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AN APPLICATION OF INFORMATION THEORY FOR DNA STRUCTURE  

 

ABSTRACT 

 

In this study, first the definitions of the concepts of entropy and information 

which express the measurement of the indeterminacy existing in a probabilistic 

system are addressed. The features of these two concepts and their variety are 

presented in detail, and the relation and differences between these two are touched 

upon. For both concepts, applications had been conducted on DNA structures 

belonging to human genome taken from the NCBI (National Center for 

Biotechnology information) website.  

 

The results on the relative entropy (Kullback-Leibler divergence) and 

Bhattacharyya distance values calculated from the probability distributions, formed 

by taking the bases of the regions that encode proteins (exon) and that do not encode 

proteins (intron) of the DNA structures of the eukaryote cells, and the results on the 

similarity of the probability distribution of these two structures were presented 

contrastively. A similar study is conducted for the splice site regions where exons 

and introns separated, and an alternative way is proposed for estimating this region. 

Also, via the probability distributions of the amino acids, the Entropy, Kullback-

Leibler distance and Mutual Information values is calculated and interpreted.  

 

Key Words: Entropy, Relative Entropy (Kullback-Leibler Divergence), Joint 

Entropy, Conditional Entropy, Mutual Information, Molecular Biology, DNA, RNA 
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DNA YAPISI İÇİN BİLGİ TEORİSİ UYGULAMASI 

 

ÖZ 

 

Bu çalışmada, öncelikle olasılıksal bir sistemde var olan belirsizliğin ölçümünü 

ifade eden entropi kavramı ve bilgi kavramı tanımlarına yer verilmiştir. Bu iki 

kavramın özellikleri ve çeşitleri ayrıntılarıyla gösterilmiş, aralarındaki ilişki ve 

farklılıklara değinilmiştir. Her iki kavram için, NCBI (National Center for 

Biotechnology Information) internet sitesinden alınan insan genomuna ait DNA 

yapılarında uygulamalar yapılmıştır. 

 

Ökaryot hücrelerin DNA yapılarında bulunan protein kodlayan bölüm (exon) ve 

kodlamayan bölümlerin (intron) bazları temel alınarak oluşturulan olasılık 

dağılımlarından hesaplanan Relative Entropy (Kullback-Leibler uzaklığı) ve 

Bhattacharyya uzaklığı değerleri ile bu iki yapının olasılılık dağılımlarının benzerliği 

hakkında sonuçlar karşılaştırılarak sunulmuştur. Exon ve intronların ayrıldığı yer 

olan Splice site bölgesi içinde benzer bir uygulama yapılmış ve bu bölgenin önceden 

belirlenebilmesi için alternatif bir yol önerilmiştir. Ayrıca, aminoasitlerin bazlarının 

olasılık dağılımları ile de Entropi, Kullback-Leibler uzaklığı ve Karşılıklı Bilgi 

(Mutual Information) değerleri hesaplanmış ve yorumlanmıştır.  

 

Anahtar Kelimeler: Entropi, Göreli Entropi (Kullback-Leibler Uzaklığı), Koşullu 

Entropi, Bileşik Entropi, Karşılıklı Bilgi, Moleküler Biyoloji, DNA, RNA 
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CHAPTER ONE 

INTRODUCTION 

 
The goal of Information Theory is to examine the qualitative rules related to 

acquisition, transfer, computation and retention of information. Information Theory 

has a quite widespread area of use. The randomness in transferring information has 

made the use of statistical methods in the theory necessary.  

 

Communication is the process of transferring particular messages through a 

channel from a source to a receiver after encoding them. Formulating the 

communication system as a stochastic process comprises the departure point of the 

Information Theory. The publication “The Mathematical Theory of Communication” 

by Claude Shannon in 1948, laid the foundations of the relation between the 

communication system and information theory. Shannon, in his publication, touched 

upon communication system, information theory and the concept of entropy which is 

the amount of information in this theory (Shannon, 1948).  

 

The concept of entropy, a word of Greek origin, first appeared as the second law 

of thermodynamics. The first law of thermodynamics is about conservation of energy 

in the universe. According to this law, the amount of energy in the universe is 

constant. The second law of thermodynamics, namely entropy, states that these 

energies are irreversible. For instance, ice will not freeze again by itself after it melts. 

At this point, entropy represents the mixedupness of the order after conversion of the 

energy of a system.  

 

The concept of entropy, in time, became meaningful in subjects other than 

thermodynamics in which it represented the consumption and conversion of energy. 

Ludwig Boltzmann mentioned that in statistical physics, the chaos in an organisation 

in which the event take place, would increase as a result of the increase in entropy. 

After statistical physics, the use of the concept of entropy has become common via 

the studies of Claude Shannon. 
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Shannon’s use of entropy in Information Theory in 1948 and his formulating this 

concept for stochastic states caused the studies on this subject to increase. The 

formula which Shannon formed using the effectuation probabilities of events has 

been called “Shannon Entropy” in literature. The concept of entropy is calculated 

differently when it is used in different areas. This situation may be exemplified by 

common entropy calculation methods such as “Gibbs Entropy” in thermodynamics, 

“Kolmogorov-Sinai Entropy” in mathematics, and “Renyi Entropy” in Information 

Technology.  

 

Today, in every area in which statistics is used and indeterminacy exists, entropy 

is used. Molecular biology is one of the areas where entropy is used. After the 

discovery of the Deoxyribonucleic Acids (DNA) and protein sequences of the living 

things carry important information and these sequences have important roles in the 

formation of some illnesses, interest in this topic has increased visibly. Many entropy 

studies on the DNA structure on the base level have been conducted (Chun & Wang, 

2004; Herzel, Ebeling & Schmitt, 1994; Mantegna, et al 1994; Schmitt & Herzel, 

1997). 

 

When the recent studies are to be examined; it is suspected that introns, which 

exist in the DNA structures and which discarded during RNA translation process and 

separated from exons, include important information with regard to living organisms. 

In the studies conducted, the similarities of the distributions of exons to the 

distributions of introns are being investigated. In this respect, entropy and 

information theory are used widespreadly (Cover & Thomas, 2006).  

 

In this study, an application of information theory to the base sequences that 

comprise the DNA, one of the basic notions of molecular biology, was conducted. 

The study comprises of five chapters. 

