagnostic tool in the

practice of archeology and modern medicine. These techniques includes such as

XRAY Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). In

archeology, these techniques use a sampling or data acquisition process to capture

information about internal structure. The information is in the form of slice planes or

cross sectional images of the structure.

Archaeology is a destructive process in which accurate and detailed recording of a

historical site is imperative. As a historical site is exposed, documentation is required

in order to recreate and understand the site in context. Archaeologists use various

2

kinds of written documentation, sketches, diagrams, and photographs to document

the physical state of a historical site while it is being excavated. While there are

many standards or guidelines for recording the state of the historical site during

excavation, their main focus is to record and archive the data, rather than visualize it.

A 3D imaging and visualization application is developed by conclusion of this

M.Sc thesis project. The application can assist archaeologists by building rich,

geometrically and photometrically accurate 3D visualization of data collected from a

historical site. The modeling effort begins with data acquisition (images, range scans,

coordinate and geophysical values).

This thesis concentrated on developing a useful visualization application that can

be better used by researchers to explore and understand the historical site. The

application is developed on Eclipse platform by using Java programming language.

Graphical User Interfaces (GUI’s) are implemented by using Java’s AWT and

SWING libraries. Docking windows are builded by using InfoNode Docking

Windows (IDW) tool. IDW is a Java Swing framework for building docking

windows. Imaging and Visualization processes are created by using Visualization

Toolkit (VTK).

This thesis is divided into 5 chapters. Next chapter, Chapter Two, explains the

studies and the algorithms used in the thesis. Chapter Three introduces the packages

(IDW, VTK) used in the application VTK, explains same basic terms about VTK and

gives information about the VTK Visualization Pipeline Architecture. Chapter Four

explains the application and gives some information about the used datasets,

diagrams and screen shots about the application. Finally, the last chapter presents the

conclusion of the thesis and gives information about possible future studies.

3

CHAPTER TWO

BACKGROUND AND PRELIMINARIES

This project focuses the visualization process, but before beginning of the

visualization process, some operations are followed in two processes. These two

processes are, Histogram Equalization and Interpolation processes.

Source file of the historical site includes unrefined data. Source file consists

coordinate and geophysical data values. If the histogram of these geophysical values

is generated, it can be seen that some geophysical values are quite much bigger or

smaller than the common such values. This situation is not prefered because when

the visaulization process is completed and the historical site is shown to the user in

the screen, colors of the historical site might be quite different from the expected

colors. To eliminate these values and to contrast the histogram of whole data values,

histogram equalization method is used.

After equalized geophysical values are generated, Interpolation Process begins. In

this process, new points are generated by using the known data points. Interpolation

can be succeeded in different ways. After the interpolation process, new data points

are obtained. These points are used in the visaulization process.

2.1 Histogram equalization

Histogram equalization is a method in image processing of contrast adjustment

using the image's histogram. Histogram equalization usually increases the local

contrast of many images, especially when the usable data of the image is represented

by close contrast values. Through this adjustment, the intensities can be better

distributed on the histogram. This allows for areas of lower local contrast to gain a

higher contrast without affecting the global contrast. Histogram equalization

accomplishes this by effectively spreading out the most frequent intensity values.

4

For example, if a simple image is analyzed, some definitions like below can be

approached:

Let ni be the number of occurrences of color or data level i. The probability of an

occurrence of a point value of level i in the image is:

(1)

L is the total number of geophysical data levels in the image, n is the total number

of points in the image, and p is the image's histogram, normalized to [0,1].

If the cumulative distribution function (cdf) defined as “c”, corresponding to p, the

definition in below can be written:

(2)

Cdf also known as the image's accumulated normalized histogram.

If a transformation of the form

(3)

is created, that will produce a level y for each level x in the original image, such that

the cdf of y will be linearized across the value range. The transformation can be

defined by:

(4)

T maps the levels into the domain of 0..1. In order to map the values back into their

original domain, the following simple transformation needs to be applied on the

result:

(5)

5

2.1.1 A Simple 8x8 2D Image

Figure 2.1 shows a 2D image. It has 64 geophysical (or electrical) data values.

Figure 2.1 A simple 8x8 2D image

The histogram for the image in Figure 2.1 is shown in Table 2.1. Data or electrical

resistivity values that have a zero count are excluded for the sake of brevity.

Table 2.1 Histogram of the image

Value Count Value Count Value Count Value Count Value Count

52 1 64 2 72 1 85 2 113 1

55 3 65 3 73 2 87 1 122 1

58 2 66 2 75 1 88 1 126 1

59 3 67 1 76 1 90 1 144 1

60 1 68 5 77 1 94 1 154 1

61 4 69 3 78 1 104 2

62 1 70 4 79 2 106 1

63 2 71 2 83 1 109 1

6

The cdf is shown in Table 2.2. Again, the data that do not contribute to an

increase the cdf are excluded for brevity.

Table 2.2 Cdf of the image

 Value cdf Value cdf Value cdf Value cdf Value cdf

52 1 64 19 72 40 85 51 113 60

55 4 65 22 73 42 87 52 122 61

58 6 66 24 75 43 88 53 126 62

59 9 67 25 76 44 90 54 144 63

60 10 68 30 77 45 94 55 154 64

61 14 69 33 78 46 104 57

62 15 70 37 79 48 106 58

63 17 71 39 83 49 109 59

This cdf shows that the minimum value in the subimage is 52 and the maximum

value is 154. The cdf of 64 for value 154 coincides with the number of points in the

image. The cdf must be normalized to [0,255]. The general histogram equalization

formula is:

(6)

Where cdfmin is the minimum value of the cumulative distribution function (in this

case 1), MxN gives the image's number of points (for the example above 64, where M

is width and N the height) and L is the number of geophysical data levels used (in

7

most cases, like this one, 256). The equalization formula for this particular example

is:

(7)

For example, the cdf of 78 is 46. (The value of 78 is used in the bottom row of the

7th column.) The normalized value becomes:

(8)

Once this is done then the values of the equalized image are directly taken from

the normalized cdf to yield the equalized values. Figure 2.2 shows the equalized

image.

