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OUTLIER DETECTION WITH K NEAREST NEIGHBOR CLUSTERING 

 

ABSTRACT 

 

A server which serves to wireless network needs strong security systems. For this 

goal, a new perspective to network security is won by using data mining paradigms 

like outlier detection, clustering and classification. This study uses k-Nearest 

Neighbor algorithm for clustering and classification. K- Nearest Neighbor algorithm 

needs data warehouse which impersonates user profiles to cluster. Therefore, 

requested time intervals and requested IPs with text mining are used for user profiles. 

Users in the network are clustered by calculating optimum k and threshold 

parameters of k-Nearest Neighbor algorithm with a new approach. Finally, over these 

clusters, new requests are separated as outlier or normal by different threshold values 

with different priority weight values and average similarities with different priority 

weight values. 

 

Key words : outlier detection, k-Nearest Neighbor clustering, k-Nearest Neighbor 

classification, optimum k and threshold numbers, text mining 
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EN YAKIN K KOMŞU KÜMELEMESİ İLE AYKIRI DURUMLARIN 

TESPİTİ 

 

ÖZ 

 

Kablosuz ağ servisi yapan bir sunucu güçlü güvenlik sistemlerine ihtiyaç 

duymaktadır. Bu amaç için, ağ güvenliğine, aykırı durum tespiti, kümeleme ve 

sınıflandırma gibi veri madenciliği paradigmaları kullanılarak yeni bir perspektif 

kazandırılır. Bu çalışma hem ilk aşamadaki kümeleme hem de sonrasındaki 

sınıflandırma için en yakın k komşu algoritmasını kullanır. En yakın k komşu 

algoritması kümeleme için kullanıcı profillerini anlamlaştıran veri ambarına ihtiyaç 

duyar. Bu nedenle, sunucudan istekte bulunulduğu zaman aralıkları ve doküman 

madenciliğinden geçmiş, istek IP adresleri kullanılacaktır.  Ağdaki kullanıcılar, yeni 

bir yaklaşımla, en yakın k komşu algoritmasının k ve eşik değer parametrelerinin 

uygun değerlerinin hesaplanması ile kümelenir. Sonuç olarak, oluşan bu kümeler 

üzerinden, öncelikli ağırlık değerleri farklı olan, farklı eşik değerlerle ve öncelikli 

ağırlık değerleri farklı olan ortalama benzerliklerle, yeni isteklerin bir aykırı durum 

mu yoksa normal mi oldukları ayırt edilebilecektir. 

 

Anahtar sözcükler : aykırı durum tespiti, en yakın k komşu ile  kümeleme, en yakın 

k komşu ile sınıflandırma, uygun k ve eşik değer parametreleri, dokuman 

madenciliği 

 



vi 
 

CONTENTS 

 

Page 

 

M.Sc. THESIS EXAMINATION RESULT FORM .................................................. ii 

ACKNOWLEDGEMENTS ...................................................................................... iii 

ABSTRACT .............................................................................................................. iv 

ÖZ .............................................................................................................................. v 

 

CHAPTER ONE – INTRODUCTION .................................................................. 1 

 

1.1 Introduction ..................................................................................................... 1 

1.2 Related works .................................................................................................. 2 

1.3 Methodology ................................................................................................... 4 

 

CHAPTER TWO – EXPERIMENTS .................................................................... 7 

 

2.1 Data Set ........................................................................................................... 7 

2.1.1 Data Set of Time Intervals ....................................................................... 7 

2.1.2 Data Set of Requested IPs ..................................................................... 10 

2.2 Vector Space Model over Requested IPs ...................................................... 11 

2.3 Clustering With K-Nearest Neighbor ............................................................ 16 

2.4 Finding Optimum K and Threshold Numbers ............................................... 18 

2.5 Outlier Detection with Double-sided Control Mechanism ............................ 22 

2.6 Outlier Detection with Different Priority Weight Values and Tests ............. 23 

 

CHAPTER THREE – THE FEATURES OF THE DETECTION SYSTEM 

WITH INTERFACES ............................................................................................ 29 

 

3.1 Detection System Step by Step ..................................................................... 29 

3.1.1 Calculation of Similarity Matrix ............................................................ 30 

3.1.2 Clustering Operation and Finding Best ................................................. 33 

3.1.3 Outlier Detection ................................................................................... 37 



vii 
 

3.2 Helper Documents of the Detection System ............................................... 39 

 

CHAPTER FOUR – CONCLUSION ................................................................. 45 

 

REFERENCES ..................................................................................................... 46 

 

APPENDIX – A – SUCCESSFUL DETECTION RESULTS  ......................... 48 

 

APPENDIX – B – UNSUCCESSFUL DETECTION RESULTS .................... 53 

 

APPENDIX – C – THE SIMILARITY MATRIX OF USERS ACCORDING 

TO REQUESTED IPS ......................................................................................... 58 

 

 

 

 



 

 

1 

 

CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction 

 

Security of wireless network connection has a dominant place in the computer 

science together with growing usage of Internet and also, usage of wireless network 

connection. Thus, this notion becomes a more important subject day by day. This 

important notion has been already discussed and researched scrupulously.  

 

Portable devices like laptops and mobile phones in the target group of wireless 

network connection get more popular increasingly and users can surf on Internet 

freely everywhere. However, this freedom carries some security problems at the 

same time, which cut out advantage of wireless network connection. Since, wireless 

network connection allows forbidden listens and harmful attacks easily in spite of 

all inhibitive cryptographic software and personal data of an Internet surfer comes 

up against threat of being saisired. Being added alternative mechanisms, which can 

determine these hazardous behaviors and avoiding them consequently, become 

more necessary because of popular wireless network connections.  

 

The main feature of this thesis is using data mining paradigm, another branch of 

computer science, as an alternative mechanism and by this means, determining the 

attacks and forbidden listens, and enhancing security in wireless network 

communication. As a result, it would be possible that dangerous attacks are stated 

in the wireless network connection by outlier detection techniques, one of four 

paradigms of data mining (classification, clustering, association rule mining and 

outlier detection), which is used for discovering exceptional situations successfully. 

 

For outlier detection technique, clustering method would be used. One of the 

most successful classification algorithms, K-Nearest Neighbor is able to be used for 

clustering and outlier detection paradigm with some adaptations.  
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Owing to clustering method, the users with same profiles would be collected in 

the same cluster; therefore, when the system searches whether there has been an 

attack for a user, the system would not look at only the past of this user. Behaviors 

and profiles of all users in the cluster, where the user is put, are able to take into 

consideration by the system. Because then behaviors, which this user have not got 

but are similar to profile of this user, are paid attention. As a result, with this 

approach, the study would find out an outlier healthily and reliably.   

 

The system has an improvement mechanism for K-Nearest Neighbor algorithm. 

According to the data set, the system decides that which clustering result would 

have the best distribution. The mechanism finds the optimum parameters of K-

Nearest Neighbor according to some expectancy from the clusters and the contents 

of these clusters. These parameters and optimum values will be detailed on this 

thesis. 

 

Ultimately, this thesis mentions that for a more secure wireless network 

connection, the server must have systematic mechanism which has data mining 

approaches and this mechanism controls user requests according to their time 

intervals and source IP addresses, thus the knowledge about whether it is a normal 

or an outlier is obtained from the data mining operations. As a result, this thesis is 

based on users at a wireless network and this study figures out outliers inside 

usages of wireless network. 

 

1.2 Related works 

 

At a work (Bloedorn & others, 2001), “network intrusion detection” and “data 

mining” notions are mentioned and by comparing the methods before using data 

mining approaches with the methods of using data mining for intrusion detection, 

the benefits of data mining approaches are pointed. 

 

The outlier detection which is one of the data mining paradigms has five 

different algorithm approaches. These are distribution based, clustering based, 

density based, distance based and depth based. Three of these different algorithm 
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techniques are compared by a study of recent date (Lazarevic & others, 2002). 

These three algorithms are Nearest Neighbor Algorithm with k which equals to 1 

for clustering based approach, Mahalanobis-distance Algorithm for distance based 

approach and Local Outlier Factor (LOF) algorithm for density based approach. 

The most successful approach according to intrusion detection rate finds clustering 

approach with Nearest Neighbor algorithm according to this study. 

 

At a study of recent date about k-Nearest Neighbor classifier for intrusion 

detection (Liao & Vemuri, 2002), they applied the k-Nearest Neighbor classifier to 

the 1998 DARPA data which is collected as a large sample of computer attacks 

embedded in normal background traffic by the 1998 DARPA Intrusion Detection 

System Evaluation program (Evans, 2008). This data collection contains system 

calls which are treated as “words” in a document and processes which are created 

by sets of system calls and treated them as “documents” like the spectrum at a 

report about text categorization (Aas & Eikvil, 1999). 

 

The k-Nearest Neighbor clustering algorithm has a handicap, because the 

question, of which k and threshold values must be taken, cannot find the answer 

with simple k-Nearest Neighbor algorithm. Like the research about average-case 

analysis of the k-Nearest Neighbor classifier for noisy domains (Nobuhiro & 

Okamoto, 1997), research about finding optimum k and threshold numbers are over 

k-Nearest Neighbor classification algorithm, not over k-Nearest Neighbor 

clustering algorithm. 

 

There are two different approaches to intrusion detection as statistical anomaly 

detection and rule-based detection according to a study about Intrusion Detection 

(Porras, 1993 - referenced in Stallings, 2006). This study has statistical anomaly 

detection approach, because the study finds optimum parameters of k-Nearest 

Neighbor algorithm over time interval and requested IPs data collections like in 

threshold detection subject of statistical anomaly detection approach and the study 

clusters users according to the past behaviors like in profile-based anomaly 
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detection of statistical anomaly detection approach (Porras, 1993 - referenced in 

Stallings, 2006).  

 

In this thesis, the optimum values of the parameters are found at k nearest 

neighbor clustering operation, because the changing of k number and threshold 

number changes the space of the clusters and the results of the outlier detection. 

Also, a recent study about clustering-based intrusion detection uses firstly trial and 

error method for clustering parameters; however, unsuccessful detection rates and 

false negative-positive rates are taken. Therefore, determining the ideal parameters 

is preferred (Wen-chao & Huan, 2004).  

 

The one of the goals in this study is finding out the profiles of the users in the 

system, because the clustering operation is done according to this knowledge and 

the relationships. At a recent study about profiling and clustering internet hosts, the 

profiles are determined according to the network data like identifying host services 

and identifying TCP connection. Then, the users are clustered with the certain 

boundaries without using an algorithm. (Wei, Mirkovic & Kissel, 2006). This thesis 

uses the time interval and requested IP data for finding out the profiles. Also, k 

nearest neighbor clustering algorithm is used for clustering part.       

 

In this thesis, outlier situations of the requests control and are detected according 

to the profiles and cluster space. A recent study about network traffic anomaly 

detection with using k-means clustering also focuses on Network Data Mining 

(NDM); however, the clustering operation is done with k-means algorithm 

independently from user profiles. The clustering operation is used over the network 

traffic characteristics (Münz, Li & Carle, 2007). This thesis uses k nearest neighbor 

clustering over the user profiles.  

 

1.3 Methodology 

 

Outlier detection, one of the data mining paradigms, which is used in this thesis, 

needs a data set in an order which is prepared by one of the other paradigms. 



5 

 

 

 

Therefore, new data which comes to the system is understood as outlier or normal 

by this processed data set. It can be said that there are two main cycles on the 

development duration of the project. On the first cycle, ordered data set is prepared 

and on the second cycle, the necessary mechanism which catches harmful attack 

and called “it can be outlier” is arranged. As a result, all cycles according to a study 

about Knowledge Discovery in Databases (Fayyad, Piatetsky-Shapiro & Smyth, 

1996) are implemented in this thesis. 

 

On the first cycle, while data set is preparing, it is decided this question as which 

paradigm the best choice would be. Clustering paradigm would be the best choice 

because this technique would prevent that limited set number. If classification 

method was chosen, wrong sets would be able to be created. The most important 

goal of this cycle is that specific and distinctive profiles of all users in our network 

system would be determined, and then these common or similar users would be in 

the same set. Therefore, attributes which are dissociated the users in the network 

are stated on this cycle, too. Also, algorithm and result analysis mechanism which 

would have been used for outlier detection cycle at the end of clustering process are 

thought and planed on the first cycle of the project.    

 

At this study, for two different typed data sets, the outlier detection system has 

to give an answer. These data sets would have time intervals as numeric values and 

requested IPs in these time intervals simultaneously as textual values. For these 

different typed data sets, two different data warehouses have to be created. After 

data warehouses are collected, clustering operation has to be done with k-Nearest 

Neighbor algorithm on the first cycle. K-Nearest Neighbor algorithm is generally 

used for classification and it is very successful at classification and also, this 

algorithm will be used for anomaly detection by classification. Therefore, k-Nearest 

Neighbor algorithm is chosen.  

 

For k-Nearest Neighbor algorithm, optimum k and threshold numbers are the 

most important parameters, because according to k and threshold numbers, k-

Nearest Neighbor algorithm gets different clusters for the same data warehouse. 
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Therefore, for the best clustering result, an alternative approach is used and without 

“trial and error” method, the optimum k and threshold numbers are found. The 

thoughts, which bring us these optimum numbers, are that elements with the most 

similar scores have to be in the same clusters and these clusters total number have 

to be the minimum as possible. After the optimum k and threshold numbers are 

found, the clusters are created according to these values and the first cycle of the 

methodology is completed. 

 

On the second cycle, k-Nearest Neighbor algorithm is used with classification 

paradigm and with this algorithm outlier requests are detected according to clusters 

and threshold value. Because over the clusters, it is calculated that whether new 

requests of the user are either fit or not, or similarity score is either less than 

threshold or not.  

 

Briefly, the study has a double-sided outlier control mechanism. Firstly, outlier 

controls started according to clustering over data warehouse of time interval. If 

there is not an unconvincing situation, controls are terminated by the mechanism. 

However, if there is a problem at requires according to these time intervals for a 

user, the server tends to control outlier detection according to clustering over data 

warehouse of required IPs and the other side of the outlier detection mechanism is 

put into use step in. As a result, anomalies are caught by k-Nearest Neighbor 

classification.
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CHAPTER TWO 

EXPERIMENTS 

 

The data sets in the study are collected from a business place where workers 

work between 9 am and 5 pm for four weeks. Data except this time interval shows 

that either these users have gone on working overtime or they have connected the 

network by the remote access. In addition, the following operations except tests 

subject (2.6 Outlier Detection with Different Priority Weight Values and Tests) in 

this chapter are implemented over a part of the real data collection as a week. The 

test operations are done for all 86 users in the network according to the data sets for 

four weeks. 

 

2.1 Data Sets 

 

2.1.1 Data Set of Time Intervals 

 

Alternatively, as data set, one part of our K-Nearest Neighbor clustering 

algorithm uses request times and the other part of algorithm uses a data collection 

which contains required IPs differently from 1998 DARPA Datasets which are used 

in the study about k-Nearest Neighbor classifier for intrusion detection (Liao & 

Vemuri, 2002); however, a similar approach like this study (Liao & Vemuri, 2002) 

is used for requested IP data warehouse. Each required IP is related to a “term” in a 

document and each user, who requires the IPs, is related to a “document” according 

to the text processing metaphor at a book which is published of recent date 

(Manning, Raghavan & Schütze, 2008).  

 

For accustomed Internet usages of the Internet surfers which means profile 

patterns, which attributes would be necessary had to be determined. Usage scores of 

all users would have to be calculated by a similarity function of clustering paradigm 

according to these attributes. And basically, according to these scores, similar 

wireless network users would be put in the same set.  
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As an answer to the question of which attributes would be based on, has been 

decided like the following ideas; surely, begin time and frequency of the Internet 

surfing had to be known. Of course, a wireless network user could use Internet in 

any time and after a certain interval, the user could leave from Internet. If that 

situation, these processes have to be done on a day, has been considered, being put 

only the begin time and frequency of the Internet surfing would not be enough. 

Therefore, each clock interval for a user has to be determined as an attribute and 

like in the following Table 2.1; vectors data for three Internet surfers of the wireless 

network system would be obtained. 

 

Table 2.1 Snap frequency list with binary time interval values 

Clock Intervals 
 
Users 

00-01 
(bin.) 

01-02 
(bin.) 

02-03 
(bin.) 

** 
21-22 
(bin.) 

22-23 
(bin.) 

23-00 
(bin.) 

C  0 0 0 * 0 1 0 
B  0 0 0 * 1 0 0 
C  1 0 0 * 0 0 0 
A  0 0 0 * 0 0 1 
B  0 0 0 * 1 0 0 
A  0 0 1 * 0 0 0 

*** * * * * * * * 
(*) : sequence of binary numbers, (**) : sequence of time interval from 03-04 to 20-21, (***) : 

sequence of users, (bin.) : binary number 

  

This table shows all clock intervals on a day and according to these intervals, the 

table lists the vectors which put request time for all users who have required a web 

data from the central server. All vectors put a “1” and twenty three “0”. If a user 

requires a web data, system adds a new vector according to user and clock interval 

onto the table.  

 

Time intervals are taken as only twenty four clocks in the book about intrusion 

detection (Frincke, 2002). However, Internet surfers behave differently during 

weekend days and weekdays. Therefore, if weekend days and weekdays attributes 

are separated as from 00-01 to 23-24 for weekend days and from 24-25 to 47-48 for 

weekdays, more sensitive result will be obtained at clustering cycle. The following 

Table 2.2 shows the list of request vectors. 
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Table 2.2 Snap frequency list with binary time interval values which are separated as weekend and 

week days 

Clock 
Intervals 

 
 
Users 

00-01 
(bin.) 

01-02 
(bin.) 

** 
23-24 
(bin.) 

24-25 
(bin.) 

25-26 
(bin.) 

** 
47-48 
(bin.) 

C  0 0 * 0 0 0 * 0 
B  0 0 * 0 0 0 * 1 
C  1 0 * 0 0 0 * 0 
A  0 0 * 0 0 0 * 0 
B  1 0 * 0 0 0 * 0 
A  0 0 * 0 0 0 * 1 

*** * * * * * * * * 
(*) : sequence of binary numbers, (**) : sequences of time intervals from 02-03 to 22-23 and from 

26-27 to 46-47, (***) : sequence of users, (bin.) : binary number 

 

Finally, all data is able to be thought as 48 numbers in 48 attributes and by 

listening to the wireless network system is interrupted after a certain days, numbers 

in the vectors of the same Internet users are able to be accumulated one by one. 

Then the result data set which will be used by the clustering algorithm is created. 

For instance wireless network system which contains three Internet surfers, result 

vectors list is like in the following Table 2.3 and each vector gives an idea with 

total weight values as frequencies for profile of a user. 

 

Table 2.3 The last situation of frequency list with total decimal time interval values which are 

separated as weekend and week days 

 Clock 
Intervals 

 
Users 

00-01 
(dec.) 

01-02 
(dec.) 

 
** 

23-24 
(dec.) 

24-25 
(dec.) 

25-26 
(dec.) 

 
** 

47-48 
(dec.) 

C 20 56 * 12 18 3 * 10 
B  7 19 * 55 4 6 * 78 
A  3 7 * 2 8 22 * 69 

(*) : sequence of decimal numbers, (**) : sequences of time intervals from 03-04 to 22-23 and from 

26-27 to 46-47, (dec.) : decimal number 

 

While listening to the wireless network system at central server, 48 digits for 

each request are saved in this central server and one of these 48 digits is 

meaningful. Therefore, holding other 47 digits for each vector occupies too large 

place on disk during collecting more vectors. Instead of this method, the central 
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server must save only order number of digit and thus, especially at long listening, 

probable disk area problem will not accrue. Each data collection area for a user 

contains order numbers which shows the place in the 48 digits time sequence for a 

user like in the following Table 2.4. 

 

Table 2.4 Sequences of time interval values between 0 and 47 in the data collection 

Users Clock Digits (between 0 and 47) 

A 22 47 47 47 47 47 47 47 12 12 12 12 22 22 * 

B 24 24 24 24 25 25 25 25 36 36 7 7 7 7 * 

C 25 25 47 47 47 25 1 1 13 13 13 4 4 4 * 

(*) : sequence of clock digits between 0 and 47 

 

2.1.2 Data Set of Requested IPs 

 

The data set, which is obtained in each clock interval for a user as an attribute, is 

not enough satisfying to cluster users according to their profile. In other words, 

deciding “It is an attack” with only clock interval for a request from wireless 

network connection may be specious. Therefore, the central server needs alternative 

data set besides clock interval values like contents of requests.  

 

If an Internet surfer in the wireless network requires a web site from the central 

server, this server is able to determine which web site is wanted and this data is able 

to be saved by the server. On this way, the central server, which serves wireless 

network connection, saves requested IP addresses for each user while saving clock 

interval data of these requests. These requested IP addresses will be used for a 

different clustering operation distinct from clock interval clustering. 

 

Like in the following Table 2.5, requested IP addresses are collected for all users 

as a document in text mining metaphor.   

 

 

 



11 

 

 

 

Table 2.5 Sequences of requested IP addresses in the data collection 

Users IP Addresses 
A 20.*.218 

 
19.*.12 12.*.21 22.*.149 * 

B 61.*.211 12.*.222 81.*.93 24.*.105 * 

C 24.*.105 19.*.5 87.*.48 19.*.12 * 

(*) : sequence of requested IP addresses 

 
All these data sets have been collected from a real system for four weeks and 

two data warehouses of time intervals and requested IPs have been obtained 

simultaneously. For clean data, “ignore the tuple” method as a data mining data 

cleaning technique is used and data warehouses have been purified from noisy data. 

