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ON THE SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS
ABSTRACT

An approximate method for the solution of non-linear singularly perturbed
problems for second order ordinary differential equations with a boundary layer is
studied. The region is divided into two parts as inner and outer regions. The original
second order singularly perturbed problem is replaced by an asymptotically
equivalent first order problem and solved in the inner and outer regions. Then, the
solutions of inner and outer region problems are matched to obtain an approximate
uniform solution to the original problem.

Keywords : Singular perturbation, boundary layer, matching technique, approximate
solution, asymptotic expansion, uniform solution



DOGRUSAL OLMAYAN DIFERANSIYEL DENKLEMLERIN
COZUMU UZERINE

(074
Smir tabakaya sahip, ikinci mertebe dogrusal olmayan tekil pertiirbe adi
diferansiyel denklemler icin bir yaklasim metodu calisildi. Bolge, i¢ ve dis bolge
olarak ikiye bdliindii. Orijinal ikinci mertebe tekil pertiirbe denklem, asimptotik
olarak denk birinci mertebe denkleme dontistiiriildii ve i¢ ve dis bolgelerde ¢ozildil.
Daha sonra, i¢ ve dig bdlge problemlerinin ¢dziimleri, orijinal probleme yaklasik

diizgiin ¢6ziim bulmak i¢in eslendi.

Anahtar sozciikler : Tekil pertiirbasyon, sinir tabaka, esleme yontemi, yaklasik

¢Ozilim, asimptotik agilim, diizgiin ¢6ziim
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CHAPTER ONE
INTRODUCTION

Lots of differential equations which arise as models of physical systems cannot
be solved analytically. So, we can solve them by means of some numerical methods.
However if there are some dimensionless parameter in equations, we can solve them

by using some asymptotic methods and then we have an approximate solution.

When the methods do not yield an exact closed-form solution of a differential
equation or when the exact solution is too complicated to be useful, then we should
try to ascertain the approximate nature of the solution. The first step toward an
approximate solution is caled local analysis (Bender& Orszag, 1978). The methods
of local analysis are Taylor series solutions, method of Fuchs and Frobenius, method

of dominant balance, asymptotic series expansions of solutions.

The purpose of local analysis is to represent the solutions of equations which
cannot be solved in closed-form as simple expressions in terms of elementary
functions. The results of a local analysis are vaid in a sufficiently small
neighborhood of a point. Ultimately, a uniform approximation to the behavior of the
solution over an entire interval may be found by piecing together neighborhoods in
which the local behavior is known. This piecing-together process uses the techniques
of global anaysis such as Boundary Layer Theory, WKB Theory (named after
Wentzel, Kramers, Brillouin), Multiple Scale Analysis. (Bender& Orszag,1978)

Local analysis methods such as Taylor series solution, methods of Fuchs and
Frobenius method of dominant balance, asymptotic series expansions are powerful
tools, but they cannot provide global information on the behavior of solutions at two
distantly separated points. They cannot predict how a change in initial conditions at
x=0 will affect the asymptotic behavior as X — oo (Bender& Orszag, 1978). To
solve such kind problems, we must use the methods of global analysis such as
Boundary Layer Theory, WKB Theory, Multiple-Scale Theory which are

perturbative in character.



Perturbation theory is a collection of methods for the systematic analysis of the
global behavior of solutionsto differential and difference equations.
(Bender& Orszag, 1978)

Boundary layer theory and WKB theory are a collection of perturbative methods

for obtaining an asymptotic approximation to the solution y(x) of a differential

equation whose highest derivative is multiplied by a small parameter (perturbing
parameter) &. Solutions to such equations usually develop regions of rapid variation
as ¢ — 0. If the thickness of these regions approaches 0 as ¢ — 0O, they are called

boundary layers, and boundary layer theory may be used to approximate y(X). If the

extent of these regions remains finite as £ > 0, we must use WKB theory. For
linear equations boundary layer theory is specia case of WKB theory, but boundary
layer theory also applies directly to nonlinear equations while WKB theory does not.
(Bender& Orszag, 1978)

Multiple scale theory is used when ordinary perturbative methods fail to give a
uniformly accurate approximation to y(Xx) for both small and large values of x.

Some (although not certainly all) perturbation problems which yield to boundary
layer or WKB anaysis can also be solved using multiple-scale analysis.
(Bender& Orszag, 1978)

WKB theory, is a powerful tool for obtaining a global approximation to the
solution of alinear differential equation whose highest derivative is multiplied by a
small parameter & ; it contains boundary layer theory as a specia case
(Bender& Orszag, 1978)

Singularly perturbed differential equations arise in modelling of various physical
processes. Equations of this type typically exhibit solutions with layers; that is, the
domain of the differential equation contains narrow regions where the solution varies
very fast whereas away from this region the solution behaves smoothly and varies
slowly. To handle this type of problem, the basic idea is, to divide the domain of

integration into inner and outer regions.



A detailed discussion on the analytic theory of singular perturbation problem is
given by Bender&Orszag (1978), Bush (1992), Hinch (1991), Holmes(1995),
Johnson (2005), Nayfeh (1993), Nayfeh (1973), O'Malley (1991), Simmonds &
Man (1998). Solving singular perturbation problems by using numerical methods
have been suggested ((Kadalbagjoo & Reddy, 1988), (Kadalbajoo & Kumar, 2008)).
A singular perturbation boundary value problem depending on a parameter 1 have
studied and numerical results have obtained (Amiraliyev & Duru, 2005). Series
solutions of boundary layer flows with nonlinear Navier boundary conditions have
obtained by means of the homotopy analysis method (Cheng, Liao, Mohapatra &
Varavelu, 2008).

In this thesis, we investigate mainly finding approximate analytic solutions of
nonlinear singularly perturbed initial value problems and boundary value problems
for second order ordinary differential equations with a boundary layer.

In Chapter Two, we give some basic concepts in asymptotic analysis, such as

gauge functions, order symbols, asymptotic sequences and asymptotic expansions.

In Chapter Three, we give general information about perturbation theory and

matching process.

In Chapter Four, we give detailed information about the boundary layer theory

which isthe main part of the thesis and some illustrative examples.

In Chapter Five, the applications of the boundary layer theory are presented for
chosen nonlinear problems.



CHAPTER TWO
BASIC CONCEPTS IN ASYMPTOTIC ANALYSIS

2.1 Gauge Functions

We consider the limit of functionssuch as f(g) as & tendsto zero. Thislimit

might depend on whether ¢ tendsto zero from theright, denoted by ¢ — 0+, or
from the left, denoted by & — 0—.

If the limit of f(g)exists (i.e. , it doesn't have an essentia singularity at

e=0suchas sine ™), then there are three possibilities (Nayfeh, 1993 )

f(¢) -0
fle) > A as ¢->0 , O<|A <o
fe) > o

Therefore, to narrow down the above classification, we subdivide each class
according to the rate at which they tend to zero or infinity. To accomplish this, we
compare the rate at which these functions tend to zero or infinity with the rate at
which known functions tend to zero and infinity. These comparison functions are
called gauge functions. The simplest and most useful of these are powers of &

lLe,e2,6°,...

and theinverse powersof &

For small ¢, we know that

1>e>e2>e3>¢%> .

and

elce?<eB<e™l <l



Let us determine the rate at which the function Sing tends to zero or infinity. Let

us use the Taylor series expansion, then we have

3 5
&

SNg=g——4+——...
3 4y

sothat SShe — 0 as ¢ — 0 because

- 2 4
Mo Cim1-2-+% . =1
2" 4

-0 ¢ &0

Now let’s ook at i

Sing
1 1 B 1
o 5 a 2 4 !
sing g
BN
4
1
sothat —— —> o0 as — because
Sing £
1
[im=>%=|lim—— =Ilim 5 =1
e—0 e=>0g9Ng -0 E
— ——+..
£
2.2 Order Symbols

Instead of saying Sine tends to zero at the same rate that & tends to zero, we say
Sing isorder ¢ as € >0 or sing ishig ‘ol of & as ¢ - 0 and we write it as
sing =0(¢g) as € —> 0. (Nayfeh, 1993)

Let usdefinebig oh “O” , and little oh “0” symbols.



jim ) o<k <o

&—0 g (g)
then we can write that

L et us give some examples.
cose=0(1)
sine=0(¢)
cose—1=0(s?)

Now let us definelittieoh “0” .
If

)
o g(s)_0

then we can write that
fe)= o[g(g)] a ¢—0
L et us give some examples.
sine=0(1)
cose=o(z?)

In the definitions of big oh “O” and little oh “0” , the functions g(g) are gauge
functions.

