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  ON THE SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS                               

 

                                                   ABSTRACT 

     

    An approximate method for the solution of non-linear singularly perturbed 

problems for second order ordinary differential equations with a boundary layer is 

studied. The region is divided into two parts as inner and outer regions. The original 

second order singularly perturbed problem is replaced by an asymptotically 

equivalent first order problem and solved in the inner and outer regions. Then, the 

solutions of inner and outer region problems are matched to obtain an approximate 

uniform solution to the original problem.  

 

Keywords : Singular perturbation, boundary layer, matching technique, approximate 

solution, asymptotic expansion, uniform solution 
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         DOĞRUSAL OLMAYAN DİFERANSİYEL DENKLEMLERİN  

                                           ÇÖZÜMÜ ÜZERİNE 

 

 

                                                            ÖZ 

    Sınır tabakaya sahip, ikinci mertebe doğrusal olmayan tekil pertürbe adi 

diferansiyel denklemler için bir yaklaşım metodu çalışıldı. Bölge, iç ve dış bölge 

olarak ikiye bölündü. Orijinal ikinci mertebe tekil pertürbe denklem, asimptotik 

olarak denk birinci mertebe denkleme dönüştürüldü ve iç ve dış bölgelerde çözüldü. 

Daha sonra, iç ve dış bölge problemlerinin çözümleri, orijinal probleme yaklaşık 

düzgün çözüm bulmak için eşlendi.   

 

Anahtar sözcükler : Tekil pertürbasyon, sınır tabaka, eşleme yöntemi, yaklaşık 

çözüm, asimptotik açılım, düzgün çözüm 
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                                                     CHAPTER ONE 

                                                    INTRODUCTION 

        

      Lots of  differential equations which arise as models of physical systems cannot 

be solved analytically. So, we can solve them by means of some numerical methods. 

However if there are some dimensionless parameter in equations, we can solve them 

by using some asymptotic methods and then we have an approximate solution.  

       

      When the methods do not yield an exact closed-form solution of a differential 

equation or when the exact solution is too complicated to be useful, then we should 

try to ascertain the approximate nature of the solution. The first step toward an 

approximate solution is called local analysis (Bender&Orszag, 1978). The methods 

of local analysis are Taylor series solutions, method of Fuchs and Frobenius, method 

of dominant balance, asymptotic series expansions of solutions. 

 

    The purpose of local analysis is to represent the solutions of equations which 

cannot be solved in closed-form as simple expressions in terms of elementary 

functions. The results of a local analysis are valid in a sufficiently small 

neighborhood of a point. Ultimately, a uniform approximation to the behavior of the 

solution over an entire interval may be found by piecing together neighborhoods in 

which the local behavior is known. This piecing-together process uses the techniques 

of global analysis such as Boundary Layer Theory, WKB Theory (named after 

Wentzel, Kramers, Brillouin), Multiple Scale Analysis. (Bender&Orszag,1978) 

 

    Local analysis methods such as Taylor series solution, methods of Fuchs and 

Frobenius method of dominant balance, asymptotic series expansions are powerful 

tools, but they cannot provide global information on the behavior of solutions at two 

distantly separated points. They cannot predict how a change in initial conditions at 

0=x   will affect the asymptotic behavior as ∞→x (Bender&Orszag, 1978). To 

solve such kind problems, we must use the methods of global analysis such as 

Boundary Layer Theory, WKB Theory, Multiple-Scale Theory which are 

perturbative in character. 

1
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    Perturbation theory is a collection of methods for the systematic analysis of the 

global behavior of solutions to differential and difference equations. 

(Bender&Orszag, 1978) 

 

    Boundary layer theory and WKB theory are a collection of perturbative methods 

for obtaining an asymptotic approximation to the solution )(xy  of a differential 

equation whose highest derivative is multiplied by a small parameter (perturbing 

parameter) .ε Solutions to such equations usually develop regions of rapid variation 

as 0→ε . If the thickness of these regions approaches 0 as 0→ε , they are called 

boundary layers, and boundary layer theory may be used to approximate )(xy . If the 

extent of these regions remains finite as 0→ε , we must use WKB theory. For 

linear equations boundary layer theory is special case of WKB theory, but boundary 

layer theory also applies directly to nonlinear equations while WKB theory does not. 

(Bender&Orszag, 1978) 

       

    Multiple scale theory is used when ordinary perturbative methods fail to give a 

uniformly accurate approximation to )(xy  for both small and large values of x. 

Some (although not certainly all) perturbation problems which yield to boundary 

layer or WKB analysis can also be solved using multiple-scale analysis. 

(Bender&Orszag, 1978) 

 

    WKB theory, is a powerful tool for obtaining a global approximation to the 

solution of a linear differential equation whose highest derivative is multiplied by a 

small parameter ε  ; it contains boundary layer theory as a special case. 

(Bender&Orszag, 1978) 

 

    Singularly perturbed differential equations arise in modelling of various physical 

processes. Equations of this type typically exhibit solutions with layers; that is, the 

domain of the differential equation contains narrow regions where the solution varies 

very fast whereas away from this region the solution behaves smoothly and varies 

slowly. To handle this type of problem, the basic idea is, to divide the domain of 

integration into inner and outer regions. 
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    A detailed discussion on the analytic theory of singular perturbation problem is 

given by Bender&Orszag (1978), Bush (1992), Hinch (1991), Holmes(1995), 

Johnson (2005), Nayfeh (1993), Nayfeh (1973), O’Malley  (1991), Simmonds & 

Man (1998). Solving singular perturbation problems by using numerical methods 

have been suggested ((Kadalbajoo & Reddy, 1988), (Kadalbajoo & Kumar, 2008)). 

A singular perturbation boundary value problem depending on a parameter λ  have  

studied and numerical results have obtained (Amiraliyev & Duru, 2005). Series 

solutions of boundary layer flows with nonlinear Navier boundary conditions have 

obtained by means of the homotopy analysis method  (Cheng, Liao, Mohapatra & 

Vajravelu, 2008). 

 

    In this thesis, we investigate mainly finding approximate analytic solutions of 

nonlinear singularly perturbed initial value problems and boundary value problems 

for second order ordinary differential equations with a boundary layer.    

 

    In Chapter Two, we give some basic concepts in asymptotic analysis, such as 

gauge functions, order symbols, asymptotic sequences and asymptotic expansions. 

 

    In Chapter Three, we give general information about perturbation theory and 

matching process.  

     

    In Chapter Four, we give detailed information about the boundary layer theory 

which is the main part of the thesis and some illustrative examples. 

 

    In Chapter Five, the applications of the boundary layer theory are presented for 

chosen nonlinear problems. 
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                                                  CHAPTER TWO 

                        BASIC CONCEPTS IN ASYMPTOTIC ANALYSIS 

 

2.1 Gauge Functions 

       

    We consider the limit of functions such as ( )εf  as ε  tends to zero. This limit 

might depend on whether ε  tends to zero from the right, denoted by +→ 0ε , or 

from the left, denoted by −→ 0ε .  

       

    If the limit of )(εf exists (i.e. , it doesn’t have an essential singularity at 

0=ε such as 1sin −ε  ) , then there are three possibilities (Nayfeh, 1993 ) 

 
 

                 
 
 
 

 
    Therefore, to narrow down the above classification, we subdivide each class 

according to the rate at which they tend to zero or infinity. To accomplish this, we 

compare the rate at which these functions tend to zero or infinity with the rate at 

which known functions tend to zero and infinity. These comparison functions are 

called gauge functions. The simplest and most useful of these are powers of ε  

                                                         ,...,,,1 32 εεε  

and the inverse powers of  ε  

                                                    ,...,,, 4321 −−−− εεεε  

    For small ε , we know that  

                                                ...1 432 >>>>> εεεε  

and  

                                                ...4321 <<<< −−−− εεεε

 

 

( )
( )
( )

∞<<→
⎪
⎭

⎪
⎬

⎫

∞→
→
→

Aas
f

Af
f

0,0
0

ε
ε
ε
ε

4 
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    Let us determine the rate at which the function εsin  tends to zero or infinity. Let 

us use the Taylor series expansion, then we have 

                                               ...
!5!3

sin
53

−+−=
εεεε  

 

so that 0sin →ε  as 0→ε  because 

             

                                    1...
!4!2

1limsinlim
42

00
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−=

→→

εε
ε
ε

εε
    . 

 

    Now let’s look at 
εsin

1
. 
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so that    ∞→
εsin

1
 as 

ε
1

  because 

 

                                   1
...

!3
1

1lim
sin

lim1
sin

1

lim 2000
=

+−
==

→→→ εε
ε

ε

ε
εεε

 

 

 

2.2 Order Symbols 

     

    Instead of saying εsin  tends to zero at the same rate that ε  tends to zero, we say 

εsin  is order ε  as 0→ε  or εsin  is big ‘oh’ of ε  as 0→ε  and we write it as 

)(sin εε O=  as 0→ε . (Nayfeh, 1993) 

    Let us define big oh “O” , and little oh “o” symbols. 
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    If  

                                        ( ) ∞<<=
→

kk
g
f 0,)(lim

0 ε
ε

ε
 

then we can write that   

                                    ( ) ( )[ ]εε gOf =      as      0→ε    

 

    Let us give some examples. 

                                                   
( )
( )

( )21cos

sin
1cos

εε

εε
ε

O

O
O

=−

=
=

 

 
    Now let us define little oh “o” .  

    If  

                                                         ( ) 0)(lim
0

=
→ ε

ε
ε g

f
 

then we can write that 

                                               ( ) ( )[ ]εε gof =      as      0→ε  

    Let us give some examples. 

                                                         ( )1cos

)1(sin
−=

=

εε

ε

o

o
 

 
    In the definitions of big oh “O” and little oh “o” , the functions ( )εg  are gauge 
functions. 
 
  

     Also, if  

 

 

 

then we say that f is asymptotic to g as   0→ε   and we write  

 

 

 

 

( )
( ) 1lim

0
=

→ ε
ε

ε g
f

( ) ( )εε gf ~
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      Thus     22 2
1~

23
1

xx+
        as  ∞→x  

 

 

2.3 Asymptotic Sequences 

         

    The set of functions  

 

is an asymptotic sequence as ax → , if  

                                          ( ) ( )[ ]xox nn φφ =+1     as    ax →  

for every n . (Johnson, 2005) 

 

    Some examples for asymptotic series are 

                                       ( ) ( )nn
n

n εεεε sin,ln,, 3 −  

 

2.4. Asymptotic Expansions 

     

    The series of terms written as  

                                                    ( ) ( )∑
=

++
N

n
nnn Oxc

0
1φφ    , 

where the nc  are the constants, is an asymptotic expansion of ( )xf  , with respect to 

the asymptotic sequence ( ){ }xnφ  if, for every 0≥N  , 

                                 ( ) ( ) ( )[ ]xoxcxf n

N

n
nn φφ =− ∑

=0
     as     ax →  . 

