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APPROXIMATE ANALYTIC SOLUTIONS OF NONLINEAR 

INTEGRAL EQUATIONS 

 

ABSTRACT 

 

     This thesis is related with nonlinear integral equations, nonlinear systems of 

integral equations and integro-differential equations. The existence and uniqueness 

of these equations for Lipschitz continuous kernels are investigated. An analytic 

method based on He’s Homotopy Perturbation Method (HPM) for the solution of 

nonlinear integral equations and systems are studied and applied. This method is 

extended for nonlinear integro-differential equations. Moreover, some examples of 

the mathematics program, solutions are given by MATHEMATICA 7. The 

approximate solutions of these equations are compared with the analytic 

approximation methods such as Adomian Decomposition Method (ADM) and 

Taylor–Series Expansion Method. The comparison shows that the (HPM) is quite 

conform and efficient for solving nonlinear problems.  

 

Keywords: Linear and nonlinear integral equations, nonlinear systems of integral 

equations, Homotopy Perturbation Method. 
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DOĞRUSAL OLMAYAN ĐNTEGRAL DENKLEMLERĐN 

YAKLAŞIK ANALĐTĐK ÇÖZÜMLERĐ 

 

ÖZ 

 

 

     Bu tezde doğrusal olmayan integral denklemler, doğrusal olmayan integral 

denklem sistemleri, integro-diferansiyel denklemler incelenmiş, bu denklemlerin 

çözümlerinin varlık ve tekliği Lipschitz sürekli çekirdekler için araştırılmıştır. 

Doğrusal olmayan integral denklemlerin ve denklem sistemlerinin çözümü için 

analitik bir yöntem olan He’nin Homotopi Perturbasyon Yönteminin uygulanması 

incelenmiştir. Yöntem doğrusal olmayan integro-diferansiyel denklemler için 

genişletilmiştir. Ayrıca matematik programı MATHEMATICA 7 ile de bazı 

örneklerin çözümleri verilmiştir. Bu denklemlerin yaklaşık çözümleri analitik 

yaklaşım yöntemleri olan Adomian Ayrışım Yöntemi (ADM) ve Taylor Serisi 

Açılım Yöntemi ile karşılaştırılmış ve Homotopi Perturbasyon Yönteminin 

doğrusal olmayan problemlerin çözümünde uyumlu ve elverişli sonuçlar verdiği 

gözlenmiştir. 

 

Anahtar kelimeler: Doğrusal ve doğrusal olmayan integral denklemler, doğrusal 

olmayan integral denklem sistemleri, Homotopi Perturbasyon Yöntemi 
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CHAPTER ONE 

 
INTRODUCTION 

 

     Nonlinear phenomena, that appear in many applications in scientific fields, such 

as fluid dynamics, solid state physics, plasma physics, mathematical biology and 

chemical kinetics, can be modelled by partial differential equations and by integral  

equations as well. 

 

     There are many new analytical approximate methods to solve two–point boundary 

value problems and initial value problems in the literature. Among these, Adomian 

decomposition method (ADM) (Adomian, 1994) for stochastic and deterministic 

problems, the Modified Decomposition Method (MDM) (Wazwaz, 1997) and He’s 

Homotopy Perturbation Method (HPM) (He, 1999; 2000; 2003; 2004; 2005) have 

been receiving much attention in recent years in applied mathematics in general, in 

the area of series solutions in particular. These methods have been applied to a wide 

class of functional equations of linear and nonlinear problems. In this study, we 

investigate He’s Homotopy Perturbation Method (HPM) for certain class of 

nonlinear integral equations and compare these methods for solving the chosen 

model integral equations. 

 

     The application of the Homotopy Perturbation Method in nonlinear problems 

have been devoted by scientist and engineers, because this method is continuously 

deform a simple problem which is easy to solve into the under study problem which 

is difficult to solve.    

 

     In Chapter 2, we introduce types of integral equations and some examples for 

these equations.   

 

     Chapter 3 deals with nonlinear Fredholm, Volterra integral equations, their 

classifications and some examples of physical problems leading to nonlinear integral 

equations. 
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     The existence and uniqueness theorems for nonlinear Fredholm and Volterra 

integral equations are given in Chapter 4. 

 

     In Chapter 5, we illustrate the basic idea of He’s Homotopy Perturbation Method 

(HPM) which has became a powerful mathematical tool, when it successfully 

coupled with the perturbation theory. In this chapter we investigate He’s Homotopy 

Perturbation Method (HPM) in details for nonlinear Fredholm and Volterra integral 

equations. The convergence of the method is also given in this chapter. 

 

      In Chapter 6, we give the analysis of He’s Homotopy Perturbation Method 

(HPM) for solving systems of nonlinear Fredholm and Volterra integral equations. 

 

     In the last Chapter, we show the efficiency of the Homotopy Perturbation Method  

(HPM) for chosen problems in the literature. Moreover, some problems of the 

mathematics program, solutions are given by Mathematica 7. 
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CHAPTER TWO 

 

INTEGRAL EQUATIONS 

 
2.1 Introduction 

 

An integral equation is an equation in which an unknown function appears under one 

or more integral signs. Naturally, in such an equation, there can occur other terms as 

well.  

    For example, for bxa ≤≤ , bta ≤≤ , the equations  

( ) ( ) ( )dttgtxxf

b

a

∫= ,κ         (2.1) 

( ) ( ) ( ) ( )dttgtxxfxg

b

a

∫+= ,κ        (2.2) 

( ) ( ) ( )[ ] dttgtxxg

b

a

2,∫= κ        (2.3)  

where the function ( )xg  is the unknown function while the other functions are 

known, are integral equations. The function ( )tx,κ  is called the kernel and the 

function ( )xf  is called the free term, in general, the kernel and free term will be 

complex value functions of the real variables x and t. A condition such as bxa ≤≤  

means that the equation holds for all values of x in the given integral. Thus for the 

integral equations (2.1), (2.2) and (2.3) we seek a solution ( )xg  satisfying the 

equation for all x in [a, b]. 

 

    In more general case in integral equations the unknown function is dependent not 

only one variable but on several variables. Such, for example, is the equation  

( ) ( ) ( ) ( )dttgtxxfxg ∫
Ω

+= ,κ        (2.4) 

where x and t are n-dimensional vectors and Ω  is the region of n-dimensional space.  

Similarly, we can also consider systems of integral equations with several unknown 

functions. 
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2.2 Classification of Integral Equations 

 

     The classification of integral equations centers on three basic characteristics 

which together describe their overall structure: 

 

(1) The kind of an integral equation refers the location of the unknown function. First 

kind equations have the unknown function present under the integral sign only 

second and third kind equations also have the unknown function outside the integral. 

 

(2) The historical descriptions Fredholm and Volterra equations are concerned with 

the integration interval. In a Fredholm integral equation the integral is over a finite 

interval with fixed end points. In a Volterra integral equation the integral is 

indefinite. 

 

(3) The term singular is sometimes used when the integration is improper, either 

because the interval is indefinite, or because the interval is unbounded within the 

given interval or the kernel becomes infinite at one or more points within the range 

of integration. Clearly an integral equation can be singular on both counts.  

 

     The most general type of linear integral equations is of the form 

( ) ( ) ( ) ( ) ( )dttgtxxfxgxh

x

a

∫+= ,κλ       (2.5) 

where the upper limit may be either variable or fixed. The functions f , h  and κ  are 

known functions, while g  is to be determined;λ  is nonzero real or complex 

numerical parameter. In practical applications, λ  is usually composed of physical 

quantities. The function ( )tx,κ  is called the kernel. Using this classification, we can 

give the following special cases of equation (2.5).   

 

2.2.1 Fredholm Integral Equations 

 

     In all Fredholm integral equations the limits of integration are finite and the upper 

limit of integration b is fixed. 
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i. First Kind Fredholm Integral Equation 

( ) 0=xh  

( ) ( ) ( ) 0, =+ ∫ dttgtxxf

b

a

κλ        (2.6) 

 

ii. Second Kind Fredholm Integral Equation 

( ) 1=xh  

( ) ( ) ( ) ( )dttgtxxfxg

b

a

∫+= ,κλ       (2.7) 

 

iii. The Homogeneous Fredholm Integral Equation of the Second Kind 

( ) 0=xf  

( ) ( ) ( )dttgtxxg

b

a

∫= ,κλ        (2.8) 

 

2.2.2 Volterra Integral Equations 

 

     In all Volterra Equations, the upper limit of integration b is variable, b=x. 

 

i. First Kind Volterra Integral Equation 

( ) 0=xh  

( ) ( ) ( ) 0, =+ ∫ dttgtxxf

x

a

κλ        (2.9) 

 

ii. Second Kind Volterra Integral Equation 

( ) 1=xh  

( ) ( ) ( ) ( )dttgtxxfxg

x

a

∫+= ,κλ       (2.10) 
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iii. The Homogeneous Volterra Integral Equation of the Second Kind 

( ) 0=xf  

( ) ( ) ( )dttgtxxg

x

a

∫= ,κλ        (2.11) 

Equation (2.7) itself called Volterra equation of the third kind. 

 

2.2.3 Singular Integral Equations  

 

     When one or both limits of integration become infinite or when the kernel 

becomes infinite at one or more points within the range of integration, the integral 

equation is called singular.  

 

     For example, the integral equations 

( ) ( ) ( )dttgexfxg
tx

∫
∞

∞−

−−+= ||λ        (2.12) 

and 

( )
( )

( )dttg
tx

xf

x

∫
−

=
0

1
α

 10 << α      (2.13) 

are singular equations. 

 

2.2.4 Linear and Nonlinear Integral Equations 

 

The linearity is related to the degree of the unknown function ( )tg  in an integral 

equation the degree of ( )tg  must be one. 

The second kind linear and nonlinear nonhomogeneous Fredholm integral equations, 

respectively are: 

( ) ( ) ( ) ( )dttgtxxfxg

b

a

∫+= ,κ        (2.14) 

( ) ( ) ( )( )dttgtxxfxg

b

a

,,∫+= κ        (2.15) 

If ( ) 0=xf , equations (2.14) and (2.15) are called as the homogeneous. 
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( ) ( ) ( )dttgtxxg ∫ −=
π

0

cos  

is linear homogeneous and 

( ) ( ) ( )( )dttgtxxg sin,
0
∫=
π

κ  

is nonlinear homogeneous but 

( ) ( ) ( ) ( )dttgtxxfxg ∫+=
π

κ
0

,  

is linear nonhomogeneous and 

( ) ( ) ( ) ( )( )dttgtxxfxg sin,
0
∫+=
π

κ  

is nonlinear nonhomogeneous Fredholm integral equations. 

 

     The second kind linear and nonlinear nonhomogeneous Volterra integral 

equations, respectively, are 

 

( ) ( ) ( ) ( )dttgtxxfxg

x

a

∫+= ,κ        (2.16) 

( ) ( ) ( )( )dttgtxxfxg

x

a

,,∫+= κ        (2.17) 

If ( ) 0=xf , equations (2.16) and (2.17) are called as homogeneous. 