Also, if

limf ()

=1
>0 g(g)

then we say that f isasymptotictogas ¢ — 0 and we write

f(e)~gle)
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Thus ~
3+2x2  2x2

as |X|—)oo

2.3 Asymptotic Sequences

The set of functions

¢ (x)} , n=012..

IS an asymptotic sequenceas X — a, if

¢n+1(x) =0 [¢n (X)] as X—a
for every n . (Johnson, 2005)

Some examples for asymptotic series are

n

g",&%,(Ing)" , (sing)'
2.4. Asymptotic Expansions

The series of terms written as

5 0.6, ()+0(4,..)

where the ¢, are the constants, is an asymptotic expansion of f (x) , With respect to

the asymptotic sequence {¢n (x)} if, forevery N >0,

f(x)—%cn(gﬁn(x):o[%(x)] s xoa.

If this expansion exists, it is unique in that the coefficients, ¢, , are completely

determined. (Johnson, 2005)

Clearly , an asymptotic seriesis a special case of an asymptotic expansion.

Jo(x)~\/%{u cos(x—%j+vsin(x—%ﬂ as X — o



where

u(x)=1 123 12357

=1- + +
4222 0%% 4428 4t

v(x)=—L - 35 |
42x 42233x°

is an asymptotic expansion of Bessel’s function.



CHAPTER THREE
PERTURBATION THEORY

Perturbation theory is a collection of methods for the systematic analysis of the
global behavior of solutionsto differential and difference equations. The genera
procedure of perturbation theory isto identify a small parameter, usually denoted by
£, such that when & = 0 the problem becomes soluble. The global solution to the
given problem can then be studied by alocal analysis about & = 0. For example, the

differential equation

&
"=|1+
y ( 1+x2)y

can only be solved in terms of elementary functionswhene =0. A perturbative

solution is constructed by local analysis about & =0 asaseries of powersof ¢ ;

Y(X) = Yo (X) + &1 (X) + £, (X) + ..

This seriesis called a perturbation series. It has a property that y, (x) can be
computed in terms of Y, (X), Y;(X),..., ¥, (X) aslong as the problem obtained by
setting £ =0, Yy" =Yy issoluble, whichitisin this case. Notice that the
perturbation seriesfor y(X) islocal in & but that itisgloba in X. If & isvery

small, we expect that y(x) will be well approximated by only afew terms of the
perturbation series. (Bender& Orszag, 1978)

The thematic approach of perturbation theory isto decompose a given problem

into an infinite number of relatively easy ones. (Bender& Orszag, 1978)

In perturbation theory, it is convenient to have an asymptotic order relation that
express the relative magnitudes of two functions more precisely than << but less
precisely than ~ . We define

f)=0[g(x)] , x—x
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and say that f (x) isat most of order g(x) as X > X,or f(x) is O of g(x) as

f(x) F()

X — X , if )i bounded for x near X, thatis |——=
X

9(x) g(x)

<M for some

constant M if x issufficiently closeto X,. Observethat if f(x)~g(x) orif

f(x) << g(x) as X = Xy.then f(x)=0[g(x)] as x = X,. If f <<g as X — X,,
then any M > 0 satisfiesthe definition, whileif f ~g (X — X,) only M >1 can
work. (Bender& Orszag, 1978)

In perturbation theory we may calculate just afew termsin a perturbation
series. Whether or not this seriesis convergent, the notation ‘O’ is very useful for
expressing the order of magnitude of the first neglected term when that term has not
been calculated explicitly. (Bender& Orszag, 1978)

3.1 What is a perturbation problem?

We called an equation presenting a physical process a perturbation problem if it
depends on a small dimensionless parameter ¢

There are two types of perturbation problems:

i)Regular perturbation problem

i)Singular perturbation problem

We define aregular perturbation problem as one whose perturbation seriesisa

power seriesin & having anonvanishing radius of convergence. A basic feature of

all regular perturbation problemsis that the exact solution for small but nonzero |g|

smoothly approaches the unperturbed or zeroth-order solution as € — 0. We define
asingular perturbation problem as one whose perturbation series either does not take
the form of a power seriesor , if it does the power series has a vanishing radius of
convergence. (Bender& Orszag,1978)



11

3.2 Example

(Approximate solution of an initial value problem) (Bender& Orszag, 1978)
Consider the initial-value problem

y'=f(x)y . yO=1 ., y(@©0=1 (3.1)
where f(X) is continuous. This problem has no closed-form solution except for
very special choicesfor f(X) . Nevertheless, it can be solved perturbatively.

First, weintroduce an ¢ in a such way that the unperturbed problem is solvable:
y'=ef(¥y . y@O=1 , y(@©0=1 (3.2

Second, we assume a perturbation expansion for y(x) of the form
y(x)=2.£"y,(X) (33
n=0

where y,(0)=1 , yo' (0)=1and

Y,(0=0 , vy, (0)=0 (n>1).

The zeroth order problem y” =0 is obtained by setting £ =0 and the solution

which satisfiestheinitial conditionsis y, =1+ X . The nth order problem (n>1) is

obtained by substituting (3.3) into (3.2) and setting the coefficient of & " (n > 1)
equal to 0. Theresult is

"

Yo = yn—lf (X) 1 Yn (0) = yn,(o) =0 (3.4)

Observe that perturbation theory has replaced the intractable differential equation
(3.1) with a sequence of inhomogeneous equations (3.4). In general, any
inhomogeneous equation may be solved routinely by the method of variation of
parameters whenever the solution of the associated homogeneous equation is known.
Here the homogeneous equation is precisely the unperturbed equation. Thus, itis

clear why it is so crucial that the unperturbed equation is soluble.

The solutionto (3.4) is
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Y, =Tdt [dsf(s)y,q(s) . n=1 (3.5)
0 0

Equation (3.5) gives asimple iterative procedure for calculating successive termsin

the perturbation series (3.3).
y(X) =1+ x+ g} dtj ds(l+s) f(s)+ ng dtj dsf (s)j dv}du(1+ u)f(u)+... (3.6)
0 O 0O O 0 0

Third, we must sum this series. It is easy to show that when N islarge, the Nth

term in this seriesis bounded in absolute value by &" x* K™ (1+|x) /(2N)! , where
K is an upper bound for |f (t)| intheinterval 0<|t|<|X . Thusthe series (3.6) is

convergent for all x. We also conclude that if x?K issmall, then the perturbation
seriesisrapidly convergent for £ =1 and an accurate solution to the original

problem may be achieved by taking only afew terms.
3.3 Asymptotic Matching

Asymptotic matching is an important perturbative method which is used often in
both boundary layer theory and WKB theory to determine analyticaly the
approximate global properties of the solution to a differential equation. Asymptotic
matching is usually used to determine a uniform approximation to the solution of a
differential equation and to find other global properties of differential equations such
as eigenvalues. Asymptotic matching may also be used to develop approximations to
integrals. (Bender& Orszag, 1978)

The principle of asymptotic matching is simple. The interval on which a
boundary value problem is posed is broken into a sequence of two or more
overlapping subintervals. Then, on each subinterval perturbation theory is used to
obtain an asymptotic approximation to the solution of the differential equation valid
on this interval. Finadly, the matching is done by requiring that the asymptotic
approximations have the same functional form on the overlap of every par of
intervals. This gives a sequence of asymptotic approximations to the solution of the

differential equation; by construction , each approximation satisfies all the boundary
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conditions given at various points on the interval. Thus, the end result is an
approximate solution to a boundary value problem valid over the entire interval.
(Bender& Orszag, 1978)

3.3.1 Van Dyke’s Matching Principle

According the Van Dyke' s matching rule;

The m-term inner expansion of (the n-term outer expansion) equals the n-term

outer expansion of (the m-term inner expansion) (3.7)

where m and n may be any two integers that need not to be equal. To determine the
m-term inner expansion of the (n-term outer expansion) , we rewrite the first n-terms
of the outer expansion in terms of the inner variable, expand it for small & with the
inner variable being kept fixed, and truncate the resulting expansion after m-terms,
and conversely for the right hand side of (3.7). (Nayfeh, 1993)



CHAPTER FOUR
BOUNDARY LAYER THEORY

Bender& Orszag (1978) noted that, the general perturbative methods are necessary
to perform global analysis. There are three specific analytic techniques of global
approximation theory; boundary layer theory, WKB theory and multiple scae
analysis. And the most elementary one of the perturbative methods for solving a
differential equation whose highest derivative is multiplied by the perturbing
parameter, is the boundary layer technique.

Boundary layer theory isfirst studied by Prandtl.