As a result, all data has been passed the data preparation cycles (data integration, 

data selection, data preprocessing and data transformation) according to the study 

about Knowledge Discovery in Databases (Fayyad & others, 1996). 

 

2.2 Vector Space Model over Requested IPs 

 

Requested IP addresses listed in the data warehouse which is prepared to be 

clustered by k-Nearest Neighbor algorithm are not able to be used directly. This 

data set must be converted to a matrix form. Therefore, Vector Space Model 

(Manning & others, 2008) which is a text mining and information retrieval 

technique and is generally decided by search engines is selected.  

 

This approach uses IP requests and by using IP requests, anomalies can be 

detected with text mining techniques. For this aim, each IP request is related to a 

“term” in a document and each user, who requires the IPs, is related to a 

“document” like at the book about information retrieval (Manning & others, 2008). 

The documents contain sequential IP addresses and each document symbolizes a 

user in the wireless network connection. Therefore, each document is able to be 

shown as a vector and the data warehouse is able to be shown also as a vector array 

like the example in the following Table 2.6. 
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Table 2.6 A part of the data collection which contains requested IP address 

Users A B C 
 
 
 
 
 
 
 
 

Requested 
IP 
Addresses 

19.*.12 
19.*.12 
20.*.218 
19.*.12 
12.*.21 
19.*.12 
22.*.149 
19.*.12 
61.*.211 
61.*.211 
24.*.105 
20.*.218 
19.*.12 
20.*.218 
19.*.12 
12.*.21 
19.*.12 

61.*.211 
12.*.222 
81.*.93 
20.*.218 
24.*.105 
19.*.5 
93.*.9 
84.*.12 
61.*.211 
93.*.9 
84.*.12 
81.*.93 
19.*.12 
20.*.218 
24.*.105 
19.*.5 
93.*.9 

21.*.69 
24.*.105 
21.*.69 
21.*.69 
21.*.69 
87.*.48 
21.*.69 
21.*.69 
21.*.69 
19.*.5 
87.*.48 
81.*.93 
21.*.69 
21.*.69 
84.*.12 
21.*.69 
84.*.12 

21.*.69 
24.*.105 
21.*.69 
21.*.69 
21.*.69 
87.*.48  
21.*.69 
 
 
 
 
 
 
 
 
 

 

 

The vector array at the Vector Space Model, which will be used for k-Nearest 

Neighbor clustering, is created according to information retrieval weighting 

technique. This technique firstly creates a two-dimensional array or another word, a 

vector array. One dimension is for terms (requested IPs) and the other dimension is 

for documents (users in the wireless network system). This matrix declares term 

frequencies which mean total numbers of same IPs for each user like the following 

example Table 2.7; 

 

Table 2.7 Term frequency values for IP address dictionary for user A, B and C 

Users 
IPs 

A 
 (frequencies)

B  
(frequencies)

C 
(frequencies) 

19.*.12 8 1 0
20.*.218 3 2 0 
12.*.21 2 0 0 
22.*.149 1 0 0 
61.*.211 2 2 0 
24.*.105 1 2 2
12.*.222 0 1 0
81.*.93 0 1 1 
19.*.5 0 2 1 
93.*.9 0 3 0 
84.*.12 0 2 2 
21.*.69 0 0 15
87.*.48 0 0 4
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Then, for results with weight values, some mathematical operations like 

calculating tf as term frequency, idf as inverse document frequency of the text 

matrix and taking normalization with the cosine similarity formula are done. 

 

tft,d is the term frequency of term t in document d and it means the number of 

times that t occurs in document d. The aim of the term frequency is to put numbers 

in smaller values. The weight of the term frequency is calculated like the following 

formula (Manning & others, 2008);  

 
 
tf   =  {

 
if tft,d > 0, 1 + log10(tft,d) 
 
else, 0 

 

The situation after calculating term frequency of our example becomes like the 

Table 2.8. 

 

Another weighting operation is taking document frequency. dft is the document 

frequency of term t and it means the number of documents that contain term t. The 

weight of the document frequency is calculated with idft and by where N is the total 

document number in our collection. idft is calculated as in the following formula; 

idft = log10(N/dft). The situation after calculating inverse document frequency of 

our example table is given in the Table 2.9. 

 

Table 2.8 The logarithmic weight of the term frequency for user A, B and C 

Users 
IPs 

A  
(log frequencies) 

B  
(log frequencies) 

C  
(log frequencies) 

19.*.12 1.90309 1.00000 0.00000 
20.*.218 1.47712 1.30103 0.00000 
12.*.21 1.30103 0.00000 0.00000 
22.*.149 1.00000 0.00000 0.00000 
61.*.211 1.30103 1.30103 0.00000 
24.*.105 1.00000 1.30103 1.30103 
12.*.222 0.00000 1.00000 0.00000 
81.*.93 0.00000 1.30103 1.00000 
19.*.5 0.00000 1.30103 1.00000 
93.*.9 0.00000 1.47712 0.00000 
84.*.12 0.00000 1.30103 1.30103 
21.*.69 0.00000 0.00000 2.17609 
87.*.48 0.00000 0.00000 1.47712 
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Table 2.9 Inverse document frequency of IP dictionary 

 
IPs 

 
idf Values of IPs 

(log scores) 
19.*.12 0.17609 
20.*.218 0.17609 
12.*.21 0.47712 
22.*.149 0.47712 
61.*.211 0.17609 
24.*.105 0.00000 
12.*.222 0.47712 
81.*.93 0.17609 
19.*.5 0.17609 
93.*.9 0.47712 
84.*.12 0.17609 
21.*.69 0.47712 
87.*.48 0.47712 

 

Result of weight values come with tfd,t x idft which is defined as the product of 

term frequency weight and inverse document frequency weight. It gives the weight 

of term t in document d and it is calculated like the following formula (Manning & 

others, 2008);  

 

Wt,d  =  (1 + log10tft,d)   x   log10(N / dft) 

The situation after calculating weight tfd,t x idft of our example is given in the 

Table 2.10. 

 

Table 2.10 Wt,d values of user A, B and C before normalization 

Users 
IPs 

A 
(log weights) 

B 
(log weights) 

C 
(log weights) 

19.*.12 0.33511 0.17609 0.00000 
20.*.218 0.26010 0.22910 0.00000 
12.*.21 0.62074 0.00000 0.00000 
22.*.149 0.47712 0.00000 0.00000 
61.*.211 0.22910 0.22910 0.00000 
24.*.105 0.00000 0.00000 0.00000 
12.*.222 0.00000 0.47712 0.00000 
81.*.93 0.00000 0.22910 0.17609 
19.*.5 0.00000 0.22910 0.17609 
93.*.9 0.00000 0.70476 0.00000 
84.*.12 0.00000 0.22910 0.22910 
21.*.69 0.00000 0.00000 1.03825 
87.*.48 0.00000 0.00000 0.70476 
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Finally, a normalization operation must be implemented over the result matrix 

values, because these numeric values are independent from each other and they 

must be accumulated between two common numbers as 0 and 1. For the 

normalization operation, the following cosine similarity formula is used while m is 

the number of total IPs (Manning & others, 2008);  

 
 
Wt,d    = 

 

 
 
Wt,d   x 
 

1 
 
√ 

 

W 1
2 + W2

2 + W3
2 + … + Wm

2 

 

The situation which has values between 0 and 1 after calculating cosine 

normalization of our example can be seen in the Table 2.11. 

 

Table 2.11 Wt,d values of user A, B and C after  normalization between 0 and 1 

Users 
IPs 

A 
(between 0 and 1) 

B 
(between 0 and 1) 

C 
(between 0 and 1) 

19.*.12 0.36446 0.17454 0.00000 
20.*.218 0.28288 0.22708 0.00000 
12.*.21 0.67511 0.00000 0.00000 
22.*.149 0.51891 0.00000 0.00000 
61.*.211 0.24916 0.22708 0.00000 
24.*.105 0.00000 0.00000 0.00000 
12.*.222 0.00000 0.47293 0.00000 
81.*.93 0.00000 0.22708 0.13548 
19.*.5 0.00000 0.22708 0.13548 
93.*.9 0.00000 0.69858 0.00000 
84.*.12 0.00000 0.22708 0.17627 
21.*.69 0.00000 0.00000 0.79885 
87.*.48 0.00000 0.00000 0.54225 

 

 

If normalization operation is not used; by using the following Euclidean distance 

formula (as X and Y are the users, Xi and Yi are weight values of their requested 

IPs), the similarities of the users are calculated (Manning & others, 2008). 

 
 

Sim(X, Y)      = ∑ (Xi * Yi)
 
√ 

    

X 1
2 + X2

2 + … + Xi2
  X √ Y 1

2 + Y2
2 + … + Yi2
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However, the normalization is used, and by excluding the denominator of 

Euclidean distance formula and using only the fraction ( ∑ (Xi * Yi) ), the 

similarities of the users are calculated and the similarity matrix of our example 

users is created like the Table 2.12 (Manning & others, 2008); 

 

Table 2.12 The similarity matrix of user A, B and C according to requested IPs 

Users A (%) B (%) C (%) 
A 100 18.44 0 
B 18.44 100 10.15 
C 0 10.15 100 

 

If this vector space model as a method for creating the similarity matrix is not 

used, the matrix with only IP frequencies is normalized directly and Euclidean 

distance formula is applied to this normalized matrix. However, this basic method 

is not a healthy way, because without vector space model, there is no connection 

between same requested IPs by different users and these values are not heeded. 

Thus, similarity results in the final similarity matrix do not become successful. 

 

2.3 Clustering with K- Nearest Neighbor 

 

K-Nearest Neighbor (KNN) is a successful classification algorithm; therefore, 

an adapted situation of this algorithm is usually used at intrusion detection 

techniques (Liao & Vemuri, 2002). This study does not use k-Nearest Neighbor as 

a classifier; it is used as a clustering method over users in the wireless network 

system. 

 

While doing the classification with KNN, class numbers and types are apparent 

before the operation. A new data must be in one of these apparent classes. 

However, while clustering with KNN, the number of groups is not certain and it is 

able to change with some parameters. These parameters are k and threshold 

numbers. The k is the number of the nearest neighbors which are controlled for 

each user. In other words, for a user, k users which have the most similar profile are 

looked by KNN algorithm. However, the similarities have to be greater than the 

threshold number, and they have to be calculated before the usage of KNN and then 
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they are collected in a matrix. Euclidean distance formula is used to calculate the 

similarities of the users in the system and a matrix which contains numbers between 

0 and 1 is obtained.  

 

This study has a double-sided control mechanism with requested IPs and their 

time intervals. In other words, the system has to have two separated matrices which 

are created by Euclidean distance formula and contain similarity values of all users 

for these two data sets. Thus, these two separated data sets are converted to a 

common data form and are able to be used by the same KNN clustering algorithm.  

 

Searching the nearest neighbors in a large matrix is able to cause a performance 

problem. Therefore, sorting the similarities for each user by using quick sort 

algorithm before these matrices are used by KNN clustering would increase the 

performance of KNN clustering algorithm. Before the quick sorted matrix is used, 

another arrangement operation has to be done. In this operation, it is assumed that 

all users are in a different cluster and for this aim; a separated array from the matrix 

is used for putting these different clusters of the users. This array puts clusters as a 

number and the indexes of the array correspond to real index variable of quick 

sorted matrix structure. Because during quick sorting operation, users’ index in the 

matrix changes absolutely and this information has not to be lost. As a result, KNN 

clustering function has to take four parameters; a quick sorted matrix, an array for 

putting cluster, k number and threshold number. 

 

The function has two main loops; the outer loop repeats until there is no change 

for clustering. The other loop is for each user’s cluster which the user belongs to 

and it repeats for each user. Firstly, the algorithm takes k cluster names of the most 

similar neighbors of the user in the inner loop by controlling with the threshold 

value. With the quick sorted matrix, this operation would be faster. Then, the 

algorithm determines the most frequent cluster name from these cluster names. 

Finally, this user is joined in this cluster. For all users, these operations repeat. 

After the inner main loop finishes, this situation controls if there is not a cluster 

changing. If there is a cluster changing, the inner loop starts to repeat again with 
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new clusters of all users. If there is not a cluster change, KNN clustering is 

terminated by the system. The KNN clustering function is represented as in the 

following pseudo code; 

 

Function KNN_Clustering(parameters: quick sorted matrix, an array 
for putting clusters, k number and threshold number) 

Do 
For each user: 

For each index of quick sorted matrix from 1 to k 
Get neighbor users to an array with their 
cluster names 

Find the most frequented cluster in the array which puts 
the clusters of the nearest neighbors 
Update the clusters of the user and the users who are in 
the same cluster with this user 

While changing positions of users in the clusters  
Return the array which puts clusters 

 

2.4 Finding Optimum K and Threshold Numbers 

 

K-Nearest Neighbor algorithm gets different cluster results for the same data set 

according to k and threshold numbers. Therefore, deciding k and threshold numbers 

is very important for the following outlier operation. In other outlier detection 

studies which use KNN algorithm, k and threshold numbers are decided with trial 

or error method (Wen-chao & Huan, 2004). If an intelligent system is used for 

deciding these parameters, more healthy and reliable results can be taken from the 

following outlier operations over the correct clusters. For this aim, it is important to 

find the answer of this question: “What are the features of a successful clustering?”  

 

Firstly, a successful clustering operation does not include a lot of clusters. 

Possibly, the number of clusters must be low. However, the limited number of 

clusters has to have unrelated users. In other words, unrelated users do not have to 

be in the same clusters. If there are a lot of clusters, interested users will not be in 

the same cluster and this situation is also an unwanted result. Therefore, optimum 

values of k and threshold numbers must be searched in a balanced. For this aim, an 

error rate formula is used by the system, then k and threshold numbers which give 

the least error rate are preferred. Finally, these parameters are used for the 

clustering. 
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Having low or high number of clusters changes according to the total number of 

users. Therefore, if having a low number is wanted, (the number of clusters / the 

number of users) must be directly proportional to error rate, because this situation 

increases error. If the number of clusters is equal to the number of users, the result 

of this parameter would be “1”; if all users are collected into only one cluster, the 

result of this parameter would be a value near “0”. However, this event is also an 

unwanted clustering result. Therefore, there must be another parameter based on 

similarities of users in the same cluster. Thus, the error rate of this situation with 

single cluster would increase.  

 

If being the users with low similarities in the different clusters is wanted, 

geometric mean according to similarities in the matrix of the all clusters are taken 

one by one and sum of them is taken. After that, for taking arithmetic mean of this 

sum, this sum of geometric means of the clusters is divided by the number of 

clusters. If the result is a great value, it means the most similar users are in the same 

cluster; therefore total geometric means of all clusters / the number of clusters is 

inversely proportional to error rate calculation. If all users are in the different 

clusters, this value would be “1”; if all users are collected into only one cluster, the 

result of this parameter would be a value near “0”. As a result, these two parameters 

must be used together in error rate formula as the following;  

 

Error Rate = (the number of clusters / the number of users) x (the number of 

clusters / the total of geometric means according to the similarities in the matrix of 

all clusters) 

 

In the study, firstly, KNN clustering operation is done for all combinations with 

all k and threshold numbers one by one and then, error rate scores of all 

combinations are calculated by the error rate formula. Finally, according to the aim 

of smaller error rate, the biggest threshold and the smallest k number in the 

combinations which give the smallest error rate are chosen. Thus, with the smallest 

k number, the nearest neighbors are found faster and with the biggest threshold, the 

most similar users are put in the same cluster. In this thought, the biggest threshold 
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and the smallest k number in different combinations which give the equal smallest 

error rate are chosen as the optimum k and threshold numbers for the data set. 

Outlier detection operations would be done over the data set which is clustered by 

KNN algorithm with these optimum values of threshold and k numbers. Thus, for 

outlier requests, the most successful results are obtained. 

 

The following pseudo code takes data set as a matrix, an array for cluster 

numbers like in KNN clustering function, total k and threshold numbers, and then 

returns the best clustering situation for this data set.  

 

Function Find_Optimum_K_Threshold(parameters: quick sorted matrix, 
an array for putting clusters, possible total k number and possible 
total threshold number) 

Build a Struct array for all combinations of threshold and k 
numbers 
For each combination: 

Cluster by KNN(parameters: quick sorted matrix, an array 
for putting clusters, k number of current combination 
and threshold number of current combination)  
For each cluster: 

Calculate error rate score by product similarities 
from quick sorted matrix 
Calculate sum of these scores 

Calculate Geometric Mean of the scores of all clusters 
with cluster numbers as root. 
Calculate the total error rate by (the cluster number / 
the score which calculated by Geometric Mean) x (the 
cluster number / the user number) 

Find the index of the combination array which has the smallest 
error rate and also has the smallest k number and the biggest 
threshold in the combinations which have the same error rate. 
Return the optimum k and threshold numbers 

              

The following Figure 2.1 which prepared in the MATHLAB 7.6 shows error 

rates according to the 120 combinations of 12 k numbers and 10 threshold numbers 

for a part of the data collection of the time intervals for a week and for 29 users.  

 

For threshold from 0.0 to 0.6, error rate parabola shows the same characteristic 

features and the smallest error rate is caught when k is 1 and 2 as about 0.33. For 

threshold values 0.7, 0.8, 0.9, the smallest error rates are 0.4, 0.21 and 0.27 when k 

numbers are 1, 1 and 5 respectively. Thus, it is seen that the optimum k is 5 and the 

optimum threshold number is 0.8. 
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Figure 2.1 Error rates according to the 120 combinations of 12 k numbers and 10 threshold 

numbers for a part of the data collection of the time intervals for a week and for 25 users 

 

The following Figure 2.2 which prepared in the MATHLAB 7.6 shows error 

rates according to the 120 combinations of 12 k numbers and 10 threshold numbers 

for a part of the data collection of the requested IPs for a week and for 25 users;  

 

 
Figure 2.2 Error rates according to the 120 combinations of 12 k numbers and 10 

threshold numbers for a part of the data collection of the requested IPs for a week and for 

25 users 

 

For threshold from 0.0 to 0.3, error rate parabola shows the same characteristic 

features and the smallest error rate is caught when k is 1 and 2 as about 0.73. For 

threshold values 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 the smallest error rates are 0.62, 0.62, 

0.55, 0.60, 0.71 and 0.72 when k numbers are 1, 1, 3, 3, 3, and 3 respectively. Thus, 

it is seen that to be realized the optimum k is 3 and the optimum threshold number 

is 0.6. 
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2.5 Outlier Detection with Double-sided Control Mechanism 

 

When the system constitutes the cluster structures which are created with the 

optimum k and threshold numbers according to the two different data warehouses, 

the spinal of the double-sided control mechanism for outlier detection would be 

obtained. Because controlling operations of the data which will be tested for outlier 

does over the clusters which are created by the KNN. Firstly, while the wireless 

network is being listened, the data which will be tested is collected at regular 

intervals according to both time interval frequencies and requested IPs and then, the 

user data in the new data collection is tested by the following pseudo code. This 

function has a double-sided control mechanism. In other words, this function is 

used for both data collections which contain time interval frequencies or requested 

IPs. 

 

The function takes two parameters as the array which contains the clusters and 

the data which will be tested and returns the usual score for outlier detection as 

percentage. There are two if blocks for two data test types. If the data is numeric, it 

contains the time interval frequencies and function uses the first condition part. 

Then, the client IP is controlled. If this IP does not appear in the system, the usual 

score returns as zero. Else, all users in the cluster where this client IP is in, are 

found and for each user, the similarities between the time interval frequencies in the 

training data and the test data are calculated one by one and these values are added 

together. Finally, the average similarity is calculated and this value is returned as 

the usual score.  

 

If the data is not numeric, it means the data contains the required IPs and 

function uses the second condition part. Then, the client IP is controlled. If this IP 

does not appear in the system, the usual score returns as zero. Else, all users in the 

cluster where this client IP is in are found and the vector space model, of the users 

in this same cluster and the test data for each users, is created together. Then, the 

similarities, between the test data and training data according to the matrix, which 

is formed by the vector space model, by the fraction of Euclidean distance formula, 
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are calculated one by one for each user, and these values are added together. 

Finally, the average similarity is calculated and this value is returned as the usual 

score. 

 

Function Outlier_Detection(parameters: the array which contains the 
clusters, the data which will be tested) 

If the data is numeric Then 
If The client IP in the data which will be tested does 
not appear in the training data warehouse Then Return 0 
Else 

Find the cluster where the client IP is in 
For each user in this cluster: 

Calculate similarities between the test data 
and training data according to the matrix 
which contains time interval frequencies by 
Euclidean distance formula 
Calculate the sum of these similarity values 

Calculate average of the similarities between the 
test data and the training data in this same 
cluster 
Return this average number which shows the usual 
score as percentage 

End If 
Else 

If The client IP in the data which will be tested does 
not appear in the training data warehouse Then Return 0 
Else 

Find the cluster where the client IP is in 
Create the vector space model of the users in this 
same cluster and the test data 
For each user in this cluster: 

Calculate weight similarities between the 
test data and training data according to the 
matrix, which is formed by the vector space 
model, by the fraction of Euclidean distance 
formula 
Calculate the sum of these similarity values 

Calculate weight average of the weight 
similarities between the test data and the 
training data in this same cluster 
Return this average number which shows the usual 
score as percentage 

End If 
End If 

 

2.6 Outlier Detection with Different Priority Weight Values and Tests 

 

The same users are located in different clusters according to the requested IPs 

and time intervals; therefore, testing the requested IPs and time interval data 

warehouses is done one by one. The most important subject of testing operation is 
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to decide threshold number. In other words, deciding if a request is outlier or 

normal for a data must been done according to an optimum threshold number.  