If this expansion exists, it is unique in that the coefficients, nc , are completely 

determined. (Johnson, 2005) 

 

    Clearly , an asymptotic series is a special case of an asymptotic expansion. 

            ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −

4
sin

4
cos2~0

ππ
π

xvxu
x

xJ    as  ∞→x  

( ){ } ,...2,1,0, =nx
nφ
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where  

                         
( )

( ) ...
!3.2.4
5.3.1

2.4
1

...
!4.2.4
7.5.3.1

!2.2.4
3.11

333

222

444

2222

222

22

+−=

++−=

xx
xv

xx
xu

 

 

is an asymptotic expansion of Bessel’s function.
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                                                  CHAPTER THREE 

                                            PERTURBATION THEORY 

 

    Perturbation theory is a collection of methods for the systematic analysis of the 

global behavior of solutions to differential and difference equations. The general 

procedure of perturbation theory is to identify a small parameter, usually denoted by 

ε , such that when 0=ε  the problem becomes soluble. The global solution to the 

given problem can then be studied by a local analysis about 0=ε . For example, the 

differential equation                                                                                             

y
x

y ⎟
⎠
⎞

⎜
⎝
⎛

+
+=′′ 21

1 ε
                                                   

can only be solved in terms of elementary functions when 0=ε . A perturbative 

solution is constructed by local analysis about  0=ε  as a series of powers of ε ; 

                                      ...)()()()( 2
2

10 +++= xyxyxyxy εε                                

     

This series is called a perturbation series. It has a property that )(xyn  can be 

computed in terms of )(),...,(),( 10 xyxyxy n  as long as the problem obtained by 

setting 0=ε ,   yy =′′  is soluble, which it is in this case. Notice that the 

perturbation series for )(xy  is local in ε  but that it is global in x . If ε  is very 

small, we expect that )(xy  will be well approximated by only a few terms of the 

perturbation series. (Bender&Orszag, 1978)   

       

    The thematic approach of perturbation theory is to decompose a given problem 

into an infinite number of relatively easy ones. (Bender&Orszag, 1978) 

       

    In perturbation theory, it is convenient to have an asymptotic order relation that 

express the relative magnitudes of two functions more precisely than << but less 

precisely than ~ . We define  

                                           [ ] 0,)()( xxxgOxf →=

 

 

9 
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and say that )(xf  is at most of order )(xg  as 0xx → or )(xf  is O  of )(xg  as 

0xx →  , if   
)(
)(

xg
xf

  is bounded for x near 0x  , that is M
xg
xf

<
)(
)(

  for some 

constant M   if x  is sufficiently close to 0x . Observe that if )(~)( xgxf  or if 

)()( xgxf <<  as 0xx → ,then [ ])()( xgOxf =  as 0xx → . If  gf <<  as 0xx → , 

then any M > 0  satisfies the definition, while if gf ~   ( 0xx → )  only 1>M  can 

work. (Bender&Orszag, 1978) 

 

    In perturbation theory we may calculate just a few terms in a perturbation 

series. Whether or not this series is convergent, the notation ‘O’ is very useful for 

expressing the order of magnitude of the first neglected term when that term has not 

been calculated explicitly. (Bender&Orszag, 1978) 

 

3.1 What is a perturbation problem? 

 

We called an equation presenting a physical process a perturbation problem if it 

depends on a small dimensionless parameter ε    . 

There are two types of perturbation problems: 

i)Regular perturbation problem 

ii)Singular perturbation problem  

 

We define a regular perturbation problem as one whose perturbation series is a 

power series in ε  having a nonvanishing radius of convergence. A basic feature of 

all regular perturbation problems is that the exact solution for small but nonzero ε  

smoothly approaches the unperturbed or zeroth-order solution as 0→ε .  We define 

a singular perturbation problem as one whose perturbation series either does not take 

the form of a power series or , if it does the power series has a vanishing radius of 

convergence. (Bender&Orszag,1978) 
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3.2 Example  

 

(Approximate solution of an initial value problem) (Bender&Orszag, 1978) 

    Consider the initial-value problem 

         1)0(,1)0(,)( =′==′′ yyyxfy                                         (3.1) 

where )(xf   is continuous. This problem has no closed-form solution except for 

very special choices for )(xf . Nevertheless, it can be solved perturbatively. 

    First, we introduce an ε in a such way that the unperturbed problem is solvable: 

       1)0(,1)0(,)( =′==′′ yyyxfy ε                                   (3.2) 

Second, we assume a perturbation expansion for y(x) of the form 

                             ∑
∞

=
=

0
)()(

n
n

n xyxy ε                                                                     (3.3) 

where 1)0(,1)0( 00 =′= yy  and 

           )1(0)0(,0)0( ≥=′= nyy nn . 

       

    The zeroth order problem 0=′′y  is obtained by setting 0=ε  and the solution 

which satisfies the initial conditions is xy +=10  . The nth order problem ( )1≥n  is 

obtained by substituting (3.3) into (3.2) and setting the coefficient of nε  ( )1≥n  

equal to 0. The result is  

                ( ) ( ) ( ) 000,1 =′==″ − nnnn yyxfyy                                             (3.4) 

       

    Observe that perturbation theory has replaced the intractable differential equation 

(3.1) with a sequence of inhomogeneous equations (3.4). In general, any 

inhomogeneous equation may be solved routinely by the method of variation of 

parameters whenever the solution of the associated homogeneous equation is known. 

Here the homogeneous equation is precisely the unperturbed equation. Thus, it is 

clear why it is so crucial that the unperturbed equation is soluble. 

     

    The solution to (3.4) is 
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                                        1,)()( 1
00

≥= −∫∫ nsysfdsdty n

tx

n                          (3.5) 

Equation (3.5) gives a simple iterative procedure for calculating successive terms in 

the perturbation series (3.3). 

...)()1()()()1(1)(
0000

2

00

++++++= ∫∫∫∫∫∫ ufududvsfdsdtsfsdsdtxxy
vstxtx

εε     (3.6)                        

      Third, we must sum this series. It is easy to show that when N is large, the Nth 

term in this series is bounded in absolute value by  )!2/()1(2 NxKx NNN +ε  , where 

K is an upper bound for )(tf  in the interval  xt ≤≤0  . Thus the series (3.6) is 

convergent for all x. We also conclude that  if  Kx2  is small, then the perturbation 

series is rapidly convergent for 1=ε  and an accurate solution to the original 

problem may be achieved by taking only a few terms. 

 

3.3 Asymptotic Matching 

   

    Asymptotic matching is an important perturbative method which is used often in 

both boundary layer theory and WKB theory to determine analytically the 

approximate global properties of the solution to a differential equation. Asymptotic 

matching is usually used to determine a uniform approximation to the solution of a 

differential equation and to find other global properties of differential equations such 

as eigenvalues. Asymptotic matching may also be used to develop approximations to 

integrals. (Bender&Orszag, 1978) 

     

      The principle of asymptotic matching is simple. The interval on which a 

boundary value problem is posed is broken into a sequence of two or more 

overlapping subintervals. Then, on each subinterval perturbation theory is used to 

obtain an asymptotic approximation to the solution of the differential equation valid 

on this interval. Finally, the matching is done by requiring that the asymptotic 

approximations have the same functional form on the overlap of every pair of 

intervals. This gives a sequence of asymptotic approximations to the solution of the 

differential equation; by construction , each approximation satisfies all the boundary 
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conditions given at various points on the interval. Thus, the end result is an 

approximate solution to a boundary value problem valid over the entire interval. 

(Bender&Orszag, 1978) 

 

3.3.1 Van Dyke’s Matching Principle 

     

    According the Van Dyke’s matching rule; 

     

    The m-term inner expansion of (the n-term outer expansion) equals the n-term 

outer expansion of (the m-term inner expansion)                                                  (3.7)                          

 

where m and n may be any two integers that need not to be equal. To determine the 

m-term inner expansion of the (n-term outer expansion) , we rewrite the first n-terms 

of the outer expansion in terms of the inner variable, expand it for small ε  with the 

inner variable being kept fixed, and truncate the resulting expansion after m-terms, 

and conversely for the right hand side of (3.7). (Nayfeh, 1993)            
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                                                     CHAPTER FOUR 

                                          BOUNDARY LAYER THEORY 

 

    Bender&Orszag (1978) noted that, the general perturbative methods are necessary 

to perform global analysis. There are three specific analytic techniques of global 

approximation theory; boundary layer theory, WKB theory and multiple scale 

analysis. And the most elementary one of the perturbative methods for solving a 

differential equation whose highest derivative is multiplied by the perturbing 

parameter, is the boundary layer technique. 

 

    Boundary layer theory is first studied by Prandtl. 

 

    Prandtl noted that when a fluid of low viscosity such as air or water flows about an 

obstacle, the ratio of viscous to inertial forces is small everywhere except in a narrow 

layer near the boundary of the obstacle. Using this observation, he was able to 

simplify considerably the analysis of the governing Navier-Stokes equations. His 

idea was that there is a region far from the obstacle where the flow is essentially the 

like the flow of an inviscid fluid. On the other hand, near the obstacle, where 

viscosity plays an important role in making the velocity equal to zero on the surface, 

the velocity changes much more rapidly along a perpendicular to the surface than 

along the surface itself. This suggests that we introduce the boundary layer as a short 

interval within which the solution of the differential equation changes very rapidly. 

(Simmonds and Man,1998) 

 

 

4.1 What is a boundary layer?    

      What is a boundary layer problem? 

     

    A boundary layer is a narrow region where the solution of a differential equation 

changes rapidly. By definition,the thickness of a boundary layer must approach zero 

as 0→ε . (Bender&Orszag, 1978) 

 

 

14 
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    Boundary layer problem is one of the types of singular perturbation problem. 

     

    If the highest derivative in the equation is multiplied by a small parameter ε , then 

this equation is called a boundary layer problem. 

 

    We give a simple boundary layer problem whose solution exhibits boundary layer 

structure. 

 

4.2 Example 

     

    We give an exactly solvable boundary layer problem whose solution exhibits 

boundary layer structure.  (Bender&Orszag,1978) 

 

 

 

    The exact solution of this equation is 

               

                                                                          

                                                                                                                                 (4.2) 

 

    In the limit +→ 0ε  , this solution becomes discontinuous at 0=x . For very 

small ε  the solution )(xy  is slowly varying for 1≤<< xε  . However, on the small 

interval ( )εOx ≤≤0   ( +→ 0ε ) it has an abrupt and a rapid change. This small 

interval of rapid change is called a boundary layer. (The notation ( )εOx ≤≤0  

means that the thickness of the boundary layer is proportional to ε  as +→ 0ε .) 