( ) ( )dttgexg

x

tx

∫
−=

0

 

is linear homogeneous and 

( ) ( ) ( )( )dttgtxxg

x

sin,
0
∫= κ  

is nonlinear homogeneous but 

( ) ( ) ( )dttgexfxg

x

tx

∫
−+=

0

 

is linear nonhomogeneous and 
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( ) ( ) ( ) ( )( )dttgtxxfxg

x

sin,
0
∫+= κ  

is nonlinear nonhomogeneous Volterra integral equations. 

 

2.2.5 Regularity Conditions 

 

     In integral equations theory, the functions are either continuous or integrable or 

square integrable. By a square integrable function ( )tg , we mean that 

( ) ∞<∫ dttg

b

a

2||    

This is called an 2L  function. 

 

     The regularity conditions on the kernel ( )tx,κ  as a function of two variables are 

similar.  

( )tx,κ  is an  2L  function if, 

a) for each set of values x , t  in the square bxa ≤≤ , bta ≤≤ , 

( ) ∞<∫ ∫ dttx

b

a

b

a

2|,| κ  

 

b) for each set of value of x  in bxa ≤≤ , 

( ) ∞<∫ dttx

b

a

2|,| κ  

 

c) for each set of value of t  in bta ≤≤ , 

( ) ∞<∫ dttx

b

a

2|,| κ  
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2.2.6 Special Types of Kernels 

 

i) Separable or Degenerate Kernels 

 

     Let K(x, t) be a kernel defined on the square [a, b]x[a, b] and let there are finitely 

many functions a1, a2, …, an; b1, b2, …, bn on [a, b] such that 

( ) ( ) ( )tbxatx i

n

i

i∑
=

=
1

,κ   btxa ≤≤ ,      (2.18) 

In this case the kernel ( )tx,κ  is said to be separable or degenerate. The functions 

ai(s) can be assumed linearly independent; otherwise the number of terms in the 

expression of ( )tx,κ  can be reduced. 

 

ii) Symmetric Kernels 

 

A complex-valued function ( )tx,κ  is called symmetric (or Hermitian) if 

( ) ( )txtx ,, ∗= κκ  

for almost all x and t ; where ( )tx,∗κ  is the complex conjugate of ( )tx,κ . For a  

real - valued kernel this property reduces to  

( ) ( )sttx ,, κκ =  
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CHAPTER THREE 

 

NONLINEAR INTEGRAL EQUATIONS 

 

3.1 Introduction 

 

     The theory of nonlinear integral equations is very important in pure and applied 

mathematics. The nonlinear integral equations arise in many problems of physics and 

technology especially in the theory of elasticity and the theory of aircraft wing, is 

played by singular integral equations with Cauchy type kernels.   

 

     The initial-value problems for ordinary differential equations can be reduced to a 

nonlinear Volterra integral equation. The theory of Volterra integral equations 

incorporates the problem of the growth of populations the influences of heredity. The 

problem of the growth of a single population in which the growth as influenced  

 

• by a generative factor proportional to the population, 

• an inhibiting influence proportional to the square of the population, 

• a heredity component composed of the sum of individual factors encountered 

in the past (Davis, 1962). 

This problem lead to an integro-differential equation of the form 

( ) ( )dssystbya
dt

dy

y

t

∫++=
0

,
1

κ       (3.1.1) 

 

In the case of two competing populations, one preying on the other, Volterra 

introduced the following system: 

( ) ( )dssystbya
dt

dx

x

t

−−−= ∫
∞−

1

1
κ       (3.1.2a) 

( ) ( )dssystxy
dt

dy

y

t

−++−= ∫
∞−

2

1
κβα       (3.1.2b) 

where a, b, α   and β  are positive constants. 

     The existence theorems of Picards for the differential equation 

10 10 
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( )yxf
dx

dy
,=          (3.1.3) 

and for the system  

( )zyxf
dx

dy
,,= ,  ( )zyxg

dx

dz
,,=     (3.1.4) 

depends upon expressing Equation (3.1.3) as the integral equation  

( )dxyxfyy

x

x

∫+=

0

,0         (3.1.5) 

and system (3.1.4) in the following form  

( )dxzyxfyy

x

x

∫+=

0

,,0 , ( )dxzyxgzz

x

x

∫+=

0

,,0     (3.1.6) 

 

A generalization of (3.1.5) can be written as  

( ) ( ) ( )[ ]dssysxxfxy

x

a

∫+= ,,κ        (3.1.7) 

which includes as a special case the linear Volterra equation of the second kind,  

(given in section 2.2.2 as equation (2.10)), namely  

( ) ( ) ( ) ( )dssysxxfxy

x

a

∫+= ,κ        (3.1.8) 

 

     Unlike linear integral equations we can not, in general, solve nonlinear integral 

equations; we can do so only for sufficiently small values of the diameter of the 

region of integration by employing the method of successive approximations, the 

topological Schauder method, Adomian’ s method and He’ s Homotopy Perturbation 

Method.   

 

Existence theorems for equation 

( ) ( ) ( )[ ]dssysxxfxy

x

a

∫+= ,,κ        (3.1.7) 

have been given by T. Lalesco, E. Cotton, M. Picone, and others in which the 

essential idea is an adaptation of a Lipschitz condition to the more general problem 
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(Davis, 1962). These proofs can be extended to a functional equation sufficiently 

general to include integro-differential equations such as equation (3.1.1). 

 

     Lalesco has given an existence proof under general conditions for the Fredholm 

equation 

( ) ( ) ( )[ ]dssysxxfxy

b

a

∫+= ,,κ        (3.1.9) 

and Bratu (1914) has studied the following special cases: 

( ) ( ) ( ) ( )dssysxxfxy
2

1

0

,∫+= κ       (3.1.10) 

and 

( ) ( ) ( ) ( )
dsesxxfxy

sy

∫+=
1

0

,κ        (3.1.11) 

 

3.2 Classification of Nonlinear Integral Equations 

 

3.2.1 Nonlinear Fredholm Integral Equations of the Second Type   

 

     The nonlinear integral Fredholm equation of the second kind, after the Swedish 

mathematician I. Fredholm, has the form  

( ) ( ) ( )[ ]dttytxxfxy

b

a

∫+= ,,κλ       (3.2.1) 

where ( )xy  is the unknown function of x  in the domain D which is assumed to be a 

bounded open set.  

 

     We make the following assumptions under which a solution exists for the 

equation (3.2.1); 

 

a) ( )xf  is a known real function which is defined continuous and bounded in the 

interval: bxa ≤≤  ,  

( ) fxf <||  
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b) The kernel ( )zyx ,,κ  is integrable and bounded, 

( ) Mzyx <,,κ  

in the domain D: xa ≤  , by ≤  , cz <|| . 

 

c) The kernel ( )zyx ,,κ  satisfies the Lipschitz condition with respect to z  in D, 

namely 

( ) ( ) |||,,,,| 2121 zzKzyxzyx −≤− κκ   

K being a positive constant. 

 

d) Moreover, let 1m  and 2m  denote the lower and upper bounds of ( )xf , 

respectively, that is, 

   ( ) 21 mxfm ≤≤  

and assume that  

bmma <≤< 21  

For instance,  

( ) ( )dttyxy ∫+=
1

0

21 λ  

( ) ( )dtttyxxy ∫+=
1

0

3  

are nonlinear second kind Fredholm integral equations. 

 

3.2.2 Nonlinear Volterra Integral Equations of the Second Type 

 

     The nonlinear Volterra integral equation of the second type, after the Italian 

mathematician Vito Volterra, has the form 

( ) ( ) ( )[ ]dttytxxfxy

x

a

∫+= ,,κ        (3.2.2) 

where ( )xy  in the unknown function of x  in the region D which is assumed to be a 

bounded open set. 
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      We consider conditions under which a solution exists for the equation (3.2.2).We 

make the following assumptions; 

 

a) ( )xf  is a known real function which is defined integrable and bounded,  

( ) fxf <||  

in the interval: bxa ≤≤  ,  

 

b) The following Lipschitz condition is satisfied by ( )xf  in the interval ( )ba, : 

( ) ( ) |||| 2121 xxkxfxf −≤−   

K being a positive constant. 

 

c) The function ( )zyx ,,κ  is integrable and bounded, 

( ) Mzyx <,,κ  

in the domain D: xa ≤  , by ≤  , cz <|| . 

 

d) The kernel ( )zyx ,,κ  satisfies the Lipschitz condition with respect to z  in its 

domain of definition: 

( ) ( ) |||,,,,| 2121 zzKzyxzyx −≤− κκ   

K being a positive constant 

 

e) Moreover, let 1m  and 2m  denote the lower and upper bounds of ( )xf , 

respectively, that is, 

   ( ) 21 mxfm ≤≤  

and assume that  

2211 cmmc <≤<  

where |z|<c that is 21 czc << . 

 

For instance,  

( ) ( )dtttyxxxy

x

∫+−=
0

24

4

1
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( ) ( )dtttyxxxy

x

∫−+=
0

35

6

1
2  

are nonlinear second kind Volterra integral equations. 

 

     Equations (3.2.1), (3.2.2) are called homogeneous integral equations if 

( ) 0=xf and nonhomogeneous integral equations if ( )xf  is not vanish in the 

interval [ ]ba, . 

 

3.3 Some Examples of Physical Problems Leading to Integral Equations 

 

3.3.1 Duffing’s Variation Problem 

 

     The forced vibrations of finite amplitude of a pendulum are governed by the 

differential equation 

( )tfy
dt

yd
=+ sin2

2

2

α .       (3.3.1) 

 

 Assuming driving function f  is an odd-periodic function of period 2, then the 

problem of finding an odd-periodic solution with the same period can be easily 

reduced to finding a solution on the interval 10 ≤≤ t  which satisfies the boundary 

conditions  

( ) ( ) 010 == yy  

This boundary value problem is equivalent to the integral equation. 

( ) ( ) ( ) ( )[ ]dssysfstty sin, 2
1

0

ακ −−= ∫      (3.3.2) 

where the kernel ( )st,κ  is given by 

( ) ( )xttx −= 1,κ   10 ≤≤≤ xt  

( ) ( )txtx −= 1,κ   10 ≤≤≤ tx  
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3.3.2 Bending of a Rod by a Longitudinal Force 

 

     When a thin uniform rod is hinged at one end and acted upon by a longitudinal 

compressive force P at the other end, the equation for the bending moment is 

Py−=µ , where y is the deflection of the rod from its original straight-line position 

and the bending moment µ  is given by  

EIk=µ  

where E is Young’s Modulus, I is the moment of inertia of the cross-section and k is 

the curvature at the point under consideration. Let the arc length s be measured from 

the hinged end as the independent variable. Then the curvature is  

( )

( )( ) 2
1

21 sy

sy
k

′−

′′
=  

and the equation for the bending moment Py−=µ  takes the form 

( ) ( )( ) 01 2
=′−+′′ syysy λ        (3.3.3) 

where 
EI

p
=λ  is a positive parameter, 0>λ . 