 

At a study of recent date about k-Nearest Neighbor classifier for intrusion 

detection (Liao & Vemuri, 2002), there are two classes as outlier and normal. While 

testing, the k-nearest neighbors are found for new data and the average simulations 

of these neighbors are calculated. According to a certain threshold value and this 

average number, outlier detection is done. However, in this method, while 

calculating the average similarities, the weight values for all similarity values of k 

nearest neighbors are taken is 1; in other words, they have the same priorities. To 

prevent this situation, weight multipliers must be used while calculating the average 

according to the similarity values. These weight multipliers are the similarity values 

in the main matrix between the user who has the new data and the users who have 

the data in the same cluster where the user who has requested this data is. Thus, the 

priorities of the users would not be same. In this study, the following formula is 

used for this aim (Hardy, Littlewood, & Pólya, 1988);  

 

(Sum of the products of Euclidean similarity and weight values) / (Sum of these 

weight values).  

 

In the study of Liao and Vemuri, there is a certain threshold value (Liao & 

Vemuri, 2002). In the tests of data warehouses with time intervals, the results with 

same priorities weight multipliers and a certain threshold value are as very 

successful as the results with different priorities weight multipliers and different 

threshold values. However, in the tests of data warehouses with requested IPs, the 

results with same priorities weight multipliers and a certain threshold value are not 

as successful as the results with different priorities weight multipliers and different 

threshold values. Different threshold values are calculated one by one for each test 

data and according to this value, outlier detection is done. The threshold value in 

the project is taken as the geometric mean of the similarity values in the new matrix 

after the vector space model of the users in the same cluster.  
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In clustering, the similarity matrix in Appendix – C which is for all 86 users in 

the system is used and optimum threshold and k numbers are found, thus five 

clusters are created. Then test operations are done over these clusters. In tests, 

totally 258 known requests (inside domain) and 172 novel requests (out of domain) 

are used. These requests are tested according to both different threshold values with 

different priority weight values and average similarities with different priority 

weight values, and certain 0.5 threshold value (it gives the highest rate for the data 

warehouse) and average similarities with same priority weight values. The known 

requests are tested as three parts and the novel requests are tested as two parts.  

 

Table 2.13 Detection Rates of Known Requests as Normal and Anomaly According to Different 

Threshold Values with Different Priority Weight Values and Average Similarities with Different 

Priority Weight Values. Also, False Negative and False Positive Rate According to this method.  

Tests 
Tot. 
Kno. 
Req. 

Tot. 
Kno. 
Ano. 
Req. 

Tot. 
Det. 
Ano. 
Req. 

Ano. 
Det. 
Rate 
(%) 

Fal. 
Neg. 
Rate 
(%) 

Tot. 
Kno. 
Nor. 
Req. 

Tot. 
Det. 
Nor. 
Req. 

Nor. 
Det. 
Rate 
(%) 

Fal. 
Pos. 
Rate 
(%) 

Tot. 
Det. 
Rate 
(%) 

1. 86 75 75 100.00 0.00 11 10 90.91 9.09 98.94 
2. 86 66 66 100.00 0.00 20 20 100.00 0.00 100.00 
3. 86 83 83 100.00 0.00 03 03 100.00 0.00 100.00 

Total 258 224 224 100.00 0.00 34 33 97.06 2.94 99.61 
(Tot. : Total, Kno. : Known, Ano. : Anomaly, Req. : Request, Det. : Detection, Nor. : Normal, Fal. : 

False, Neg. : Negative, Pos. : Positive) 

(Total Detection Rate gives weighted mean according to normal and anomaly detections)  

 

Table 2.14 Detection Rates of Known Requests as Normal and Anomaly According to 0.5 Threshold 

Value and Average Similarities with Same Priority Weight Values. Also, False Negative and False 

Positive Rate According to this method.  

Tests 
Tot. 
Kno. 
Req. 

Tot. 
Kno. 
Ano. 
Req. 

Tot. 
Det. 
Ano. 
Req. 

Ano. 
Det. 
Rate 
(%) 

Fal. 
Neg. 
Rate 
(%) 

Tot. 
Kno. 
Nor. 
Req. 

Tot. 
Det. 
Nor. 
Req. 

Nor. 
Det. 
Rate 
(%) 

Fal. 
Pos. 
Rate 
(%) 

Tot. 
Det. 
Rate 
(%) 

1. 86 75 59 78.67 21.33 11 11 100.00 0.00 81.40 
2. 86 66 66 100.00 0.00 20 16 80.00 20.00 95.35 
3. 86 83 83 100.00 0.00 03 03 100.00 0.00 100.00 

Total 258 224 208 92.90 7.10 34 30 88.24 11.76 92.25 
(Tot. : Total, Kno. : Known, Ano. : Anomaly, Req. : Request, Det. : Detection, Nor. : Normal, Fal. : 

False, Neg. : Negative, Pos. : Positive) 

 (Total Detection Rate gives weighted mean according to normal and anomaly detections)  
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The Table 2.13 shows for detection rates of known requests as normal and 

anomaly according to the different threshold values with different priority weight 

values and average similarities with different priority weight values are obtained 

with total detection rate as 99.61%. Also, the Table 2.14 shows again that very 

successful results, for detection rates of known requests as normal and anomaly 

according to 0.5 threshold value and average similarities with same priority weight 

values, are obtained with total detection rate as 92.25%.  

 

There is not a great difference between two results which come from these two 

methods at separation of known requests as normal and anomaly; however, there is 

a great difference between the results of tests of novel requests which come from 

the first method, which has different threshold values with different priority weight 

values and average similarities with different priority weight values, and the second 

method, which has 0.5 threshold value and average similarities with same priority 

weight values.  

 

If the Table 2.15 for the first method and the Table 2.16 for the second method 

are compared, it is realized that at anomaly detection, these two methods are 

successful with results as 87.21% and 91.86%; however, at normal detection, the 

second method, with 0.5 threshold value and average similarities with same priority 

weight values, is has a success rate of 37.21%.  

 

The first method is again stabilized at detection rate with 80.23% for normal 

detection. As a result, the method, which has different threshold values with 

different priority weight values and average similarities with different priority 

weight values, is stabilizer with high rate scores at all departments than the second 

method, which has 0.5 threshold value and average similarities with same priority 

weight values. 
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Table 2.15 Detection Rates of Novel Requests as Normal and Anomaly According to Different 

Threshold Values with Different Priority Weight Values and Average Similarities with Different 

Priority Weight Values. Also, False Negative and False Positive Rate According to this method.  

 
 

Tests 

Tot. 
Kno. 
Req. 

Tot. 
Kno. 
Ano. 
Req. 

Tot. 
Det. 
Ano. 
Req. 

Ano. 
Det. 
Rate 
(%) 

Fal. 
Neg. 
Rate 
(%) 

Tot. 
Kno. 
Nor. 
Req. 

Tot. 
Det. 
Nor. 
Req. 

Nor. 
Det. 
Rate 
(%) 

Fal. 
Pos. 
Rate 
(%) 

Tot. 
Det. 
Rate 
(%) 

1. 86 43 35 81.40 21.33 43 34 79.07 0.00 80.23 
2. 86 43 40 93.02 0.00 43 35 81.40 20.00 87.21 

Total 172 86 75 87.21 7.10 86 68 80.23 11.76 83.72 
(Tot. : Total, Nov. : Novel, Ano. : Anomaly, Req. : Request, Det. : Detection, Nor. : Normal, Fal. : 

False, Neg. : Negative, Pos. : Positive) 

(Total Detection Rate gives weighted mean according to normal and anomaly detections)  

 

Table 2.16 Detection Rates of Novel Requests as Normal and Anomaly According to 0.5 Threshold 

Value and Average Similarities with Same Priority Weight Values. Also, False Negative and False 

Positive Rate According to this method.  

Tests 
Tot. 
Kno. 
Req. 

Tot. 
Kno. 
Ano. 
Req. 

Tot. 
Det. 
Ano. 
Req. 

Ano. 
Det. 
Rate 
(%) 

Fal. 
Neg. 
Rate 
(%) 

Tot. 
Kno. 
Nor. 
Req. 

Tot. 
Det. 
Nor. 
Req. 

Nor. 
Det. 
Rate 
(%) 

Fal. 
Pos. 
Rate 
(%) 

Tot. 
Det. 
Rate 
(%) 

1. 86 43 39 90.70 9.30 43 14 32.56 67.44 61.63 
2. 86 43 40 93.02 6.98 43 18 41.86 58.14 67.44 

Total 172 86 79 91.86 8.14 86 32 37.21 62.79 64.53 
(Tot. : Total, Nov. : Novel, Ano. : Anomaly, Req. : Request, Det. : Detection, Nor. : Normal, Fal. : 

False, Neg. : Negative, Pos. : Positive) 

(Total Detection Rate gives weighted mean according to normal and anomaly detections)  

 

In Appendix – A and Appendix – B, the lists of results which give the Table 

2.15 and the Table 2.16 is located, because the most blatant difference is shown 

there. In Appendix – A, bold results shows anomaly; the others are normal for 

novel requests according to different threshold values with different priority weight 

values and average similarities with different priority weight values. There are 86 

anomaly requests and 86 normal requests; this successful method finds 75 anomaly 

requests and only 69 normal requests. In Appendix – B, bold results are normal; the 

others are anomaly for novel requests according to 0.5 threshold value and average 

similarities with same priority weight values. There are 86 anomaly requests and 86 

normal requests; however, this method finds 79 anomaly requests and only 32 

normal requests. 
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In the other statistical results; the total detection rate of known and novel request 

detection for the first method at anomaly detection is 96.45% (224 + 75 / 224 + 86) 

and false negative rate is 3.55%; however, the result for the second method at 

anomaly detection is 92.58% (208 + 79 / 224 + 86) and false negative rate is 7.42%.  

 

The total detection rate of known and novel request detection for the first 

method at normal detection is 85.00% (33 + 69 / 34 + 86) and false positive rate is 

15.00%; however, the result for the second method at normal detection is 51.67% 

(30 + 32 / 34 + 86) and false positive rate is 48.33%.  

 

Finally, the total detection rate for the first method, at both anomaly and normal 

detection, is 93.26% (257 + 144 / 258 + 172); however, the result for the second 

method, at both anomaly and normal detection, is 81.16% (238 + 111 / 258 + 172). 

The results of false negative and false positive rates at the first method are also 

more successful than the results at the second method. 

 

At outlier detection with time interval data warehouse, the false positive and 

false negative rates change between 0.0% and 1.0%. At a recent study “Intrusion 

detection using text processing techniques with a binary-weighted cosine metric” 

(Rawat, Gulati, Pujari & Vemuri, 2006), the false positive rates are dissected 

without false negative rates. These results are between 0.0% and 1.0%.   

 

At outlier detection with requested IPs data warehouse, the false positive and 

false negative rates change between 0.0% and 15.0%.  In “The k nearest neighbor 

algorithm predicted rehabilitation potential better than current Clinical Assessment 

Protocol” (Zhu, Chen, Hirdes & Stolee, 2007), the false positive rates are dissected 

without false negative rates. The false positive rate finds minimum 24% according 

to the anomaly results with KNN classification method. As a result, outlier 

detection with the KNN clustering is more successful than KNN classification.  
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CHAPTER THREE 

THE FEATURES OF THE DETECTION SYSTEM WITH INTERFACES 

 

3.1 Detection System Step by Step 

 

The detection system is created at the Microsoft.NET platform and it is written 

with C# programming language because, the requirements of the detection system 

are a useful interface, dynamic file operation comments and a systematic code 

batch and these platform and programming language supply all requirements. When 

this system starts the training operation, it firstly needs a data collection in a text 

file and the type of the data collection is not necessary, because the system can 

separate the types, requested IPs as string or time intervals as numeric, 

automatically. At background, the all operations are done according to this type 

orderly. The following Figure 3.1 shows the start screen of this detection system 

and firstly, it needs a data collection to calculate the similarity matrix by the 

pushing the `CALCULATE SIMULATION` button.  

 

 
Figure 3.1 The screen shot picture of the start window of the 

detection system 
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3.1.1 Calculation of Similarity Matrix 

 

 
Figure 3.2 The screen shot picture of the file browsing for calculating the simulation matrix 

 

The Figure 3.2 shows the file browsing screen for calculating the simulation 

matrix after pushing the `CALCULATE SIMULATION` button. After choosing a 

text file, according to the type of the data in the selected text file, Euclidean 

formula or only the fraction of the Euclidean formula ( ∑ (Xi * Yi) ) is used to 

create the simulation matrix which is the data warehouse of the clustering system. 

The following Figure 3.3 shows the requested IP address data collection in the text 

file. In this file, each line puts requested IPs for a user and these IP addresses are 

separated by a space character. The system reads all lines one by one and makes a 

word analysis. Finally, a dictionary, which uses to help for the simulation matrix, is 

created like the following Figure 3.4. 
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Figure 3.3 The screen shot picture of the data collection of the requested IPs 

 

 
Figure 3.4 The screen shot picture of the created dictionary according to the data collection 

 

This dictionary puts a requested IP on each line and then, the count of this IP 

address comes as separated by a space character. After this data, the ids of the users 

who request this IP address orderly, according to their frequencies. Firstly, the 

vector space model weight values are prepared according to the frequencies in this 

dictionary, and finally, similarity matrix is created by the fraction of the Euclidean 

formula ( ∑ (Xi * Yi) ). 
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The following Figure 3.5 shows a part of  the output of the simulation matrix, and 

the helper `prev. ` and `next` buttons supply passes to similarity data of the other 

users. This Figure 3.5 also shows other necessary buttons for the clustering operation 

as k and threshold numbers dropdown lists, and k-nearest neighbor and the button 

which gives the best clustering result by a statistical analysis, error rate calculations 

without choosing any k and threshold numbers. 

 

 
Figure 3.5 The screen shot picture of the detection system after similarity calculation has finished, 

and it shows a part of the similarity matrix 

 

The following Figure 3.6 shows the situations by pushing the ‘next’ button three 

times and the three part of the simulation matrix which contains similarity data for 

three users. 
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Figure 3.6 The situations by pushing the ‘next’ button three times 

 

3.1.2 Clustering Operation and Finding Best 

 

The following Figure 3.7 shows a clustering result where k number is 1 and 

threshold number is 0.01 according to using the simulation matrix which has passed 

the vector space model. The feature of this clustering result is the basic model of 

the k- nearest neighbor algorithm, because only one neighbor is controlled with 

minimum threshold number. According to this result, over ten clusters are created 

and users can not be located healthy, because with these basic k and threshold 

parameters, k- nearest neighbor algorithm cannot be caught all common features 

between the users and the similar characteristic users can be located in the different 

clusters. For this aim, k number must be increased, threshold number must be 

increased or both of them must be increased; however, which one and how much? 
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Figure 3.7 The clusters with k number as 1 and threshold number as 0.01 

 

If only k number is increased for the most successful clustering result, it can be 

thought that a better clustering result would come. However, it is seen that there is 

again a bad cluster model with only two clusters, because it is not wanted that 86 

users are in only two clusters for healthy outlier detection operations. The first 

cluster has 83 users and the second cluster has only 3 users. It is seen that again 

there is not a successful separation. Therefore, it can be tested with other ways that 

only threshold number is increased or both k number and threshold number are 

increased.  

 

The following Figure 3.8 shows these clusters according to k number as 27 and 

threshold number as 0.01 again. 
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Figure 3.8 The clusters with k number as 27 and threshold number as 0.01 

 

If only threshold number is increased for the most successful clustering result, it 

can be thought again that a better clustering result would come. However, it is seen 

that there is again a bad cluster model with over 30 clusters, because it is not 

wanted that 86 users are in 30 clusters for healthy outlier detection operations. 

Averagely, there are three users in each cluster. However, the most of these clusters 

has only one user and it is seen that again there is not a successful separation. 

Therefore, the last way can be tested as both k number and threshold number are 

increased.  

 

The following Figure 3.9 shows these clusters according to k number as 1 and 

threshold number as 0.8 again. 
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Figure 3.9 The clusters with k number as 1 and threshold number as 0.8 

 

For the most successful clustering model, optimum k and threshold numbers 

must be caught, because flexible k-nearest neighbor algorithm with optimum k and 

threshold numbers find the all common features between users and according to 

them, the clustering model is implemented.  

 

It is calculated that how many k number and threshold number must be increased 

by using methods in “2.4 Finding Optimum K and Threshold Numbers” in Chapter 

Two. According to these methods, optimum k number is found as 27 and optimum 

threshold number is found as 0.05. By these optimum parameters, k-nearest 

neighbor creates five clusters and the first cluster has 12 users, the second cluster 

has 42 users, the third cluster has 10 users, the fourth cluster has 19 users and the 

fifth cluster has 3 users. 
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The following Figure 3.10 shows these clusters according to optimum k number 

as 27 and optimum threshold number as 0.05. 

 

 
Figure 3.10 The clusters with optimum k number as 27 and optimum threshold number as 0.05 

 

3.1.3 Outlier Detection 

 

After finding the most successful clustering model, training operation is finished 

and the test operations can be started over this clustering model. For this aim, if 

‘OUTLIER DETECTION’ button is pushed, a file browsing window comes and a 

text file which contains the test data must be selected. There is not a necessity for 

data type separation alternatively, because outlier detection part of the system has 

an automatic separation of the data collection of requested IPs from the data 
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collection of time interval. Therefore, only, the text file which contains the test 

requested IPs is selected from the file browsing like the following figure 3.11.    

 

 
Figure 3.11 The screen shot picture of the file browsing for outlier detection 

operations 

 

If a text file which contains two test data for a user as one of them is a normal 

behavior and other one is an anomaly behavior is selected, the following result 

outputs in the Figure 3.12 are found. 

 

For outlier detection, the methods in “2.6 Outlier Detection with Different 

Priority Weight Values and Tests” in Chapter Two are used. According to these 

methods, different thresholds are found for these two test data as 0.0174 and 

0.2518. The first test data needs a threshold value which is less than 0.3206 and it 

has a threshold value as 0.0174; thus, it is found as a normal behavior. The second 

test data needs a threshold value which is less than 0.1284 threshold value; 

however, it has a threshold value as 0.2518. Therefore, it is categorized as an 

anomaly behavior. 



39 

 

 

 

 
Figure 3.12 The outlier detection results for two test data of a user as one of them is a normal 

behavior and other one is an anomaly behavior.  

 

3.2 Helper Documents of the Detection System 

 

The detection system needs some helper and result documents to show the 

system administrator for success degree of the outlier detection operations and the 

other operations before it. Firstly, after the text file is selected by the system 

administrator for training operation, the detection system creates directory which 

has the same name with the training text file to create a batch for all documents. 

 

The following Figure 3.13 shows the directory which has the same name with 

the training text file of which name is “urls.txt” as “urls”. It is created while 

simulation matrix is calculating at the beginning of the operations.  
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Figure 3.13 The batch directory, of helper and result, of which name is “urls” 

 

The following Figure 3.14 shows the inside of the main batch directory. There 

are another three directories for clusters, matrices and some statistical results in this 

directory. Also, there are some files for help; for example, “dictionary.txt” is 

created and used by the vector space model before calculating the simulation 

matrix. Other files are used for finding optimum k number and threshold numbers 

and they put error rates. These files are created while finding the best clustering 

model operation. 

 

 
Figure 3.14 The inside of the batch directory 

 

The following Figure 3.15 shows the minimum error rate which is given by 

optimum k number and optimum threshold number as 0.3517. The optimum 

threshold is 0.05, because “the error_rate4.txt” has this value. (error_rate.txt for 

0.01, error_rate1.txt for 0.02, error_rate2.txt for 0.03, error_rate3.txt for 0.04, 

error_rate4.txt for 0.05, …). The optimum k number is 27, because the 27th line has 
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this 0.3517; thus, it can be said that the files are created according to threshold 

numbers and k number is based on the line number. 

 

 
Figure 3.15 The minimum error rate, 0.3517 is on the 27th line in the 

“error_rate4.txt” file 

 

The following Figure 3.16 shows the inside of the cluster directory in the main 

batch directory, “urls”. This directory puts the all tested cluster combinations by the 

system administrator. Also, there is the file of which name is “27_0.05.txt”, it puts 

the best cluster model with optimum k number and optimum threshold number. 

 

 
Figure 3.16 The inside of the cluster directory 

 

The following Figure 3.17 shows the users in five clusters at the best cluster 

model according to optimum k number as 27 and threshold number as 0.05. By 

these result files, the system does not work for the same requests again and again.  
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Figure 3.17 The best clustering model for the training data with 

optimum parameters 

 

Another directory is for matrices in the main batch directory. In this matrices 

directory, there are text files which contain all similarity values between all users. 

They are separated by user names of themselves in text files of themselves. They 

are created one by one when the system administrator pushes the next button not to 

lose the speed of the detection system. 

 

The following Figure 3.18 shows the list of text files which, all users have one 

by one, in the matrices directory. 
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Figure 3.18 The matrices, which have the similarity values between the users, in text files. 

 

The following Figure 3.19 similarity values in “matrix_*.5.txt” file. 

 

 
Figure 3.19 The similarity values between user *.5 and the 

other users 
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The following Figure 3.20 shows the text files in the statistics results directory. 

Each text file contains the data about only one clustering model with k number and 

threshold names.  

 

 
Figure 3.20 The inside of the statistics results directory. 

 

The following text file shows the statistical results for the best clustering model. 

The first result is about count of users in the clusters, the second result is about 

minimum and maximum values of each attribute one by one and the third result is 

about average values of each attribute one by one in the clusters. These results can 

help the system administrator about the users in the clusters. 