The region of slow variation of )(xy  is called the outer region and the boundary 

layer region is called the inner region.   

 

    Boundary layer theory is a collection of perturbation methods for solving 

differential equations whose solution exhibit boundary layer structure. When the 

solution to a differential equation is slowly varying except in isolated boundary 

layers, then it may be relatively easy to obtain a leading-order approximation to that 

( ) ( ) ( ) )1.4(11,00,01 ===+′++′′ yyyyy εε

( )
ε

ε

1
1 −−

−−

−

−
=

ee

eexy

x
x
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solution for small ε  without directly solving the differential equation. 

(Bender&Orszag, 1978) 

       

    There are two standart approximations that one makes in boundary layer theory. 

In the outer region (away from the boundary layer) ( )xy  slowly varying, so it is 

valid to neglect any derivatives of  ( )xy  which are multiplied by ε  . Inside a 

boundary layer the derivatives of  ( )xy  are large, but the boundary layer is so 

narrow that we may approximate the coefficient functions of the differential 

equations by constants. Thus we can replace a single differential equation by a 

sequence of much simpler approximate equations in each of several inner and outer 

regions. In every region the solution of the approximate equation will contain one or 

more unknown constants of integration. These constants are then determined from 

the boundary and initial conditions using technique of asymptotic matching. 

(Bender&Orszag, 1978) 

 

    We explain these ideas by the following initial value problem. 

 

4.3 Example   

 

(First order nonlinear boundary value problem)  (Bender&Orszag, 1978) 

    Consider the differential equation,               

                         ( )
ε

ε 1)1(, ==+′− − yexyyyx x                             (4.3)     

We wish to determine a leading order perturbative approximation to )0(y  as 

+→ 0ε .        

       

    Although this is only a first order differential equation, it is nonlinear and is much 

too difficult to solve in closed form. However,in regions where y   and y′    are not 

large (such regions are called outer regions), it is valid to neglect yy ′ε  compared 

with xe−  . Thus, in outer regions we approximate the solution to (4.3) by the solution 

to the outer equation 



 17

                                                    x
outout exyyx −=+′  

The equation is easy to solve because it is linear. The solution which satisfies 

ε
1)1( =outy  is 

                                    ( ) x
out exy −+= ln1                                                              (4.4) 

Note that it is valid to impose the initial condition ( )
ε
11 =y   on ( )xyout  because x=1 

lies in an outer region ; x=1 is in an outer region because (4.3) implies that ( ) 01 =′y , 

so ( )1y  and ( )1y′   are of order 1 as  +→ 0ε . 

       

    As +→ 0x , both ( )xyout  and )(xyout′  become larger. Thus, near x=0 the term 

yy ′ε  is no longer negligible compared with xe− . From the  outer solution we can 

estimate that the thickness δ  of the region in which yy ′ε  is not small is given by  

                                          ( )ε
δ
δ O=

ln
   ,   +→ 0ε  

Thus, +→ 0δ   as  +→ 0ε   (in fact ( )εεδ lnO=  as +→ 0ε ) , and there is a 

boundary layer of thickness δ  at 0=x . 

       

    In the boundary layer (the inner region) , x is small so it is valid to approximate 
xe−  by 1. Furthermore, since y varies rapidly in the narrow boundary layer , we may 

neglect xy compared with yx ′  . Hence, in the inner region we approximate the 

solution to (4.3) by the solution to the inner equation 

                                                  ( ) 1=′− inin yyx ε  

This is a linear equation if we regard x as the dependent variable. Its solution is  

                              ( ) iny
in Ceyx ++= 1ε                                                                 (4.5) 

where C is an unkown constant of integration. Since  0=x  is in the inner region, we 

may use (4.5) to find an approximation to 0)0( =y  . 

        

    C  is determined by asymptotically matching the outer and inner solutions (4.4)  
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and (4.5) . Take x small but not as small as δ   , say ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 2

1

εOx  . Then (4.4) implies 

that xyout ln1~ +  as +→ 0ε  and (4.5) implies that inyCex ~  as +→ 0ε . Thus, 

e
C 1
=  and a leading order implicit equation for )0(iny  is  

                          [ ] 1)0(1)0(0 −++= iny
in eyε                                                             (4.6) 

When 1.0=ε  and 0.01 , the numerical solution of (4.6) are 683.1~)0( −iny  and 

942.2~)0( −iny  , respectively. These results compare favorably with the numerical 

solution to (4.3) which gives ( ) 508.1~0 −y  when 1.0=ε  and ( ) 875.2~0 −y  

when 01.0=ε  . For both values of ε  the relative error between the perturbative and 

the numerical solution for )0(y  is about εε ln
2
1

. 

 

4.4 Mathematical structure of boundary layers: inner, outer limits. Thickness of 

boundary layer and intermediate limits 

        

    We take again the boundary value problem (given by (Bender&Orszag, 1978)) in 

section 4.2: 

   

        

which has a boundary layer at x=0 when +→ 0ε .The function  

 

                                                                                                                                 (4.2) 

 

has two components : xe− , a slowly varying function on the entire interval [ ]1,0  , and 

ε
x

e
−

 , a rapidly varying function in the boundary layer ( )δOx ≤   , where ( )εδ O=  

is the thickness of the boundary layer. 

        

    In boundary layer theory we treat the solution y of the differential equation as a 

function of two independent variables, x and ε . The goal of the analysis is to find a 

( ) ( ) ( ) )1.4(11,00,01 ===+′++′′ yyyyy εε

( )
ε

ε

1
1 −−

−−

−

−
=

ee

eexy

x
x
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global approximation to y as a function of x ; this is achieved by performing a local 

analysis of y as +→ 0ε . 

        

    To explain the appearence of the boundary layer we introduce the notion of  an 

inner and outer limit of the solution. The outer limit of the solution (4.2) is obtained 

by choosing a fixed x  outside the boundary layer, that is, 1≤<< xδ ,and allowing 

+→ 0ε . Thus, the outer limit is  

                       x
out exyxy −

+→
=≡ 1

0
)(lim)(

ε
   .                                                         (4.7) 

The difference between the outer limit of the exact solution and the exact solution 

itself, )()( xyxy out−  is exponentially small in the limit 0→ε  when x<<δ . 

        

    Similarly, we can formally take the outer limit of the differential equation (4.1) ; 

the result of keeping x  fixed and letting +→ 0ε  is simply 

                                  0=+′ outout yy                                                                        (4.8) 

which is satisfied by (4.7). Because the outer limit of (4.2) is a first order differential 

equation , its solution cannot in general be required to satisfy both boundary 

conditions 0)0( =y  and 1)1( =y ; the outer limit of (4.2) satisfies 1)1( =y  but not 

0)0( =y . 

       

    In other words, the small ε limit of the solution is not everywhere close to the 

solution of the unperturbed differential equation (4.8) (the differential equation (4.1) 

with 0=ε ). Thus the problem (4.1) is a singular perturbation problem. The singular 

behavior (the appearance of a discontinuity in ( )xy  as +→ 0ε ) occurs because the 

highest order derivative in (4.1) disappears when 0=ε . 

       

    The exact solution satisfies the boundary condition 0)0( =y  by developing a 

boundary layer in the neighborhood of 0=x . To examine the nature of this 

boundary layer, we consider the inner limit in which  +→ 0ε  with ( )εOx ≤ . In 

this case x lies inside the boundary layer at 0=x . For this limit it is convenient to let 

Xx ε=  with X fixed and finite.  X is called an inner variable.  X is a better variable 
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than x to describe y in the boundary layer because, as +→ 0ε , y varies rapidly as a 

function of x but slowly as a function of X. (Bender&Orszag, 1978) 

 

Determination of boundary layer thickness ( )εδ : 

    Lots of boundary layers have the thickness εδ = . But, the thickness of a 

boundary layer need not be of order ε  as +→ 0ε . To determine δ , we will use 

distinguished limits. We now explain the determination of the thickness of boundary 

layer for this problem. 

     

    In the inner region we let, 

      

 

 

 Then 

 

 

 

 

 

 

 

Substituting them into (4.1) , we get 

  

 

 

 

    To determine  ( )εδ  we must compare the coefficient of the highest order 

derivative with the others. That is we consider 

  

  

 

and investigate the following possibilities :  

( )
( ) ( )XYxy

xX

=

+→= 0, ε
εδ

( )

( ) ( ) 2

2

22

2

2

2

11

1

dX
Yd

dx
dX

dX
Yd

dx
dX

dX
dY

dx
d

dx
dy

dx
d

dx
yd

dX
dY

dx
dX

dX
dY

dx
dy

εδεδ

εδ

==

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=

==

( )
( ) ( ) ( )9.40112

2

2 =+++ Y
dX
dY

dX
Yd

εδ
ε

εδ
ε

( ) ( ) ( ) 1,,1,2 εδ
ε

εδεδ
ε
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Case1:  If  

 

 

Hence                         and   ∞→
ε
1

. 

 

Taking                   the other coefficients become                    . 

 

Since the coefficient of the highest derivative is the largest one, this is the case that 

we want. 

 

Case2: If                                                          

 

Hence                        and this coefficient is small. 

 

Taking  ( ) 1~εδ  , the other coefficients become   ( ) 1,1~1
εδ

 .                  

 

Here the coefficient of the highest derivative is smaller than the others and we don’t 

want this situation to occur. 

 

Case3:If                                                                                  

 

 

Hence                          

 

Taking                       the other coefficients become                         . 

 

Here           is much larger than the coefficient of the highest derivative and we don’t  

 

want  also this situation to occur. 

( ) ( ) ( ) ( ) εεδ
εδ
ε

εδεδ
ε ~1~1~2 ⇒⇒

( ) εεδ
ε 1~2

( ) εεδ ~ ( ) 1,1~
εδ
ε

( ) ( ) ( ) 1~~2 εδ
εδ
ε

εδ
ε

⇒

( )
ε

εδ
ε ~2

( )
( ) ( ) εεδεεδ

εδ
ε ~~1~ 2

2 ⇒⇒

( )
1~2εδ

ε

( ) εεδ = ( ) 1,1~1
εεδ

ε
1
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    Finally, we determined that  ( ) εεδ ~   and this choice in (4.9) gives the leading 

order equation, 

                                      ( ) 012

2

=+++ Y
dX
dY

dX
Yd εε  

 

The choice   ( ) εεδ ~  is called a distinguished limit because it involves a nontrivial 

relation (a dominant balance) between two or more terms of the equation 

(4.9).(Bender&Orszag,1978). Here, two terms are of comparable size and  the others 

are smaller. Case2 and Case3 are undistinguished. Generally, only the distinguished 

limit gives a nontrivial boundary layer structure which is asymptotically matchable to 

the outer solution.(Bender&Orszag, 1978) 

     

    After the determination of boundary layer thickness we return our problem. 

