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SYMMETRIC FUNCTIONS 

AND 

Q-BERNSTEIN POLYNOMIALS 

 

 

 

ABSTRACT 

 

 

In this thesis, the properties of symmetric functions and total positivity of 

Bernstein basis are investigated. We discuss a special function blossom and see how 

subdivide a Bezier curve. Also, we give the blossom of Bernstein and q-Bernstein 

polynomials by using the elementary symmetric polynomials. Finally, the blossom 

values of q-Bernstein polynomials are obtained.    

Keywords: Symmetric functions, total positivity, Bernstein basis, blossom, Bezier 

curve, q-Bernstein polynomials. 
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SİMETRİK FONKSİYONLAR 

VE 

Q-BERNSTEIN POLİNOMLARI 

 

 

 

ÖZ 

 

 

Bu tezde simetrik fonksiyon özellikleri ve Bernstein bazlarının tüm positifliği 

incelendi. Tomurcuk fonksiyonu (blossom) üzerinde çalışıldı ve Bezier eğrisinin 

nasıl alt bölümlere ayrılabildiği görüldü. Ayrıca, simetrik fonksiyonlar kullanılarak 

Bernstein ve q-Bernstein polinomlarının tomurcuk fonsiyon değeri verildi. Son 

olarak  q-Bernstein polinomlarının tomurcuk fonsiyon değeri elde edildi. 

      

Anahtar sözcükler: Simetrik fonksiyonlar, tüm positiflik, Bernstein bazları, 

tomurcuk fonksiyon, Bezier eğrisi, q-Bernstein polinomları. 
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CHAPTER ONE 

INTRODUCTION 

In this chapter, we will outline some basic definitions and theorems about 

symmetric functions, Bernstein polynomials, Bézier representation and total 

positivity before introducing the blossom function. We will also show that Bernstein 

basis is totally positive.  

1.1 Symmetric Functions 

The study of symmetric functions is based on symmetric polynomials. Symmetric 

polynomials are fundamental in the theory of rings and there are various kind of 

symmetric polynomials. We will be concerned with two of them. 

Definition 1.1.1 The rth elementary symmetric function ( )σ 0 1, ,...,r nx x x

+n

 for , is 

the sum of all products of r distinct variables chosen from the  variables 

≥1r

1

0 1, ,..., nx x x . That is,  

 ( )σ
≤ < < < ≤

= ∑ 1

1 2

0 1
0 ...

, ,..., ... .
r

r

r n i
i i i n

ix x x x x  

We define ( )0 0 1, ,..., 1nx x xσ =  for = 0r  and ( )σ =0 1, ,..., 0r nx x x  either  

or . 

> +1r n

< 0r

     For example,  

 
( )

( )
( )

1 0 1 2 0 1 2

2 0 1 0 1

3 0 1 2 0 1 2

, , ,

, ,

, , .

x x x x x x

x x x x

x x x x x x

σ

σ

σ

= + +

=

=

 

 

Definition 1.1.2 The complete symmetric function ( )0 1, ,...,r nx x xτ  of degree r in 

variables 0 1, ,..., nx x x  is the sum of all monomials of total degree r. That is,  

1



 2
 

( ) 0 1

0

0 1 0 1
...

, ,..., ... n

n

i ii
r n

i i r
nx x x x x xτ

+ + =

= ∑ , 

where { }∈0 ,..., 0,1,...,ni i r . Also it is convenient to define ( )τ =0 1, ,..., 1r nx x x  when 

 and = 0r ( )τ 0 1, ,...,r nx x x = 0  for < 0r . 

For example,  

                   

( )
( )

( )

1 0 1 2 0 1 2

2 2
2 0 1 0 1 0 1

3 3 3 2 2 2 2 2
3 0 1 2 0 1 2 0 2 1 0 1 2 2 0 2 1 1 2 3

, , ,

, ,

, , .

= + +

= + +

= + + + + + + + +

x x x x x x

x x x x x x

x x x x x x x x x x x x x x x x x x x

τ

τ

τ
 

The generating function for the elementary function is  

                           ( ) ( ) ( )σ
+

=

+ + =∑
1

0 0
0

1 ... 1 , ,...,
n

r
n r n

r
1x x x x x x x x                         (1.1.1)    

and 

                        
( ) ( ) ( 0 1

00

1 , ,...,
1 ... 1

r
r

rn

)nx x x x
x x x x

τ
∞

=

=
− − ∑                             (1.1.2) 

is the generating function for the complete symmetric functions. (See Phillips, 2003). 

Note that the sum of the elementary symmetric functions involves  terms and 

complete symmetric functions have 

1n
r
+⎛ ⎞

⎜ ⎟
⎝ ⎠

n r
r
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 terms. Giving particular values =1ix , 

 in (1.1.1) and (1.1.2), we obtain  = 0,...,i n

 ( ) ( )σ
+ +

+

= =

+⎛ ⎞
+ = =⎜ ⎟

⎝ ⎠
∑ ∑

1 1
1

0 0

1
1 1,1,...,1 ,

n n
n r r

r
r r

n
x x x

r
 

 
( )

( )τ
∞ ∞

+
= =

+⎛ ⎞
= =⎜ ⎟

− ⎝ ⎠
∑ ∑1

0 0

1 1,1,...,1 ,
1

r r
rn

r r

n r
x x

rx
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where  and . ( )1 1,1,...,1n
rr

σ⎛ ⎞+⎜ ⎟⎜ ⎟
⎝ ⎠

= ( )1,1,...,1n r
rr
τ⎛ ⎞+⎜ ⎟⎜ ⎟

⎝ ⎠
=

1.2 Bernstein Polynomials 

Bernstein polynomials give a constructive proof of Weierstrass’s Theorem. Sergei 

Natanovich Bernstein introduced the following polynomials in 1912, for a function f 

defined on [0, 1] 

 ( ) ( ) −

=

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑
0

;
n

n rr
n

r

nrB f x f x x
rn

−1  (1.2.1) 

for each positive integer n. Bernstein form is a linear combination of Bernstein basis 

polynomials , defined on the space of n-degree polynomial, where 

. 