 

 
Figure 3.21 The statistical result text of the best clustering model which has 

k number as 27 and threshold number as 0.05.
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CHAPTER FOUR 

CONCLUSION 

 

Wireless network structure is open to attacks and unwanted listens. To prevent 

this negative situation, security of wireless network wins alternative approaches 

through this study. By the double-sided control mechanism in the system, the 

security becomes stronger. Since this study has double-sided control mechanism, 

alternative approaches are able to make rich with addition of new control 

mechanism and qualities of the security is able to be increased.  

 

By finding optimum parameters of the k-Nearest Neighbor, result of the 

clustering operation becomes more reliable. By the using vector space model of text 

mining technique over requested IP addresses, affinities between users are caught 

and using the matrix after text mining technique supplies more healthy results for 

clustering. 

 

Finally, at detection cycle it is realized that usage of different threshold values 

with different priority weight values and average similarities with different priority 

weight values supplies more successful results for both anomaly and normal 

detections than usage of certain threshold value and average similarities with same 

priority weight values. 
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APPENDIX – A – SUCCESSFUL DETECTION RESULTS 

 

thr. : Threshold 

 

*.5 is NORMAL(thr: 0.0174539876310061) - 0.320645163316621 

*.5 is ANOMALY(thr: 0.251867020990959) - 0.128404688908745 

*.6 is NORMAL(thr: 0.178087306634871) - 0.313216712316617 

*.6 is ANOMALY(thr: 0.154167328328825) - 0.0934315659242721 

*.7 is NORMAL(thr: 0.0951219693095421) - 0.2708668018256 

*.7 is NORMAL(thr: 0.0685634539218164) - 0.129409382997259 

*.8 is NORMAL(thr: 0.301801409497693) - 0.66129941437706 

*.8 is ANOMALY(thr: 0.354862557919018) - 0.246677147263121 

*.9 is NORMAL(thr: 0.315005309929128) - 0.681293339430643 

*.9 is ANOMALY(thr: 0.0440402169816955) - 0.0197033665301373 

*.10 is NORMAL(thr: 0.613925469118261) - 0.921424366565332 

*.10 is ANOMALY(thr: 0.366472398365181) - 0.336366292495017 

*.12 is NORMAL(thr: 0.0814901900579828) - 0.208648304946105 

*.12 is NORMAL(thr: 0.0927479406296448) - 0.115874317769778 

*.17 is NORMAL(thr: 0.907742325894268) - 0.947044816147944 

*.17 is ANOMALY(thr: 0.702185166057215) - 0.486744477654964 

*.21 is NORMAL(thr: 0.246794252986409) - 0.432947743983527 

*.21 is NORMAL(thr: 0.294035312567355) - 0.394258625859193 

*.23 is ANOMALY(thr: 0.608637814115545) - 0.506461225749875 

*.23 is ANOMALY(thr: 0.0811959375285695) - 0.0081280608293042 

*.31 is ANOMALY(thr: 0.518474440079229) - 0.367337671648685 

*.31 is ANOMALY(thr: 0.0673515927632015) - 0.0200339814155767 

*.44 is NORMAL(thr: 0.681465218559858) - 0.684864405615794 

*.44 is ANOMALY(thr: 0.120556044613524) - 0.0212571402359513 

*.55 is ANOMALY(thr: 0.634214339161199) - 0.513688388724436 

*.55 is ANOMALY(thr: 0.101554055507189) - 0.0188298831016237 

*.60 is NORMAL(thr: 0.589419262349225) - 0.758547891220146 

*.60 is ANOMALY(thr: 0.0825847640913439) - 0.0178574307176566 

*.65 is NORMAL(thr: 0.633177624670738) - 0.751353226159711 

*.65 is ANOMALY(thr: 0.0232991690779179) - 0.00190230635122121 

*.70 is NORMAL(thr: 0.214702328268745) - 0.296053187863501 

*.70 is ANOMALY(thr: 0.188317670611577) - 0.169943489205068 

*.71 is NORMAL(thr: 0.172409188596559) - 0.293314183382469 

*.71 is NORMAL(thr: 0.127777548235569) - 0.152604204906604 
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*.72 is ANOMALY(thr: 0.629961508351832) - 0.355070518945137 

*.72 is ANOMALY(thr: 0.624915775225511) - 0.119756893129721 

*.75 is NORMAL(thr: 0.384030561233623) - 0.669467959885096 

*.75 is ANOMALY(thr: 0.0691826036042367) - 0.0568367130219497 

*.76 is NORMAL(thr: 0.254709296189228) - 0.270171099028209 

*.76 is ANOMALY(thr: 0.220168146778566) - 0.118001589579742 

*.77 is NORMAL(thr: 0.160189215392312) - 0.532436689203186 

*.77 is ANOMALY(thr: 0.163450363023811) - 0.139016504261692 

*.78 is NORMAL(thr: 0.196270743681552) - 0.324634964359118 

*.78 is ANOMALY(thr: 0.166163270035487) - 0.144747856015689 

*.80 is NORMAL(thr: 0.49986127893108) - 0.735644812107502 

*.80 is NORMAL(thr: 0.0164490977429136) - 0.036164412240085 

*.81 is NORMAL(thr: 0.38110987489299) - 0.754120819270207 

*.81 is ANOMALY(thr: 0.0431630847373719) - 0.0299909729454826 

*.82 is NORMAL(thr: 0.236505048645253) - 0.375161257406807 

*.82 is ANOMALY(thr: 0.198652010273107) - 0.143311798264038 

*.88 is NORMAL(thr: 0.650620710546959) - 0.735644386688435 

*.88 is ANOMALY(thr: 0.0992360712795061) - 0.0170786700328457 

*.97 is ANOMALY(thr: 0.214903872704277) - 0.140851541223845 

*.97 is ANOMALY(thr: 0.188360359444595) - 0.114321754531346 

*.100 is NORMAL(thr: 0.232687376000712) - 0.346563629922971 

*.100 is ANOMALY(thr: 0.210400844584999) - 0.122291780112049 

*.101 is NORMAL(thr: 0.424500418096354) - 0.768694650250286 

*.101 is ANOMALY(thr: 0.429106709982328) - 0.311238832071129 

*.107 is NORMAL(thr: 0.264854693332223) - 0.284343523718588 

*.107 is ANOMALY(thr: 0.240643666936126) - 0.0987677750820094 

*.108 is NORMAL(thr: 0.222971860786154) - 0.508581150852146 

*.108 is ANOMALY(thr: 0.201447486747356) - 0.0958911054034624 

*.109 is NORMAL(thr: 0.180649890488879) - 0.291600036421428 

*.109 is ANOMALY(thr: 0.164418327938933) - 0.0988741144855837 

*.110 is NORMAL(thr: 0.142756494815922) - 0.329925218904045 

*.110 is ANOMALY(thr: 0.14344156063551) - 0.1176936886036 

*.111 is NORMAL(thr: 0.147667662392176) - 0.312951397030809 

*.111 is ANOMALY(thr: 0.0531711908369291) - 0.0158336534601314 

*.112 is NORMAL(thr: 0.254784258493604) - 0.38044446038306 

*.112 is ANOMALY(thr: 0.188945099461533) - 0.0639967255696205 

*.113 is ANOMALY(thr: 0.431989056899738) - 0.298021727092472 

*.113 is ANOMALY(thr: 0.474065438414675) - 0.340017964403189 

*.115 is NORMAL(thr: 0.248010202971948) - 0.51577083371107 
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*.115 is ANOMALY(thr: 0.22027392206506) - 0.153548308828189 

*.116 is NORMAL(thr: 0.273474418015094) - 0.284583606178349 

*.116 is ANOMALY(thr: 0.246973108279018) - 0.157437095069628 

*.118 is NORMAL(thr: 0.295098358317359) - 0.508168421933403 

*.118 is ANOMALY(thr: 0.265339508584952) - 0.101373282561061 

*.119 is ANOMALY(thr: 0.288641666759101) - 0.127679655554813 

*.119 is ANOMALY(thr: 0.260014044708767) - 0.100328614620453 

*.121 is NORMAL(thr: 0.152135330733784) - 0.497030540222516 

*.121 is NORMAL(thr: 0.205744933036635) - 0.306593514962913 

*.122 is NORMAL(thr: 0.229012899029502) - 0.291005628812522 

*.122 is ANOMALY(thr: 0.470311405637917) - 0.304724946165324 

*.124 is NORMAL(thr: 0.281960567695279) - 0.496125506416575 

*.124 is ANOMALY(thr: 0.255017277976781) - 0.101142108309284 

*.128 is NORMAL(thr: 0.284645434986167) - 0.494694949799823 

*.128 is ANOMALY(thr: 0.257984859676594) - 0.103207002638787 

*.130 is NORMAL(thr: 0.280355850487769) - 0.29156390397268 

*.130 is ANOMALY(thr: 0.254369136239089) - 0.100341778277399 

*.131 is ANOMALY(thr: 0.281923976743472) - 0.201114053199308 

*.131 is ANOMALY(thr: 0.256339574024806) - 0.100452354247166 

*.132 is ANOMALY(thr: 0.260501199627124) - 0.0983317542116922 

*.132 is ANOMALY(thr: 0.260427859287834) - 0.100860042750309 

*.133 is NORMAL(thr: 0.936143087773431) - 0.953602283515172 

*.133 is ANOMALY(thr: 0.838140803522518) - 0.475933552358016 

*.134 is NORMAL(thr: 0.221070201520423) - 0.398452527558239 

*.134 is ANOMALY(thr: 0.19829648657914) - 0.117293329553321 

*.135 is NORMAL(thr: 0.130179727365923) - 0.319435977655002 

*.135 is NORMAL(thr: 0.120677176697595) - 0.311504268390445 

*.136 is ANOMALY(thr: 0.0537234019331723) - 0.0247953843258046 

*.136 is ANOMALY(thr: 0.351289225902095) - 0.145611967182981 

*.137 is NORMAL(thr: 0.261508935824303) - 0.289565768179563 

*.137 is ANOMALY(thr: 0.223259802271019) - 0.129147802218908 

*.146 is NORMAL(thr: 0.942450461670521) - 0.959973540286527 

*.146 is ANOMALY(thr: 0.757255659466323) - 0.737163118349255 

*.155 is NORMAL(thr: 0.123915782196917) - 0.279586155552114 

*.155 is NORMAL(thr: 0.114334386842768) - 0.33341089218547 

*.166 is NORMAL(thr: 0.269428652283968) - 0.321768752775081 

*.166 is NORMAL(thr: 0.191902581829393) - 0.358422067280698 

*.167 is NORMAL(thr: 0.251332329232396) - 0.288707589285203 

*.167 is ANOMALY(thr: 0.22793614797542) - 0.125724873587602 
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*.168 is NORMAL(thr: 0.937673586398542) - 0.95612400305492 

*.168 is ANOMALY(thr: 0.690456603675436) - 0.333629294094135 

*.169 is NORMAL(thr: 0.860598261191014) - 0.956549784982519 

*.169 is ANOMALY(thr: 0.614806801036321) - 0.471120573646276 

*.200 is NORMAL(thr: 0.94328537910987) - 0.960056718189338 

*.200 is ANOMALY(thr: 0.838335948587577) - 0.475846597171483 

*.201 is NORMAL(thr: 0.942142379521384) - 0.958755225438353 

*.201 is ANOMALY(thr: 0.831855973907671) - 0.460759347342136 

*.202 is NORMAL(thr: 0.938917059746662) - 0.956589924003249 

*.202 is NORMAL(thr: 0.7185530279618) - 0.88423332972837 

*.203 is NORMAL(thr: 0.938902549323824) - 0.956470683071924 

*.203 is ANOMALY(thr: 0.819911585927899) - 0.580573573532509 

*.204 is NORMAL(thr: 0.923604427988136) - 0.937695261070639 

*.204 is ANOMALY(thr: 0.769436067970379) - 0.305893040706952 

*.205 is NORMAL(thr: 0.633857396187521) - 0.753891989304637 

*.205 is ANOMALY(thr: 0.0234765796589782) - 0.0153019349786722 

*.210 is NORMAL(thr: 0.632614745562523) - 0.785338742062525 

*.210 is ANOMALY(thr: 0.0300421651906819) - 0.0263304161471247 

*.211 is NORMAL(thr: 0.068798108358131) - 0.282726683339918 

*.211 is ANOMALY(thr: 0.222954120309439) - 0.202682481160767 

*.212 is NORMAL(thr: 0.864690731184075) - 0.94715521820714 

*.212 is ANOMALY(thr: 0.68978080347525) - 0.534047942747964 

*.213 is NORMAL(thr: 0.228737863454696) - 0.351952051995535 

*.213 is ANOMALY(thr: 0.187961041192371) - 0.125840138507866 

*.214 is NORMAL(thr: 0.676148461626309) - 0.815363474176345 

*.214 is ANOMALY(thr: 0.115062520882393) - 0.0139455170845341 

*.215 is NORMAL(thr: 0.42615095965873) - 0.753944362300561 

*.215 is ANOMALY(thr: 0.108123484208427) - 0.0595037869808585 

*.219 is NORMAL(thr: 0.675978549489025) - 0.813047249332665 

*.219 is ANOMALY(thr: 0.114315355394946) - 0.0257230955347923 

*.220 is ANOMALY(thr: 1) - 0.976712724602781 

*.220 is ANOMALY(thr: 1) - 0.530874539033495 

*.221 is NORMAL(thr: 0.675464249522484) - 0.803949136215031 

*.221 is ANOMALY(thr: 0.114414964473389) - 0.0267950411808146 

*.231 is ANOMALY(thr: 0.2360907460935) - 0.198781701932882 

*.231 is ANOMALY(thr: 0.234048035713376) - 0.118810988253882 

*.232 is ANOMALY(thr: 0.289222582104029) - 0.264945030184761 

*.232 is ANOMALY(thr: 0.243892445508138) - 0.119221492080451 

*.233 is NORMAL(thr: 0.245219423739764) - 0.392234831051345 
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*.233 is ANOMALY(thr: 0.100395837661135) - 0.0497636027440996 

*.234 is NORMAL(thr: 0.675490122312838) - 0.803953887662313 

*.234 is ANOMALY(thr: 0.111797494150226) - 0.0299916187028773 

*.236 is NORMAL(thr: 0.195696489811131) - 0.331560804230888 

*.236 is ANOMALY(thr: 0.0339848291251399) - 0.0104924513195296 

*.237 is ANOMALY(thr: 1) - 0.68857872363584 

*.237 is ANOMALY(thr: 1) - 0.537669556388652 

*.238 is ANOMALY(thr: 1) - 0.62114249671771 

*.238 is ANOMALY(thr: 1) - 0.504692784227788 

*.243 is NORMAL(thr: 0.187032702204068) - 0.270578400338606 

*.243 is ANOMALY(thr: 0.141746013900572) - 0.104815534852924 

*.244 is ANOMALY(thr: 0.220484120870532) - 0.195762010998394 

*.244 is ANOMALY(thr: 0.181825843536497) - 0.0746914858381315 

*.245 is NORMAL(thr: 0.152771942367934) - 0.322997890774658 

*.245 is NORMAL(thr: 0.116703311965483) - 0.142406153554754 

*.246 is NORMAL(thr: 0.269962780593554) - 0.383230277414616 

*.246 is ANOMALY(thr: 0.180417579342957) - 0.137169133644374 

*.247 is NORMAL(thr: 0.365979044550393) - 0.394125342667213 

*.247 is ANOMALY(thr: 0.317038417864988) - 0.119865957707938 

*.248 is ANOMALY(thr: 0.312201456488815) - 0.153477742121749 

*.248 is ANOMALY(thr: 0.281258235495905) - 0.171399221143072 
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APPENDIX – B – UNSUCCESSFUL DETECTION RESULTS 

 

thr. : Threshold 

 

*.5 is ANOMALY(thr: 0.5) - 0.171470647379749 

*.5 is ANOMALY(thr: 0.5) - 0.213101209801905 

*.6 is ANOMALY(thr: 0.5) - 0.305062498605695 

*.6 is ANOMALY(thr: 0.5) - 0.0959895286504971 

*.7 is ANOMALY(thr: 0.5) - 0.289926084904487 

*.7 is ANOMALY(thr: 0.5) - 0.136902724005225 

*.8 is ANOMALY(thr: 0.5) - 0.46129941437706 

*.8 is ANOMALY(thr: 0.5) - 0.246677147263121 

*.9 is NORMAL(thr: 0.5) - 0.683868608721973 

*.9 is ANOMALY(thr: 0.5) - 0.0123259763389757 

*.10 is NORMAL(thr: 0.5) - 0.921424366565332 

*.10 is ANOMALY(thr: 0.5) - 0.336366292495017 

                 *.12 is ANOMALY(thr: 0.5) - 0.384104092622285 

*.12 is ANOMALY(thr: 0.5) - 0.166261189816057 

*.17 is NORMAL(thr: 0.5) - 0.933802475872431 

*.17 is ANOMALY(thr: 0.5) - 0.468019970945066 

*.21 is ANOMALY(thr: 0.5) - 0.457067255669553 

*.21 is ANOMALY(thr: 0.5) - 0.387015889120814 

*.23 is ANOMALY(thr: 0.5) - 0.492683914117836 

*.23 is ANOMALY(thr: 0.5) - 0.0173440234518752 

*.31 is ANOMALY(thr: 0.5) - 0.35216418960316 

*.31 is ANOMALY(thr: 0.5) - 0.0187891239703106 

*.44 is NORMAL(thr: 0.5) - 0.645098554669689 

*.44 is ANOMALY(thr: 0.5) - 0.0290199440238984 

*.55 is ANOMALY(thr: 0.5) - 0.473888532381814 

*.55 is ANOMALY(thr: 0.5) - 0.0095136446564558 

*.60 is NORMAL(thr: 0.5) - 0.683296788395238 

*.60 is ANOMALY(thr: 0.5) - 0.0195785953042634 

*.65 is NORMAL(thr: 0.5) - 0.680785856582601 

*.65 is ANOMALY(thr: 0.5) - 0.00474646304265661 

*.70 is ANOMALY(thr: 0.5) - 0.276071703398169 

*.70 is ANOMALY(thr: 0.5) - 0.157405750640582 

*.71 is ANOMALY(thr: 0.5) - 0.276926334232575 

*.71 is ANOMALY(thr: 0.5) - 0.155183888165214 
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*.72 is ANOMALY(thr: 0.5) - 0.341160553063658 

*.72 is ANOMALY(thr: 0.5) - 0.113991383057866 

*.75 is NORMAL(thr: 0.5) - 0.644394975611165 

*.75 is ANOMALY(thr: 0.5) - 0.0306637193496548 

*.76 is ANOMALY(thr: 0.5) - 0.247056941896036 

*.76 is ANOMALY(thr: 0.5) - 0.110995825326706 

*.77 is NORMAL(thr: 0.5) - 0.644471261811096 

*.77 is ANOMALY(thr: 0.5) - 0.104513974230519 

*.78 is ANOMALY(thr: 0.5) - 0.335210427414541 

*.78 is ANOMALY(thr: 0.5) - 0.134931016342477 

*.80 is NORMAL(thr: 0.5) - 0.693138575284357 

*.80 is ANOMALY(thr: 0.5) - 0.0195679517558772 

*.81 is NORMAL(thr: 0.5) - 0.708064475895844 

*.81 is ANOMALY(thr: 0.5) - 0.047578424905918 

*.82 is ANOMALY(thr: 0.5) - 0.253845482925084 

*.82 is ANOMALY(thr: 0.5) - 0.151315775836677 

*.88 is NORMAL(thr: 0.5) - 0.663943384496593 

*.88 is ANOMALY(thr: 0.5) - 0.0203984144126759 

*.97 is ANOMALY(thr: 0.5) - 0.149449213624786 

*.97 is ANOMALY(thr: 0.5) - 0.125511643527819 

*.100 is ANOMALY(thr: 0.5) - 0.357743544564726 

*.100 is ANOMALY(thr: 0.5) - 0.130101131264834 

*.101 is NORMAL(thr: 0.5) - 0.560018253234603 

*.101 is ANOMALY(thr: 0.5) - 0.228809549074692 

*.107 is ANOMALY(thr: 0.5) - 0.258830460834516 

*.107 is ANOMALY(thr: 0.5) - 0.1281463662957 

*.108 is ANOMALY(thr: 0.5) - 0.350900213667413 

*.108 is ANOMALY(thr: 0.5) - 0.127884063790322 

*.109 is ANOMALY(thr: 0.5) - 0.30648118088087 

*.109 is ANOMALY(thr: 0.5) - 0.128788002079548 

*.110 is ANOMALY(thr: 0.5) - 0.350387126312413 

*.110 is ANOMALY(thr: 0.5) - 0.138216550248681 

*.111 is ANOMALY(thr: 0.5) - 0.303687641897378 

*.111 is ANOMALY(thr: 0.5) - 0.0134717254763835 

*.112 is ANOMALY(thr: 0.5) - 0.342663006911585 

*.112 is ANOMALY(thr: 0.5) - 0.0596806531805028 

*.113 is ANOMALY(thr: 0.5) - 0.259865148267317 

*.113 is ANOMALY(thr: 0.5) - 0.264122985963633 

*.115 is ANOMALY(thr: 0.5) - 0.359341129924223 
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*.115 is ANOMALY(thr: 0.5) - 0.152577566194027 