     

    It follows from (4.2) that  

             ( ) ( ) ( ) X
inin eeXyXYxy −

+→
−=== 1

0
lim ε
ε

                                                (4.10) 

Taking the inner limit of (15) , +→ 0ε , X fixed, gives 

                        
( ) ( ) 02

2

=+
dX

XdY
dX

XYd inin                                                             (4.11)  

Observe that, the inner limit function (4.10) does satisfy (14.11) together with the 

boundary condition ( ) 00 =inY . 

       

    Boundary layer analysis is extremely useful because it allows us to construct  an 

approximate solution to a given differential equation, when an exact answer is not 

attainable. This is because the inner and outer limits of an insoluble differential 

equation are often soluble. Once iny  and outy  have been determined, they must be 

asymptotically matched. This asymptotic match occurs on the overlap region which 

is defined by the intermediate limit 

+→∞→=→ 0,,0 ε
ε
xXx  . 

A glance at (4.7) and (4.10) shows that the intermediate limits of )(xyout  and 
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( ) ( )XYxy inin =  agree: 

                                            ( ) ( ) eXYxy inXoutx
==

∞→→
limlim

0
 

This common limit verifies the asymptotic match between the inner and outer 

solutions… The above matching condition provides the second boundary condition 

for the solution of (4.11): ( ) eYin =∞ . Observe that although the x region is finite, 

10 ≤≤ x  , the size of the matching region in terms of the inner variable is infinite. 

As we emphasized, the extent of the matching region must always be infinite. 

       

    A main problem in boundary layer theory is the question of whether or not an  

overlap region for any given problem actually exists. Since one’s ability to construct 

a matched asymptotic expansion depend on the presence of this overlap region,its 

existence  is crucial to the solution of the problem. How did we know , for example , 

that the intermediate limits of outy  and inY  would agree? That is , how did we know 

that the inner and outer limits of the differential equation (4.1) have a common 

region of validity? 

     

    To answer these questions we will perform a complete perturbative solution of 

(4.1) to all orders in powers of ε , and not just to leading order. 

 

    Outer solution:  

    First, we examine the outer solution. We seek a perturbation expansion of the 

outer solution of the form  

                 +→∑
∞

=
0,)(~)(

0
εε

n

n
nout xyxy                                             (4.12) 

and restate the boundary condition 1)1( =y  as 

                  ( ) ...,0)1(,0)1(,11 210 === yyy                                                      (4.13) 

Now )(xyout  in (4.12) is not the same as )(xyout  in (4.7) , )(xyout  in (4.7) is the 

first term )(0 xy  in (4.12). 

       

    Substituting (4.12) into (4.1) and collecting powers of ε gives a sequence of  
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differential equations: 

        

 

 

The solution to these equations is  

                                                                                                                               (4.14) 

 

Thus, the leading order outer solution , x
out ey −= 1 , is correct to all orders in 

perturbation theory. This is the reason why in the outer region , ε>>x ,the 

difference between )(xy  and )(xyout  is at most exponentially small (subdominant) : 

( )n
out Oyy ε=−   for all n as +→ 0ε . 

       

      Inner solution: 

      We perform  a similar expansion of the inner solution. We assume a perturbation 

series of the form 

              ( ) ( )∑
∞

=
+→

0
0,~

n
n

n
in XYXY εε                                                  (4.15) 

and restate the boundary condition 0)0( == yYin  as 

                          0,0)0( ≥= nYn                                                                (4.16) 

 

      Substituting (4.15) into (4.10) gives the sequence of differential equations: 

    

 

 

 

These equations may be solved by means of the integrating factor Xe . The results 

are  
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where the nA  are arbitrary integration constants. 

     

    Does this inner solution match asymptotically, order by order in powers of ε , to 

)(xyout ? To see if this is so, we subtitute Xx ε=  into outy  in (4.14) and expand in 

powers of ε : 

                                                                                                                          (4.18)   

 

Returning to equation (4.17),we take X large ( ∞→X ) and obtain   ( ) 00 ~ AXY     

( )∞→X .                                                                                                                            

Thus comparing the first term of (4.18), we have eA =0   ,as we  already know. Now 

that 0Y  is known , we may compute 1Y  from (4.17): 

  

 

Asymptotic matching with outy  (comparing )(1 XY ,when ∞→X , with the  

second term of (4.18)) gives   eA −=1  , so ( ) eXXY −=1  . Similarly,                                           

                                                 

Hence the full expansion is 

    (4.19) 

       

                  

    Evidently, the inner expansion is a valid asymptotic expansion not only for values 

of X inside the boundary layer  ( )1(OX = ) but also for large values of X 

[ ( ) 10, <<= − αε αOX ] . At the same time the expansion for )(xyout  is valid for 

1≤<< xε  ( +→ 0ε ).[ )(xyout  is not valid for ( )εOx =  because it does not satisfy 

the boundary condition ( ) 00 =y ; nor does it have the boundary layer term Xe −1  

which is present in ( )XYin .] We conclude that to all orders in powers of ε  it is 

possible to match asymptotically the inner and outer expansions because they have a 

common region of validity : )0(1 +→<<<< εε x . 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+−== − ...

!3!2
1

3322
1 XXXeexy x

out
εεε

( ) eXeAAXY X −−+= −1)()( 011

nn
n XneXY )]!/1[()( −=

( ) XXX

n

nn
n

in eee
n

XeXY −−−
∞

=
−=−

−
= ∑ 111

0 !
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      We have been able to demonstrate explicitly the existence of the overlap region 

for this problem because it is soluble to all orders in perturbation theory. In general , 

however, such a calculation is too difficult. Instead, our approach will always be to 

assume that an overlap region exists and then to verify the consistency of this 

assumption by performing an asymptotic match. In the above simple boundary value 

problem , we found that the size of the overlap region was independent of the order 

of perturbation theory. In general, however , the extent of the matching region may 

vary with the order of perturbation theory. 

       

    Uniform approximation:  

    Our final point concerns the construction of the uniform approximation to )(xy . 

The formula used to construct a uniform approximation is  

 

 

where )(xymatch is the approximation to y(x) in the matching region and ( )xyunif  is a 

uniform approximation to  y(x)… For the boundary layer solution to (4.1) , it is easy 

to verify that if  )(xyout  , ( )xyin   and ( )xymatch   are calculated to nth order in 

perturbation theory, then it can be shown that 

 

In definition of ( )xyunif  ,                    is defined as 

 

 , 

or 

 

 

      Since ( )xyunif  reproduces the outer expansion in the outer domain and the inner 

expansion in the inner domain, we can say that it is valid everywhere. 

 

Let’s find   ( )( )xyy inout   for this problem. 

 

 

)()()()( xyxyxyxy matchinneroutunif −+=

)10;0()()()( 1 ≤≤+→=− + xOxyxy n
unif εε

)(xymatch

))(()( xyyxy inoutmatch =

))(()( xyyxy outinmatch =
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Hence 

 

 

and    Xx
unif eexy −− −= 11)(    is the finite order uniform approximation to )(xy . 

       

    It is remarkable, however, that this expression, which is the result of summing up 

perturbation theory to infinite order , is actually not equal to )(xy  in (4.2). Thus, 

although the perturbation series for )(xyunif is asymptotic to )(xy  as +→ 0ε , the 

asymptotic series does not converge to )(xy  as n, the order of perturbation theory, 

tends to ∞ ; there is an exponentially small error, of order ε
1−

e , which remains 

undetermined. Boundary layer theory is indeed a singular and, not a regular, 

perturbation theory. 

     

    Why is boundary layer theory a singular perturbation theory? The singular nature 

of boundary layer theory is intrinsic to both the inner and outer expansions. The outer 

expansion is singular because there is an abrupt change in the order of the differential 

equation when 0=ε . By contrast, the inner expansion is a regular perturbation 

expansion for finite X. However, since asymptotic matching takes place in the limit 

∞→X , the inner expansion is also singular. Another manifestation of the singular 

limit 0→ε  is the location of the boundary layer in (4.2); when the limit +→ 0ε  is 

replaced by −→ 0ε , the boundary layer abruptly jumps from x=0  to x=1. 

 

4.5 Higher Order Boundary Layer Theory 

    

    In sections  4.1  and  4.4  we formulated the procedure for finding  the leading- 

order boundary layer approximation to the solution of an ordinary differential 

equation , i.e. , to obtain outer and inner solutions and then asymptotically match 
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them in an overlap region. The self-consistency of boundary layer theory depends on 

the success of asymptotic matching. Ordinarily, if the inner and outer solutions 

match to all orders in ε , then boundary layer theory gives an asymptotic 

approximation to the exact solution of the differential equation. (Bender&Orszag, 

1978) 

 

    We will solve one problem in Chapter Five, to illustrate how boundary layer 

theory is used to construct higher order approximations.  
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                                                     CHAPTER FIVE 

                             NONLINEAR BOUNDARY LAYER PROBLEMS 

 

    Boundary layer analysis applies to nonlinear as well as linear equations.   

(Bender&Orszag, 1978) 

     

    In this section, first of all, we give an example for nonlinear problems. Then we 

will give three nonlinear problems that we solved. 

 

5.1 Example   

     

    Boundary layer analysis of a nonlinear problem (Bender&Orszag, 1978) 

     

    We consider the following nonlinear boundary value problem of a type first 

proposed by Carrier: 

           ( ) ( ) ( ) 011,112 22 ==−=+−+′′ yyyyxyε                                            (5.1) 

 

    If we attemp a leading order boundary layer analysis of (5.1), we are immediately 

surprised to find that the outer equation obtained by setting 0=ε  is an algebraic 

equation rather than a differential equation: 

                                    ( ) 0112 22 =−−+ outout yxy  

Because this equation is quadratic, it has two solutions 

                            ( ) )1(11 22
, xxxyout −+±−=±                                                 (5.2) 

In Figure 1 we plot the two outer solutions. Observe that neither one satisfies the 

boundary conditions at 1±=x . Therefore, there must be boundary layers at 1−=x  

and 1+=x  which allow the boundary conditions to be satisfied. The question is, 

which of the two outer solutions can be joined the inner solutions which satisfy the 

boundary conditions? 
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                  Figure 1  Exact solution for the nonlinear  boundary value  

                      problem in (5.1) for 01.0=ε . Also shown are the two outer  

                      approximations ±,outy  in (5.2) 

 

    Let us examine the boundary layer at 1=x . If we substitute the inner variables 

( ) )()(,1 xyXYxX in =
−

=
δ

 into (5.1) , we obtain in leading order 

                                               ( ) 012
2

2

2

=−+ in
in Y

dX
Yd

ε
δ

 

Thus, the distinguished limit is εδ = . The solution to the leading order inner 

equation 

                                      ( ) 012
2

2

=−+ in
in Y

dX
Yd

                                                        (5.3) 

must satisfy the boundary condition ( ) 00 =inY  and match asymptotically with one 

(or both) of the outer solutions. That is, inY  must approach either 1±  as +∞→X . 