 

In Chapter One, a general introduction was presented; and the history of 

information theory and entropy, their areas of use and their importance were touched 

upon. In Chapter Two, basic information on the main concepts of molecular biology 
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was presented in order the interpretations in the application sections to be understood 

more clearly. In Chapter Three, the communication system, information theory, and 

the concept of entropy, known as the amount of information, were put forward as the 

theoretical background. In Chapter Four, the application of information theory on the 

DNA structures was given which comprised the main topic of the study. Various 

entropy applications were conducted on the genes HUMGALK1A, HUMCD19A and 

HSALADG, which belong to human genome, and which were selected randomly 

from the NCBI (National Center for Biotechnology Information) website. First, the 

distance of the probability distributions of exons and introns of the genes 

aforementioned to the uniform distribution and to each other were examined using 

Kullback-Leibler distance (Relative Entropy) and Bhattacharyya distance. Then, the 

distances of the probability distributions of the bases in the “Splice Site” regions, 

where exons and introns of these genes separated, to the probability distributions of 

exons and introns were examined; and the differences between the bases in the splice 

site regions were tried to be investigated. After these studies, conducted by taking the 

bases as basis, same procedures were carried out for the probability distributions, 

taking the amino acids as basis. In the last part of the application section, combined 

entropy and mutual information calculations were performed, taking the base 

sequences of the genes in question as basis. In the last chapter, particular 

interpretations were made using the tables, formed from the results of the 

application, and tried to shed light for the researcher who intend to do research in this 

area.  
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CHAPTER TWO 

BASIC CONCEPTS OF MOLECULAR BIOLOGY 

 
Molecular biology, the branch of biology that investigates the events in the world 

of living organisms on a molecular level, examines the systems that comprise the 

cells, and the relations between these systems. This field of science has gained great 

importance recently. Especially, the developments of genetics, biochemistry and 

biophysics caused molecular biology to be more and more important. The examining 

of proteins, amino acids and enzyme structures, and shedding light on the genetic 

structures of the living things are in the domain of molecular biology (Gates, 2000). 

Figure 2.1 shows the relations between biology, biochemistry and genetics. 

 

 
        Figure 2.1 The relations between molecular biology, biochemistry and genetics 
 

The organism of a living thing comprises of chemical substances such as proteins, 

carbon hydrates, fats, and DNA and RNA molecules. Each chemical structure has 

particular tasks in the cell structure. These tasks are performed in a particular 

systematic order, thus help sustaining the liveliness of the organism. In this chapter, 

proteins, DNA and RNA structures will be identified. 
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2.1 Proteins 

 

Proteins are the most fundamental structures for the biological events in the cells 

of living things to occur. Proteins are formed by the combination of molecules of 

oxygen, hydrogen and nitrogen atoms, together with the structures called amino 

acids. The events occurring in the cells take place as a result of the tasks performed 

by particular proteins. For instance, haemoglobin proteins provide the transfer of 

oxygen needed by the cell and the insulin protein meet the need of sugar of our cells.  

 

Some of the functions of proteins can be listed as below: 

 

 Proteins are the building blocks of the cellular organs and soft tissues. 

 They take part in forming new tissues. 

 They function in repairing the tissues. 

 They play role in transfer of neural stimuli 

 They function in supporting the organism and in providing mobility. 

 They help to protect the body against external factors. 

 They take part in transfer of oxygen and other materials. 

 They play a role in the coagulation of blood. 

 They help keeping the equilibrium in the cell. 

 

Amino acids, comprising of nucleotides, are the building blocks that form the 

protein. There are over 300 kinds of amino acids in the nature; but there are only 20 

of them in mammals. It is possible to produce various proteins using the 20 different 

amino acids in the cell. The tasks of the proteins differ according to the numbers and 

kinds of amino acids they include. Proteins include an average of 350 amino acids. 

However, in the cell structure, there are small proteins comprising of 20 amino acids, 

as well as huge proteins that include 5000 amino acids (Gates, 2000). 

 

The genes in the chromosomes of the living things, too, are formed of amino 

acids. Each of the bases entering the structure of the amino acids (Adenine, Thymine, 

Guanine and Cytosine) is used as a symbol for coding. The genetic code of the living 
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things first forms the amino acids using these four bases. These amino acids, then, 

form the proteins and the enzymes. Three bases sequenced successively represent a 

code. 64 codes can be formed using four different nucleotides. These 64 codes form 

the 20 amino acids. Thus, some amino acids are represented via more than one code. 

The changes in the sequences of these codes, causes different meanings to occur 

(Riyazuddin, 2006). The codes formed by the bases and the corresponding amino 

acids are presented in Table 2.1. 

 
Table 2.1 Standard Genetic Code Table 

 

 

As it is shown in the table of Standard Genetic Code, amino acids may generally 

be presented in a three letters or single letter way (Gates, 2000; Schmitt & Herzel, 

1997). Amino acids show variety according to their type. The 20 different amino 

acids can be classified under four groups according to their chemical differences: 

 

 Positive Charged Amino Acid (Basic): 

 

 Arginine Arg R 

 Histidine His H 

 Lysine Lys K 
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 Negative Charged Amino Acids (Acidic): 

 

 Aspertic Acid Asp D 

 Glutamic Acid Glu E 

 

 Polar Amino Acids: 

 

 Asparagine Asn N 

 Cysteine Cys C 

 Glutamine Gln Q 

 Glycine Gly G 

 Serine Ser S 

 Threonine Thr T 

 Tyrosine Tyr Y 

 

 Non-Polar Amino Asitler:  

 

 Alanine Ala A 

 Isoleucine Ile I 

 Leucine Leu L 

 Methionine Met M 

 Phenylalanine Phe F 

 Proline Pro P 

 Tryptophan Trp W 

 Valine Val V 

 

2.2 Deoxyribonucleic Acid (DNA) 

  

Deoxyribonucleic Acid (DNA) is a giant molecule that has important roles in all 

the vital functions of the cell which comprises of carbon, hydrogen, oxygen, nitrogen 

and phosphate atoms. Each gene, which is a part of the DNA molecule, controls a 

particular feature in the human body. The functions to sustain the liveliness of the 
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organism such as the body shape of the organism, the division of labour of the organs 

and the order of functioning of these organs, the genetic codes of the proteins to be 

produced in the cells, the control of the amount of the proteins to be produced (gene 

regulations) are planned and encoded on the DNA. Shortly, DNA is the genetic 

information store of living things. Genetic information is like a language. First the 

words are written by combining the letters in our alphabet, and then the words are 

combined in order to form sentences and then paragraphs and larger texts. In DNA 

however, the alphabet contains only four letters. Each letter represents a chemical 

molecule called base or nucleotide. Codons, the genetic words, are formed of these 

letters. As distinct from other languages, in genetic language all words (codons) are 

formed of three letters. These words combine and form sentences which are called 

genes. All sentences come together and form the book, namely the genome, which 

includes all the genetic information (Gates, 2000; Riyazuddin, 2006). 

 

DNA molecules were first observed by A. F. Miescwer in the end of the 19th 

century. In 1953 Watson and Crick conducted studies to identify the structure of 

DNA. According to the results of these studies, DNA is a chain of two molecules of 

infinite length in theory, wrapped around each other as a double helix. 

 

The nucleotides forming DNA comprise of three sections: 

 

 Base: Adenine (A), Thymine (T), Guanine (G), Cytosine (C) 

 Sugar (Carbohydrate with five carbon atoms) 

 Phosphate Group 

 

A base is attached to the sugar sequence attached by the phosphate bonds. This 

bond presented in Figure 2.2 forms one of the chains of DNA.  
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C   T   G   A   ... 