*.116 is ANOMALY(thr: 0.5) - 0.285690233555775 

*.116 is ANOMALY(thr: 0.5) - 0.154186261702911 

*.118 is ANOMALY(thr: 0.5) - 0.349520255342567 

*.118 is ANOMALY(thr: 0.5) - 0.126527763578438 

*.119 is ANOMALY(thr: 0.5) - 0.152376142058488 

*.119 is ANOMALY(thr: 0.5) - 0.127608131969523 

*.121 is ANOMALY(thr: 0.5) - 0.497770600927063 

*.121 is ANOMALY(thr: 0.5) - 0.287857385925655 

*.122 is ANOMALY(thr: 0.5) - 0.254309681573091 

*.122 is ANOMALY(thr: 0.5) - 0.236716800664225 

*.124 is ANOMALY(thr: 0.5) - 0.351716075029846 

*.124 is ANOMALY(thr: 0.5) - 0.128998809684479 

*.128 is ANOMALY(thr: 0.5) - 0.352097176021284 

*.128 is ANOMALY(thr: 0.5) - 0.130769454590564 

*.130 is ANOMALY(thr: 0.5) - 0.301436911124591 

*.130 is ANOMALY(thr: 0.5) - 0.130642938567548 

*.131 is ANOMALY(thr: 0.5) - 0.214215867923894 

*.131 is ANOMALY(thr: 0.5) - 0.128574136014664 

*.132 is ANOMALY(thr: 0.5) - 0.128668004495994 

*.132 is ANOMALY(thr: 0.5) - 0.129379419575141 

*.133 is NORMAL(thr: 0.5) - 0.940471836649492 

*.133 is ANOMALY(thr: 0.5) - 0.458308849333122 

*.134 is ANOMALY(thr: 0.5) - 0.371932032191294 

*.134 is ANOMALY(thr: 0.5) - 0.129407411391239 

*.135 is ANOMALY(thr: 0.5) - 0.325836740054406 

*.135 is ANOMALY(thr: 0.5) - 0.127995891898357 

*.136 is ANOMALY(thr: 0.5) - 0.0742356019074597 

*.136 is ANOMALY(thr: 0.5) - 0.119578757348271 

*.137 is ANOMALY(thr: 0.5) - 0.265230535738096 

*.137 is ANOMALY(thr: 0.5) - 0.116565326010426 

*.146 is NORMAL(thr: 0.5) - 0.948858443201118 

*.146 is NORMAL(thr: 0.5) - 0.679969100454352 

*.155 is ANOMALY(thr: 0.5) - 0.286588573522702 

*.155 is ANOMALY(thr: 0.5) - 0.130645554686059 

*.166 is ANOMALY(thr: 0.5) - 0.292427724754455 

*.166 is ANOMALY(thr: 0.5) - 0.311832795167593 

*.167 is ANOMALY(thr: 0.5) - 0.265223086409795 

*.167 is ANOMALY(thr: 0.5) - 0.129703399091478 



56 

 

 

 

*.168 is NORMAL(thr: 0.5) - 0.946198487515768 

*.168 is ANOMALY(thr: 0.5) - 0.308851894243652 

*.169 is NORMAL(thr: 0.5) - 0.947498425298009 

*.169 is ANOMALY(thr: 0.5) - 0.458248717051858 

*.200 is NORMAL(thr: 0.5) - 0.94896004479978 

*.200 is ANOMALY(thr: 0.5) - 0.458248717051858 

*.201 is NORMAL(thr: 0.5) - 0.947441946722131 

*.201 is ANOMALY(thr: 0.5) - 0.441743912562954 

*.202 is NORMAL(thr: 0.5) - 0.944262254543276 

*.202 is NORMAL(thr: 0.5) - 0.787899558388909 

*.203 is NORMAL(thr: 0.5) - 0.94415309134999 

*.203 is NORMAL(thr: 0.5) - 0.554259235832344 

*.204 is NORMAL(thr: 0.5) - 0.920739363566113 

*.204 is ANOMALY(thr: 0.5) - 0.283359627813357 

*.205 is NORMAL(thr: 0.5) - 0.682038673491139 

*.205 is ANOMALY(thr: 0.5) - 0.0336801604960053 

*.210 is NORMAL(thr: 0.5) - 0.73563320377264 

*.210 is ANOMALY(thr: 0.5) - 0.039481729566744 

*.211 is ANOMALY(thr: 0.5) - 0.0737685946198971 

*.211 is ANOMALY(thr: 0.5) - 0.218599435589756 

*.212 is NORMAL(thr: 0.5) - 0.934579673206871 

*.212 is NORMAL(thr: 0.5) - 0.518180457512286 

*.213 is ANOMALY(thr: 0.5) - 0.320454186964501 

*.213 is ANOMALY(thr: 0.5) - 0.113997356699827 

*.214 is NORMAL(thr: 0.5) - 0.735665491512704 

*.214 is ANOMALY(thr: 0.5) - 0.0175957392342232 

*.215 is NORMAL(thr: 0.5) - 0.709107897756298 

*.215 is ANOMALY(thr: 0.5) - 0.0439616401218865 

*.219 is NORMAL(thr: 0.5) - 0.734040430031866 

*.219 is ANOMALY(thr: 0.5) - 0.0439036039939323 

*.220 is NORMAL(thr: 0.5) - 0.976712724602781 

*.220 is NORMAL(thr: 0.5) - 0.530874539033495 

*.221 is NORMAL(thr: 0.5) - 0.726986764078071 

*.221 is ANOMALY(thr: 0.5) - 0.043292719450052 

*.231 is ANOMALY(thr: 0.5) - 0.177843459575828 

*.231 is ANOMALY(thr: 0.5) - 0.103721114117601 

*.232 is ANOMALY(thr: 0.5) - 0.236853826699777 

*.232 is ANOMALY(thr: 0.5) - 0.10359657845303648 

*.233 is ANOMALY(thr: 0.5) - 0.34497159465881 
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*.233 is ANOMALY(thr: 0.5) - 0.0441510003932409 

*.234 is NORMAL(thr: 0.5) - 0.727009398014058 

*.234 is ANOMALY(thr: 0.5) - 0.0397209517421714 

*.236 is ANOMALY(thr: 0.5) - 0.301264225598026 

*.236 is ANOMALY(thr: 0.5) - 0.0133845910937906 

*.237 is NORMAL(thr: 0.5) - 0.68857872363584 

*.237 is NORMAL(thr: 0.5) - 0.537669556388652 

*.238 is NORMAL(thr: 0.5) - 0.62114249671771 

*.238 is NORMAL(thr: 0.5) - 0.504692784227788 

*.243 is ANOMALY(thr: 0.5) - 0.260597765300175 

*.243 is ANOMALY(thr: 0.5) - 0.113108348600155 

*.244 is ANOMALY(thr: 0.5) - 0.183164373499641 

*.244 is ANOMALY(thr: 0.5) - 0.0680242618043234 

*.245 is ANOMALY(thr: 0.5) - 0.268059153296761 

*.245 is ANOMALY(thr: 0.5) - 0.108099360564713 

*.246 is ANOMALY(thr: 0.5) - 0.316701437665165 

*.246 is ANOMALY(thr: 0.5) - 0.120537106167356 

*.247 is ANOMALY(thr: 0.5) - 0.343413215203625 

*.247 is ANOMALY(thr: 0.5) - 0.103593996056726 

*.248 is ANOMALY(thr: 0.5) - 0.152088791701687 

*.248 is ANOMALY(thr: 0.5) - 0.151022816452493 
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APPENDIX – C – THE SIMILARITY MATRIX OF USERS ACCORDING TO 

REQUESTED IPS 

 

Table C.1: The similarity matrix of users according to requested ips for the part from *.10 user to *.118 user 

 *.10 *.100 *.101 *.107 *.108 *.109 *.110 *.111 *.112 *.113 *.115 *.116 *.118 

*.10 1.000 0.071 0.030 0.012 0.013 0.015 0.038 0.019 0.029 0.030 0.012 0.012 0.014

*.12 0.130 0.028 0.016 0.010 0.007 0.009 0.020 0.012 0.012 0.016 0.007 0.008 0.008

*.17 0.348 0.050 0.002 0.008 0.005 0.010 0.008 0.018 0.011 0.002 0.009 0.007 0.007

*.21 0.054 0.187 0.481 0.014 0.047 0.020 0.013 0.028 0.049 0.481 0.020 0.016 0.030

*.23 0.002 0.016 0.003 0.015 0.027 0.015 0.015 0.010 0.018 0.003 0.011 0.012 0.012

*.31 0.005 0.012 0.004 0.013 0.024 0.013 0.028 0.015 0.013 0.004 0.009 0.010 0.010

*.44 0.003 0.009 0.004 0.007 0.020 0.010 0.011 0.007 0.013 0.004 0.003 0.003 0.003

*.5 0.187 0.098 0.071 0.000 0.000 0.005 0.054 0.000 0.000 0.071 0.000 0.000 0.000

*.55 0.002 0.008 0.003 0.006 0.018 0.009 0.010 0.006 0.012 0.003 0.003 0.003 0.003

*.6 0.020 0.169 0.028 0.048 0.061 0.084 0.076 0.150 0.154 0.028 0.051 0.051 0.062

*.60 0.003 0.032 0.003 0.007 0.020 0.025 0.011 0.007 0.013 0.003 0.003 0.003 0.004

*.65 0.003 0.021 0.014 0.001 0.031 0.001 0.015 0.031 0.017 0.014 0.001 0.001 0.002

*.7 0.011 0.086 0.008 0.023 0.029 0.032 0.026 0.032 0.048 0.008 0.025 0.016 0.030

*.70 0.126 0.224 0.005 0.070 0.073 0.084 0.132 0.105 0.160 0.005 0.088 0.057 0.074

*.71 0.041 0.329 0.028 0.067 0.080 0.090 0.084 0.133 0.153 0.028 0.071 0.060 0.087

*.72 0.003 0.022 0.014 0.002 0.031 0.001 0.016 0.031 0.017 0.014 0.002 0.002 0.002

*.75 0.017 0.102 0.014 0.027 0.076 0.053 0.051 0.090 0.085 0.014 0.035 0.030 0.032

*.76 0.027 0.361 0.006 0.100 0.115 0.153 0.111 0.208 0.304 0.006 0.095 0.071 0.100

*.77 0.036 0.182 0.009 0.054 0.065 0.078 0.075 0.126 0.147 0.009 0.054 0.044 0.067

*.78 0.011 0.095 0.009 0.035 0.041 0.028 0.068 0.053 0.097 0.009 0.024 0.050 0.104

*.8 0.027 0.065 0.887 0.011 0.011 0.006 0.003 0.011 0.006 0.887 0.009 0.010 0.010

*.80 0.002 0.017 0.011 0.001 0.025 0.001 0.012 0.052 0.013 0.011 0.015 0.001 0.001

*.81 0.006 0.060 0.002 0.005 0.013 0.009 0.010 0.034 0.026 0.002 0.002 0.002 0.025

*.82 0.019 0.206 0.004 0.073 0.054 0.067 0.122 0.099 0.179 0.004 0.069 0.062 0.067

*.88 0.002 0.014 0.003 0.011 0.024 0.013 0.011 0.007 0.012 0.003 0.007 0.008 0.008

*.9 0.004 0.023 0.009 0.002 0.057 0.017 0.024 0.042 0.049 0.009 0.002 0.002 0.002

*.97 0.018 0.220 0.006 0.063 0.107 0.110 0.115 0.128 0.130 0.006 0.062 0.050 0.061

*.100 0.071 1.000 0.049 0.098 0.112 0.143 0.124 0.199 0.273 0.049 0.108 0.085 0.109

*.101 0.030 0.049 1.000 0.005 0.007 0.003 0.004 0.007 0.007 1.000 0.004 0.004 0.004

*.107 0.012 0.098 0.005 1.000 0.650 0.489 0.045 0.036 0.071 0.005 0.749 0.832 0.846

*.108 0.013 0.112 0.007 0.650 1.000 0.419 0.088 0.103 0.108 0.007 0.584 0.656 0.664

*.109 0.015 0.143 0.003 0.489 0.419 1.000 0.066 0.073 0.112 0.003 0.444 0.496 0.505

*.110 0.038 0.124 0.004 0.045 0.088 0.066 1.000 0.095 0.111 0.004 0.029 0.037 0.036

*.111 0.019 0.199 0.007 0.036 0.103 0.073 0.095 1.000 0.191 0.007 0.052 0.034 0.049

*.112 0.029 0.273 0.007 0.071 0.108 0.112 0.111 0.191 1.000 0.007 0.076 0.065 0.111

*.113 0.030 0.049 1.000 0.005 0.007 0.003 0.004 0.007 0.007 1.000 0.004 0.004 0.004



59 

 

 

 

*.115 0.012 0.108 0.004 0.749 0.584 0.444 0.029 0.052 0.076 0.004 1.000 0.756 0.780

*.116 0.012 0.085 0.004 0.832 0.656 0.496 0.037 0.034 0.065 0.004 0.756 1.000 0.854

*.118 0.014 0.109 0.004 0.846 0.664 0.505 0.036 0.049 0.111 0.004 0.780 0.854 1.000

*.119 0.011 0.080 0.003 0.886 0.707 0.535 0.029 0.032 0.053 0.003 0.803 0.902 0.913

*.121 0.020 0.044 0.410 0.005 0.017 0.018 0.033 0.025 0.026 0.410 0.004 0.005 0.022

*.122 0.031 0.050 0.998 0.007 0.008 0.004 0.005 0.008 0.009 0.998 0.006 0.006 0.006

*.124 0.010 0.061 0.003 0.894 0.717 0.533 0.029 0.027 0.046 0.003 0.806 0.912 0.922

*.128 0.010 0.061 0.003 0.894 0.717 0.533 0.029 0.027 0.046 0.003 0.806 0.912 0.922

*.130 0.018 0.142 0.021 0.793 0.640 0.508 0.054 0.075 0.083 0.021 0.727 0.801 0.828

*.131 0.022 0.157 0.019 0.777 0.618 0.483 0.069 0.073 0.128 0.019 0.695 0.768 0.787

*.132 0.015 0.130 0.021 0.804 0.650 0.506 0.064 0.070 0.094 0.021 0.726 0.805 0.842

*.133 0.387 0.044 0.003 0.005 0.003 0.009 0.002 0.016 0.012 0.003 0.007 0.005 0.005

*.134 0.026 0.272 0.006 0.080 0.148 0.094 0.108 0.125 0.173 0.006 0.084 0.058 0.060

*.135 0.309 0.101 0.003 0.026 0.004 0.026 0.012 0.046 0.087 0.003 0.042 0.033 0.030

*.136 0.033 0.072 0.800 0.004 0.005 0.026 0.032 0.017 0.031 0.800 0.003 0.004 0.042

*.137 0.023 0.269 0.007 0.084 0.082 0.096 0.091 0.147 0.192 0.007 0.092 0.060 0.090

*.146 0.387 0.044 0.003 0.005 0.003 0.009 0.002 0.016 0.012 0.003 0.007 0.005 0.005

*.155 0.315 0.145 0.006 0.049 0.019 0.060 0.015 0.060 0.118 0.006 0.070 0.046 0.062

*.166 0.034 0.243 0.014 0.058 0.074 0.070 0.103 0.139 0.218 0.014 0.080 0.047 0.091

*.167 0.010 0.147 0.006 0.030 0.026 0.060 0.031 0.061 0.057 0.006 0.036 0.050 0.030

*.168 0.378 0.048 0.003 0.010 0.007 0.012 0.002 0.017 0.012 0.003 0.011 0.010 0.010

*.169 0.330 0.087 0.005 0.014 0.027 0.036 0.030 0.055 0.069 0.005 0.018 0.011 0.024

*.200 0.387 0.044 0.003 0.005 0.003 0.009 0.002 0.016 0.012 0.003 0.007 0.005 0.005

*.201 0.387 0.044 0.003 0.005 0.003 0.009 0.002 0.016 0.012 0.003 0.007 0.005 0.005

*.202 0.387 0.044 0.003 0.005 0.003 0.009 0.002 0.016 0.012 0.003 0.007 0.005 0.005

*.203 0.387 0.044 0.003 0.005 0.003 0.009 0.002 0.016 0.012 0.003 0.007 0.005 0.005

*.204 0.387 0.044 0.003 0.005 0.003 0.009 0.002 0.016 0.012 0.003 0.007 0.005 0.005

*.205 0.003 0.021 0.014 0.001 0.031 0.001 0.015 0.031 0.017 0.014 0.001 0.001 0.002

*.210 0.003 0.021 0.014 0.001 0.031 0.001 0.015 0.031 0.017 0.014 0.001 0.001 0.002

*.211 0.053 0.153 0.306 0.038 0.027 0.036 0.018 0.033 0.040 0.306 0.034 0.035 0.035

*.212 0.361 0.076 0.004 0.031 0.034 0.028 0.013 0.029 0.035 0.004 0.032 0.031 0.031

*.213 0.018 0.153 0.007 0.063 0.072 0.049 0.089 0.108 0.146 0.007 0.078 0.068 0.062

*.214 0.003 0.008 0.003 0.007 0.020 0.010 0.011 0.007 0.013 0.003 0.003 0.003 0.003

*.215 0.004 0.097 0.004 0.047 0.026 0.041 0.025 0.049 0.066 0.004 0.024 0.021 0.022

*.219 0.003 0.008 0.003 0.007 0.020 0.010 0.011 0.007 0.013 0.003 0.003 0.003 0.003

*.220 0.001 0.002 0.007 0.002 0.001 0.001 0.002 0.001 0.003 0.007 0.002 0.002 0.002

*.221 0.003 0.008 0.003 0.007 0.020 0.010 0.011 0.007 0.013 0.003 0.003 0.003 0.003

*.231 0.017 0.174 0.008 0.057 0.016 0.079 0.024 0.101 0.146 0.008 0.064 0.030 0.070

*.232 0.016 0.120 0.008 0.119 0.038 0.069 0.050 0.075 0.137 0.008 0.058 0.051 0.050

*.233 0.013 0.102 0.008 0.048 0.023 0.033 0.011 0.094 0.088 0.008 0.129 0.026 0.053

*.234 0.003 0.008 0.003 0.007 0.020 0.010 0.011 0.007 0.013 0.003 0.003 0.003 0.003

*.236 0.009 0.107 0.005 0.051 0.018 0.045 0.073 0.073 0.125 0.005 0.079 0.050 0.075
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*.237 0.001 0.002 0.007 0.002 0.001 0.001 0.002 0.001 0.003 0.007 0.002 0.002 0.002

*.238 0.001 0.002 0.007 0.002 0.001 0.001 0.002 0.001 0.003 0.007 0.002 0.002 0.002

*.243 0.041 0.274 0.016 0.078 0.109 0.114 0.118 0.167 0.223 0.016 0.080 0.059 0.085

*.244 0.016 0.113 0.040 0.044 0.061 0.032 0.046 0.079 0.120 0.040 0.030 0.024 0.034

*.245 0.012 0.055 0.024 0.021 0.022 0.025 0.021 0.023 0.057 0.024 0.035 0.023 0.024

*.246 0.007 0.074 0.009 0.035 0.065 0.047 0.058 0.065 0.058 0.009 0.017 0.012 0.033

*.247 0.005 0.012 0.018 0.010 0.072 0.043 0.008 0.007 0.015 0.018 0.009 0.010 0.011

*.248 0.013 0.149 0.010 0.074 0.024 0.077 0.037 0.070 0.216 0.010 0.134 0.081 0.121
 

Table C.2: The similarity matrix of users according to requested ips for the part from *.119 user to *.136 user 

 *.119 *.12 *.121 *.122 *.124 *.128 *.130 *.131 *.132 *.133 *.134 *.135 *.136 

*.10 0.011 0.130 0.020 0.031 0.010 0.010 0.018 0.022 0.015 0.387 0.026 0.309 0.033

*.12 0.008 1.000 0.008 0.016 0.006 0.006 0.010 0.011 0.009 0.038 0.015 0.034 0.031

*.17 0.007 0.037 0.001 0.005 0.007 0.007 0.011 0.015 0.013 0.900 0.013 0.711 0.002

*.21 0.011 0.055 0.257 0.482 0.011 0.011 0.024 0.027 0.023 0.029 0.017 0.034 0.394

*.23 0.011 0.003 0.003 0.003 0.011 0.011 0.012 0.011 0.013 0.000 0.029 0.003 0.002

*.31 0.009 0.003 0.003 0.006 0.008 0.008 0.015 0.009 0.009 0.008 0.026 0.009 0.003

*.44 0.002 0.003 0.004 0.004 0.001 0.001 0.003 0.003 0.003 0.001 0.016 0.003 0.003

*.5 0.000 0.149 0.029 0.071 0.000 0.000 0.000 0.000 0.000 0.017 0.000 0.014 0.057

*.55 0.001 0.003 0.003 0.003 0.001 0.001 0.003 0.003 0.003 0.000 0.015 0.002 0.002

*.6 0.037 0.008 0.055 0.030 0.033 0.033 0.130 0.113 0.123 0.012 0.107 0.049 0.061

*.60 0.002 0.003 0.003 0.003 0.001 0.001 0.004 0.003 0.004 0.001 0.030 0.004 0.002

*.65 0.002 0.003 0.006 0.014 0.001 0.001 0.001 0.001 0.001 0.000 0.031 0.000 0.011

*.7 0.015 0.017 0.021 0.009 0.013 0.013 0.045 0.043 0.047 0.016 0.042 0.042 0.020

*.70 0.052 0.052 0.006 0.008 0.047 0.047 0.079 0.079 0.090 0.012 0.132 0.049 0.005

*.71 0.055 0.027 0.038 0.029 0.049 0.049 0.122 0.111 0.097 0.030 0.140 0.066 0.049

*.72 0.002 0.003 0.006 0.014 0.002 0.002 0.002 0.002 0.002 0.000 0.032 0.001 0.011

