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İZMİR



M.Sc THESIS EXAMINATION RESULT FORM

We have read the thesis entitled ”SOLUTIONS OF DYNAMICAL
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SOLUTIONS OF DYNAMICAL SYSTEMS

ABSTRACT

The main purpose of this work is to apply two different methods for

finding the behaviour of the eigenvalues and corresponding eigenfunctions of the Bratu

problem which has strongly non-linear term. For this reason, we use two

variational methods, such as the variational iteration method and the Rayleigh-Ritz

method. The results shows that, we can find the behaviour of the eigenvalues and

eigenfunctions of the Bratu problem by using the two methods efficiently.

Keywords: nonlinear eigenvalue problems, Bratu problem, variational iteration

method, Rayleigh-Ritz method, two-point boundary value problem.
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DİNAMİK SİSTEMLERİN ÇÖZÜMLERİ

ÖZ

Bu çalışmanın temel amacı lineer olmayan Bratu probleminin özdeğer ve karşılık

gelen özfonksiyonlarının davranışlarını bulabilmek için iki farklı metodu

uygulamaktır. Bu sebeple, varyasyonel iterasyon metodu ve Rayleigh-Ritz

metodunu kullandık. Sonuçlar, bu iki metodu kullanarak Bratu probleminin

özdeğerleri ve özfonksiyonlarının davranışlarını bulabildiğimizi gösterir.

Anahtar sözcükler: lineer olmayan özdeğer problemi, Bratu Problemi, varyasyonel

iterasyon metodu, Rayleigh-Ritz metodu, iki nokta sınır değer problemi.
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

In a dynamical system, bifurcation means sudden change (spliting) in solution that

occurs while parameters are being smoothly varied.

Consider the following non-linear boundary value problem

u′′(t)+λF(t,u(t)) = 0, 0 < t < 1 (1.1.1)

u(0) = u(1) = 0, (1.1.2)

where the parameter λ > 0, and F : (0,1]× [0,∞) → [0,∞) is continuous and is not

identically zero on any subset of (0,1]× [0,∞).

We investigate positive solutions of the Bratu equation with the homogeneous

Dirichlet boundary conditions which has strongly non-linearity, where

F(t,u(t)) = eu(t), so that it is a special case of (1.1.1) and (1.1.2). The Bratu

problem is a non-linear elliptical partial differential equation

∆u+λeu = 0, in Ω (1.1.3)

u = 0, on ∂Ω (1.1.4)

where λ > 0, Ω is bounded domain in RN , and ∆ is the Laplace operator. The

problem arises in the fuel ignition model found in thermal combustion theory, the

model of thermal reaction process, the Chandrasekhar model of the expansion of the

universe, questions in geometry and relativity concerning the Chandrasekhar model,
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chemical reaction theory, radiative heat transfer and nanotechnology.

(Caglar et al., 2008, Frank-Kamenetskii, 1969)

The problem (1.1.3) and (1.1.4) given in one dimensional space Ω, is known as the

Liouville-Gelfand problem or Bratu problem, was studied by Liouville (Liouville,

1853) and Bratu (Bratu, 1914).Also, Gelfand published a comprehensive paper (Gelfand,

1959) that included a detailed review of equation (1.1.3), (1.1.4) in RN , for N ∈
{1,2,3}, see Jacobsen (2001).

The existence of positive solutions of (1.1.3), (1.1.4) can be proved by the Choi’s

theorem (Choi, 1991) which states as follows:

Theorem 1.1.1. Let g(t) be positive defined on the interval (0,1) and

g(t) ∈C1(0,1). Then, there exist a λ∗ > 0 such that the boundary value problem

u′′(t)+λg(t)eu(t) = 0, 0 < t < 1

u(0) = u(1) = 0,

has a positive solution in C2(0,1]∩C[0,1] for 0 < λ < λ∗. Moreover, g(t) can be

singular at t = 0, but is at most O( 1
t2−δ ) as t → 0+ for some δ > 0.