The boundary conditions appropriate to this problem are 

( ) ( ) 010 == yy  

if the length of the rod is taken to be unity. Taking 

( ) ( )sysx ′=          (3.3.4) 

we obtain  

( ) ( ) ( )dttytssy ′= ∫
1

0

,κ  

or 

( ) ( ) ( )dttxtssy ∫=
1

0

,κ  

where the kernel ( )ts,κ  is given by  

( ) ( )xttx −= 1,κ   10 ≤≤≤ xt   

( ) ( )txtx −= 1,κ   10 ≤≤≤ tx  

Differentiation gives 
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( ) ( ) ( )dttx
s

ts
sy ∫ ∂

∂
=′

1

0

,κ
 

where  

( )
t

s

ts
−=

∂

∂
1

,κ
 , ts <  

( )
t

s

ts
−=

∂

∂ ,κ
 , ts >  

Then the problem given by the differential equation for y together with the boundary 

conditions can be reduced to the following Fredholm integral equation of the first 

kind 

( ) ( ) ( ) ( ) ( ) dtduux
s

us
txtssx

21

0

1

0

,
1, 









∂

∂
−= ∫∫

κ
κλ     (3.3.5) 

for the unknown function x. 
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CHAPTER FOUR 

 

THEORETICAL BACKGROUND 

 

4.1 Definitions and Theorems on Nonlinear Integral Equations 

 

Definition 4.1.1 (Normed Space) 

 
     Let X be a linear space on a field K. The mapping +→ RX:. , xx →  is called a 

norm on X if satisfies the following properties: 

� 0≥x  

� 00 =⇔= xx  

� xx αα =  

� yxyx +≤+  (Triangle inequality) 

 
for all Xyx ∈,  and for all K∈α . Hence, a norm on X is real-valued function on X. 

The normed space is denoted by ( ).,X . 

     A norm on X defines a metric d which is given by   
 

( ) yxyxd −=,  , Xyx ∈,  

 
and is called metric induced by the norm. 

 

Definition 4.1.2 (Metric Space) 

 

     A metric space is a pair (X, d), where X is a set and d is a metric on X (or distance 

function on X), that is, a function defined on the Cartesian product X×X such that 

for all Xzyx ∈,,  we have: 

(M1) d is a real-valued, finite and nonnegative, 

(M2) d(x, y)=0 if and only if x=y 

(M3) d(x, y)=d(y, x) (symmetry) 

(M4) ( ) ( ) ( )yzdzxdyxd ,,, +≤   (Triangle inequality) 

      A metric space X is called compact if every sequence in x has a convergent 

subsequence. 
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Definition 4.1.3 (Function Space) 

 

     The space on which the metric is defined by 

( ) ( ) ( )tytxyxd
Jt

−=
∈

max,   

where [ ]baJ ,=  is a closed interval and max denotes the maximum is called [ ]baC ,′  

function space.(because every point of [ ]baC ,′  is a function) 

 

Definition 4.1.4 (Cauchy Sequence) 

 

     Let ( ).,X  be a normed space and { }nf  be a sequence in X. A sequence{ }nf  is 

said to be Cauchy (or fundamental) if for every 0>ε  and for every Nnm >,  there 

is an INNN ∈= )(ε  such that  

ε<− mn ff . 

 

Definition 4.1.5 (Complete Metric Space) 

 

     Let ( ).,X  be a normed space and { }nf  be a Cauchy sequence in X. If for every 

0>ε  there is an 0)( >εN  such that  

ε<− mn ff  for every Nnm >,  

then X is said to be complete. In other words, if  

0, =−∞→ mnmn ffLim , 

i.e. every Cauchy sequence in X converges and X is said to be complete metric 

space. 

     Ordinary Euclidean space and the space 2L of functions quadratically integrable 

are complete normed (metric) spaces. 

 

Definition 4.1.6 (Banach Space) 

 

     If a space is linear, normed, metric and complete then it is called a Banach space. 
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Definition 4.1.7 (Contraction Operator) 

 

     Let X be a Banach space and t is a bounded operator (not necessarily linear) in X. 

The operator T is called a contraction operator in X if for every functions 1f  and 2f  

in X there is a positive constant 1<α  such that  

2121 ffTfTf −≤−  

In his case there exists a unique point f of the space X which satisfies the equation 

Tff =  

that is, point fixed with respect to the operator T. 

 

4.1.2 Schauder’s Fixed Point Theorem 

  

     The proofs of existence of solutions of nonlinear integral equations where the 

classical methods are useless are based on the fixed point theorem proved by the 

Polish mathematician Schauder (1942). 

 

     The geometrical nature of the problem of solving the nonlinear integral equation 

( ) ( )[ ]dyyfyxFxf ∫
Ω

= ,,      (4.1.2a) 

is finding a point xf  of the function space [ ]baC ,′  which corresponds to itself under 

the transformation (the functional operation)  

 

( ) ( ) ( )[ ]dyyfyxFyTfxf ∫
Ω

== ,,       (4.1.2b) 

     This point xf  is called the fixed point of the function space with respect to the 

operation (4.1.2b). 

 

Theorem 4.1.2(Schauder’s Theorem)  

 

Let T be a contraction operator in the Banach space X. Then the equation  

fTf =  

has a unique solution in X. 
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     The Schauder Fixed Point Theorem makes it possible to prove the existence of 

solutions of nonlinear integral equations under very general considerations, where 

the classical theory is inapplicable. 

 

4.2 An Existence Theorem for Nonlinear Integral Equations of Volterra Type 

 

We give the conditions under which a solution exists for the nonlinear Volterra 

integral equation 

 

( ) ( ) ( )[ ]dssysxxfxy

x

a

∫+= ,,κ        (4.2.1) 

making the following assumptions: (Davis, 1962) 

 

a) The function f(x) is integrable and bounded, ( ) fxf < , in the interval bxa ≤≤ . 

b) The following Lipschitz condition is satisfied by f(x) in the interval (a, b): 

( ) ( ) |||| xxkxfxf ′−≤′−        (4.2.2) 

c) The function ( )zyx ,,κ  is integrable and bounded, 

( ) Kzyx <,,κ  

in the domain xa ≤  , by ≤  , cz <|| . 

d) The following Lipschitz condition is satisfied by ( )zyx ,,κ  within its domain of 

definition 

( ) ( ) |||,,,,| zzMzyxzyx ′−≤′− κκ       (4.2.3) 

By the method of successive approximations we have 

( ) ( ) ( )afxfxy −=0 , (as the first approximation)  

from which we get  

( ) ( ) ( )[ ]dssysxxfxy

x

a

∫+= 01 ,,κ       (4.2.4) 

and in general 

( ) ( ) ( )[ ]dssysxxfxy

x

a

nn ∫ −+= 1,,κ       (4.2.5) 
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Using our assumptions given above, we can obtain a bound (4.2.7) for the 

approximation ( )xy1 : 

From (4.2.4), we have  

( ) ( ) ( )( )∫+=
x

a

dssysxxfxy 01 ,,κ   

( ) ( )( )dssysxxf

x

a

∫+≤ 0,,κ    

( ) ( )( ) axsysxxf −+≤ 0,,κ  

( ) ( ) ( ) ( )( ) axsysxafafxf −++−≤ 0,,κ  

From this inequality and the Lipschitz condition on f we get, 

 

 ( ) ( ) ( ) ( ) ( )( ) axsysxafafxfxy −++−< 01 ,,κ  

( ) axKafaxk −++−≤  

so 

( ) ( ) axKafaxkxy −++−≤1  

( )afaxKaxk +−+−≤         

( ) axKf −+≤        (4.2.6) 

If  f is the larger of the two numbers K and ( )af  and aax ′<− . If x is so limited 

that 

Kf

f
ax

+
<−  

then 

( ) ( )
Kf

f
Kfxy

+
+≤1  

or 

( ) fxy <1          (4.2.7) 

( )( )afkf ,max=  
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Next let h be the smallest of the numbers a′  and
Kf

f

+
, that is 









+
′=

Kf

f
ah ,min . 

Then, for each approximation we have the following inequality 

( ) fxyn < ,         (4.2.8) 

where 










+
′=<−

Kf

f
ahax ,min  

Let us now first construct the series 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ...... 112010 +−++−+−+= − xyxyxyxyxyxyxyxy nn    

          (4.2.9) 

and then using (4.2.5) we can obtain the desired solution of given integral equation 

(4.2.1), provided the series (4.2.9) converges uniformly. 

 

Uniform Convergence of Series (4.2.9) 

 

Since we have 

( ) ( ) ( )[ ] ( )[ ]{ }dssysxsysxxyxy

x

nnnn ∫ −−− −=−
0

211 ,,,, κκ    

          (4.2.10) 

it follows from the Lipschitz condition (4.2.3) on κ  that we have the inequality 

( ) ( ) ( )[ ] ( )[ ]{ }∫ −−− −=−
x

nnnn dssysxsysxxyxy
0

211 ,,,, κκ  

( ) ( ) ( ) ( )[ ]∫ −−− −<−
x

nnnn dssysyMxyxy
0

211       (4.2.11) 

Letting ...3,2=n  in (4.2.11), we obtain the following sequence of inequalities 

( ) ( ) ( )[ ] ( )[ ]{ }∫ −=−
x

dssysxsysxxyxy
0

0112 ,,,, κκ  

( ) ( ) ( ) ( )[ ]dssysyMxyxy

x

∫ −≤−
0

0112  
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[ ] ( ) xx
as

MdsasMM
0

2
2

0
2

−
=−= ∫  

( ) ( )
!2

2

2
12

ax
Mxyxy

−
≤−  

( ) ( ) ( ) ( )[ ]dssysyMxyxy

x

∫ −≤−
0

1223  

( ) ( ) xx
as

Mds
as

MM
0

3
3

0

2
2

!2.3!2

−
=

−
= ∫  

( ) ( )
!3

3

3
23

ax
Mxyxy

−
≤−  

and in general,  

 

( ) ( )
!1

n

ax
Mxyxy

n

n

nn

−
≤− −         (4.2.12) 

Since we have hax <− , then 

( ) ( )
!

1
n

h
Mxyxy

n
n

nn ≤− −        (4.2.13) 

A majorante for the series (4.2.9) is given by the sum 

( ) ( ) ( )
...

!
...

!3!2

32

++++++=
n

MhMhMh
MhfY

n

    (4.2.14) 

or by the sum 

( )
∑

∞

=

+=
1 !n

n

n

Mh
fY  

This majorant series converges and therefore the series (4.2.9) converges uniformly.   

 

4.3 An Existence Theorem for Nonlinear Integral Equations of Fredholm Type 

 

      We consider the problem of establishing criteria for the existence of solutions for 

the nonlinear Fredholm integral equation 

( ) ( ) ( )[ ]dssysxxfxy

b

a

∫+= ,,κλ       (4.3.1) 
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where λ is a parameter. 