Sugar Phosphate Sugar Phosphate Sugar Phosphate Sugar Phosphate ... 

Figure 2.2 Base, Sugar and Phosphate bonds in DNA chain 

 

A second sequence of DNA with the same structure is attached to the first one by 

hydrogen bonds that exist between particular bases in the two sequences. DNA is 

formed by these two chains to wrap around each other to form a helix. The DNA 

structure is shown in Figure 2.3. 

 

 
Figure 2.3 Double Helical Structure of DNA 

 

DNA has two main functions. First of them is to copy itself during cell division. 

During the division of the chromosomes DNA creates a copy of itself. This copying 

process is called replication, put it differently, duplication. This event is necessary 

for the same features to occur in the new cell after cell division.  
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The second function of DNA is to transfer the information gathered on itself to 

RNA (Ribonucleic acid). This process is called transcription. Transcription is the 

synthesis of RNA over the DNA mould. Thus the information on DNA is transferred 

to RNA molecule. The information gathered on RNA is read in the ribosomes and 

used in protein and enzyme synthesis. This process is called “translation”. These to 

events are called Central Dogma (Farach, et al, 1995; McGrats, 2000). 

 
 

Transcription 
  DNA mRNA 

Protein Translation 

 
 

In eukaryote cells, in DNA molecules, there are sections that include protein 

synthesis code (exon) and that do not include the code (intron). As proteins and 

enzymes are being synthesised a RNA copy sequence called mRNA is placed by 

taking a letter sequence of a gene in DNA as an example. This process is called 

Transcription. During transcription, while mRNA is being formed, the letter 

sequence of the gene is not read from the beginning to the end. Some section of the 

code is read and copied and then a long section is skipped and the reading process is 

then started from another section. The section in the gene that is not read is called 

intron. Transcription phase is when introns and exons are separated from each other. 

During this process the Thymine base changes its place with Urasil base. The 

sections of DNA that does not carry information (introns) are discarded during 

“translation” phase. In this phase, exons that are separated from introns are turned 

into amino acid and protein chains according to the Standard Genetic Code Table. 

Figure 2.4 shows the phases of transcription and translation. Introns occupy a great 

part of the total genome. The section where exons and introns separated is called 

“splice site”. The sections in DNA sequence that do not carry the code start with GT 

base pair and end with AG base pair. This situation is always like this, but not all GT 

base pairs are intron beginnings. Accordingly, not all AG base pairs are intron 

endings (Mantegna, et al, 1994; Sakharkar, Chow & Kangueane, 2004). 
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Figure 2.4 Transcription and Translation Process 
 

DNA, by reduplicating itself, transfers the codes of life from one generation to 

another through germ cells. Encoding the body structures and characters of living 

things in a non-living molecule and this molecule’s reduplicating itself are done by 

means of DNA molecules. Therefore, DNA takes an important task for living 

organisms.  

 

2.3 Ribonucleic Acid (RNA) 

 

Ribonucleic acid (RNA) is a nucleic acid in the form of a single helix formed by 

the combination of ribonucleotides successively. RNA, together with DNA functions 

in the cell, in protein synthesis. The length of RNA molecules is shorter than DNA 

molecules (Gates, 2000). Although some features of RNA molecules are similar to 

DNA molecules, there are some differences from them. These differences can be 

listed as below: 
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 RNA contains ribose sugar instead of deoxyribose sugar 

 It is in single helix form by contrast with DNA 

 It contains Urasil base instead of Thymine  

 It is shorter than DNA molecules. 

 

There are RNA molecules that are used in different tasks in the cell. In eukaryotic 

and prokaryotic cells, there are three types of RNA used in different tasks. These are 

called mRNA, rRNA and tRNA (Adami, 2004; Gates, 2000).  

 

mRNA, also known as the messenger RNA, is a type of RNA that functions as a 

mould in transferring the hereditary information stored in the DNA to the protein 

structure. mRNA is synthesised by the RNA polymerase enzyme in the nucleus 

through a single chain of DNA and then it separates from the nucleus and attaches on 

ribosomes. It determines the amino acid sequence of the protein to be synthesised 

according to the genetic information it obtained from DNA. Each RNA molecule 

shows conjugation with a section on the DNA, namely the gene, mRNA plays an 

important role in protein synthesis (Adami, 2004; Gates, 2000).  

 

rRNA, known as the ribosomal RNA, is a type of RNA which is a part of 

ribosomes. It constitutes 65% of the ribosome weight. It has important roles in 

ribosomes’ structures and functions. As rRNA is preserved in every living organism, 

the evolutional relations between living things can be calculated by analysing the 

nucleotide sequences.  

 

tRNA, know as the transferring RNA, is the type of RNA which functions in 

translation process. It is a single helix form as mRNA, but it is smaller as a molecule 

than mRNA. This RNA type fulfils the functions of selection and transfer. For each 

of the 20 amino acids there is one corresponding tRNA molecule. The amino acid 

molecules synthesised in the cell are found by the corresponding tRNA, and their 

free ends of the tRNA molecules are attached to these amino acids. tRNA molecules, 

align the amino acids on the polypeptide chain according to the codon carried by the 

mRNA. tRNA molecules, by their ends, called anti-codon, comprising of three bases, 
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attach to the codon section temporarily and provide the amino acids to be aligned 

correctly according to the code on the mRNA. There may be more than one tRNA 

molecule for each amino acid. The anti-codon sections of these molecules provide 

the identification of codon sections of mRNAs and thus they provide the translation 

of the RNA code into protein code.  
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CHAPTER THREE 

BASIC CONCEPTS OF INFORMATION THEORY 

 
The goal of Information Theory is to examine the qualitative rules related to 

acquisition (obtaining the message), transfer, computation and retention of 

information. In this section the basic concepts of information theory 

the concept of entropy, which is defined as the measure of variety on probability 

distributions and the concept of information will be indentified.  

 

3.1 Information Theory 

 

Information Theory had emerged during the analysis of problems related to the 

telecommunications in the 1940’s. Improving the quality of communication and the 

encoding used during communication were the main concerns in those years. For this 

purpose, Shannon aimed at building a mathematical model of communication. Thus, 

the foundation of Information Theory had been laid. The study “A Mathematical 

Theory of Communication” by Shannon is the starting point of Information Theory 

(Giriftinoğlu, 2005; Yolaşan, 2005). 

 

Communication is the process of transferring particular messages through a 

channel from a source to a receiver after encoding them. Formulating the 

communication system as a stochastic process comprises the departure point of the 

Information Theory. Information Theory deals with topics such as the amount of 

information of the message produced by the Source, the maximum amount of 

information that the channel can transmit, the correction of the errors occurring 

during communication, and encoding for a more efficient communication. 