*.75 0.024 0.006 0.009 0.014 0.020 0.020 0.053 0.044 0.031 0.002 0.091 0.030 0.011

*.76 0.055 0.012 0.033 0.008 0.044 0.044 0.118 0.144 0.121 0.010 0.277 0.056 0.048

*.77 0.038 0.030 0.024 0.010 0.030 0.030 0.069 0.078 0.070 0.013 0.120 0.039 0.032

*.78 0.018 0.006 0.006 0.009 0.011 0.011 0.039 0.033 0.079 0.010 0.060 0.094 0.008

*.8 0.009 0.014 0.364 0.885 0.010 0.010 0.024 0.023 0.026 0.002 0.015 0.003 0.710

*.80 0.001 0.020 0.005 0.011 0.001 0.001 0.016 0.001 0.001 0.000 0.025 0.021 0.009

*.81 0.001 0.005 0.008 0.002 0.001 0.001 0.024 0.010 0.010 0.000 0.011 0.045 0.011

*.82 0.051 0.018 0.041 0.007 0.051 0.051 0.109 0.157 0.135 0.012 0.134 0.035 0.059

*.88 0.007 0.004 0.003 0.003 0.006 0.006 0.008 0.007 0.009 0.000 0.016 0.003 0.002

*.9 0.001 0.009 0.004 0.009 0.001 0.001 0.002 0.013 0.002 0.001 0.075 0.001 0.007

*.97 0.040 0.011 0.039 0.008 0.040 0.040 0.076 0.101 0.096 0.011 0.231 0.024 0.039

*.100 0.080 0.028 0.044 0.050 0.061 0.061 0.142 0.157 0.130 0.044 0.272 0.101 0.072

*.101 0.003 0.016 0.410 0.998 0.003 0.003 0.021 0.019 0.021 0.003 0.006 0.003 0.800

*.107 0.886 0.010 0.005 0.007 0.894 0.894 0.793 0.777 0.804 0.005 0.080 0.026 0.004

*.108 0.707 0.007 0.017 0.008 0.717 0.717 0.640 0.618 0.650 0.003 0.148 0.004 0.005
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*.109 0.535 0.009 0.018 0.004 0.533 0.533 0.508 0.483 0.506 0.009 0.094 0.026 0.026

*.110 0.029 0.020 0.033 0.005 0.029 0.029 0.054 0.069 0.064 0.002 0.108 0.012 0.032

*.111 0.032 0.012 0.025 0.008 0.027 0.027 0.075 0.073 0.070 0.016 0.125 0.046 0.017

*.112 0.053 0.012 0.026 0.009 0.046 0.046 0.083 0.128 0.094 0.012 0.173 0.087 0.031

*.113 0.003 0.016 0.410 0.998 0.003 0.003 0.021 0.019 0.021 0.003 0.006 0.003 0.800

*.115 0.803 0.007 0.004 0.006 0.806 0.806 0.727 0.695 0.726 0.007 0.084 0.042 0.003

*.116 0.902 0.008 0.005 0.006 0.912 0.912 0.801 0.768 0.805 0.005 0.058 0.033 0.004

*.118 0.913 0.008 0.022 0.006 0.922 0.922 0.828 0.787 0.842 0.005 0.060 0.030 0.042

*.119 1.000 0.008 0.004 0.005 0.986 0.986 0.865 0.841 0.873 0.004 0.057 0.010 0.002

*.121 0.004 0.008 1.000 0.409 0.003 0.003 0.033 0.033 0.035 0.001 0.003 0.003 0.402

*.122 0.005 0.016 0.409 1.000 0.005 0.005 0.023 0.021 0.023 0.005 0.008 0.006 0.799

*.124 0.986 0.006 0.003 0.005 1.000 1.000 0.874 0.838 0.879 0.004 0.049 0.005 0.002

*.128 0.986 0.006 0.003 0.005 1.000 1.000 0.874 0.838 0.879 0.004 0.049 0.005 0.002

*.130 0.865 0.010 0.033 0.023 0.874 0.874 1.000 0.811 0.824 0.010 0.073 0.040 0.045

*.131 0.841 0.011 0.033 0.021 0.838 0.838 0.811 1.000 0.797 0.006 0.116 0.041 0.040

*.132 0.873 0.009 0.035 0.023 0.879 0.879 0.824 0.797 1.000 0.005 0.094 0.029 0.042

*.133 0.004 0.038 0.001 0.005 0.004 0.004 0.010 0.006 0.005 1.000 0.015 0.790 0.002

*.134 0.057 0.015 0.003 0.008 0.049 0.049 0.073 0.116 0.094 0.015 1.000 0.050 0.005

*.135 0.010 0.034 0.003 0.006 0.005 0.005 0.040 0.041 0.029 0.790 0.050 1.000 0.003

*.136 0.002 0.031 0.402 0.799 0.002 0.002 0.045 0.040 0.042 0.002 0.005 0.003 1.000

*.137 0.054 0.015 0.007 0.010 0.048 0.048 0.081 0.105 0.090 0.023 0.146 0.065 0.006

*.146 0.004 0.038 0.001 0.005 0.004 0.004 0.010 0.006 0.005 1.000 0.015 0.790 0.002

*.155 0.031 0.035 0.006 0.008 0.014 0.014 0.042 0.060 0.060 0.797 0.052 0.687 0.005

*.166 0.040 0.013 0.045 0.017 0.040 0.040 0.084 0.069 0.088 0.011 0.156 0.039 0.047

*.167 0.029 0.004 0.004 0.009 0.029 0.029 0.080 0.061 0.057 0.018 0.094 0.031 0.005

*.168 0.010 0.037 0.001 0.005 0.010 0.010 0.014 0.011 0.010 0.978 0.018 0.772 0.002

*.169 0.010 0.033 0.006 0.007 0.009 0.009 0.029 0.025 0.017 0.848 0.052 0.671 0.004

*.200 0.004 0.038 0.001 0.005 0.004 0.004 0.010 0.006 0.005 1.000 0.015 0.790 0.002

*.201 0.004 0.038 0.001 0.005 0.004 0.004 0.010 0.006 0.005 1.000 0.015 0.790 0.002

*.202 0.004 0.038 0.001 0.005 0.004 0.004 0.010 0.006 0.005 1.000 0.015 0.790 0.002

*.203 0.004 0.038 0.001 0.005 0.004 0.004 0.010 0.006 0.005 1.000 0.015 0.790 0.002

*.204 0.004 0.038 0.001 0.005 0.004 0.004 0.010 0.006 0.005 1.000 0.015 0.790 0.002

*.205 0.002 0.003 0.006 0.014 0.001 0.001 0.001 0.001 0.001 0.000 0.031 0.000 0.011

*.210 0.002 0.003 0.006 0.014 0.001 0.001 0.001 0.001 0.001 0.000 0.031 0.000 0.011

*.211 0.028 0.081 0.134 0.307 0.026 0.026 0.051 0.041 0.041 0.017 0.031 0.031 0.251

*.212 0.032 0.037 0.001 0.006 0.029 0.029 0.035 0.034 0.029 0.920 0.039 0.735 0.003

*.213 0.051 0.008 0.030 0.010 0.051 0.051 0.080 0.077 0.080 0.018 0.166 0.060 0.039

*.214 0.001 0.003 0.003 0.003 0.001 0.001 0.003 0.003 0.003 0.000 0.016 0.003 0.002

*.215 0.047 0.003 0.004 0.004 0.015 0.015 0.021 0.029 0.021 0.001 0.020 0.049 0.004

*.219 0.001 0.003 0.003 0.003 0.001 0.001 0.003 0.003 0.003 0.000 0.016 0.003 0.002

*.220 0.002 0.000 0.001 0.007 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.003 0.004

*.221 0.001 0.003 0.003 0.003 0.001 0.001 0.003 0.003 0.003 0.000 0.016 0.003 0.002
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*.231 0.023 0.003 0.005 0.008 0.015 0.015 0.042 0.040 0.046 0.004 0.019 0.076 0.006

*.232 0.036 0.007 0.009 0.010 0.021 0.021 0.076 0.100 0.078 0.007 0.059 0.099 0.007

*.233 0.017 0.004 0.005 0.008 0.009 0.009 0.069 0.055 0.067 0.012 0.068 0.097 0.007

*.234 0.001 0.003 0.003 0.003 0.001 0.001 0.003 0.003 0.003 0.000 0.016 0.003 0.002

*.236 0.030 0.006 0.004 0.005 0.010 0.010 0.032 0.042 0.036 0.011 0.062 0.068 0.004

*.237 0.002 0.000 0.001 0.007 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.003 0.004

*.238 0.002 0.000 0.001 0.007 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.003 0.004

*.243 0.057 0.018 0.026 0.017 0.045 0.045 0.100 0.127 0.113 0.013 0.206 0.072 0.039

*.244 0.021 0.006 0.019 0.042 0.018 0.018 0.044 0.061 0.058 0.020 0.105 0.040 0.032

*.245 0.020 0.007 0.014 0.025 0.018 0.018 0.036 0.031 0.025 0.008 0.033 0.018 0.019

*.246 0.011 0.023 0.006 0.009 0.011 0.011 0.066 0.026 0.055 0.003 0.049 0.027 0.007

*.247 0.008 0.002 0.010 0.018 0.007 0.007 0.010 0.010 0.011 0.002 0.013 0.005 0.015

*.248 0.032 0.008 0.006 0.015 0.013 0.013 0.044 0.058 0.067 0.008 0.091 0.096 0.008
 

Table C.3: The similarity matrix of users according to requested ips for the part from *.137 user to *.204 user 

 *.137 *.146 *.155 *.166 *.167 *.168 *.169 *.17 *.200 *.201 *.202 *.203 *.204 

*.10 0.023 0.387 0.315 0.034 0.010 0.378 0.330 0.348 0.387 0.387 0.387 0.387 0.387

*.12 0.015 0.038 0.035 0.013 0.004 0.037 0.033 0.037 0.038 0.038 0.038 0.038 0.038

*.17 0.043 0.900 0.717 0.010 0.016 0.881 0.764 1.000 0.900 0.900 0.900 0.900 0.900

*.21 0.047 0.029 0.058 0.052 0.025 0.029 0.042 0.026 0.029 0.029 0.029 0.029 0.029

*.23 0.031 0.000 0.004 0.005 0.003 0.009 0.003 0.000 0.000 0.000 0.000 0.000 0.000

*.31 0.062 0.008 0.010 0.007 0.005 0.008 0.017 0.027 0.008 0.008 0.008 0.008 0.008

*.44 0.032 0.001 0.004 0.006 0.003 0.001 0.004 0.001 0.001 0.001 0.001 0.001 0.001

*.5 0.000 0.017 0.014 0.001 0.000 0.017 0.015 0.016 0.017 0.017 0.017 0.017 0.017

*.55 0.029 0.000 0.004 0.005 0.003 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000

*.6 0.108 0.012 0.070 0.117 0.059 0.012 0.061 0.011 0.012 0.012 0.012 0.012 0.012

*.60 0.031 0.001 0.005 0.007 0.004 0.001 0.004 0.001 0.001 0.001 0.001 0.001 0.001

*.65 0.001 0.000 0.002 0.050 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000

*.7 0.045 0.016 0.035 0.059 0.027 0.015 0.022 0.020 0.016 0.016 0.016 0.016 0.016

*.70 0.190 0.012 0.099 0.094 0.098 0.018 0.028 0.019 0.012 0.012 0.012 0.012 0.012

*.71 0.161 0.030 0.080 0.142 0.072 0.032 0.054 0.027 0.030 0.030 0.030 0.030 0.030

*.72 0.002 0.000 0.003 0.051 0.001 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000

*.75 0.046 0.003 0.034 0.093 0.021 0.002 0.017 0.002 0.002 0.002 0.002 0.002 0.002

*.76 0.239 0.010 0.136 0.226 0.127 0.028 0.050 0.009 0.010 0.010 0.010 0.010 0.010

*.77 0.150 0.013 0.060 0.119 0.069 0.014 0.036 0.015 0.013 0.013 0.013 0.013 0.013

*.78 0.043 0.010 0.087 0.099 0.071 0.010 0.011 0.009 0.010 0.010 0.010 0.010 0.010

*.8 0.006 0.002 0.005 0.012 0.066 0.013 0.005 0.002 0.002 0.002 0.002 0.002 0.002

*.80 0.001 0.000 0.002 0.040 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000

*.81 0.035 0.000 0.003 0.048 0.002 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000

*.82 0.235 0.012 0.045 0.138 0.123 0.042 0.011 0.038 0.012 0.012 0.012 0.012 0.012

*.88 0.031 0.000 0.004 0.005 0.003 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000

*.9 0.012 0.001 0.002 0.023 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001
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*.97 0.222 0.011 0.058 0.154 0.063 0.014 0.039 0.010 0.011 0.011 0.011 0.011 0.011

*.100 0.269 0.044 0.145 0.243 0.147 0.048 0.087 0.050 0.044 0.044 0.044 0.044 0.044

*.101 0.007 0.003 0.006 0.014 0.006 0.003 0.005 0.002 0.003 0.003 0.003 0.003 0.003

*.107 0.084 0.005 0.049 0.058 0.030 0.010 0.014 0.008 0.005 0.005 0.005 0.005 0.005

*.108 0.082 0.003 0.019 0.074 0.026 0.007 0.027 0.005 0.003 0.003 0.003 0.003 0.003

*.109 0.096 0.009 0.060 0.070 0.060 0.012 0.036 0.010 0.009 0.009 0.009 0.009 0.009

*.110 0.091 0.002 0.015 0.103 0.031 0.002 0.030 0.008 0.002 0.002 0.002 0.002 0.002

*.111 0.147 0.016 0.060 0.139 0.061 0.017 0.055 0.018 0.016 0.016 0.016 0.016 0.016

*.112 0.192 0.012 0.118 0.218 0.057 0.012 0.069 0.011 0.012 0.012 0.012 0.012 0.012

*.113 0.007 0.003 0.006 0.014 0.006 0.003 0.005 0.002 0.003 0.003 0.003 0.003 0.003

*.115 0.092 0.007 0.070 0.080 0.036 0.011 0.018 0.009 0.007 0.007 0.007 0.007 0.007

*.116 0.060 0.005 0.046 0.047 0.050 0.010 0.011 0.007 0.005 0.005 0.005 0.005 0.005

*.118 0.090 0.005 0.062 0.091 0.030 0.010 0.024 0.007 0.005 0.005 0.005 0.005 0.005

*.119 0.054 0.004 0.031 0.040 0.029 0.010 0.010 0.007 0.004 0.004 0.004 0.004 0.004

*.121 0.007 0.001 0.006 0.045 0.004 0.001 0.006 0.001 0.001 0.001 0.001 0.001 0.001

*.122 0.010 0.005 0.008 0.017 0.009 0.005 0.007 0.005 0.005 0.005 0.005 0.005 0.005

*.124 0.048 0.004 0.014 0.040 0.029 0.010 0.009 0.007 0.004 0.004 0.004 0.004 0.004

*.128 0.048 0.004 0.014 0.040 0.029 0.010 0.009 0.007 0.004 0.004 0.004 0.004 0.004

*.130 0.081 0.010 0.042 0.084 0.080 0.014 0.029 0.011 0.010 0.010 0.010 0.010 0.010

*.131 0.105 0.006 0.060 0.069 0.061 0.011 0.025 0.015 0.006 0.006 0.006 0.006 0.006

*.132 0.090 0.005 0.060 0.088 0.057 0.010 0.017 0.013 0.005 0.005 0.005 0.005 0.005

*.133 0.023 1.000 0.797 0.011 0.018 0.978 0.848 0.900 1.000 1.000 1.000 1.000 1.000

*.134 0.146 0.015 0.052 0.156 0.094 0.018 0.052 0.013 0.015 0.015 0.015 0.015 0.015

*.135 0.065 0.790 0.687 0.039 0.031 0.772 0.671 0.711 0.790 0.790 0.790 0.790 0.790

*.136 0.006 0.002 0.005 0.047 0.005 0.002 0.004 0.002 0.002 0.002 0.002 0.002 0.002

*.137 1.000 0.023 0.085 0.144 0.089 0.023 0.034 0.043 0.023 0.023 0.023 0.023 0.023

*.146 0.023 1.000 0.797 0.011 0.018 0.978 0.848 0.900 1.000 1.000 1.000 1.000 1.000

*.155 0.085 0.797 1.000 0.058 0.061 0.779 0.728 0.717 0.797 0.797 0.797 0.797 0.797

*.166 0.144 0.011 0.058 1.000 0.021 0.011 0.019 0.010 0.011 0.011 0.011 0.011 0.011

*.167 0.089 0.018 0.061 0.021 1.000 0.018 0.016 0.016 0.018 0.018 0.018 0.018 0.018

*.168 0.023 0.978 0.779 0.011 0.018 1.000 0.830 0.881 0.978 0.978 0.978 0.978 0.978

*.169 0.034 0.848 0.728 0.019 0.016 0.830 1.000 0.764 0.848 0.848 0.848 0.848 0.848

*.200 0.023 1.000 0.797 0.011 0.018 0.978 0.848 0.900 1.000 1.000 1.000 1.000 1.000

*.201 0.023 1.000 0.797 0.011 0.018 0.978 0.848 0.900 1.000 1.000 1.000 1.000 1.000

*.202 0.023 1.000 0.797 0.011 0.018 0.978 0.848 0.900 1.000 1.000 1.000 1.000 1.000

*.203 0.023 1.000 0.797 0.011 0.018 0.978 0.848 0.900 1.000 1.000 1.000 1.000 1.000

*.204 0.023 1.000 0.797 0.011 0.018 0.978 0.848 0.900 1.000 1.000 1.000 1.000 1.000

*.205 0.001 0.000 0.002 0.050 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000

*.210 0.001 0.000 0.002 0.050 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000

*.211 0.056 0.017 0.038 0.045 0.035 0.016 0.025 0.015 0.017 0.017 0.017 0.017 0.017

*.212 0.043 0.920 0.745 0.021 0.047 0.900 0.781 0.829 0.920 0.920 0.920 0.920 0.920

*.213 0.097 0.018 0.090 0.149 0.031 0.018 0.037 0.022 0.018 0.018 0.018 0.018 0.018

*.214 0.031 0.000 0.004 0.005 0.003 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000
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*.215 0.027 0.001 0.020 0.006 0.003 0.001 0.004 0.001 0.001 0.001 0.001 0.001 0.001

*.219 0.031 0.000 0.004 0.005 0.003 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000

*.220 0.003 0.004 0.002 0.004 0.004 0.003 0.003 0.002 0.003 0.003 0.003 0.003 0.003

*.221 0.031 0.000 0.004 0.005 0.003 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000

*.231 0.135 0.004 0.053 0.063 0.088 0.004 0.006 0.003 0.004 0.004 0.004 0.004 0.004

*.232 0.130 0.007 0.103 0.107 0.067 0.007 0.032 0.007 0.007 0.007 0.007 0.007 0.007

*.233 0.116 0.012 0.127 0.139 0.033 0.012 0.032 0.011 0.012 0.012 0.012 0.012 0.012

*.234 0.031 0.000 0.004 0.005 0.003 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000

*.236 0.062 0.011 0.102 0.091 0.022 0.011 0.056 0.010 0.011 0.011 0.011 0.011 0.011

*.237 0.003 0.004 0.002 0.004 0.004 0.003 0.003 0.002 0.003 0.003 0.003 0.003 0.003

*.238 0.003 0.004 0.002 0.004 0.004 0.003 0.003 0.002 0.003 0.003 0.003 0.003 0.003

*.243 0.186 0.013 0.082 0.200 0.130 0.013 0.063 0.012 0.013 0.013 0.013 0.013 0.013

*.244 0.064 0.020 0.095 0.135 0.016 0.020 0.021 0.032 0.020 0.020 0.020 0.020 0.020

*.245 0.043 0.008 0.023 0.041 0.029 0.007 0.015 0.014 0.008 0.008 0.008 0.008 0.008

*.246 0.030 0.003 0.019 0.156 0.007 0.003 0.007 0.003 0.003 0.003 0.003 0.003 0.003

*.247 0.014 0.002 0.015 0.019 0.006 0.002 0.014 0.002 0.002 0.002 0.002 0.002 0.002

*.248 0.151 0.008 0.183 0.088 0.167 0.008 0.065 0.007 0.008 0.008 0.008 0.008 0.008
 

Table C.4: The similarity matrix of users according to requested ips for the part from *.205 user to *.231 user 

 *.205 *.21 *.210 *.211 *.212 *.213 *.214 *.215 *.219 *.220 *.221 *.23 *.231 

*.10 0.003 0.054 0.003 0.053 0.361 0.018 0.003 0.004 0.003 0.001 0.003 0.002 0.017 

*.12 0.003 0.055 0.003 0.081 0.037 0.008 0.003 0.003 0.003 0.000 0.003 0.003 0.003

*.17 0.000 0.026 0.000 0.015 0.829 0.022 0.000 0.001 0.000 0.002 0.000 0.000 0.003 

*.21 0.019 1.000 0.019 0.484 0.032 0.022 0.004 0.008 0.004 0.002 0.004 0.003 0.039

*.23 0.114 0.003 0.114 0.002 0.000 0.025 0.986 0.796 0.986 0.004 0.986 1.000 0.004 

*.31 0.106 0.013 0.106 0.003 0.007 0.036 0.919 0.742 0.919 0.004 0.919 0.906 0.004 

*.44 0.115 0.004 0.115 0.003 0.001 0.026 1.000 0.808 1.000 0.003 1.000 0.986 0.004 