Figure 2.2 Equalized image

It is important to pay attention that the minimum value (52) is now 0 and the

maximum value (154) is now 255.

8

Original Image Equalized Image

Figure 2.3 Comparision of original and equalized images

Figure 2.3 shows the differences of the original and the equalized images. The

contrast of the lighter and darker colors can be seen easily.

2.2 Interpolation

In the mathematical subfield of numerical analysis, interpolation is a method of

constructing new data points within the range of a discrete set of known data points.

In engineering and science one often has a number of data points, as obtained by

sampling or experimentation, and tries to construct a function which closely fits

those data points. This is called curve fitting or regression analysis. Interpolation is a

specific case of curve fitting, in which the function must go exactly through the data

points.

Interpolation can be used by many applications. In archaeological applications,

interpolation is as quite relevant as the biomedical applications. Interpolation can be

used in these applications to modify the sampling rate of pixels (picture elements) or

voxels (volume elements). This operation, named rescaling, is desirable when an

acquisition device or a scanner, has a nonhomogeneous resolution, typically a fine

within slice resolution and a coarse across slice resolution. In this case, the purpose is

to change the aspect ratio of voxels in such a way that they correspond to geometric

9

cubes in the physical space. Often, the across slice resolution is modified to match

the within slice resolution, which is left unchanged. This results in a volumetric

representation that is easy to handle (e.g., to visualize or to rotate) because it enjoys

homogenous resolution. A related operation is reslicing. Suppose again that some

volume has a higher within slice than across slice resolution. In this case, it seems

natural to display the volume as a set of images oriented parallel to the slices, which

offers its most detailed presentation. Physicians may however be sometimes

interested in other views of the same data; for simplicity, they often request that the

volume is also displayed as set of images oriented perpendicular to the slices.

In this project four kinds of interpolation is used:

 Trilinear Interpolation

 Cosine Interpolation

 Cubic Interpolation

 Nearest Neighbor Interpolation

2.2.1 Trilinear Interpolation

Linear interpolation takes two data points and intends to find the interpolated

value by using distance proportion approach. The points are simply joined by straight

line segments. Each segment (bounded by two data points) can be interpolated

independently.

public static double linearInterpolate(double a1, double
a2, int n, int m)
{

return a1+(a2-a1)*n/m;
}

Figure 2.4 Trilinear Interpolation Java code

Figure 2.4 shows Trilinear Interpolation Java Code. m defines the count of new

points to be interpolated. The parameter n defines where to estimate the value, on the

interpolated line. It is 0 at the first point and 1 at the last point. Interpolated point is

10

the nth value from the beginning. Figure 2.5 shows the graph of changing the result

value in Linear Interpolation method according to a. a is the parameter which is used

in the Java code in Figure 2.4.

Figure 2.5 Linear Interpolation graph

Trilinear interpolation is a method of multivariate interpolation on a three

dimensional regular grid. It approximates the value of an intermediate point (x,y,z)

within the local axial rectangular prism linearly, using data on the lattice points. For

an arbitrary, unstructured mesh (as used in finite element analysis), other methods of

interpolation must be used; if all the mesh elements are tetrahedra (3D simplices),

then barycentric coordinates provide a straightforward procedure. Trilinear

interpolation is frequently used in numerical analysis, data analysis, and computer

graphics.

On a periodic and cubic lattice with spacing 1, let xd, yd, and zd be the differences

to the largest integer smaller than each of x, y, z, that is:

(9)

(10)

(11)

11

First it is interpolated along z, giving:

(12)

(13)

(14)

(15)

Then these values are interpolated along y, giving:

(16)

(17)

Finally these values are interpolated along x:

(18)

These equations give a predicted value for the point.

The result of trilinear interpolation is independent of the order of the interpolation

steps along the three axes: any other order, for instance along x, then along y, and

finally along z, produces the same value.

Figure 2.6 A cube with eight points

12

Figure 2.6 shows a cube with eight points which Trilinear Interpolation will be

performed on. The above operations can be visualized as follows: First the eight

corners of the cube are assessed. These corners have the values C000, C100, C010, C110,

C001, C101, C011, C111.

Next, linear interpolation is performed between C000 and C100 to find C00, C001 and

C101 to find C01, C011 and C111 to find C11, C010 and C110 to find C10.

Figure 2.7 Trilinear Interpolation

Then interpolation is done between C00 and C10 to find C0, C01 and C11 to find C1.

Finally, the value C is calculated via linear interpolation of C0 and C1. Figure 2.7

shows the operations which are used to find the value C.

2.2.2 Cosine Interpolation

Cosine Interpolation is a smoother function than the linear interpolation. A

suitable orientated piece of a cosine function serves to provide a smooth transition

between adjacent segments.

13

public static double cosineInterpolate(double a1, double
a2, int n, int m)
{

double mu=(1-Math.cos(Math.PI*n/m))/2;
return a1*(1-mu)+a2*mu;

}
Figure 2.8 Cosine Interpolation Java code

Figure 2.8 shows Cosine Interpolation Java Code. m defines the count of new

points to be interpolated. The parameter n defines where to estimate the value, on the

interpolated line. Figure 2.9 shows the graph of changing the result value in Cosine

Interpolation method according to a.

Figure 2.9 Cosine Interpolation graph

2.2.3 Cubic Interpolation

Cubic interpolation is the simplest method that offers true continuity between the

segments. As such it requires more than just the two endpoints of the segment but

also the two points on either side of them. So the function requires 4 points in all

labeled y0, y1, y2, and y3, in the Java Code in Figure 2.10.