 

Information Theory has a widespread use in many fields of science. There are 

common areas of research of information theory and physics, mathematics, statistics, 

computer engineering, etc... Figure 3.1 shows the areas that are in relation with 

information theory and some common areas of research. According to this figure, 
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some of the common areas of research for information theory and statistics can be 

exemplified as Hypothesis Thesis and Fisher Informatics (Cover & Thomas, 2006). 

 

 

Figure 3.1 Interest Areas of Information Theory  

 

It has been mentioned before that information is a concept that can be measured. 

When the occurrence probabilities of each event of finite number are defined, it is 

possible to calculate the amount of information manifested by the help of these 

probabilities. This amount is expressed via the concept of entropy in Information 

Theory. After briefly touching upon Information Theory, the concept of entropy will 

be dealt with.  

 

3.2 Entropy 

 

Entropy is a word of Greek origins with a lexical meaning of indeterminacy. 

Entropy, with its coarsest definition, is the measure of indeterminacy of a particular 

system. There are at least three ways, thermodynamics, statistical physics theory and 
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information theory, to define entropy. As only the definition of entropy within 

information theory was made use of in this study, other definitions were left out 

(Cover & Thomas, 2006). 

 

Shannon argues that, the process of transmitting the message that has been 

produced in the source is one of a probabilistic one in information theory. Acquiring 

information about some particular event is valid only if there is indeterminacy on that 

event. The required information for a system’s probable states accurately equals to 

the entropy of that system. By this approach entropy can be defined as the expected 

value of the states that an event can take.  

   

The entropy value of the discrete random variable X   which can take x1, x2, …, xn  

values with pi=P(X=xi )
n

i i
i 1

p 0,i 1,2,3,...,n and p 1


    
 

  probability is calculated 

by the equation; 

 
n

i 2 i 2
i 1

H(X) p(x )log p(x ) (log ( ))iE x


                              (1) 

 

Entropy is calculated with the formula, if the random variable X is a continuous 

variable; 

             2 2H(X) f(x) log f(x)dx (log ( ))E f x                                 (2) 

 

An example for calculating entropy is given below; 

 

Assume that asking a person to think of a number between 1 and 16 and let’s try 

to reach the correct answer by requesting him/her to answer the question we ask by 

saying just “yes/no” (binary answer). Let’s calculate the entropy value as below; 
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bit.  4          

)2log
16
116(          

(1/16)log
16
1..(1/16)....log

16
1(1/16)log

16
1H(X)

)p(x)logp(xH(X)

4
2

16

1
222

16

1i
i2i



















i  

 

This means; that it can be obtained the correct answer by asking an average of 

four questions. As it can be understood from this example, as a result of an event 

with p=1/16 probability occur an information of 







16
1log 2  has formed. 

 

In our example, the answers in found are in bits. The only reason for this is our 

own choice. We can calculate the result by taking the logarithm base to a different 

radices different than 2, and we can get different values of different units. These are 

called;  

 

 bits, if the logarithm is taken to the base 2 (binary) , 

 trits, if the logarithm is taken to the base 3 (trinary), 

 nats, if the logarithm is taken to the base e (natural logarithm), 

 hartleys, if the logarithm is taken to the base 10. 

 

The easiest logarithm value is log2 (p) in entropy calculations. Therefore, this base 

is preferred in the literature when entropy (information value) is calculated (Cover & 

Thomas, 2006). The below inferences can be made about entropy according to the 

occurrence probabilities of different states; 

 

 No information occurs with a state, having a occurrence probability 1, to 

arise. In this case, the entropy value is zero. For instance; we always 

know that the resulting number will be “4” when we throw a tricky dice 

with each side having the value “4”. The result of the throw does not 

make any difference in our knowledge. 
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 The entropy value of a system increases as the probable states of that 

systems increase. 

 

 Occurrence of a state with lower occurrence probability accumulates more 

amount of information than the one with higher probability. For instance, 

instead of knowing that the result of flipping a coin will be heads or tails, 

knowing all six numbers in 6/49 lottery, which has a lower estimation 

probability, will contain more information.  

 

 As entropy of a system increases, the estimation or knowing of the results 

beforehand gets more difficult. The power of estimation will decrease 

since indeterminacy increases.  

 

Entropy has the following features; 

 

 Nonstorage 

 Static 

 Statistically independent 

 Constant 

 Symmetrical 

 Summable 

 

Entropy is at maximum where all probabilities are equal. The entropy graph of an 

event with two possible equal results 1 2(p p 0.5)  is given in Figure 3.2 (Cover & 

Thomas, 2006). 
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                          Figure 3.2 Maximum Entropy in case of Equal Probability 

 

Various entropies can be calculated for the states under interest. In this section 

some explanations on some entropy types will be given.  

 

3.2.1 Joint Entropy 

 

Let X and Y be two discrete random variables taking values {x1,…,xn} and 

{y1,…,yn}, respectively. If P(X=x, Y=y) denote the joint probability mass function of 

X and, then the joint entropy of these random variables is defined by;  

 

( , ) ( , ) log ( , )i j i j
j i

H X Y p X x Y y p X x Y y              (3) 

 

If X and Y are continuous and have the joint probability density function f (x,y), 

then; 

 

( , ) ( , ) log ( , )H X Y f x y f x y dxdy                                  (4) 

 

Joint entropy is also called the common information measure. 

0 1 0.5 
p 

1 
max 

Entropy 
(bits) 
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If X and Y are independent, then the joint entropy equals to the sum of the 

entropies of each random variable.  

 

H(X, Y) ( ) ( )H X H Y                                             (5) 

 
Let X and Y be two random variables taking values X:{1, 2, 3, 4} and Y:{1, 2, 3, 

4}. The marginal distribution of X is {0.5, 0.25, 0.125, 0.125} and the marginal 

distribution of Y is {0.25, 0.25, 0.25, 0.25} hence X and Y have the joint 

distribution; 

 

 
 

The joint entropy is calculated from this joint distribution. H(X,Y) = 27
8

 bit. 

 
3.2.2 Conditional Entropy 

 

Let the random variables X and Y are random variables that have joint probability 

distributions. When the values of the random variable Y are given, the measurement 

of the indeterminacy in the random variable X is the conditional entropy of X 

dependent on Y. Knowing Y always decreases the indeterminacy of X. It is shown as 

H(X|Y) and can be calculated as follows (Cover & Thomas, 2006). 

 

For discrete random variables; 

 

                   i j i jH(X|Y)=- p(x ,y )log p(x |y )                                     (6) 
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For continuous random variables; 

 

             H(X|Y)=- f(x,y)log f(x|y) dxdy                                          (7) 

 

If the variables X and Y are independent of each other, the chain rule that shows 

the combination of the joint entropy and conditional entropy explained above is 

given in Eq. 8. 

 

H(X,Y) ( ) ( | )H X H Y X                                            (8) 

 

This rule can be applied for the joint entropy of the variables of X and Y if the 

value of the third variable Z is known.  