Prandtl noted that when afluid of low viscosity such asair or water flows about an
obstacle, the ratio of viscousto inertial forcesis small everywhere except in a narrow
layer near the boundary of the obstacle. Using this observation, he was able to
simplify considerably the anaysis of the governing Navier-Stokes equations. His
idea was that there is aregion far from the obstacle where the flow is essentially the
like the flow of an inviscid fluid. On the other hand, near the obstacle, where
viscosity plays an important role in making the velocity equal to zero on the surface,
the velocity changes much more rapidly along a perpendicular to the surface than
along the surface itself. This suggests that we introduce the boundary layer as a short
interval within which the solution of the differential equation changes very rapidly.
(Simmonds and Man,1998)

4.1 What is a boundary layer?

What is a boundary layer problem?

A boundary layer is a narrow region where the solution of a differential equation

changes rapidly. By definition,the thickness of a boundary layer must approach zero
as ¢ > 0. (Bender& Orszag, 1978)

14
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Boundary layer problem is one of the types of singular perturbation problem.

If the highest derivative in the equation is multiplied by a small parameter ¢, then
this equation is called a boundary layer problem.

We give a simple boundary layer problem whose solution exhibits boundary layer
structure.

4.2 Example

We give an exactly solvable boundary layer problem whose solution exhibits

boundary layer structure. (Bender& Orszag,1978)

ey +(1+e)y+y=0 . y(0)=0, y(1)=1 (4.2)

The exact solution of thisequation is

(4.2)

In the limit & > 0+ , this solution becomes discontinuous at x =0. For very
smal & the solution y(x) issowly varying for £ << x <1 . However, on the small
interval 0< X SO(g) (& > 0+) it has an abrupt and a rapid change. This small
interval of rapid change is called a boundary layer. (The notation 0<x<O(e)
means that the thickness of the boundary layer is proportional to & as € - 0+.)
The region of slow variation of y(x) is caled the outer region and the boundary
layer region is called the inner region.

Boundary layer theory is a collection of perturbation methods for solving
differential equations whose solution exhibit boundary layer structure. When the
solution to a differential equation is slowly varying except in isolated boundary
layers, then it may be relatively easy to obtain a leading-order approximation to that
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solution for smal & without directly solving the differential equation.
(Bender& Orszag, 1978)

There are two standart approximations that one makes in boundary layer theory.

In the outer region (away from the boundary layer) y(x) dowly varying, so it is
valid to neglect any derivatives of y(x) which are multiplied by ¢ . Inside a
boundary layer the derivatives of y(x) are large, but the boundary layer is so
narrow that we may approximate the coefficient functions of the differentia
equations by constants. Thus we can replace a single differential equation by a
sequence of much simpler approximate equations in each of several inner and outer
regions. In every region the solution of the approximate equation will contain one or
more unknown constants of integration. These constants are then determined from
the boundary and initial conditions using technique of asymptotic matching.
(Bender& Orszag, 1978)

We explain these ideas by the following initial value problem.
4.3 Example

(First order nonlinear boundary value problem) (Bender& Orszag, 1978)
Consider the differential equation,
: x 1
(x-ay)y+xy=e™ . yO=— (4.3)

We wish to determine aleading order perturbative approximation to y(0) as

&—>0+.

Although thisis only afirst order differential equation, it is nonlinear and is much

too difficult to solve in closed form. However,in regionswhere y and y' are not

large (such regions are called outer regions), it is valid to neglect &yy’ compared

with €™ . Thus, in outer regions we approximate the solution to (4.3) by the solution

to the outer equation
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—X

!
XYour + XYour =€

The equation is easy to solve because it is linear. The solution which satisfies

1.
Yo Q== is
&

You = L+ INxX)e™ (4.4)
Note that it is valid to impose the initial condition y(1)=1 on Y, (x) because x=1
&

liesin an outer region ; x=1isin an outer region because (4.3) implies that y’(l) =0,

0 y(1) and y'(1) areof order1as & — 0+,

As x = 0+, both y,,(x) and y!,(x) become larger. Thus, near x=0 the term

&yy' is no longer negligible compared with e ™. From the outer solution we can
estimate that the thickness ¢ of the region in which &yy’ isnot small is given by

9 _
Ino

Thus, § > 0+ as ¢ - 0+ (infact 6 =0(gln¢) as ¢ - 0+) , and thereisa

O(g) , e—>0+

boundary layer of thickness & at Xx=0.

In the boundary layer (the inner region) , x is small so it is valid to approximate
e by 1. Furthermore, since y varies rapidly in the narrow boundary layer , we may
neglect xy compared with Xy’ . Hence, in the inner region we approximate the
solution to (4.3) by the solution to the inner equation

(X —&in )yin' =1
Thisisalinear equation if we regard x as the dependent variable. Its solution is
x = &(y,, +1)+Ce’r (4.5)
where C is an unkown constant of integration. Since X =0 isin the inner region, we

may use (4.5) to find an approximationto y(0)=0 .

C isdetermined by asymptotically matching the outer and inner solutions (4.4)
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1
and (4.5) . Take x small but not assmall as 6 , say x:O[gZ] . Then (4.4) implies

that y,, ~1+Inx as ¢ - 0+ and (4.5) impliesthat x ~Ce’" as ¢ — 0+. Thus,
1 : T . :

C == and aleading order implicit equation for y;,(0) is
e

0=¢ly, (0) +1]+ e O (4.6)
When ¢ =0.1 and 0.01 , the numerical solution of (4.6) are Y;,(0) ~-1.683 and
Yin (0) ~—2.942 | respectively. These results compare favorably with the numerical
solution to (4.3) which gives y(0)~-1.508 when £=0.1 and y(0)~-2.875

when ¢ =0.01 . For both values of £ therelative error between the perturbative and

. . _ 1
the numerical solution for y(0) is about Eg Ing.

4.4 Mathematical structure of boundary layers: inner, outer limits. Thickness of

boundary layer and intermediate limits

We take again the boundary value problem (given by (Bender& Orszag, 1978)) in

section 4.2

ey +(@1+e)y'+y=0 . y(0)=0, y@)=1 (4.2

which has a boundary layer at x=0 when & — O+ .The function
y(x) =5 —&° (4.2)

has two components : e, aslowly varying function on the entire interval [0,1] , and

—X

e, arapidly varying function in the boundary layer x < O(5) , where & = O(s)

is the thickness of the boundary layer.

In boundary layer theory we treat the solution y of the differential equation as a

function of two independent variables, x and ¢ . The goal of the analysisisto find a
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global approximation to y as a function of x ; thisis achieved by performing a local

analysisof yas ¢ > 0+.

To explain the appearence of the boundary layer we introduce the notion of an
inner and outer limit of the solution. The outer limit of the solution (4.2) is obtained

by choosing a fixed X outside the boundary layer, that is, 6 << X <1,and allowing

& — 0+ . Thus, the outer limit is
You (X) = lim y(x) =& . (47)

The difference between the outer limit of the exact solution and the exact solution

itself, |Y(X) = You (X)| is exponentially small in thelimit & — 0 when & << X.

Similarly, we can formally take the outer limit of the differential equation (4.1) ;
the result of keeping X fixed and letting ¢ — O+ issimply
Your + Your =0 (4.8)
which is satisfied by (4.7). Because the outer limit of (4.2) isafirst order differential
equation , its solution cannot in genera be required to satisfy both boundary
conditions y(0) =0 and y(1) =1; the outer limit of (4.2) satisfies y(1) =1 but not

y(0)=0.

In other words, the small ¢ limit of the solution is not everywhere close to the
solution of the unperturbed differential equation (4.8) (the differential equation (4.1)
with & =0). Thus the problem (4.1) is a singular perturbation problem. The singular

behavior (the appearance of a discontinuity in y(x) as ¢ —> 0+) occurs because the

highest order derivative in (4.1) disappearswhen £ =0.

The exact solution satisfies the boundary condition y(0) =0 by developing a
boundary layer in the neighborhood of X=0. To examine the nature of this
boundary layer, we consider the inner limit in which & — 0+ with x<O(g). In

this case x liesinside the boundary layer at x = 0. For thislimit it is convenient to let

X =&X with X fixed and finite. X iscaled an inner variable. X is a better variable
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than x to describey in the boundary layer because, as ¢ — 0+, y varies rapidly as a
function of x but slowly as afunction of X. (Bender& Orszag, 1978)

Determination of boundary layer thickness &(¢):
Lots of boundary layers have the thickness 6 =¢&. But, the thickness of a
boundary layer need not be of order ¢ as € — 0+. To determine 6, we will use

distinguished limits. We now explain the determination of the thickness of boundary
layer for this problem.

