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A HBYRID GENETIC ALGORITHM FOR MIXED-MODEL ASSEMBLY 

LINE BALANCING PROBLEM WITH PARALLEL WORKSTATION 

ASSIGNMENT 

 

ABSTRACT 

 

 In this thesis, we deal with the mixed-model assembly line balancing problem 

(MMALBP) of type-1. This problem consists of finding the minimum number of 

stations for a predetermined cycle time. Various exact and approximation approaches 

have been developed to deal with MMALBP of type-1. Due to the NP-hard structure 

of the problem none of the optimum seeking methods has been proven to be practical 

to solve large scale problems. Moreover, approximation methods may lack the 

capability of exploring the solution space effectively. Over the last years, hybrid 

meta-heuristics which combine the various algorithmic ideas of meta-heuristics 

concerning overcome these shortages have been reported.  

 

In this thesis, we propose an effective hybrid genetic algorithm (GA) that is able to 

address some particular features such as parallel workstations and zoning constraints 

of the MMALBP of type-1. The type of hybridization is sequential. For the 

hybridization of GA three well known heuristics, Kilbridge and Wester, Phase-I of 

Moodie and Young, and Ranked Positional Weight Technique are used. The original 

versions of first two methods only address the simple assembly line balancing 

problem, where one single model is assembled, no parallel workstations are allowed 

and zoning constraints are not considered. Therefore, we modified these first two 

methods for applying to MMALBP of type-1. Comparative experiments are carried 

out to evaluate the performances of the three heuristics, simulated annealing, pure 

GA, ANTBAL and the proposed hybrid GA on a benchmark data set including 20 

MMALBPs of type-1. The proposed hybrid GA showed better performance than 

pure GA for large sized problems. Although the proposed hybrid GA explored the 

same performance with ANTBAL, it has an advantage of requiring less 

computational effort than ANTBAL. 
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Keywords: Mixed-model assembly line balancing problem, genetic algorithm, 

heuristic, hybridization, parallel workstation assignment, zoning constraints 
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PARALEL ĐSTASYON ATAMALI KARIŞIK TĐPLĐ MONTAJ HATTI 

DENGELEME PROBLEMĐNĐN MELEZ GENETĐK ALGORĐTMA ĐLE 

ÇÖZÜMÜ 

 

ÖZ 

 

 Bu tezde, 1.tip karışık tipli montaj hattı dengeleme problemi ele alınmaktadır. Bu 

problem, maliyet veya kapasite tabanlı bir amaç fonksiyonunu optimize ederken, 

önceden belirlenen bir çevrim zamanına göre minimum istasyon sayısını bulma 

problemidir. Çeşitli kesin sonuç veren ve yaklaşım yöntemleri, bu probleme çözüm 

aramak amacıyla kullanılmışlardır. Problemin NP-Hard yapısından dolayı büyük 

ölçekli problemlerin çözümünde kesin sonuç veren algoritmalar etkili olamamakta ve 

arama algoritmaları da büyük ölçekli problemlerde çözüm uzayını etkili bir şekilde 

arama konusunda yetersiz kalabilmektedirler. Bu dezavantajın üstesinden gelebilmek 

için son yıllarda meta-sezgisellerin çeşitli algoritmalar ile kombinasyonu birçok 

çalışma tarafından ele alınmıştır. Bu yaklaşımlar melez meta-sezgiseller olarak 

adlandırılmaktadırlar. 

 

Bu tez çalışmasının temel amacı 1.tip karışık tipli montaj hattı dengeleme 

probleminin çözümü için kapasite tabanlı bir amaç fonksiyonunu optimize eden 

genetik algoritma tabanlı melez bir algoritma sunmaktır. Melez tipi sıralı olarak 

seçilmiştir. Önerilen metod, paralel istasyon ataması ve zoning kısıtları gibi gerçek 

karışık tipli montaj hatlarının bazı belirgin özelliklerini ele almaktadır. Melez genetik 

algoritmanın elde edilmesi için bilinen üç sezgisel algoritma, Kilbridge ve Wester 

Sezgiseli, Moodie ve Young Metodunun I. Aşaması ve RPWT, kullanılmıştır. Đlk iki 

sezgiselin orjinal versiyonları tek bir ürün tipinin üretildiği basit montaj hattı 

dengeleme problemlerinin çözümünde paralel istasyon ataması ve zoning kısıtları 

göz önünde bulundurulmadan kullanılmaktadır. Bu yüzden, Moodie & Young 

Metodunun I. Aşaması ve Kilbridge ve Wester Sezgiseli karışık tipli montaj 

hatlarında kullanılabilecek şekilde modifiye edilmiştirr. Sonrasında modifiye edilmiş 

bu sezgisellerin, genetik algoritmanın, tavlama benzetiminin, ANTBAL’ın ve 

önerilen melez genetik algoritmanın performansını test etmek için karşılaştırmalı 
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deneyler 20 adet 1.tip problem kullanılarak yapılmıştır. Önerilen melez genetik 

algoritma genetik algoritmadan büyük problemlerin çözümünde daha iyi sonuç 

vermektedir. ANTBAL ile aynı performansı göstermesine rağmen daha az hesaplama 

gerektirmektedir.  

 

Anahtar Kelimeler: Karışık tipli montaj hattı dengeleme problemi, genetik 

algoritma, sezgisel, melezleme, paralel istasyon ataması, zoning kısıtları 
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1 

CHAPTER ONE 

INTRODUCTION 

 

1.1 Importance of the Problem 

 

 Assembly lines were first introduced by Henry Ford in 1913. He was the first to 

introduce a moving belt in a factory. Before the moving belt, workers were able to 

build one piece of an item at a time instead of an item at a time. This changed type of 

manufacturing system and reduced the cost of production. Over the years an 

important problem type, design of efficient assembly lines, recieved much attention. 

A well-known assembly design problem is assembly line balancing problem(ALBP). 

ALBP is a decision problem of optimally partitioning (balancing) the assembly work 

among the stations with respect to some objective.  

 

 An assembly line is a flow-oriented production system where the productive units 

performing the operations, referred to as workstations, are aligned in a serial manner. 

The workpieces(jobs) visit stations successively as they are moved along the line 

usually by some kind of transportation system, usually by a conveyor belt. The 

workpieces are consecutively launched down the line and are moved from station to 

station. At each station, certain operations are repeatedly performed regarding the 

cycle time (maximum or average time available for each workcycle).  

 

 Manufacturing a product on an assembly line requires partitioning the total 

amount of work into a set of elementary operations named tasks. Performing a task j 

takes a task time tj and requires certain equipment of machines and/or skills of 

workers. Due to technological and organizational conditions precedence constraints 

between the tasks have to be observed. These elements can be summarized and 

visualized by a precedence graph. It contains a node for each task, node weights for 

the task times and arcs for the precedence constraints.Any type of ALBP consists in 

finding a feasible line balance, i.e., an assignment of each task to exactly one station 

such that the precedence constraints and possibly further restrictions are fulfilled. 
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The role of assembly lines has been changing through time. Assembly lines were 

firstly created to produce a low variety of products in high volumes. They allow low 

production costs, reduced cycle times and accurate quality levels. These are 

important advantages from which companies can benefit if they want to remain 

competitive. However, single-model assembly lines, designed to carry out a single 

homogenous product, are the least suited production system for high variety demand 

scenarios. The current market is intensively competitive and consumer-centric. For 

example, in the automobile industry, most of the models have a number of features, 

and the customer can choose a model based on their desires and financial capability. 

Different features mean that different additional parts must be added on the basic 

model. Due to high cost to build and maintain an assembly line, the manufacturers 

produce one model with different features or several models on a single assembly 

line. Under these circumstances, the mixed model assembly line balancing problem 

arises to smooth the production and decrease the cost. 

 

 Formally, a mixed model assembly line balancing problem can be stated as 

follows (Gokcen and Erel,1997):  

 

� Given M models,  

� The set of operations associated with each model,  

� The processing time of each operation (operation time),  

� The set of precedence relations which specify the permissible orderings of 

the operations for each model.  

 

 The problem is to assign the operations to an ordered sequence of workstations 

such that precedence relations of each model are satisfied and some performance 

measures are optimized. Unlike the case of a single model line, different models of a 

product are assembled on a mixed model assembly line. The models are launched to 

the line one after another. Essentially, this problem is a sequencing problem with 

constraints: different sequences of operations being processed correspond to different 

allocation plans. 
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 Nowadays, mixed model assembly lines, wherein different models of a 

standardized product are produced in an intermixed sequence, are the main focus of 

the research community. For a mixed model assembly system, finding a line balance 

whose station loads have the same station time whatever model is produced is almost 

impossible. This is because, the models differ from each other with respect to size, 

colour, used material or equipment and consequently their production requires 

different tasks, task times and/or precedence relations. The problem is more difficult 

than the single model case because the station times of the different models have to 

be smoothed for each station in order to avoid operating inefficiencies like work 

overload or idle time (Becker and Scholl 2006). The allocation of assembly times to 

workstations in a mixed-model assembly line balancing problem (MMALBP) is 

characterized by two types of variability or imbalances, vertical and horizontal;  

 

� Vertical imbalance (model variability) results from the difficulty of 

reaching a perfect balance for each model separately, due to precedence and 

technological constraints.  

 

� Non-identical total assembly time required by the different models on a 

station due to non-identical times for the same tasks on different models 

causes horizontal imbalance (station variability).  

 

 The two types of variability cause blockage and starvation, and as a consequence, 

high idle times within stations result in low line efficiency and/or throughput. Equal 

distribution (to the extent possible) of load on to the workstations considering all the 

models involved can reduce these types of variability. The classic objective of 

minimizing cycle time is not necessarily the same objective as load equalization (or 

smoothing). The aim of the latter usually translates into minimization of the squared 

differences between workstation loads, which means that a small increase in the 

maximum lead time may yield a substantial reduction in load imbalance, i.e. a better 

equalization of workload (Venkatesh and Dabade, 2008). 
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1.2 Framework of the Thesis 

 

 Various exact solution approaches, branch and bound, integer programming, 

dynamig programming etc., deal with MMALBP. However, due to the NP-Hard 

structure of the problem none of the optimum seeking methods have proven to be 

practical to solve large scale problems. Therefore, several heuristics and meta-

heuristics (Genetic algorithm, Tabu Search, Simulated Annealing, Ant Colony 

Optimization, etc.) have been employed to solve the problem effectively. 

 

 Among the meta-heuristics, most widely used one is the genetic algorithm. 

Because, it provides an alternative to traditional optimization techniques by using 

directed random searches to locate optimum solutions in complex landscapes. It is 

also proven to be effective in various combinatorial optimization problems. 

However, as real life problems get larger and more complex, pure genetic algorithms 

may lack the capability of exploring the solution space effectively. As a remedy, over 

the last years, a number of studies have been reported combining the various 

algorithmic ideas of meta-heuristics. These approaches are commonly referred to as 

hybrid meta-heuristics. 

 

 The main objective of this study is to propose a hyrid algorithm based on genetic 

algorithm to tackle the MMALBP with parallel workstations assignment under the 

zoning constraints, and then to test the performance of the proposed hybrid genetic 

algorithm on an existing benchmark set of 20 problems.   

 

For hybridization of the genetic algorithm three well known heuristics, Kilbridge 

and Wester (Kilbridge and Wester, 1961), Phase-I of Moodie and Young Method 

(Moodie and Young, 1965), and Ranked Positional Weight Tehnique (RPWT) 

(Helgeson and Birnie, 1961) are used. These approaches only address the simple 

assembly line balancing problem, where one single model is assembled, no parallel 

workstations are allowed and zoning constraints did not take into consideration. In 

order to apply these methods to MMALBP, modified versions are used. 
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In this thesis, we first solve the MMALBP with parallel workstations by 

employing the modified versions of three well known problem specific algorithms 

and pure genetic algorithm. Finally we propose a sequential hybrid genetic algorithm 

to tackle the problem. First a random population (a set of faesible solutions) is 

generated and then the solutions obtained by both Kilbridge and Wester Heuristic, 

Phase-I of Moodie and Young Method and RPWT inserted in the initial population 

 

1.3 Outline of the Thesis 

 

 Rest of the thesis involves four chapters.  The following chapter contains an 

overview of the assembly line balancing problem. In this chapter, a literature review 

about MMALBP which spans 12 years from 1997 through 2009 is also given.  

 

Chapter three gives an overwiev on meta-heuristics, hybrid meta-heuristics, 

genetic algorithms and application of genetic algorithms for solving assembly line 

balancing problems 

 

The fourth chapter mainly focuses on solving MMALBP with parallel 

workstations using the proposed hybrid genetic algorithm, pure genetic algorithm 

and the other heuristics combined with genetic algorithm. The solution results are 

presented in detail.  

 

Finally, the conclusions and the contributions of this study are discussed in 

chapter five. 
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CHAPTER TWO 

AN OVERWIEW ON ASSEMBLY LINE BALANCING PROBLEM  

 

2.1 Assembly Lines 

 

An assembly line (AL) is a manufacturing process consisting of various tasks in 

which interchangeable parts are added to a product in a sequential manner at a station 

to produce a finished product. Assembly lines are the most commonly used method 

in a mass production environment, because they allow the assembly of complex 

products by workers with limited training, by dedicated machines and/or by robots. 

 

The installation of an assembly line is a long-term decision and usually requires 

large capital investments. Therefore, it is important that an AL is designed and 

balanced so that it works as efficiently as possible. Most of the work related to the 

ALs concentrate on the assembly line balancing (ALB). The ALB model deals with 

the allocation of the tasks among stations so that the precedence relations are not 

violated and a given objective function is optimized. For a comprehensive review on 

ALB, see Boysen, Fliedner, and Scholl (2007). 

 

2.1.1 Terminology of Assembly Line Production  

 

  Assembly is the process of collecting and fitting together various parts in order to 

create a finished product. It is characterized by the used parts and the work necessary 

to combine them. The relationships of parts and the flow of material can be 

visualized by assembly charts. The unfinished units of the product are called 

workpieces. 

 

An operation (task) is a portion of the total work content in an assembly process. 

The time necessary to perform an operation is called operation (task) time.Operations 

are indivisible, because they can not be split into smaller work elements without 

creating unnecessary additional work. 
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A (work) station is a segment of an assembly line where a certain amount of work 

(a number of operations) is performed. It is mainly characterized by its dimensions, 

the machinery and equipment as well as the kind of assigned work. To this effect, 

stations can be subdivided into manual or automated stations depending on the 

subjects performing the work. 

 

The cycle time represents the maximal amount of time a workpiece can be 

processed by a station of a paced assembly line. Since tasks are indivisible work 

elements, the cycle time can not be smaller than the largest operation time. In 

unpaced flow-line production systems (including mixed-model lines), the cycle time 

serves as maximal possible average station time. The time interval during which a 

workpiece is accessible to a station is called tolerance time. The output rate or 

production rate of the line equals the reciprocal of the cycle time. A positive 

difference between the cycle time and the station time is called idle time. The sum of 

idle times for all stations of the line is called balance delay time. 

 

The ordering in which operations must be performed may partially be 

prespecified. This partial ordering of tasks can be illustrated by means of a 

precedence diagram which contains nodes for all operations and arcs (i,j) if an 

operation i must precede an operation j. In Figure 2.1 it can be seen the precedence 

diagrams of two models and joint precedence diagram after merging the precedence 

diagrams of these two models. 

 

 

(a) 
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(b) 

 

     (c) 

 

                      Figure 2.1 Precedence diagrams of (a) model 1, (b) model 2 and (c) combined. 

 

A line balance (feasible task assignment) represents a feasible solution of a 

balancing problem. A feasible solution is characterized by the following properties: 

Because of its indivisibility each task is assigned to exactly one station. The 

precedence constraints are fulfilled, i.e., no task j which must succeed a task i is 

assigned to an earlier station than i. The station times of all stations of all stations (or 

the average station times) do not exceed the cycle time. 
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2.1.2 Additional Features of Assembly Lines 

 

Assembly lines can be distinguished with regard to the number and variety of 

products assembled in the line (Scholl, 1999) (see Figure 2.2). An assembly line can 

be treated as single-model line, if only one product or several products with identical 

production process are assembled. However, in most of the modern manufacturing 

environments, several products or different models of the same base product often 

share the same assembly line. If several products are assembled in batches in an AL, 

it is called a multi-model line. Another type of lines is a mixed-model line, where 

different models of the same base product are assembled simultaneously in the same 

line (not in batches). 

 

 

            (a) 

 

 

             (b) 

 

 

(c) 

                  Figure 2.2 Assembly lines: (a) single-model, (b) mixed-model, and 

                  (c) multi-model. 

 

Line control is another characteristic of the assembly lines. Assembly lines can be 

classified in three groups in dependency of line control: paced lines, unpaced 

asynchronous lines and unpaced synchronous lines. In a paced assembly production 

system typically a common cycle time is given which restricts process times at all 

stations. In unpaced lines, workpieces are transferred whenever the required 

operations are completed, rather than being bound to a given time span. Under 

asynchronous movement, a workpiece is always moved as soon as all required 

operations at a station are completed and the successive station is not blocked 

setup setup 
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anymore by another workpiece. In order to minimize waiting times, buffers are 

installed in-between stations, which can temporarily store workpieces. Under 

synchronous movement of workpieces, all stations wait for the slowest station to 

finish all operations before workpieces are transferred at the same point in time. In 

contrast to the asynchronous case, buffers are hence not necessary (Boysen, Fliedner 

and Scholl, 2008). 