 

 H(X,Y | Z) ( | ) ( | , )H X Z H Y X Z                                      (9) 

 

Let X and Y be two random variables taking values X:{1, 2, 3, 4} and Y:{1, 2, 3, 

4}. The marginal distribution of X is {0.5, 0.25, 0.125, 0.125} and the marginal 

distribution of Y is {0.25, 0.25, 0.25, 0.25}. And hence 7( )
4

H X  bits and 

( ) 2H Y  bits. Also; 

4

i=1

H(X|Y)= ( ) ( | )

11H(X|Y)=
8

p Y i H X Y i

bits

 
 

 

3.2.3 Relative Entropy 

 

The Kullback-Leibler divergence (KL = D(p||q)) is a non-commutative measure of 

the divergence between two probability distributions p and q (Kullback, 1987). KL is 

also sometimes called the information gain about X if p is used instead of q. It is also 

called the relative entropy in using q in the place of p. The relative entropy is an 
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appropriate measure of the similarity of the underlying distribution. It may be 

calculated as given in Eq. 10 and 11. 

 

x X

p(x)D(p||q) = p(x)log
q(x)

                                            (10) 

 

x X

f(x)D(p||q)= f(x)log dx
g(x)

                                          (11) 

 

The properties of the relative entropy equation make it non-negative, non-

symmetric and it is zero if both distributions are equivalent namely p = q. The 

smaller the relative entropy is the more similar the distribution of the two variables 

and vice versa (Kullback, 1987; Leutenneger, 2000). 

 

Let X={0,1} and consider two distributions p and q on X. Let (0) 1p r  , 

(1)p r  and let (0) 1q s  , (1)q s . Then; 

 

1D(p||q) =(1-r)log log
1

r rr
s s





 

 

If r = s, then D(p||q)=D(q||p)=0 , If 1 1, ,
2 4

r s   the relative entropy calculated as 

follows; 

1 1
1 12 2D(p||q) = log log 0.20753 12 2

4 4

bit   

and whereas; 

3 1
3 14 4D(q||p) = log log 0.18871 14 4

2 2

bit   

 

Note that D(p||q) D(q||p)  in general. 
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3.3 Bhattacharyya Distance 

 

In the application section of our study the Bhattacharyya distance which is a 

metric distance value was calculated as well as the non-metric Kullback-Leibler 

distance. In this section the Bhattacharyya distance will be touched upon briefly. 

 

Bhattacharyya distance is the measure that shows the similarities of two different 

probability distributions (Bhattacharyya, 1943). This measure is also used to classify 

different groups. Bhattacharyya distance is calculates as below for two different 

distributions. 

 

( , ) ln( ( , ))BD p q BC p q                                            (12) 

 

In the formula above, BC(p,q) is expressed as the Bhattacharyya coefficient. This 

coefficient takes values between 0 and 1. For this reason Bhattacharyya, too, is non-

negative. For discrete distribution BC(p,q) is calculates as Eq. 13; 

 

 ( , ) ( ) ( )
x X

BC p q p x q x


                                          (13) 

 

For continuous distribution BC(p,q) is calculated as; 

 

( , ) ( ) ( )BC p q p x q x dx                                            (14) 

 

3.4 Concept of Information and Its Features 

 

In this section the concept of information used in the framework of information 

theory and its features will be briefly explained. Information is the processed state of 

data and facts related to objects, events or people.  
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3.4.1 Concept of Information 

    

Information is a complex concept, which gains various meanings according to the 

content in question and the perspective taken. Therefore, it is hard to provide a 

general definition. The development of researchers is devoted to finding the key to 

the problem. Researchers come to common grounds in this point and develop 

mathematical terms for information systems analysis. Information is storable, visible, 

transferable, re-obtainable, observable and interpretable The randomness in the 

transfer of information requires the use of statistical methods in examining these 

processes (Adami, 2004). 

 

The value of; 

 

2 2( ) log ( ) log (1/ )i i iI x p p                                     (15) 

 

calculated for the  1 2, ,..., ix x x  values of the discrete random variable X in the state 

of 1, 2,...,i n , is called the information content of xi state. The information value of 

the random variable X is calculated as below: 

 

( ) ( )i i i
i

I x p I x                                                (16) 

 

This value is the weighted average of the information contents of the values that X 

has taken, and the probability of taking these values; and at the same time it is called 

entropy. The information content that the random variable takes is only dependent on 

the random variable’s probability of the taking that value. As lower this probability is 

so the bigger is the information content. 

 

There are four basic axioms for information: 

 

 Information is a value that is not negative. 

      I(p) 0  
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 The information value of an accurate event is zero. 

I(1) = 0  

 

 For two independent event, the information is obtained from observations 

equals to the sum of two informations. 

1 2 1 2I(p * p ) = I(p ) + I(p )  

 

 I(p) is monotonous and constant. 

 

3.4.2 Mutual Information 

 

In Information Theory, knowing the mutual information of two variables is great 

importance. Mutual information is the amount of information that a random variable 

contains about other random variable. According to this definition, the mutual 

information between the random variables X and Y can be found by comparing 

entropy of X, which is the amount of information about X; and entropy of X while 

the value of Y is given. Mutual information is always equal to or greater than zero 

(Cover & Thomas, 2006). 

 

In case 1, 2,...,i n  and 1,2,...,j m , the mutual information value is calculated 

as follows. 

 

( , ) log( ( | ) | ( ))i j i j iI x y P x y P x                               (17) 

 

Essential features of mutual information are presented below: 

 

 If X and Y are independent random variables; ( ; ) ( ) ( )P X Y P X P Y   

therefore ( ; ) 0I X Y  . 

 If random variable X is not independent from random variable Y; 

H(X | Y) = 0 and I(X;Y) = H(X) . 
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 I(X; Y) = I (Y; X) is a symmetrical function. 

 

 I(X;Y) = H(X) + H(Y) - H(X,Y)  

I(X;Y) = H(X) - H(X|Y)  

I(X;Y) = H(Y) - H(Y|X)  

 

 I(X;Y) 0  

 

 I(X;X) = H(X) - H(X|X) = H(X)  

 

3.5 Relationship between Entropy and Information 

   

The definition of information is done by taking the definition of entropy, which 

measures the randomness in a system, as a model. Therefore, information and 

entropy may be considered as mingled concepts. When a question with yes or no as 

an answer: accuracy is not in question, there is in determinacy for the answer. Here 

the question carries an information value. If the answer is known accurately, asking 

the question will be unnecessary. For instance, when the kick-off of a match is seen 

by everyone, declaring this fact will not carry an information value for other people. 

Therefore, it can be argued that “information is the source that decreases the 

indeterminacy about the subject”. Increase of information causes entropy to decrease 

by decreasing indeterminacy. Thus, minimum indeterminacy is obtained by 

maximum information. 