14

public static double cubicInterpolate(double y0, double
y1, double y2, double y3, int n, int m)
{

double mu, mu2, a0, a1, a2, a3;

mu = (double)n/m;
mu2 = mu*mu;
a0 = y3-y2-y0+y1;
a1 = y0-y1-a0;
a2 = y2-y0;
a3 = y1;
return a0*mu*mu2 + a1*mu2 + a2*mu + a3;

}
Figure 2.10 Cubic Interpolation Java code

mu behaves for interpolating between the segment y1 to y2. This does raise issues

for how to interpolate between the first and last segments. A common solution is the

dream up two extra points at the start and at the end of the sequence, the new points

are created so that they have a slope equal to the slope of the start or end segment.

Figure 2.11 shows the graph of changing the result value in Cubic Interpolation

method according to a.

Figure 2.11 Cubic Interpolation graph

2.2.4 Nearest Neighbor Interpolation

The simplest interpolation method is to locate the nearest data value, and assign

the same value. In one dimension, there are seldom good reasons to choose this one

over linear interpolation, which is almost as cheap, but in higher dimensions, in

15

multivariate interpolation, this can be a favorable choice for its speed and simplicity.

Figure 2.12 shows the graph of changing the result value in Nearest Neighbor

Interpolation method according to a.

Figure 2.12 Nearest Neighbor Interpolation

16

CHAPTER THREE

VTK AND IDW

Visualization process of the application in this project is developed by using

VTK. VTK is an open-source, object-oriented software system for 3D computer

graphics, visualization and image processing. VTK is implemented in C language,

but VTK also supports Java, Tcl and Java language bindings, permitting complex

applications, rapid application prototyping, and simple scripts. So java is choosen for

use in this project.

Although VTK doesn’t provide any user interface components, it can be

integrated with existing widget sets, such as in this project it is integrated with Java

SWING and Java AWT Libraries. VTK provides a variety of data representations

including unorganized point sets, polygonal data, images, volumes and structured,

rectilinear, and unstructured grids. VTK comes with readers/importers and

writers/exporters to exchange data with other applications. Hundreds of data

processing filters are available to operate on these data, ranging from image

convolution to Delaunay triangulation. VTK’s rendering model supports 2D,

polygonal and volumetric approaches that can be used in any combination.

In this application portable windows are used. This ability is provided by using

IDW (InfoNode Docking Windows) tool. The architecture in IDW allows the user to

move, minimize and maximize the independent dockable windows. Windows can be

also closed and restored independently from the other dockable windows.

3.1 VTK Architecture

VTK consists of two major pieces; a compiled core (implemented in C) and an

automatically generated interpreted layer. The interpreted layer supports Java, Tcl

and Python.

17

3.1.1 VTK Core

Data structures, algorithms, and time-critical system functions are implemented in

the core. Common design patterns such as object factories and virtual functions

insure portability and extensibility. Since VTK is independent of any graphical user

interface (GUI), it doesn’t depend on the windowing system. Hooks into the window

ID and event loop let developers plug VTK into their own applications. An abstract

graphics model achieves graphics portability.

3.1.2 VTK Interpreted Layer

While the compiled core provides speed and efficiency, the interpreted layer

offers flexibility and extensibility. For example, using GUI prototyping tools such as

Java AWT and Java SWING, Tcl/Tk or Python/Tk permits building professional

applications rapidly. These popular programming languages come with other

packages such as Python’s numerical library NumPy.

VTK is a large, complicated and powerful toolkit for 3D imaging and

visualization. It is an object-oriented library. Many operations in VTK are performed

using a pipeline architecture where multiple elements are attached together to

perform a complex task. A typical pipeline takes the form shown in the figure below.

This is broken into two parts. The first part of the VTK Visualization Pipeline

Architecture is shown in Figure 3.1 below.

Figure 3.1 First part of the VTK Visualization Pipeline Architecture

18

 Sources; these classes produce data. For example, vtkImageData is a source

which consists the image data.

 Filters; these operate on some data to produce a modified version. For example,

vtkVolume is used to represent a volumetric entity in a rendering scene. The

volume maintains a reference to the volumetric data (i.e. the volume mapper).

 Mappers; these define the interface between data (e.g. images) and graphics

primitives or software rendering techniques. A special kind of “mapper” like

class are the writers which output the data to files (e.g. vtkVolumeMapper).

Multiple mappers may share the same input, but render it in different ways.

Figure 3.2 Second part of the VTK Visualization Pipeline Architecture

The second part of the VTK Visualization Pipeline Architecture is shown in

Figure 3.2. This part consists of the elements that make up the virtual 3D world,

namely:

 Props/Actors; these take as input the output of a mapper and know how to

generate the visible representation of data. The type of rendering produced is

governed by an auxiliary data structure known as a property (e.g. color,

showing a surface as a wire frame vs a full surface etc.). Props take as their

input the output of a mapper. Mappers should not be shared among props.

19

Volumes – these are special kinds of props that are used to display volume

rendered images.

 Renderer; Renderers are the classes that generate a 2D image from a 3D scene.

They have attached actors as well as lights and cameras. Renderer is an object

that controls the rendering process for objects. Rendering is the process of

converting geometry, a specification for lights, and a camera view into an

image. vtkRenderer also performs coordinate transformation between world

coordinates, view coordinates (the computer graphics rendering coordinate

system), and display coordinates (the actual screen coordinates on the display

device). Certain advanced rendering features such as two-sided lighting can

also be controlled.

 Render Window; the Render Window is the piece of screen real estate in which

the virtual camera image is displayed. An important auxiliary item attached to

a render window is an interactor which handles mouse/keyboard input to the

window.