 

Assembly lines can also be distinguished with regard to the nature of task 

processing times which can be deterministic, stochastic, hidden or dynamic. In the 

case of manual ALs, the task time is constant only in the case of highly qualified and 

motivated workers. More advanced machines and robots are able to work 

permanently at a constant speed. At these cases the task processing times are 

assumed to be deterministic. Likewise, the task processing times are accepted as 

stochastic, if the human work rate, skill and motivation result in variations in 

processing times. In the case of automated stations, it is often difficult to determine 

the operating time of a complex task (two or more grouped tasks). Indeed, the 

process time of a station is not always the sum of the operating times of each 

equipment in the group because of the so-called hidden times. In the case of human 

workers, systematic reductions are possible due to the learning effects or successive 

improvements of the production process, the task processing times are assumed to be 

dynamic. 

 

In the plant layout problem, emphasis is often put on material flow between 

departments. Single stations are arranged in a straight line along a conveying system 

at the case of serial lines. As a consequence of introducing the JIT production 

principle, it has been recognised that arranging the stations in a U-line has several 

advantages over the traditional configuration. Workers are placed in the centre of the 

‘U’ and can monitor each other’s progress and collaborate easily whenever required. 

With high production rates, the longest task time sometimes exceeds the specified 

cycle time. A common remedy is to create stations with parallel or serial posts, 

where two or more workers perform an identical set of tasks. It is common to 

duplicate the entire AL (parallel lines) when the demand is high enough. For 

complex products, the assembly system is most of the time decomposed into sub-
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systems (workcentres) which are easier to manage than the entire system. Another 

special line layout arrangement is the feeder line, which provides a main line with 

subassemblies. 

 

Another issue, which must take into consideration, for assembly lines is 

assignment constraints. Assignment constraints reduce the set of workstations to 

which tasks can be assigned. This type of constraint can be classified into four 

groups: 

(i) zoning constraints, (ii) workstation related constraints, (iii) position related 

constraints and (iv) operator related constraints. 

 

Zoning constraints force or forbid the assignment of different tasks to the same 

workstation, being called positive or negative zoning constraints, respectively. 

Positive zoning constraints are normally related with the use of common equipment 

or tooling. Negative zoning constraints are usually imposed by technological issues.  

 

Workstation related constraints are needed if special equipment is only available 

at a determined workstation. Then the tasks that need that equipment must be 

assigned to that workstation. 

 

In the case of large and heavy products the workpieces have a fixed position and 

cannot be turned. So, it may be necessary to perform tasks, for example, at both sides 

of the line. In this case a 2-sided line is used. It is, therefore, convenient to include 

position related constraints that group tasks according to the position in which they 

are performed. 

 

When tasks require different levels of skills, depending on their complexity, 

operator related constraints are needed to ensure that a sufficiently qualified 

operator is assigned to a determined task. The qualification of an operator is 

determined by the most complex task assigned to its workstation. For ergonomic 

reasons, more monotonous tasks and more variable tasks should be combined in the 

same workstation in order to induce higher levels of job satisfaction and motivation. 
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2.1.3 Performance Measures of Assembly Lines 

 

The implementation of an assembly line requires high capital investments, hence 

it is the most important issue that designing and balancing the line in order to 

produce as efficiently as possible. Also, re-balancing an existing assembly line is 

required when changes in the production process or demand structure occur. To 

assess the performance of the line, several criteria of technical and economical nature 

such as number of workstations, workload variance, idle time and the line efficiency 

can be included in assembly line balancing problems. 

 

The goals may to minimize the number of workstations, to minimize the workload 

variance, to minimize the idle time, and to maximize the line efficiency as shown in 

(2.1)-(2.4), respectively, where n is the number of workstations, nmax is the maximum 

number of workstation allowance, W is the total processing time, ct is the cycle time, 

ct_r is the actual cycle time, Ti is the processing time of the ith workstation, Leff is the 

line efficiency, wv is the workload variance, and Tid_T is the total idle time 

(Suwannarongsri et al., 2007). 

 

W
min n nmax

ct
≤ ≤                       (2.1) 

 

n
min T = min (ct -T )iid_T t=1

∑                        (2.2) 

 

2
n W

min w = min T - /nv i nt=1

  
∑     

                      (2.3) 

 

( )

n
Ti

i=1max L = max 100
eff n.ct_r

∑
                  (2.4) 

 

The economical nature criteria deals with minimising the total costs of the line, 

including long-term investment costs and short-term operating costs. Both 
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installation and operation costs depend mainly on the cycle time and the number of 

workstations. According to Scholl (1999), the most important cost categories are 

  

� costs of machinery and tools,  

� labour costs,  

� materials costs,  

� idle time costs,  

� penalties for not meeting the demand,  

� incompletion costs,  

� setup costs and  

� inventory costs. 

 

Recent studies deals more with multi objective approaches, which are consider 

simultaneously two or more performance measures, than the approaches aim at 

optimizing only one performance measure. Multi objective approaches provide better 

line balances when it compared with the methods dealing with the optimization only 

one performance measure. 

 

Nonetheless, social goals may be important to fulfil, such as  

� job enrichment, avoiding the assignment of many monotonous tasks to an 

operator and  

 

� job enlargement, increasing the number of tasks performed by an operator. 

 

2.2 Mixed Model Assembly Line 

 

Mixed-model production systems are mainly used due to the following 

advantages. They provide a continuous flow of materials, reduce the inventory levels 

of final items, and are very flexible with respect to model changes. However, this 

flexibility requires expensive equipment which reduce or even eliminates delays due 

to set-up activities 



 

 

14 

 

2.2.1 Mixed Model Assembly Line Balancing Problem 

 

Several decision problems with different planning horizons arise in managing 

mixed-model lines. Medium-term (or long-term) decisions concern the installation of 

the line and the division of work among the stations. This scope includes the 

determination of the line length (number of stations, lengths of the stations), the 

production rate or, equivalently, the cycle time as well as the work loads of the 

stations. Most of these decisions are part of the mixed-model assembly line balancing 

problem. As in the case of single-model production, it is the problem of finding a 

number of stations and a cycle time as well as a respective assignment of tasks to the 

stations such that certain objective is optimized. 

 

Based on the model structure, ALB models can be classified into two groups as 

seen in Figure 2.3. While, the first group includes single-model assembly line 

balancing (smALB), multi-model assembly line balancing (muALB), and mixed-

model assembly line balancing (mALB); the second group includes simple assembly 

line balancing (sALB) and general assembly line balancing (gALB). The smALB 

model involves only one product. The muALB model involves more than one 

product produced in batches. The mALB refers to assembly lines which are capable 

of producing a variety of similar product models simultaneously and continuously 

(not in batches). Additionally, sALB, the simplest version of the ALB model and the 

special version of the smALB model, involves production of only one product with 

features such as paced line with fixed cycle time, deterministic independent 

processing times, no assignment restrictions, serial layout, one sided stations, equally 

equipped stations and fixed rate launching. The gALB model includes all of the 

models that are not sALB, such as balancing of mixed-model, parallel, u-shaped and 

two sided lines with stochastic dependent processing times; thereby more realistic 

ALB models can be formulated by gALB (Gen, Cheng and Lin, 2008). In this study 

we deal with one of the model depended assembly line balancing problem, type-I of 

the mixed-model assembly line balancing problem with parallel workstation 

assignment under the zoning constraints. 
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Figure 2.3 Classification of assembly line balancing models 

 

2.2.1.1 Description of the Mixed-Model Assembly Line Balancing Problem  

 

Mixed-model assembly line balancing problem relies on the basic assumptions of 

deterministic operation times, no assignment restrictions, serial line-layout, fixed rate 

launching, as single assemby line balancing problem. Unlike the case of a single 

model line, different models of a product are assembled on a mixed-model assembly 

line. The models are launched to the line one after another. Table 2.1 contains all the 

notations for MMALBP. Additional and modified characteristics which results from 

the joint assembly of several products are: 

 

� The assembly line is capable of producing more than one type of product 

simultaneously, not in batches 

� The assembly of each model requires performing a set of tasks which are 

connected by precedence relations (precedence graph for each model). 

� A subset of tasks is common to all models; the precedence graphs of all 

models can be combined to a non-cyclical joint precedence graph. 

CLASSIFICATION OF ALB MODELS BASED ON PROBLEM 
STRUCTURE 

 
According to ALB model type 

 

According to ALB problem 
structure 

 

Single-model ALB (smALB) 
 

Multi-model ALB (muALB) 
 

Mixed-model ALB (mALB) 

 

Simple ALB (sALB) 
 

General ALB (gALB) 
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Table 2.1 The notations for mixed-model assembly line balancing problem 

M  Number of models, : 1, ......,index m M=  

dm  Expected demand for model mduring the planning period 

D  Total number of units required during the planning period ( )dm
m

=∑  

J  Number of operations (tasks), : 1, ......,index j J=  

PT  Total time available for production during the planning period 

c  (average) cycle time, launch interval ( [ / ])c PT D≤  

t jm  Operation time of task j for one unit of model m 

t j
′  Cumulated time of task j for all required units ( )d tm jm

m

=∑   

t j  Average operation time of task j per unit '( / )t Dj  

K  Number of stations, : 1, ......,index k K=  

Sk  Station load, set of tasks assigned to station k 

mkτ  Processing time per unit of model m in station k ( )t jm
j S k

= ∑
∈

 

mkτ ′  Total operation time of model m in station k ( )dm mkτ=   

tm

−

 
Average operation time per station and unit of model m ( / )Kmk

k

τ=∑   

tm

−
′  Average total operation time per station for model m ( )d t mm

−
=  

kτ ′  Total operation time in station k ( )mk
m

τ ′=∑  

kτ  Average operation time of station k per unit ( / )Dkτ ′=  
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� Tasks which are common to several models are performed by the same 

station but may have different operation times; zero operation times indicate 

that a task is not required for a model. 

� Fixed total time available for the production during the planning period 

(given by the number of shifts and the shifts durations) known. 

� Expected demands for all models (expected model mix) during the planning 

period are known. 

 

2.2.1.2 Mathematical Formulation of MMALBP 

 

The MMALBP can be formulated as a binary integer programming model, as 

presented in Figure 2.4. The notations belonging to this formulation are:  

 

� N is the number of tasks of the combined precedence diagram 

� M is thenumber of models assembled on the line 

� Dm is the demandof the model m over the planning horizon P 

� qm is the overall proportion of the number of units of model m being 

assembled, 

� given by /
1

M
D Dm p

p
∑
=

 

� S is the number of workstations 

� C is the cycle time computed by /
1

M
P Dm

m
∑
=

 

� tim is the processing timeof task i for model m  

� Suci is the set of tasks that can not be performed before task i is completed 

(successors of task i), derived from the combined precedence diagram 
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� 
1, if task i assigned to workstation k

x =
ik 0, otherwise





 

 

The objective function (1) aims at minimising the weighted idle time of the 

assembly line, taking into consideration each model’s (assembled on the line) 

production share. This goal is equivalent to minimise the number of workstations for 

a predefined cycle time in MMALBP-1 (Type-1 problem, see subsection 2.2.1.3) and 

to minimise the cycle time for a given number of workstations in MMALBP-2 

(Type-2 problem). 

 

1 11

S M N
Minimise C q t xm im ikm ik

 
−∑ ∑ ∑ 

= ==  
                                                               (1) 

:subject to  

                    1
1

S
x
ikk

=∑
=

                                   1,......,i N=                                     (2) 

                    0
1 1

S S
kx kx
ik jkk k
− ≤∑ ∑

= =
               ,i N j Suci∈ ∈                                 (3) 

                    
1

N
t x Cim iki

≤∑
=

                             1,......, ; 1,......,k S m M= =               (4) 

                    { }0,1x
ik
∈                                    1,......, ; 1,......,i N k S= =                 (5) 

Figure 2.4 Binary integer programming model for mixed-model assembly line balancing problem 

 

The set of constraints (2) ensures that each task is assigned to only one 

workstation of the station interval and consequently tasks that are common to several 

models are performed on the same workstation.  

 

The precedence constraints are handled by the set of constraints (3) which 

guarantees that no successor of a task is assigned to an earlier station than that task. 
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Constraints (4) are called capacity constraints and ensure that the workload of a 

workstation does not exceed the cycle time, regardless of the model being assembled. 

 

  Finally the set of constraints (5) defines the domain of the decision variables. 

 

In this study we deal with mixed-model assembly line balancing problem with 

parallel workstations under the zoning constraints. This type of MMALBP is 

formulated by Vilarinho and Simaria (2002). Their mathematical model and its 

explanation will be given in section four in details. 

 

2.2.1.3 Type-I of MMALBP 

 

 MMALBP–1 deals with minimizing the total number of workstations for a given 

cycle time C. Usually, the cycle time is derived from the total available time, PT, and 

desired output volume D, i.e., C= [PT/D]. In type I problems, the cycle time, and, 

consequently the production rate, has to be pre-specified, so it is more frequently 

used in the design of a new assembly line for which the demand can be easily 

forecasted. 

 

2.2.1.4 Variations of Station Utilization 

 

The objectives included in the types of MMALBP are based on considering the 

balancing problem with respect to average station utulizations. Even in the case of an 

optimal solution for the average model, considerable inefficiencies may occur when 

operating the line. This is due to the variations in the station times of the models. 

Next it is discussed that the influences of work load variations on the performance of 

mixed-model assembly lines. 

 

Work overload occurs, whenever the operator of a station is not able to complete 

the assigned operations on a workpiece. It is measured in terms of the remaining 

operation time to complete the operations. Work overload is inefficient and 

expensive and should be minimized. Unfortunately, the amount of work overload 
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which really occurs can not be computed for a solution of the balancing problem 

directly, because it depends on the unknown short-term production programs and 

corresponding production sequences. Therefore, it is essential to obtain balances in 

which potential work overload situations are minimized. 

 

The interval of time during which a workpiece is accessible to a station is called 

tolerance time. It is an upper bound on the time available for performing operations 

in that station. The tolerance time should be smaller than the cycle time in order to 

avoid unnecessary idle times. In the case of a continuously moving conveyor belt, the 

tolerance times are determined by the physical station lengths and the speed of the 

belt. 

 

It is illustrated the influence of tolerance times by assuming that they are equal to 

the cycle time in all stations. All station times of any model which are in excess of 

the cycle time result in incomplete operations and a corresponding work overload. If 

the tolerance times exceed the cycle time, the sequence in which model units are 

launched down the line influences the amount of work overload. 

 

Idle time occurs when a station has completed its work on a unit and has to wait 

for the next unit arriving at the station. The idle times per unit are constant if only 

one model is produced. If several models are assembled, the idle times differ and 

depend on the sequence. Only for strcitly paced lines, they are independent of the 

sequence. 

 

Work overload can only occur if some station times of models exceed the cycle 

time. In order to quantify such cycle time violations, it is defined: 

 

: m ax { 0 , }c
m k m k

τ+ = −△  for 1, ......,k K= and 1, ......,k K=         (2.5) 

 

According to the origin of cycle time violations, it is distunguished three types: 
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Operaiton-dependent Cycle Time Violations: A violation of cycle time can not be 

avoided by balancing if the operation time jmt  of a single task j of model m exceeds 

the cycle time. 

 

Model-dependent Cycle Time Violations: If the average operation time mt
−

 per unit of 

model m exceeds the cycle time, cycle time violations can not be prevented in one or 

more stations unless the cycle time c or the number K of stations is increased. 

 

Assignment-dependent Cycle Time Violations: Cycle time violations which are 

neither operation-dependent nor model-dependent are caused by assignment of tasks 

to stations. Hence, these violations may be influenced by balancing decisions even 

for fixed c and K. 

 

Station times which are smaller than the cycle time may cause idle times. These 

potential idle times are called slack times and are defined by: 

 

: m ax{ 0 , }cm k m kτ
−

= −△ for 1, ......,k K= and 1, ......,k K=       (2.6) 

 

Slack times may have different reasons like cycle time violations: 

 

Model-dependent Slack Times: In case the average operation time mt
−

 per unit of 

model m is smaller than the cycle time, slack times can not be avoided in one or 

more stations unless the cycle time c or the number K of stations is decreased if 

possible. 

 

Assignment-dependent Slack Times: Slack times which are not model-dependent are 

caused by the assignment of the tasks to the stations and, therefore, they may be 

influenced by balancing.  
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While slack times tend to produce idle times, they give possibilities to equalize 

cycle time violations of other models. Therefore, it is not always the best decision to 

choose a task assignment which minimizes slack times. 

 

2.2.2 Solution Approaches for Mixed-Model Assembly Line Balancing Problem 

 

Several approaches have been presented to assembly line design and mixed–

model assembly problem. Work allocation, line balancing, and job sequencing 

algorithms deal mainly with the mixed-model assembly line design problem. This 

study deals with the papers published in recent years that address the mixed-model 

assembly line balancing problem (MMALBP) in different layout configurations, 

developing exact or heuristic approaches (Batini, Faccio, Ferrari, Persona, and 

Sqarbossa, 2007). 

 

Most of the authors have proposed methods of reducing the multiple models into a 

single one by combining their precedence relationships and adjusting the operation 

time. The majority of them (>50%) address the balancing problem to traditional 

serial assembly systems and, in some cases, they allow the use of identical parallel 

workstations at each stage of the serial system (Kara, Özcan, and Peker, 2007). 