 

     From the theory of linear Volterra and Fredholm equations, we know that the 

parameter λ  plays a significant role. The most essential difference between Volterra 

and Fredholm equations for bounded kernels, integrable functions and a finite range 

of integration is as follows: 

     We can establish criteria under which a solution exists for (4.3.1), making the 

following assumptions similar for equations of Volterra type given in Sec 4.2 (Davis, 

1962): 

 

a) The function ( )xf  is bounded in the interval bxa ≤≤ , that is, ( ) fxf < . 

b) The kernel ( )zyx ,,κ  is integrable and bounded, 

( ) Kzyx <,,κ         (4.3.2) 

in the domain D: bxa ≤≤  , cz <|| . 

c) ( )zyx ,,κ satisfies the Lipschitz condition in D, namely, 

( ) ( ) |||,,,,| zzMzyxzyx ′−<′− κκ       (4.3.3)   

By successive approximations we have 

( ) ( ) ( )afxfxy −=0 , (as the first approximation)  

from which we get  

( ) ( ) ( )[ ]dssysxxfxy

b

a

∫+= 01 ,,κλ       (4.3.4) 

and, in general, 

( ) ( ) ( )[ ]dssysxxfxy

b

a

nn ∫ −+= 1,,κλ  

From these we obtain  

( )[ ] ( )afdssysxyy

b

a

+=− ∫ 001 ,,κλ  

( )[ ] ( )[ ]{ }dssysxsysxyy

b

a

∫ −=− 0112 ,,,, κκλ  



26 
 

 

( )[ ] ( )[ ]{ }dssysxsysxyy

b

a

nnnn ∫ −−− −=− 211 ,,,, κκλ  

Using the conditions given above, we have 

( ) ( ) ( )
( )







−
+−≤+−<−

abK

f
Kabafabyy

λ
λκλ 101   (4.3.5) 

( )abmyy −≤− λ01 , 

where 

( )







−
+=

abK

f
Km

λ
1        (4.3.6) 

From this inequality and the Lipschitz condition on κ , we get 

( ) ( )22222

0112 abkabMmdsyyMyy

b

a

−<−<−<− ∫ λλλ   (4.3.7) 

where k is the LARGER of the two numbers M and m. 

Similarly we obtain the inequalities: 

( )333

23 abkyy −<− λ ,       (4.3.8) 

. 

. 

. 

( )nnn

nn abkyy −<− − λ1        (4.3.9) 

A majorante for the series  

 ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ...... 112010 +−++−+−+= − xyxyxyxyxyxyxyxy nn   

          (4.3.10) 

is given by the sum 

( )nn

n

n
abkfY −+= ∑

∞

=1

λ ,       (4.3.11) 

and thus the series converges uniformly for all values of λ  for which we have  

( )abk −
<

1
λ          (4.3.12) 

Although the condition (4.3.12) is equivalent to that obtained when equation (4.3.1) 

is linear, the role played by λ  in the case where ( ) λ≡xf  is quite different in 

nonlinear equations from that which it has in the linear case (Davis, 1962). 
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CHAPTER FIVE 

 

HOMOTOPY PERTURBATION METHOD 

 

5.1 Introduction 

 

     The homotopy perturbation method (HPM) which was firstly presented by 

Liao(1995) and by He (1999) in 1998 and was further developed and improved by 

He (2000; 2003; 2004) provides an effective procedure for explicit and numerical 

solutions of a wide and general class of (linear and nonlinear) differential and 

integral systems representing real physical problems. The essential of this method is 

to continuously deform a simple problem which is easy to solve into the under study 

problem which is difficult to solve. 

 

     This method is based on both homotopy in topology and the Maclauren series and 

yields a very rapid convergence of the solution series in most cases. It is a new 

perturbation technique coupled with the homotopy technique (He, 2003). 

 

     The nonlinear analytical methods most widely applied are perturbation techniques 

(Nayfeh, 1981). In perturbation methods, a nonlinear equation is transformed into an 

infinite number of linear equations by means of the small parameter assumption. But 

perturbation methods have some limitations: 

 

• perturbation techniques are based on small or large parameters but not every 

nonlinear equation has such a small parameter. (The homotopy perturbation 

method has been proposed to eliminate the small parameter.) 

• even if there exists such a parameter, the results given by the perturbation 

methods are valid, in most cases, only for small values of the parameter. 

• mostly, the simplified linear equations have different properties from the 

original nonlinear equation. 

• sometimes some initial and boundary conditions are superfluous for the 

simplified linear equations. 
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     Liao (1995) has described a nonlinear analytic technique does not require small 

parameters and thus can be applied to solve nonlinear problems without small or 

large parameters. This technique is based on homotopy. 

 

     Using one interesting property of homotopy which is given in Section 5.2, we can 

transform any nonlinear problem into an infinite number of linear problems, no 

matter whether or not there exists a small or large parameter. 

 

     This is in opposition to classical perturbation techniques the homotopy 

perturbation method have some advantages (He, 2003): 

 

• it does not require small or large parameters in the equations, so the 

limitations of the classical perturbation methods can be eliminated. 

•  the initial approximations can be freely selected with possible unknown 

constants. 

• the approximations obtained by this method are valid not only for small 

parameters, but also for very large parameters, 

• it may give better approximations which are uniformly valid for both small 

or large parameters or variables. Because this method is based on the simple 

property of homotopy in topology, that is, the kth-order deformation 

equations are linear. 

 

     As a result, in this method the solution of functional equations is considered as the 

summation of an infinite series usually converging to the solution. Using homotopy 

technique in topology, a homotopy is constructed with an embedding 

parameter [ ]1,0∈p  which is considered as a small parameter. The approximations 

obtained by the proposed method are uniformly valid not only for small parameters, 

but also for very large parameters (Biazar, 2009). 

 

Then He’s homotopy perturbation method has been also used by many 

mathematicians and engineers to solve the linear or nonlinear systems of Fredholm 

and Volterra type integral equations (Biazar, 2009; Yusufoğlu, 2008). 
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5.2 What is Homotopy? 
  

The idea in homotopy is: we should consider two functions to be equivalent or 

homotopic, if one can be deformed into the other. 

 

5.2.1 Example 

 

Let [ ] IRf →2,0:  be the function  

( ) ( )22 21 −+= xxxf  

shown in Figure a. This is almost a constant function to 1, but with a small deviation 

around x=1. If we take the function 

( ) ( )22
1 2

2

1
1 −+= xxxf  

then this has a similar shape, but with a small deviation. Similarly 

( ) ( )22
2 2

3

1
1 −+= xxxf  

has the same shape but with an even smaller deviation in Figure b. 

 

 

Figure a 

 

Figure b 

Generally, for each 1≥n , we can define  

 

( ) ( )22 2
1

1
1 −

+
+= xx

n
xf n  
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and thus we obtain a family of functions interpolating between f and the constant 

function provided that these interpolating functions to provide a  continuous 

deformation of the one function into the other. This can be done by indexing the 

interpolating functions ,...,...,, 21 nfff  by real numbers in some fixed range, say 

between 0 and 1. So we have a family of functions { } [ ]1,0∈ttf , such that ff =0 and 

1f is the constant function 1. 

In this example, we can set  

( ) ( ) ( )22 211 −−+= xxtxf t  for each [ ]1,0∈t  

Then 

( ) ( )22
0 21 −+= xxxf  

and  

( ) 11 =xf  is the constant function. 

 

     Such a deformation then assigns a function to each point in [0, 1], so the 

deformation is a function from [0, 1] to the set of continuous maps [ ] IR→2,0  which 

takes [ ]1,0∈t  to the function tf . That is, the family { } [ ]1,0∈ttf assigns, to each 

point [ ]1,0∈t , a function  

[ ] IRf t →2,0: . 

 

     And this assigns to each point [ ]2,0∈x a value ( ) IRxf t ∈ . Thus we can think of 

this family as assigning to each pair ( ) [ ] [ ]1,02,0, ×∈tx the value ( ) IRxf t ∈ , Figure c. 

 

Figure c 

In other words, we have a function  

     x 

     t 
 
 
 
    1 
    t            ft(x) 
 
   0              x             2 
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[ ] [ ] IR→× 1,02,0 , 

where we have a topology on [ ]2,0 , and we know a topology on [ ]1,0 , so we can use 

the product topology to topologize [ ] [ ]1,02,0 ×  and therefore the interpolating family 

corresponds to a function between two topological spaces. And the family to be 

continuous if the corresponding function is continuous. Hence we have; 

 

Definition (Homotopy between two functions) 

 

     Two maps TSgf →:, are homotopic if there is a continuous function  

                                                  [ ] TSF →× 1,0:  

such that  

( ) ( )sfsF =0, for all Ss ∈  and  

( ) ( )sgsF =1, for all Ss ∈  

In this case, F is homotopy between f and g, and we write gf ≅ . 

In the example 5.2.1, 

[ ] IRf →2,0:   

is given by  

( ) ( )22 21 −+= xxxf ,  

the function 

[ ] [ ] IRF →× 1,02,0:  

is given by  

( ) ( )( ) ( )xfxttxF =−−+=
2211,  and 

( ) 11, =xF . 

Thus, F is a homotopy from f to the constant function 1. 
 
5.3 He’s Homotopy Perturbation Method 

 

     In He’s homotopy perturbation method the solution of the functional equation is 

considered as a summation of an infinite series (which converges rapidly to accurate 

solutions) usually converging to the solution. Using homotopy technique of topology 
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given in Section 5.2, a homotopy is constructed with an embedding parameter 

[ ]1,0∈p  which is considered as a small parameter. 

    Consider a nonlinear functional equation  

( ) ( )rfuA =  , Ω∈r         (5.3.1) 

with the boundary conditions  

0, =








∂

∂

n

u
uB , sr =Ω∂∈        (5.3.2) 

where A is a general integral operator, B is a boundary operator, f(r) is a known 

analytic function on a Banach space Ω∂=s  is the boundary of the domainΩ . The 

operator A generally can be divided into two parts L and N, where L is a functional 

operator with known solution 0v , which can be obtained easily and satisfies the 

boundary conditions, whereas N is the nonlinear part. Therefore equation (5.3.1) can 

be rewritten as follows: 

( ) ( ) ( )rfuNuL =+         (5.3.3) 

We define a homotopy H(v, p) by 

( ) ( ) ( ) 00, 0 =−= vLvLvH ,                   ( ) ( ) ( ) 01, =−= rfvAvH  

0v  is an initial approximation of Eqn.(5.3.1). By the homotopy technique (He, 2003) 

we can construct a convex homotopy ( ) [ ] IRprv →×Ω 1,0:,  which satisfies  

( ) ( ) ( ) ( )[ ] ( ) ( )[ ] 01, 0 =−+−−= rfvApvLvLppvH     (5.3.4) 

or equivalently 

( ) ( ) ( ) ( ) ( ) ( )[ ] 0, 00 =−++−= rfvNpvpLvLvLpvH    (5.3.5) 

and continuously trace an implicitly defined curve from H(v, 0) to a solution function 

H(g, 1) where g is a solution of  Eqn.(5.3.1). The embedding parameter p 

monotonically changes from zero to unity as the trivial problem ( ) ( )0vLvL − is 

continuously deformed to the original problem ( ) ( )rfvA − . In topology, this is called 

deformation, ( ) ( )0vLvL −  and ( ) ( )rfvA −  are called homotopic. If the embedding 

parameter p is considered as a small parameter applying the classical perturbation 

technique, we can assume that the solution of Eqn. (5.3.5) can be given by a power 

series in p, that is,     



33 
 

 

...2
2

10
0

+++==∑
∞

=

vppvvvpv i

i

i       (5.3.6) 

and p=1 results in the approximate solution of Eqn.(5.3.1) as 

...2101 +++== → vvvvLimu p       (5.3.7) 

     A combination of the perturbation method and the homotopy method is called the 

homotopy perturbation method (HPM), which has eliminated the limitations of 

classical perturbation methods. 