( )1 n rrn
r

x x −⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

−

= 0,1,...,r n

It is easily checked from the equation (1.2.1) for all , ≥1n

 ( ) ( )=;0 0nB f f    and  ( ) ( )=;1 1nB f f . 

We say that nB f  interpolates f at the points 0 and 1. This property of Bernstein 

polynomial is called end point interpolation. 

The operator [ ] [ ]→: 0,1 0,1nB C C

n

 is called Bernstein operator. If f is a 

continuous function then, B f  uniformly converges to f. The Bernstein operator is 

linear,  

 ( ) ,n n nB af bg aB f bB g+ = +  

for any function f, g defined on [0, 1] and a, b are real constants. 
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We remark that the relations ( ) =1: 1nB x  and ( ) =;nB x x x  are significant in 

CAGD (Computer Aided Geometric Design). While studying on Bernstein 

polynomials we refer to some properties which are linearity, convexity, variation 

diminishing. Before saying Bernstein operator is monotone operator or, equivalently, 

a positive operator, we will give an explanation about monotonicity of a linear 

operator. An operator L from [ ],bC a  to [ ],C a b  is a monotone operator if it maps 

( ) ( )≥f x g x  into ( )( ) ( )( )≥Lf x Lg x , [ ]∈ ,x a b .   

We can see from the definition of Bernstein polynomial that nB  is a monotone 

operator. In particular, if we choose ( ) ≥ 0f x  in [ ]0,1 , then ( ) ≥x; 0nB f  in [ ]0,1 . 

Forward difference is important and used for some calculations in the following 

chapter. For any function f we define,  

 0
i if fΔ = , (1.2.3) 

recursively 

 +
+Δ = Δ −Δ1

1
n n

i i
n

if f f

−

0 r

, (1.2.4) 

where  and . = 0,1,...,i k = −0,1,..., 1n k i

Theorem 1.2.1 The Bernstein polynomial may be expressed in the form  

 ( ) ( )
=

⎛ ⎞
= Δ⎜ ⎟

⎝ ⎠
∑

0

;
n

r
n

r

n
B f x f x

r
, (1.2.2) 

where Δ is the forward difference operator, with step size =1/h n . 

For the proof see Phillips, 2003. 
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   For example, with ( ) = 3f x x  it follows from (1.2.4) that , ( ) =0 0f ( ) 1
30

n
fΔ = , 

( ) 62
30

n
fΔ = , ( ) 63

30
n

fΔ =  then using (1.2.2) 

 ( ) ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2 3
3

3 3

6 6;
1 2 3n

n n n
3

x x xB x x
n n n

, 

which can be written as  

 ( ) ( )( )
= + +

− − −
3 3 23 1;

2 1n 2
B x x x x x

n n n
. 

Thus the Bernstein polynomials converges uniformly to 3x  like 1
n

 as . →∞n

Phillips proposed a generalization of Bernstein polynomial based on the q-

integers. (See Phillips, 2003). For each positive integers n, we define  

 ( ) (
1

0 0

;
n rn

r
n r

r t

n
r

)1 tB f x f x q x
− −

= =

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑ ∏ −  (1.2.5) 

where rf  denotes the value of the function f at [ ] [ ]= /x r n , the quotient of the q-

integers [ ]r  and [ ]n , and  denotes q-binomial coefficient. We define,  n
r
⎡ ⎤
⎢ ⎥
⎣ ⎦

 [ ] ( ) ( )1 / 1 , 1,  
   

1,,                       

rq q q
r

qr

⎧ − − ≠⎪= ⎨ =⎪⎩
 

and q-factorial  

 [ ] [ ][ ] [ ]! 1 ... 1r r r= − ,          , ≥1r

when , = 0r [ ] =! 1r . The q-binomial coefficient 
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 [ ]
[ ] [ ]

⎡ ⎤
=⎢ ⎥ −⎣ ⎦

!
! !

n n
r n r r

 

for , and the other cases are zero. ≥ ≥ 0n r

If we put  in equation (1.2.5), we obtain the classical Bernstein polynomial, 

defined by (1.2.1).  

=1q

We may express the generalized Bernstein polynomial in terms of q-differences in 

the form  

 ( ) 0
0

;
n

r r
n q

r

n
r

B f x f x
=

⎡ ⎤
= Δ⎢ ⎥

⎣ ⎦
∑ , 

where 

 − − −
+Δ = Δ − Δ ≥1 1 1

1 ,    1r r r r
q j q j q jf f q f r , 

with [ ] [ ]( )0 /Δ = =q j jf f f j n . 

For evaluating generalized Bernstein polynomials iteratively, the below algorithm 

is very useful. 

for  to n = 0r
[ ] [ ]

[ ]
0 : r

r n
f f

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

=  

next r 
for  to n =1m

for  to  = 0r −n m
[ ] ( ) [ ] [ ]− −−

+= − +1 11
1:m mr m

r rf q q x f xf m
r  

next r 
next m 



 7
 

This algorithm is named Generalized de Casteljau algorithm. It starts with some 

initials values which are the value of q and the values of f at the  points. The 

iterate 

+1n
[ ]m

rf  satisfies the below equality for ≤ ≤0 m n  

 [ ] ( )
1

0 0

m tm
m t r s

r r t
t s

m
t

f f x q q
− −

+
= =

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ ∏ x , 

and has the q-difference form  

 [ ] ( )

0
.

m
m m s r s s

r q
s

m
s rf q f−

=

⎡ ⎤
= Δ⎢ ⎥

⎣ ⎦
∑ x  

Finally for , we have = 0r [ ] ( )0 ;m
mf B f x= . We note that the above algorithm 

generalizes de Casteljau algorithm with the value =1q . 