 

The single-model line-balancing problem (SALBP) is of NP-Hard complexity 

(Karp, 1972). Since the single-model line-balancing problem is a special case of the 

mixed-model line-balancing problem discussed here (where the number of models 

equals one), the latter is NP-hard as well (Bukchin, and Rabinowitch, 2006). The 

complex mathematical nature of the problem makes it difficult to solve (Erel and 

Gokcen, 1999). As a result, beside the exact solution procedures, heuristic 

approaches are developed which are gives optimal or near optimal solution at a 

resonable time. 

 

In general, the combinatorial optimization problems are characterized by a finite 

number of feasible solutions. Especially for small sized practical problems, the 

optimal solution of such problems can be found by enumeration. Therefore, in 
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literature, it is observed that there exists a tendency to use heuristics rather than exact 

methods. The complexity of the assembly line balancing problem renders optimum 

seeking methods impractical for instances of more than a few tasks and/or 

workstations. If there are m tasks and r preference constraints then there are m!/2r 

possible task sequences (Baybars, 1986). Therefore, it can be time consuming for 

optimum seeking methods to obtain an optimal solution within this vast search space. 

Despite the vast search space, many attempts have been made in the literature to 

solve the ALBP using optimum seeking methods. However, none of these methods 

has proven to be of practical use for large problems due to their computational 

inefficiency. Hence, numerous research efforts have been directed towards the 

development of approximation methods. Figure 2.5 contains the classification of the 

solution methods used to solve ALBP. 

 

2.2.2.1 Exact Methods 

 

Several approaches for determining lower bounds on the number of stations (n) in 

the case of ALBP-1 (the cycle time in the case of ALBP-2) are proposed in the 

literature. The lower bounds are obtained by solving problems which are derived 

from the considered problem by omitting or relaxing constraints. Most of these 

techniques fall into two categories, which are dynamic programming and branch and 

bound methods. 

 

2.2.2.1.1 Dynamic Programming. The dynamic programming (DP) method is 

applied to the most combinatorial optimization problems (COP) and involves the 

optimisation of multi-stage decision procedures. A given problem is divided into 

sub-problems which are sequentially solved until the initial problem is finally solved. 

States at a particular stage s are transformed to states at the subsequent stage s + 1 by 

a decision. The generation of states is described by transformation functions which 

depend on the current state and the decision taken. A sequence of decisions, which 

transforms a state at a stage s to a stage s’ > s, is called policy. DP is a solving 

approach rather than a technique. 
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Figure 2.5 Classification of solution approaches for ALBP (Rekiek and Delchambre, 2006) 

  

2.2.2.1.2 Branch and Bound. The branch and bound (B&B) algorithm consists of 

two main components: the branching and the bounding. The initial solution is 

developed into several sub-problems (branching). A multi-level enumeration is 

constructed by continuously developing such sub-problems for which the optimal 

solution is already known and need not be branched. These sub-problems are referred 

to as leaf nodes. A path from the root node to any other node of the tree is called a 

branch. Bounding is applied to reduce the size of the enumeration trees. This is 
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achieved by computing lower bounds at least necessary for a feasible solution in each 

node. An optimal solution is found if the ‘global’ lower bound is found. 

 

2.2.2.2 Approximation Methods 

 

Near optimal or optimal solutions can be determined by approximation methods 

are more preferable and acceptable in practice because they can be obtained more 

efficiently. These approaches are divided into two categories, simple heuristics and 

meta-heuristics. 

 

2.2.2.2.1 Simple Heuristics. Heuristics approaches are based on logic and 

common sense rather than on an mathematical proof. None of the methods 

guarantees an optimal solution, but they are likely to result in good solutions which 

approach the true optimum. Among simple heuristic methods, the most notable ones 

are: Ranked Positional Weight Technique (RPWT) (Helgeson and Birnie, 1961), 

Kilbridge and Wester’s (1961), and Moodie and Young's (1965) heuristics. RPWT is 

the first heuristic proposed to solve ALBP. 

 

2.2.2.2.2 Meta-Heuristics. Meta-heuristics are the natural extension of priority-

based heuristics, as they start with an initial solution or population (predefined 

number of solutions) obtained with a heuristic or randomly generated and improve it. 

They have been shown to provide effective approximate solutions for difficult NP-

hard combinatorial optimization problems. In recent years, the usage of meta-

heuristics for solving ALBPs became popular among researchers. Genetic Algorithm, 

Simulated Annealing, Tabu Search and Ant Colony Optimization are well known 

meta-heuristics for solving ALBPs. 

 

Batini et al. (2007) give a callasification of the published papers between the years 

1989 and 2005 in relation to the adopted balancing method and the reference layout 

configuration taken in consideration. This classification shows us that many autors 

used mathematical programming models or heuristic procedures in order to solve the 

mixed-model assembly line balancing problem. The lack of hybrid approaches in the 



 

 

26 

 

literature for solving mixed-model assembly line balancing problem can also be seen 

from this classification. 

 

2.3 Literature Review 

 

According to the variety of the assembled product types, assembly lines are 

normally classified into single-model, multi-model and mixed-model lines (Scholl, 

1999). While only one single homogeneous product is manufactured in large 

quantities on single-model assembly lines, different product types are simultaneously 

produced on mixed- and multi-model assembly lines. 

 

Single-model approaches are frequently defined as specific versions of the 

restrictive Simple Assembly Line Balancing Problem (SALBP). Here, the balancing 

problem is reduced to the allocation of tasks to stations. Extensions of the SALBP 

cover for instance, the integration of parallel stations, the examination of cost-

oriented objective functions, processing alternatives and their respective 

consequences as well as targeted job enrichment (Becker and Scholl 2006). 

 

The Mixed-Model Assembly Line Balancing Problem (MMALBP) can be 

regarded as the direct counterpart of the SALBP family for mixed-model assembly 

lines (Bock, 2006). By introducing an aggregated model of all offered variants, three 

corresponding types of the MMALBP arise (Scholl 1999; Becker and Scholl 2006). 

Owing to the fact that the restricted MMALBP family does not provide any decision 

support for finding a balanced line layout, various extensions with specifically 

defined objective functions are proposed in the literature (Bock, 2006). 

 

It can be find literature on MMALBP way back to the 1960s. Thomopoulos 

(1970) was the first to develop a heuristic on Mixed-Modeled Assembly line. He 

focused on general practices in mixed-model assembly line balancing like, to assign 

work to stations in a manner such that each station has an equal amount of work on a 

daily or a shift basis. 
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As to the scope of this study, the literature review encompasses a group of papers 

published subsequent to 1997 that address the mixed-model assembly line balancing 

problem in different layout configurations, developing exact or heuristic methods, by 

chronological order. 

 

Askin and Zhou (1997) proposed a nonlinear integer program as a model for the 

production line balancing problem (PLBP). This problem entails the assignment of 

tasks to stages in a serial production line. The model allows mixed-model production 

and the use of identical parallel workstations at each stage of the serial production 

system. The objective function trades of idle workstation time with duplication of 

task-dependent equipment/tooling cost. A heuristic is developed to create parallel 

workstations and assign tasks. Station utilization is also explicitly considered by 

using a threshold variable for target (acceptable) levels. Testing has shown the 

heuristic to respond well to the economic implications of equipment/tooling cost and 

idle worker time. The heuristic is capable of finding good solutions quickly to large 

problems. 

 

McMullen and Frazier (1997) described an approach for solving a mixed-model 

assembly line-balancing problem with stochastic task times when paralleling of tasks 

within work centers is permitted. The research modified previous work and 

incorporates new and existing task selection rules for assigning tasks to work centers. 

The heuristic is applied to six different line-balancing problems for each presented 

rule. The resulting layouts are simulated and performance results are analyzed. 

 

Gökçen and Erel (1997) proposed a binary goal programming model for the 

mixed-model ALB problem. The proposed model provides a considerable amount of 

flexibility to the decision maker since several goals of which some may be 

conflicting with each other, can simultaneously be considered. 

 

Gökçen and Erel (1998) developed a binary integer programming model for the 

mixed-model version of the problem in which they utilize some properties that 

prevent the fast increase in the number of variables. However, their model suggests a 
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significant improvement relative to the models in the literature. Their model’s 

objective function is to minimize the number of stations utilized. The 

experimentation revealed that their model is capable of solving problems with up to 

40 tasks in the combined precedence diagram.  Due to the NP-hardness of the 

problem, their model size would be too large to obtain the optimal solutions of larger 

problems. 

 

A shortest-route formulation of the mixed-model assembly line balancing problem 

is presented by Erel and Gökçen (1999). Common tasks across models are assumed 

to exist and these tasks are performed in the same stations. Their formulation is based 

on an algorithm which solves the single-model version of the problem. The mixed-

model system is transformed into a single-model system with a combined precedence 

diagram. Their model is capable of considering any constraint that can be expressed 

as a function of task assignments. The performance mesaure of their model is the 

sum of the idle times associated with each model. 

 

Merengo, Nava and Pozzettı (1999) present new balancing and production 

sequencing methodologies which pursue the following common goals: (1) 

minimizing the rate of incomplete jobs (in paced lines and in moving lines) or the 

probability of blocking/ starvation events (in unpaced lines); (2) reducing WIP. The 

balancing methodology also aims at minimizing the number of stations on the line; 

the sequencing technique also provides a uniform part’s usage, which is a typical 

goal in just in time production systems. Moreover, they developed a heuristic for 

balancing problem and tested in four different versions. 

 

A new method using a coevolutionary algorithm, search algorithm that imitate the 

biological coevolution that is a series of reciprocal changes in two or more 

interacting species, proposed by Kim and Kim (2000). This algorithm can solve the 

balancing and sequencing problems at the same time. In the algorithm, it is important 

to promote population diversity and search efficiency. They adopted a localized 

interaction within and between populations, and developed methods of selecting 

symbiotic partners and evaluating fitness. Efficient genetic representations and 
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operator schemes are also provided. When designing the schemes, they take into 

account the features specific to the problems. Also presented are the experimental 

results that demonstrate the proposed algorithm is superior to existing approaches. 

 

Matanachai and Yano (2001) proposed a new line balancing approach for mixed-

model assembly lines. Their focus is on assigning tasks to stations so that: (i) 

workloads are reasonably well balanced; and (ii) it is relatively easy to construct 

daily sequences of jobs that provide stable workloads (in a minute-to-minute sense) 

on the assembly line. They proposed a heuristic filtered beam search algorithm in 

which feasible subsets are constructed at each station. This heuristic is shown to 

perform well, both in an absolute sense (on small problems), and relative to heuristic 

solutions for the traditional objective (on larger problems). Because the performance 

of the heuristic depends on the number of different feasible subsets considered, it can 

be improved, if desired, by increasing the number of subsets retained for each 

station. 

 

The goal chasing method is simple and easy to implement, but it is a very greedy 

algorithm and uses up ‘good’ parts in the early sequence so that the whole 

performance of the solution is influenced (Jin and Wu, 2002). They provided the 

definition of good parts and good remaining sequence and analyze their relationship 

with the optimal solution’s objective function value. Jin and Wu (2002) developed a 

new heuristic algorithm called ‘variance algorithm’ the numerical experiments show 

that the new algorithm can yield better solution with little more computation 

overhead. The objective of the problem is to minimize the variation in rate of 

consuming the parts of the sequence. They discussed several improvement methods 

for correcting the myopic problem of the goal chaisng method in JIT. They 

developed their variance improvement for goal chasing method by integrating the 

variance as the opportunity cost in the cost function and prove its effectiveness and 

efficiency by theory and numerical experiments. Besides mixed-model assembly line 

problem, this improvement can be used everywhere goal chasing method can be used 

and correct the myopic problem very well. 
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Vilarinho and Simaria (2002) presented a new mathematical programming model 

for the mixed-model assembly line balancing problem with parallel workstations and 

zoning constraints. The model minimizes the number of workstations and allows the 

user to control the replication process. As a secondary goal, the model looks to 

obtain a good workload balance between and within the workstations. Due to the 

model complexity a two-stage heuristic procedure was developed to tackle the 

problem, which uses the simulated annealing algorithm. Computational experiments 

showed that the proposed heuristic performs very well, producing good quality 

solutions in reasonable running times. 

 

The design problem of mixed-model assembly lines in a make-to-order 

environment is adressed by Buckhin, Dar-El and Rubinovitz (2002). A mathematical 

formulation of the problem is presented and a heuristic, which takes into 

consideration the relaxation of the assigment constraint that, provides performing 

some specific tasks at different stations for different models. The heuristic minimizes 

the number of stations for a predetermined cycle time. It consists of three stages: the 

balancing of the combined precedence diagram, balancing each model separately 

subject to the constrained tasks (resulting from the preciding stage), and an 

imrpvemenet procedure based on neighborhood search which uses the appropriate 

performance measure in order to compare solutions. The cycle time of each final 

solution is then recieved from simulation, and compared to the required cycle time. 

 

Liu and Chen (2002) proposed a two-stage approach. In the first stage, a multiple 

objective mixed-integer zero-one programming model is developed. Combined with 

the developed mathematical programming model, an interactive procedure is devised 

to simultaneously minimize workstation cycle time and number of workstations 

while satisfying the required total operation cost. In the second stage, a visual 

interactive modelling system and the associated human-machine interface are built. 

Results suggest that the potential benefit of the proposed approach is significant. 

 

Karabatı and Sayın (2003) considered the assembly line balancing problem in a 

mixed-model line which is operated under a cyclic sequencing approach. They 
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specifically study the problem in an assembly line environment with synchronous 

transfer of parts between the stations. They formulate the assembly line balancing 

problem with the objective of minimizing total cycle time by incorporating the cyclic 

sequencing information. They showed that the solution of a mathematical model that 

combines multiple models into a single one by adding up operation times constitutes 

a lower bound for this formulation. As an approximate solution to the original 

problem, they proposed an alternative formulation that suggests minimizing the 

maximum subcycle time. They also developed a simple heuristic approach for this 

alternative problem. Their computational results indicate that this approach may be 

beter in finding good solutions, however at a higher computational cost. 

 

An approach is presented by McMullen and Tarasewich (2003), based on ant 

techniques, to effectively address the assembly line balancing problem with the 

complicating factors of parallel workstations, stochastic task durations, and mixed-

models. A methodology was inspired by the behavior of social insects in an attempt 

to distribute tasks among workers so that strategic performance measures are 

optimized. This methodology is used to address several assembly line balancing 

problems from the literature. The assembly line layouts obtained from these solutions 

are used for simulated production runs so that output performance measures (such as 

cycle time performance) are obtained. Output performance measures resulting from 

this approach are compared to output performance measures obtained from several 

other heuristics, such as simulated annealing. A comparison shows that the ant 

approach is competitive with the other heuristic methods in terms of these 

performance measures. 

 

Zhao, Ohno and Lau (2004) stated a balancing problem for mixed model 

assembly lines with a paced moving conveyor as: Given the daily assembling 

sequence of the models, the tasks of each model, the precedence relations among the 

tasks, and the operations parameters of the assembly line, assign the tasks of the 

models to the workstations so as to minimize the total overload time. They presented 

a heuristic procedure for balancing a mixed model assembly line. The heuristic 

attempts to optimize directly the operational performance criterion UT (T) (total 
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overload time); its computational requirement increases linearly with the number of 

stations, and can therefore handle large-scale problems. They also presented a 

procedure for estimating how much the total overload time of any given line balance 

(T) deviates from the optimally attainable total overload time without actually 

knowing the optimal line balancing. This provides a powerful and practical approach 

for assessing the quality of balances for realistic-size lines whose theoretical optimal 

solutions are typically unobtainable. 

 

Simaria and Vilarinho (2004) presented a mathematical programming model for 

MMALBP-II which accounts for the use of parallel workstations, in a controlled 

way, and zoning constraints. Besides the goal of minimising the cycle time, the 

model also balances the workloads within the workstations for the different models 

to be assembled. Due to the combinatorial nature of the model, an efficient iterative 

genetic algorithm-based procedure was developed to tackle the problem. 

 

Vilarinho and Simaria (2006) presented ANTBAL, an ant colony optimization 

algorithm for balancing mixed-model assembly lines. The proposed algorithm 

accounts for zoning constraints and parallel workstations and aims to minimize the 

number of operators in the assembly line for a given cycle time. In addition to this 

goal, ANTBAL looks for solutions that smooth the workload among workstations, 

which is an important aspect to account for in balancing mixed-model assembly 

lines. Computational experience showed the superior performance of the ANTBAL 

algorithm. 

 

Hop (2006) solved the fuzzy mixed-model assembly line balancing problem with 

an improvement heuristic. Due to the difficulty of fuzzy comparison and fuzzy 

arithmetic operations, a simple signed distance ranking method is used to rank fuzzy 

numbers and new approximated fuzzy arithmetic operations are developed to 

calculate fuzzy numbers. The problem is then formulated as a mix-integer 

programming model. This one could be use as a benchmark for a reasonable size of 

problem. Finally, a heuristic method is developed using a flexible exchange sequence 

procedure to allocate jobs into workstations. Experiment results show that the 
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developed algorithm could give very good results in terms of balancing efficient 

coefficient and number of workstations. 

 

Bock (2006) proposed the use of specifically designed distributed search methods 

in order to solve complex balancing problems more efficiently. Specifically, Bock 

(2006) introduces a new mixed-model assembly line balancing approach that makes 

use of specifically designed distributed solution procedures. The underlying model 

formulation of this approach distinguishes itself from former concepts by a modular 

variant definition, a detailed personel planning, and an integrated task process 

planning. Since the obtained results are very promising, future research should be 

extended to two major directions. First of all, detailed analyses of the implemented 

CTS-procedure suggest that specific extensions of the proposed solution approaches 

are reasonable. For instance, it becomes obvious that keeping a fixed clustering 

throughout the searching process seems to be not reasonable. In this connection, one 

can think of an automated team size adaptation within the Clustered Tabu Search 

approach in order to intensify the search in specific regions of the solution space. For 

this purpose, teams may be dynamically combined or separated throughout the 

search. 