     The series (5.3.7) is convergent for most cases. The convergence rate depends on 

the nonlinear operator [ ]uA which has been given by He(1999): 

1) The second derivative of ( )vN  with respect to v must be small, because the 

parameter p may be relatively large, i.e. 1→p . 

2) The norm of 
v

N
L

∂

∂−1 must be smaller than one so that the series converges. We 

have the following theorem (He, 1999): 

 

Theorem 5.3.1 

 

Suppose that X and Y be Banach spaces and YXN →:  is a contraction nonlinear 

mapping, which satisfy the following condition  

( ) ( ) vvvNvN ~~ −≤− γ   

for all Xvv ∈~, and 10 << γ . With according to Banach’s fixed point theorem, 

having the fixed point u, that is ( ) uuN = . 

 

     The sequence generated by the homotopy perturbation method will be taken as  

( )1−= nn VNV  , ∑
−

=
− =

1

0
1

n

i

in uV , ,...2,1=n  

and suppose that ( )uBuvV r∈== 000 ,where  

( ) { }ruuXuuBr <−∈= ∗∗ , then nV satisfies the following statements: 

i) uvuV n

n −≤− 0γ  

ii) ( )uBV rn ∈  



34 
 

 

iii) uVLim nn =∞→  

( Biazar, Ghazvini, 2009) 

 

Proof 

 

i) By the induction method on n, for n=1 we have 

( ) ( ) uvuNVNuV −≤−=− 001 γ   

Assume that uvuV k

k −≤− −
− 0

1
1 γ as an induction hypothesis, then n=k gives 

( ) ( ) uvuVuNVNuV k

kkk −≤−≤−=− −
−− 0

1
11 γγγ  

uvk −= 0γ  

Thus, it is true for any integer n. 

 

ii) Using (i) and the hypothesis 

rruvuV nn

n <≤−≤− γγ 0  

implies ( )uBV rn ∈ . 

 

iii) Because of (i) we have 

uvuV n

n −≤− 0γ , 

and  

0=−∞→ uVLim nn ,  

that is, 

uVLim nn =∞→ . 

 

5.4 Homotopy Perturbation Method for Nonlinear Fredholm Integral Equations 

of the Second Kind 

 

     We consider the following Fredholm integral equation of the second kind 

( ) ( ) ( ) ( )( )dyyuFyxxfxu

b

a

∫+= ,κ  
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or equivalently 

( ) ( ) ( ) ( )( ) ( )( )[ ]dyyuNyuRyxxfxu

b

a

++= ∫ ,κ      (5.4.1) 

where u(x) is an unknown function that will be determined, ( )yx,κ is the kernel of the 

integral equation, f(x) is a known analytic function, R(u) and N(u) are linear and 

nonlinear functions of u, respectively.(Ganji, Afrouzi, 2007) 

To illustrate the homotopy perturbation method (HPM), we rewrite Eqn. (5.4.1) as  

( ) ( ) ( ) ( ) ( )( ) ( )( )[ ] 0, =+−−= ∫ dyyuNyuRyxxfxuuL

b

a

κ    (5.4.2) 

In this case we construct a homotopy 

( ) ( )uFuH =0, ,  ( ) ( )uLuH =1,      (5.4.3) 

where F(u) is an integral operator with known solution 0u , which can be obtained 

easily, we then choose a convex homotopy by 

( ) ( ) ( ) ( ) 01, =+−= upLuFppuH       (5.4.4) 

 

     The changing process of p from zero to unity is just that of ( )puH ,  from a 

starting point ( )0,0uH  to a solution function ( )1,uH  that is the known problem ( )uF  

is transformed continuously to the original problem ( ) 0=uL . 

 

Setting 

( ) ( ) ( )xfxuuF −=  ( ) ( ) ( ) ( ) ( )( ) ( )( )[ ] 0, =+−−= ∫ dyyuNyuRyxxfxuuL

b

a

κ  

          (5.4.5) 

the homotopy takes the form 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )( ) ( )( )[ ] 0,1, =







+−−+−−= ∫ dyyuNyuRyxxfxupxfxuppuH

b

a

κ

          (5.4.6) 

Substituting 

( ) ( ) ( ) ( ) ( ) ...2
2

10
0

+++==∑
∞

=

xupxpuxuxupxu i

i

i     (5.4.7) 

into Eqn. (5.4.6) and equating the coefficients of p with the same powers leads to 
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:0p  ( ) ( ) 00 =− xfxu  ⇒   ( ) ( )xfxu =0    (5.4.8a) 

:1p  ( ) ( ) ( )( ) ( )( )[ ] 0, 001 =+− ∫ dyyuNyuRyxxu

b

a

κ   ⇒  

( ) ( ) ( )( ) ( )( )[ ]dyyuNyuRyxxu

b

a

001 , += ∫κ     (5.4.8b) 

:2p  ( ) ( ) ( )( ) ( )( )[ ]dyyuNyuRyxxu

b

a

112 , += ∫κ     (5.4.8c) 

and in general,  

( ) ( )xfxu =0          (5.4.9a) 

( ) ( ) ( ) ( )[ ]dyuNuRyxxu nn

b

a

n += ∫+ ,1 κ  .     (5.4.9b) 

The approximated solution of Eqn. (5.4.1) therefore, can be obtained by setting p=1. 

( ) ( )xupLimxU i

i

i

p ∑
∞

=
→=

0
1 .       (5.4.10) 

 

Example 

 

Consider the nonlinear Fredholm integral equation of the second kind (Wazwaz, 

1997) 

( ) ( ) ( )( )dttutxxu ∫ −+−=
1

0

22cosh1sinh      (5.4.11) 

where  

( ) xxu sinh0 =          (5.4.12) 

He’s homotopy perturbation method can be constructed as follows: 

( ) ( ) ( ) ( ) 01, =+−= upLuFppuH  

Taking 

( ) ( ) xxuuF sinh−= , 

( ) ( ) ( ) ( )( )dttutxxuuL ∫ −−+−=
1

0

22cosh1sinh  

We have 
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( ) ( ) ( )[ ] ( ) ( ) ( )( ) 0cosh1sinhsinh1,
1

0

22 =







−−+−+−−= ∫ dttutxxupxxuppuH  

(5.4.13) 

This gives 

( ) ( ) ( ) ( )

( ) ( )( ) 0cosh

sinhsinhsinh,
1

0

22 =−−

+−++−−=

∫ dttutp

pxpxpuxpxpuxxupuH

 

or 

( ) ( ) ( ) ( )( ) 0coshsinh,
1

0

22 =







−−+−= ∫ dttutppxxupuH    (5.4.14) 

Suppose the solution of Eqn. (5.4.14) have the following form 

( ) ( ) ( ) ( ) ( ) ......2
2

10 +++++= xvpxvpxpvxvxv n

n     (5.4.15) 

where ( )xvi  ,...2,1,0=i are functions yet to be determined. According to Eqn. 

(5.4.15) the initial approximation is  

( ) xxv sinh0 =          (5.4.16) 

Substituting equations (5.4.15), (5.4.16) into Eqn. (5.4.14) and equating the terms 

with the coefficients of the identical powers of p yields: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )[ ]dttvptpvtvtppxxvpxpvxv ∫ +++−+−=+++
1

0

2

2
2

10
2

2
2

10 ...coshsinh...

          (5.4.17) 

:0
p  ( ) xxv sinh0 =         (5.4.18a) 

 

:1
p  ( ) ( ) ( )( )dttvtxv ∫ −+−=

1

0

2
0

2
1 cosh1  

 

( ) ( ) ( )( )dtttxv ∫ −+−=
1

0

22
1 sinhcosh1  

( ) 01 =xv         (5.4.18b) 

:2
p  ( ) ( ) ( )dttvtvxv 1

1

0

02 2∫=  
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( ) 02 =xv         (5.4.18c) 

 In the same manner, the rest of components can be obtained: 

( ) ( ) ( )( )dttvtxv nk ∫ ++ −=
1

0

2
1

2
2 cosh  ⇒  ( ) 02 =+ xvk

, 0≥k   (5.4.19) 

Hence, according to the homotopy perturbation method the solution will be as 

follows: 

( ) ( ) ( ) ( ) ( ) ...2101 +++== → xvxvxvxvLimxu p     (5.4.20) 

Therefore 

( ) ( ) xxvxu sinh==   

 

This is the exact solution of the integral equation. The success of obtaining the exact 

solution by using two iterations is a result of the proper selection of ( )xu0 . The plot 

of the solution is given in Figure 5.4.  

 

 

Figure 5.4 The numerical results and exact solutions  

of example 

 

 ……v(homotopy)             v(exact) 
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5.5 Homotopy Perturbation Method for Nonlinear Volterra Integral Equations 

of the Second Type  

 

     We consider the following Volterra integral equation of the second type 

( ) ( ) ( ) ( )( )dyyuFyxxfxu

x

a

∫+= ,κ  

or equivalently 

( ) ( ) ( ) ( )( ) ( )( )[ ]dyyuNyuRyxxfxu

x

a

++= ∫ ,κ      (5.5.1) 

where u(x) is an unknown function that will be determined, ( )yx,κ is the kernel of the 

integral equation, f(x) is a known analytic function, R(u) and N(u) are linear and 

nonlinear functions of u, respectively and xa ≤ . 

To illustrate the homotopy perturbation method (HPM), we rewrite Eqn. (5.5.1) as  

( ) ( ) ( ) ( ) ( )( ) ( )( )[ ] 0, =+−−= ∫ dyyuNyuRyxxfxuuL

x

a

κ    (5.5.2) 

with 0=a . 

For solving Eqn. (5.5.2), by He’s HPM, we construct a homotopy  

( ) ( )uFuH =0, , ( ) ( )uLuH =1,       (5.5.3) 

where F(u) is an integral operator with known solution 0u , which can be obtained 

easily, we then choose a convex homotopy by 

( ) ( ) ( ) ( ) 01, =+−= upLuFppuH       (5.5.4) 

     The changing process of p from zero to unity is just that of ( )puH ,  from a 

starting point ( )0,0uH  to a solution function ( )1,uH  that is, the known problem ( )uF  

is transformed to the original problem ( ) 0=uL . 