1.3 Bézier Representation 

Bernstein polynomials of degree n,  

 ( ) ( )1 n in i
i

n
i

B u u u −⎛ ⎞
= −⎜ ⎟
⎝ ⎠

,          = 0,1,...,i n . 

leads to computing binomial expansion 

 ( )( ) ( ) −

=

⎛ ⎞
= + − = −⎜ ⎟

⎝ ⎠
∑

0
1 1 1

nn n ii

i

n
u u u u

i
. 

Bernstein polynomials n
iB  form a basis for all polynomials of degree ≤ . Hence, 

every polynomial curve 

n

( )b u  of degree ≤ n  has a unique nth degree Bézier 

representation,  
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 ,         ( ) ( )
=

=∑
0

n
n

i i
i

b u c B u [ ]∈ 0,1u .  

Applying affine parameter transformation 

 ( ) ( )= = − +1u u t t a tb ,      ≠a b . 

where  is the barycentric combination of  and b, then  ( )u t a

 . ( )( ) ( )
=

=∑
0

n
n

i i
i

b u t b B t

The coefficients  are called Bézier points or control points. They are the 

vertices of the Bézier polygon of 

∈\2
ib

( )b u  over the interval [ , . ]a b

There are some properties of Bézier curves, an important property of Bézier 

curves is affine invariance. Any point ( )b u  is an affine combination of the Bézier 

points. As a consequence, given any affine map φ, the image curve φ (b) has the 

Bézier points φ (bi) over [ ],a b . It is not necessary to define Bézier curve over the 

interval [ ]0,1 . It can be defined over any arbitrary interval ≤ ≤a u b  of the real line.  

Using the equality ( )= − +1u t a tb , we find u a
b at −
−= . Then the corresponding 

expression, is the recursive formula of the de Casteljau algorithm, is of the form  

 ( ) ( ) ( )− −
+

− −
= +

− −
1 1

1
r r r
i i i

b u u ab u b u b u
b a b a

. 

The transition from the interval [ ]0,1  to the interval [ ],a b  is an affine map. 

Therefore, we can say that Bézier curves are invariant under affine parameter 

transformations. The next property is convexity, we mentioned  is an affine 

combination of the Bézier points and the basis of 

( )b u

( )b u  can be negative. Since 
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Bernstein polynomials are positive over the interval [ ]0,1 ,  is a convex 

combinations of those points. Hence the curve segment 

( )b u

[ ]0,1b  lies in a point set 

which is formed by Bézier points. And the last property is that a Bézier curve passes 

through  and  we have 0b nb ( ) = 00b b , ( ) =1 nb b . This is easily verified by writing 

 and = 0u =1u . In curve design, preservation of shape properties is very important. 
Usually a curve is designed with a control polygon which is given by the ordered set 
of control points. Bézier curves possess the variation diminishing property with 
respect to their control polygon. It means that any line does not intersect the curve 
more than it intersects the control polygon. This implies that the shape of the curve 
can not change sign more than its control polygon. This is the reason that Bézier 
curve lies in the convex hull of its control polygon. We can illustrate variation 
diminishing property for Bézier curve,  

 

 

 

 

 

we see from the figure that the line intersects the Bézier curve and its control 

polygon in two different points.  

1.4 Total Positivity and Totally Positive Basis  

We begin this section by defining a totally positive matrix before giving results on 

basis conversion and the total positivity of the generalized Bernstein basis. The total 

positivity plays a fundamental role in the theory of approximations and convexity as 

well as in statistics. 

b1  b2

 b0 

 b3 
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Definition 1.4.1 A real matrix A = (aij) is said to be totally positive if all its minors 

are positive, that is  

 , (1.4) 
1 1 1

1

, ,

, ,

det 0
⎡ ⎤
⎢ ⎥

>⎢
⎢ ⎥
⎣ ⎦

"

# #
"

k

k k k

i j i j

i j i j

a a

a a
⎥

for all  and all 1 2 ...< < < ki i i 1 2 ...< < < kj j j . 

Total positivity concerns all the minors of the matrix A, not just its elements. If we 

examine this fact in a simple example for the given matrix 

 A = 
1 1 0
1 2 1
0 1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

all minors of the matrix , it is clear from 0>ijM 11 3=M , , 12 2=M 13 1=M , 

, , , 21 2=M 22 2=M 23 1=M 31 1=M , 32 1=M , 33 1=M . So, we say that the matrix A 

is total positive.  

An important example of a totally positive matrix is the Vandermonde matrix  

 ( )

2
0 0 0

2
1 1 1

0

2

1
1

,...,

1

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"

# # # #
"

n

n

n

n
n n n

x x x
x x x

V V x x

x x x

 

Let 00 ...< < < nx x , since det ( ) ( )0 ,...,
>

= −∏n i
i j

V x x x x j  we can easily see that 

, and we now show that the minors  det >V 0
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1

1
1 1 1

1

det

+ +

+ +
+ + +

+ +
+ + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # #
"

j j j k
i i i
j j j k

i i i

j j j k
i k i k i k

x x x
x x x

x x x

 

are positive for all nonnegative i, j, k such that +i k , + ≤j k n . The above 

determinant may be expressed as  

 

1 2

1 2
1 1 1 1 1

1

1 2

1
1

1

+ +

+ +
+ + + + + +

+ +

+ +
+ + + + + +

⎡ ⎤= ⋅⎣ ⎦

" "
" "

"
# # # # # # #

" "

j j j k k
i i i i i i
j j j k k

j j ji i i i i i
i i i k

j j j k k
i k i k i k i k i k i k

1

x x x x x x
x x x x x

x x x
x

x x x x x x

+

 

equivalently . So the Vandermonde matrix V is 

strictly totally positive. (See Phillips, 2003).  

( ) ( )... det ,..., 0+ >j
i i k i i kx x V x x

Definition 1.4.2 A matrix A, which may be finite or infinite, is said to be m-banded 

if there exists an integer l such that , 0≠i ja  implies that ≤ − ≤ +l j i l m . 

This is equivalent to saying that all matrix elements are zero outside a diagonally 

bordered band. For example, a tridiagonal matrix has bandwidth 3. Note that every 

finite matrix is banded.  