In the inner region we let,

XZ% : e —> 0+
y(x)=Y(X)

Then

dy dy dXx 1 dy
dx dX dx J(e) dX

d?y d(dy) d (dYy dX
W‘&(&j‘&(d_x &j
1 d¥ dx 1 d¥
0e) dx? dx 5(e)? dx 2

Substituting them into (4.1) , we get

e d?Y 1 dY
— = t(l+e)———+Y=0 4.9
5()F dx? +(1+e) 5(e) dx + (4.9)

To determine (&) we must compare the coefficient of the highest order

derivative with the others. That is we consider

and investigate the following possibilities :
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Cesel: If £~ = S~ ~1 = )~¢

&
Taking §(¢) ~ ¢ the other coefficients become @ ~1.,1,

Since the coefficient of the highest derivative isthe largest one, thisis the case that

we want.
& &
Case2: If ~— = olg)~1
6P 50) )
Hence d 5> ~ €& and this coefficient is small.
5(s)

Taking S(g)~1, the other coefficients become BN 1, 1.

5(e)

Here the coefficient of the highest derivative is smaller than the others and we don’t

want this situation to occur.

Case3:If ﬁ*l = Se)’~¢e = oe)~Ae

g i~
Hence 5(6‘)2
. . 1 1
Taking dleg)= \/_ the other coefficientsbecome ——~ — |, 1
98(e)=e se) e

Here i ismuch larger than the coefficient of the highest derivative and we don’t

Je

want also this situation to occur.
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Finally, we determined that 5(5) ~ ¢ andthischoicein (4.9) givesthe leading
order equation,

d?y

dx?

+(1+g)d—Y+gY =0
dX

The choice &(g)~ ¢ is called a distinguished limit because it involves a nontrivial

relation (a dominant balance) between two or more terms of the equation
(4.9).(Bender& Orszag,1978). Here, two terms are of comparable size and the others
are smaller. Case2 and Case3 are undistinguished. Generally, only the distinguished
limit gives anontrivial boundary layer structure which is asymptotically matchable to

the outer solution.(Bender& Orszag, 1978)
After the determination of boundary layer thickness we return our problem.

It follows from (4.2) that

v (x)=Y,,(X)= lim y(eX)=e—e"* (4.10)
Taking the inner limit of (15) , € — 0+, X fixed, gives
2
dX dX

Observe that, the inner limit function (4.10) does satisfy (14.11) together with the
boundary condition Y;,(0)=0.

Boundary layer analysis is extremely useful because it allows us to construct an
approximate solution to a given differential equation, when an exact answer is not
attainable. This is because the inner and outer limits of an insoluble differential

equation are often soluble. Once y;, and Yy, have been determined, they must be

asymptotically matched. This asymptotic match occurs on the overlap region which
is defined by the intermediate limit

X
X>0,X=—>0w,>0+.
&

A glance at (4.7) and (4.10) shows that the intermediate limitsof y,, (X) and
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Yin(X)=Y;, (X ) agree:
Iingyout(x):iiinn(x):e
This common limit verifies the asymptotic match between the inner and outer

solutions... The above matching condition provides the second boundary condition

for the solution of (4.11): Y;,(c0)=e. Observe that although the x region is finite,

0<x <1, the size of the matching region in terms of the inner variable is infinite.

As we emphasized, the extent of the matching region must always be infinite.

A main problem in boundary layer theory is the question of whether or not an
overlap region for any given problem actually exists. Since one's ability to construct
a matched asymptotic expansion depend on the presence of this overlap region,its
existence iscrucia to the solution of the problem. How did we know , for example,

that the intermediate limits of y,,, and Y;, would agree? That is, how did we know

that the inner and outer limits of the differential equation (4.1) have a common

region of validity?

To answer these questions we will perform a complete perturbative solution of

(4.1) to al ordersin powersof ¢, and not just to leading order.

Outer solution:
First, we examine the outer solution. We seek a perturbation expansion of the

outer solution of the form
Yo X))~ 2y, (0", &0+ (4.12)
n=0

and restate the boundary condition y(1) =1 as

Yo)=1,y;(D=0,y,()=0, ... (4.13)
Now Y., (X) in(4.12) isnot thesameas Y, (X) in (4.7), Y, (X) in (4.7) isthe
first term y,(X) in (4.12).

Substituting (4.12) into (4.1) and collecting powers of ¢ gives a sequence of
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differential equations:

Yo +Y0=0 , yo()=1
Yo #¥n="Yn1 —Ynu , y,(1)=0 n>1
The solution to these equationsis
yo=e"" (4.14)
y,=0 , n>1

X

Thus, the leading order outer solution , y,, =e"*, is correct to al orders in

perturbation theory. This is the reason why in the outer region , X >> ¢ the

difference between y(x) and Y, (X) isat most exponentially small (subdominant) :

|y_yout|=O(€n) foralnas & —> 0+.

Inner solution:
We perform asimilar expansion of the inner solution. We assume a perturbation

series of the form
Y, (X)~SeY,(X) , &0+ (4.15)
n=0

and restate the boundary condition Y, = y(0) =0 as
Y, (0)=0 , n>0 (4.16)

Substituting (4.15) into (4.10) gives the sequence of differential equations:

Y, +Y, =0,  Y(0)=0
Y 4Y ==Y -Y_. , Y.(0)=0 , n>1

These equations may be solved by means of the integrating factor e” . The results

are

Y, (X )=>I((Anez Y, ,(2))dz ,n>1 (4.17)
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wherethe A, arearbitrary integration constants.

Does this inner solution match asymptotically, order by order in powers of ¢, to

Yout (X) ? To see if thisis so, we subtitute X =X into Y, in (4.14) and expand in

powersof ¢ :

2y 2 3y 3
yout( )_ =6(1—5X+82>|( _g:;( +J (4.18)

Returning to equation (4.17),we take X large (X — o) and obtain  Y,(X )~ A,
(X — oo).
Thus comparing the first term of (4.18), we have A, =e ,aswe aready know. Now

that Y, isknown , we may compute Y, from (4.17):

Y,(X) = (A + A)l—e ™ )—ex
Asymptotic matching with y,,, (comparing Y;(X) ,when X — oo, with the
second term of (4.18)) gives A, =—¢ ,s0 Y,(X)=—eX . Similarly,
Y, (X)=¢[(-1"/n)] X"
Hence the full expansionis
X ) (4.19)

n!

Yln(x) ezg

Evidently, the inner expansion is a valid asymptotic expansion not only for values

of X inside the boundary layer (X =0(1)) but aso for large values of X
[ X =O(g‘“) , 0<a <1] . At the same time the expansion for Yy, (x) isvalid for
£<<X<1(&—0+)[Y,,(X) isnotvalid for x=0(s) because it does not satisfy
the boundary condition y(0)=0; nor does it have the boundary layer term e**
which is present in Yin(X).] We conclude that to al orders in powers of ¢ it is

possible to match asymptotically the inner and outer expansions because they have a

common region of validity : e <<x<<1l (& >0+).



26

We have been able to demonstrate explicitly the existence of the overlap region
for this problem because it is soluble to all orders in perturbation theory. In general ,
however, such a calculation is too difficult. Instead, our approach will always be to
assume that an overlap region exists and then to verify the consistency of this
assumption by performing an asymptotic match. In the above simple boundary value
problem , we found that the size of the overlap region was independent of the order
of perturbation theory. In general, however , the extent of the matching region may

vary with the order of perturbation theory.

Uniform approximation:
Our fina point concerns the construction of the uniform approximation to y(X).

The formula used to construct a uniform approximation is

Y unif (X) = Yout (X) * Yinner (X) ~ Ymatch (X)

where Y, ..., (X) is the approximation to y(x) in the matching region and Y, (x) isa

uniform approximation to y(x)... For the boundary layer solution to (4.1) , it is easy
to verify that if Y, (X) , ¥i,(X) and Y, (X) ae caculated to nth order in

perturbation theory, then it can be shown that
V() = Yo (0| =0(™) (6 >0+ ; 0<x<I)

In definition of Y, (X), Y, e (X)isdefined as

Ymatch (X) = Yout (yin (X))

or
Ymatch (X) = Yin (yout (X))

Since Y, (x) reproduces the outer expansion in the outer domain and the inner

expansion in the inner domain, we can say that it isvalid everywhere.

Let'sfind vy, (y;,(x)) for thisproblem.
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=e" " —e ° (e > +0)

Hence
Yout (yin (X)) = elix

X isthefinite order uniform approximation to y(X).

and y,.(X)=e""-e
It is remarkable, however, that this expression, which is the result of summing up

perturbation theory to infinite order , is actually not equal to y(X) in (4.2). Thus,

although the perturbation series for y,.; (X) is asymptotic to y(x) as ¢ > 0+, the

asymptotic series does not converge to Y(X) as n, the order of perturbation theory,

-1
tends to o« ; there is an exponentially small error, of order e ¢, which remains

undetermined. Boundary layer theory is indeed a singular and, not a regular,
perturbation theory.