 

A common assumption in the literature on mixed-model assembly line balancing 

is that a task that is common to multiple models must be assigned to a single station 

(Buckhin and Rabinowitch, 2006). Buckhin and Rabinowtich (2006) relaxed this 

restriction, and allow a common task to be assigned to different stations for different 

models. They searched to minimize the sum of costs of the stations and the task 

duplication. They developed an optimal solution procedure based on a backtracking 

branch-and-bound algorithm and evaluate its performance via a large set of 

experiments. A branch-and-bound based heuristic is then developed for solving 

large-scale problems. The heuristic solutions are compared with a lower bound and 

experiments show that the heuristic provides much better solutions than those 

obtained by traditional approaches. 
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A new genetic approach, called endosymbiotic evolutionary algorithm, is 

proposed to solve the two problems of line balancing and model sequencing at the 

same time by Kim et al. (2006). The algorithm imitates the natural evolution process 

of endosymbionts that is an extension of existing cooperative or symbiotic 

evolutionary algorithm. The distinguishing feature of the proposed algorithm is that 

it maintains endosymbionts that are a combination of an individual and its symbiotic 

partner. The existence of endosymbionts can accelerate the speed that individuals 

converge to good solutions. This enhanced capability of exploitation together with 

the parallel search capability of traditional symbiotic algorithms results in finding 

better quality solutions than existing hierarchical approaches and symbiotic 

algorithms. 

 

Haq, Jayaprakash, and Rengarajan (2006) presented a hybrid genetic algorithm 

approach that used the solution from the modified ranked positional method 

(MRPW) for the initial solution to reduce the search space within the global space, 

thereby reducing search time to solve the mixed-model assembly line balancing 

problem. They compared the pure genetic algorithm, MRPW and hybrid genetic 

algorithm. The genetic algorithm approach is shown to produce beter results than the 

MRPW in the minimization of workstations. Experimantal results show that the 

hybrid genetic approach is superior to the classical genetic algorithm. 

 

Batini et al. (2007) deals with the application of a mixed-model assembly 

balancing problem to an assembly-to-order environment in the case of low 

production rates and large number of tasks. The aim of their work is to propose an 

alternative design procedure for the balancing of semi-automated and mixed-model 

assembly systems under low product demand effects by the application of multi-turn 

circular transfers, such as a multi-stations rotating table. This layout configuration 

permits a job enlargement for human operators and, at the same time, provides an 

increment in task repeatability through the work-pieces assembling by increasing the 

number of the turns of the transfer. 
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Kara, Ozcan and Peker (2007) proposed an approach for simultaneously solving 

the balancing and sequencing problems of mixed-model U-lines. The primary goal of 

the proposed approach is to minimize the number of workstations required on the 

line (Type I). To meet this aim, the proposed approach uses such a methodology that 

enables the minimization of the absolute deviation of workloads among workstations 

as well. In terms of minimizing the number of workstations required on the mixed-

model U-line, as well as minimizing the absolute deviation of workloads among 

workstations, the proposed approach is the first method in the literature dealing with 

the balancing and sequencing problems of mixed-model U-lines. The newly 

developed neighborhood generation method employed in the simulated annealing 

(SA) method is another significant feature of the proposed approach. 

 

Venkatesh and Dabade (2008) reported an experimental study conducted for a 

relatively less researched area of assembly line balancing namely the mixed model 

assembly line balancing problem of type II (MMALBP-2). Three operational 

objectives namely realized cycle time, model variability and station variability were 

identified as important for a better evaluation of the solutions. Two performance 

measures namely squared base model deviation (SBMD) and squared base model 

deviation plus smoothness index (BMI) have been proposed in their paper. The two 

performance measures along with eight others (reported in literature earlier) have 

been used as fitness function for a GA (developed for this work) to obtain solutions 

of 3000 MMALBP-2 instances generated randomly for the experimental setup. 

 

Bock (2008) presented a new tabu search based approach that provides detailed 

offshoring decision support for mass customization manufacturing processes is 

generated. It is focused on specific manufacturing processes where theoretically a 

large number of variants have to be simultaneously produced on the same mixed-

model assembly line. In order to provide an appropriate estimation of the resulting 

manufacturing costs, the layout of the mixed-model assembly line was respectively 

generated for competing locations. This approach is the first one that provides a 

detailed analysis of the tradeoff between lower worker wages and additional 

manufacturing costs caused by reduced worker skills. 
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A design methodology for team-oriented mixed model assembly lines is proposed 

by Cevikcan, Durmusoglu and Unal (2009). The discussed method includes some 

relevant issues that reflect the operating conditions of real world mixed model 

assembly lines, such as zoning constraints and workload smoothing and also allows 

the decision maker to control the size of multi-manned workstations. There exist 

intensive input–output interrelations among methodology steps. The first two steps of 

the methodology, horizontal and vertical balancing, are necessary for performing the 

third step, which is to create physical stations. Teams consist of a minimum number 

of workers whose workloads are smoothed via the first two steps of the 

methodology. The third step uses a scheduling algorithm under limited resources 

during forming of the teams. 

 

Simaria and Vilarinho (2009) presented an approach to deal with the two-sided 

mixed-model assembly line balancing problem. First, a mathematical programming 

model is presented to formally describe the problem. Then, an ant colony 

optimisation algorithm is proposed to solve the problem. In the proposed procedure 

two ants ‘work’ simultaneously, one at each side of the line, to build a balancing 

solution which verifies the precedence, zoning, capacity, side and synchronism 

constraints of the assembly process. The main goal is to minimise the number of 

workstations of the line, but additional goals are also envisaged 

 

Choi (2009) presented a new mathematical model of line balancing for processing 

time and physical workload at the same time. He proposed a zero-one integer 

program model that combines the overload of processing time and physical workload 

with various risk elements. For the solution techniques, he adopted the goal 

programming approach and designed an appropriate algorithm process. Various 

computational test runs are performed on the processing time only model, the 

physical workload only model, and the integrated model. Comparing the pay-offs 

between the two overloads, test results show that well balanced job allocation is able 

to be obtained through the proposed model. 
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A new mathematical model and a simulated annealing algorithm for the mixed 

model two-sided assembly line balancing problem are presented by Ozcan and Toklu 

(2009). The proposed mathematical model minimizes the number of mated-stations 

as the primary objective and minimizes the number of stations as a secondary 

objective for a given cycle time. In the proposed simulated annealing algorithm, two 

performance criteria are considered simultaneously: maximizing the weighted line 

efficiency and minimizing the weighted smoothness index. The proposed approach is 

illustrated with an example problem, and its performance is tested on a set of test 

problems. The experimental results show that the proposed approach performs well.  

 

The literature review we provided is summarized in Table 2.2. This table contains 

a group of published papers, that adress the MMALBP between the years 1997 and 

2009 in chronological order.  

 

Our conclusions about this review are listed below. 

 

� Many papers address the balancing problem to traditional serial assembly 

systems and, in some cases, they allow the use of identical parallel 

workstations at each stage of the serial system. 

 

� Most of methods are based on reducing the multiple models in to a single one 

by combining their precedence relationships and adjusting the operation time. 

 

� Mathematical models proposed for MMALBP are not suitable for large scale 

problems. 

 

� To deal with large scale problems, approximation methods have been 

proposed. 

 

� There is a lack of hybrid algorithms for MMALBP. 
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Table 2.2 Evolution of proposed solution approaches for MMALBP 

PUBLICATIONS 
LINE 

CONFIGURATION 
METHODOLOGY 

Askin and Zhou (1997) 
straight line, parallel 

stations nonlinear integer programming+heuristic  

McMullen and Frazier (1997) 
straight line, parallel 

stations 
heuristic, simulation 

Gökçen and Erel (1997) straight line binary goal programming 

Gökçen and Erel (1998) straight line binary integer programming 

Erel and Gökçen (1999) straight line network programming 

Merengo et al. (1999) 
paced and unpaced 

lines 
heuristic 

Kim and Kim (2000) straight line coevolutionary algorithm 

Matanachai and Yano (2001) 
closed station, paced 

line 
mathematical model, filtered beam search 

Jin and Wu (2002) straight line mathematical model, heuristic 

Vilarinho and Simaria (2002) 
straight line, parallel 

stations 
mathematical model, simulated annealing 

Buckhin et al. (2002) straight line mathematical model, heuristic 

Liu and Chen (2002) straight line 
mixed-integer zero-one programming, heuristic, 

simulation 

Karabatı and Sayın (2003) straight line integer programming, heuristic 

McMullen and Tarasewich 
(2003) 

straight line, parallel 
stations 

ant colony optimization, simulation 

Zhao, Ohno and Lau (2004) paced line heuristic 

Simaria and Vilarinho (2004) 
straight line, parallel 

stations 
mathematical model, genetic algorithm 

Vilarinho and Simaria (2006) straight line ant colony optimization 

Hop (2006) straight line fuzzy binary linear programming, heuristic 

Bock (2006) straight line distributed search procedures 

Buckhin and Rabinowitch 
(2006) 

straight line branch and bound algorithm based heuristic 

Kim et al. (2006) U-line 
endosymbiotic evolutionary algorithm (genetic 

algorithm) 

Haq et al. (2006) straight line hybrid genetic algorithm 

Batini et al. (2007) multi stations heuristic 

Kara, Ozcan and Peker (2007) U-line simulated annealing 

Venkatesh and Dabade (2008) straight line genetic algorithm 

Bock (2008) straight line tabu search 

Cevikcan et al. (2009) straight line heuristic 

Simaria and Vilarinho (2009) two-sided line ant colony optimization 

Choi (2009) straight line goal programming 

Ozcan and Toklu (2009) two-sided line mathematical model, simulated annealing 
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CHAPTER THREE 

AN OVERWIEW ON META-HEURISTICS, HYBRIDIZATION AND 

GENETIC ALGORITHMS 

 

3.1 Meta-Heuristics 

 

In the last 20 years, a new kind of approximate algorithm has emerged which 

basically tries to combine basic heuristic methods in higher level frameworks aimed 

at efficiently and effectively exploring a search space. These methods are commonly 

called metaheuristics (Blum and Roli, 2003). The term metaheuristic, first 

introduced in Glover [1986], derives from the composition of two Greek words. 

Heuristic derives from the verb heuriskein which means “to find”, while the suffix 

meta means “beyond, in an upper level”. 

 

This type of algorithms includes Ant Colony Optimization (ACO), Evolutionary 

Computation (EC) including Genetic Algorithms (GA), Iterated Local Search (ILS), 

Simulated Annealing (SA), and Tabu Search. For a basic chronology of well-known 

meta-heuristics see Figure 3.1. There is no commonly accepted definition for the 

term of metaheuristic. It is just in the last few years that some researchers in the field 

tried to propose a definition. For the definitions proposed to explain the term meta-

heuristic the reader can refer to Blum and Roli (2003). 

      

1965     Evolution Strategies      

      1966     Evolutionary Programming 

      

      1975     Genetic Algorithms 

1983     Simulated Annealing 

1986     Tabu Search 

1990     Ant Colony Optimization 

1995     Particle Swarm Optimization 

1997     Differential Evolution 

                                    Figure 3.1 Chronology of meta-heuristics 
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3.1.1 Properties of Meta-Heuristics 

 

It can be said that meta-heuristics are high level approaches for discovering the 

search space of the problem on hand by using different methods. For a powerful 

algorithm there must be a dynamic balance between diversification and 

intensification. The term diversification generally refers to the exploration of the 

search space, whereas the term intensification refers to the exploitation of the 

accumulated search experience (Blum and Roli, 2003), it is important to clarify that 

the terms exploration and exploitation are sometimes used instead. In fact, the 

notions of exploitation and exploration often refer to rather short-term strategies tied 

to randomness, whereas intensification and diversification also refer to medium- and 

long-term strategies based on the usage of memory  (Blum and Roli, 2003). 

 

The main properties given by Blum and Roli (2003) in order to characterize meta-

heuristics: 

�  Metaheuristics are strategies that guide the search process. 

� The goal is to efficiently explore the search space in order to find (near-) 

optimal solutions. 

� Techniques which constitute metaheuristic algorithms range from simple 

local search procedures to complex learning processes. 

� Metaheuristic algorithms are approximate and usually non-deterministic. 

� They may incorporate mechanisms to avoid getting trapped in confined areas 

of the search space. 

� The basic concepts of metaheuristics permit an abstract level description. 

� Metaheuristics are not problem-specific.  

� Metaheuristics may make use of domain-specific knowledge in the form of 

heuristics that are controlled by the upper level strategy. 

� Todays more advanced metaheuristics use search experience (embodied in 

some form of memory) to guide the search. 
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3.1.2 Classification of Meta-Heuristics 

 

There are different ways to classify and describe metaheuristic algorithms. 

Depending on the characteristics selected to differentiate among them, several 

classifications are possible, each of them being the result of a specific viewpoint. 

According to Blum and Roli (2003) the most important ways of classifying 

metaheuristics are summarized as follows. 

 

Nature-inspired or non-nature-inspired: This classification of meta-heuristics is 

based on the origins of the algorithm. Genetic Algorithms and Ant Algorithms are in 

the class of nature-inspired while Tabu Search and Iterated Local Serach are in the 

class of non-nature-inspired. It may be sometimes difficult to clearly attribute an 

algorithm to nature-inspired or non-nature-inspired.  

 

Population- based or single-point search: Depending on the number of solutions 

used at the same time meta-heuristics can be classified as population-based or single-

point searchs. Single-point searchs are also called as trajectory methods. Tabu Search 

and Simulated Annealing are best known single-point search techniques. On the 

contrary Genetic Algorithms and Ant Colony Optimization are population-based 

approaches. 

 

Dynamic or static objective function: This type of classification depend on the way 

meta-heuristics make use of the objective function. While some algorithms keep the 

objective function given in the problem representation “as it is”, some others, like 

Guided Local Search (GLS), modify it during the search in order to escape from 

local minima by modifying the search landscape. 

 

One or various neighborhood structures: Most meta-heuristic algorithms work on 

one single neighborhood structure. It means that, the fitness landscape topology does 

not change in the course of the algorithm. Other meta-heuristics, such as Variable 

Neighborhood Search (VNS), use a set of neighborhood structures which gives the 

possibility to diversify the search by swapping between different fitness landscapes. 
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Memory usage or memory-less methods: Another important chracteristic in order to 

classify meta-heuristics is the use they make of the search history, that is, whether 

they use memory or not. Memory-less algorithms perform a Markov process, as the 

information they exclusively use to determine the next action is the current state of 

the search process. There are several different ways of making use of memory. 

Usually it is differentiated between the use of short term and long term memory. The 

first usually keeps track of recently performed moves, visited solutions or, in general, 

decisions taken. The second is usually an accumulation of synthetic parameters about 

the search. The use of memory is nowadays recognized as one of the fundamental 

elements of a powerful metaheuristic. 

 

3.2 Hybrid Algorithms 

 

Search techniques have been widely used to solve many combinatorial 

optimization problems (COPs) of both theoretical and practical importance. The 

available approaches for COPs can be classified into two main categories: exact 

(complete) and approximate (heuristic) algorithms. Exact methods such as branch 

and bound or dynamic programming guarantee to find an optimal solution for a finite 

sized problem in bounded time. However, as the size of the problem gets larger, the 

time needed by the complete algorithms may increase exponentially. On the other 

hand, approximation methods are able to find a good (optimal or near optimal) 

solution in less amount of time. 

 

Another approach that was taken to solve optimization problems was the 

introduction of hybrid algorithms. A hybrid algorithm is a combination of complete 

or approximate algorithms (or both) used to solve the problem in hand (El-Abd and 

Kamel, 2005). The interest among researchers in this field has risen in the past years 

since many of the best results obtained for many combinatorial optimization 

problems where found by hybrid algorithms. 

 

Especially over the last years a large number of algorithms were reported that do 

not purely follow the concepts of one single traditional metaheuristic, but they 
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combine various algorithmic ideas, sometimes also from outside of the traditional 

metaheuristics field. These approaches are commonly referred to as hybrid 

metaheuristics (Raidl, 2006). 

 

Hybridization of heuristics involves a few major issues which may be classified as 

design and implementation. The former category concerns the hybrid algorithm 

itself, involving issues such as functionality and architecture of the algorithm. The 

implementation consideration includes the hardware platform, programming model 

and environment on which the algorithm is to run (Talbi, 2002). 

 

The motivation behind hybridization of meta-heuristics concepts is usually to 

obtain better performing systems that exploit and unite advantages of the individual 

pure strategies, i.e. such hybrids are believed to benefit from synergy. The vastly 

increasing number of reported applications of hybrid metaheuristics specifies the 

popularity, success, and importance of this specific line of research. In fact, today it 

seems that choosing an adequate hybrid approach is determinant for achieving top 

performance in solving most difficult problems (Raidl, 2006). 