(Agarwal et al., 1999, Choi, 1991)

For solving Bratu problem, there are several methods, such as shooting method

(Gelfand, 1959), finite difference method (Buckmire, 2004), collocation method (Boyd,

1986), Adomian decomposition method (Wazwaz, 2005). In bifurcation theory the

main question is to find how many solutions exist for a given value λ, known as

multiplicity of λ, and to know how the solutions vary as the parameter λ varies. Gelfand
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(Gelfand, 1959) shows that the solutions are unique for λ≤ 0 and for a single positive

value λ∗, called critical value, do not exist for λ > λ∗, and two solutions exists for

0 < λ < λ∗. In this work, we concern about the case of λ > 0.

This work has been organized as follows:

In Chapter 2, we give some preliminary definitions about the calculus of

variations in order to apply the variational iteration method and the Rayleigh-Ritz

method.

The main purpose of Chapter 3 is to describe the construction of the general explicit

solutions for all real λ and the explicit solution for λ > 0 with the

homogeneous Dirichlet boundary conditions.

In Chapter 4, we give a brief description of the two variational methods, which are He’s

variational iteration method (VIM) and the Rayleigh-Ritz method. We

apply the variational iteration method to the 1-D Bratu problem with

homogeneous Dirichlet boundary conditions and compare to the numerical

results of our approximate solutions between variational iteration method and the

Rayleigh-Ritz method.



CHAPTER TWO

THE CALCULUS OF VARIATIONS

2.1 Basic concepts of the calculus of variations

The fundamental problem of the calculus of variations is in fact seeking the

maximum and the minimum values of functions of curves, expressed by certain definite

integrals

J[y(x)] =
∫ b

a
F(x,y(x),y′(x))dx. (2.1.1)

Here J[y(x)] is a functional of y(x) which is from continuously differentiable function

to real numbers. For example, if

F(x,y(x),y′(x)) =
√

1+(y′(x))2, (2.1.2)

then J[y(x)] is the arc length of the curve y(x). In order to find the shortest plane curve

y(x) joining points (a,A) and (b,B), we need to determine y(x) for which the integral

J[y(x)] =
∫ b

a

√
1+(y′(x))2dx (2.1.3)

takes a minimum value, satisfying

y(a) = A y(b) = B. (2.1.4)

Lemma 2.1.1 (Fundamental Lemma). If f (x) is a continuous function in the

interval [a,b], and if ∫ b

a
f (x)η(x)dx = 0 (2.1.5)

4
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for every η(x) such that continuously differentiable in the interval [a,b] and

satisfying

η(a) = η(b) = 0 (2.1.6)

then f (x) is identically zero in the interval [a,b].

Let define a new function

y(x)+αη(x) (2.1.7)

where α is small parameter, η(x) satisfies (2.1.6) and y(x) yields an extremum of the

integral (2.1.1). Substituting (2.1.7) into (2.1.1), we obtain

J[α] =
∫ b

a
F(x,y(x)+αη(x),y′(x)+αη′(x))dx. (2.1.8)

Since y(x) gives an extramum of J[y(x)], (2.1.8) must have an extramum for the value

α = 0, so that its derivative must vanish for α = 0, that is,

0 =
dJ[α]

dα
|α=0 =

∫ b

a

[
Fy(x,y(x),y′(x))η(x)+Fy′(x,y(x),y′(x))η′(x)

]
dx. (2.1.9)

Using integration by parts, we have

J′[0] =Fy′(x,y(x),y′(x))η(x)|ba

+
∫ b

a

[
Fy(x,y(x),y′(x))− d

dx
Fy′(x,y(x),y′(x))

]
η(x)dx.

(2.1.10)

From (2.1.6) and Fundamental Lemma 2.1.1 , y(x) satisfy the following differential

equation

Fy− d
dx

Fy′ = 0, (2.1.11)

called Euler-Lagrange’s equation.
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Here the change αη(x) in y(x) is called variation of y and is denoted by δy

δy = αη(x). (2.1.12)

Corresponding to this change in y(x), for a fixed value of x, the functional F changes

by an amount ∆F , where

∆F = F(x,y+αη,y′+αη′)−F(x,y,y′). (2.1.13)

If the right-hand of (2.1.13) is expanded in powers of α, there follows

∆F =
∂F
∂y

αη+
∂F
∂y′

αη′+(terms involving higher powers of α). (2.1.14)

Here the first two term of right-hand side is called variation of F ,

δF =
∂F
∂y

αη+
∂F
∂y′

αη′. (2.1.15)