Why is boundary layer theory a singular perturbation theory? The singular nature
of boundary layer theory isintrinsic to both the inner and outer expansions. The outer
expansion is singular because there is an abrupt change in the order of the differential
equation when £ =0. By contrast, the inner expansion is a regular perturbation
expansion for finite X. However, since asymptotic matching takes place in the limit
X — o0, the inner expansion is also singular. Another manifestation of the singular
limit & > 0 isthelocation of the boundary layer in (4.2); when thelimit £ - 0+ is

replaced by & — 0—, the boundary layer abruptly jumps from x=0 to x=1.
4.5 Higher Order Boundary Layer Theory
In sections 4.1 and 4.4 we formulated the procedure for finding the leading-

order boundary layer approximation to the solution of an ordinary differential

equation , i.e. , to obtain outer and inner solutions and then asymptotically match
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them in an overlap region. The self-consistency of boundary layer theory depends on
the success of asymptotic matching. Ordinarily, if the inner and outer solutions
match to al orders in &, then boundary layer theory gives an asymptotic
approximation to the exact solution of the differential equation. (Bender& Orszag,
1978)

We will solve one problem in Chapter Five, to illustrate how boundary layer

theory is used to construct higher order approximations.



CHAPTER FIVE
NONLINEAR BOUNDARY LAYER PROBLEMS

Boundary layer anaysis applies to nonlinear as well as linear equations.
(Bender& Orszag, 1978)

In this section, first of al, we give an example for nonlinear problems. Then we

will give three nonlinear problems that we solved.
5.1 Example
Boundary layer analysis of a nonlinear problem (Bender& Orszag, 1978)

We consider the following nonlinear boundary value problem of a type first

proposed by Carrier:
&' +21-x2)y+y? =1 y(-1)=y(®)=0 (5.1)

If we attemp a leading order boundary layer analysis of (5.1), we are immediately
surprised to find that the outer equation obtained by setting & =0 is an algebraic
equation rather than a differential equation:

yzout + 2(1— Xz)yout -1=0

Because this equation is quadratic, it has two solutions

Yout + (X) = X2 -1z V 1+ (1_ XZ) (5.2

In Figure 1 we plot the two outer solutions. Observe that neither one satisfies the
boundary conditions at x = £1. Therefore, there must be boundary layersat x =—-1
and X =+1 which alow the boundary conditions to be satisfied. The question is,
which of the two outer solutions can be joined the inner solutions which satisfy the

boundary conditions?

29



30

Figure 1 Exact solution for the nonlinear boundary value

problemin (5.1) for £ =0.01. Also shown are the two outer

approximations Y, , in(5.2)

Let us examine the boundary layer at X =1. If we substitute the inner variables

X = (1_5)() Y, (X) = y(x) into (5.1) , we obtain in leading order

d%, 8%,
F?+?(Y in _1): 0
Thus, the distinguished limit is o = Ve . The solution to the leading order inner
equation
d?y, 5
St (V2 -1)=0 (5.3)
must satisfy the boundary condition Yin(O): O and match asymptotically with one

(or both) of the outer solutions. That is, Y;, must approach either £1as X — +co.

Isit possible for Y;, to approach 1as X — 4o ? Supposewelet Y, =1+W(X).
If Y,, =1, then W(X)— 0 and we can replace (5.3) with the approximate linear

equation W" + 2V = 0. However, solutions to this equations oscillate as X — 400
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and do not approach to 0. This simple analysis shows that it is not possible for Y;, to
matchto y,, , in(5.2).

Fortunately, the same argument suggests that it is possible for Y;, to match to
You - L&t Y, ==1+W(X). Now if Y;; = —1 then W — O and we can replace
(5.3) by the approximate linear equation W"—2W =0. Since this equation has a
solution which decays to 0 exponentialy , it is at least consistent to assume that Y,

matches asymptotically with y,. _.

Having established this much, let us solve the inner equation exactly. Substituting
Y,, =—-1+W (X) into (5.3) gives the autonomous equation

W"+WZ2-2W =0 (5.4)
subject to the boundary conditions W (e0)=0 , W(0)=1. Also since we expect W
to decay exponentially as X — +o0, we may assume that W’(oo):O. To solve
(5.4) we multiply by W’(X ) integrate the equation once, and determine the
integration constant by setting X =oo. We obtain
%(W')2+%W3—W2 =0,
which is a separable first order equation:

W L ax

w.2- W

3
integrating this equation gives

—+/2tanh™ ,/1—W3 =+X +C

The integration constant is determined by the requirement that W =1 at X =0.

Hence, there are two solutions:

Y, (X)=-1+ BSechz[i [% +tanh™ \ED (5.5)
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There are two inner solutions at X =—1 which satisfy the boundary condition

y(=1) = 0 and match to the lower outer solution Yy, _ in(5.2).

We can combine the outer with the two inner solutions to form a single uniform

approximation valid over the entireinterval —1<x<1 :

Yuit (X) = X* =1=/1+ (1~ x*) +3sech® £ 12X +tarlh_1\/z
\2¢e 3

1+x 2

+3sech? i—+tanh1\/:

[ V2 3)

Notice that the solution in (5.6) is not unique. There are actualy four different

(5.6)

solutions depending on the two choices of plus or minus signs in in the boundary

layer. For one of the choice of sign, Y,,;; (x) in the boundary layer rapidly descends
from its boundary value y(i l)= O until it joins on the outer solution vy, _. For
the other choice of sign, Y, (x) rises rapidly until it reaches a maximum and then

descends and joins onto the outer solution. It is easy to see that this maximum value
of Y, 1S 2 because the maximum value of sechis 1. It is a glorious triumph of
boundary later theory that all four solutions actualy exist and are extremely well

approximated by the leading order uniform approximation in (5.6). See Figures 1 to
3.

The analysis does not end here, however. The existence of four solutions to (5.1)
may lead one to wonder if there are stil more solutions. One may begin by asking
whether there can be any internal boundary layers. We will now show that internal

boundary layers are consistent.

Assume there is an internal boundary layer at X =0. The thickness of such a
boundary layer is 6 = Je . Theleadi ng-order equation is
Y/ (X)+2Y, +Y% =1 (5.7)
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Since yout‘_(O):—l—\/E , the boundary condition on Y;, in (5.7) are
lim v, (X)=-1-+/2 . The exact solution to (5.7) which satisfies these boundary

conditions contains an arbitrary parameter A :
Y, = 3\/§sech2(2%‘x/\/z+ Aj ~1-42

Noted that if A=+oo then there is no internal boundary-layer structure. However,

for all finite values of A thereisanarrow region inwhich Y rises abruptly to a sharp

peak at which it attains amaximum valueof 24/2-1~1.8 ....Infact,inFigs4to 6
we see that for each solution in Figs. 1 to 3 there is another solution which is almost
identical except that it exhibits a boundary layer at x=0. What is more, the

maximum in the boundary layer iscloseto 1.8.

Exavt snffion

Figure 2 A different solution for the equation asin Figure 1.

Y unif becomes agood approximation to the plotted solution for

the upper choice of sign.



Exaet sodution

Figure 3 Same differential equation asin Figure 1. Yy, in(5.6) is

agood approximation to the plotted solution for one upper sign and
one lower sign. Thereis also another solution which is the reflection
about they axis of the one shown here.



Exucl solutive

Figure 4 An exact solution to the boundary value problemin (5.1). Apart

from the internal boundary layer at X =0, this solution is nearly

identical to the solution in Figure 1. The outer approximeation yout’_(x)

in (5.2) isagood approximation to y(x) between the boundary layers.

35
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Exact solutmn

Fop 151

Figure 5 An exact solution to the boundary value problemin (5.1).
Apart from the internal boundary layer at X =0, this solution is nearly
identical to that in Figure 2.

36
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Exact soluiian

b VS G |

Figure 6 An exact solution to the boundary value problemin (5.1).
Apart from the internal boundary layer at x =0, thissolution is

nearly identical to that in Figure 3 reflected about the y axis.
5.2 Problems and Solutions
Here, we give three nonlinear problems that we solved.
5.2.1 Problem 1

This problem is given in Bender& Orszag (1978) with leading order analysis. Now

we will find its two-term approximate solution.

We consider the boundary value problem
&' +2y' +e’ =0 (5.8)
y(0)=y(@)=0 (5.9)
where the small parameter £, 0<e&<<1 , multiplies the highest derivative, and

hence, aboundary layer is expected.
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If e’ were alinear function of y , there would be a boundary layer at x=0 (and no
boundary layer at x=1) because the coefficient of Yy’ is positive. This nonlinear

problem also has just one boundary layer at x=0. (Bender& Orszag, 1978)

Let us write an expansion for y(x) as
Y(X) = Yo (X) + &y, (X) +.... (5.10)
and then substituteit into (5.8).