 

3.2.1 Classification of Hybrid Meta-Heuristics 

 

There is a lack of studies in the literature providing a global view of the art of 

hybridization. Also there is a shortage of guidelines to help in the choice of how to 

hybridize and which algorithms should be combined to obtain the best result on a 

certain instance of the problem on hand. However, Preux and Talbi (1999),  Talbi 

(2002) and Raidl (2006) aimed at classifying the concept of hybridization of 

metaheuristics from different points of view.  Among these three publications the 

more comprehensive one for classification of hybrid meta-heuristics is given by 

Raidl (2006). Figure 3.2 illustrates the various classes and properties by which Raidl 

(2006) want to categorize hybrids of meta-heuristics. This classification depends on 

the methods used (what is hybridized?), level of hybridization, order of execution 

and control strategy. For the details of this classification the reader may refer to Raidl 

(2006). 
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         Figure 3.2 Classification of hybrid meta-heuristics 

 

The first class of the hybrid meta-heuristics is based on the methods used to 

combine. Meta-heuristics can be combined with (i) different meta-heuristic 

strategies, (ii) certain algorithms specifically developed for the considered problem, 
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(iii) other more general techniques coming from the fields of operations research 

(OR) and artificial intelligence (AI) (Raidl, 2006).  

 

Level of hybridization is the second classification of hybrid meta-heuristics. This 

class may be distinguished between low-level and high-level hybridizations. The 

low-level hybridization addresses the functional composition of a single optimization 

method. In this hybrid class, a given function of a metaheuristic is replaced by 

another metaheuristic (Talbi, 2002). On the contrary, high-level combinations in 

principle retain the individual identities of the original algorithms and cooperate over 

a relatively well defined interface; there is no direct, strong relationship of the 

internal workings of the algorithms (Raidl, 2006). 

. 

The order of execution is another feature by which the third class of hyrid meta-

heuristics may be distinguished as sequential, interleaved and parallel. In the 

sequential model, one algorithm is strictly performed after the other, and information 

is passed only in one direction. An intelligent preprocessing of input data or a 

postprocessing of the results from another algorithm would fall into this category. On 

the contrary, the interleaved and parallel models, in which the algorithms might 

interact in more sophisticated ways (Raidl, 2006). For more detailed information of 

hybrid parallel meta-heuristics the reader can refer to El-Abd and Kamel (2005). 

 

The fourth and final class of hybrid meta-heuristics is based on control strategy, 

integrative and collaborative combinations. In integrative approaches, one algorithm 

is considered a subordinate, embedded component of another algorithm. This 

approach is extremely popular. In collaborative combinations, algorithms exchange 

information, but are not part of each other (Raidl, 2006). 

 

In this study we deal with the class of sequential hybrid meta-heuristics. We aim 

at solving mixed-model assembly line balancing problem with this type of 

hybridization. Some authors have used the technique of sequential hybridization, i.e., 

Haq, Jayaprakash, and Rengarajan (2006). Figure 3.3 contains some types of 

sequential hybridization of meta-heuristics. 
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           Figure 3.3 Some types of sequential hybrid approaches 

 

According to Preux and Talbi (1999) a fundamental and practical remark is that 

after a certain amount of time, the population is quite uniform and the fitness of the 

population is no longer decreasing, the odds to produce fitter individuals being very 

low. That is, the process has fallen into a basin of attraction from which it has a 

(very) low probability to escape.  

 

This point leads to raise two issues:  

 

� once fallen in a basin, the algorithm is not able to know if it has found the 

optimal point, or if it has fallen into a local optimum. Hence, we need to find 

ways to escape the optimum in order to try to find another optimum, 

 

� the exploitation of the already found basin of attraction has to be realized in 

order to find, as efficiently as possible, the optimal point in the basin. 
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3.3 Genetic Algorithms 

 

Genetic algorithms (GAs) are powerful and broadly applicable stochastic search 

and optimization approaches, which simulate the natural behaviour of biological 

systems. Holland (1975) introduced the developed fundemantel ideas of genetic 

algorithms and genetic algorithms were popularized as a solution method by one of 

Holland’s students, David Goldberg, who was able to solve a difficult problem 

involving the control of gas-pipeline transmission (Goldberg, 1989). GAs have been 

succesfully adapted to solve several combinatorial optimization problems (COPs) in 

the literature and have become increasingly popular among approximation 

techniques for finding optimal or near optimal solutions in a resonable time to COPs. 

This popularity of GAs depend on the below listed advantages, which are intriguing 

and produce stunning results when traditional optimization approaches fail miserably 

(Haupt and Haupt, 2004). 

 

� Optimize with continuous or discrete variables, 

� Do not require derivative information, 

� Simultaneously searchs from a wide sampling of the cost surface, 

� Deal with a large number of variables, 

� Are well suited for parallel computers, 

� Optimize variables with extremely complex cost surfaces (they can jump out        

of a local minimum), 

� Provide a list of optimum variables, not just a single solution, 

� May encode the variables so that the optimization is done with the encoded 

variables, and 

� Work with numerically generated data, experimental data, or analytical 

functions. 
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Goldberg (1989) introduced the differences of genetic algorithms from traditional 

optimization techniques in for ways: 

 

� GAs work with a coding of the parameter set, not the parameters 

themselves. 

� GAs search from a population of points, not a single point. 

� GAs use payoff (objective function) information, not derivatives or other 

auxiliary knowledge. 

� GAs use probabilistic transition rules, not deterministic rules. 

 

Besides these differences of GAs, a genetic algorithm must have five basic 

components, as summarized by Michalewicz (Gen and Cheng, 2000): 

 

� A genetic representation of solutions to the problem. 

� A way to create an initial population of solutions. 

� An evaluation function rating solutions in terms of their fitness. 

� Genetic oprerators that alter the genetic composition of children during 

reproduction 

� Values for the parameters of genetic algorithms. 

 

Genetic algorithms maintain a population of individuals, each of them represents a 

feasible solution to the problem at hand. Each individual is evaluated to give measure 

of it fitness. In order to create new individuals some individuals from the population 

undergo stochastis tranformations by means of genetic operations. There are two 

ways creating new individuals, mutation and crossover called genetic operators. 

Mutation creates new individuals by making changes (mutating) in an single 

individual while crossover creates new individuals by combining parts (mating) from 

two individuals. New individuals, called offspring, are then evaluated. A new 

population is formed by selecting individuals from the parent population and the 
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offspring population according to a selection procedure. After several generations (a 

predefined iteration number), the algorithm converges the most fit individual, which 

represents an optimal or suboptimal solution to the problem at hand. Figure 3.4 

illustrates main steps of a generalized genetic algorithm. 
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                        Figure 3.4 Main steps of a generalized genetic algorithm 
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3.3.1 Terminology of Genetic Algorithms 

 

In order to understand the philosophy of genetic algorithms seven basic terms 

relating to GAs must be defined. These basic components include coding of solutions 

(chromosomes or individuals), population, fitness function, selection, genetic 

operators (mutation and crossover), forming new generation (survival scheme) and 

termination criteria. 

 

In GA terminology, coding of a feasible solution called an individual or a 

chromosome. Chromosomes are made of discrete units called genes, each of them 

controls one or more features of the chromosome. Genes are assumed to be binary 

digits in the original implementation of GA by Holland (see Figure 3.5-a), however 

more varied chromosome types have been introduced in later implementations (see 

Figure 3.5-b). A chromosome corresponds to a feasible solution in the solution space. 

This requires a mapping mechanism, called encoding, between the solution space and 

the chromosomes. In fact, GAs work on the encoding of a problem, not on the 

problem itself. 

 

1 1 0 1 0 0 1 0 1 1 

(a) 

A C A B C D E D E E 

(b) 

Figure 3.5 Chromosome represantations 

 

GAs operate with a group of solutions (chromosomes), called a population. Initial 

population is generated often randomly. For problems with small feasible regions, 

initialization can incorporate problem-specific knowledge to increase the likelihood 

of having feasible individuals and to generate some good solutions in the initial 

population. Another alternative in population initialization is to locate approximate 

solutions by using other methods and to start the algorithm from such points (Coley, 

2003). 
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In order to evaluate and rate the performance of a chromosome GAs use problem 

specific fitness functions, which are the monotonic functions of the problem’s 

objective function at hand, usually. 

 

Selection involves choosing individuals that will be exposed to genetic operations. 

The parents are selected among existing chromosomes in the population with 

preference towards fitness so that offspring is expected to inherit good genes which 

make the parents fitter. The selection procedure has a significant influence on driving 

the search towards a promissing area and finding good solutions in a short time 

(Pham and Karaboga, 2000). Common types of selection procedure are roulette whell 

selection, (µ+λ)-selection, tournament selection, steady-state reproduction, ranking 

and scaling and sharing. Roulette whell selection, proposed by Holland (1975), is the 

best known selection type (Gen and Cheng, 2000). Coley (2003) summarised the 

fitness-proportional selection (roulette whell) in below: 

 

11..  Sum the fitness of all the population members. Call this fsum. 

 

22..  Choose a random number, Rs, between 0 and fsum. 

 

33..  Add together the fitness of the population members (one at a time) stopping 

immediately when the sum is greater Rs. The last individual added is the 

selected individual and copy is passed to the next generation. 

 

The selection mechanism is applied twice (from step 2) in order to select a pair of 

individuals to undergo, or not to undergo, crossover. Selection continued until N (the 

population size, assumed to be even) individuals have been selected (Coley, 2003). 

 

Crossover and mutation are the operators, used by GAs, in order to generate new 

individuals from selected chromosomes in the population. Crossover is the main 

operator of GAs. The crossover procedure: generally two chromosomes, called 

parents, are combined together to form new chromosomes, called offspring. A two-

point crossover exchanges all genes between the cut-points, which are randomly 
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determined in general (see Figure 3.6). The aim of crossover is to transmit good 

characteristics from parents to offspring. 

 

    Parent 1 

1 1 0 0 0 1 0 0 1 1 

   Parent 2 

1 0 1 0 0 1 1 1 0 1 

 

         Randomly generated  

   Offspring 1    cutpoints 

1 1 0 0 0 1 1 1 1 1 

   Offspring 2 

1 0 1 0 0 1 0 0 0 1 
           Figure 3.6 Two point crossover 

 

Mutation is a background operator, which is used to maintain genetic diversity 

from one generation of a population of chromosomes to the next. Figure 3.7 shows 

the simplest mutation, which is performed by changing the value of a randomly 

selected gene from 0 to 1 (or from 1 to 0) in a binary string. In GAs, mutation serves 

the crucial role of either (a) replacing the genes lost from the population during the 

selection process so that they can be tried in a new context or (b) providing the genes 

that were not present in the initial population (Gen and Cheng, 1997).  

 

   Parent 

1 0 0 1 1 0 1 0 1 0 

 

                                      Randomly selected gene  

   Offspring  

1 0 0 0 1 0 1 0 1 0 

 

    Figure 3.7 Mutation 
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A replacement strategy is required in order to form new generation. This strategy 

determines which chromosomes stay in population and which are replaced by 

offsprings, generated by crossover or mutation. The individuals of the new 

generation may be (i) individuals from the current generation, (ii) offspring product 

of crossover or (iii) individuals who underwent mutation. The most commonly used 

relacement strategy is elitism, which makes survive some number of the best 

individuals at each generation, hence guaranteeing that the final population contains 

the best solution ever found. There are several approaches for the way the offspring 

replace their parents. Some favour the maintenance of the parents in the population 

while others always replace the parents by the offspring, even if they are worse than 

the parents. In either case, a random component is always present to avoid premature 

convergence to local optima. 

 

3.3.2 Determining GA Parameters  

 

Another important decision to make in implementing a genetic algorithm is how 

to set the values for the various parameters, such as the population size, crossover 

rate, mutation rate and termination criteria. The values of these parameters greatly 

determine whether the algorithm will find a near-optimum solution and whether it 

will find such a solution efficiently. Choosing the right parameter values, however, is 

a time-consuming task and considerable effort has gone into developing good 

heuristics for it. Eiben et al. (1999) classifies parameter setting efforts in two major 

groups: parameter tuning and parameter control (see Figure 3.8). 

 

Parameter tuning means that the commonly practiced approach that amounts to 

finding good values for the parameters before the run of the algorithm and then 

running the algorithm using these values, which remain fixed during the run. 

Parameter tuning is a common practice in evolutionary computation. Typically one 

parameter is tuned at a time, which may cause some suboptimal choices, since 

parameters often interact in a complex way. Simultaneous tuning of more 

parameters, however, leads to anenormous amount of experiments. The technical 
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drawbacks to parameter tuning based on experimentation can be summarized as 

follows. 

 

� Parameters are not independent, but trying all different combinations 

systematically is practically impossible. 

 

� The process of parameter tuning is time consuming, even if parameters are 

optimized one by one, regardless to their interactions. 

 

� For a given problem the selected parameter values are not necessarily 

optimal, even if the effort made for setting them was significant. 

 

Parameter control forms an alternative, as it amounts to starting a run with initial 

parameter values which are changed during the run. Controlling the parameters 

during a run is an alternative to tuning parameters before running the algorithm. It is 

intuitively obvious that different values of parameters might be optimal at different 

stages of the evolutionary process. Methods for changing the value of a parameter 

can be classified into three categories. 

 

� Deterministic Parameter Control: This takes place when the value of a 

strategy parameter is altered by some deterministic rule. This rule modifies 

the strategy parameter deterministically without using any feedback from 

the search. Usually, a time-varying schedule is used, i.e., the rule will be 

used when a set number of generations have elapsed since the last time the 

rule was activated. 

 

� Adaptive Parameter Control: This takes place when there is some form of 

feedback from the search that is used to determine the direction and/or 

magnitude of the change to the strategy parameter. The assignment of the 

value of the strategy parameter may involve credit assignment, and the 

action of the Evolutionary Algorithm (EA) may determine whether or not 

the new value persists or propagates throughout the population. 
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� Self-Adaptive Parameter Control: The idea of the evolution of evolution 

can be used to implement the self-adaptation of parameters. Here the 

parameters to be adapted are encoded into the chromosomes and undergo 

mutation and recombination. The better values of these encoded parameters 

lead to better individuals, which in turn are more likely to survive and 

produce offspring and hence propagate these better parameter values. 

 

 

 

 

     

             Before the run                               During the run 

 

 

 

 

 

 

 

 

                     Figure 3.8 Taxonomy for parameter setting in GAs 

 

3.3.3 GAs for Assembly Line Balancing 

 

The main and the most important feature of the application of a GA to an 

optimization problem, i.e. line balancing problem, is the development of good 

encoding schemes and genetic operators in order to attain feasible solutions. Another 

difficulty found in the application of GA to the ALBP is related with the fitness 

function (Scholl and Becker, 2006). In this section, firstly, it is mentioned the 

classification of chromosomes schemes given by Gen, Cheng and Lin (2008) then the 

genetic operators used by implementing GAs to the ALBP. Second, the use of some 

fitness functions for ALBP in the literature is given. 

 
PARAMETER SETTING 

Parameter Tuning Parameter Control 

Deterministic 

Adaptive 

Self-Adaptive 
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3.3.3.1 Chromosomes Representation Schemes 

 

The major characteristic in applying GA to problem is to convert a feasible 

solution of ALB model into a genetic representation form, called chromosome. Up to 

now, several genetic representations, i.e., task-based, embryonic, workstation-based, 

grouping-based, and heuristic-based have been proposed (see Figure 3.9). 

 

� Task-based Encoding: The chromosomes are defined as feasible 

precedence sequences of tasks. The length of the chromosome is defined by 

the number of tasks. In order to calculate the fitness of a task based 

chromosome, additional operations, which assign the tasks to workstations 

according to the task sequence in the chromosome, are needed. Task-based 

representation is the most appropriate representation for ALB Type-1 

models, since Type-1 models consider the minimization of stations as an 

objective function. 

 

� Embryonic Encoding: Embryonic chromosome representation is actually a 

special version of the task based chromosome. The only difference between 

the two is that the embryonic representation of a solution considers the 

subsets of solutions rather than the individual solutions. During the 

generations, the embryonic chromosome evolves through a full length 

solution. Therefore, the chromosome length varies throughout the 

generations. The length is initially defined by a random number and then 

increases until it reaches the number of tasks. 

 

� Workstation-based Encoding: The chromosome is defined as a vector 

containing the labels of the stations to which the tasks are assigned. The 

chromosome length is defined by the number of tasks. This kind of 

chromosome representation scheme is generally used for ALB Type-2 

models. 
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� Grouping-based Encoding: In grouping-based representation, proposed 

especially for grouping problems, i.e. ALB Type-1 models, the stations are 

represented by augmenting the workstation-based chromosome with a 

group part. The group part of the chromosome is written after a semicolon 

to list all of the workstations in the current solution. The length of the 

chromosome varies from solution to solution. The first part is the same as 

in workstation-based chromosome. The difference comes from the 

grouping part, which list all the stations. 

 

� Heuristic-based (Indirect) Encoding: This type of representation scheme 

represents the solutions in an indirect manner. In this type, it is first coded 

the priority values of the tasks (or a sequence of priority rules), then applied 

these rules to the problem to generate the solutions. The chromosome 

length is defined by the number of heuristics. 

 

1 2 4 3 5 6 7 10 9 11 8 12 

(a) Task-based encoding 

 

1 3 2 5 4 6 

                                            (b) Embryonic encoding 

 

1 1 2 2 3 3 4 5 4 4 4 6 

(c) Workstation-based encoding 

 

1 1 2 2 3 3 4 5 4 4 4 : 1 2 3 4 5 6 

(d) Gruoping-based encoding 

 

H1 H2 H5 H4 H7 H6 H3 

(e) Heuristic-based encoding 

 

                 Figure 3.9 Chromosome representation schemes 
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3.3.3.2 Genetic Operators 

 

Applying standard genetic operators (mutation and crossover) may lead to highly 

unfeasible solutions due to the precedence constraints of the tasks involved. To 

tackle this problem, Anderson and Ferris (1994) included in the objective function a 

penalty cost related with the number of precedence violations of each particular 

solution. 