     

    Is it possible for inY  to approach 1 as +∞→X ? Suppose we let  )(1 XWYin += . 

If 1→inY , then ( ) 0→XW  and we can replace (5.3) with the approximate linear 

equation 02 =+′′ WW . However, solutions to this equations oscillate as  +∞→X  
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and do not approach to 0. This simple analysis shows that it is not possible for inY  to 

match to +,outy  in (5.2). 

    Fortunately, the same argument suggests that it is possible for  inY  to match to 

−,outy . Let  )(1 XWYin +−= . Now if 1−→inY  then 0→W  and we can replace 

(5.3) by the approximate linear equation 02 =−′′ WW . Since this equation has a 

solution which decays to 0 exponentially , it is at least consistent to assume that inY  

matches asymptotically with −,outy . 

     

    Having established this much, let us solve the inner equation exactly. Substituting 

)(1 XWYin +−=  into (5.3) gives the autonomous equation  

                                 022 =−+′′ WWW                                                                (5.4) 

subject to the boundary conditions ( ) ( ) 10,0 ==∞ WW . Also since we expect W 

to decay exponentially as  +∞→X , we may assume that ( ) 0=∞′W . To solve 

(5.4) we multiply by ( )XW ′ , integrate the equation once, and determine the 

integration constant by setting ∞=X . We obtain   

                                       ( ) 0
3
1

2
1 232 =−+′ WWW ,  

which is a separable first order equation: 

                                          dX
WW

dW
±=

−
3

22
     

integrating this equation gives  

                               CXW
+±=−− −

3
1tanh2 1  

The integration constant is determined by the requirement that 1=W   at 0=X . 

Hence, there are two solutions: 

         ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+±+−= −

3
2tanh

2
sec31 12 XhXYin                                             (5.5) 
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There are two inner solutions at 1−=x  which satisfy the boundary condition 

0)1( =−y  and match to the lower outer solution −,outy  in (5.2). 

     

    We can combine the outer with the two inner solutions to form a single uniform  

approximation valid over the entire interval   11 ≤≤− x   : 

    

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
±+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
±+−+−−=

−

−

3
2tanh

2
1sec3

3
2tanh

2
1sec3)1(11)(

12

1222

ε

ε

xh

xhxxxyunif

                   (5.6)                        

 

Notice that the solution in (5.6) is not unique. There are actually four different 

solutions depending on the two choices of plus or minus signs in in the boundary 

layer. For one of the choice of sign, ( )xyunif   in the boundary layer rapidly descends 

from its boundary value ( ) 01 =±y   until it joins on the outer solution  −,outy . For 

the other choice of sign ,  ( )xyunif  rises  rapidly until it reaches a maximum and then 

descends and joins onto the outer solution. It is easy to see that this maximum value 

of   unify    is 2 because the maximum value of sech is 1. It is a glorious triumph of 

boundary later theory that all four solutions actually exist and are extremely well 

approximated by the leading order uniform approximation in (5.6). See Figures 1 to 

3. 

 

    The analysis does not end here, however. The existence of four solutions to (5.1) 

may lead one to wonder if there are stil more solutions. One may begin by asking 

whether there can be any internal boundary layers. We will now show that internal 

boundary layers are consistent. 

 

    Assume there is an internal boundary layer at 0=x . The thickness of such a 

boundary layer is εδ = . The leading-order equation is  

                                               ( ) 12 2 =++′′ ininin YYXY                                          (5.7) 
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Since ( ) 210, −−=−outy  , the boundary condition on inY  in (5.7) are 

( ) 21lim −−=
±∞→

XYinX
 . The exact solution to (5.7) which satisfies these boundary 

conditions contains an arbitrary parameter A : 

                               21/2sec23 4
12 −−⎟

⎠
⎞⎜

⎝
⎛ +=

−
AxhYin ε                            

Noted that if ±∞=A  then there is no internal boundary-layer structure. However, 

for all finite values of A  there is a narrow region in which Y  rises abruptly to a sharp 

peak at which it attains a maximum value of 8.1~122 −   …. In fact, in Figs 4 to 6           

we see that for each solution in Figs. 1 to 3  there is another solution which is almost 

identical except that it exhibits a boundary layer at 0=x . What is more, the 

maximum in the boundary layer is close to 1.8 . 
                                 

 

 

 

             

                             

                             Figure 2  A different solution for the equation as in Figure 1.  

                            unify becomes a good approximation to the plotted solution for  

                             the upper choice of sign.  
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                  Figure 3  Same differential equation as in Figure 1. unify  in (5.6) is 

                      a good approximation to the plotted solution for one upper sign and  

                      one lower sign. There is also another solution which is the reflection  

                      about the y  axis of the one shown here.  
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                  Figure 4  An exact solution to the boundary value problem in (5.1). Apart  

                      from the internal boundary layer at 0=x , this solution is nearly  

                      identical  to the solution in Figure 1. The outer  approximation ( )xyout −,  

                      in (5.2) is a good approximation to ( )xy   between the boundary layers. 
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                  Figure 5  An exact solution to the boundary value problem in (5.1).  

                     Apart from the internal boundary layer at 0=x , this solution is nearly  

                      identical to that in Figure 2. 
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               Figure 6 An exact solution to the boundary value  problem in (5.1).  

                  Apart from the internal boundary layer at 0=x , this solution is  

                  nearly identical to  that in Figure 3 reflected about the y axis. 

 

5.2 Problems and Solutions 

 

    Here, we give three nonlinear problems that we solved. 

 

5.2.1  Problem 1 

     

    This problem is given in Bender&Orszag (1978) with leading order analysis. Now 

we will find its two-term approximate solution. 

     

    We consider the boundary value problem 

                                                     02 =+′+′′ yeyyε                                               (5.8) 

                                                       ( ) ( ) 010 == yy                                                 (5.9) 

where the small parameter ε ,  10 <<< ε  , multiplies the highest derivative, and 

hence, a boundary layer is expected.  
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    If ye  were a linear function of y , there would be a boundary layer at x=0 (and no 

boundary layer at x=1) because the coefficient of y′  is positive. This nonlinear 

problem also has just one boundary layer at x=0. (Bender&Orszag, 1978) 

         

    Let us write an expansion for y(x) as      

                                           ....)()()( 10 ++= xyxyxy ε                                        (5.10) 

and then substitute it into  (5.8).   

                           ( ) 0...2...)( ...
1010

10 =+⎟
⎠
⎞⎜

⎝
⎛ +′+′++″+″ ++ yyeyyyy εεεε  

Now, we will collect the terms w.r.t  ε  power and we will solve the differential 

equation that we get. 

                             

( )

( )
( )

0)(22

0......122

0.........22

0...22

2
1100

1101
2

0

101
2

0

...
101

2
0

00

0

10

10

=+⎟
⎠
⎞⎜

⎝
⎛ +′+″+⎟

⎠
⎞⎜

⎝
⎛ +′

=++++′+′+″+″
=++′+′+″+″

=++′+′+″+″ ++

εε

εεεε

εεε

εεε
ε

ε

Oyeyyey

yeyyyy

eeyyyy

eyyyy

yy

y

yy

yy

 

 

0ε  order :       02 0
0 =+′ yey                                                                                (5.11)                        

1ε  order :       ″−=+′ 011 02 yyey y                                                                       (5.12)                        

     

    After solving these equations, we will have 0y  and 1y . Then we will substitute 

them into (5.10) and hence we will get an approximate solution for ( )xy . But there 

are some important things in our analysis. 

     

    First of all, we have seen that our equations (5.11) and (5.12) are of first order 

while equation (5.8) is of second order. Here, we have two boundary conditions and 

they can’t satisfy two boundary conditions. Because of this, we think that there is a 

boundary layer and our expansion for y(x) is not valid near the boundary layer. Now, 

the important question is “Where is the boundary layer?” and “Which condition must 

be eliminated?”.                                                                                                                                      
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    First of all, let us solve equations (5.11) and (5.12).                                                            

                                                        02 0
0 =+′ yey                                               (5.11)                         

The solution of (5.11) is     

                                                     ⎟
⎠
⎞

⎜
⎝
⎛

+
=

Cx
xy 2ln)(0                                          (5.13)                       

    And , then 

                                                    ″−=+′ 011
02 yyey y                                         (5.12) 

                                  

( )

( )

( )
( )20

0

0

1

1

22ln 0

Cx
xy

Cx
xy

Cx
e

Cx
xy y

+
=″

+
−=′

+
=⇒⎟

⎠
⎞

⎜
⎝
⎛

+
=

  

                                            
( )211

122
Cx

y
Cx

y
+

−=
+

+′⇒            

                                              
( )211

2
11

Cx
y

Cx
y

+
−=

+
+′                                 (5.14)                        

Here                                         

                                         
( )22

1)(,1)(
Cx

xq
Cx

xp
+

−=
+

=  

 

Let us find the integrating factor   

                                   
( )

( ) ( )CxAee

dxduCxuex

aCxu
du

dx
Cx

+===

=+==

++∫

∫
+

ln

1

),(µ
     

Let us multiply both sides of (5.14) with ( )xµ . 
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( )

( )
)(2

)(

)(2

1

11

Cx
AyCxA

dx
d

Cx
AAyyCxA

+
−=+

+
−=+′+

 

                                

( )

( )( )

( )( )DCx
Cx

xy

DCxA
u
duA

dxduCxu
Cx

dxAyCxA

++
+

−=

++−=−=

=+=
+

−=+

∫

∫

ln
)(2

1)(

ln
22

,,
2

1

1

 

     

    Now , it’s time to determine where the boundary layer is. Let us examine the case 

that the boundary layer is near  1=x . Hence the outer solution must satisfy  

0)0( =y  condition.        

                                      

( )

( )

( ) ( ) ( )( )Dx
x

xy

C
C

y

Cx
xy

++
+

−=

=⇒=⎟
⎠
⎞

⎜
⎝
⎛=

⎟
⎠
⎞

⎜
⎝
⎛

+
=

2ln
22

1

202ln0

2ln

1

0

0

 

     

                                ( ) ( ) 2ln02ln
4
1

1 −=⇒=+−= DDxy  

After determining the constants C and D, now we have an expansion for ( )xyout  as 

               ( ) ( ) ( )[ ] ...2ln2ln
22

1
2

2ln +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

+
−+⎟

⎠
⎞

⎜
⎝
⎛

+
= x

xx
xyout ε                (5.15)                       

     

    As we mentioned before, this outer solution is valid on the interval except 

boundary layer. Since this outer solution isn’t valid for boundary layer and the 

solution of (5.8) varies so fast , we need a new variable for boundary layer. We call 

this new variable as “stretched”or “magnified” variable. 
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    Our hypothesis for boundary layer location is that there is a boundary layer near  

x =1. Hence let us introduce our new variables for the region. We call the new 

independent variable as x  and the new dependent variable as y . 