Theorem 1.4.1 A finite matrix is totally positive if and only if it is a product of 1-

banded matrices with non-negative elements.  

For proof of this theorem, see de Boor and Pinkus [13]. 

Definition 1.4.3 We say that a sequence ( )0 ,...,φ φn

00

 of real valued functions on an 

interval I is totally positive if, for any points ...< < < nx x  in I, the collocation 

matrix  is totally positive.  ( )( )
, 0

φ
=

n

j i i j
x
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If ( 0 ,..., )φ φ φ= n  is a total positive basis in an interval I using the above definition 

we obtain the following properties:  

(i) If f is increasing function from an interval J into I then ( )0 ,...,φ φD Dnf f  is 

totally positive on J, where 0φ D f denotes the composition of 0φ  and f.  

(ii) If g is a positive function on I, then ( )0 ,...,φ φng g  is totally positive on I. 

(iii) If A is a constant ( )1+m  x ( )1+n  totally positive matrix and  

 
0

,     0,...,
n

i ij j
j

a i mψ φ
=

= =∑ , 

then 0 ,...,ψ ψ m  is totally positive on I. (See Oruç & Goodman, 1998). 

As further result we will show the Bernstein basis is totally positive using the 

above properties of total positivity. When we think the monomial functions i
i tφ = , 

, then the monomial basis 0,1,...,=i n ( )21, , ,..., nt t t  is a totally positive basis on 

interval [  since the Vandermonde matrix )∞0, ( )..., nx0 ,V x  is totally positive. If we 

change the variable , then it is obviously that t is an increasing function 

for the given all values 

(/ 1= −t x x

,  0,1,

)
...,=ix i n , where 0 1 ...0 1< < <x x < <nx . Using the first 

property above, we can say that the sequence of functions  

 
( ) ( )

2

21, , ,...,
1 1 1

n

n
x x x

x x x

⎛ ⎞
⎜ ⎟
⎜ ⎟− − −⎝ ⎠

 

is totally positive on [0,1]. Multiplying this basis by a positive function ( )1− nx , 

[ ]0,1∈x , we have the following sequence of functions,  

 ( ) ( ) ( )( )1 221 , 1 , 1 ,...,− −− − −n n n nx x x x x x  

which is totally positive on [0, 1] from the second property. 
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If we multiply this basis by a ( )1+n  x ( )1+n  diagonal matrix D which is totally 

positive 

 

( )

( )

( )

( ) 1
1

0

1

11

1
11

nn

n
n

n
n

n

n

n
n

xx
n

x x
x x

n
xx n

−
−

⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞
−− ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥

⎝ ⎠ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎛ ⎞⎢ ⎥⎢ ⎥ ⎢ ⎥ −⎛ ⎞ ⎜ ⎟⎢ ⎥⎢ ⎥ −⎢ ⎥⎜ ⎟ ⎝ ⎠⋅ =⎝ ⎠ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎛ ⎞⎢ ⎥⎢ ⎥⎛ ⎞ ⎢ ⎥ ⎜ ⎟
⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦ ⎣ ⎦

%
##

 

 ( ) ( ) ( )1 221 , 1 , 1 ,...,
1 2

− −⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

n n n nn n n
x x x x x x

n
 

is a basis for classical Bernstein polynomials of degree at most n and totally positive 

on [0, 1]. The above argument can be seen in Phillips, 2003. 
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CHAPTER TWO 

BLOSSOMING 

We discuss here a special function which is called blossom. It can be named also 

polarization instead of blossoming because in geometric modeling polar forms are 

called blossom, and blossoms are used in the most of the algorithms underlying 

computer aided geometric design. Blossomming is very important in the geometric 

modeling. In the following two sections, we underline blossom properties, deal with 

subdivision and see how to subdivide a Bézier curve. Subdivision is essential in 

application because the control polygons converge to the Bézier curve under 

recursive subdivision. Moreover, we compute the blossom of a Bézier curve ( )p t  

using de Casteljau algorithm and explain the relation of these terms. 

2.1 Introduction to Blossom  

A blossom [ ]1 2, ,..., nb t t t  of a polynomial ( )p t  is a multivariate function from  

to  or . We will be concerned with the function  in this thesis. The 

blossom 

\n

2\ 3\

[

2: →\ \nb

]1 2, ,..., nt tb t  of the polynomial ( )p t  is the unique function with the 

following properties. (See Ramshaw, 1986).  

The first property is called symmetry, it states that the order of the variables is 

irrelevant. Thus, [ ] ( )1 2 1 2, ,..., , ,...,n nb t t t b t t t= ⎡ ⎤∏⎣ ⎦

1 2, ,..., nt t t

 where  is a 

permutation of the arguments . 

( 1 2, ,..., nt t t∏ )

The blossom [ ]1 2, ,..., nb t t t

2

 is linear in each variable , it can be named 

“multilinear function” but the term “multiaffine” is more appropriate. Here is an 

example for  that helps to explain this property. If the first argument  of a 

blossom 

it

=n 1t

[ ]1 2, tb t  is a barycentric combination of two points , then the blossom 

function,  

1,a 2a

14
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( ) [ ] [ ]1 2 2 1 2 2, ,α β α β+ = +⎡ ⎤⎣ ⎦b a a t b a t b a t2,  

where 1α β+ = . 

Thus, we can say that the blossom [ ]1 2,b t t  is affine with respect to its first 

argument. By the symmetry property, the same property holds for the other 

arguments  in place of . Blossom function is affine in each variable separately. 

More generally,  

2t 1t

let ( )1 α α= − +k kt n km  is the affine combination of the points  , ∈\k kn m

( ) ( ) [ ] [ ]1 1,..., 1 ,..., 1 ,..., ,..., ,..., ,...,α α α α− + = − +⎡ ⎤⎣ ⎦k k n k n kb t n m t b t n t b t m t1 n . 

The blossom [ ]1 2, ,..., nb t t t  is also affine for the arguments { }1 1 1,..., , ,...,− +k k nt t t t , not 

just the one. 