In the case when F = y′, (2.1.15) yields

δy′ = αη′. (2.1.16)

From (2.1.12) and (2.1.16) equation (2.1.15) can be rewritten in the form

δF =
∂F
∂y

δy+
∂F
∂y′

δy′. (2.1.17)

It is easily verified by the definition of variation that

δ(F1F2) = F1δF2 +F2δF1, (2.1.18)
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d
dx

(δy) = δ
dy
dx

. (2.1.19)

(Leis and Hildebrandt, 1988, Smirnov and Sneddon, 1964)



CHAPTER THREE

THE BRATU EQUATION

3.1 General Explicit Solution

The well known one dimensional Bratu Equation is defined by

u′′+λeu = 0. (3.1.1)

Here λ can take positive and negative values, but we are interested in the case which

λ takes positive values. In this case, λ is known as Frank-Kamenetskii parameter on

chemistry. The explicit solution for Bratu Equation can be found by using Liouville’s

trick (Cohen and Benavides, 2007) which used on a 2-D hyperbolic second order partial

differential equation uxy + λeu = 0. Liouville used v = ux
2 transformation for the 2-

D hyperbolic equation. The transformation can be used on a 1-D elliptic equation

u′′+ λeu = 0 as v = u′
2 . Here we mention about the expressions of solution for 1-D

Bratu equation

u′′+λeu = 0. (3.1.2)

Let use transformation v = u′
2 . Then

v′ =
u′′

2
=
−λeu

2
(3.1.3)

or

v′′ =
−λeu

2
u′. (3.1.4)

8



9

As a result, we obtain the equivalent simpler ordinary differential equation

v′′ = 2v′v, (3.1.5)

and integration of (3.1.5) gives

v′ = v2 + k, ∀k ∈ R. (3.1.6)

The solution can be found by elementary integration using the method of

separation of variables;

v(x) =





−1/(x+ l) k = 0

c tan(c(x+ l)) k > 0

ccoth(c(x+ l)) k < 0

c tanh(c(x+ l)) k < 0

∓c k ≤ 0

(3.1.7)

where c > 0, l ∈ R and c2 = |k| (here (c, l) and (−c,−l) define the same solution, hence

we can use c > 0). Therefore the general solution for the 1-D Bratu equation (3.1.1)

can be found by substituting (3.1.7) into

u(x) = ln
(−2v′(x)

λ

)
(3.1.8)
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as

u(x) =





ln
(

−2
λ(x+l)2

)
k = 0 and λ < 0

ln
(

−2c2

λcos2(c(x+l))

)
k > 0 and λ < 0

ln
(

−2c2

λsinh2(c(x+l))

)
k < 0 and λ < 0

ln
(

2c2

λcosh2(c(x+l))

)
k < 0 and λ > 0

∓cx+ l k ≤ 0 and λ = 0

(3.1.9)

(Cohen and Benavides, 2007)

3.2 Explicit Solution for Dirichlet Boundary Conditions

In Section 2.1, we mention about the general explicit solution of 1-D Bratu

equation. Here, more specifically, we are interested in the 1-D Bratu equation (3.1.1)

in (0,1) for λ > 0 with the zero Dirichlet boundary conditions

u(0) = u(1) = 0. (3.2.1)

Imposing the boundary conditions (3.2.1) to (3.1.9) for λ > 0, we see that it must be

cosh2(cl) = cosh2(c(1+ l)). (3.2.2)

Since c 6= 0, it follows that l = −1
2 . Substitution of the value l into

u(x) = ln
(

2c2

λcosh2(c(x+l))

)
and substitution of c = θ

2 give

u(x) =−2ln

(
cosh

(θ
2

(
x− 1

2

))

cosh
(θ

4

)
)

(3.2.3)
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with

θ =
√

2λcosh
(

θ
4

)
. (3.2.4)

Figure 3.1 shows that there exist a unique solution λc of (3.2.4), so does u(x). For

0 < λ < λc there are two solutions and for the values λ > λc there is no solution of

(3.2.4). Here, in the case that we have two solutions, one of the solutions is known as

the lower solution and the other is the upper solution.