*.5 0.000 0.243 0.000 0.216 0.016 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.000 

*.55 0.106 0.003 0.106 0.002 0.000 0.023 0.917 0.740 0.917 0.005 0.917 0.904 0.003 

*.6 0.464 0.057 0.464 0.048 0.032 0.096 0.071 0.075 0.071 0.002 0.071 0.070 0.057 

*.60 0.110 0.005 0.110 0.003 0.001 0.024 0.955 0.771 0.955 0.003 0.955 0.942 0.004 

*.65 1.000 0.019 1.000 0.005 0.000 0.013 0.115 0.095 0.115 0.003 0.115 0.114 0.003 

*.7 0.008 0.012 0.008 0.030 0.024 0.035 0.004 0.010 0.004 0.001 0.004 0.004 0.030 

*.70 0.001 0.028 0.001 0.039 0.069 0.085 0.004 0.063 0.004 0.003 0.004 0.010 0.149 

*.71 0.018 0.164 0.018 0.146 0.063 0.135 0.012 0.041 0.012 0.001 0.012 0.012 0.063 

*.72 1.000 0.020 1.000 0.006 0.000 0.013 0.116 0.096 0.116 0.000 0.116 0.115 0.004 

*.75 0.644 0.042 0.644 0.037 0.028 0.044 0.086 0.124 0.086 0.003 0.086 0.085 0.037 

*.76 0.025 0.055 0.025 0.058 0.054 0.192 0.019 0.078 0.019 0.003 0.019 0.019 0.122 

*.77 0.158 0.026 0.158 0.055 0.027 0.101 0.197 0.195 0.197 0.001 0.197 0.196 0.061 

*.78 0.586 0.030 0.586 0.021 0.024 0.041 0.071 0.080 0.071 0.004 0.071 0.070 0.030 

*.8 0.013 0.427 0.013 0.271 0.003 0.006 0.003 0.004 0.003 0.006 0.003 0.024 0.007 

*.80 0.797 0.015 0.797 0.004 0.000 0.035 0.092 0.076 0.092 0.000 0.092 0.091 0.002 
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*.81 0.076 0.006 0.076 0.009 0.000 0.033 0.663 0.536 0.663 0.003 0.663 0.654 0.035 

*.82 0.000 0.100 0.000 0.078 0.031 0.127 0.002 0.023 0.002 0.003 0.002 0.002 0.054 

*.88 0.114 0.004 0.114 0.002 0.000 0.025 0.992 0.801 0.992 0.003 0.992 0.978 0.004 

*.9 0.425 0.009 0.425 0.003 0.001 0.010 0.054 0.045 0.054 0.003 0.054 0.053 0.002 

*.97 0.019 0.035 0.019 0.040 0.030 0.120 0.011 0.011 0.011 0.002 0.011 0.011 0.059 

*.100 0.021 0.187 0.021 0.153 0.076 0.153 0.008 0.097 0.008 0.002 0.008 0.016 0.174 

*.101 0.014 0.481 0.014 0.306 0.004 0.007 0.003 0.004 0.003 0.007 0.003 0.003 0.008 

*.107 0.001 0.014 0.001 0.038 0.031 0.063 0.007 0.047 0.007 0.002 0.007 0.015 0.057 

*.108 0.031 0.047 0.031 0.027 0.034 0.072 0.020 0.026 0.020 0.001 0.020 0.027 0.016 

*.109 0.001 0.020 0.001 0.036 0.028 0.049 0.010 0.041 0.010 0.001 0.010 0.015 0.079 

*.110 0.015 0.013 0.015 0.018 0.013 0.089 0.011 0.025 0.011 0.002 0.011 0.015 0.024 

*.111 0.031 0.028 0.031 0.033 0.029 0.108 0.007 0.049 0.007 0.001 0.007 0.010 0.101 

*.112 0.017 0.049 0.017 0.040 0.035 0.146 0.013 0.066 0.013 0.003 0.013 0.018 0.146 

*.113 0.014 0.481 0.014 0.306 0.004 0.007 0.003 0.004 0.003 0.007 0.003 0.003 0.008 

*.115 0.001 0.020 0.001 0.034 0.032 0.078 0.003 0.024 0.003 0.002 0.003 0.011 0.064 

*.116 0.001 0.016 0.001 0.035 0.031 0.068 0.003 0.021 0.003 0.002 0.003 0.012 0.030 

*.118 0.002 0.030 0.002 0.035 0.031 0.062 0.003 0.022 0.003 0.002 0.003 0.012 0.070 

*.119 0.002 0.011 0.002 0.028 0.032 0.051 0.001 0.047 0.001 0.002 0.001 0.011 0.023 

*.121 0.006 0.257 0.006 0.134 0.001 0.030 0.003 0.004 0.003 0.001 0.003 0.003 0.005 

*.122 0.014 0.482 0.014 0.307 0.006 0.010 0.003 0.004 0.003 0.007 0.003 0.003 0.008 

*.124 0.001 0.011 0.001 0.026 0.029 0.051 0.001 0.015 0.001 0.002 0.001 0.011 0.015 

*.128 0.001 0.011 0.001 0.026 0.029 0.051 0.001 0.015 0.001 0.002 0.001 0.011 0.015 

*.130 0.001 0.024 0.001 0.051 0.035 0.080 0.003 0.021 0.003 0.002 0.003 0.012 0.042 

*.131 0.001 0.027 0.001 0.041 0.034 0.077 0.003 0.029 0.003 0.002 0.003 0.011 0.040 

*.132 0.001 0.023 0.001 0.041 0.029 0.080 0.003 0.021 0.003 0.002 0.003 0.013 0.046 

*.133 0.000 0.029 0.000 0.017 0.920 0.018 0.000 0.001 0.000 0.003 0.000 0.000 0.004 

*.134 0.031 0.017 0.031 0.031 0.039 0.166 0.016 0.020 0.016 0.002 0.016 0.029 0.019 

*.135 0.000 0.034 0.000 0.031 0.735 0.060 0.003 0.049 0.003 0.003 0.003 0.003 0.076 

*.136 0.011 0.394 0.011 0.251 0.003 0.039 0.002 0.004 0.002 0.004 0.002 0.002 0.006 

*.137 0.001 0.047 0.001 0.056 0.043 0.097 0.031 0.027 0.031 0.003 0.031 0.031 0.135 

*.146 0.000 0.029 0.000 0.017 0.920 0.018 0.000 0.001 0.000 0.004 0.000 0.000 0.004 

*.155 0.002 0.058 0.002 0.038 0.745 0.090 0.004 0.020 0.004 0.002 0.004 0.004 0.053 

*.166 0.050 0.052 0.050 0.045 0.021 0.149 0.005 0.006 0.005 0.004 0.005 0.005 0.063 

*.167 0.000 0.025 0.000 0.035 0.047 0.031 0.003 0.003 0.003 0.004 0.003 0.003 0.088 

*.168 0.000 0.029 0.000 0.016 0.900 0.018 0.000 0.001 0.000 0.003 0.000 0.009 0.004 

*.169 0.002 0.042 0.002 0.025 0.781 0.037 0.003 0.004 0.003 0.003 0.003 0.003 0.006 

*.200 0.000 0.029 0.000 0.017 0.920 0.018 0.000 0.001 0.000 0.003 0.000 0.000 0.004 

*.201 0.000 0.029 0.000 0.017 0.920 0.018 0.000 0.001 0.000 0.003 0.000 0.000 0.004 

*.202 0.000 0.029 0.000 0.017 0.920 0.018 0.000 0.001 0.000 0.003 0.000 0.000 0.004 

*.203 0.000 0.029 0.000 0.017 0.920 0.018 0.000 0.001 0.000 0.003 0.000 0.000 0.004 

*.204 0.000 0.029 0.000 0.017 0.920 0.018 0.000 0.001 0.000 0.003 0.000 0.000 0.004 

*.205 1.000 0.019 1.000 0.005 0.000 0.013 0.115 0.095 0.115 0.003 0.115 0.114 0.003 
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*.210 1.000 0.019 1.000 0.005 0.000 0.013 0.115 0.095 0.115 0.007 0.115 0.114 0.003 

*.211 0.005 0.484 0.005 1.000 0.026 0.024 0.002 0.014 0.002 0.001 0.002 0.002 0.030 

*.212 0.000 0.032 0.000 0.026 1.000 0.035 0.000 0.038 0.000 0.003 0.000 0.000 0.043 

*.213 0.013 0.022 0.013 0.024 0.035 1.000 0.025 0.022 0.025 0.003 0.025 0.025 0.016 

*.214 0.115 0.004 0.115 0.002 0.000 0.025 1.000 0.807 1.000 0.005 1.000 0.986 0.004 

*.215 0.095 0.008 0.095 0.014 0.038 0.022 0.807 1.000 0.807 0.003 0.807 0.796 0.190 

*.219 0.115 0.004 0.115 0.002 0.000 0.025 1.000 0.807 1.000 0.005 1.000 0.986 0.004 

*.220 0.003 0.002 0.007 0.001 0.003 0.003 0.005 0.003 0.005 1.000 0.005 0.004 0.005 

*.221 0.115 0.004 0.115 0.002 0.000 0.025 1.000 0.807 1.000 0.005 1.000 0.986 0.004 

*.231 0.003 0.039 0.003 0.030 0.043 0.016 0.004 0.190 0.004 0.005 0.004 0.004 1.000 

*.232 0.003 0.028 0.003 0.048 0.087 0.057 0.019 0.078 0.019 0.005 0.019 0.019 0.077 

*.233 0.003 0.029 0.003 0.022 0.029 0.089 0.006 0.031 0.006 0.004 0.006 0.006 0.167 

*.234 0.115 0.004 0.115 0.002 0.000 0.025 1.000 0.807 1.000 0.005 1.000 0.986 0.004 

*.236 0.000 0.027 0.000 0.030 0.022 0.065 0.018 0.033 0.018 0.002 0.018 0.018 0.043 

*.237 0.003 0.002 0.007 0.001 0.003 0.003 0.005 0.003 0.005 1.000 0.005 0.004 0.005 

*.238 0.003 0.002 0.007 0.001 0.003 0.003 0.005 0.003 0.005 1.000 0.005 0.004 0.005 

*.243 0.024 0.043 0.024 0.046 0.044 0.119 0.018 0.075 0.018 0.002 0.018 0.017 0.120 

*.244 0.013 0.033 0.013 0.033 0.024 0.105 0.003 0.010 0.003 0.003 0.003 0.003 0.025 

*.245 0.001 0.014 0.001 0.022 0.016 0.027 0.002 0.005 0.002 0.002 0.002 0.002 0.024 

*.246 0.020 0.018 0.020 0.146 0.003 0.021 0.006 0.037 0.006 0.005 0.006 0.006 0.103 

*.247 0.010 0.013 0.010 0.009 0.002 0.017 0.012 0.016 0.012 0.017 0.012 0.012 0.015 

*.248 0.003 0.042 0.003 0.062 0.021 0.024 0.007 0.027 0.007 0.006 0.007 0.007 0.137 
 

Table C.5: The similarity matrix of users according to requested ips for the part from *.232 user to *.31 user 

 *.232 *.233 *.234 *.236 *.237 *.238 *.243 *.244 *.245 *.246 *.247 *.248 *.31 

*.10 0.016 0.013 0.003 0.009 0.001 0.001 0.041 0.016 0.012 0.007 0.005 0.013 0.005 

*.12 0.007 0.004 0.003 0.006 0.000 0.000 0.018 0.006 0.007 0.023 0.002 0.008 0.003 

*.17 0.007 0.011 0.000 0.010 0.002 0.002 0.012 0.032 0.014 0.003 0.002 0.007 0.027 

*.21 0.028 0.029 0.004 0.027 0.002 0.002 0.043 0.033 0.014 0.018 0.013 0.042 0.013 

*.23 0.019 0.006 0.986 0.018 0.004 0.004 0.017 0.003 0.002 0.006 0.012 0.007 0.906 

*.31 0.020 0.006 0.919 0.017 0.004 0.004 0.028 0.004 0.017 0.006 0.013 0.010 1.000 

*.44 0.020 0.007 1.000 0.018 0.003 0.003 0.018 0.003 0.002 0.007 0.014 0.008 0.919 

*.5 0.001 0.001 0.001 0.000 0.002 0.002 0.006 0.000 0.000 0.056 0.002 0.001 0.001 

*.55 0.018 0.006 0.917 0.016 0.005 0.005 0.016 0.003 0.002 0.006 0.011 0.006 0.842 

*.6 0.076 0.043 0.071 0.071 0.002 0.002 0.121 0.070 0.032 0.078 0.015 0.113 0.080 

*.60 0.020 0.008 0.955 0.018 0.003 0.003 0.025 0.004 0.002 0.053 0.011 0.009 0.878 

*.65 0.003 0.003 0.115 0.000 0.003 0.003 0.024 0.013 0.001 0.020 0.010 0.003 0.106 

*.7 0.029 0.043 0.004 0.020 0.001 0.001 0.054 0.026 0.013 0.020 0.005 0.034 0.004 

*.70 0.115 0.057 0.004 0.035 0.003 0.003 0.167 0.080 0.042 0.063 0.012 0.109 0.029 

*.71 0.091 0.097 0.012 0.081 0.001 0.001 0.159 0.115 0.032 0.089 0.067 0.058 0.015 

*.72 0.004 0.004 0.116 0.001 0.000 0.000 0.024 0.013 0.001 0.021 0.013 0.004 0.107 

*.75 0.093 0.049 0.086 0.034 0.003 0.003 0.114 0.064 0.016 0.042 0.017 0.069 0.080 
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*.76 0.124 0.121 0.019 0.122 0.003 0.003 0.284 0.121 0.037 0.140 0.083 0.172 0.019 

*.77 0.087 0.075 0.197 0.056 0.001 0.001 0.162 0.063 0.030 0.066 0.033 0.085 0.185 

*.78 0.075 0.034 0.071 0.156 0.004 0.004 0.077 0.085 0.013 0.125 0.012 0.108 0.065 

*.8 0.007 0.007 0.003 0.005 0.006 0.006 0.014 0.036 0.021 0.008 0.016 0.009 0.003 

*.80 0.002 0.035 0.092 0.000 0.000 0.000 0.019 0.010 0.001 0.016 0.008 0.003 0.084 

*.81 0.013 0.033 0.663 0.033 0.003 0.003 0.030 0.002 0.008 0.063 0.009 0.005 0.610 

*.82 0.058 0.046 0.002 0.028 0.003 0.003 0.147 0.087 0.044 0.010 0.005 0.099 0.040 

*.88 0.019 0.006 0.992 0.018 0.003 0.003 0.021 0.003 0.002 0.006 0.012 0.007 0.911 

*.9 0.003 0.003 0.054 0.002 0.003 0.003 0.034 0.018 0.001 0.011 0.010 0.004 0.050 

*.97 0.085 0.074 0.011 0.047 0.002 0.002 0.184 0.043 0.025 0.055 0.013 0.088 0.020 

*.100 0.120 0.102 0.008 0.107 0.002 0.002 0.274 0.113 0.055 0.074 0.012 0.149 0.012 

*.101 0.008 0.008 0.003 0.005 0.007 0.007 0.016 0.040 0.024 0.009 0.018 0.010 0.004 

*.107 0.119 0.048 0.007 0.051 0.002 0.002 0.078 0.044 0.021 0.035 0.010 0.074 0.013 

*.108 0.038 0.023 0.020 0.018 0.001 0.001 0.109 0.061 0.022 0.065 0.072 0.024 0.024 

*.109 0.069 0.033 0.010 0.045 0.001 0.001 0.114 0.032 0.025 0.047 0.043 0.077 0.013 

*.110 0.050 0.011 0.011 0.073 0.002 0.002 0.118 0.046 0.021 0.058 0.008 0.037 0.028 

*.111 0.075 0.094 0.007 0.073 0.001 0.001 0.167 0.079 0.023 0.065 0.007 0.070 0.015 

*.112 0.137 0.088 0.013 0.125 0.003 0.003 0.223 0.120 0.057 0.058 0.015 0.216 0.013 

*.113 0.008 0.008 0.003 0.005 0.007 0.007 0.016 0.040 0.024 0.009 0.018 0.010 0.004 

*.115 0.058 0.129 0.003 0.079 0.002 0.002 0.080 0.030 0.035 0.017 0.009 0.134 0.009 

*.116 0.051 0.026 0.003 0.050 0.002 0.002 0.059 0.024 0.023 0.012 0.010 0.081 0.010 

*.118 0.050 0.053 0.003 0.075 0.002 0.002 0.085 0.034 0.024 0.033 0.011 0.121 0.010 

*.119 0.036 0.017 0.001 0.030 0.002 0.002 0.057 0.021 0.020 0.011 0.008 0.032 0.009 

*.121 0.009 0.005 0.003 0.004 0.001 0.001 0.026 0.019 0.014 0.006 0.010 0.006 0.003 

*.122 0.010 0.008 0.003 0.005 0.007 0.007 0.017 0.042 0.025 0.009 0.018 0.015 0.006 

*.124 0.021 0.009 0.001 0.010 0.002 0.002 0.045 0.018 0.018 0.011 0.007 0.013 0.008 

*.128 0.021 0.009 0.001 0.010 0.002 0.002 0.045 0.018 0.018 0.011 0.007 0.013 0.008 

*.130 0.076 0.069 0.003 0.032 0.002 0.002 0.100 0.044 0.036 0.066 0.010 0.044 0.015 

*.131 0.100 0.055 0.003 0.042 0.002 0.002 0.127 0.061 0.031 0.026 0.010 0.058 0.009 

*.132 0.078 0.067 0.003 0.036 0.002 0.002 0.113 0.058 0.025 0.055 0.011 0.067 0.009 

*.133 0.007 0.012 0.000 0.011 0.003 0.003 0.013 0.020 0.008 0.003 0.002 0.008 0.008 

*.134 0.059 0.068 0.016 0.062 0.002 0.002 0.206 0.105 0.033 0.049 0.013 0.091 0.026 

*.135 0.099 0.097 0.003 0.068 0.003 0.003 0.072 0.040 0.018 0.027 0.005 0.096 0.009 

*.136 0.007 0.007 0.002 0.004 0.004 0.004 0.039 0.032 0.019 0.007 0.015 0.008 0.003 

*.137 0.130 0.116 0.031 0.062 0.003 0.003 0.186 0.064 0.043 0.030 0.014 0.151 0.062 

*.146 0.007 0.012 0.000 0.011 0.004 0.004 0.013 0.020 0.008 0.003 0.002 0.008 0.008 

*.155 0.103 0.127 0.004 0.102 0.002 0.002 0.082 0.095 0.023 0.019 0.015 0.183 0.010 

*.166 0.107 0.139 0.005 0.091 0.004 0.004 0.200 0.135 0.041 0.156 0.019 0.088 0.007 

*.167 0.067 0.033 0.003 0.022 0.004 0.004 0.130 0.016 0.029 0.007 0.006 0.167 0.005 

*.168 0.007 0.012 0.000 0.011 0.003 0.003 0.013 0.020 0.007 0.003 0.002 0.008 0.008 

*.169 0.032 0.032 0.003 0.056 0.003 0.003 0.063 0.021 0.015 0.007 0.014 0.065 0.017 

*.200 0.007 0.012 0.000 0.011 0.003 0.003 0.013 0.020 0.008 0.003 0.002 0.008 0.008 
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*.201 0.007 0.012 0.000 0.011 0.003 0.003 0.013 0.020 0.008 0.003 0.002 0.008 0.008 

*.202 0.007 0.012 0.000 0.011 0.003 0.003 0.013 0.020 0.008 0.003 0.002 0.008 0.008 

*.203 0.007 0.012 0.000 0.011 0.003 0.003 0.013 0.020 0.008 0.003 0.002 0.008 0.008 

*.204 0.007 0.012 0.000 0.011 0.003 0.003 0.013 0.020 0.008 0.003 0.002 0.008 0.008 

*.205 0.003 0.003 0.115 0.000 0.003 0.003 0.024 0.013 0.001 0.020 0.010 0.003 0.106 

*.210 0.003 0.003 0.115 0.000 0.007 0.007 0.024 0.013 0.001 0.020 0.010 0.003 0.106 

*.211 0.048 0.022 0.002 0.030 0.001 0.001 0.046 0.033 0.022 0.146 0.009 0.062 0.003 

*.212 0.087 0.029 0.000 0.022 0.003 0.003 0.044 0.024 0.016 0.003 0.002 0.021 0.007 

*.213 0.057 0.089 0.025 0.065 0.003 0.003 0.119 0.105 0.027 0.021 0.017 0.024 0.036 

*.214 0.019 0.006 1.000 0.018 0.005 0.005 0.018 0.003 0.002 0.006 0.012 0.007 0.919 

*.215 0.078 0.031 0.807 0.033 0.003 0.003 0.075 0.010 0.005 0.037 0.016 0.027 0.742 

*.219 0.019 0.006 1.000 0.018 0.005 0.005 0.018 0.003 0.002 0.006 0.012 0.007 0.919 

*.220 0.005 0.004 0.005 0.002 1.000 1.000 0.002 0.003 0.002 0.005 0.017 0.006 0.004 

*.221 0.019 0.006 1.000 0.018 0.005 0.005 0.018 0.003 0.002 0.006 0.012 0.007 0.919 

*.231 0.077 0.167 0.004 0.043 0.005 0.005 0.120 0.025 0.024 0.103 0.015 0.137 0.004 

*.232 1.000 0.100 0.019 0.098 0.005 0.005 0.134 0.101 0.017 0.065 0.021 0.144 0.020 