In the third one, the diagonal property, the blossom back to the original 

polynomial, exactly, if all arguments of blossom function are equal , we 

obtain a polynomial curve. For an n-degree polynomial 

1,...,= nt t t

( )p t , we have  

( ) [ ], ,...,=p t b t t t . 

Now taken any cubic polynomial  

( ) 3 2
3 2 1 0= + + +p t a t a t a t a  

we find that the blossom function of ( )p t  is 

[ ] ( ) ( )1 2 2 3 1 3 1 2 3
1 2 3 3 1 2 3 2 1 03 3
, ,

t t t t t t t t t
b t t t a t t t a a a

+ + + +
= + + + , 
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and if we take  we obtain original polynomial 1 2= = =t t t t3 ( )p t . 

2.2 Blossom of Bézier Curve  

We know that Bézier curves are polynomial curves represented in the Bernstein 

basis. Over the interval [0, 1], n-degree Bézier curve P(t) is given by  

  (2.2.1) ( ) ( )
0=

=∑
n

n
i i

i

P t PB t

where  are control points. As we take t from 0 to 1, we trace out the curve, see 

figure  

iP

P1  P2 

P0 P3 

 

 

 

 

 

The blossom of a polynomial provides us to find the Bézier control points of the 

corresponding curve. These points control the shape of the curve. In this section, for 

the control points of Bézier curve we use the notation  instead of the 

. Recall the de Casteljau algorithm with 

0 1 2, ,b b b

0 1 2, ,P P P 1q = . We use this algorithm to 

subdivide Bézier curves.  

For , given  and 2=n 2
0 1 2, , ∈\b b b ∈\t , we obtain quadratic Bézier curve ( )p t  

with the following construction  
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 ( ) ( )1
0 01 ,= − +b t t b tb1  

 ( ) ( )1
1 11 ,= − +b t t b tb2  

using the points and ( )1
0b t ( )1

1b t  we have  

 ( ) ( ) ( ) ( ) ( )2 1
0 01= = − + 1

1p t b t t b t tb t .  

Explicitly, 

 ( ) ( ) ( )2 2
0 11 2 1= − + − + 2p t t b t t b t b . 

This construction leads to repeated linear interpolation for [ ]0,1∈t . The below 

Bézier curve is affinely invariant, because piecewise linear interpolation is affinely 

invariant. 

( )2
0b t  

                                                   (1 – t)          t 

                                                     ( )1
0b t             ( )1

1b t  

                                         (1 – t)    t      (1 – t)    t 

                                                                                  0b 1b 2b

is the geometric interpretation of the de Casteljau algorithm. Each computed point is 

found by taking the two points and multiplying them by the respective labels on the 

edges, and summing the two resulting products. 

To subdivide a Bézier curve using blossoms with the same control points of 

Bézier curve , we illustrate  0 1 2, ,b b b
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[ ]2
0 1 2,b t t  

                                                    (1 – t2)          t2 

                                                     ( )1
0 1b t              ( )1

1 1b t  

                                        (1 – t1)    t1     (1 – t1)    t1 

                                                                                     0b 1b 2b

by replacing t with a different parameter  where it 1, 2,...=i  on each level of the 

triangle, we can compute the blossom of a Bézier curve ( )p t . From the below 

figure, we can express the blossom which is defined over [0, 1]. 

( ) ( )1
0 1 1 0 1 11 ,= − +b t t b t b  

                                                  ( ) ( )1
1 1 1 1 1 21 ,= − +b t t b t b  

                                              [ ] ( ) ( ) ( )2 1
0 1 2 2 0 1 2 1 1, 1= − +b t t t b t t b t1 , 

Explicitly, 

[ ] [ ] ( )( ) ( ) ( )2
0 1 2 1 2 1 2 0 1 2 1 2 1 1 2 2, , 1 1 1 1= = − − + − + − +⎡ ⎤⎣ ⎦b t t b t t t t b t t t t b t t b  (2.2.2) 

It is straightforward to check that [ ]1 2,b t t  is the blossom of the curve ( )p t , since 

[ ]1 2,b t t  is clearly symmetric, from the equation (2.2.2) 

 [ ] ( )( ) ( ) ( )2 1 2 1 0 2 1 2 1 1 2 1 2, 1 1 1 1= − − + − + − +⎡ ⎤⎣ ⎦b t t t t b t t t t b t t b  

then 

 [ ] [ ]1 2 2 1, ,=b t t b t t  

and we show [ ]1 2,b t t  is affine for the first argument , 1t
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( ) ( ) ( )( ) ( )( )2 2 0 2, 1 1 1α β α β+ = − − + + − +⎡ ⎤ ⎡⎣ ⎦ ⎣b r s t t r s b t r sα β  

                              ( )( ) ( )2 1 21 α β α β⎤+ − + + +⎦t r s b t r s 2b  

                           = ( ) ( ) ( )( ) ( )2 01 1α β α β α− + − + + −⎡⎣t r s b r 2t  

                               + ( ) ( )( ) ( )2 2 1 21β α β α β α⎤− + + − + + +⎦s t t r s b t r s b2β  

                           = ( ) ( ) ( )( ) ( ) (2 0 21 1 1 1 1α β α β− − + − + − + −⎡⎣t r s b r t s )2t  

                               + ( ) ( ) ( )2 2 1 2 21 1α β α β− + − + +⎤⎦r t s t b t r t s b2  

                           = ( )( ) ( )( ) ( ) ( )2 0 2 0 2 21 1 1 1 1 1α β α− − + − − + − + − 1⎡ ⎤⎣ ⎦r t b s t b r t r t b  

                               ( ) ( )2 2 1 2 21 1β α+ − + − + +⎡ ⎤⎣ ⎦s t s t b rt b st b2 2β  

                           = [ ] [ ]2 2, ,α β+b r t b s t  

and similarly by the symmetric property [ ]1 2,b t t  is affine for the second one. This is 

the reason that [ ]1 2,b t t  is multiaffine. 