3.2 IDW

InfoNode Docking Windows (IDW) is a Java Swing framework for building

docking windows. Docking windows are internal application windows which the

user can rearrange by dragging them. Unlike common windows GUIs in Java, the

docking windows are docked to each other and can not be moved around freely (with

some exceptions).

Docking windows are commonly used in IDEs like Eclipse, Netbeans and the

Microsoft developer tools. However, their usage is not in any way limited or

connected to IDEs, many GUI applications can benefit form using a docking

windows framework that allows the user to customize the layout of the application to

his or her needs and preferences. Using IDW is similar to creating an application

layout using JSplitPanes, JTabbedPanes and layout managers, but the GUI will

become much more flexible and customizable. Some of the features of IDW are:

20

 Unlimited depth of nested split and tab windows. For example, two windows

can be put in a split pane that is located in a tab of a tab pane. There is

practically no limitation on the window layout.

 Tabs can be placed on any side of the tab window. The text and icon of the tabs

can be rotated in any direction.

 Windows can be minimized to any edge of any application. They can be

dragged to and from the edges.

 Windows can be docked to floating windows that can be moved anywhere on

the desktop.

 A tab window can be maximized to cover the entire window space (except the

window bars). It can be later be restored to its original location.

 A window or window tree can be undocked to a floating window.

 Easily save and load the window layout using streams.

 Theme support.

 Flexible properties system which allows the user to customize the look and

behaviour of ID to suit the user’s application.

21

CHAPTER FOUR

APPLICATION DESIGN AND DEVELOPMENT

The application in this thesis is coded under Java Platform with VTK support. It

can be accepted that the application is developed with arrangement of some

processes and steps as it is shown in Figure 4.1.

Figure 4.1 General architecture of the application

First, source file is read and value equalizing step starts. Then interpolation

process begins and image data is builded to be used later in visualization process.

Visualization Process is coded by using VTK in Java. Like the general architecture

of the application seen in Figure 4.1, Visualization Process consists of some sub-

Reading Values

Equalizing Values

Interpolation Process

Building Image Data

Visualization Process

GUI

Snap-Shot Process

Recording Video
Process

22

steps. When this process is finished, 3D visualization of data collected from the

historical site is drawn in GUI frame by the application.

Snap-Shot and Recording Video processes are secondary processes in the

application. These processes starts when user triggers them by main GUI form.

4.1 Reading and Equalizing the Values

Source file includes the coordinate and data values of the historical site. First, the

source file is opened and the coordinate and geophysical values are read, then

frequency arrays are made for each axes (Veriler.orj_x_degerler,

Veriler.orj_y_degerler, Veriler.orj_z_degerler).

Source file must be prepared as tab separated file as in “x\ty\t\z\tr” form as it is

shown in Figure 4.2. This means; x, y, z and geophysical data must be written in the

same sentence by putting \t (tab character) between the values.

Figure 4.2 Structure of the source file

The frequency arrays are used for determining base xyz points and the array sizes

of the coordinate values. To adjust the colors and to eliminate the unneeded data,

“Histogram Equalisation” technique is used, as explained in Chapter TWO.

23

To adjust the data, the geophysical values are put into their place in the

cumulative distribution function (cdf) array. Related element of the cdf array’s value

is incremented by 1. This also means that, it’s frequency value is incremented. Thus,

this provides to determine which geophysical values are most common used.

for(int i=1;i<101;i++)
{

value=Veriler.cum_dist_func[i]+Veriler.cum_dist_func[i-1];
Veriler.cum_dist_func[i]=value;

}

Figure 4.3 Building Cumulative Distribution Function (cdf) Java code

After reading all data and incrementing the related values, the geophysical data

histogram is formed. Then cdf array is updated by adding each element’s value to its

next element’s value as it is shown in Figure 4.3. This provides to find which values

are mostly contributed to the coordinate array.

The situated cdf value is divided into the count of the geophysical values and

multiplied by the highest data value (please take a look at equation 6). The result

values are the new values of the equalized array.

4.2 Color Mapping Process

Color values (which will be calculated from the geophysical values) are calculated

by considering the color map array and then values are balanced to 0-100 limits.

Each color value is proportioned to the color map array, and so rgb values are found.

After this operation, calculated color values are put into the point array.

Two classes are used to apply color mapping process. ColorMapPenceresi is a

GUI class to select, open, change or create a Color Map file. When a Color Map file

is selected by user, ColorMap class is used for loading the color map array. Color

map files have “.clr” extension. File’s first column is used for determining the limit

percentage of rgb values. Following three values are expressing red, blue and green

tones as it is shown in Figure 4.4.

24

Figure 4.4 ColorMap source file structure

ColorMap class has the “double[] rgbDondur(double value)” method. This

method takes the geophysical value, looks the ColorMap array to find its equivalent

red, green, blue values. The geophysical value is proportioned between the distance

of two percentage value to find the color values. The Java code of this operations are

shown in Figure 4.5.

25

public static double[] rgbDondur(double value)
{

double rgb[]=new double[3];
double red,green,blue,agirlik;
red=0;

 green=0;
 blue=0;

for(int i=0;i<Veriler.colorMapArray.length;i++)
 {
 if(value<Veriler.colorMapArray[i][0])
 {
 agirlik=(value-Veriler.colorMapArray[i-1][0]) /
(Veriler.colorMapArray[i][0]-Veriler.colorMapArray[i-1][0]);

 red=Veriler.colorMapArray[i-1][1] + agirlik *
(Veriler.colorMapArray[i][1]-Veriler.colorMapArray[i-1][1]);

 green=Veriler.colorMapArray[i-1][2] + agirlik *
(Veriler.colorMapArray[i][2]-Veriler.colorMapArray[i-1][2]);

 blue=Veriler.colorMapArray[i-1][3] + agirlik *
(Veriler.colorMapArray[i][3]-Veriler.colorMapArray[i-1][3]);

 break;
 }
 else if(value==Veriler.colorMapArray[i][0])
 {
 red=Veriler.colorMapArray[i][1];
 green=Veriler.colorMapArray[i][2];
 blue=Veriler.colorMapArray[i][3];
 break;
 }
 }

rgb[0]=red;
rgb[1]=green;
rgb[2]=blue;

return rgb;
}
Figure 4.5 Geophysical value to RGB color conversion Java code

If an example is given with considering the Figure 4.4, the ColorMap process can

be better understood.