*.233 0.100 1.000 0.006 0.128 0.004 0.004 0.105 0.055 0.026 0.023 0.021 0.144 0.006 

*.234 0.019 0.006 1.000 0.018 0.005 0.005 0.018 0.003 0.002 0.006 0.012 0.007 0.919 

*.236 0.098 0.128 0.018 1.000 0.002 0.002 0.110 0.048 0.037 0.037 0.010 0.272 0.017 

*.237 0.005 0.004 0.005 0.002 1.000 1.000 0.002 0.003 0.002 0.005 0.017 0.006 0.004 

*.238 0.005 0.004 0.005 0.002 1.000 1.000 0.002 0.003 0.002 0.005 0.017 0.006 0.004 

*.243 0.134 0.105 0.018 0.110 0.002 0.002 1.000 0.095 0.039 0.093 0.009 0.153 0.028 

*.244 0.101 0.055 0.003 0.048 0.003 0.003 0.095 1.000 0.026 0.063 0.009 0.055 0.004 

*.245 0.017 0.026 0.002 0.037 0.002 0.002 0.039 0.026 1.000 0.004 0.008 0.041 0.017 

*.246 0.065 0.023 0.006 0.037 0.005 0.005 0.093 0.063 0.004 1.000 0.185 0.053 0.006 

*.247 0.021 0.021 0.012 0.010 0.017 0.017 0.009 0.009 0.008 0.185 1.000 0.024 0.013 

*.248 0.144 0.144 0.007 0.272 0.006 0.006 0.153 0.055 0.041 0.053 0.024 1.000 0.010 
 

Table C.6: The similarity matrix of users according to requested ips for the part from *.44 user to *.77 user 

 *.44 *.5 *.55 *.6 *.60 *.65 *.7 *.70 *.71 *.72 *.75 *.76 *.77 

*.10 0.003 0.187 0.002 0.020 0.003 0.003 0.011 0.126 0.041 0.003 0.017 0.027 0.036 

*.12 0.003 0.149 0.003 0.008 0.003 0.003 0.017 0.052 0.027 0.003 0.006 0.012 0.030 

*.17 0.001 0.016 0.000 0.011 0.001 0.000 0.020 0.019 0.027 0.000 0.002 0.009 0.015 

*.21 0.004 0.243 0.003 0.057 0.005 0.019 0.012 0.028 0.164 0.020 0.042 0.055 0.026 

*.23 0.986 0.001 0.904 0.070 0.942 0.114 0.004 0.010 0.012 0.115 0.085 0.019 0.196 

*.31 0.919 0.001 0.842 0.080 0.878 0.106 0.004 0.029 0.015 0.107 0.080 0.019 0.185 

*.44 1.000 0.001 0.917 0.072 0.955 0.115 0.004 0.004 0.012 0.116 0.087 0.020 0.197 

*.5 0.001 1.000 0.001 0.000 0.001 0.000 0.000 0.238 0.076 0.000 0.000 0.000 0.009 

*.55 0.917 0.001 1.000 0.065 0.876 0.106 0.004 0.003 0.011 0.107 0.079 0.018 0.181 

*.6 0.072 0.000 0.065 1.000 0.069 0.464 0.070 0.075 0.156 0.465 0.404 0.188 0.165 

*.60 0.955 0.001 0.876 0.069 1.000 0.110 0.004 0.017 0.033 0.111 0.084 0.030 0.193 

*.65 0.115 0.000 0.106 0.464 0.110 1.000 0.008 0.001 0.018 1.000 0.644 0.025 0.158 



69 

 

 

 

*.7 0.004 0.000 0.004 0.070 0.004 0.008 1.000 0.028 0.085 0.008 0.031 0.068 0.038 

*.70 0.004 0.238 0.003 0.075 0.017 0.001 0.028 1.000 0.141 0.002 0.118 0.207 0.117 

*.71 0.012 0.076 0.011 0.156 0.033 0.018 0.085 0.141 1.000 0.018 0.060 0.239 0.125 

*.72 0.116 0.000 0.107 0.465 0.111 1.000 0.008 0.002 0.018 1.000 0.644 0.025 0.158 

*.75 0.087 0.000 0.079 0.404 0.084 0.644 0.031 0.118 0.060 0.644 1.000 0.134 0.153 

*.76 0.020 0.000 0.018 0.188 0.030 0.025 0.068 0.207 0.239 0.025 0.134 1.000 0.195 

*.77 0.197 0.009 0.181 0.165 0.193 0.158 0.038 0.117 0.125 0.158 0.153 0.195 1.000 

*.78 0.071 0.000 0.065 0.336 0.069 0.586 0.044 0.023 0.074 0.586 0.400 0.133 0.143 

*.8 0.003 0.063 0.002 0.025 0.002 0.013 0.007 0.039 0.043 0.013 0.013 0.005 0.017 

*.80 0.092 0.117 0.084 0.370 0.088 0.797 0.014 0.001 0.025 0.796 0.513 0.020 0.126 

*.81 0.663 0.000 0.608 0.071 0.634 0.076 0.015 0.003 0.027 0.077 0.058 0.032 0.156 

*.82 0.003 0.000 0.002 0.167 0.003 0.000 0.052 0.174 0.162 0.001 0.050 0.217 0.128 

*.88 0.991 0.001 0.909 0.071 0.947 0.114 0.004 0.004 0.012 0.115 0.086 0.025 0.198 

*.9 0.054 0.016 0.049 0.233 0.051 0.425 0.018 0.002 0.010 0.425 0.287 0.031 0.078 

*.97 0.012 0.000 0.010 0.118 0.024 0.019 0.055 0.138 0.159 0.020 0.115 0.219 0.121 

*.100 0.009 0.098 0.008 0.169 0.032 0.021 0.086 0.224 0.329 0.022 0.102 0.361 0.182 

*.101 0.004 0.071 0.003 0.028 0.003 0.014 0.008 0.005 0.028 0.014 0.014 0.006 0.009 

*.107 0.007 0.000 0.006 0.048 0.007 0.001 0.023 0.070 0.067 0.002 0.027 0.100 0.054 

*.108 0.020 0.000 0.018 0.061 0.020 0.031 0.029 0.073 0.080 0.031 0.076 0.115 0.065 

*.109 0.010 0.005 0.009 0.084 0.025 0.001 0.032 0.084 0.090 0.001 0.053 0.153 0.078 

*.110 0.011 0.054 0.010 0.076 0.011 0.015 0.026 0.132 0.084 0.016 0.051 0.111 0.075 

*.111 0.007 0.000 0.006 0.150 0.007 0.031 0.032 0.105 0.133 0.031 0.090 0.208 0.126 

*.112 0.013 0.000 0.012 0.154 0.013 0.017 0.048 0.160 0.153 0.017 0.085 0.304 0.147 

*.113 0.004 0.071 0.003 0.028 0.003 0.014 0.008 0.005 0.028 0.014 0.014 0.006 0.009 

*.115 0.003 0.000 0.003 0.051 0.003 0.001 0.025 0.088 0.071 0.002 0.035 0.095 0.054 

*.116 0.003 0.000 0.003 0.051 0.003 0.001 0.016 0.057 0.060 0.002 0.030 0.071 0.044 

*.118 0.003 0.000 0.003 0.062 0.004 0.002 0.030 0.074 0.087 0.002 0.032 0.100 0.067 

*.119 0.002 0.000 0.001 0.037 0.002 0.002 0.015 0.052 0.055 0.002 0.024 0.055 0.038 

*.121 0.004 0.029 0.003 0.055 0.003 0.006 0.021 0.006 0.038 0.006 0.009 0.033 0.024 

*.122 0.004 0.071 0.003 0.030 0.003 0.014 0.009 0.008 0.029 0.014 0.014 0.008 0.010 

*.124 0.001 0.000 0.001 0.033 0.001 0.001 0.013 0.047 0.049 0.002 0.020 0.044 0.030 

*.128 0.001 0.000 0.001 0.033 0.001 0.001 0.013 0.047 0.049 0.002 0.020 0.044 0.030 

*.130 0.003 0.000 0.003 0.130 0.004 0.001 0.045 0.079 0.122 0.002 0.053 0.118 0.069 

*.131 0.003 0.000 0.003 0.113 0.003 0.001 0.043 0.079 0.111 0.002 0.044 0.144 0.078 

*.132 0.003 0.000 0.003 0.123 0.004 0.001 0.047 0.090 0.097 0.002 0.031 0.121 0.070 

*.133 0.001 0.017 0.000 0.012 0.001 0.000 0.016 0.012 0.030 0.000 0.002 0.010 0.013 

*.134 0.016 0.000 0.015 0.107 0.030 0.031 0.042 0.132 0.140 0.032 0.091 0.277 0.120 

*.135 0.003 0.014 0.002 0.049 0.004 0.000 0.042 0.049 0.066 0.001 0.030 0.056 0.039 

*.136 0.003 0.057 0.002 0.061 0.002 0.011 0.020 0.005 0.049 0.011 0.011 0.048 0.032 

*.137 0.032 0.000 0.029 0.108 0.031 0.001 0.045 0.190 0.161 0.002 0.046 0.239 0.150 

*.146 0.001 0.017 0.000 0.012 0.001 0.000 0.016 0.012 0.030 0.000 0.003 0.010 0.013 

*.155 0.004 0.014 0.004 0.070 0.005 0.002 0.035 0.099 0.080 0.003 0.034 0.136 0.060 
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*.166 0.006 0.001 0.005 0.117 0.007 0.050 0.059 0.094 0.142 0.051 0.093 0.226 0.119 

*.167 0.003 0.000 0.003 0.059 0.004 0.000 0.027 0.098 0.072 0.001 0.021 0.127 0.069 

*.168 0.001 0.017 0.000 0.012 0.001 0.000 0.015 0.018 0.032 0.000 0.002 0.028 0.014 

*.169 0.004 0.015 0.003 0.061 0.004 0.002 0.022 0.028 0.054 0.003 0.017 0.050 0.036 

*.200 0.001 0.017 0.000 0.012 0.001 0.000 0.016 0.012 0.030 0.000 0.002 0.010 0.013 

*.201 0.001 0.017 0.000 0.012 0.001 0.000 0.016 0.012 0.030 0.000 0.002 0.010 0.013 

*.202 0.001 0.017 0.000 0.012 0.001 0.000 0.016 0.012 0.030 0.000 0.002 0.010 0.013 

*.203 0.001 0.017 0.000 0.012 0.001 0.000 0.016 0.012 0.030 0.000 0.002 0.010 0.013 

*.204 0.001 0.017 0.000 0.012 0.001 0.000 0.016 0.012 0.030 0.000 0.002 0.010 0.013 

*.205 0.115 0.000 0.106 0.464 0.110 1.000 0.008 0.001 0.018 1.000 0.644 0.025 0.158 

*.210 0.115 0.000 0.106 0.464 0.110 1.000 0.008 0.001 0.018 1.000 0.644 0.025 0.158 

*.211 0.003 0.216 0.002 0.048 0.003 0.005 0.030 0.039 0.146 0.006 0.037 0.058 0.055 

*.212 0.001 0.016 0.000 0.032 0.001 0.000 0.024 0.069 0.063 0.000 0.028 0.054 0.027 

*.213 0.026 0.001 0.023 0.096 0.024 0.013 0.035 0.085 0.135 0.013 0.044 0.192 0.101 

*.214 1.000 0.001 0.917 0.071 0.955 0.115 0.004 0.004 0.012 0.116 0.086 0.019 0.197 

*.215 0.808 0.001 0.740 0.075 0.771 0.095 0.010 0.063 0.041 0.096 0.124 0.078 0.195 

*.219 1.000 0.001 0.917 0.071 0.955 0.115 0.004 0.004 0.012 0.116 0.086 0.019 0.197 

*.220 0.003 0.002 0.005 0.002 0.003 0.003 0.001 0.003 0.001 0.000 0.003 0.003 0.001 

*.221 1.000 0.001 0.917 0.071 0.955 0.115 0.004 0.004 0.012 0.116 0.086 0.019 0.197 

*.231 0.004 0.000 0.003 0.057 0.004 0.003 0.030 0.149 0.063 0.004 0.037 0.122 0.061 

*.232 0.020 0.001 0.018 0.076 0.020 0.003 0.029 0.115 0.091 0.004 0.093 0.124 0.087 

*.233 0.007 0.001 0.006 0.043 0.008 0.003 0.043 0.057 0.097 0.004 0.049 0.121 0.075 

*.234 1.000 0.001 0.917 0.071 0.955 0.115 0.004 0.004 0.012 0.116 0.086 0.019 0.197 

*.236 0.018 0.000 0.016 0.071 0.018 0.000 0.020 0.035 0.081 0.001 0.034 0.122 0.056 

*.237 0.003 0.002 0.005 0.002 0.003 0.003 0.001 0.003 0.001 0.000 0.003 0.003 0.001 

*.238 0.003 0.002 0.005 0.002 0.003 0.003 0.001 0.003 0.001 0.000 0.003 0.003 0.001 

*.243 0.018 0.006 0.016 0.121 0.025 0.024 0.054 0.167 0.159 0.024 0.114 0.284 0.162 

*.244 0.003 0.000 0.003 0.070 0.004 0.013 0.026 0.080 0.115 0.013 0.064 0.121 0.063 

*.245 0.002 0.000 0.002 0.032 0.002 0.001 0.013 0.042 0.032 0.001 0.016 0.037 0.030 

*.246 0.007 0.056 0.006 0.078 0.053 0.020 0.020 0.063 0.089 0.021 0.042 0.140 0.066 

*.247 0.014 0.002 0.011 0.015 0.011 0.010 0.005 0.012 0.067 0.013 0.017 0.083 0.033 

*.248 0.008 0.001 0.006 0.113 0.009 0.003 0.034 0.109 0.058 0.004 0.069 0.172 0.085 
 

Table C.2: The similarity matrix of users according to requested ips for the part from *.78 user to *.97 user 

 *.78 *.8 *.80 *.81 *.82 *.88 *.9 *.97 

*.10 0.011 0.027 0.002 0.006 0.019 0.002 0.004 0.018 

*.12 0.006 0.014 0.020 0.005 0.018 0.004 0.009 0.011 

*.17 0.009 0.002 0.000 0.000 0.038 0.000 0.001 0.010 

*.21 0.030 0.427 0.015 0.006 0.100 0.004 0.009 0.035 

*.23 0.070 0.024 0.091 0.654 0.002 0.978 0.053 0.011 

*.31 0.065 0.003 0.084 0.610 0.040 0.911 0.050 0.020 

*.44 0.071 0.003 0.092 0.663 0.003 0.991 0.054 0.012 
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*.5 0.000 0.063 0.117 0.000 0.000 0.001 0.016 0.000 

*.55 0.065 0.002 0.084 0.608 0.002 0.909 0.049 0.010 

*.6 0.336 0.025 0.370 0.071 0.167 0.071 0.233 0.118 

*.60 0.069 0.002 0.088 0.634 0.003 0.947 0.051 0.024 

*.65 0.586 0.013 0.797 0.076 0.000 0.114 0.425 0.019 

*.7 0.044 0.007 0.014 0.015 0.052 0.004 0.018 0.055 

*.70 0.023 0.039 0.001 0.003 0.174 0.004 0.002 0.138 

*.71 0.074 0.043 0.025 0.027 0.162 0.012 0.010 0.159 

*.72 0.586 0.013 0.796 0.077 0.001 0.115 0.425 0.020 

*.75 0.400 0.013 0.513 0.058 0.050 0.086 0.287 0.115 

*.76 0.133 0.005 0.020 0.032 0.217 0.025 0.031 0.219 

*.77 0.143 0.017 0.126 0.156 0.128 0.198 0.078 0.121 

*.78 1.000 0.008 0.467 0.098 0.027 0.070 0.249 0.031 

*.8 0.008 1.000 0.010 0.002 0.041 0.003 0.008 0.005 

*.80 0.467 0.010 1.000 0.061 0.000 0.091 0.338 0.016 

*.81 0.098 0.002 0.061 1.000 0.006 0.658 0.036 0.012 

*.82 0.027 0.041 0.000 0.006 1.000 0.002 0.001 0.176 

*.88 0.070 0.003 0.091 0.658 0.002 1.000 0.053 0.017 

*.9 0.249 0.008 0.338 0.036 0.001 0.053 1.000 0.058 

*.97 0.031 0.005 0.016 0.012 0.176 0.017 0.058 1.000 

*.100 0.095 0.065 0.017 0.060 0.227 0.014 0.038 0.276 

*.101 0.009 0.887 0.011 0.002 0.005 0.003 0.014 0.008 

*.107 0.035 0.011 0.001 0.005 0.073 0.011 0.002 0.063 

*.108 0.041 0.011 0.025 0.013 0.054 0.024 0.057 0.107 

*.109 0.028 0.006 0.001 0.009 0.067 0.013 0.017 0.110 

*.110 0.068 0.003 0.012 0.010 0.122 0.011 0.024 0.115 

*.111 0.053 0.011 0.052 0.034 0.099 0.007 0.042 0.128 

*.112 0.097 0.006 0.013 0.026 0.179 0.012 0.049 0.130 

*.113 0.009 0.887 0.011 0.002 0.004 0.003 0.009 0.006 

*.115 0.024 0.009 0.015 0.002 0.069 0.007 0.002 0.062 

*.116 0.050 0.010 0.001 0.002 0.062 0.008 0.002 0.050 

*.118 0.104 0.010 0.001 0.025 0.067 0.008 0.002 0.061 

*.119 0.018 0.009 0.001 0.001 0.051 0.007 0.001 0.040 

*.121 0.006 0.364 0.005 0.008 0.041 0.003 0.004 0.039 

*.122 0.009 0.885 0.011 0.002 0.007 0.003 0.009 0.008 

*.124 0.011 0.010 0.001 0.001 0.051 0.006 0.001 0.040 

*.128 0.011 0.010 0.001 0.001 0.051 0.006 0.001 0.040 

*.130 0.039 0.024 0.016 0.024 0.109 0.008 0.002 0.076 

*.131 0.033 0.023 0.001 0.010 0.157 0.007 0.013 0.101 

*.132 0.079 0.026 0.001 0.010 0.135 0.009 0.002 0.096 

*.133 0.010 0.002 0.000 0.000 0.012 0.000 0.001 0.011 

*.134 0.060 0.015 0.025 0.011 0.134 0.016 0.075 0.231 
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*.135 0.094 0.003 0.021 0.045 0.035 0.003 0.001 0.024 

*.136 0.008 0.710 0.009 0.011 0.059 0.002 0.007 0.039 

*.137 0.043 0.006 0.001 0.035 0.235 0.031 0.012 0.222 

*.146 0.010 0.002 0.000 0.000 0.012 0.000 0.001 0.011 

*.155 0.087 0.005 0.002 0.003 0.045 0.004 0.002 0.058 

*.166 0.099 0.012 0.040 0.048 0.138 0.005 0.023 0.154 

*.167 0.071 0.066 0.000 0.002 0.123 0.003 0.001 0.063 

*.168 0.010 0.013 0.000 0.000 0.042 0.000 0.001 0.014 

*.169 0.011 0.005 0.002 0.003 0.011 0.003 0.002 0.039 

*.200 0.010 0.002 0.000 0.000 0.012 0.000 0.001 0.011 

*.201 0.010 0.002 0.000 0.000 0.012 0.000 0.001 0.011 

*.202 0.010 0.002 0.000 0.000 0.012 0.000 0.001 0.011 

*.203 0.010 0.002 0.000 0.000 0.012 0.000 0.001 0.011 

*.204 0.010 0.002 0.000 0.000 0.012 0.000 0.001 0.011 

*.205 0.586 0.013 0.797 0.076 0.000 0.114 0.425 0.019 

*.210 0.586 0.013 0.797 0.076 0.000 0.114 0.425 0.019 

*.211 0.021 0.271 0.004 0.009 0.078 0.002 0.003 0.040 

*.212 0.024 0.003 0.000 0.000 0.031 0.000 0.001 0.030 

*.213 0.041 0.006 0.035 0.033 0.127 0.025 0.010 0.120 

*.214 0.071 0.003 0.092 0.663 0.002 0.992 0.054 0.011 

*.215 0.080 0.004 0.076 0.536 0.023 0.801 0.045 0.011 

*.219 0.071 0.003 0.092 0.663 0.002 0.992 0.054 0.011 

*.220 0.004 0.006 0.000 0.003 0.003 0.003 0.003 0.002 

*.221 0.071 0.003 0.092 0.663 0.002 0.992 0.054 0.011 

*.231 0.030 0.007 0.002 0.035 0.054 0.004 0.002 0.059 

*.232 0.075 0.007 0.002 0.013 0.058 0.019 0.003 0.085 

*.233 0.034 0.007 0.035 0.033 0.046 0.006 0.003 0.074 

*.234 0.071 0.003 0.092 0.663 0.002 0.992 0.054 0.011 

*.236 0.156 0.005 0.000 0.033 0.028 0.018 0.002 0.047 

*.237 0.004 0.006 0.000 0.003 0.003 0.003 0.003 0.002 

*.238 0.004 0.006 0.000 0.003 0.003 0.003 0.003 0.002 

*.243 0.077 0.014 0.019 0.030 0.147 0.021 0.034 0.184 

*.244 0.085 0.036 0.010 0.002 0.087 0.003 0.018 0.043 

*.245 0.013 0.021 0.001 0.008 0.044 0.002 0.001 0.025 

*.246 0.125 0.008 0.016 0.063 0.010 0.006 0.011 0.055 

*.247 0.012 0.016 0.008 0.009 0.005 0.012 0.010 0.013 

*.248 0.108 0.009 0.003 0.005 0.099 0.007 0.004 0.088 
 