For a third property, taken 1 2= =t t t  

 [ ] ( ) ( )2 2
0 1, 1 2 1= − + − +b t t t b t tb t b2  

is the Bézier curve with the control points . Finally, we proved 0 1 2, ,b b b [ ]1 2,b t t  is the 

blossom of Bézier curve. 

The blossom values are computed by linear interpolation, we find that the Bézier 

points  are found as the blossom values. For a n-degree polynomial, we express the 

Bézier points, 

ib

 0 ,1< − > < >⎡ ⎤= ⎣ ⎦
n i i

ib b  
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where  means that 0 n i< − > −n i  times 0 and 1 i< > denotes i times 1. Moreover, each 

multiaffine function [ ]1 2 ,..., nt t,b t  can be written as unique linear combination of this 

function  

 [ ] ( ) [ ] [ ]1 2 1 2 1 2, ,..., 1 0, ,..., 1, ,...,= − +n nb t t t t b t t t b t tn  (2.2.3) 

where the function defined over the interval [0, 1]. If we take any arbitrary interval 

[ ],α β  instead of [0,1], then the local coordinate of Bézier curve t can be written  

 − −

− −
= +

t tt β α
β α β α

α β , 

and the equation (2.2.3) can be expressed in interval [ ],α β , (See Farin, 2002), 

 [ ] [ ] [ ]1 1
1 2 2 2, ,..., , ,..., , ,...,n n

t tb t t t b t t b t tβ α
β α β α

α β− −

− −
= + n

r−

. 

One may express the general form of blossom by introducing a new parameter  in 

each column of the de Casteljau algorithm as follows: 

rt

For  and  compute 1, 2,...,r n= 0,1,..., ,i n=

[ ] [ ] [ ]1 2 1 1 1 1, ,..., ,..., , ,..., , .r r
r r

t tb t t t b t t b t tβ α
β α β α rα β− −

− −

− −
= +  

If we rewrite the equation (2.2.2) using the blossom values, we have  

 [ ] ( )( ) [ ] ( ) ( ) [ ] [ ]1 2 1 2 1 2 1 2 1 2, 1 1 0,0 1 1 0,1 1,= − − + − + − +⎡ ⎤⎣ ⎦b t t t t b t t t t b t t b 1 . 

This is shown in the following figure, 
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 b[0,1] 

 b[0,t2]   b[1,t1] 

  b[t1,t2]   b[
 b[0,t1] 

 b

 

 

 
1,t2] 

[0,0] 

b[1,1]  

 

Each node in the diagram indicates one of the blossom values computed by de 

Casteljau algorithm, and [ ]1 2,b t t  is the resulting values in this computation. 
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CHAPTER THREE 

RESULTS ON BLOSSOM OF BERNSTEIN POLYNOMIALS 

In this chapter, we will express the blossom of Bernstein and q-Bernstein 

polynomials in general form using the elementary symmetric polynomials. In 

addition, we will point out how Bernstein coefficients may be expressed using the 

blossom values. Finally, we demonstrate that the blossom of Bernstein polynomials 

interpolates control points of the polynomial curve.  

3.1 Blossom of Bernstein Polynomials  

By the main theorem, for every polynomial curve ( )p t  there exists a unique n-

variate symmetric polynomial in nth degree polynomial space. (See Prautzsch & 

Boehm & Paluszny, 2002). If we consider a polynomial curve ( )p t  which is written 

as a linear combination of nth degree polynomials ( )tiC , 

 ( ) ( )
0=

= ∑
n

i i
i

p t c C t , (3.1.1) 

then we write the blossom of ( )p t  

  [ ] [1 2 1 2
0

, ,..., , ,...,
=

= ∑
n

n i i
i

b t t t c C t t t ]n

where [ ]1 2, ,...,iC t t tn denotes the blossom of ( )iC t . 

If we take , ( ) in
i

C t ti
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

= 0,1,...,=i n , in equation (3.1.1), we get the elementary 

symmetric polynomials  

[ ]
1

1

1 2
1 ...

, ,...,
i

i

i n k
k k n

C t t t t t
≤ < < ≤

= k∑ …  

 22 
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since the summation involves  terms for each value i. n
i

⎛ ⎞
⎜ ⎟
⎝ ⎠

For example, taking a polynomial ( )p t  for 2=n  in the form  

 ( )
2

0=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ i

i
i

n
p t c

i
t  

                                                          =  2
0 1 22+ +c c t c t

the blossom of ( )p t , with using symmetric polynomial, is  

  [ ]
1

1

2

1 2
0 1 2

,
= ≤ < ≤

= ∑ ∑ i

i

i k
i k k

b t t c t tk

                                                          = ( ) ( )0 1 1 2 2 1 2+ + +c c t t c t t , 

the elementary symmetric polynomial [ ]1 2,iC t t  clearly satisfies the three properties 

of symmetric polynomials.  

In equation (3.1.1), if we take ( )iC t  as Bernstein basis 

 ( ) ( )1 n in i
i

n
i

B t t t −⎛ ⎞
= −⎜ ⎟
⎝ ⎠

, 

then the symmetric polynomial of ( )n
iB t  has the following form, (See Prautzsch & 

Boehm & Paluszny, 2002) 

 [ ] ( ) ( )1 1

1
1

1 2
...
...

, ,..., 1 1
−

−

< <
< <

= − −∑ … …
i n

i
n i

n
i n k k l

k k
l l

ilB t t t t t t t . 

It follows from the symmetric polynomials that we can represent the blossom of 

Bernstein polynomial ( ;n )B f t  using the symmetric polynomial 
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[ ] [ ]1 2 1 2
0

, ,..., , ,...,
=

= ∑
n

n
n i i

i

b t t t c B t t tn

)n i

 

                     =  (3.1.2) ( ) (1 1

1
1

0 ...
...

1 1
−

−

= < <
< <

− −∑ ∑ … …
i

i
n i

n

i k k l l
i k k

l l

c t t t t

where i
i n

c f ⎛ ⎞
⎜ ⎟
⎝ ⎠

=  and the function f is defined on [ ]0,1 .  