5 10 15 20 25
Θ

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Λ

Figure 3.1 Bifurcation diagram of the exact solution
of Bratu problem

The maximum value λ = λc can be obtained by solving (3.2.4) and

1 =
√

2λc sinh
(

θc

4

)
1
4
. (3.2.5)
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Therefore the division of (3.2.5) by (3.2.4) gives

θc

4
= coth

(
θc

4

)
. (3.2.6)

Solving (3.2.6) numerically, one can find

θc = 4.79871456 (3.2.7)

and

λc = 3.513830719. (3.2.8)

(Buckmire, 2003)



CHAPTER FOUR

TWO VARIATIONAL METHODS

In this chapter we mention about two variational methods as variational

iteration method and Rayleigh-Ritz method to obtain approximate solutions of

Bratu equation with homogeneous Dirichlet boundary conditions. We will

compare the numerical results of the approximate solutions obtained by

variational iteration method with Rayleigh-Ritz method.

4.1 Variational Iteration Method

The variational iteration method (VIM) was proposed by He (1997). The method

based on the use of restricted variations and correction functionals. Many author shows

that the variational iteration method is applicable for many types of problems for

solution of non-linear ordinary differential equations (He, 1997, 1999, He and Wu,

2007) and partial differential equations (Hemeda, 2008, Wazwaz, 2007). The

convergence of the variational iteration method was investigated in the articles Tatari

and Dehghan (2007), Salkuyeh (2008).

Consider the following general differential equation

Lu+Nu = g(t) (4.1.1)

where L is a linear operator, N is a non-linear operator, and g(t) is an

inhomogeneous term.

13



14

According to the variational principle, we can construct a correct functional as follows;

un+1(t) = un(t)+
∫ t

0
µ{Lun(s)+Nũn(s)−g(s)}ds (4.1.2)

where µ is a general Lagrange multiplier, which can be found optimally by the

variational theory, n denotes the nth approximation, and ũn is considered as restricted

variation, i.e., δũn = 0. The successive approximations un+1, (n = 0,1, . . .) of the

solution u can be obtained after finding the Lagrange multiplier and by using the

selected initial function u0.

For construction of Lagrange multiplier, consider the following autonomous equation

u′′ = f (u). (4.1.3)

Its correction functional can be written in the form

un+1(t) = un(t)+
∫ t

0
µ(t,s)

{
u′′n(s)− f (ũn(s))

}
ds. (4.1.4)

Taking the variation both sides of (4.1.4) with respect to un, accounting that δũn = 0

and using integration by parts, we see that

δun+1(t) = δun(t)+δ
∫ t

0
µ
{

u′′n(s)− f (ũn(s))
}

ds

= δun(t)+
∫ t

0

{
(δµ)u′′n(t)+µ(δu′′n(t))− (δµ) f (ũn)+µ(δ f (ũn(s)))

}
ds

= δun(t)+
∫ t

0
µ(δu′′n(s))ds

= δun(t)+µδu′n(s)|s=t −µ′δun(s)|s=t +
∫ t

0
µ′′δun(s)ds

= 0.
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Thus, we obtain the following stationary conditions,

d2µ(s)
ds2 = 0

1− dµ(s)
ds

|s=t = 0

µ(s)|s=t = 0.

(4.1.5)

The Lagrange multiplier, therefore, can be easily identified as

µ = s− t. (4.1.6)

Hence, we have the following iteration formula,

un+1(t) = un(t)+
∫ t

0
(s− t)

{
u′′n(s)− f (un(s))

}
ds. (4.1.7)

(He and Wu, 2007)

4.2 Application of the variational iteration method

In this section, we will apply the variational iteration method to (3.1.2) and (3.2.1)

using the shooting method.

By the symmetry of the solution in the interval [0,1], it must be

u(t) = u(1− t). (4.2.1)

Therefore,

u′(t) =−u′(1− t) (4.2.2)
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and for t = 1
2 , we have

u′(
1
2
) = 0. (4.2.3)

Thus, we can use (4.2.3) as an additional condition. Hence it is enough to study on the

half interval [0, 1
2 ].