 

Another way to address this issue is to force feasibility by using specific genetic 

operators and applying adaptation procedures to properly build the solutions. The 

crossover operator proposed by Kim et al (1998) starts by selecting a crossover point 

p, which corresponds to a workstation. Then, the genes representing workstations 1 

to p, in the first parent, are copied to the same position in the first offspring. The 

remaining positions are copied from those of p+1 to the last workstation in the 

second parent. Usually, in the resulting offspring there are tasks with no workstation 

assigned, hence, a reassignment procedure is performed in order to ensure feasibility. 

The reassignment procedure aims to reassign the remaining tasks to workstations 

with available capacity, in such a way that the feasibility of the resulting solution is 

ensured. 

 

The mutation operator proposed by the same authors consists in selecting at 

random a number of genes and applying the reassignment procedure. Anderson and 

Ferris (1994) implement mutation by changing a task’s workstation (with a small 

probability) to either the workstation immediately before or immediately after, even 

so incurring the risk of unfeasibility. 

 

The two-point order crossover is typically used for the recombination of 

chromosomes with order encoding (Leu et al, 1994, Sabuoncuoglu et al, 2000, Khoo 

and Alisantoso, 2003). Two crossover points are randomly selected, dividing the 

chromosomes in three parts. The first offspring is a direct copy of the first and last 

parts of the first parent. The middle part is obtained by rearranging the missing tasks 



 

 

59 

 

in the order by which they appear in the second parent. This ensures the feasibility of 

the resulting task sequence. 

 

Levitin et al (2006) used a crossover operator called fragment reordering 

crossover. This type of crossover works as follows: first, all elements of the first 

parent are copied to the same positions of the offspring, then, the elements of a 

random fragment of the offspring are rearranged according to their order in the 

second parent. This operator seems equivalent to the two-point order crossover. 

 

Mutation operators perform mainly by (i) changing the position of two tasks in the 

chromosome (Levitin et al, 2006) or (ii) scrambling the genes of the chromosome 

after a randomly selected point (Leu et al, 1994 and Sabuncuoglu et al, 2000). 

 

3.3.3.3 Fitness Function 

 

Fitness function is used for the performance evaluation of each feasible solution 

(each chromosome) of the problem at hand. A chromosome is evaluated based on the 

objective function value of the solution it represents. This value is assigned as the 

chromosome’s fitness. Several fitness functions have been proposed in the literature 

for the ALBP. For problems of Type-1, there often exist a large number of 

alternative feasible solutions with the same number of workstations, so it is necessary 

to use objective functions beyond the minimisation of the number of workstations, 

for a beter guidance of the search process. 

 

Falkenauer and Delchambre (1992), and Brown and Sumichrast (2005) used the 

following fitness function: 

 

2(F /C)N iFitness - function=
Ni=1

∑                                                                            (3.1) 

 

N is the number of stations, Fi is the ith station time and C is the cycle time. 
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The workload balance is a common goal that ensures equity in the distribution of 

work among operators. Several expressions to compute workload balance are found 

in the literature. Leu et al. (1994) minimise the sum of mean squared workstation idle 

times, computed by the following fitness function: 

 

2(t -C)N iFitness - function=
Ni=1

∑                                                                            (3.2) 

 

ti is the time at the ith station, C is the cycle time, and N is the number of stations. 

 

Sabuncuoglu et al.(2000) used a fitness function that consists of two objectives. 

The first term aims to balance the workloads between workstations while the second 

minimises the number of workstations. This fitness function is computed as follows: 

                    

n n2(S - S ) (S - S )max maxk kk=1 k=1Fitness - function= 2 +
n n

∑ ∑
                                (3.3) 

 

n is the number of stations, Smax is the maximum station time, and Sk is the kth 

station time. 

 

Bautista et al. (2000) used the following fitness function with three terms. First 

term considers the number of workstations, the lower bound of number workstations 

are dealt in the second term and the degree of imbalance in the third term. 

 

NE+ jN 2(c -C)t ki k=1i=1Fitness - function= -NE + +j C C NE j

 
∑∑ 

 
 
  

                                      (3.4) 

 

ti is the duration of task i, C is the cycle time, NEj is the number of stations in the 

jth solution and ck occupied time in the kth station (1≤k≤ NEj). 
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Goncalves and De Almeida (2002) used the following fitness function which 

consist of maximizing the line effeciency. It is defined as: 

 

tsumFitness - function= 100%
m.C

                                                                            (3.5) 

 

C is the cycle time, m is the number of stations and tsum is the total operation time 

of operations. 

 

Su and Lu (2007) used a fitnees function which aims at smoothing the workload 

balance within each workstation for mixed-model assembly line balancing problem. 

It is computed as follows: 

 

1Fitness function λ− = − , where 1 /J Uλ = , constant 1U J>  and 

 

1

2
S M

d Tm mjS M j=1 m=1
d T -m mk Sm=1k=1

J =
S

 
∑ ∑ 

 ∑ ∑
 
 
              (3.6) 

 

M is the number of models, S is the number of workstations, dm ist he demand for 

model m in a minimum part set and Tmj (Tmk) is total processing time for model m on 

workstation j(k), 
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CHAPTER FOUR 

PROPOSED HYBRID GENETIC ALGORITHM FOR SOLVING MMALBP 

WITH PARALLEL STATIONS 

 

4.1 Problem Definition 

 

This study deals with MMALBP with parallel workstations under the zoning 

constraints. This type of MMALBP is formulated by Vilarinho and Simaria (2002). 

Their mathematical programming model minimizes the number of workstations and 

balances the workloads between workstations and within each workstation for a 

required cycle time. In this subsection it will be explained this mathematical model 

by giving its assumptions, constraints and objective function in details, then the 

complete model will be given. We propose a solution approach to tackle this type of 

MMALBP according to the scope of this study. The proposed solution approach will 

be explained and the performance of the approach will be tested on a benchmark 

problem set. 

 

The proposed method is a hybrid approach based on genetic algorithm. Genetic 

algorithm have been proven effective in many combinatorial optimization problems, 

and it seems natural to apply the approach to a mixed-model assembly line balancing 

problem (Haq, Jayaprakash, and Rengarajan, 2006). To improve the capability of 

searching for a good solution, we introduce a sequential hybrid genetic algorithm 

with the modified versions of three well known heuristics, Ranked Positional Weight 

Technique (RPWT), Kilbridge and Wester Heuristic and Phase-I of Moodie and 

Young Method. The modifications of these heuristics will be explained later. In the 

proposed hybrid genetic algorithm, the initial solutions are obtained from the 

modified versions of these three heuristics and included in the initial population of 

the genetic algorithm. 

 

We select these three heuristics because they perform well according to 

performance criterions (Ponnambalam et al., 1999) of average line efficiency and 

average smoothness index. We use the average line efficiency to test the performance
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of the proposed hybrid genetic algorithm and the fitness function that we used has 

components, workload balance between workstations and workload balance within 

each workstation, based on the average smoothness index. Second term of the fitness 

function minimizes the workload balance between workstations and third term 

minimizes workload balance within each workstation. The fitness function will be 

explained later in details. 

 

RPWT uses the priority of positonal weight, Kilbridge and Wester Heuristic uses 

the priority of minimum number of successor and Moodie and Young Method uses 

the priority of maximum task time rule when assigning tasks to workstations. Thus 

the obtained solutions with these heuristics are from different regions of the search 

space. When we included these solutions in the initial population of the genetic 

algorithm we make the hybrid algorithm drive to different regions of the search 

space. This type of hybrid reduces the search space from the global space and 

increases the probability finding the global optimum. 

   

4.1.1 Assigning Parallel Workstations 

 

Parallel lines provides increasing flexibility and decreasing failure sensitivity of 

the production system. Also, the risk of production stoppage due to machine 

breakdowns is significantly reduced by implementation of parallel lines.  Additional 

advantages can be obtained such as better line balances, due to the higher number of 

possible task combinations and job enrichment, as the operators perform a larger 

number of different tasks.  

The implementation of parallel workstations is necessary to achieve the required 

production rate in case of the production rate required to meet the demand is so high 

that the processing times of some of the tasks exceed cycle time. Different 

workpieces are distributed among several operators who perform the same tasks, 

when parallelling workstations. The local cycle time (the capacity in time units of 

parallelled workstation) in these workstations is a multiple of the global cycle time, 

depending on the number of replicas installed. It is possible to decrease cycle time 

for the same number of operators with the use of parallel workstations.  
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4.1.2 Assumptions and Constraints of the Problem 

 

A set of similar models of a product (m=1,…,M) assembled on the line, in any 

order or mix, over a pre-specified planning horizon, P. The forecasted demand, over 

the planning horizon, for model m is Dm, requiring the line to be operated with a 

cycle time given by equation (4.1). 

 

M
C= P/ Dm

m=1
∑                                                                                                        (4.1) 

 
The overall proportion of the number of units of model m being assembled, i.e., 

the production share of each model, is computed by equation (4.2). 

 

M
q = D / Dm m p

p=1
∑                                                                                                   (4.2) 

There is a subset of tasks common to all models, however each model has its own 

set of precedence diagrams. As a result, the precedence diagrams for all the models 

can be combined in order to form joint precendence diagram and the joint precedence 

diagram has N tasks. The N tasks are performed in a set of workstations, S. The time 

required to perform task i on model m, tim, may vary among models (tim=0 means that 

model m does not require task i). 

 
A task can be assigned to only one workstation and, consequently, the tasks that 

are common to several models need to be performed on the same workstation. 

Equation (4.3) ensures assigning a task to only one workstation. 

 

S
x =1ik

k=1
∑            i = 1,......,N                                                                                  (4.3) 

 

Successors of task i, Fi, derived from joint precedence diagram, can not be 

performed before task i completed. There is no possibility of assigning any 

successors of task i to an earlier workstation than the workstation to which task i is 

assigned. Equation (4.4) ensures this set of precedence constraints. 
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S S
x - x 0ak bk

k=1 k=1
≤∑ ∑          ,a N b Fi∈ ∈                                                                    (4.4) 

 

Minimum replication time (MRT) is defined in order to decide when a 

workstation needs to duplicate. Workstations, which perform tasks with processing 

time higher than MRT for one of the models at least, allowed to be replicated. A 

workstation can be duplicated up to a maximum number of replicas (MAXP). The 

number of replicas of a workstation k, Rk, is determined by its longest task processing 

time (for all models) and it is given by equation (4.5). 

 

{ }max t xim ikm=1,..,M;i=1,..,N
R =
k MRT

 
 
 
  

     k = 1,......,S                                                  (4.5) 

 

At this point, it is necessary to distinguish between the total number of operators 

(S') working on the line and the number of different workstations in the line (S).  The 

total number of operators working on the line computed by the sum of workstations 

including all replicas, equation (4.6). 

 

S
S = R

kk=1
′ ∑                                                                                                         (4.6) 

 

A workstation’s capacity depend on the processing times of tasks assigned to it. 

The workload of workstation k for model m, Wkm, after the assignment of candidate 

task h, defined as the sum of the task processing times for each model assigned to 

workstation k plus the processing time of task h, and given by equation (4.7). 

 

N
W = t x +timkm ik hmi=1

∑       k = 1,......,S;m= 1,.....,M                                       (4.7) 

 

It is also necessary defining the capacity constraints if workstation k performs a 

task with a processing time higher than MRT, for at least one of the models. The 
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capacity such a workstation is required to perform the task wtih processing time 

higher than MRT. Equation (4.8) ensures this set of constraints. 

 

W R C
km k

≤               k = 1,......,S;m= 1,.....,M                                                 (4.8) 

 

Zoning constraints, negative or positive, are also taken into consideration. Positive 

zoning constraints (equation (4.9) where ZP represents the set of pairs of tasks that 

must be assigned to the same workstation ) deal with the pairs of task must be 

assigned to the same station and negative zoning constraints (equation (4.10) where 

ZN is the set of pairs of incompatible tasks ) forbid the assignment of pairs of tasks 

to the same workstation. 

   

S S
kx - kx =0ik jk

k=1 k=1
∑ ∑           ((i, j) ZP)∈                                                             (4.9) 

S S
kx - kx 0ik jk

k=1 k=1
≠∑ ∑         ((i, j) ZN)∈                                                            (4.10) 

 

Equations (4.11), (4.12) and (4.13) describe the decision variables. 

 

1, if task i assigned to workstation k
x =
ik 0, otherwise





                                                  (4.11) 

1, if workstation k can be replicated
r =
k 0, otherwise





                                                   (4.12) 

 

s = idle time of workstation k due to model m
km

                                           (4.13) 

 

The idle time of a workstation is the difference between the capacity of the 

workstation and its workload and calculated by equation (4.14). 

 

N
t x +s =R Cim ik km k

i=1
∑           k = 1,......,S;m= 1,.....,M                                     (4.14) 
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4.1.3 Objective Function 

 

ALB Type-1 problem aims at minimising total number of workstations for a 

predefined cycle time as the main purpose. For that reason the first term of the used 

objective function minimizes the index of the workstation to which the last task is 

assigned, hence minimising the number of workstations. Equation (4.15) shows this 

calculation. 

 

S
minimise= kxNk

k=1
∑                                                                                        (4.15) 

 

Additional goals, concerning workload smoothing, can also be taken into 

consideration besides minising total number of worksations. The second term of the 

objective function aims at balancing the workload between workstations, while 

distributing idle time across workstations as equally as possible for each model and 

given by equation (4.16). 

 

2
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                                                      (4.16) 

 

Each task processing time may vary among the different models and, so, the 

workload assigned to a workstation may also vary, due to the mixed-model nature of 

the problem. The third term of the objective function aims at balancing the workload 

within each station in order to ensure that each operator performs approximately the 

same amount of work for each model being assembled. Equation (4.17) aims at 

smoothing the workload balance wtihin each workstation. 

2

S MM q s 1m kmminimise= -
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M
q s =Sm km k

m=1
∑                                                                                                (4.18) 

 

4.1.4 Complete Mathematical Model 

 

The mathematical model for mixed model assembly line balancing with parallel 

workstations (Vilarinho and Simaria, 2002) presented in Figure 4.1.  

 

The first term in the objective function (1) minimizes the index of the workstation 

to which the last task is assigned, thus minimizing the number of workstations. The 

second term balances the workload between the workstations. The third term 

balances the workload within each workstation. 

 

(2) constraints ensuring that each task is assigned to only one workstation of the 

station interval.  

 

(3) constraints ensuring that no successor of a task is assigned to an earlier station 

than that task.  

 

(4) compatibility zoning constraints.  

 

(5) incompatibility zoning constraints. 

 

(6) the set of constraints ensuring that: each workstation time capacity is not 

exceeded. The maximum number of replicas of a workstation is not exceeded and 

only workstations where the processing time of the tasks assigned to it, for at least 

one model, exceeds a certain proportion (α%) of the cycle time can be duplicated (µ 

is a very large positive integer). 

 

(7) the set of constraints defining the decision variables domains. 
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Figure 4.1 Mathematical programming model for the mixed-model ALBP with parallel workstations 

under the zoning constraints 
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4.2 Hybrid Genetic Algorithm 

 

The complexity of the proposed mathematical model is high and it can not be 

solved to optimality, at least for real world problems (Vilarinho and Simaria, 2002). 

For that reason a two stage procedure (Vilarinho and Simaria, 2002) based on 

simulated annealing technique and ANTBAL (Vilarinho and Simario, and 2006), an 

ant colony optimization algorithm for balancing mixed-model assembly lines, were 

proposed by the authors to tackle the problem. Both of the approaches were tested on 

a set of 20 problems, whose main charecteristics will be given later. Their 

computational experience shows that ANTBAL performs better than the simulated 

annealing based algorithm.  

 

In the current study we propose a sequential hybrid genetic algorithm to solve the 

MMALBP of type-1. Then we test the performance of the proposed hybrid genetic 

algorithm on a benchmark problem set. In Figure 4.2, flow diagram of the proposed 

algorithm is given. 
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Figure 4.2 Proposed hybrid genetic algorithm 
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4.2.1 Representation of Solutions 

 

We deal with MMALBP of type-1 problem, minimizing the number of 

workstations for a predefined cycle time, in this study. Therefore we used task based 

representation (Leu et al., 1994; Ajenblit and Wainwright, 1998; Sabuncuoglu et al., 

2000), which is the most appropriate repsesentation scheme (chromosome type) for 

type-1 problems. An example of this type of chromosome was already presented in 

Figure 3.9 of chapter 3.   

 

Solution for C=10 and WS=6 

 

                        WS4 

 

                                                                                               WS6 

WS1                                                                      

        

                    

 

                                       

                                            WS5 

 

                                                                          

        WS2                                                                  WS3 

 

 

 

 

Task based chromosome 

1 8 2 9 3 4 5 6 10 7 11 

 

    Figure 4.3 Assigment procedure according to chromosome 

 

The length of the chromosome is defined by the number of tasks and each element 

of the chromosome represents a task. Tasks are assigned to workstations acording to 

the task sequence in the chromosome, as long as the predetermined cycle time is not 
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exceeded. Once the cycle time is exceeded, a new workstation is opened for 

assignment, and the process is repeated. Figure 4.3 illustrates an example of 

assignment of tasks to workstations according to a chromosome. 

 

4.2.2 Initial Population 

 

In the proposed hybrid genetic algorithm, the initial population is generated 

randomly. The well known problem specific algorithms, Ranked Positional Weight 

Technique (Helgeson and Birnie, 1961), Kilbridge and Wester Heuristic (Kilbridge 

and Wester, 1961) and Phase-I of Moodie and Young Method (Moodie and Young, 

1965), are used to generate initial solutions. Then, these generated solutions are 

included in the randomly generated initial population. This approach has an 

advantage of reducing the search space from the size of the global search space. 