We remark that Bernstein polynomials were given in a difference form in the first 

chapter  

 ( ) ( )
0

;
n

i
n

i

n
i

0 iB f t f t
=

⎛ ⎞
= Δ⎜ ⎟

⎝ ⎠
∑  (3.1.3) 

where Δ is the forward difference operator. 

As a consequence of the expression, if we consider Bernstein polynomial in this 

form, then the representation of blossom will be different from the equation (3.1.2). 

Taking  and ( )in
ii

t C t⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

= ( )0Δ =i
if c  in equation (3.1.3), the blossom of Bernstein 

polynomial can also be written  

  (3.1.4) [ ]
1

1

1 2
0 1 ...

, ,...,
i

i

n

n i k
i k k n

b t t t c t t
= ≤ < < ≤

= ∑ ∑ … k

with the elementary symmetric polynomial  

 
1

11 ...≤ < < ≤
∑ …

i

i

k k
k k n

t t . 

Let us show that [ ]1 2, ,..., nb t t t  satisfies the three properties of blossom. Since 

[ ]1 2, ,...,iC t t tn  is symmetric polynomial, linear combination of the symmetric 

polynomial is also symmetric. Hence the first property is hold.  
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If any argument , 1
jkt < <j i , of the blossom is a barycentric combination of two 

points r and s,  

 ( )1α α= + −
jkt r s ,       , ∈\r s  

the blossom is 

  ( )( ) ( )( )
1

1

1
0 1 ...

,..., 1 ,..., 1α α α α
= ≤ < < ≤

⎡ ⎤+ − = + −⎣ ⎦ ∑ ∑ … …
i

i

n

n i k
i k k n

b t r s t c t r s tk

k

since the symmetric polynomial is affine in each variable, 

( )( )
1

1

1
0 1 ...

,..., 1 ,...,α α α
= ≤ < < ≤

⎛
⎡ ⎤+ − = ⎜⎣ ⎦

⎝
∑ ∑ … …

i

i

n

n i k
i k k n

b t r s t c t r t  

                                                   + ( )
1

11 ...
1 α

≤ < < ≤

⎞
− ⎟

⎠
∑ … …

i

i

k k
k k n

t s t  

                                               =  
1

10 1 ...
α

= ≤ < < ≤
∑ ∑ … …

i

i

n

i k
i k k n

c t r kt

kt                                                   + ( )  )1

10 1 ...
1 α

= ≤ < < ≤

− ∑ ∑ … …
i

i

n

i k
i k k n

c t s

then we deduce that  

 ( )( ) [ ] ( ) [ ]1 1,..., 1 ,..., ,..., ,..., 1 ,..., ,...,α α α α⎡ ⎤+ − = + −⎣ ⎦n nb t r s t b t r t b t s t1 n

t=

. 

So, the affine property is satisfied. For the diagonal property of blossom, take 

. Then we obtain,  1 ,..., nt t t=

  
1

11 ...
i

i

i
k k

k k n

n

i
t t t

≤ < < ≤

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ …



 26
 

and . It follows that  ( ) ( ),  0i in
i ii

C t t c f⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

= = Δ

  [ ] ( )
0

,..., 0
n

i i

i

n
i

b t t f t
=

⎛ ⎞
= Δ ⎜ ⎟

⎝ ⎠
∑

                                                             = ( );nB f t . 

Thus, the equation (3.1.4) is the blossom of Bernstein polynomial.  

From the previous chapter, we know that the Bézier points are represented as the 

blossom values. Here, we will analyze the relation between the coefficients of 

Bernstein polynomial and blossom values.  

For n = 3, with the given blossom values, we obtain the blossom of Bézier curve  

[ ] [ ] ( )( )( ){ }1 2 3 1 2 3, , 0,0,0 1 1 1= − −b t t t b t t t−  

                   + [ ] ( )( ) ( )( ) ( )( ){ }1 2 3 2 1 3 3 1 21,0,0 1 1 1 1 1 1− − + − − + − −b t t t t t t t t t  

                    + [ ] ( ) ( ) ( ){ } [ ]1 2 3 1 3 2 3 2 1 1 2 31,1,0 1 1 1 1,1,1− + − + − +b t t t t t t t t t b t t t . 

Substituting n = 3 in equation (3.1.4), we obtain the blossom of Bernstein polynomial 

in the form  

[ ]
1

1

3

1 2 3 0
0 1 ... 3

, ,
= ≤ < < ≤

= Δ∑ ∑ …
i

i

i
k k

i k k
b t t t f t t  

                = ( ) ( ) (0 1 2 3
0 0 1 2 3 0 1 2 1 3 2 3 0 1 2 3Δ + Δ + + + Δ + + + Δ )f f t t t f t t t t t t f t t t  

Comparing the coefficients 1, ( )1 2 3+ +t t t , ( )1 2 1 3 2 3+ +t t t t t t ,  in the above 

equations, we obtain the blossom values of Bernstein polynomial  

( 1 2 3t t t )

                         [ ]0
0 0,0,0Δ =f b  

                         [ ] [ ]1
0 1,0,0 0,0,0Δ = −f b b  
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                         [ ] [ ] [ ]2
0 1,1,0 2 1,0,0 0,0,0Δ = − +f b b b  

 [ ] [ ] [ ] [ ]3
0 1,1,1 3 1,1,0 3 1,0,0 0,0,0Δ = − + −f b b b b . 

The blossom values are the Bézier control points of the curve  

  0 ,1< − > < >⎡ ⎤ =⎣ ⎦
n i i

ib b ,      0,1,..., .i n=  

Thus, the blossom of Bézier curve interpolates to all control points . Using the 

Bernstein- Bézier equality, we conclude that the blossom of Bernstein polynomial 

interpolates all points 

ib

if .  