  

I(X; Y) = log ( P(X | Y) ) + I(X) = H(X) - H( X | Y)  

H(X,Y) = H(X) + H(Y|X)  

H(X,Y) = H(Y) + H(X|Y)  

 

The relations between the conditional entropies and joint entropies of the random 

variables X and Y can be defined as above (Cover & Thomas, 2006). 
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Information is one of the main components of the communication process. The 

most important feature of information, which has a very important place in the 

theory, is its being measurable. We may think that an information transfer process 

toward the destination starts as the information source gives out one of his/her finite 

numbered states he owned (message). If we define the probabilities of occurrence 

(giving out) of each finite state of the source, we can calculate the amount of 

information by the help of these probabilities.  
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CHAPTER FOUR 

APPLICATION 
 

The data sets pertaining to the human genome genes used in this study are 

obtained via the web sites of the NCBI (National Center for Biotechnology 

Information) and BDGP (Berkeley Drosophila Genome Project). The human genes 

HUMGALK1A, HUMCD19A and HSALADG are used as data sets. The Human 

Galactokinase (HUMGALK1A) gene extracted from the 17th chromosome of the 

human genome comprises of 8 exons and 7 introns. The Human CD19 

(HUMCD19A) gene extracted from the 16th chromosome is composed of 14 exons 

and 13 introns. As for the Homosapiens ALAD (HSALADG) gene, it has 14 exons 

and 13 introns.  

 

This study consists of two separate applications concerning the ways of using 

information theory in investigating the DNA structure. The purpose of the first 

application is to show that the probability distributions of the exons and the introns 

of genes are the same and to emphasize that introns also include information as 

exons do, and to conduct an analysis for the splice site regions of exons and introns, 

considering that exons always begin with a GT base pair. The second application 

aims at providing an example for information theory on the amino acid sequences in 

the genes. The Kullback-Leibler and Bhattacharyya distances are used in order to 

measure the similarity among the probability distributions that are obtained using the 

bases in the exons, introns and the amino acids of the genes. Moreover, various 

entropy values are computed from the probability distributions. Also, the distance of 

the probability distributions of the base sequences of the amino acids in the exons 

and introns to the uniform distribution, where each base has the same chance to be 

seen and the entropy is at the maximum value, is examined by calculating the 

positional Relative entropy values. Besides, some interpretations on the randomness 

in the sequences are made with respect to the distances. 
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The application of this study comprises of two sections. In the first section of the 

application, the results of the analysis, on exon-intron structures of the three genes 

belonging to human genome which we used as data set, will be presented. In the 

second section, though, the results of the analysis on the amino acid structures 

belonging to these three genes will be presented.  

 

4.1 Results of Exon and Intron Structure 

 

In this paper, in order to have knowledge of the base lengths of the exons and 

introns in the genes that are under examination, the descriptive statistics are 

calculated. The resulting values are presented in Table 4.1. These values show that, 

for the genes under examination, the introns are longer than the exons and the 

variations in the exon base lengths are smaller compared to the introns’.  

 
Table 4.1 Descriptive statistics for exons and introns 

 MEAN STDEV 
GENES EXON INTRONS EXONS INTRONS 
HUMGALK1A 147,375 843,857  38,067 1468,331 
HUMCD19A 119,357 407,153 74,635 513,093 
HSALADG 90,272 426,100 27,935 374,668 
 

In the first application, the distances between the uniform distribution and the 

probability distributions obtained from the bases in the each exon of the three genes 

under inspection are examined separately. According to the results presented in Table 

4.2, it is observed that the most distant exons of the eight exons in the 

HUMGALK1A gene are the first and the sixth ones. Within the HUMCD19A gene, 

it is observed that the most distant exons from the uniform distribution are the sixth 

and the eighth one of 14 exons.  In the HSALADG gene, the first and the fifth ones 

of 14 exons are monitored as having the most distant probability distribution from 

the uniform distribution. In each three genes examined in this study, the probability 

distributions of the base sequences of the first exons come off as distant from the 

uniform distribution. This shows that, the randomness within the base sequences in 

the first exons of the genes is less compared to other exons. This randomness, 
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comparingly being less, indicates that these exons have lower entropy values than 

others. Put another way, this shows that the sequences within the first exons are more 

easily predictable. 

 
Table 4.2 Distance from the uniform distribution of every exons distribution 

K-L DIVERGENCE  
EXONS HUMGALK1A HUMCD19A HSALADG 
EXON 1 0.117250121 0.063496262 0.133480575 
EXON 2 0.061215271 0.038485734 0.020604997 
EXON 3 0.094559815 0.058549359 0.048171142 
EXON 4 0.032627667 0.033028449 0.041251677 
EXON 5 0.059138844 0.057697685 0.095835948 
EXON 6 0.128324164 0.106080273 0.054035293 
EXON 7 0.087534554 0.092462677 0.056512438 
EXON 8 0.028026239 0.176920683 0.075973206 
EXON 9 - 0.073596307 0.082013944 
EXON 10 - 0.032008555 0.051441677 
EXON 11 - 0.050367251 0.013437345 
EXON 12 - 0.094410013 - 
EXON 13 - 0.028781143 - 
EXON 14 - 0.070509481 - 
TOTAL 0.068914955 0.035600501 0.025785072 

 

When the introns are examined with the same analysis, the values obtained are 

presented in Table 4.3, it is observed that the most distant introns from the uniform 

distribution are the sixth, the seventh and the fourth of the 7 introns within the 

HUMGALK1A gene. Within the HUMCD19 gene, the seventh, the ninth and the 

thirteenth introns are monitored as the most distant of the 13 introns from the 

uniform distribution. Within the HSALADG gene, the fourth and the eighth introns 

are observed as having the most distant probability distributions from the uniform 

distribution. In each of the three genes, the distance - from the uniform distribution -, 

coming off from different introns, indicates that a generalisation cannot be made as it 

can be with the exons.  
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Table 4.3 Distance from the uniform distribution of every introns distribution 

K-L DIVERGENCE  
INTRONS HUMGALK1A HUMCD19A HSALADG 
INTRON 1 0.067691744 0.014564122 0.002178067 
INTRON 2 0.011122326 0.052822401 0.028066403 
INTRON 3 0.067169914 0.052032269 0.012038870 
INTRON 4 0.140393540 0.024313423 0.097834239 
INTRON 5 0.015542284 0.055113999 0.085191660 
INTRON 6 0.183141927 0.047315644 0.019199807 
INTRON 7 0.220744700 0.108425144 0.058101863 
INTRON 8 - 0.072933480 0.104100615 
INTRON 9 - 0.164555834 0.022360678 
INTRON 10 - 0.017970836 0.000015407 
INTRON 11 - 0.051355752 - 
INTRON 12 - 0.063764765 - 
INTRON 13 - 0.188886978 - 
TOTAL 0.017947962 0.029262792 0.004980854 

 

The distances of probability distribution of the amino-acid sequences to the 

uniform distribution are analysed by calculating the positional entropy values. The 

values obtained are presented in Table 4.4. According to these values, it is observed 

that the probability distributions of the base sequences on the third raw of the amino-

acid sequences are the most distant ones to the uniform distribution within the exons 

of the three genes. Therefore, the bases with the lowest entropy values are those on 

the third row. Put another way, to estimate the sequencing of the bases on the third 

row of the amino-acids in the exons within the genes is easier compared to the other 

bases.  