     

    Let us determine the new variables. In the equations that we solved, we use 

Y instead of inY . 

                                           ( ) )()(,1 xyXYxX =
−

=
εδ

                                        (5.16)                        

     

    Since we changed the variables, we must write our equation (5.8) in terms of X  

and Y . To do this change, we must define our new differentiation term. 

   ( ) ( ) ( ) 2

2

22

2

2

2 11,1
dX

Yd
dx
dX

dX
Yd

dx
dy

dx
d

dx
yd

dX
dY

dx
dX

dX
dY

dx
dy

εδεδεδ
=−=⎟

⎠
⎞

⎜
⎝
⎛=−==           (5.17) 

     

    Let us substitute (5.17) into (5.8), then we get  

                                   
( ) ( ) 0122

2

2 =+− Ye
dX
dY

dX
Yd

εδεδ
ε

                                    (5.18)                         

     

    Here , ( )εδ  is the thickness of the boundary layer. Now, we must determine ( )εδ  

by using balance between the terms. We have two possibilities for this analysis.          

i) 
( ) ( ) ( ) ( ) εεδ

εδ
ε

εδεδ
ε ~1~1~2 ⇒⇒  

If   ( )εδ  ~ε  then equation (5.18) becomes 

                                          022

2

=+− Ye
dX
dY

dX
Yd ε                                               (5.19)                        

This is the case we want. We call (5.19) as the distinguished limit for the equation. 

 

ii) 
( )

( ) ( ) εεδεδε
εδ
ε ~~1~ 2

2 ⇒⇒  

If ( )εδ ~ ε  then equation (5.18) becomes 
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                                    0122

2

=+− Ye
dX
dY

dX
Yd

ε
                                             (5.20)                        

In this case, the coefficient of the second term is 
ε

1
 and 

ε
1

→∞   as 

.0 +→ε  

And the coefficient of the derivative term is very small compared with 
ε

1
. We 

don’t want this situation to occur, hence we omit second case for ( )εδ . 

     

    Now, we have determined the thickness of boundary layer as ( )εδ  ~ε . Our new 

equation for the boundary layer is now given by (5.19). 

                                           022

2

=+− Ye
dX
dY

dX
Yd ε                                             (5.19)                         

     

    As we have done before, now we will write an expansion for )(XY  as 

                                          ( ) ...)()( 10 ++= XYXYXY ε                                      (5.21)                        

and substitute (5.21) into (5.19), then we get 

                      ( ) 0...2... ...
1010

10 =+⎟
⎠
⎞⎜

⎝
⎛ +′+′−⎟

⎠
⎞⎜

⎝
⎛ +″+″ ++ YYeYYYY εεεε               (5.22)                       

     

    Now we have equation series to solve. To determine our expansion for ( )XY  , we 

will find  ( )XY0  and ( )XY1 . 

     

    Let us write the series expansion for ( )e YY ...10 ++ε term. 

           ( ) 0...1...2... 101010 =++++⎟
⎠
⎞⎜

⎝
⎛ +′+′−⎟

⎠
⎞⎜

⎝
⎛ +″+″ YYYYYY εεεε               (5.23)                        

     

     Let us collect the terms w.r.t. their ε power. 

0ε  order :       02 00 =′−″ YY                                                                                (5.24)                        
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1ε  order :       012 011 =++′−″ YYY                                                                    (5.25)                         

       

    Now let us solve (5.24) and (5.25). 

                        02 00 =′−″ YY                                                                                (5.24)                        

                        022 =− mm  

                        0)2( =−mm  

                                                  ( ) XeBAXY 2
000 +=                                           (5.26)                         

     

    Since we think that there is a boundary layer near 1=x , then we will use the 

boundary condition 0)1( =y . But this condition is valid for x , so we need to 

rearrange this condition for X . 

                              ( ) 011
=⇒

−
=

−
= XxxX

εεδ
for   1=x  

 

    New condition is 0)0( =Y . Let us use it. 

                ( ) ( ) 00000
2

000 00 ABBAYeBAXY X −=⇒=+=⇒+=  

 

    Now we have  

                                       ( ) ( )XX eAeAAXY 2
0

2
000 1−=−=                               (5.27)                       

 

    After this, let us solve (5.25). 

                                                  12 011 −−=′−″ YYY                                             (5.25)                        

                                           ( ) 112 2
011 −−−=′−″ XeAYY                                   (5.25a)                         

 

                                         

( )
( )

( )

( ) XXX
p

XX
p

X
p

X
h

bXebebeXY

bXebeaXY

bXeaXXY

eDCXY

222
,1

22
,1

2
,1

2
00,1

422

2

++=″

++=′

+=

+=
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    Let us substitute them into (5.25a) 

                    ( ) 1142244 2
0

2222 −−−=−−−+ XXXXX eAbXebeabXebe  

                                    
( )

( )1
2
1

2

122

0
0

00

+==

+−=−=

AaAb

AaAb
 

    
( ) X

p XeAXAXY 2
00,1 2

11
2
1)( ++=

 

    Hence, 

                            ( ) XX XeAXAeDCXY 2
00

2
001 2

11
2
1)( ++++=                    (5.28)                       

 

    Using the boundary condition ( ) 001 =Y , we get 

                            ( ) ( ) ( ) XX XeAXAeCXY 2
00

2
01 2

11
2
11 +++−=                    (5.29)                         

     

    Since our approximate solution for ( )XY  in the form 

                                          ( ) ( ) ...)( 10 ++= XYXYXY ε  

then we get 

     ( ) ( ) ( ) ( ) ...
2
11

2
111 2

00
2

0
2

0 +⎥⎦
⎤

⎢⎣
⎡ +++−+−= XXX XeAXAeCeAXY ε         (5.30)          

    Since we think that there is a boundary layer near 1=x  ; now we have two 

solutions valid for different regions. The outer solution )(xy  valid for the outer 

region i.e. ε<≤ x0  and the inner solution )(XY  valid for the inner region i.e. 

1≤< xε  . 

     

    Now our aim is to determine a uniform solution valid in the whole interval. 

 

    To determine the location of the boundary layer, we assume that it exists at one of 

the ends. Then, we carry out one-term expansions. If neighboring expansions can be 
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matched, our assumption is correct; otherwise, the boundary layer exists at the other 

end. (Nayfeh, 1993) 

 

    To match the inner and outer solution, first we replace y  and Y with oy  and iy . 

Then we write ( )xyo  in terms of X  and ( )Xyi  in terms of x. After this, we will 

expand them for small ε and the terms x and X fixed. Doing this, we will get ( )ioy  

and ( )oiy  and then we will matched the terms. Hence, we will find the undetermined 

coefficients in oy  and iy  . 

 

    In the end of this matching process, we will get ( )ioy  and ( )oiy  and they will be 

the same. We will call this expansion matchy  . 

 

    Now let us return to our problem (5.8) and (5.9). 

 

    We get the outer expansion 

                   ( ) ( ) ( )[ ] ...2ln2ln
22

1
2

2ln +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

+
−+⎟

⎠
⎞

⎜
⎝
⎛

+
= x

xx
xyo ε              (5.15)                      

Let us write the Taylor expansions of the terms 

                                            ...
2
1

2
2ln +−=⎟

⎠
⎞

⎜
⎝
⎛

+
x

x
 

                                       ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +−−=

+
− ...

4
1

2
1

2
1

22
1 x

x
 

                                         ( ) ...
2
12ln2ln ++=+ xx  

 

Now               

                     ( ) ⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −++⎟
⎠
⎞

⎜
⎝
⎛ +−−+− 2ln...

2
12ln...

4
1

2
1

2
1

2
1~ xxxxyout ε  

     

    And for the inner solution we get 
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                ( ) ...
2
11

2
1)1()1()( 2

00
2

0
2

0 +⎥⎦
⎤

⎢⎣
⎡ +++−+−= XXX XeAXAeCeAXY ε  

Writing the Taylor expansion of the terms, we have 

                                                     ...212 ++= Xe X  

Writing it into the inner solution, 

    ( ) ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ ++++++−++− ...21

2
11

2
1...2...2~)( 0000 XXAXAXCXAXY ε  

     

    For the matching at leading order, we keep only the first terms and match them. 

But, this is impossible. Also, for the first order matching, let us consider the terms 

with coefficient 10 , εε . Keeping  only the terms of order x,ε  , and discarding the 

terms of order xx εε ,, 22  for the outer expansion and XX 2222 ,, εεε  for the inner 

expansion , then we have 

                                                        ( ) ...
2
1

+−= xxyout  

               ( ) ( ) ...
2
11

2
122 0000 ++++−−= XAXAXCXAXY εεε  

These terms also cannot be matched. 

 

    Hence, we couldn’t get matchy . Now let us return to our hypothesis on the location 

of boundary layer. Since the matching process has failed, we think that the boundary 

layer must be at the other end of the interval. 

  

    Now, we will do the same things, thinking that the boundary layer is at  x=0 . 

Hence, our outer solution  

                      ( ) ( )[ ] ...ln
2

12ln)( +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

+
−+⎟

⎠
⎞

⎜
⎝
⎛

+
= DCx

CxCx
xyout ε  

must satisfy ( ) 01 =y  condition 
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( )

( ) 1210
1

2ln1

2ln

0

0

=⇒=+⇒=⎟
⎠
⎞

⎜
⎝
⎛
+

=

⎟
⎠
⎞

⎜
⎝
⎛

+
=

CC
C

y

Cx
xy

 

                      ( ) ( ) ( )( )DCx
Cx

xy ++
+

−= ln
2

1
1  

         ( ) ( ) ( ) 2ln02ln
4
12ln

2.2
111 −=⇒=+−=+−= DDDy  

     

Since we have found C and D, we can write )(xyout .  

                    ( ) ( ) ( )[ ] ...2ln1ln
12

1
1

2ln +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

+
−+⎟

⎠
⎞

⎜
⎝
⎛

+
= x

xx
xyout ε               (5.31)                        

 

    Now, it’s time to construct our new inner variables valid near  x = 0 .  

                                          ( ) ( ) ( )xyXYxX == ,
εδ

                                       (5.32)                       

     

    Let us write (5.8) in terms of X and Y . First of all, we will define the new 

derivative terms 

    ( ) ( ) ( ) 2

2

22

2

2

2 11,1
dX

Yd
dx
dX

dX
Yd

dx
dy

dx
d

dx
yd

dX
dY

dx
dX

dX
dY

dx
dy

εδεδεδ
==⎟

⎠
⎞

⎜
⎝
⎛===              (5.33) 

     

    Let us substitute (5.33) into (5.8), then we get                                                                                   

( ) ( ) 0122

2

2 =++ Ye
dX
dY

dX
Yd

εδεδ
ε

                                                (5.34)                        

We have done the analysis to determine ( )εδ . We have found that ( ) εεδ = . Hence 

ε
xX = . 