Using the different algorithms for initialize the genetic algorithm provides another 

advantage, starting the search from different points of global search space, hence 

driving the search space towards a promissing area of the global search space and 

increasing the probability of finding good solutions.  

 

The original versions of these algorithms only address the simple assembly line 

balancing problem, where one single model is assembled and no parallel 

workstations are allowed. For applying ranked positional weight technique positional 

weights of each task must be calculated. The positional weight of a task in a mixed-

model assembly line is the cumulative average task time associated with itself and its 

successors. The average task time is the sum of the processing times of that task for 

each model weighted by the respective production share. Tasks are assigned to the 

lowest numbered feasible workstation by decreasing order of their positional weight 

and considering the individual task processing times for each model. In Kilbridge 

and Wester Heuristic, numbers are assigned to each operation describing how many 

predecessors it has. Operations with the lowest predecessor number are assigned first 

to the workstations. The predecessors numbers for each task are derived from joint 

precedence diagram and assigmnets are made by taking into consideration the task 

processing times for each model in a mixed-model assembly line. Moodie and Young 
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Method uses two types of matrixes, P (immediate predecessors of each task) and F 

(immediate followers of each task). Tasks are assigned to consecutive workstations 

on the assembly line by the largest candidate rule (maximum task time rule). In 

mixed-model lines the matrixes P and F are derived from joint precedence diagram 

and tasks are assigned to workstations by considering processing times for each 

model in a mixed-model assembly line. In implementation of these three algorithms 

for mixed-model assembly lines with parallel workstations, if a workstation performs 

a task with processing time larger than minimum replication time (here cycle time), 

for at least one model, its time capacity is set as C. MAXP (maximum number of 

replication) in order to procure the parallel workstation assigment. 

 

4.2.3 Fitness Evaluation 

 

Genetic algorithms aim at finding the most fit chromosome over a set of 

generations. The fitness function provides a measure of an individual’s performance 

(fitness) in the search space. We used the objective function of the mathematical 

programming model for the mixed-model ALBP with parallel workstations under the 

zoning constraints as the fitness function (Equation 4.19) of hybrid genetic 

algorithm. The main goal is to minimize the number of workstations while 

smoothing the workload balance between workstations and within each workstation.  

The fitness function is then, typically, a minimisation function. 
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4.2.4 Selection 

 

The selection of the individuals for mating is done using roulette whell selection 

(Holland, 1975), which is the best known selection strategy. Roulette wheel selection 

scheme, which scales the fitness values of the members within the population so that 
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the sum of the rescaled fitness values equals to 1, is used. To select a parent, first, a 

uniform random number within the interval (0, 1) is generated (wheel is spun), and 

then the member whose cumulative rescaled fitness value is greater than the 

generated number is selected as parent. The steps of the used roulette whell selection 

strategy can be summarised in below:  

 

1. Sum the fitness values of all the population members. Call this Fsum.  

 

2. Divide the fitness values of all population members by Fsum in order to 

calculate expected values of each individual in the population.  

 

3. Generate a uniform random number, Rs, between 0 and 1.  

 

4. Loop through the individuals in the population, summing the expected 

values, until the sum is greater than or equal to Rs. The individual whose 

expected value puts the sum over this limit is the one selected. 

 

4.2.5 Genetic Operators 

 

Genetic operators, crossover and mutation, has considerable effect upon the 

balancing performance. Crossover is the operation by which two individuals in the 

current population are used in order to create offsprings for the next population. 

Mutation operator changes the value of single genes within chromosomes randomly.  

 

We used two point crossover and scramble mutation (Leu et al., 1994). Both types 

of these genetic operators guarantee the feasibility of individuals in the current 

population by forcing. During genetic operations, only chromosomes, i.e., feasible 

sequence of tasks are employed. Besides, the workstation assignments remain 

untouched until the new offspring is completely formed. After offspring is formed, 

the tasks are assigned to workstations and individual’s fitness is evaluated. 
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4.2.5.1 Two Point Crossover 

 

In the two point crossover, two points, which cut each of the parent into three 

parts (head (H), middle (M) and tail (T)), are generated randomly.  In a general 

genetic algorithm recombination, new offspring are created by swapping the middle 

sections of the parents’ chromosomes, i.e.,  parent-1, represented by H1M1T1, 

recombines with parent-2, represented by H2M2T2, in order to form the new children 

HlM2T1 and H2MlT2. An example of two point crossover was already presented in 

Figure 3.6 of chapter 3.  

 

In the assembly line balancing problem the situation is not so simple because of 

the feasibility problem. Recombination must guarantee feasibility. Two point 

crossover applied as in Figure 4.4 provides this guarantee. The resulting offsprings 

are always feasible. 

 

                   Parent 1: 

HeadP1 Middle P1 Tail P1 

1 2 4 5 3 6 7 8 9 10 11 

    

                 Parent 2: 

HeadP2 Middle P2 Tail P2 

1 4 2 3 5 9 8 7 6 10 11 

       

                 Offspring 1: 

HeadO1 Middle O1 Tail O1 

1 2 4 3 5 8 7 6 9 10 11 

     

                 Offspring 2: 

HeadO2 Middle O2 Tail O2 

1 4 2 5 3 7 8 9 6 10 11 
 

                    Figure 4.4 Recombination: Two point crossover 
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The first offspring keeps the head and the tail parts of the first parent.  The middle 

part of the first offspring is filled in by adding the all missing tasks in the order in 

which they are contained in the second parent. The other offspring is built 

analogously based on the head and the tail parts of the second parent and its middle 

part is filled in by adding the missing tasks in the order in which they are contained 

in the first parent. Both of the generated offsprings become feasible as their middle 

part is also filled according to the precedence feasible order. The purpose of the two-

point crossover is to conduct a neighborhood search; this is done by keeping the head 

and tail of each child the same as its parent. The child should be “close” in fitness to 

its parents because only its middle genes have changed (Leu et al., 1994).  

 

4.2.5.2 Scramble Mutation 

 

In the scramble mutation, first a random point, where the mutation occurs, is 

selected. After that the head from the chosen parent is placed on the new, mutated 

offspring. Then the tail of the new child is reconstructed using the procedure 

explained in below. This procedure uses a table, called prohibit table (see Table 4.1), 

and also guarantees the feasibility.  

 

This procedure is done by removing all references to head tasks in the prohibit 

table, and then randomly choosing a task from those in the table with no predecessor 

requirements. This new task is then added to the next locus in the chromosome and is 

removed from the prohibit table. The process continues until all tasks are assigned. 

 

For example, consider parent 1 (1-2-4-5-3-6-7-8-9-10-11) in Figure 4.4 and 

assume the mutation point is chosen to be after task 3. Then the head of the child will 

be 1-2-4-5-3. The rest of the child will consist of tasks 6, 7, 8, 9, 10, and 11, placed 

in random order, but in such a manner as not to violate precedence constraints. If the 

original prohibit table is as shown on the Table 4.1, then the prohibit table with all 

references to tasks in the head of the child will be as shown on Table 4.2. 
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                                              Table 4.1 Original prohibit table 

Task Can Not Precede 

11 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

10 1, 2, 3, 4, 5, 6, 7, 8, 9 

6 1, 2, 3 

7 1, 2, 3 

8 4, 5 

9 4, 5 

3 1, 2 

2 1 

5 4 

1 - 

4 - 

 

                                              Table 4.2 Modified prohibit table 

Task Can Not Precede 

11 6, 7, 8, 9, 10 

10 6, 7, 8, 9 

6 - 

7 - 

8 - 

9 - 

 

 

Only tasks 6, 7, 8, and 9 can be selected to follow task 3 since they alone have no 

“can not precede” tasks in the modified prohibit table; assume they are chosen 

randomly in the order 9, 7, 8, 6. Then the final prohibit table (with these tasks 

deleted) becomes as Table 4.3. 

 

                                  Table 4.3 Final prohibit table 

Task Can Not Precede 

11 10 

10 - 
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Therefore, task 10 must be selected next, and 11 must be chosen last. The new 

child chosen with scramble mutation is 1-2-4-5-3-9-7-8-6-10-11 (see Figure 4.5). 

 

Parent  

Parent’s Head Parent’s Tail 

1 2 4 5 3 6 7 8 9 10 11 

 

 

 

Offspring 

Offspring’s Head Offspring’s Tail 

1 2 4 5 3 9 7 8 6 10 11 

 

                                  Figure 4.5 Scramble mutation 

 

The purpose of mutation, unlike that of recombination (croosover), is to get out of 

a local search neighborhood and thus avoid the possibility of being trapped in a local 

optimum. Therefore, the goal of mutation is to change dramatically the order of the 

genes on the chromosome; scramble mutation does this. With scramble mutation 

only the head of the parent is maintained and the tail is reconstructed randomly in a 

manner that ensures feasibility (Leu at al., 1994). 

 

4.2.6 New Generation 

 

The replacement strategy determines which individuals stay in the population and 

which are replaced and it takes into account the fitness value of the individuals. As 

mentioned in chapter 3, the individuals of the new generation may be (i) individuals 

from the current generation, (ii) offspring product of crossover or (iii) individuals 

who underwent mutation. The most commonly used relacement strategy is elitism, 

which makes survive some number of the best individuals at each generation, hence 

guaranteeing that the final population contains the best solution ever found. We used 

at this study an elitist replacement strategy, which builds 25% of the new generation 

by surviving the related number of best individulas. The other individuals of the new 
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generation are seleceted randomly among the current population, the offspring 

product of crossover and the individuals who underwent mutation. 

 

4.2.7 Termination Criteria of the Algorithm 

 

Searching the solution space can be ended when one of the following conditions is 

achieved.  

 

� The fitness function of the best solution does not improve more than x% (x, 

user defined) after a predetermined number of consecutive iterations. 

� The total number of iterations exceeds a maximum number. 

 

In this study we stopped the proposed algorithm when the total number of 

iterations exceeds a predefined number (250 iterations). 

 

 4.2.8 Parameter Setting 

 

 The selection of genetic algorithm parameters such as the size of the population, 

the rate of mutation and crossover have great importance on ensuring high 

performance. If the population size is too small, the genetic algorithm may not 

explore the solution space extensively and consistently to find good solutions. If the 

rate of genetic change is too high, beneficial schema may be disrupted and the 

population may enter error catastrophe. A genetic algorithm can be defined by the 

control parameter set π = {PS, RC, RM} where; 

 

� PS: The size of the population 

� RC: The rate of crossover 

� RM: The rate of mutation 

 

 In this study we set the rate of crossover as RC = 0.5 and the rate of the mutation 

as RM=0.15. The size of population is a parameter related to search space, which 
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differs from problem to problem. For that reason we did not set a value for the size of 

population. We set different population sizes for each problem. Table 4.4 contains 

the parameter set used for the proposed hybrid genetic algorithm. 

 

    Table 4.4 Parameter set 

Problem PS RC RM Problem PS RC RM 
1 10 0.5 0.15 2 10 0.5 0.15 
3 20 0.5 0.15 4 20 0.5 0.15 
5 30 0.5 0.15 6 30 0.5 0.15 
7 40 0.5 0.15 8 40 0.5 0.15 
9 50 0.5 0.15 10 50 0.5 0.15 
11 60 0.5 0.15 12 60 0.5 0.15 
13 70 0.5 0.15 14 70 0.5 0.15 
15 80 0.5 0.15 16 80 0.5 0.15 
17 90 0.5 0.15 18 90 0.5 0.15 
19 100 0.5 0.15 20 100 0.5 0.15 

 

4.3 Computational Experiments 

 

 To evaluate the performance of the proposed hybrid GA approache on MMALBP 

with parallel workstation assignment, we solved a benchmark set of 20 problems 

given by Vilarinho and Simaria, 2002. The proposed hybrid genetic algorithm was 

coded in Matlab 7.2. A direct comparison can be performed with the results obtained 

using a simulated annealing procedure (Vilarinho and Simaria, 2002) and ANTBAL 

(Vilarinho and Simaria, 2006) in a set of 20 mixed-model assembly line balancing 

problem with parallel workstations and zoning constraints. For this set of problems 

the number of operators (S) and the weighted line efficiency (WE) of the solutions 

provided by hybrid genetic algorithm were compared with the lower bound on the 

total number of operators (LBpmix) derived by Vilarinho and Simaria (2002). The 

obtained solutions were also compared with the solutions provided by the simulated 

annealing procedure and with the solutions provided by ANTBAL. 

 

 The goal of the MMALBP Type-1 problem is minimizing the total number of 

workstations (S) for a given cycle time (C), equivalent with maximizing WE 

(equation 4.20). 
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 The lower bound for MMALBP with parallel workstations, LBpmix, was derived 

by Vilarinho and Simaria (2006) using the following three assumptions: 

 

� The maximum number of replicas per workstation is two (MAXP=2). 

� A workstation can be duplicated only if the task time of one of the tasks 

assigned to it exceeds the cycle time (α=100%, MRT=C). 

� The task time of the longest task does not exceed twice the cycle time 

(tmax≤2C). 

 

 The steps required to compute the LBpmix are as follows: 

 

Step 1: For each model, classify the tasks according to the corresponding task time,                        

            as shown in Table 4.5. 

Step 2: For each model, compute ( )LB m′ (Equation 4.21). 

( ) ( ) ( )1 5 4 2 1
( ) (2 )

3 3 3 3
LB m n n n y n n w n n n n n nB D E B F H IA C C G

n
′ = + + + − + − + + + +

 
  

    (4.21) 

Step 3: For each model, compute ( )Z m  (Equation 2.22). 

( ) ( ) /i i

i J i J

Z m t LB m C t C
= ≠

   ′= − −   
   

∑ ∑                                                               (4.22) 

Step 4: For each model, compute ( ) ( ) ( )pmixLB m LB m Z m′= + . 

Step 5: Select LBpmix for the problem. LBpmix=maxm[LBpmix(m)]. 

 



 

 

82 

 

 For more information about the calculation of this lower bound the reader can 

refer to Vilarinho and Simaria (2002) 

 

                               Table 4.5 Classification of the task to compute LBpmix 

Task Type Task Time 

A 
5

2
3 AC t C< ≤  

B 
4 5

3 3BC t C< ≤  

C 
4

3CC t C< ≤  

D 
2

3 DC t C< ≤  

E 
1 2

3 3EC t C< ≤  

F 
5

3Ft C=  

G 
4

3Gt C=  

H 
2

3Ht C=  

I 
1

3It C=  

J 
1

3Jt C<  

                            

 

4.3.1 Benchmark Problem Set 

 

 Table 4.6 contains the benchmark set of 20 problems (Vilarinho and Simaria, 

2002), whose main characteristics are shown in the second, third and fourth columns 

respectively, the number of tasks of the combined precedence diagram (N), the 

number of models (M) and the assembly line cycle time (C). The precedence 

diagrams used for the problem set are shown in the last column. Additional 

charateristics, model mix, model demands, incopatible tasks and production periods, 

can also be seen in the table. 
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Table 4.6 Characteristics of the benchmark problem set  

Model Mix 
Model 

Demand Problem 
ID 

N M C 
qA qB qC 

Incompatible 
Tasks 

mA mB mC 

Production 
Period 

Precedence 
Relations 

1 8 2 10 0.42 0.58 - 3;4 20 28 - 480 Bowman 

2 8 3 10 0.33 0.50 0.17 3;4 16 24 8 480 Bowman 

3 11 2 10 0.42 0.58 - 7;8 20 28 - 480 
Gokcen & Erel 

(1998) 

4 11 3 10 0.33 0.50 0.17 7;8 16 24 8 480 
Gokcen & Erel 

(1998) 

5 21 2 10 0.42 0.58 - 7;8 20 28 - 480 Mitchel 

6 21 3 10 0.33 0.50 0.17 7;8 16 24 8 480 Mitchel 

7 25 2 10 0.42 0.58 - 9;10 20 28 - 480 
Vilarinho & 

Simaria (2002) 

8 25 3 10 0.33 0.50 0.17 9;10 16 24 8 480 
Vilarinho & 

Simaria (2002) 

9 28 2 10 0.42 0.58 - 4;5 20 28 - 480 Heskiaoff 

10 28 3 10 0.33 0.50 0.17 4;5 16 24 8 480 Heskiaoff 

11 30 2 10 0.42 0.58 - 21;22 20 28 - 480 Sawyer 

12 30 3 10 0.33 0.50 0.17 21;22 16 24 8 480 Sawyer 

13 32 2 10 0.42 0.58 - 18;19/23;32 20 28 - 480 Lutz 1 

14 32 3 10 0.33 0.50 0.17 18;19/23;32 16 24 8 480 Lutz 1 

15 35 2 10 0.42 0.58 - 14;18/31;32 20 28 - 480 Gunther 

16 35 3 10 0.33 0.50 0.17 14;18/31;32 16 24 8 480 Gunther 

17 45 2 10 0.42 0.58 - 14;30/34;35 20 28 - 480 
Kilbridge & 

Wester 

18 45 3 10 0.33 0.50 0.17 14;30/34;35 16 24 8 480 
Kilbridge & 

Wester 

19 70 2 10 0.42 0.58 - 14;30/34;35 20 28 - 480 Tonge 

20 70 3 10 0.33 0.50 0.17 14;30/34;35 16 24 8 480 Tonge 
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4.3.2 Results and Discussions 

 

 The main goal of this study is to test the performance of the proposed hybrid 

genetic algorithm on MMALBP with parallel workstations. For hybridization of the 

genetic algorithm three well known heuristics, Kilbridge and Wester Heuristic, 

Phase-I of Moodie and Young Method and Ranked Positional Weight Tehnique 

(RPWT) are used. Both of these approaches only address the simple assembly line 

balancing problem, where one single model is assembled and no parallel 

workstations are allowed. In order to apply these methods to mixed-model assembly 

line balancing problem modified versions, as explained before, of them are used. 