 
Table 4.4 Positional relative entropies of exons of HSALADG, HUMCD19A, HUMGALK1A genes 

K-L DIVERGENCE  
POSITIONS HUMGALK1A HUMCD19A HSALADG 
FIRST 0.125890400 0.045496858 0.083164998 
SECOND 0.005349354 0.004222578 0.012030802 
THIRD 0.233643492 0.133183485 0.100216763 
TOTAL 0.068914955 0.035600501 0.025785072 
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When the same analysis is performed on the introns within the three genes, the 

results obtained are presented in Table 4.5, it is seen that the probability distributions of 

the base sequences in the introns’ amino-acid sequences are rather close to the 

uniform distribution. This situation indicates that it is very hard to estimate the 

probability distribution of the base sequences in amino-acids in the introns.  

 
Table 4.5 Positional relative entropies of introns of HSALADG, HUMCD19A, HUMGALK1A genes 

K-L DIVERGENCE  
POSITIONS HUMGALK1A HUMCD19A HSALADG 
FIRST 0.022305415 0.03608056 0.005256144 
SECOND 0.011689591 0.027389099 0.004140420 
THIRD 0.022069205 0.025926105 0.006069155 
TOTAL 0.017947962 0.029262792 0.004980854 

 

The distances between the uniform distribution and the probability distributions 

obtained from the bases in the exons and introns of the three genes under inspection 

are examined separately. According to the results presented in Table 4.6, the 

probability distributions of the exons and introns in each gene are proximate to the 

uniform distribution. The similarity to the uniform distribution shows that the bases 

in the exons and introns occur in equal probability which indicates that the sequences 

are random.  

 
Table 4.6 Distance from the uniform distribution of exons and introns distribution 

            EXON&INTRON vs UNIFORM 
GENES    K-L DIVERGENCE  BHATTACHARYYA

EXON 0.068914955 0.012187062 HUMGALK1A 
INTRON 0.017947962 0.003159570 
EXON 0.035600501 0.006244280 HUMCD19A 

 INTRON 0.029262792 0.005045766 
EXON  0.025785072 0.004502606 HSALADG 
INTRON 0.004980854 0.000873460 

 

The similarities between the probability distributions of the exons and introns, 

grounded on the bases, are examined via the calculation of the Kullback-Leibler and 

Bhattacharyya distance values. The values obtained are presented in Table 4.7. These 
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values are close to zero in each of the genes. This closeness shows that the 

probability distributions of exons and introns are similar to each other. 

 
Table 4.7 Distance between the distribution of exons and distribution of introns 

                    EXON vs INTRON 
GENES K-L DIVERGENCE  BHATTACHARYYA 
HUMGALK1A 0.036551825 0.006435956 
HUMCD19A 0.037031963 0.006403048 
HSALADG 0.012455115 0.002192561 
 

In the last part of the first application, an analysis is carried out for the splice site 

regions of exons and introns, considering that introns always begin with a GT base 

pair. It is known that introns always begin with a GT base pair and end with an AG 

base pair. We observed this condition in the splice site regions of exons and introns. 

When the protein sequence is examined, each GT base pair observed is not always an 

intron beginning. Similarly, each AG base pair observed is not always an intron 

ending. In various studies on determining how introns begin, it is seen that the last 

bases of the exon before the GT pair and the first bases of the intron after, is 

important. As we examine the probability distributions of the sequences of the nine 

last bases of the exon before the GT pair and the sequences of the first nine bases of 

the intron after the GT pair in the genes in question, it is observed that exons ending 

before introns beginning with a GT pair most probably end with a Guanine base. 

Using Kullback- Leibler and Bhattacharyya distance scale one may deduce that the 

probability distributions of the splice site region bases of exons and introns are 

different from the probability distributions of the bases in exons and introns in the 

whole sequence. Table 4.8 demonstrates this result. Information on splice site region 

can be obtained by analyzing the probability distributions of the last nine bases of 

exons before the GT pair and of the first nine bases of introns after the GT pair. 
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Table 4.8 Distance from the splice site region bases distributions of exons to all exons distributions 

    EXON&INTRON 
GENES    K-L DIVERGENCE  BHATTACHARYYA   

EXON 0.041399401 0.007148660 HUMGALK1A 

  INTRON 0.160774519 0.028743930 
EXON 0.131393025 0.025274692 HUMCD19A 

  INTRON 0.133212327 0.023236735 
EXON  0.084580981 0.015868723 HSALADG 

  INTRON 0.127826935 0.024140222 
 

4.2 Results of Amino acid Structure 

 

For the second application, we acquired the probability distributions of the amino 

acids belonging to the three genes under examination. The results obtained are 

presented in Table 4.9. The entropy values calculated using these probability 

distributions are 4.119339 bits for HSALADG, 4.071260 bits for HUMCD19A and 

3.992027 bits for HUMGALK1A. Because the HUMGALK1A gene has the smallest 

entropy value according to the values found, it can be said that the estimation of the 

amino acids of this gene is easier. 
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Table 4.9 Probability distributions of amino acid in HSALADG, HUMCD19A, HUMGALK1A genes 

AMINO ACID HSALADG HUMCD19A HUMGALK1A 
Phenylalanine ( F ) 0.03371 0.02551 0.02657 
Leucine ( L ) 0.09831 0.10714 0.11353 
Isoleucine ( I ) 0.03371 0.01361 0.02174 
Methionine ( M ) 0.03090 0.02381 0.02174 
Valine ( V ) 0.07022 0.04252 0.07488 
Serine ( S ) 0.05618 0.09184 0.07488 
Proline ( P ) 0.06461 0.09864 0.05556 
Threonine ( T ) 0.06461 0.06803 0.06522 
Alanine ( A ) 0.11236 0.04592 0.11594 
Tyrosine ( Y ) 0.03371 0.02381 0.02657 
STOP 0.00281 0.00170 0.00242 
Histidine ( H ) 0.02528 0.01531 0.02174 
Glutamine ( Q ) 0.02809 0.03741 0.04831 
Asparagine ( N ) 0.01404 0.03061 0.01208 
Lysine ( K ) 0.03371 0.02891 0.01691 
Aspartic Acid ( D ) 0.05056 0.05272 0.03140 
Glutamic Acid( E ) 0.08708 0.09524 0.09420 
Cysteine ( C ) 0.02247 0.01361 0.01932 
Tryptophan ( W ) 0.00843 0.02891 0.00242 
Arginine ( R ) 0.06461 0.05442 0.07488 
Glycine ( G ) 0.06461 0.10034 0.07971 
Total 1 1 1 
 