Let the value has the percentage of 27.8, then it can be seen that the value must be

between 27.586207-28.078818 values. If the value is proportioned to these two

values, the rgb values can be easily found:

26

 value percentage: 27.8

 red value: 0

 green value: 22

 blue value: 22

4.3 Building the Point Array

After geophysical values are converted to RGB colors, they are put into the point

array with their coordinate values. The point array holds the instances of Nokta class

objects. The point array’s variable name is “Veriler.orjinal”. Nokta class holds the

RGB colors, coordinate and geophysical value of a point. Veriler.orjinal is a Three-

Dimensional array which holds the objects derived from the class Nokta.

4.4 Interpolation Process

Interpolation is used to increase the sampling rate of the voxels to get better

understanding, as interpolation is explained in CHAPTER TWO. User chooses two

interpolation parameters; the interpolation method and the interpolation level. After

that choices, the interpolation process begins. Because interpolation increases the

sampling rate of the voxels, a new array is builded by the interpolation process

(Veriler.noktalar). New array’s point count is bigger than the original array

(Veriler.orjinal) according to the interpolation level.

4.5 Building the Image Data and the Visualization Process

Building the point array leads to determine the image dimensions and the image

spacing. The vtkImageData structure is defined by dimensions, spacing and origin.

Dimensions are the number of voxels or pixels along each of the major axes. Origin

is the starting point whose x,y,z values are the lowest than the other points. Spacing

is the distance between pixels along each of the three major axes.

27

Figure 4.6 vtkImageData structure

Every point has its own geophysical color value. In Figure 4.6, the image’s point

count is, multiplication of the dimension values:

4*2*3=24

Lowest point (2.5, 2.4, 3.7) is regarded as the origin, which is also the image’s

first point.

The spaces in the figure, between lines are:

1.5 between x lines,

1.8 between y lines,

2.2 between z lines.

In this process, an archaeological image is created, processed, mapped, visualized

and finally showed to the user. These operations are followed in a specified order, as

it is shown in the Figure 4.7.

28

Figure 4.7 Architecture of the Imaging and Visualizing Process

The purposes of these concepts are explained in sub-sections in below.

4.5.1 vtkVolume

A vtkVolume is intended for use in volume rendering. A volume mapper and

volume property must be specifed to describe the rendering technique and rendering

parameters, respectively. vtkVolume holds the transformation information such as

position, orientation, scale and pointers to the mapper and property for the volume.

After building the image data, the functions that map scalar value into opacity and

color, which are used in the vtkVolumeProperty, are defined.

The vtkVolume class accepts objects the vtkVolumeMapper as input to

setMapper() and accepts a vtkVolumeProperty objects as input to SetProperty().

vtkVolume is a class that enforces the different types of the mappers and properties.

vtkImageData

vtkPiecewiseFunction

vtkVolumeProperty

vtkVolumeMapper

vtkRenderer

vtkRenderWindow
vtkRenderWindowInteractor

vtkVolume

vtk
ColorTransferFunction

29

4.5.2 vtkPiecewiseFunction

In order to control the appearance of a three dimensional volume of scalar values,

three mappings or transfer functions must be defined. The first transfer function,

known as the “scalar opacity transfer function”, maps the scalar value into an opacity

or an opacity per unit length value. The second transfer function, referred to simply

as the “color transfer function”, maps the scalar value into a color.

Two important method exists in vtkPiecewiseFunction. Those add information to

the mapping, and those that clear out information from the mapping. When

information is added to a mapping, it is considered to be a point sample of the

mapping with linear interpolation used to determine values between the specified

ones. For example, the following code in Figure 4.8 produces the transfer function

draw on the below in Figure 4.9.

vtkPiecewiseFunction pf;
pf =new vtkPiecewiseFunction();
pf.AddPoint(50,0.2);
pf.AddPoint(200,1.0);

Figure 4.8 vtkPiecewiseFunction Producing Code (I)

Figure 4.9 Changing the opacity (I)

If user doesn’t want to see some data then values are mapped to an opacity of 0.0

to eliminating them from contributing to the image. The other values are mapped to

an opacity of 1.0.

30

The value of the mapping for the scalar values of 50 and 200 are given as 0.2 and

1.0 respectively and all other mapping values can be obtained by interpolating

between these two values.

Points can be added to the mapping at any time. For example user can change the

data limits to be shown in the visualizaion GUI form. By this time, a new mapping is

redefined. If a mapping is redefined, it replaces the existing mapping. In addition to

adding a single point, a segment can be added which will define two mapping points

and clear any existing points between the two. As an example, by considering the

following two modification steps and the corresponding pictorial representations of

the transfer functions:

pf.RemovePoint(50);
pf.AddPoint(50,0.0);
pf.AddSegment(100,0.8,150,0.2);

Figure 4.10 vtkPiecewiseFunction producing code (II)

Figure 4.11 Changing the opacity (II)

pf.AddPoint(50,0.2);
pf.AddSegment(60,0.4,190,0.8);
pf.clampingOff();

Figure 4.12 vtkPiecewiseFunction producing code (III)

31

Figure 4.13 Changing the opacity (III)

In the first step in Figure 4.11, by applying the code in Figure 4.10, the mapping

of scalar value 50 is changed by removing the point and then again the value and a

segment added. In the second step in Figure 4.13, by applying the code in Figure

4.12, the mapping of scalar value 50 is changed by simply adding a new mapping

without first removing the old one. A new segment is also added which eliminates

the mappings for 100 and 150 since they lie within the new segment.