3()’0” +5Y1" )+ z[yo, +'SY1, +'"j+e(y°“y1+"') =0

Now, we will collect the terms w.rt & power and we will solve the differential

equation that we get.

”n ” !

& +&%Y, +2Y, +2«sy1'+e(y°“‘/1+"')+...=0
eyon+gzy1"+2yo'+2.sy1'+(ey°.e‘5y1. ....)+...=O
o +E2Y, +2Y, + 28y, +€%0 L+ ey, +.)+..=0
(Zyol +ey°)+g(y0” + 2le +elo y1)+0(,92)= 0

g° order : 2y0, +e” =0 (5.11)

14

&* order : 2y1'+ey0 Y1 =Y, (5.12)

After solving these equations, we will have Y, and Y,. Then we will substitute

them into (5.10) and hence we will get an approximate solution for y(X). But there

are some important things in our analysis.

First of all, we have seen that our equations (5.11) and (5.12) are of first order
while equation (5.8) is of second order. Here, we have two boundary conditions and
they can't satisfy two boundary conditions. Because of this, we think that there is a
boundary layer and our expansion for y(x) is not valid near the boundary layer. Now,
the important question is “Where is the boundary layer?’” and “Which condition must
be eliminated?’.
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First of all, let us solve equations (5.11) and (5.12).

2y0' +e” =0 (5.11)
The solution of (5.11) is
y(x)—In( 2 j (5.13)
0 x+C '
And , then
ZY1 +e’° Yi=—Yo (512
x)=In — elo=
yO( ) (X+Cj X+C
' 1
X)=—
YO( ) N1 C
" 1
Yo (X)=
o () (x+C)?
= 2y, + Y, =— !
tox+c Tt (x+C)?
VAT SRRV (5.14)
Pox+CTt g(x+CY '
Here

1
p(X)Zm ) q(X):_—Z(x+C)2

Let us find the integrating factor
[~ dx
u(x)=e x+cC (u=x+C , du=dx)
du

—e u :eln(x+C)+a — A(X+C)
Let us multiply both sides of (5.14) with z(x).
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! A
A C Ay, =—
(x+C)yy + Ay 262C)
d A
Z(A(X+C)V,)=—
dx( (x+C)y;) 2(x+C)
A(x+C)y1:—§inXC ,u=x+C , du = dx
=-§ ‘t_“:_g(m(mc)m)
yl(X):_Z(X+C)(In(X+C)+ D)

Now , it's time to determine where the boundary layer is. Let us examine the case
that the boundary layer is near X =1. Hence the outer solution must satisfy
y(0) = O condition.

yl(X)=—%(|n2+ D)=0= D=-In2

After determining the constants C and D, now we have an expansion for y (X) as

yout(x)zln(%)+g(—L[ln(x+2)—In2]j+... (5.15)

2(x+2)

As we mentioned before, this outer solution is valid on the interval except
boundary layer. Since this outer solution isn't valid for boundary layer and the
solution of (5.8) varies so fast , we need a new variable for boundary layer. We call

this new variable as “ stretched” or “magnified” variable.
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Our hypothesis for boundary layer location is that there is a boundary layer near
X =1. Hence let us introduce our new variables for the region. We call the new

independent variable as X and the new dependent variableas V .

Let us determine the new variables. In the equations that we solved, we use
Y instead of Y.

1-x

X:
5(e)

» Y(X)=y(x) (5.16)

Since we changed the variables, we must write our equation (5.8) in terms of X
and Y . To do this change, we must define our new differentiation term.

1 d?dXx 1 d¥

dy_dvx 1 dv Mi(ﬂj _ (517)
dx dX dx  S(e)dx " dx® dxldx) S(e)dX® dx  S(e)? dX? '
Let us substitute (5.17) into (5.8), then we get
2
¢ d%¥ L, 1 d v g (5.18)

SEF dxZ “s(e)dx

Here ,5(¢) is the thickness of the boundary layer. Now, we must determine & (5)

by using balance between the terms. We have two possibilities for this analysis.

£ ~i:>i~ = ole)~¢
S6F 36 T e L 7o

If 5(8) ~ & then equation (5.18) becomes

2
:xYZ —23—;+ ce' =0 (5.19)

Thisisthe case we want. We call (5.19) as the distinguished limit for the equation.

i)

Lz~1 = 5~5(5)2 = 5(8)~\/E

5(e)

If o (8)~\/E then equation (5.18) becomes

i)
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d2y 1dy
-2 +e' =0 5.20
dX?2 g dX (520

1
and — — © as

1
Ve e

In this case, the coefficient of the second term is

>0+

1
And the coefficient of the derivative term isvery small compared with — . We

Je

don’t want this situation to occur, hence we omit second case for & (g) :

Now, we have determined the thickness of boundary layer as 0 (g) ~& . Our new
equation for the boundary layer is now given by (5.19).

2
SXYZ —23—;+geY =0 (5.19)

As we have done before, now we will write an expansion for Y (X) as
Y (X)=Yy(X) + Y, (X) +... (5.21)
and substitute (5.21) into (5.19), then we get

(Yo" + ngﬁ + j - 2(Y0, + ng, + J +eelornt) g (5.22)

Now we have equation series to solve. To determine our expansion for Y (X ) , we

will find Y, (X) and Y,(X).

(Yo+eYy+...)

Let uswrite the series expansion for g term.

(YOH TeY, + ) —2(\(0' FeY, + ...j+g(1+ Y, + &Y, +..)=0 (5.23)

Let us collect the terms w.r.t. their & power.

£° order : YOH -~ 2Y0, =0 (5.24)



43

gtorder: Y, —2Y, +1+Y,=0 (5.25)

Now let us solve (5.24) and (5.25).

Y, —2Y, =0 (5.24)
m?-2m=0
m(m-2)=0

Yo(X)=A, +Be* (5.26)

Since we think that there is a boundary layer near X =1, then we will use the
boundary condition y(1)=0. But this condition is valid for x, so we need to
rearrange this condition for X .

X=X 17X w0 for x=1

New conditionis Y (0) = 0. Let us useit.

Yo(X)=A;+Be? = Y,(0)=A;+B,=0 = By=-A

Now we have

Yo(X)= A — Ae? = A(1-e?) (5.27)

After this, let us solve (5.25).

Y, —2Y, =-Y,-1 (5.25)

!

Y, —2Y, =—A - )-1 (5.253)

=<

2 (X)=C, + Dye*
(X)=aX +bXe**

=<

P
'

o (X)=a+be** + 20Xe*"

14

(X )= 20e®* + 2be** + 4bXe*

=<

Y J



L et us substitute them into (5.25a)
Ape?* + 4bXe?* —2a—2be?* —dbXe? =—Aj(1-e¥ )-1

2b=A, —-2a=—(A,+1)
-2 a=2(A+1)

Y, (X) :%(A0 +1)X +%A0Xezx

Hence,

Y,(X)=C, + D, +%(A0 +1)X +%A0Xe2x (5.28)

Using the boundary condition Y, (0) =0, we get

Y,(X)= Co(l— e )+%(AO +1)X +%A0Xezx (5.29)

Since our approximate solution for Y (X ) in the form
Y (X) =Y (X)+ Yy (X)+...
then we get

Y(X)=Ayll—e> )+ g[co(l—ezx )+%(AO +1)X JF%AOXe2X } .. (530

Since we think that there is a boundary layer near x =1 ; now we have two

solutions valid for different regions. The outer solution y(x) valid for the outer

region i.e. 0<x<g¢ and the inner solution Y (X) valid for the inner region i.e.

e<X<l.

Now our aim is to determine a uniform solution valid in the whole interval .

To determine the location of the boundary layer, we assume that it exists at one of

the ends. Then, we carry out one-term expansions. If neighboring expansions can be
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matched, our assumption is correct; otherwise, the boundary layer exists at the other
end. (Nayfeh, 1993)

To match the inner and outer solution, first we replace y and Y with y° and y'.

Then we write y°(x) in terms of X and yi(X) in terms of x. After this, we will
expand them for small ¢ and the terms x and X fixed. Doing this, we will get (y")i

and (yi )o and then we will matched the terms. Hence, we will find the undetermined

coefficientsin y° and y' .

In the end of this matching process, we will get (y")i and (yi )0 and they will be

the same. We will call thisexpansion Yy, ... -

Now let us return to our problem (5.8) and (5.9).
We get the outer expansion

WT@="{}3L)+8(‘§6£;5U”“+2y4”23+"' (5.15)

X+2

Let us write the Taylor expansions of the terms

53)3
Inf —— |=—=X+...
X+2 2

1 1(1 1 j
—— == === X+...
2(x+2) 2\2 4

In(x+2)= In2+%x+...