3.2 Blossom of q-Bernstein Polynomials  

We recall from the first chapter the expression of q-Bernstein polynomial in the 

form 

                               ( )
1

0 0

;
n in

q i
n i

i s

n
i

(1 )sB f t f t q t
− −

= =

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑ ∏ −                                     (3.2.1) 

where 

( )
1

,

0

(1 ),
n i

n q i s
i

s

n
i

B t t q
− −

=

⎡ ⎤
= −⎢ ⎥
⎣ ⎦

∏ t i n   0 ≤ ≤ , 

is the generalized Bernstein basis. 

Using the above expression (3.2.1), we could not find a symmetric polynomial of 

the generalized Bernstein basis. Since the symmetry property of  blossom is 

disqualified, the blossom of q-Bernstein polynomial can not be reached from this 

expression.  

It will be reasonable to use the following representation for q-Bernstein 

polynomial, 
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                                             ( ) 0
0

;
n

q
n

i

n

i
.i i

qB f t f t
=

⎡ ⎤= Δ⎢ ⎥⎣ ⎦
∑                                      (3.2.2) 

If we multiply and divide the equation (3.2.2) by , then it becomes n
i

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

( ) 0

0

; .
n n

q ii
n

i

i
q

n
i

f n
i

B f t t
⎡ ⎤
⎢ ⎥⎣ ⎦

⎛ ⎞
⎜ ⎟= ⎝ ⎠

Δ ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  

Then we express the blossom of q-Bernstein polynomials 

[ ]
1

1

1 2
0 1 ...

, ...,
i

i

n

n i k
i k k n

b t t t c t t
= ≤ < < ≤

=∑ ∑ … k                          (3.2.3) 

where 0
.

n i fqi
i n

i
c

⎡ ⎤Δ⎢ ⎥⎣ ⎦
⎛ ⎞
⎜ ⎟
⎝ ⎠

=   

    Now, one may see that the blossom properties, symmetry-multiaffinity-

diagonality, are hold for the equation (3.2.3). Here, we will give an example of 

blossom for a quadratic q-Bernstein polynomial. 

    Substituting in equation (3.2.3), we have 2n =

1 2 0 1 1 2 2 1 2[ , ] ( )b t t c c t t c t t= + + +  

where  

0
0

0 0

2
0

2
0

,
q f

c f
⎡ ⎤
⎢ ⎥⎣ ⎦

⎛ ⎞
⎜ ⎟
⎝ ⎠

Δ
= =  

1
0

2
0

1 0
1

2 2 1 1

2
1

2
1

2
2

2
2

(1 )( ) ,
2

( )

q

q

f

f

q f fc

c f f q f

⎡ ⎤
⎢ ⎥⎣ ⎦

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤
⎢ ⎥⎣ ⎦

⎛ ⎞
⎜ ⎟
⎝ ⎠

Δ

Δ

+ −
= =

= = − − − 0 .f
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Then the blossom is written in the form 

1 0
1 2 0 1 2 2 1 1 0 1 2

(1 )( )[ , ] ( ) [ ( )] .
2

q f fb t t f t t f f q f f t t+ −
= + + + − − −  

For  the blossom interpolates the initial point 1 2 0,t t= = 0f , 

0[0,0]b f=  

and for   we obtain that 1 0,t = 2 1,t =

1 0
0 1

(1 )( )
[0,1] .

2
q f f

b f f
+ −

= + ≠  

To find the value of  it must satisfy 2 ,t

1 0
2 0 2

(1 )( )
[0, ] .

2
q f f

b t f t f1
+ −

= + =  

It follows that 

2
2 .

1
t

q
=

+
 

So, we have 

1
2[0, ] ,

1
b f

q
=

+
 

and taken the arguments  we see that 1 2 1,t t= =

0 1 0 2 1 1

2

[1,1] (1 )( ) ( )
.

b f q f f f f q f
f

= + + − + − − −
=

0f  
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Thus, we deduce that the blossom of quadratic q-Bernstein polynomial interpolates 

the points 0f , 1f  and 2 .f  

To generalize the above argument, it is easy to see that  

0[0 ]nb f< > =   and   [1 ] .n
nb f< > =

The latter equation shows that the blossom of q-Bernstein polynomial satisfies the 

end point interpolation property. In order to find the other  points 1n − 1 1,..., nf f −  

from the blossom function, we impose transformation matrix between the two 

representations of the same curve. Since q-Bernstein basis and classical Bernstein 

basis span the space of any polynomial curve ( ),p t  we have 

0 0
, ,

0 0

( ) ( ) ... ( )

( ) ... ( ),

n n
n n

n q n q
n n

p t b B t b B t

c B t c B t

= + +

= + +
 

where and  are respective control points of the curve. 0 ,..., nb b 0 ,..., nc c

     Now we can find a nonsingular transformation ( 1) ( 1)n n+ × +  matrix ,n qΤ  

between Bernstein coefficients and q-Bernstein coefficients, such that 

0 1 0 1
,[ , ,..., ] [ , ,..., ].n

n qc c c b b b=Τ n

ic

                            (3.2.4) 

Then 

0
,

n

j ij
i

b t
=

= ∑     0 ,j n≤ ≤  

is the linear transformation, where  are  the entries of the transformation matrix 

. The entries of the matrix 

ijt

,n qΤ ,n qΤ  are 
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(1 ) ( 1 , ),j i
ij

n
i
n
j

t q S n i j
⎡ ⎤
⎢ ⎥ −⎣ ⎦
⎛ ⎞
⎜ ⎟
⎝ ⎠

i= − − − −  

where  is the Stirling polynomial defined by the sum of ( , )S n j n
j

⎛ ⎞
⎜ ⎟
⎝ ⎠

 products of j  

distinct factors chosen from the set { }[1],[2],...,[ ] .n  (See Oruç & Phillips, 2002). 

Thus, 

( ) 1

0 1 0 1
,[ , ,..., ] [ , ,..., ] .n n

n qc c c b b b
−

= Τ  

A general formulation to find the blossom values of q-Bernstein polynomial is not 

as clear as in Bernstein polynomials. However, the above formula expresses the 

blossom values of q-Bernstein polynomial in terms of control points of its Bernstein 

representation. 
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