Setting 

( ) ( ) ( )xfxuuF −=  ,  ( ) ( ) ( ) ( ) ( )( ) ( )( )[ ] 0, =+−−= ∫ dyyuNyuRyxxfxuuL

x

a

κ  

          (5.5.5) 

the homotopy takes the form 
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( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )( ) ( )( )[ ] 0,1, =







+−−+−−= ∫ dyyuNyuRyxxfxupxfxuppuH

x

a

κ

          (5.5.6) 

Substituting 

( ) ( ) ( ) ( ) ( ) ...2
2

10
0

+++==∑
∞

=

xupxpuxuxupxu i

i

i     (5.5.7) 

into Eqn. (5.5.6) and equating the coefficients of p with the same powers leads to 

:0
p  ( ) ( )xfxu =0         (5.5.8a) 

:1
p  ( ) ( ) ( )( ) ( )( )[ ]dyyuNyuRyxxu

x

a

001 , += ∫κ     (5.5.8b) 

:2
p  ( ) ( ) ( )( ) ( )( )[ ]dyyuNyuRyxxu

x

a

112 , += ∫κ     (5.5.8c) 

. 

. 

. 

and in general,  

( ) ( )xfxu =0          (5.5.9a) 

( ) ( ) ( ) ( )[ ]dyuNuRyxxu nn

x

a

n += ∫+ ,1 κ       (5.5.9b) 

The approximated solution of Eqn. (5.5.1) therefore, can be obtained by setting p=1. 

( ) ( )xupLimxU i

i

i

p ∑
∞

=
→=

0
1        (5.5.10) 

 

Example 

 

     Let us solve the following nonlinear Volterra integral equation of the second kind, 

with the exact solution ( ) xxu sec= by the homotopy perturbation method (Wazwaz, 

1997) 

( ) ( )( )dttuxxxxu

x

∫ +−++=
0

21tansec , 
2

π
≤x     (5.5.11) 

( ) xxu sec0 =          (5.5.12) 
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To solve equation (5.5.11) by homotopy perturbation method we can construct a 

homotopy as follows: 

( ) ( ) ( ) ( ) 01, =+−= upLuFppuH  

Taking  

( ) ( ) xxuuF sec−=  

( ) ( ) ( )( )dttuxxxxuuL

x

∫ ++−−−=
0

21tansec  

We have  

( ) ( ) ( )( ) ( ) ( )( ) 01tansecsec1,
0

2 =









++−−−+−−= ∫ dttuxxxxupxxuppuH

x

 

          (5.5.13) 

This gives 

( ) ( ) ( ) ( ) ( )( ) 01tansecsecsec,
0

2 =++−−−++−−= ∫ dttuppxxpxpxpuxpxpuxxupuH

x

 

or 

( ) ( ) ( )( ) 01tansec,
0

2 =++−−−= ∫ dttuppxxpxxupuH

x

   (5.5.14) 

Let 

( ) ( ) ( ) ( ) ...2
2

10 +++= xvpxpvxvxv       (5.5.15) 

be a solution of Eqn. (5.5.14).Here ( )xvi
 ,...2,1,0=i are functions to be determined. 

According to Eqn. (5.5.1.5) the initial approximation is  

( ) xxv sec0 =          (5.5.16) 

Substituting equations (5.5.15), (5.5.16) into Eqn. (5.5.14) and comparing the 

coefficients of the powers of p yields the following scheme: 

( ) ( ) ( ) ( ) ( ) ( )( )[ ]dttvptpvtvppxxpxxvpxpvxv

x

∫ ++++−++=+++
0

2

2
2

102
2

10 ...1tansec...

          (5.5.17) 

:0
p  ( ) xxv sec0 =         (5.5.18a) 
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:1
p  ( ) ( )( )dttvxxxv

x

∫ +−+=
0

2
01 1tan  

 

( ) ( )dttxxxv

x

∫ +−+=
0

2
1 sec1tan  ⇒  

( ) 01 =xv         (5.5.18b) 

:2
p  ( ) ( ) ( )dttvtxvxv 1

1

0

02 2∫−=  

( ) dtxxxv

x

.0.sec2
0

2 ∫−=  

( ) 02 =xv         (5.5.18c) 

. 

. 

. 

 

 In general 

( ) ( )( )dttvxv

x

kk ∫ ++ −+−=
0

2
12 1  ⇒  

( ) 02 =+ xvk , 0≥k .        (5.5.19) 

And according to the HPM, we can conclude 

( ) ( ) ( ) ( ) ( ) ...2101 +++== → xvxvxvxvLimxu p     (5.5.20) 

Therefore 

( ) ( ) xxvxu sec==         (5.5.21) 

Here we used two iterations only to obtain the exact solution. The plot of the exact 

solution is presented in Figure 5.5. 
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                                         Figure 5.5 The plot of the exact solution of this example 

 

……v(homotopy)        v (exact) 

 

5.6 Application of Homotopy Perturbation Method to Integro-Differential 

Equations 

 

     We can apply the He’s homotopy perturbation method for the solution of  

integro-differential equations of the form 

( ) ( ) ( ) ( )( )dttftftxgxf

x

∫ ′+=′
0

,,κ       (5.6.1) 

To construct a convex homotopy, we write the integro-differential equation (5.6.1) 

 as 

( ) ( ) ( ) ( )( ) ( ) 0,,
0

=−′−′= ∫ xgdttftftxuuL

x

κ      (5.6.2) 

with solution ( )xf . By using homotopy technique, we can construct a homotopy as 

given in Chapter 5. 

 

Example (The Nonlinear Volterra Integro-Differential Equation) 

 

     Consider the nonlinear Volterra integro-differential equation (Alizadeh, Seyed S. 

R., Domairy, G. G. and Karimpour, S. (2008)) 

( ) ( ) ( ) ( ) ( )∫−−=
x

dxtuxuxuxu
dx

xdu

0

2 101010      (5.6.3) 
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where the initial condition ( ) 00 =u . 

     In order to solve nonlinear Volterra integral equation (5.6.3) using He’s homotopy 

perturbation method we construct a homotopy ( )pvH ,  such that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 01010101,
0

2 =







++−+





−= ∫

x

dxtvxvxvxvxv
dx

d
pxv

dx

d
ppvH  

          (5.6.4) 

Substituting  

...2
2

10 +++= vppvvv        (5.6.5) 

into Eqn. (5.6.4) we obtain 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )( ) 0]......10

...10...10...[

]...[1,

0

2
2

102
2

10

2

2
2

102
2

102
2

10

2
2

10

=+++++++

+++++++−++++

+++−=

∫
x

dxtvptpvtvvppvv

vppvvvppvvvppvv
dx

d
p

vppvv
dx

d
ppvH

 

( ) ( )

( )

( ) ( ) ( ) 0...]101010

...2210

...101010...[

]...[1,

0

2
2

2
2

0

11

0

00

20
2

10
2
1

22
0

2
2

10
2210

2210

=++++

+++++

+−−−++++









+++−=

∫∫∫ dxtvpvpdxtpvpvdxtvv

vvpvpvvpv

vppvv
dx

dv
p

dx

dv
p

dx

dv
p

dx

dv
p

dx

dv
p

dx

dv
ppvH

xxx

  (5.6.6) 

Rearranging based on powers of p terms, we find that: 

:0
p  

( )
00 =

dx

xdv
 ⇒  

 ( ) 00 =xv         (5.6.7a) 

:1
p  

( )
09.01.01 =−+ x

dx

xdv
 ⇒  

 ( ) xxxv 9.05.0 2
1 +−=        (5.6.7b) 

:2
p  

( ) ( ) 0
60

1
9.005.02.785.0 22 =−+−+−+ xxxxx

dx

xdv
 ⇒  

 ( ) 234
2 6.3

12

7

60

1
xxxxv +−=      (5.6.7c) 
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Thus, the approximate solution given by He’s HPM with three iterations have the 

following form  

 

( ) ( ) ( ) ( )xvxvxvxvu
i

iHPM 21

2

0
0 ++==∑

=

     (5.6.8) 

( ) 







+−++−+= 2342 6.3

12

7

60

1
9.005.00 xxxxxuHPM  

xxxxuHPM 9.055.3
12

7

60

1 234 ++−=      (5.6.9) 

The approximation (5.6.9) is in full agreement with the approximation (5.6.10) 

obtained by using the ADM solution method with two iterations  

 

( ) xxxxxvu
i

iADM 9.055.3
12

7

60

1 234
2

1

++−==∑
=

    (5.6.10) 
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CHAPTER SIX 

 

SYSTEMS OF NONLINEAR INTEGRAL EQUATIONS 

 

6.1 Introduction 

 

     In this section we give an application of He’s homotopy perturbation method 

(HPM) to solve nonlinear systems of Fredholm and Volterra integral equations. 

 

    The Adomian decomposition method was being used to solve linear and nonlinear 

systems of Volterra integral equations of the first kind and Fredholm integral 

equations of the first kind. The He’s homotopy perturbation method is applied to 

solve the nonlinear Volterra-Fredholm integral equations of the second kind 

[M.Ghasemi,T.Tavassoli]. 

 

     In this chapter, we extend the homotopy perturbation method to solve nonlinear 

integral equations such that Fredholm and Volterra integral equations. Then we 

compare this method with the analytic approximation methods such as Adomian 

Decomposition Method (ADM) and Taylor-Series Expansion Method. The results 

reveal that the Homotopy Perturbation Method is very effective and simple. 

     A system of Fredholm and Volterra type integral equations can be presented, 

respectively, as the following: 

( ) ( ) ( )( ) ( )( )dssfsxvxfxzxgxf

b

a

iiii ,,, ∫++=   ni ,...,2,1=    (6.1.1) 

( ) ( ) ( )( ) ( )( )dssfsxvxfxzxgxf

x

a

iiii ,,, ∫++=   ni ,...,2,1=    (6.1.2) 

where ( ) ( ) ( ) ( )( )xfxfxfxf n,...,, 21= , and ( )xf i  and ( )xg i  are known functions, 

[ ]bax ,∈ . We suppose that the systems (6.1.1) and (6.1.2) have a unique solution. 