Now
1 1/1 1 1
X)~—=X+¢l —=| =—= X+...[0 In2+=x+...—In2

And for the inner solution we get
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Y(X)= Ao(l—ezx)+g{co(l—ezx)+%(Ao +1)X +%A0Xezx }

Writing the Taylor expansion of the terms, we have

e =1+2X +...

Writing it into the inner solution,

Y(X)~Ag(=2X +..)+ g[co(— 2X +...)+%(A0 +1)X +%on (1+2X +...)}

For the matching at leading order, we keep only the first terms and match them.

But, this is impossible. Also, for the first order matching, let us consider the terms

with coefficient £°, &*. Keeping only the terms of order ¢ , X , and discarding the

terms of order £2,x?, x for the outer expansion and €2,£%X?,£2X for the inner

expansion , then we have

1
yout(x)=—§x+...

Y(X)=-2A X — 26Cy X +%8(A0 +1)X +%5A0X +.

These terms al so cannot be matched.

Hence, we couldn’t get Y., - NOw let us return to our hypothesis on the location

of boundary layer. Since the matching process has failed, we think that the boundary
layer must be at the other end of the interval.

Now, we will do the same things, thinking that the boundary layer isat x=0.

Hence, our outer solution

You (X) = |n(ﬁ)+g(—ﬁﬂn(x+c)+ D]j+...

must satisfy y(1)=0 condition



a7

yO(X)ZIn(xij

2
l)=In—— |=0 = 1+C=2 = C=1
YO() (1+Cj

yl(x):—z(xi (in(x+C)+)

y1(1)2—712(|n2+ D)=—%(In2+ D):O = D=-In2

Since we have found C and D, we can write Yy, (X).

Yout (X)= In(ij + g(—ﬁ[l n(x+1)— In2])+ (5.31)

X+1

Now, it's time to construct our new inner variablesvalid near x=0.

X=—<, Y(X)=y(x) (5.32)

Let uswrite (5.8) intermsof X and Y . First of al, we will define the new

derivative terms

dy dydx 1 dy d? d(dy 1 d? dx 1 d¥
T A peg e s = —— (5.33)
dx dX dx o(e)dX " dx® dxldx) d(e)dX? dx  S(e)? dX
L et us substitute (5.33) into (5.8), then we get
2
¢ dv 1 dY v g (5.34)

2
Sef dx? " “5(e) dx

We have done the analysis to determine 5(s ). We have found that 5(s)= ¢ . Hence

x =X
&

Here, the distinguished limit for this problem is

2
(CjIXYZ + 23—;+ ce’ =0 (5.35)
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To solve this equation, we give an expansion for Y(X) as
Y(X) =Y, (X )+ &Y, (X)+... (5.21)
and then substitute (5.21) into (5.35), we get

(YO +eY, + j + Z(Y0 +eY, + j +eellorim) — 0 (5.36)

(YOH + ng” + j + Z(YO' + ng, + j+ g@+Y, +&Y,+..)=0 (5.37)

Now, we will collect the termsw.r.t. their & power and solve the equation that we
get for Y,(X) and Y,(X).

g° order: YON + 2Y0’ =0 (5.38)
&' order: Y, +2Y, +1+Y,=0 (5.39)
Let us solve (5.38) and (5.39).
Y, +2Y, =0 (5.38)
m®+2m=0
m(m+2)=0

m=0, m=-2

= Y,(X)= A, +Be ™
and we have the boundary condition y(0)=0. Since X = X , y(0)=0 condition
&

convertsinto Y (0)= 0. Using this condition,
Yo(0)=A,+B,=0

= Yo(X)=A,(1-e*) (5.40)

Now we will use Y,(X ) to solve Y;(X) .
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Y, +2Y, =Y, -1 (5.39)
Y, +2Y, =-Af1-e)-1 (5.39%)

Y1 (X)=Cy+Dye >
Y., (X)=aX +bXe "

!

(X)=a+he ™ —2bXe

=]

Yl, p

"

Yy, (X)=-2be ?* —2be 2" + 4bXe

Substituting them into (5.39a) , we get
—4be ™ +4bXe ™ +2a+2be? —4bXe ™ =—(A, +1)+ Ae S
2a—2be " =—(A, +1)+ Ae
2a=—(A, +1) —2be?* = A

1 1
a:—E(AO+1) b==>"A
1 1 _2x
= \(Lp(x):—E(A0 +1)X —EAOXe

= Yy(X) =Y, (X)+Y,,(X)=C, + Do —%(A0 +1)X —%AOXe‘zx

We have the boundary condition Y,(0)=0 .
Y,(0)=C,+D,=0 = D,=-C,

= Y,(X)=Cy—Cpe?* —%(AO +1)X —%AOXe‘ZX

Yy(X)=Coli—e 2 )—%(A0 L)X —%AOXe‘ZX (5.40)

Hence the inner expansion is

Y(X)=Ayll—e )Jrg{co(1—e—2x )—%(A0 +1)X —%AOXe‘ZX } (5.42)

Now let us perform the matching process.
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The outer expansion

You (X) = |n(£}+{—ﬁ(ln(x+l}—InZ)}L...

X+1

To perform the matching process in the leading order, let us expand the first term and

keep only first term of this expansion.
In(ij ~In2
X+1

Yout (X) ~In2

Then

The inner expansion is
V(X)=Aplt-e )+‘{Co(1—e‘2x - (A DX~ AXe ™ L

To perform the matching process in the leading order, let us expand the first term and

keep only first term of this expansion.

All-e2)~ A,

According to matching, we get

A, =In2

Now, for the first order matching, we do the same thing. But, in this case we keep

theterms of ¢ and x order.
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Hence

yout(x)~ln2+%gln2

And, for the inner expansion (6 ¥ -0 , X — o)

Y(X)~ A, +g{co —%(A0 +1)x}

Keeping only the termsinvolving &, X and discarding other terms, we get
Y(X)~ A, +&C,

According to matching, we have

A, =In2 |, C, =%In2

Finding these constants, we get

Y(X)=In2{1-e > )+gBIn2(1—e‘2X )—%(1+ In2)X —%(InZ)Xe‘ZX}+...

Now, we will find Y, .., (X) .

Two-term inner expansion :

y'(X)=In2{1-e > )+ gEInZ(l— e 2 )—%(1+|n2)x —%(InZ)Xe‘ZX}

. X
Writing X =— , we have
£

. —21 _25 _25
y'(x)=In21-e ¢ |+¢& Lindi-e —1(1+In2)1—1(ln2)—e d
2 2 & 2 £

—2X
Since e ¢ >0, x—1;thenweget

(yi(x))o = |n2+8B|n2—%(1+ln2)x}

Hence,
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Yimaen (X) = (y‘(x))0 =In2+ gBInZ—%(lHnZ)x}

Now, we will find the uniform expansion.
Yurit (X)= Your (X)+ Yin (X) = Yinaren ()
Then,

—2X
Y unif (x)=ln(i)+ln2[1—e g J—InZ—%(lHnZ)x—%(an)xe

1+x
(5.43)
1 1 201
{ ) (In@+ x)- In2)+EIn2{1—e g J—Eln2+5(l+ In2)x] +0(e)?
5.2.2 Problem 2
Let usfind one-term outer and inner expansions of the equation given as
&+ x+sinx=0 (5.449)
x(0)=1, %(0)=1 (5.44b)
First of all let us give an expansion for x .
X=Xy +&X +... (5.45)
Now let uswrite (5.45) into (5.44a).
£(%y + & +..)+ (X + &% +...)+sin(X, + &, +..)=0
(X + &%y +...)+ (g + &g +...)+ SiN Xo.008(e%; ) + Sin(ex, ).cosXy +...= 0 (5.46)

Since Sinex; ~é&X; and coseX; ~1 near x = 0, then we can write (5.46) in the

form as below,
Xo +SINX, + &(X, + X, + X, COSX, )+ &%, +...=0 (5.47)
g% order: X,+sinx,=0 (5.48)

Now let us solve the equation obtained in (5.48) .
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Xo+SNX, =0 (5.48)

dx, :
—>=-9nX,
dt

dx,
Isinx0 ==

L et us do the necessary trigonometric transformations.