4.5.3 vtkColorTransferFunction

A vtkColorTransferFunction can be used to specify a mapping of scalar value to

color using either an RGB or HSV color space. The methods available are similar to

those provided by vtkPiecewiseFunction, but tend to come in two flavors. For

example, AddRGBPoint() and AddHSVPoint() both add a point into the transfer

function with one accepting an RGB value as input and the other accepting an HSV

value as input. In this project RGB methods are used to define the color functions.

The following Java code shown in Figure 4.14, explains how to specify a transfer

function from red to green to blue with RGB interpolation performed for values in

between those specified:

vtkColorTransferFunction ctf = new vtkColorTransferFunction();
ctf.AddRGBPoint(i,red,green,blue); // “i" is the order of the
point in image data

Figure 4.14 Specifying a Transfer Function Code from Red to Green to Blue

32

4.5.4 vtkVolumeProperty

Defining the transfer functions is the hardest and longest part of achieving an

effective volume visualization because a classification operation is performed to

understand the meaning of the underlying xyz and geophysical data values. Volume

visualization uses a vtkVolumeProperty to contain the information for how to

convert data values to a color and an opacity (i.e., the transfer function) and what

lighting parameters to use. The vtkPiecewiseFunction and vtkColorTransferFunction

are used to specify the details of the transfer functions. The transfer functions which

are releated to vtkVolumeProperty class are, the vtkPiecewiseFunction and the

vtkColorTransferFunction. The SetColor() method accepts a

vtkColorTransferFunction. The SetScalarOpacity() method accepts a

vtkPiecewiseFunction to define the scalar opacity transfer function. Figure 4.15

shows how vtkVolumeProperty lies the transfer functions.

vtkVolumeProperty prop = new vtkVolumeProperty();
prop.SetColor(ctf);
prop.SetScalarOpacity(pf);

Figure 4.15 Setting up the Color and Opacity Transfer Functions code

4.5.5 vtkVolumeMapper

vtkVolumeMapper has the setInput() method with an argument pointer to the

vtkImageData object. vtkVolumeMapper has the SetCroppingRegionPlanes() method

which can be used to slice the image data by x,y or z planes. vtkVolumeMapper is

the bridge between the image data and the volume, as shown in the Figure 4.7.

4.5.6 Finishing the Visualization Process, Rendering Concepts

vtkRenderer and vtkRenderWindow are used to manage the interface between the

graphics engine and the Java Panel (JPanel) in main window. The render window is

33

the window in the JPanel that the renderer draws into. The region that the renderer

draws into is visualization area.

One the drawing process is finished, the object vtkRenderWindowInteractor is

used for manipulating the camera, picking the historical site.

Keypress r, resets the camera view along the current view direction and fits and

centers the historical site on the panel. And also provides all actors to visible.

4.6 Snap-Shot Process

After the completion of the visualization process, user can interact with the

drawing in the screen. User can rotate the historical site, cut the site and change the

transparency of some data values. And user may want to take a picture from one

scene. In this case, this process is applied for doing this.

Figure 4.16 Pipeline of Snap-Shot Process

vtkRenderWindow

vtkWindowToImageFilt
er

vtkJPEGWriter

JPEG File

34

In above, Figure 4.16 shows the pipeline of this process. vtkRenderWindow keeps

the image data of the drawing information shown to the user.

vtkWindowToImageFilter takes the kept image data in the render window and sends

it to vtkJPEGWriter. Finally, vtkJPEGWriter writes the image data to a JPEG file,

which is selected by user before.

4.7 RecordingVideo Process

Recording Video Process is similar to the Snap-Shot Process that is shown in

Figure 4.17, but some differences are existing in this process.

Figure 4.17 Pipeline of Recording Video Process

In Snap-Shot Process, vtkWindowToImageFilter takes the image data from the

render window once only. But in this process, vtkWindowToImageFilter takes the

image data in every user interaction. Or it takes the image data 15 times in a second

if an user interaction does not trigger. This event is being done by a Java Thread

class whose name is Video_Frame_Thread.

vtkRenderWindow

vtkWindowToImageFilt
er

vtkAVIWriter

AVI File

User Interaction

Video_Frame_Thread

35

Video_Frame_Thread observes the user interactions and coordinates them. The

product video of this process has 15 frames/second. This means that, this thread

divides a second to 15 unit time. If an user interaction doesn’t exist in a specific unit

time, the thread uses the previous unit time’s image data.

After the end of the process, vtkAVIWriter writes the image datas to an AVI file,

which is selected by user before.

4.8 GUI Forms and Some Explanation About the Application

At this sub-section, some explanation and important information will be given

about the application.

4.8.1 Starting the Application

If the application is started, then a screen at Figure 4.18 will be appeared. In this

screen, there are three buttons. First button changes the language of the application

from Turkish to English or From English to Turkish.

Figure 4.18 Starting frame of the application

36

Second button, “Son Projeyi Aç”, opens the last project which user worked on

before. In this option the historical site will be shown to the user by previous cuttings

and camera settings. Namely, it can be said that, all the operations lastly made by the

user, will be shown in the visualization frame.

Third button, Yeni Proje, opens a new project. This options gives the chance to

the user to select interpolation method, interpolation level, color map file, maximum

geophysical data limit and the historical site source file. These options can be

selected in New Project Screen shown in Figure 4.19.