In order to apply the method of shooting, we can use the following initial

conditions

u(0) = 0, u′(0) = b (4.2.4)

where b is a real constant. To obtain b we will impose the condition u′(1
2) = 0 to found

variational iteration solution of initial value problem (3.1.1) and (4.2.4). Then b is

determined by the equation

Gn(λ,b) = u′n+1(
1
2

;λ,b)−u′(
1
2

;λ) = 0 (4.2.5)

for a fixed λ. Applying the variational iteration procedure to the Bratu equation (3.1.1),

from (4.1.7), we have the following iterative formula,

un+1(t) = un(t)+
∫ t

0
(s− t)

{
u′′n(s)+λeun(s)

}
ds. (4.2.6)

Because of the exponential non-linearity, the integral can not be solved directly. For

eliminating the exponential non-linearity, we use Taylor decomposition at u0, that is,

eun = eu0 + eu0
(uk−u0)

1!
+ eu0

(uk−u0)2

2!
+ eu0

(uk−u0)3

3!
+ · · · . (4.2.7)
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Let denote un by un(t,λ). Substitution (4.2.7) into (4.2.6) with N term gives

un+1(t,λ) =un(t,λ)

+
∫ t

0
(s− t)

{
u′′n(s,λ)+λ

(
1+

N

∑
i=1

(un(s,λ)−u0(s,λ))i

i!
)

)}
ds.

(4.2.8)

We begin with initial function

u0(t) = bt (4.2.9)

satisfying initial conditions (4.2.4). We obtain approximate solutions u3(t,λ,b) from

(4.2.8). Then, we solve (4.2.5), namely, u′3(
1
2 ,λ,b) = 0 by numerically in a numerical

way. The results obtained by the variational iteration method are shown in Section 4.5.

4.3 The Rayleigh-Ritz Method

The purpose of this section is to apply one of the alternative variational method,

the Rayleigh-Ritz method, and compare the numerical results found by the variational

iteration method and Rayleigh-Ritz method.

Consider the problem of seeking a function y(t) that minimizes the functional

J[y(t)] =
∫ b

a
F(t,y(t),y′(t))dt (4.3.1)

with the conditions

y(a) = y0 y(b) = y1. (4.3.2)

Assume that we are able to approximate y(t) by a linear combination of linearly
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independent functions (coordinate functions) of the type

y(t)≈ c0ϕ0(t)+ c1ϕ1(t)+ c2ϕ2(t)+ · · ·+ cNϕN(t) (4.3.3)

where ϕi satisfies the conditions (4.3.2) and we will need to determine the constant

coefficients c0, . . . ,cN . Substituting (4.3.3) into (4.3.1), we get the function in the form

J(c0,c1, . . . ,cN). (4.3.4)

We must determine the constants c0, . . . ,cN , which minimizes the function (4.3.4),

therefore
∂J
∂ci

= 0, i = 0, . . . ,N. (4.3.5)

4.4 Application of the Rayleigh-Ritz method

Now we apply the Rayleigh-Ritz method to Bratu equation (3.1.1) with

homogeneous Dirichlet boundary conditions (3.2.1), we get the following

functional

J =
∫ 1

0

(
1
2
(u′(t))2−λeu(t)

)
dt. (4.4.1)

We can choose the following test function satisfying the boundary conditions (3.2.1)

u(t) = Asin(πt) (4.4.2)
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which is proposed by Amore and Fernandez (2009).

The substitution (4.4.2) into (4.4.1) yields

J(A) =
∫ 1

0

(
1
2

A2π2 cos2(πt)−λeAsin(πt)
)

dt (4.4.3)

or

J(A) =
A2π2

4
−λ [I0(A)+L0(A)] (4.4.4)

where Iv(z) = 1
π

∫ π
0 ezcosθ cos(vθ)dθ and Lv(z) =

2( 1
2 z)v

√
πΓ(v+ 1

2)
∫ π/2

0 sinh(zcosθ)sin2v θdθ

are the modified Bessel function of the first kind and the modified Struve function,

respectively. From the minimum condition (4.3.5) , we obtain

λ =
Aπ3

2+2πI1(A)+πL−1(A)+πL1(A)
. (4.4.5)

4.5 Numerical Experiments and comparison to the two variational methods

In this section, we give numerical results of approximate solutions belonging to

some chosen λ. All computations are performed using Mathematica package.