 

 First, the problems were solved by the modified versions of these three 

approaches and by pure genetic algorithm. The results are shown in Table 4.8.  

According to obtained results pure GA superior to the modified versions of these 

three problem specific heuristics. On the other hand pure GA has satisfactory results 

when it compared with ANTBAL and simulated annealing based heuristic. 

  

 Finally, the problems were solved by the proposed hybrid genetic algorithm. 

Table 4.7 contains the obtained results. As the the scope of this study a direct 

comparison of the proposed algorithm was performed with the results obtained using 

a simulated annealing procedure and ANTBAL. The values shown in Table 4.7 and 

Table 4.8 (for pure GA) are the best results of ten runs. For this set of problems the 

number of operators (S) and the weighted efficiency (WE) of the solutions were 

compared with the lower bound on the total number of operators (LBpmix). The 

optimal solutions for the problems 1-2-3-4 were only found by the mathematical 

model (see Figure 4.1), which was coded in Cplex MIP solver by Vilarinho and 

Simaria, 2002. The differences between the solutions obtained by the approaches and 

the lower bound (or the optimal solutions for the problems 1-2-3-4) are depicted by 

the value of D% in the correspondent columns of the Tables 4.7 and 4.8. The 

situation, the calculation of the lower bound does not take into account the 

precedence and zoning constraints, must take into consideration, when the 

conclusions made about the value of D%. 
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 Table 4.7 Computational results for benchmark problem set 

Simulated 
Annealing 

ANTBAL 
Hybrid Genetic 

Algorithm 

Problem N M C LBpmix Optimal 

S 
WE 
(%) 

D 
(%) 

S 
WE 
(%) 

D 
(%) 

S 
WE 
(%) 

D 
(%) 

1 8 2 10 4 4 4 85.6 0 4 85.6 0 4 85.6 0 

2 8 3 10 6 8 8 54.9 0 8 54.9 0 8 54.9 0 

3 11 2 10 7 7 7 71.0 0 7 71.0 0 7 71.0 0 

4 11 3 10 6 7 7 76.5 0 7 76.5 0 7 76.5 0 

5 21 2 10 14 - 16 72.6 14.3 16 72.6 14.3 16 72.6 14.3 

6 21 3 10 13 - 15 79.6 15.4 15 79.6 15.4 15 79.6 15.4 

7 25 2 10 14 - 16 76.8 14.3 16 76.8 14.3 16 76.8 14.3 

8 25 3 10 14 - 15 82.0 7.1 14 87.9 0 14 87.9 0 

9 28 2 10 19 - 21 86.5 10.5 20 90.8 5.3 20 90.8 5.3 

10 28 3 10 18 - 20 83.2 11.1 20 83.2 11.1 20 83.2 11.1 

11 30 2 10 15 - 16 86.6 6.7 16 86.6 6.7 16 86.6 6.7 

12 30 3 10 17 - 19 83.4 11.8 19 83.4 11.8 19 83.4 11.8 

13 32 2 10 16 - 19 77.3 18.8 19 77.3 18.8 19 77.3 18.8 

14 32 3 10 17 - 19 81.0 11.8 19 81.0 11.8 19 81.0 11.8 

15 35 2 10 20 - 24 80.0 20.0 23 83.5 15.0 23 83.5 15.0 

16 35 3 10 21 - 24 85.2 14.3 24 85.2 14.3 24 85.2 14.3 

17 45 2 10 23 - 25 85.4 8.7 25 85.4 8.7 25 85.4 8.7 

18 45 3 10 24 - 28 81.4 16.7 27 84.4 12.5 27 84.4 12.5 

19 70 2 10 41 - 44 87.0 7.3 44 87.0 7.3 44 87.0 7.3 

20 70 3 10 39 - 44 86.0 12.8 44 86.0 12.8 44 86.0 12.8 
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 For small-sized problems (for which an optimal solution was found) the proposed 

hybrid genetic algorithm finds the optimal solution. For large-sized problems, the 

worst performance is for problem 13, where the difference between the solutions 

obtained and the lower bound is 18.8%. Nevertheless, as the calculation of the lower 

bound does not take into account the precedence and zoning constraints, it must be 

take into condideration that the results obtained from the proposed hybrid GA are 

very well. This conclusion is reinforced by the values for the line efficiency shown in 

column 14 of Table 4.7 (Weighted Efficiency (%)), where a high line usage rate can 

be perceived, particularly for the largest sized problems.  

  

 Table 4.8 shows that Phase-I of Moodie and Young Method finds the same results 

in problems 1-3-4-5-6-13, RPWT finds the same results in problems 1-4-5-13 and 

Kilbridge and Wester Heuristic finds the same results in problems 1-5-13 with the 

hybrid genetic algorithm. This means that our proposed hybrid genetic algorithm 

finds the best solution at the first iteration in these six problems. When we compare 

these three heuristics with each other: 

� Phase-I of Moodie & Young Method outperforms Kilbridge & Wester 

Heuristic in seven problems (3-5-7-14-18-19-20) and RPWT in six 

problems (3-6-7-11-17-20)  

� RPWT outperforms Phase-I of Moodie & Young Method in three problems 

(12-15-16) and Kilbridge & Wester Heuristic in seven problems (5-12-14-

15-16-18-19) 

� Kilbridge & Wester Heuristic outperforms RPWT in three problems (7-11-

17) 

 If we compare the pure GA with these heuristics it is clear that, pure GA performs 

well, however the pure GA gives worst solution in six problems (8-9-15-18-19-20) 

when it compared with the proposed hybrid genetic algorithm. Namely pure GA 

performs worst for large-sized problems compared with small-sized problems. The 

proposed hybrid genetic algorithm overcome this disadvantage of the pure GA by 

improving these six problems’ solution.  
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Table 4.8 Comparison of the approaches 

Kilbridge & 
Wester 

Moodie & 
Young   

(Phase I) 
RPWT Pure GA 

Problem N M C LBpmix Optimal 

S 
WE 
(%) 

D 
(%) 

S 
WE 
(%) 

D 
(%) 

S 
WE 
(%) 

D 
(%) 

S 
WE 
(%) 

D 
(%) 

1 8 2 10 4 4 4 85.6 0 4 85.6 0 4 85.6 0 4 85.6 0 

2 8 3 10 6 8 9 48.7 12.5 9 48.7 12.5 9 48.7 12.5 8 54.8 0 

3 11 2 10 7 7 8 62.0 14.3 7 70.9 0 8 62.0 14.3 7 70.9 0 

4 11 3 10 6 7 7 76.4 0 7 76.4 0 7 76.4 0 7 76.4 0 

5 21 2 10 14 - 17 68.2 21.4 16 72.5 14.3 16 72.5 14.3 16 72.5 14.3 

6 21 3 10 13 - 16 74.6 23.1 15 79.5 15.4 17 70.2 30.8 15 79.5 15.4 

7 25 2 10 14 - 17 72.4 21.4 17 72.4 21.4 18 68.3 28.6 16 76.9 14.3 

8 25 3 10 14 - 15 81.9 7.1 15 81.9 7.1 15 81.9 7.1 15 81.9 7.1 

9 28 2 10 19 - 21 86.5 10.5 21 86.5 10.5 21 86.5 10.5 21 86.5 10.5 

10 28 3 10 18 - 21 79.2 16.7 21 79.2 16.7 21 79.2 16.7 20 83.2 11.1 

11 30 2 10 15 - 18 77.9 20.0 18 77.9 20.0 19 73.8 26.7 16 87.7 6.7 

12 30 3 10 17 - 21 77.0 23.5 21 77.0 23.5 20 80.9 17.6 19 85.1 11.8 

13 32 2 10 16 - 19 77.3 18.8 19 77.3 18.8 19 77.3 18.8 19 77.3 18.8 

14 32 3 10 17 - 21 73.3 23.5 20 77.0 17.6 20 77.0 17.6 19 81.1 11.8 

15 35 2 10 20 - 25 76.8 25.0 25 76.8 25.0 24 80.0 20.0 24 80.0 20.0 

16 35 3 10 21 - 26 78.7 23.8 26 78.7 23.8 25 81.8 19.0 24 85.2 14.3 

17 45 2 10 23 - 27 79.7 17.4 27 79.7 17.4 28 76.9 21.7 25 86.1 8.7 

18 45 3 10 24 - 31 74.1 29.2 29 79.2 20.8 29 79.2 20.8 28 82.0 16.7 

19 70 2 10 41 - 50 76.5 22.0 48 79.7 17.1 48 79.7 17.1 45 85.0 9.8 

20 70 3 10 39 - 48 79.2 23.1 47 80.9 20.5 48 79.2 23.1 45 84.5 15.4 
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 In considering the total number of workstations obtained by algorithms, hybrid 

genetic algorithm outperformed pure GA, Kilbridge & Wester Heuristic, Phase-I of 

Moodie & Young Method and Ranked Positional Weight Technique. The other 

performance criterion, weighted efficiency and %D are also depend on number of 

total number of workstations. Within the framework of main goal of this study when 

the hybrid genetic algorithm compared with ANTBAL and simulated annealing 

procedure, the obtained results show that, the hybrid genetic algorithm outperformed 

the simulated annealing procedure. The results also show that hybrid genetic 

algorithm’s performance is as good as ANTBAL’s performance. Our hybrid genetic 

algorithm produced the same results with ANTBAL. When the solutions obtained 

with the simulated annealing procedure compared with the solutions obtained with 

the proposed hybrid genetic algorithm, hybrid genetic algorithm improved the 

solution in four problem instances (problems 8-9-15-18), reaching in one of them 

(problem 8) the lower bound, thus guaranteeing the optimum. 
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CHAPTER FIVE 

CONCLUSION 

 

 The aim of this thesis was to address the MMALBP with parallel workstations by 

providing a hybrid genetic algorithm to efficiently tackle the problem. First, for 

balancing mixed-model assembly lines with straight line configuration, the modified 

versions of three well known heuristics, Kilbridge & Wester Heuristic, Phase-I of 

Moodie & Young Method and Ranken Positional Weight Technique, and pure 

genetic algorithm were used. We modified Kilbridge & Wester and Phase-I of 

Moodie & Young methods. Modified version of RPWT is taken from Vilarinho and 

Simaria (2002). Their performance was compared through a set of computational 

experiments. The major contribution of this approach was to address problems with 

characteristics that reflect some operating conditions of real world assembly lines 

(e.g., use of parallel workstations, zoning constraints). 

 

The original versions of these algorithms only address the simple assembly line 

balancing problem, where one single model is assembled and no parallel 

workstations are allowed. For applying ranked positional weight technique positional 

weights of each task were calculated. The positional weight of a task in a mixed-

model assembly line is the cumulative average task time associated with itself and its 

successors. The average task time is the sum of the processing times of that task for 

each model weighted by the respective production share. Tasks were assigned to the 

lowest numbered feasible workstation by decreasing order of their positional weight 

and considering the individual task processing times for each model. In Kilbridge 

and Wester Heuristic, numbers were assigned to each operation describing how 

many predecessors it has. Operations with the lowest predecessor number were 

assigned first to the workstations. The predecessors numbers for each task were 

derived from joint precedence diagram and assigmnets were made by taking into 

consideration the task processing times for each model in a mixed-model assembly 

line. Moodie and Young Method uses two types of matrixes, P (immediate 

predecessors of each task) and F (immediate followers of each task). Tasks were 

assigned to consecutive workstations on the assembly line by the largest candidate 
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rule (maximum task time rule). In mixed-model lines the matrixes P and F were 

derived from joint precedence diagram and tasks were assigned to workstations by 

considering processing times for each model in a mixed-model assembly line. 

 

 Second, a hybrid genetic algorithm,  which aims at deriving benefits from the 

advantages of the aforementioned three heuristics and overcoming the disadvantages 

of them, was proposed. The hybrid type was selected as sequential. In the proposed 

hybrid genetic algorithm, the initial population was generated randomly. The 

modified versions of Ranked Positional Weight Technique, Kilbridge & Wester 

Heuristic, and Phase-I of Moodie & Young Method were also used to generate initial 

solutions. Then, the generated solutions were included in the randomly generated 

initial population. Namely, the solutions generated by the heuristic methods are 

introduced randomly into initial population and proceed by the GA method. . This 

approach has an advantage of reducing the search space from the size of the global 

search space. Using different algorithms for initializing the genetic algorithm 

provided another advantage, starting the search from different points of the global 

search space, hence driving the search space towards different zones of the global 

search space and increasing the probability of finding good solutions.  

 

The performance of the proposed hybrid genetic algorithm was also tested on a 

benchmark data set including 20 MMALBPs of type 1. Table 5.1 shows a summary 

of these computational experiments. This table gives the comparisons of the 

proposed hybrid genetic algorithm with other methods and contains two criteria for 

comparison, odds value and improvement in percentage. The odds value is 

determined as the difference between the number of workstation obtained by the 

proposed hybrid GA and that by another algorithm.  

 
 As a result of this comparisons, the proposed hybrid genetic algorithm superior 

Kilbridge & Wester Heuristic in 16 (%80 of the total number of problems) problems, 

Phase-I of Moodie & and Young Method in 14 (%70 of the total number of 

problems) problems, RPWT in 16 (%80 of the total number of problems) problems, 

pure GA in 6 (%3 of the total number of problems) problems and simulated 

annealing based method in 4 (%2 of the total number of problems) problems.  
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  Table 5.1 Comparision of the proposed hybrid GA with other algorithms 

Kilbridge & Wester 
- Hybrid GA 

Moodie & Young - 
Hybrid GA 

RPWT -             
Hybrid GA 

Pure GA -          
Hybrid GA 

Simulated 
Annealing - Hybrid 

GA 

ANTBAL -       
Hybrid GA 

PROBLEM ID 

odds 
improvement

(%) 
odds 

improvement
(%) 

odds 
improvement

(%) 
odds 

improvement
(%) 

odds 
improvement

(%) 
odds 

improvement
(%) 

Problem 1 0 0 0 0 0 0 0 0 0 0 0 0 

Problem 2 1 11.11 1 11.11 1 11.11 0 0 0 0 0 0 

Problem 3 1 12.5 0 0 1 12.5 0 0 0 0 0 0 

Problem 4 0 0 0 0 0 0 0 0 0 0 0 0 

Problem 5 1 5.88 0 0 0 0 0 0 0 0 0 0 

Problem 6 1 6.25 0 0 2 11.76 0 0 0 0 0 0 

Problem 7 1 5.88 1 5.88 2 11.11 0 0 0 0 0 0 

Problem 8 1 6.67 1 6.67 1 6.67 1 6.67 1 6.67 0 0 

Problem 9 1 4.76 1 4.76 1 4.76 1 4.76 1 4.76 0 0 

Problem 10 1 4.76 1 4.76 1 4.76 0 0 0 0 0 0 

Problem 11 2 11.11 2 11.11 3 15.79 0 0 0 0 0 0 

Problem 12 2 9.52 2 9.52 1 5 0 0 0 0 0 0 

Problem 13 0 0 0 0 0 0 0 0 0 0 0 0 

Problem 14 2 9.52 1 5 1 5 0 0 0 0 0 0 

Problem 15 2 8 2 8 1 4.17 1 4.17 1 4.17 0 0 

Problem 16 2 7.69 2 7.69 1 4 0 0 0 0 0 0 

Problem 17 2 7.41 2 7.41 3 10.71 0 0 0 0 0 0 

Problem 18 4 12.9 2 6.9 2 6.9 1 3.57 1 3.57 0 0 

Problem 19 6 12 4 8.33 4 8.33 1 2.22 0 0 0 0 

Problem 20 4 8.33 3 6.38 4 8.33 1 2.22 0 0 0 0 
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 On the other hand the proposed hybrid GA has the same results with ANTBAL. 

Thus hybrid GA outperforms other algorithms except ANTBAL, however performs 

as well as ANTBAL. ANTBAL is an Ant Colony Algorithm (ACO) which simulates 

group behaviors between communities and environment made up with simple 

individual, as well as individuals, which may cause unpredictable group behavior. 

But GA simulate genetic evolutional process. On the other hand, ACO converges to 

the optimal path through the accumulation and update of information, but the lack of 

pheromone in initial stages leads to slower speed of convergence. Genetic Algorithm 

have rapid global searching capability,  but the feedback of information in the system 

has not been utilized, sometimes leading to do-nothing redundant iteration and 

inefficient solution. Therefore, if the size of the problem gets larger pure GA’s 

searching capability will gradually decline to a certain extent. Our proposed hybrid 

genetic algorithm overcomes this disadvantage of pure GA by reducing the search 

space from the size of the global space. Both the proposed hybrid genetic algorithm 

and ANTBAL have not special requirements to searching space, such as derivative, 

continuity, concavo-convex and other auxiliary information. However, ANTBAL has 

priority rules, which require some further computational effort, for selecting a task 

for assigment. In this sense, our proposed hybrid genetic algorithm performs less 

computational effort than ANTBAL while assigning tasks to workstations. 

 

These results showed that the proposed algorithm is very suitable to deal with the 

mixed-model assembly line balancing problem with parallel workstations under the 

zoning constraints 
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