Figure 4.19 New Project screen

37

Max. Geophysical Data Limit determines, to which geophysical data are regarded

for the visualization process. Upper values are accepted as the Max. Geophysical

Data Limit value.

For interpolation options are existing in the application. Detailed explanation is

given in CHAPTER TWO about the interpolation methods.

Figure 4.20 Interpolation Options

After the interpolation method is choosen as it is shown in Figure 4.20, the

interpolation level must be selected. Bigger numbers increases the number of points

in the image data and creates smoother and more understandable visualization. But it

takes much time to finish the visualization process.

Table 4.1 shows that, when interpolation level increases, avarage visualization

time increases too. If user wants more quality visualization, then he or she must

choose a bigger interpolation level and wait much time than little interpolation levels.

The interpolation level selection is and important function in geophysics.

Sometimes, the bigger interpolation level is resulted more smoothed data, and this

situation can remove the small data levels, which can be important in data

interpolation.

38

Table 4.1 Interpolation Level – Average Visualization Time

Point Count Interpolation Level Average Visaulization Time (sec)

7080 1 1.5

2 2.0

3 2.5

4 3.1

5 3.5

6 4.0

7 5.0

8 7.0

9 8.0

10 9.1

19470 1 3.0

2 5.0

3 8.0

4 11.5

4.8.2 ColorMap Operations

Before visualization process, user must choose the color map file, as it is shown in

Figure 4.21. “Rainbow.clr” file is the default file at starting position. But user can

change the color map file.

Figure 4.21 Select Color Map button

39

If the button in In Figure 4.21 is clicked, then the ColorMap Window will be

opened. This window is used for selecting a color map file from a folder or creating a

new color map file or editing a created color map file.

Figure 4.22 Color Map window

The color map window is shown is Figure 4.22. The table, in the color map

window, shows the RGB color values and their percentage values. The functions of

buttons in window are explained in below:

Aç: If another color map file is wanted to be chosen, user have to click this

button, and select the new file from file chooser panel.

Yeni: Opens a new blank color map file

Kaydet: If a new color map file is created or an old color map file is edited, a file

chooser panel is shown to the user and then user can save the color map file by the

file chooser panel.

40

Farklı Kaydet: When a color map file is edited, if this button is clicked, user can

save the color map file with a different name.

<== Renk Ekle: This button adds a new line after the selected line in the color

map table.

==> Renk Sil: When this button is clicked, the selected line will be deleted, and

next lines will be shifted upward.

Tamam: This button is used to accept the selected color map file and return to

previous screen.

4.8.3 Main Visualization Window

Visualization window is the main window of the application. Main window is

shown in Figure 4.23. As it can be seen in the figure, there are five panel windows

are existing in the main window:

 Visaulization Window (Görselleştirme)

 Cutting Operations Window (Kesme İşlemleri)

 Choose Geophysical Data Window (Jeofiziksel Veri Seçimi)

 Operation Shortcuts Window (İşlem Kısayolları)

 Data Window (Veri)

41

Figure 4.23 Main Visualization window

These panels are developed in tabbed structure. The structure is builded by IDW

(Infonode Docking Windows) tool. These windows can be minimized, maximized,

restored, closed, docked and undocked freely form the main window. The usage of

the windows are explained below sections.

4.8.3.1 Visualization Window

This window is the visualization area where rendering and drawing processes are

executed. The window is shown in Figure 4.24.

42

Figure 4.24 Visualization window

In this window user can see the data collected from the historical site, site borders,

scalar bar, coordinate numbers and xyz axis. User can interact with the data of the

historical site, rotate and zoom it.

4.8.3.2 Cutting Operations Window

This window is shown in Figure 4.25. Cutting operations can be executed in this

window. Cutting operations can be done in both x, y, z axis.

43

Figure 4.25 Cutting Operations window

The area between the maximum and minimum values are shown and outside of

this area is not shown. If a cross section is wanted to be shown, then the buttons, “X

ekseni kesiti, Y ekseni kesiti, Z ekseni kesiti” can be used. These button are used to

focus the input value of the textfields only.

4.8.3.3 Choose Geophysical Data Window

In Choose Geophysical Data Window, scalar bar and miniumum-maximum

visualization color values are shown according the color map file. This window is

used to eliminate some color (geophysical data) values to get a better understanding

about the historical site. Maximum and minimum input values can be entered by the

textfields or moving the slide bars. This window is shown in Figure 4.26.

44

Figure 4.26 Choose Geophysical Data window

After minimum and maximum color values are entered or selected, then the

ReVisualize button (Yeniden Görselleştir) must be clicked. When this button is

clicked, the visaulization process begins again and so it takes a little time to eliminate

the unwanted colors.

4.8.3.4 Operation Shortcuts Window

This window gives user some facilities. Operation Shortcuts Window is shown in

Figure 4.27.

Figure 4.27 Operation Shortcuts window

45

The shorcuts from left to right are:

 Snap-Shot (Resim Çek); takes a picture at that moment.

 Start Recording Video Process (Video Çekimi Başlat); starts the Recording

Video Process which monitors the user’s interactions and operations on the

Visualization Window and makes a video.

 Finish Recording Video Process (Video Çekimi Bitir); finishes the Recording

Video Process.

 Coordinate Lines (Koordinat Çizgileri); enables or disables showing the

coordinate lines.

 Coordinate Numbers (Koordinat Sayıları); enables or disables showing the

coordinate numbers.

 Standard View (Standart Görünüm); If a Standard view is defined before, this

shortcut positions the camera according to that view.

 Site Borders (Site Sınırları); enables or disables showing the site bordes.

4.8.3.5 Data Window

Data Window shows the coordinate and data values of the historical site, as it is

shown in Figure 4.28.