Figure 4.2 and 4.3 shows that the behaviour of the all eigenvalues λ

corresponding to the approximate solutions found by the variational iteration method

and the Rayleigh-Ritz method, respectively. As shown in tables the variational

iteration method solution is a good approximation when we search for lower

solutions, and also the approximate solution is remarkable when we find upper

solutions. In the variational iteration method, the errors arise from truncation of Taylor

expansion, iterative procedure and application of shooting method ( from numerical
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roots of (4.2.5) ).

In Figure 4.2, we observe that there are noisy solutions of (4.2.5) for b, when b is near

0. Therefore, we cannot use the variational iteration method to obtain solutions for

small b.

5 10 15 20
b

1

2

3

4

5

Λ

Figure 4.2 Bifurcation diagram (b,λ) obtained by the VIM
solution u2 (illustrated by dashed line) and the exact solution
of Bratu problem (continuous line), where u′(0) = b is the
shooting parameter.
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Figure 4.3 Bifurcation diagram (A,λ) of the Ritz solution for u(t) = Asin(πt) (illustrated
by dashed line) and the exact solution of Bratu problem (continuous line)

Table 4.1 The numerical results of u3(t,λ) obtained by VIM when N = 3 11111111111111111
and u(t,λ) obtained by Ritz for λ = 1 (lower solution)

t ∈ (0,1) VIM Ritz Abs Error VIM Abs Error Ritz
0.1 0.0498469 0.0446824 1.55098×10−7 5.16437×10−3

0.2 0.0891902 0.0849910 3.07120×10−7 4.19891×10−3

0.3 0.1176100 0.1169800 4.55207×10−7 6.28987×10−4

0.4 0.1347910 0.1375180 5.88191×10−7 2.72811×10−3

0.5 0.1405400 0.1445950 6.50597×10−7 4.05615×10−3

0.6 0.1347910 0.1375180 5.88191×10−7 2.72811×10−3

0.7 0.1176100 0.1169800 4.55207×10−7 6.28987×10−4

0.8 0.0891902 0.0849910 3.08047×10−7 4.19891×10−3

0.9 0.0498469 0.0446824 1.55174×10−7 5.16437×10−3
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Table 4.2 The numerical results of u3(t,λ) obtained by VIM when N = 3 11111111111111111
and u(t,λ) obtained by Ritz for λ = 1 (upper solution)

t ∈ (0,1) VIM Ritz Abs Error VIM Abs Error Ritz
0.1 1.10052 1.24024 2.32479×10−2 1.62967×10−1

0.2 2.16800 2.35908 4.56091×10−2 2.36684×10−1

0.3 3.14087 3.24699 6.34765×10−2 1.69595×10−1

0.4 3.87256 3.81707 6.64095×10−2 1.09142×10−2

0.5 4.14051 4.01350 4.90410×10−2 7.79664×10−2

0.6 3.87256 3.81707 6.64095×10−2 1.09142×10−2

0.7 3.14087 3.24699 6.34765×10−2 1.69595×10−1

0.8 2.16800 2.35908 4.56091×10−2 2.36684×10−1

0.9 1.10052 1.24024 2.32479×10−2 1.62967×10−1

Table 4.3 The numerical results of u3(t,λ) obtained by VIM when N = 3 11111111111111111
and u(t,λ) obtained by Ritz for λ = 2(lower solution)

t ∈ (0,1) VIM Ritz Abs Error VIM Abs Error Ritz
0.1 0.114411 0.104189 6.33700×10−7 1.02219×10−2

0.2 0.206420 0.198179 1.25163×10−6 8.24012×10−3

0.3 0.273881 0.272770 1.80598×10−6 1.10933×10−3

0.4 0.315091 0.320660 2.08161×10−6 5.57098×10−3

0.5 0.328954 0.337162 1.88510×10−6 8.20982×10−3

0.6 0.315091 0.320660 2.08161×10−6 5.57098×10−3

0.7 0.273881 0.272770 1.80598×10−6 1.10933×10−3

0.8 0.206420 0.198179 1.25163×10−6 8.24012×10−3

0.9 0.114411 0.104189 6.33700×10−7 1.02219×10−2

Table 4.4 The numerical results of u3(t,λ) obtained by VIM when N = 3 11111111111111111
and u(t,λ) obtained by Ritz for λ = 2 (upper solution)

t ∈ (0,1) VIM Ritz Abs Error VIM Abs Error Ritz
0.1 0.832844 0.883853 1.93689×10−2 7.03784×10−2