     

    Here,  the distinguished limit for this problem is 

                                                 022

2

=++ Ye
dX
dY

dX
Yd ε                                       (5.35)                         
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    To solve this equation, we give an expansion for Y(X) as  

                               ( ) ( ) ...)( 10 ++= XYXYXY ε                                                 (5.21) 

and then substitute (5.21) into (5.35), we get 

        ( ) 0...2... ...
1010

10 =+⎟
⎠
⎞⎜

⎝
⎛ +′+′+⎟

⎠
⎞⎜

⎝
⎛ +″+″ ++ YYeYYYY εεεε                             (5.36)              

( ) 0...1...2... 101010 =++++⎟
⎠
⎞⎜

⎝
⎛ +′+′+⎟

⎠
⎞⎜

⎝
⎛ +″+″ YYYYYY εεεε                         (5.37) 

     

    Now, we will collect the terms w.r.t. their ε power and solve the equation that we 

get for ( )XY0  and ( )XY1 . 

0ε    order :  02 00 =′+″ YY                                                                                   (5.38)                        

1ε    order :   012 011 =++′+″ YYY                                                                      (5.39)                         

     

    Let us solve (5.38) and (5.39). 

                                              02 00 =′+″ YY                                                          (5.38) 

 

                                               ( )
2,0

02
02

21

2

−==
=+
=+

mm
mm

mm
 

 

                                           ( ) XeBAXY 2
000

−+=⇒  

and we have the boundary condition ( ) 00 =y . Since 
ε
xX =  , ( ) 00 =y  condition 

converts into ( ) 00 =Y . Using this condition,  

                                              0)0( 000 =+= BAY  

                                       ( ) )1( 2
00

XeAXY −−=⇒                                              (5.40) 

 

    Now we will use ( )XY0  to solve  ( )XY1  . 
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                                  12 011 −−=′+″ YYY                                                             (5.39) 

                              ( ) 112 2
011 −−−=′+″ − XeAYY                                              (5.39a) 

( )
( )

( )

( ) XXX
p

XX
p

X
p

X
h

bXebebeXY

bXebeaXY

bXeaXXY

eDCXY

222
,1

22
,1

2
,1

2
00,1

422

2
−−−

−−

−

−

+−−=″

−+=′

+=

+=

       

     

    Substituting them into (5.39a) , we get 

            

( )
( )

( )

( ) 00

2
0

2
0

2
00

2

2
00

2222

2
11

2
1

212

122

142244

AbAa

eAbeAa

eAAbea

eAAbXebeabXebe

XX

XX

XXXXX

−=+−=

=−+−=

++−=−

++−=−+++−

−−

−−

−−−−−

                                  

( ) ( )

( ) ( ) ( ) ( ) XX
ph

X
p

XeAXAeDCXYXYXY

XeAXAXY

2
00

2
00,1,11

2
00,1

2
11

2
1

2
11

2
1

−−

−

−+−+=+=⇒

−+−=⇒
 

     

    We have the boundary condition ( ) 001 =Y  . 

                                       ( ) 00001 00 CDDCY −=⇒=+=  

     
( ) ( )

( ) ( ) ( ) )41.5(
2
11

2
11

2
11

2
1

2
00

2
01

2
00

2
001

XX

XX

XeAXAeCXY

XeAXAeCCXY

−−

−−

−+−−=

−+−−=⇒
            

     

    Hence the inner expansion is 

( ) ( ) ( ) ( ) ...
2
11

2
111 2

00
2

0
2

0 +⎥⎦
⎤

⎢⎣
⎡ −+−−+−= −−− XXX XeAXAeCeAXY ε         (5.42)                  

   

    Now let us perform  the matching process. 
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The outer expansion  

                             ( ) ( ) ( )( ) ...2ln1ln
12

1
1

2ln +⎥
⎦

⎤
⎢
⎣

⎡
−+

+
−+⎟

⎠
⎞

⎜
⎝
⎛

+
= x

xx
xyout ε  

To perform the matching process in the leading order, let us expand the first term and 

keep only first term of this expansion. 

                                                      2ln~
1

2ln ⎟
⎠
⎞

⎜
⎝
⎛

+x
 

Then  

                                                         ( ) 2ln~xyout  

 

  

    The inner expansion is  

        ( ) ( ) ( ) ( ) ...
2
11

2
111 2

00
2

0
2

0 +⎥⎦
⎤

⎢⎣
⎡ −+−−+−= −−− XXX XeAXAeCeAXY ε  

To perform the matching process in the leading order, let us expand the first term and 

keep only first term of this expansion. 

                                                   ( ) 0
2

0 ~1 AeA X−−  

 

    According to matching, we get 

                                                           2ln0 =A  

 

    Now, for the first order matching, we do the same thing. But, in this case we keep 

the terms of ε and x order. 

                                                 

( ) xx

xx
x

x
x

~1ln

2
1

2
1

2
1~

1
1

2
1

2ln~
1

2ln

2

+

−+−⎟
⎠
⎞

⎜
⎝
⎛
+

−

−⎟
⎠
⎞

⎜
⎝
⎛

+
ε
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Hence 

                                                 ( ) 2ln
2
12ln~ ε+xyout  

 

And, for the inner expansion ( ∞→→− Xe X ,02 ) 

                                         ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ +−+ XACAXY 1

2
1~ 000 ε  

Keeping only the terms involving X,ε  and discarding other terms, we get 

                                                     ( ) 00~ CAXY ε+  

According to matching, we have 

                                                   2ln
2
1,2ln 00 == CA  

 

Finding these constants, we get 

( ) ( ) ( ) ( ) ...)2(ln
2
12ln1

2
112ln

2
112ln 222 +⎥⎦

⎤
⎢⎣
⎡ −+−−+−= −−− XXX XeXeeXY ε  

 

    Now, we will find ( )xymatch  . 

Two-term inner expansion : 

        ( ) ( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ −+−−+−= −−− XXXi XeXeeXy 222 )2(ln

2
12ln1

2
112ln

2
112ln ε  

Writing 
ε
xX =  , we have 

       ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

−−−
εεε

εε
ε

xxx
i exxeexy

222
)2(ln

2
12ln1

2
112ln

2
112ln  

Since  1,0
2

→→
−

xe
x

ε  ; then we get 

                                ( )( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ +−+= xxy

oi 2ln1
2
12ln

2
12ln ε  

Hence, 
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                          ( ) =xymatch ( )( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ +−+= xxy

oi 2ln1
2
12ln

2
12ln ε  

     

 

    Now, we will find the uniform expansion. 

                                    ( ) ( ) ( ) ( )xyxyxyxy matchinoutunif −+=  

Then, 

( ) ( )

( ) ( )( ) ( ) ( )2
2

2

2ln1
2
12ln

2
112ln

2
12ln1ln

12
1

)2ln(
2
12ln1

2
12ln12ln

1
2ln

εε ε

ε

Oxex
x

exxe
x

xy

x

x

unif

+
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
++−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+−+

+
−

−+−−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+⎟

⎠
⎞

⎜
⎝
⎛

+
=

−

−

    (5.43) 

 

 

 

5.2.2 Problem 2   

 

    Let us find one-term outer and inner expansions of the equation given as 

                                    0sin =++ xxx &&&ε                                                             (5.44a) 

                                 ( ) ( ) 10,10 == xx &                                                             (5.44b) 

First of all let us give an expansion for x . 

                                 ...10 ++= xxx ε                                                                   (5.45) 

Now let us write (5.45) into (5.44a).                                                 

( ) ( ) ( ) 0...sin...... 101010 =++++++++ xxxxxx εεεε &&&&&&                                                                        

( ) ( ) ( ) ( ) 0...cos.sincos.sin...... 01101010 =++++++++ xxxxxxxx εεεεε &&&&&&                          (5.46)          

Since   11 ~sin xx εε   and 1~cos 1xε   near x = 0 , then we can write (5.46) in the 

form as below, 

            ( ) 0...cossin 1
2

011000 =++++++ xxxxxxx &&&&&& εε                                 (5.47) 

0ε  order :    0sin 00 =+ xx&                                                                                  (5.48)                        

     

    Now let us solve the equation obtained in (5.48) . 
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                                            0sin 00 =+ xx&                                                           (5.48) 

                                              0
0 sin x

dt
dx

−=  

                                            ∫∫ −= dt
x

dx

0

0

sin
 

Let us do the necessary trigonometric transformations. 

           20200
0

1
2sin,

1
2,arctan2,

2
tan

u
ux

u
dudxuxxu

+
=

+
===  

Now our integral is 

                            ∫ ∫ ∫ ⎟
⎠
⎞

⎜
⎝
⎛===

+
+

=
2

tanlnln

1
2
1.

1
2

sin
0

2

2
0

0 xu
u
dudu

u
uux

dx
 

                                            ⇒ ∫∫ −= dt
x

dx

0

0

sin
 

                                               ∫−=⎟
⎠
⎞

⎜
⎝
⎛ dtx

2
tanln 0  

                                               

( )
( ) )49.5(tan2

arctan
2

,
2

tan

2
tanln

1
0

0

0

1
0

1

t

t

Ct

Cex

Ce
x

eCCe
x

Ctx

−−

−

−

=

=

==⎟
⎠
⎞

⎜
⎝
⎛

+−=⎟
⎠
⎞

⎜
⎝
⎛

 

     

    Now let us find where the boundary layer is. To find it, we will use the conditions 

given in (5.44b). Since we have found our outer solution  

                                                    ( )tCex −−= 1
0 tan2                                                                             

from a first order differential equation, then our outer solution doesn’t satisfy both 

conditions given in (5.44b). Consequently, we think that there is a boundary layer 

near x =0. 
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    Now we will find the inner solution valid near x =0 . To find it we will introduce 

the new inner variable. 

                                                         ( )εδ
tT =                                                       (5.50)                        

And we will write the new derivative terms. 

                                      
( )

( ) ( ) dT
dX

dt
dT

dT
Xd

dt
dx

dt
dx

dT
dX

dt
dT

dT
dX

dt
dxx

22

2 11

1

εδεδ

εδ

==⎟
⎠
⎞

⎜
⎝
⎛=

===

&&

&

 

     

    Now our equation is converted into the form  

                                             
( ) ( ) 0sin1

2 =++ XXX &&&
εδεδ

ε
                              (5.51)                        

     

    Let us determine the thickness of boundary layer. We have two possibilities. 

i)  
( ) ( ) ( ) εεδ

εδεδ
ε ~1~2 ⇒      

if ( ) εεδ ~ , then  
( ) εεδ
ε 1~2   and  ( ) εεδ

1~1
  . And these two terms are bigger 

than 1, the coefficient of the third term in (5.51). This is the case we want. 