46

Figure 4.28 Data window

4.8.4 Main Visualization Window Menu

The menu elements of the Main Visaulization Window are shown in Figure 4.29.

Menu elements will be explained in detail below sections. Menu elements will be

explained in detail below sections.

Figure 4.29 Main Visualization Window menu

47

4.8.4.1 File Menu

This menu provides to open a new historical site source and to close the

application.

 Open; this option shows the New Project Screen and gives chance the user to

start a new visualization.

 Exit; closes the application and stores the camera and visualization settings in a

file to continue the project later.

4.8.4.2 Render Menu

Render Menu provides the user to change the render options; interpolation level

and the color map file.

 Choose Color Map; this options shows the Color Map Window and so supports

to change color map.

 Interpolation Level; opens the Interpolation Level Window, as it is shown in

Figure 4.30. This option provides the user to change visualization level and

revisualize the source data.

Figure 4.30 Changing Interpolation Level window

48

4.8.4.3 Options Menu

Options Menu has some choosable options that can be wanted or unwanted by

user.

 Türkçe / English; this option changes application language, from Turkish to

English or from English to Turkish.

 Coordinate Lines; enables or disables showing the coordinate lines.

 Standard View, if a Standard view is defined before, this shortcut positions the

camera according to that view.

 Save as Standard View; if the camera settings are wanted to be kept as standard

view, this option must be used.

 Site Borders; enables or disables showing the site bordes.

 Snap-Shot; takes a picture at that moment;

4.8.4.4 Video Menu

Video Menu, give chance to user to use some default recording video options.

 Xmin ==>> Xmax; this option prepares a video by showing all cross sections

of x axis, from minimum x value to maximum x value.

 Xmin <<== Xmax; this option prepares a video by showing all cross sections

of x axis, from maximum x value to minimum x value.

 Ymin ==>> Ymax; this option prepares a video by showing all cross sections

of y axis, from minimum y value to maximum y value.

 Ymin <<== Ymax; this option prepares a video by showing all cross sections

of y axis, from maximum y value to minimum y value.

 Zmin ==>> Zmax; this option prepares a video by showing all cross sections

of z axis, from minimum z value to maximum z value.

 Zmin <<== Zmax; this option prepares a video by showing all cross sections

of z axis, from maximum z value to minimum z value.

49

4.8.4.5 Window Menu

Window menu provides to enable and show the clicked window on top even if it

is closed or minimized before. The elements of this menu are:

 Visualization Window

 Data Window

 Operation shortcuts

 Cutting Operations

 Choose Geophysical Data

 Visualization

50

CHAPTER FIVE

CONCLUSION AND FUTURE WORK

In this thesis, a 3D imaging and visualization application is developed. This

application reads the source file of the historical site and visualize the site in the main

visualization window of the application. Before the visualization process, user

choose the interpolation and colormap settings and define the maximum geophysical

data limit value.

When the visualization process is finished and 3D graphics are drawn in screen,

user can interact with the historical site; rotate, zoom and cut it. User can prepare a

video or user can take a picture at a preferred time.

If the application is closed before and user wants to continue his or her last

project, user can do that, because application saves the settings before it is closed. A

Standard camera view can be defined to use, while working with a historical site if a

view is important to user. So if camera is moved, user can turn back to the saved

view point.

In future, some additions can be made to this application to make the application

more user friendly. Maybe, the application can prepare a graphic chart and thus user

can see the frequency of the geophysical values of the historical site. Or a route can

be defined for the camera, and user can move the camera according to that route in

order to see the historical site’s inner areas.

51

REFERENCES

Hansen, C.D., & Johnson, C.R. (2005). The Visualization Handbook. Elsevier

Butterworth–Heinemann Publications.

Getting Started: Java Wrapping of VTK / ITK and Programming in Eclipse under

Windows XP. (n.d.). Retrieved March 2008, from http://user.cs.tu-

berlin.de/~marionsc/data/vtkitk/GS-Java_Wrapping_in_ITK_VTK-v2.2.pdf.

Handbook of Medical Imaging: Processing and Analysis. (n.d.). Retrieved 2000,

from http://books.google.com.tr/books.

Histogram equalization. (n.d.). Retrieved May 2008, from

http://en.wikipedia.org/wiki/Histogram_equalization.

How to Use VTK with Java in Eclipse. (n.d.). Retrieved March 2008, from

http://dev.artenum.com/projects/cassandra/forum/how-to-use-eclipse-and-vtk.

InfoNode Docking Windows Developer's Guide Revision 1.3 for IDW Version 1.6.1.

(n.d.). Retrieved January 2009, from

http://www.infonode.net/documentation/idw/guide/IDW%20Developer%27s%20

Guide%201.3.pdf.

Interpolation. (n.d.). Retrieved May 2008, from

http://en.wikipedia.org/wiki/Interpolation.

Interpolation Methods. (n.d.). Retrieved May 2008, from

http://idlastro.gsfc.nasa.gov/idl_html_help/Interpolation_Methods.html.

Interpolation Methods. (n.d.). Retrieved May 2008, from

http://local.wasp.uwa.edu.au/~pbourke/miscellaneous/interpolation/.

52

Avila, L.S., Barre,S., Geveci, B., Henderson, A., Hoffman, W.A., Law, C.C., Martin,

K.M., Schroeder, W.J., & Wanzelek, A. (2001). The VTK User's Guide, Kitware,

Prentince Hall.

Nabble – VTK forum. (n.d.). Retrieved March 2008, from

http://www.nabble.com/VTK-f14272.html.

VTK - The Visualization Toolkit. (n.d.). Retrieved March 2008, from

http://www.vtk.org/.

Schroeder, W., Martin, K., & Lorensen, B. (2002). The Visualization Toolkit: An

Object-Oriented Approach To 3D Graphics, Kitware, Prentince Hall.