0.2 1.617310 1.681190 3.76951×10−2 1.01577×10−1

0.3 2.297240 2.313960 5.19853×10−2 6.86990×10−2

0.4 2.775880 2.720220 5.60759×10−2 4.13324×10−4

0.5 2.944280 2.860210 4.87532×10−2 3.53228×10−2

0.6 2.775880 2.720220 5.60759×10−2 4.13324×10−4

0.7 2.297240 2.313960 5.19853×10−2 6.86990×10−2

0.8 1.617310 1.681190 3.76951×10−2 1.01577×10−1

0.9 0.832844 0.883853 1.93689×10−2 7.03784×10−2
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Table 4.5 The numerical results of u3(t,λ) obtained by VIM when N = 3 11111111111111111
and u(t,λ) obtained by Ritz for λ = 3 (lower solution)

t ∈ (0,1) VIM Ritz Abs Error VIM Abs Error Ritz
0.1 0.215659 0.201701 1.16028×10−4 1.40739×10−2

0.2 0.394092 0.383658 2.27620×10−4 1.06614×10−2

0.3 0.528107 0.528060 3.29243×10−4 3.76226×10−4

0.4 0.611414 0.620772 4.15044×10−4 8.94280×10−3

0.5 0.639683 0.652718 4.63596×10−4 1.25716×10−2

0.6 0.611414 0.620772 4.15044×10−4 8.94280×10−3

0.7 0.528107 0.528060 3.29243×10−4 3.76226×10−4

0.8 0.394092 0.383658 2.27620×10−4 1.06614×10−2

0.9 0.215659 0.201701 1.16028×10−4 1.40739×10−2

Table 4.6 The numerical results of u3(t,λ) obtained by VIM when N = 3 11111111111111111
and u(t,λ) obtained by Ritz for λ = 3 (upper solution)

t ∈ (0,1) VIM Ritz Abs Error VIM Abs Error Ritz
0.1 0.60525 0.60754 1.34382×10−2 1.57203×10−2

0.2 1.15427 1.15561 2.60603×10−2 2.73960×10−2

0.3 1.60688 1.59056 3.61313×10−2 1.98093×10−2

0.4 1.90994 1.86982 4.09108×10−2 7.82234×10−4

0.5 2.01514 1.96604 3.98712×10−2 9.22686×10−3

0.6 1.90994 1.86982 4.09108×10−2 7.82234×10−4

0.7 1.60688 1.59056 3.61313×10−2 1.98093×10−2

0.8 1.15427 1.15561 2.60603×10−2 2.73960×10−2

0.9 0.60525 0.60754 1.34382×10−2 1.57203×10−2
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Figure 4.4 The approximate solutions u3(t,λ) obtained
by VIM for λ = 1, λ = 2 and λ = 3 when N = 3 (lower
solutions)
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Figure 4.5 The approximate solutions u3(t,λ) obtained
by VIM for λ = 1, λ = 2 and λ = 3 when N = 3 (upper
solutions)



CHAPTER FIVE

CONCLUSION

Two different variational methods, the variational iteration method with

shooting method and the Rayleigh-Ritz method were applied to Bratu problem

(3.1.1), (3.2.1). Application of the two methods are very easy. The accuracy of two

methods depends on the trial function for the Rayleigh-Ritz method and the initial

function for the variational iteration method. The Rayleigh-Ritz method is used to

compare its solutions with the solutions obtained by the variational iteration method.

As a result, we obtain the variational iteration solutions better than the Rayleigh-Ritz

solutions when we look for the lower solutions, and the upper solutions obtained by

the two methods has almost same accuracy. The iteratively integrals of the non-linear

part of the equation is the difficulty of the method of variational iteration. Therefore,

in variational iteration method, we use Taylor expansion for the non-linear term near

selected initial function. For this reason, we get unexpected shooting parameters.

Hence if one can find better approximation to non-linear term, the method will have

high accuracy.
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