The necessary and sufficient conditions for the existence and uniqueness of the 

solution of the system (6.1.1) and (6.1.2) is given by Delves. 
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     Concerning the system of Fredholm and Volterra type integral equations of 

(6.1.1) and (6.1.2) the solution would be taken in the following form: 

( ) ...12
2

11101
0

1 +++==∑
∞

=

fppfffpxf i

i

i       

          (6.1.3) 

( ) ...22
2

21202
0

2 +++==∑
∞

=

fppfffpxf i

i

i  

     In practice, all terms of the series (6.1.3) can not be determined and so we use an 

approximation of the solution by the truncated series: 

( ) ( )∑
−

=

=
1

0
1,1

m

i

im xfxϕ , ( ) ( )∑
−

=

=
1

0
2,2

m

i

im xfxϕ      (6.1.4) 

 

6.2 System of Volterra Integral Equations of the First Kind 

 

     A system of integral equations of the first kind can be presented as: 

( ) ( ) ( ) ( )( ) ( )xfdttututugtx ini

x

i =∫ ,...,,, 21

0

κ  ni ,...,2,1=    (6.2.1) 

where if  are known functions, ( )txi ,κ  are the kernels of the ith integral equation, 

ig  are linear and nonlinear functional of the unknown functions iu . In the system 

(6.2.1) the equations are not in the canonical form. To derive this form, we 

differentiate of the both sides of equation (6.2.1), with respect to x, and according to 

the Leibnitz generalized formula and we obtain (if ( ) 0, ≠xxiκ ) 

( ) ( ) ( ) ( )( )
( )

( ) ( )( ) ( )xfdttututug
x

tx
xuxuxugxx ini

x

i

nii
′=

∂

∂
+ ∫ ,...,,

,
,...,,, 21

0

21

κ
κ  

          (6.2.2) 

ni ,...,2,1=  

And then    

( ) ( ) ( )( )
( )

( )
( ) ( )( )

( )
( )xx

xf
dttututug

xx

x
tx

xuxuxug
i

i

ni

x

i

i

ni
,

,...,,
,

,

,...,, 21

0

21
κκ

κ
′

=∂
∂

+ ∫  (6.2.3) 

or  
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( ) ( ) ( )( )
( )

( )

( )

( )
( ) ( )( )dttututug

xx

x
tx

xx

xf
xuxuxug ni

x

i

i

i

i

ni ,...,,
,

,

,
,...,, 21

0

21 ∫
∂

∂

−
′

=
κ

κ

κ
 (6.2.4) 

     The nonlinear system of integral of integral equations (6.2.4) can be reduced into 

a simpler system of integral equations of the second type. There are two procedures. 

(Biazar, Babolian and Islam, 2003) 

 

First Approach 

 

     If we can recognize invertible functions ( )( )xug ii
 for each unknown ( )xui

 and 

we set ( )( )xugv iii =  then the nonlinear system of integral equations reduces to a 

simpler system of integral equations and can be easily solved by the Homotopy 

Perturbation Method. 

 

Second Approach 

 

     Let 

( ) ( ) ( ) ( )( )xuxuxugxh nii ,...,, 21=       (6.2.5) 

Then the system of integral equations (6.2.4) can be rewritten as: 

( )
( )

( )

( )

( )
( )dtxh

xx

x
tx

xx

xf
xh

x

i

i

i

i

i

i ∫
∂

∂

−
′

=
0

,

,

, κ

κ

κ
  ,...2,1,0=i     (6.2.6) 

which is a system of linear integral equations of the second kind, which can be 

solved easily by the Homotopy Perturbation Method. 

 

6.2.1 Analysis of the Homotopy Perturbation Method for Systems of Volterra 

Integral Equations of the First Kind 

 

     To apply the homotopy perturbation method (HPM) we consider Eqn. (6.1.4) as 

( )( )( ) ( )( )
( )

( )

( )

( )
( )( )dttug

xx

x
tx

xx

xf
xugxugf ii

x

i

i

i

i

iiiii ∫
∂

∂

+
′

−=
0 ,

,

, κ

κ

κ
  (6.2.7) 

where ni ,...,2,1=  and nj ,...,2,1=  
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with the solution ( )ii ug , where ( )( )( ) ( )( )xfxugf iiiii ϕ= . 

We can define homotopy ( )( )pugH i ,  by 

( )( ) ( ) ( )( ) ( )( ) 01, =+−= iiiiiii ugpfugLppugH     (6.2.8) 

where ( )( )ii ugL  is a functional operator with known solution ( )0ii ug , which can be 

obtained easily. From Eqn. (6.2.8) we have  

( )( ) ( )( )iiii ugLugH =0, ,   ( )( ) ( )( )iiii ugfugH =1,     (6.2.9) 

that is, 

( )( ) ( )( ) ( ) ( )( )
( )

( )xx

xf
xuxugugLugH

i

i

niiiiii
,

,...,0, 1
κ

′
−==   ni ,...,2,1=  (6.2.10a) 

( )( ) ( )( ) ( )( )
( )

( )

( )

( )
( )( )dttug

xx

x
tx

xx

xf
xugugfugH ii

x

i

i

i

i

iiiiii ∫
∂

∂

+
′

−==
0

,

,

,
1,

κ

κ

κ
 (6.2.10b) 

     The changing process of p from zero to unity is just that of ( )( )pugH i ,  from a 

starting point ( )( )0,iugH  to a solution function ( )( )( )1,xgH ii ϕ . 

 

       We can assume that the solution of Eqn. (6.2.7) can be expressed as a series in p 

using the perturbation technique: 

( ) ( ) ( )( ) ( ) ( ) ( ) ...,...,, 2,
2

1,0,21 +++= iiiiiini ugpupgugxuxuxug   (6.2.11) 

The initial approximations to the solutions ( )0,ii ug  are taken to be  

( )( )
( )

( )xx

xf
tug

i

i

ii
,

0
κ

′
=   ni ,...,2,1= .      (6.2.12) 

Substituting (6.2.11) into (6.2.8) and equating the coefficients of p with the same 

power leads to the following equations: 

 

:0
p  ( )( )

( )
( )xx

xf
tug

i

i

ii
,

0
κ

′
=  ni ,...,2,1=      (6.2.13a) 

:1
p  ( )( )

( )

( )
( )( )dttug

xx

x
tx

tug ii

x

i

i

ii 0

0

1
,

,

∫
∂

∂

=
κ

κ

 ni ,...,2,1=    (6.2.13b) 

:2
p  ( )( )

( )

( )
( )( )dttug

xx

x
tx

tug ii

x

i

i

ii 1

0

2
,

,

∫
∂

∂

=
κ

κ

 ni ,...,2,1=    (6.2.13c) 
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and in general by the initial approximations  

( )
( )

( )xx

xf
ug

i

i

ii
,

0
κ

′
=  

we have 

( )
( )

( )
( )( )dttug

xx

x
tx

ug mii

x

i

i

imi 1,

0 ,

,

−∫
∂

∂

=
κ

κ

      (6.2.14) 

That is 

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ...1211111011
0

11 +++==∑
∞

=

xugxugxugxugxug i

i

i   (6.2.15a) 

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ...2222122022
0

222 +++==∑
∞

=

xugxugxugxugxug i

i

 (6.2.15b) 

As 1→p , Eqn. (6.2.8) tends to Eqns.(6.2.7) and (6.2.11) to the solution of Eqn. 

(6.2.7). Therefore the approximated solutions of (6.2.7), can be obtained by setting 

1=p . 

( ) ( )( )( ) ( )( )( )xugfxugfLimug i

j

jiiipii ∑
∞

=
→ ==

0
,1  ni ,...,2,1=  .  (6.2.16) 

     In practice some terms of this series solution will serve as an approximation 

solution  

( )( ) ( )∑
=

=
m

j

ij

m

ii ugxg
0

ϕ         (6.2.17) 

is a m+1 terms approximated solution. This series is convergent for most cases, and 

the rate of convergence depends on ( )( )iii ugf (Adomian, 1986). 

 

6.2 Systems of Volterra Integral Equations of the Second Type 

 

     A system of Volterra integral equations of the second kind can be presented as: 

( ) ( ) ( ) ( ) ( )( ) ( )xfdttututugtxxh ini

x

ii =+ ∫ ,...,,, 21

0

κ   ni ,...,2,1=  

where if  and ih  are known functions, ( )txi ,κ  are the kernels of the ith integral 

equation, ig  are linear and nonlinear functional of the unknown functions iu .The 

procedure for the Volterra integral equations of the second type as in Section 6.2.1. 
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6.2.2 Analysis of the Homotopy Perturbation Method for Systems of Fredholm 

Integral Equations of the Second Type 

 

     Consider the following system of Fredholm integral equations of the second kind 

( ) ( ) ( ) ( )dttftxxgxf ∫
−−−−

+=
1

0

,κ , 10 ≤≤ x      (6.2.17) 

where 

( ) ( )[ ] ( )[ ]ijq

ij txtxktx −==
−

,,κ  nji ,...,2,1, =      (6.2.18a) 

( ) ( ) ( ) ( )[ ]T

n xfxfxfxf ,...,, 21=
−

      (6.2.18b) 

( ) ( ) ( ) ( )[ ]T

n xgxgxgxg ,...,, 21=
−

      (6.2.18c) 

In Eqn. (6.2.17) the functions ( )tx,
−
κ  and ( )xg

−

 are given, and ( )xf
−

 is the solution to 

be determined (Delves, Mohamed, 1985). We assume that Eqn. (6.2.17) has the 

unique solution. The necessary and sufficient conditions for existence and 

uniqueness of the solution of the system (6.2.17) given in (Delves, Mohamed, 1985). 

 

     Let us consider the ith equation of (6.2.17) 

( ) ( ) ( ) ( )dtxftxkxgxf j

n

j

ijii ,
1

0 0
∫∑

=

+= , ni ,...,2,1=     (6.2.19) 

By the homotopy, we construct a convex homotopy for Eqn. (6.2.19) which satisfies 

( ) 01, =





+






−=








−−−

fpLffppfH iii      (6.2.20) 







=








−−

fffH ii 0, , 





=








−−

fLfH ii 1,      (6.2.21) 

where  

iii gfff −=







−

 

( ) ( ) ( ) ( )dtxftxkxgxffL j

n

j

ijiii ,
1

0 0
∫∑

=−

−−=





      (6.2.22) 
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and [ ]1,0∈p  is an embedding parameter. The embedding parameter p monotonically 

increases from zero to unit as 







−

ff i  is continuously deformed to the 







−

fLi . 

     According to the homotopy perturbation method, we assume that the solution of 

Eqn. (6.2.19) can be expressed in a series of p 

( ) ...2
2

10 +++= iiii fppffxf       (6.2.23) 

Substituting Eqn. (6.2.23) into Eqn. (6.2.20), we find that 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) 0,1,
1

0 0

=







−−+−−=








∫∑
=−

n

j

jijiiiii dtxftxkxgxfpxgxfppfH  

or equivalently 

( )( )

( ) ( ) 0]......[

...1,

1

0 0
2

2
102

2
10

2
2

10

=+++−−−+++

+−+++−=







∫∑
=

−

n

j

jjj

q

iiii

iiiii

dtfppfftxgfppffp

gfppffppfH

ij

 

          (6.2.24) 

Eqn. (6.2.24) can be rewritten in the form: 

 

( )( )

( ) ( ) ( ) ( ) ( )( ) 0]...,1

...[

...1,

1

0 0
2

2
10

1

2
2

10

2
2

10

=+++−

−−+++

+−+++−=







∫∑∑
=

−

=

−

n

j

jjj

kkq

ij

q

k

k

iiii

iiiii

dttfptpftftxkqC

gfppffp

gfppffppfH

ij

ij

   

          (6.2.25) 

where ( )kqC ij ,  states the Binomial coefficients in the Binomial series expansion. 