X .
u=tan-2 , x,=2arctanu , dx,= 2du , SiNX, = 2
2

1+u? 1+u?

o5

Now our integral is

dx, [ 2 1 _¢Ou _
Isinx0_11+u2' o du=[~ =Inu|=1In

1+u?

dx, _
- jsinxo_ Jat

3|1
Inftan (?Oj:_wcl
(gl o

? = arctan(Ce )

Xo = 2tan* (Ce ) (5.49)

Now let us find where the boundary layer is. To find it, we will use the conditions
given in (5.44b). Since we have found our outer solution
X, = 2tan(Ce ™)
from afirst order differential equation, then our outer solution doesn’t satisfy both

conditions given in (5.44b). Consequently, we think that there is a boundary layer
near x =0.



Now we will find the inner solution valid near x =0 . To find it we will introduce
the new inner variable.

L (5.50)

S(e

And we will write the new derivative terms.

Cdx_dXdT 1 dX
Tdt dT dt o(e)dT

d(dx) 1 d2XdT 1 dX
d( j S(e)dT? dt  s(ef dT

Now our equation is converted into the form

X +—1 X +snX =0 (5.51)

se) ole)

L et us determine the thickness of boundary layer. We have two possibilities.

& 1
) —=~—— = dlg)~¢
5({;‘)2 5(5) ( )
. & 1 1 1 )
if ole)~¢,then ——~= and ——~— . And these two terms are bigger
) sef € Se) e %

than 1, the coefficient of the third termin (5.51). Thisisthe case we want.

i) ~1 = 8(g)~e

o (8)2

if 5(¢)~+/e, then the coefficient of the second term is L aditis bigger than

Je

the coefficient of the second order derivative term. We don’t want this situation.

Hence we have found the thickness of the boundary layer & (g) ~ & . Writing this
in (5.51),
X+X+esnX =0 (5.52)

Our expansion for the inner solution is
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X=Xy +eX +... (5.53)
Let us substitute it into (5.52),
(Xo+ X, 4. )+ (Xg + Xy +..)+ £5in(X g + Xy +..) =0
Sin(X, +&X; +...)=sin X,.co8(eX, ) +sin(eX, ).cos X, +...
And also
cog(eX,)~1 , sin(eX;)~eX,

Then we can write

Xo+&X,+ Xo+&X, +£5nXy+0(£2)=0 (5.54)
And for one-term inner approximation we have
X,+X,=0 (5.55)
Let us solve (5.55).
m(m+1)=0

m=0, m,=-1

= X (T)=A+Be’ (5.56)

Since our conditions in (5.44b) are valid for x , then we must write them for X .

x(0)=1and T L ,then t=0 = T =0. Hence our new conditionis X (0)=1 .
&

We have found that X:EX . Now let us useit .

g
S ; ,
X=—X = X =& (5.57)
g
Our condition was (0)=1 .
x(0)=1 = X(0)=&x(0) = X(0)=¢ (5.58)
We have an expansion for X as
X =Xg+&X +... (5.53)
Using it, we have
X(0)=X,(0)+&X,(0)+...=¢ (5.59)

Then,



X,(0)=0 and X,(0)=1

Now we will usethemto find Aand B .
= Xo(T)=A+Be™’
= Xo(T)=-Be™
Now we have X ;(0)=1and X,(0)=0.
= X,(0)=A+B=1
= X,(0)=-B=0
Hence A=1 , B=0
= X,o(T)=1

Now we will find C with matching.

One-term outer expansion :
x° = 2tan"*(Ce ™)
Writing itintermsof T :
x° = 2tan*(Ce ")
Expanding it for small ¢,
x° =2tan " (C(L-&T +...))

One-term inner expansion :

(xo)i =2tan'C

Thismust beequal to X,(T)=1. Thenwehave C :tanz

Hence our one-term outer expansion is

X, (t) = 2tan_l(tan(%)e—tj

56

(5.60)

(5.61)

(5.62)

Hence our one-term inner solution is given by (5.61), and one-term outer solution

isgiven by (5.62) .
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5.2.3 Problem 3
Let us consider the differential equation

ey”+x%y’+§y2 =0 ,-1<x<1
6 (5.63)

p(x)= X% ,and p(0)=0, hence thereis aboundary layer near x = 0.

L et us give a one-term outer expansion for the outer solution as
yout (X) - yO (X) (564)
And substituting it into the equation, we have

gy + xSy, +§ Yo' =0 (5.65)

We have for £° order,
x%yg +gy02 =0 (5.66)

ThisisaBernoulli differential equation. To solveit, let usintroduce the

transformation

2=y, =
Yo (5.67)

!

:y—lzy’— z
0Z 0 ZZ

After these transformations our equation is converted into

1

dz 5 5

—=—X

dx 6 ) (5.68)

dz:§x_gdx
6

Integrating it we have,

25 4

Z=—X"+ 5.69
4 Ay (5.69)

Then
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24

Yo=—— (5.70)
25x7° + 24,
Hence our one-term outer expansion is
24
You (X) ~ 7 (5.71)
25x7° + 24 A,
We have two conditions and let us use them.
1 24 1 23
1N== = === = =— 5.72
(D=5 = Yl V=g =5 = A=y 67
1 24 1 a7
l)== = l)=———=- = =— 5.73
W0=3 = Vul)=gg =3 = M=py 6D

Since the boundary layer in this equation is an interior boundary layer then, we
have two outer solutions. We have

24
Vou (X) ~ —5——  ~1=xsx (5.74)
25x5 + 23
24
You (X) ~ o x,|<x<1 (5.75)
25x5 + 47

Here X, isapoint near x=0. And also X, =0(1) , Xi:o(l) :
1

Now, we will find the inner solution. Let us use the new inner variable near x =0,

) X
let uswrite X =—— .

5(e)

dy dydXx 1 dy d? d{(dy 1 d? dx 1 d¥
dy _4ar oA _ L= =—| |- = ——— (5.76)
dx dX dx J(e)dX T dx* dxldx) o(e)dX? dx  S(e) dX
Substituting them into the first equation, we get
R 14 x %y +2y2_g (5.77)
5(e) 5(e)s 6

Let us determine &(¢).
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hence our equation becomes,
Y”+x%v'+gg%v2:o (5.78)

Since we get the distinguished limit, now, we write our one-term outer expansion
Y (X)~Y,(X) (5.79)
Substituting (5.79) into (5.78) , we get

Y{+ X %YO' +23%YOZ =0 (5.80)

First of all, we collect the terms of order £° in (5.80) , and to solve this equation , let

uswrite
dp
=Yy , —=Y, 5.81
p ™~ 0 (5.81)
Then we have,
W xHBp—0= P__xdx = Inp=-2x"+8,
dX p 6
Then,
_5:%
p=Be ®© (5.82)
Hence, we have
X _§)“(% A
Yo=Bfe © dX+C (5.83)
0
X
Here X=—5 = X > ow.
%
5 %

Now we will evaluate integral Ie_ﬁ dX .
0

Let uswrite

u:gx% , du:X%dX (5.84)



Hence our integral becomes

Then, we get

Now, we have Y (X )~Y,(X)=Bk +C

To match the inner and outer solutions, let us write,
24 24
yout(x)“‘g as X—>0- ; yout(x)~E a x—>0+
Hence

Y~% as X—>0- ; Y~— a x—>0+
23

Also,
Y(X)~Bk+C as x—>0- ; Y(X)~-Bk+C a x—0+

Here, we have found that

C ~1.5541
Bk ~-0.2664

Hence,
Y,(X)~1.2877
And
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(5.85a)

(5.85b)

(5.86)

(5.87)

(5.88)

(5.89)

(5.90)

(5.91)



Y(X)~1.2877
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(5.92)

Now, we will find the uniform expansions valid on the whole interval. We know

that
yunif (X): yout (X)+ yin (X)_ ymatch (X)
Hence,
24 24
Ynit Jef (x):T+1.2877—§+O(8) X — 0—
25x/° + 23
24 24
Yunit right (X) = — +1.2877 - ol O(e) , x>0+
25x/° + 47

Consequently, we have
24
ZSX% +23

24

Yunit et (X) = +0.2442+0(g) , x—>0-

Yunit right (X) = +0.7771+0(¢) , x—0+

4
ZSXA +47

(5.93)

(5.94)

(5.95)

(5.96)

(5.97)



CHAPTER SIX
CONCLUSIONS

In this thesis , we studied boundary layer problems which are one of the types of
singular perturbation problems. To solve these problems, we divide the region into
inner and outer regions. We give asymptotic expansions for these regions, hence
given second order problems are converted into first order problems which are easier
to solve. Solving them we get outer and inner expansions. Finally, we match them to
get a uniform expansion valid on the whole interval. Hence, we get asymptotic
solutions for chosen nonlinear boundary layer problems. In the chosen problems, the
boundary layer theory can be used to construct higher-order approximations in the

perturbing parameter ¢ to the solution of the nonlinear differential equations.
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