The entropy value decreases when new information is added. We checked this 

condition for the genes we analyzed in our application. The results obtained are 

presented in Table 4.10. The entropy value that calculated when we do not know the 

first base of the amino acids can be seen in the Genes row of the table. The values 

when the first base is known are shown in the other rows. Any additional base 

information leads to a decrease in the entropy value. When the additional information 

confirms the realization of the amino acid, the entropy value is found zero as 

expected. We may implement these calculations for other base sequences. Among 

the three genes under examination, HUMGALK1A is the easiest one to estimate the 

amino acids when new information is added. 
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Table 4.10 Entropy values for additional information 

ENTROPY HSALADG HUMCD19A HUMGALK1A 
GENES  4.1193386 4.07126012 3.99202660 
Initial T 2.5185482 2.40382757 2.36292184 
Initial C 2.1732272 2.01671637 2.16791716 
Initial A 2.7419248 2.74608344 2.69412214 
Initial G 2.2589254 2.24306345 2.22170036 

 

The similarity between the probability distributions based on the amino acids 

comprising the three genes in our application is analyzed by computing Kullback-

Leibler value. According to the results presented in Table 4.11, the genes where the 

amino acid distributions are the furthest are HUMCD19A and HUMGALK1A. It is 

seen that the amino acid distributions of HUMGALK1A and HSALADG are very 

similar. Therefore the amino acid sequences of genes with similar distribution may 

be estimated easily by examining other genes' distributions. 

 
Table 4.11 Relative entropy values for HSALADG, HUMCD19A and HUMGALK1A genes. 

GENES HSALADG HUMCD19A HUMGALK1A 
HSALADG      0 0.143158427 0.046260314 
HUMCD19A 0.148137697     0 0.156046159 
HUMGALK1A 0.050428046 0.183402414          0 

 

The joint entropy values of all genes and all base position are calculated 

separately from the joint probability distribution. The joint entropy values are given 

in Table 4.12. The same result is also valid for the other variables. 
 

Table 4.12 Joint entropy for amino acid variables and adenine, cytosine, guanine, thymine base 

position variables for three genes 

JOINT ENTOPY  

AMINO ACID ADENINE GUANINE THYMINE CYTOSINE 
HSALADG 4.371859 4.094576 4.152196 4.283639 
HUMCD19A 4.298459 4.168234 4.028408 4.193326 
HUMGALK1A 4.206562 4.083357 3.867612 4.267013 
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The consequence is the joint entropy: H(X; Y) = 4.371859 where X is Adenine is 

and Y is HSALADG. It shows how much entropy is contained in a joint system of 

Adenine position and HSALADG amino acid. In probability theory and information 

theory, the mutual information, or transformation, of two random variables is a 

quantity that measures the mutual dependence of the two variables. Intuitively, 

mutual information measures the information that X and Y share: It measures how 

much we know about one of these variables and hence reduces the uncertainty about 

the other. For example, if X and Y are independent, then knowing X does not give any 

information about Y and vice versa, so their mutual information is zero. In this study, 

the mutual information value calculated for the Urasil base position- HSALADG 

amino acid, can be interpreted as follows. Those two variables seem to have a lot of 

information in common, 0.899653 bits of information. The mutual information 

values also found for the Urasil base position- HUMCD19A amino acid variables 

and the Urasil base position- HUMGALK1A amino acid variables are interpreted in 

the same way. It was observed that the variable of the Urasil base position, among 

the mutual information values obtained in this work, was able to restrict the 

uncertainty on other variables so much. Table 4.13 exhibits the shared information 

between pairs of all base and amino acid variables. The pair sharing the most 

information is Adenine base position - HSALADG, while the least is Cytosine base 

position - HUMCD19A amino acid variables. 
 

Table 4.13 Mutual information for amino acid variables and adenine, cytosine, guanine, thymine base 

position variables for three genes 

MUTUAL INFORMATION  

AMINO ACID ADENINE GUANINE THYMINE CYTOSINE 
HSALADG 1.126493 0.893481 0.899653 0.765229 
HUMCD19A 0.985267 0.794084 1.009066 0.717221 
HUMGALK1A 1.040720 0.784268 0.908829 0.773480 
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CHAPTER FIVE  

CONCLUSIONS 

 
By courtesy of studies in Information Theory, put forward since second half of the 

20th century, the communication devices we use now have been attained. With the 

technology, improving by the second half of the 20th century, we have seen that 

living cells contain telecommunication techniques on a much more developed level. 

In the DNA of living organisms, there is an “information bank” that describes all the 

physical details of the body. Moreover, there is a system that reads, interprets this 

information and that makes productions according to this information. In all living 

organisms’ cells, the information contained in DNA is “read” by various enzymes 

and proteins are synthesises according to this information. The production of 

millions of proteins each second, for the necessary place and in the necessary types is 

realised by this system. The system’s containing this much information attracted the 

interest of researchers working in the field of information theory, and the number of 

studies on this subject has recently increased. In this study an application of 

Information Theory on DNA has been conducted.  

Initially, the probability distributions of the bases in exons and introns of three 

genes belonging to human genome are examined. As a result, it is observed that the 

base sequences of both exons and introns are equally random and it is found that the 

probability distributions of exons are very similar to probability distributions of 

introns. Hence it is shown that introns can also carry information as exons do, in 

contrast to general agreement. If the study is repeated for the other data sets 

belonging to the human genome, we may obtain results concerning the similarity of 

the probability distributions of base sequences of exons and introns. Our work 

suggests that Relative entropy (Kullback-Leibler distance) is useful tool in exploring 

the distribution of intron and exons. 

In analyzing the splice site regions of exons and introns, it is observed that the 

probability distributions of the bases are very different than the probability 

distributions of all the bases of exons and introns. It may be said that the last base of 
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exons, before the GT base pair in the splice site region of genes in data set, are most 

probably guanine. And the first base after the GT base pair is most probably Adenine 

or Thymine. We may claim that one may obtain information on the splice site region 

of the genes by examining the probability distributions of the last bases of exons 

before the GT pair and the first bases of introns after the GT pair. 

 

Furthermore, when the entropy values calculated using the probability 

distributions of the amino acid sequences in each three genes, it is observed that 

HUMGALK1A has the smallest entropy value and this makes the estimation of this 

gene's amino acids easier. When the similarity of the amino acid distributions of the 

genes examined it is seen that some of them are quite close. These analyses using 

this method can be applied to different genes, and the amino acid sequences of genes 

with similar distribution may be estimated easily by examining other genes' 

distributions. Finally, the computation of the mutual information value between the 

amino acids in the genes and the sequence of bases reveals how much information 

does the knowledge on the base sequence value provides to acknowledge the amino 

acids in the genes. 
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