 

ii)  
( )

( ) εεδ
εδ
ε ~1~2 ⇒  

if  ( ) εεδ ~ , then the coefficient of the second term is 
ε

1
 and it is bigger than 

the coefficient of the second order derivative term. We don’t want this situation. 

 

    Hence we have found the thickness of the boundary layer ( ) εεδ ~ . Writing this 

in (5.51), 

                                               0sin =++ XXX ε&&&                                          (5.52)                            

Our expansion for the inner solution is 
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                                                  ...10 ++= XXX ε                                              (5.53)                       

Let us substitute it into (5.52), 

                    ( ) ( ) ( ) 0...sin...... 101010 =++++++++ XXXXXX εεεε &&&&&&  

                    ( ) ( ) ( ) ...cos.sincos.sin...sin 011010 ++=++ XXXXXX εεε  

And also  

                                    ( ) ( ) 111 ~sin,1~cos XXX εεε  

Then we can write 

                            ( ) 0sin 2
01010 =+++++ εεεε OXXXXX &&&&&&                         (5.54)                        

And for one-term inner approximation we have 

                                                      000 =+ XX &&&                                                    (5.55)                        

Let us solve (5.55). 

                                                     
( )

1,0
01

21 −==
=+
mm

mm
 

                                                  ( ) TBeATX −+=⇒ 0                                        (5.56)                        

 

    Since our conditions in (5.44b) are valid for x , then we must write them for X . 

( ) 10 =x and 
ε
tT =  , then  t =0 0=⇒ T . Hence our new condition is  ( ) 10 =X .  

    We have found that Xx &&
ε
1

= . Now let us use it . 

                                                 Xx &&
ε
1

=  xX && ε=⇒                                            (5.57) 

Our condition was ( ) 10 =x& . 

                                       ( ) ( ) ( ) ( ) εε =⇒=⇒= 00010 XxXx &&&&                   (5.58) 

We have an expansion for X as 

                                                   ...10 ++= XXX ε                                             (5.53) 

Using it, we have 

                                          ( ) ( ) ( ) εε =++= ...000 10 XXX &&&                                  (5.59) 

Then, 
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                                            ( ) 000 =X&   and   ( ) 101 =X&                                       (5.60) 

    

    Now we will use them to find A and B . 

                                              ( ) TBeATX −+=⇒ 0  

                                                 ( ) TBeTX −−=⇒ 0
&  

Now we have ( ) 100 =X  and ( ) 000 =X& . 

                                              ( ) 100 =+=⇒ BAX  

                                               ( ) 000 =−=⇒ BX&  

Hence 0,1 == BA  

                                                        ( ) 10 =⇒ TX                                                (5.61) 

 

    Now we will find C  with matching. 

One-term outer expansion : 

                                                     ( )to Cex −−= 1tan2  

Writing it in terms of T  : 

                                                    ( )To Cex ε−−= 1tan2  

Expanding it for small ε , 

                                             ( )( )...1tan2 1 +−= − TCxo ε  

One-term inner expansion :  

                                                     ( ) Cx
io 1tan2 −=  

This must be equal to ( ) 10 =TX . Then we have 
2
1tan=C .  

    Hence our one-term outer expansion is 

                                             ( ) ⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛= −− tetx

2
1tantan2 1

0                                   (5.62) 

 

    Hence our one-term inner solution is given by (5.61), and one-term outer solution 

is given by (5.62) . 
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5.2.3  Problem 3   

    Let us consider the differential equation                       

                          
( ) ( )

3
11,

2
11

11,0
6
5 25

1

==−

≤≤−=+′+′′

yy

xyyxyε
                                    (5.63) 

    ( ) 5
1

xxp =   , and ( ) 00 =p  , hence there is a boundary layer near 0=x . 

 

    Let us give a one-term outer expansion for the outer solution as  

                                                        ( ) ( )xyxyout 0~                                              (5.64) 

And substituting it into the equation, we have 

                                                   0
6
5 2

00
5

1

0 =+′+′′ yyxyε                                    (5.65) 

We have  for 0ε  order, 

                                                         0
6
5 2

00
5

1
=+′ yyx                                        (5.66) 

This is a Bernoulli differential equation. To solve it, let us introduce the 

transformation 

                                                 

200

0

1
0

1

1

z
zy

z
y

y
yz

′
−=′⇒=⇒

== −

                                (5.67) 

After these transformations our equation is converted into 

                                                          

dxxdz

x
dx
dz

5
1

5
1

6
5
6
5

−

−

=

=
                                              (5.68) 

Integrating it we have, 

                                                         0
5

4

24
25 Axz +=                                            (5.69) 

Then    
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0

5
40

2425

24

Ax
y

+
=                                         (5.70) 

 

Hence our one-term outer expansion is 

                                               ( )
0

5
4

2425

24~
Ax

xyout
+

                                      (5.71) 

 

    We have two conditions and let us use them. 

                       ( ) ( )
24
23

2
1

2425
241

2
11 0

0

=⇒=
+

=−⇒=− A
A

yy out           (5.72) 

                         ( ) ( )
24
47

3
1

2425
241

3
11 0

0

=⇒=
+

=⇒= A
A

yy out                (5.73) 

 
     

    Since the boundary layer in this equation is an interior boundary layer then, we 

have two outer solutions. We have  

                                ( ) 1
5

4 1,
2325

24~ xx
x

xyout −≤≤−
+

                            (5.74) 

                                    ( ) 1,
4725

24~ 1
5

4 ≤≤
+

xx
x

xyout                               (5.75) 

Here 1x  is a point near 0=x . And also ( )11 ox =  , ( )1
1

o
x
=

ε
 . 

    Now, we will find the inner solution. Let us use the new inner variable near 0=x , 

let us write ( )εδ
xX =  . 

     ( ) ( ) ( ) 2

2

22

2

2

2 11,1
dX

Yd
dx
dX

dX
Yd

dx
dy

dx
d

dx
yd

dX
dY

dx
dX

dX
dY

dx
dy

εδεδεδ
==⎟

⎠
⎞

⎜
⎝
⎛===               (5.76) 

Substituting them into the first equation, we get 

                                  
( ) ( )

0
6
51 25

1

5
42 =+′+′′ YYXY

εδεδ
ε

                             (5.77) 

Let us determine ( )εδ . 
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( ) ( )

( ) 6
5

5
42 ~1~ εεδ

εδεδ
ε

⇒  

hence  our equation becomes, 

                                        0
6
5 23

2
5

1
=+′+′′ YYXY ε                                           (5.78) 

Since we get the distinguished limit, now, we write our one-term outer expansion 

                                                   ( ) ( )XYXY 0~                                                    (5.79) 

Substituting (5.79) into (5.78) , we get 

                                             0
6
5 2

0
3

2

0
5

1

0 =+′+′′ YYXY ε                                     (5.80) 

First of all, we collect the terms of order 0ε  in (5.80) , and to solve this equation , let 

us write 

                                                  00 , Y
dX
dpYp ′′=′=                                             (5.81) 

Then we have, 

                    0
5

6
5

1
5

1

6
5ln0 BXpdXX

p
dppX

dX
dp

+−=⇒−=⇒=+  

Then, 

                                                       
5

6

6
5 X

Bep
−

=                                                  (5.82) 

Hence, we have 

                                                 CXdeBY
X X

+= ∫
−

0

^
6
5

0

5
6^

                                     (5.83) 

Here  ∞→⇒= XxX
6

5
ε

. 

 

    Now we will evaluate integral   ∫
∞ −

0

6
5 5

6

Xde
X

 . 

Let us write                                       

                                              dXXduXu 5
1

5
6

,
6
5

==                              (5.84) 
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Hence our integral becomes 

                                      ∫
∞ −

0

6
5 5

6

Xde
X

  = ∫
∞

−−
⎟
⎠
⎞

⎜
⎝
⎛

0

6
16

1

6
5 dueu u  

                                                              ⎟
⎠
⎞

⎜
⎝
⎛Γ⎟

⎠
⎞

⎜
⎝
⎛=

6
5

6
5 6

1

 

Then, we get 

                                              ( ) CBXY +⎟
⎠
⎞

⎜
⎝
⎛Γ⎟

⎠
⎞

⎜
⎝
⎛=

6
5

6
5 6

1

0                                 (5.85a) 

                                                      CBk +=                                                    (5.85b) 

where ⎟
⎠
⎞

⎜
⎝
⎛Γ⎟

⎠
⎞

⎜
⎝
⎛=

6
5

6
5 6

1

k . 

 

    Now, we have ( ) ( ) CBkXYXY +=0~                                                          (5.86) 

     

    To match the inner and outer solutions, let us write, 

           ( )
23
24~xyout    as  −→ 0x      ;      ( )

47
24~xyout    as    +→ 0x             (5.87) 

Hence      

                     
23
24~Y   as   −→ 0x     ;      

47
24~Y    as    +→ 0x                     (5.88) 

 

      Also,  

     ( ) CBkXY +~   as  −→ 0x    ;     ( ) CBkXY +−~    as    +→ 0x           (5.89) 

Here, we have found that 

                                                         
2664.0~

5541.1~
−Bk

C
                                             (5.90) 

 

    Hence, 

                                                        ( ) 2877.1~0 XY                                             (5.91) 

And 
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                                                         ( ) 2877.1~XY                                             (5.92) 

 

    Now, we will find the uniform expansions valid on the whole interval. We know 

that  

                                    ( ) ( ) ( ) ( )xyxyxyxy matchinoutunif −+=                              (5.93) 

Hence, 

( ) ( )εO
x

xy leftunif +−+
+

=
23
242877.1

2325

24
5

4,    ,   −→ 0x                          (5.94)                        

( ) ( )εO
x

xy rightunif +−+
+

=
47
242877.1

4725

24
5

4,    ,   +→ 0x                      (5.95) 

 

    Consequently, we have 

( ) ( )εO
x

xy leftunif ++
+

= 2442.0
2325

24
5

4,     ,     −→ 0x                                (5.96) 

( ) ( )εO
x

xy rightunif ++
+

= 7771.0
4725

24
5

4,     ,    +→ 0x                               (5.97) 
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                                                CHAPTER SIX                                                           

                                               CONCLUSIONS 

 

    In this thesis , we studied boundary layer problems which are one of the types of 

singular perturbation problems. To solve these problems, we divide the region into 

inner and outer regions. We give asymptotic expansions for these regions, hence 

given second order problems are converted into first order problems which are easier 

to solve. Solving them we get outer and inner expansions. Finally, we match them to 

get a uniform expansion valid on the whole interval. Hence, we get asymptotic 

solutions for chosen nonlinear boundary layer problems. In the chosen problems, the 

boundary layer theory can be used to construct higher-order approximations in the 

perturbing parameter ε to the solution of the nonlinear differential equations. 
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