Eqn. (6.2.25) again can be rewritten in terms of the powers of p as the following 

form: 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) 0...,1

,1

,1

0 1

1

0

23
3

0 1

1

0

12
2

0 1

1

0

01
1

0
0

=+







−−+









−−+









−−+−

∑∑ ∫

∑∑ ∫

∑∑ ∫

= =

−

= =

−

= =

−

n

j

q

k

j

kkq

ijij

k

i

n

j

q

k

j

kkq

ijij

k

i

n

j

q

k

j

kkq

ij

k

iii

ij

ij

ij

ij

ij

ij

dttftxkqCfp

dttftxkqCfp

dttftxkqCfpgfp

   (6.2.26) 

Equating the coefficients of like powers of p yields 
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:0
p   00 =− ii qf    ii qf =0        (6.2.27a) 

:1
p   ( ) ( ) ( )dttftxkqCf j

kkq

ij

n

j

q

k

k

i

ij

iij

0

1

00 1
1 ,1 ∫∑∑

−

= =

−=     (6.2.27b) 

:2
p    ( ) ( ) ( )dttftxkqCf j

kkq

ij

n

j

q

k

k

i

ij

iij

1

1

00 1
2 ,1 ∫∑∑

−

= =

−=      (6.2.28a)  

:3
p  ( ) ( ) ( )dttftxkqCf j

kkq

ij

n

j

q

k

k

i

ij

iij

2

1

00 1
3 ,1 ∫∑∑

−

= =

−=     (6.2.28b) 

 . 

. 

. 

and in general  

ii qf =0  

( ) ( ) ( )dttftxkqCf mj

kkq

ij

n

j

q

k

k

im

ij

iij

1,

1

00 1

,1 −

−

= =
∫∑∑ −=       ,...3,2,1=m   (6.2.29) 
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CHAPTER SEVEN  

 

PROBLEMS ON NONLINEAR INTEGRAL EQUATIONS AND ON 

NONLINEAR SYSTEMS OF INTEGRAL EQUATIONS 

 

     In this chapter some problems of nonlinear integral equations, systems of 

nonlinear integral equations, and an integro-differential equation are provided to 

illustrate the ability of the homotopy perturbation method. 

 

Problem 7.1 

 

     Consider the following nonlinear Fredholm integral equation of the second type 

(Wazwaz, 1997) 

( ) ( )dttuxxxu ∫+
+

−+=
2

0

2

4

1

8

2
cossin

π

π
     (7.1.1) 

( ) xxxu cossin0 +=         (7.1.2) 

He’s homotopy perturbation method consists of the following scheme: 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ] 01, 0 =−+−−=
−
rfvApvLvLppvH  

That is 

( ) ( ) ( )[ ] ( ) ( ) 0
4

1

8

2
cossincossin1,

2

0

2 =

















−
+

+−−+−−−= ∫

π

π
dttvxxxvpxxxvppvH  

This gives  

( ) ( )dttvppxxxv ∫+
+

−+=
2

0

2

4

1

8

2
cossin

π

π
     (7.1.3) 

We can try to obtain a solution of equation (7.1.3) in the form: 

( ) ( ) ( ) ( ) ...2
2

10 +++= xvpxpvxvxv       (7.1.4) 

where ( )xvi , ,...2,1,0=i  are functions yet to be determined. According to equation 

(7.1.4) the initial approximation is  

( ) xxxv cossin0 +=         (7.1.5) 

 

54 



55 
 

 

Substituting equations (7.1.4) and (7.1.5) into Eqn. (7.1.3) and equating the terms 

with the coefficients of the identical powers of p, we will have  

( ) ( ) ( ) ( ) ( ) ( )( ) dttvptpvtvppxxxvpxpvxv ∫ ++++
+

−+=+++
2

0

2

2
2

102
2

10 ...
4

1

8

2
cossin...

π

π

 

:0p  ( ) xxxv cossin0 +=  

:1p  ( ) ( )dttvxv ∫+






 +
−=

2

0

2
01

4

1

8

2
π

π
 

( ) ( ) dtttxv ∫ ++






 +
−=

2

0

2

1 cossin
4

1

8

2
π

π
 

( ) 01 =xv  

:2p  ( ) ( ) ( )dttvtvxv 1

2

0

02 2
4

1
∫=

π

 

        ( ) 02 =xv  

In the same manner, the rest of components will be obtained by using the 

Mathematica 7 package. 

According to the HPM we can conclude  

( ) ( ) ( ) ( ) ( ) ...2101 +++== → xvxvxvxvLimxu p  

And therefore the exact solution 

( ) ( ) xxxvxu cossin +==  

 

is readily obtained. Here the only two iterations are cased to obtain this exact 

solution. The plot of the solution is given in Figure 7.1. 
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       Figure 7.1 The numerical results and exact 

       solutions of Problem 7.1 

 

 ……v(homotopy) 

        v(exact) 
 

Problem 7.2 

 

Consider the following nonlinear Volterra integral equation of the second type 

(Wazwaz, 1997): 

( ) ( )dttxuxxeexu

x

xx

∫++−=
0

33

3

1

3

1
       (7.2.1) 

with the exact solution ( ) xexu = . 

A homotopy can be readily constructed as follows: 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ] 01, 0 =−+−−=
−
rfvApvLvLppvH  

or 

( ) ( ) ( )[ ] ( ) ( ) 0
3

1

3

1
1,

0

33 =







−−+−+−−= ∫

x

xxx
dttxvxxeexvpexvppvH  (7.2.2) 

or 

( ) ( ) ( ) ( ) 0
3

1

3

1

0

33 =−−+−++−− ∫
x

xxxx
dttxvppxxeppexpvpexpvexv  

This gives 
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( ) ( ) ( )∫+−+=
x

xx
dttxvpepxexv

0

331
3

1
     (7.2.3) 

Let 

( ) ( ) ( ) ( ) ...2
2

10 +++= xvpxpvxvxv       (7.2.4) 

be a solution of Eqn. (7.2.3). Here ( )xvi , ,...2,1,0=i  are functions to be determined. 

According to equation (7.2.4) the initial approximation is  

( ) xexv =0          (7.2.5) 

Substituting equations (7.2.4) and (7.2.5) into Eqn. (7.2.3) and equating the terms 

with identical powers of p, we find Eqn. (7.2.6): 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) dttvptpvtvxpepxexvpxpvxv

x

xx

∫ ++++−+=+++
0

3

2
2

10
3

2
2

10 ...1
3

1
...

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) dttvptvtvptvtpvtvxp

epxexvpxpvxv

x

xx

∫ +++++

−+=+++

0

3
1

32
10

2
1

2
0

3
0

3
2

2
10

...)33(

1
3

1
...

   (7.2.6) 

:0p  ( ) xexv =0  

:1p     ( ) ( ) ( )∫+−=
x

x
dttxvexxv

0

3
0

3
1 1

3

1
 

 ( ) ( ) ∫+−=
x

tx
dtxeexxv

0

33
1 1

3

1
 

 ( ) ( ) ( )1
3

1
1

3

1 33
1 −+−= xx exexxv   ⇒  ( ) 01 =xv  

:2p  ( ) ( ) ( )( )∫=
x

dttvtvxxv
0

1
2
02 3  

 ( ) ( )∫=
x

t
dtexxv

0

2
2 0.3  ⇒    ( ) 02 =xv  

 

In general 

( ) ( )∫ ++ =
x

kk dttxvxv
0

3
12 , 0≥k  
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According to the HPM, when 1→p , Eqn. (7.2.4) corresponds to Eqn. (7.2.2) and 

becomes the approximate solution of Eqn. (7.2.1), that is, 

( ) ( ) ( ) ( ) ( ) ...2101 +++== → xvxvxvxvLimxu p  

and  

( ) ( ) xexvxu ==  

 

Problem 7.3 

 

     Consider the following nonlinear Volterra integral equation (Wazwaz, 1997)  

( ) ( )dttuxxxxu

x

∫+−−=
0

22sin
4

1

2

1
cos      (7.3.1) 

( ) xxu cos0 =          (7.3.2) 

By homotopy perturbation method we may choose a convex homotopy such that  

( ) ( ) ( ) ( )[ ] ( ) ( )[ ] 01, 0 =−+−−=
−
rfvApvLvLppvH  

That is 

( ) ( ) ( )( ) ( ) ( ) 02sin
4

1

2

1
coscos1,

0

2 =









+++−+−−= ∫ dttvxxxxvpxxvppvH

x

 

or 

 

( ) ( ) ( ) ( ) 02sin
4

1

2

1
coscoscos

0

2 =+++−++−− ∫ dttvpxpxpxpxpvxpxpvxxv

x

  

or 

( ) ( )dttvpxppxxxv

x

∫−−−=
0

22sin
4

1

2

1
cos      (7.3.3) 

Let 

( ) ( ) ( ) ( ) ...2
2

10 +++= xvpxpvxvxv       (7.3.4) 

be a solution of Eqn.(7.3.3). Here ( )xvi , ,...2,1,0=i  are functions to be determined. 

According to equation (7.3.4) the initial approximation is  

( ) xxv cos0 =       (7.3.5) 
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Substituting equations (7.3.4) and (7.3.5) into Eqn. (7.3.3) and equating the terms 

with identical powers of p, we have 

( ) ( ) ( ) ( ) ( ) ( )( ) dttvptpvtvpxppxxxvpxpvxv

x

∫ +++−−−=+++
0

2

2
2

102
2

10 ...2sin
4

1

2

1
cos...

that is 

:0p  ( ) xxv cos0 =  

:1p  ( ) ( )dttvxxxv

x

∫−−−=
0

2
01 2sin

4

1

2

1
 

 ( ) dttxxxv

x

∫−−−=
0

2
1 cos2sin

4

1

2

1
 ⇒  ( ) 01 =xv  

:2p  ( ) ( ) ( )dttvtvxv

x

1

0

02 2∫−=  ⇒    ( ) 02 =xv  

 . 

 . 

 . 

or in general 

( ) ( ) ( )∫ +−=
x

kkk dttvtvxv
0

12  ⇒    ( ) 0=xvk , 0≥k  

Therefore, the approximate solution of example can be readily obtained by 

( ) ( ) ( ) ( ) ( ) ...2101 +++== → xvxvxvxvLimxu p  

or 

( ) ( )∑
∞

=

=
0k

k xuxu  

Therefore 

( ) ( ) xxvxu cos==  

 

Here we used two iterations only to obtain the exact solution xcos . The plot of the 

solution is given in Figure 7.2 for 10 ≤≤ x . 
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vHxL

 
       Figure 7.2 The numerical results and exact solutions 

      of Problem 7.3 

 

 ……v(homotopy) 

     v(exact) 

 

Problem 7.4 

 

     Let us solve the following nonlinear Volterra integral equation of the second type: 

( ) ( ) ( )dttxuexexu

x

xx

∫−−+=
0

22 1
2

1
       (7.4.1) 

( ) xexu =0 . 

He’s homotopy perturbation method states that 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) 01
2

1
1,

0

22
0 =








+−−−+−−= ∫

x

xx
dttxuexexupuLuLppuH  

          (7.4.2) 

that is 

( ) ( ) ( )[ ] ( ) ( ) ( ) 01
2

1
1,

0

22 =







+−−−+−−= ∫

x

xxx
dttxuexexupexuppuH   

          (7.4.3) 

This gives 

( ) ( ) ( ) ( ) ( ) 01
2

1

0

22 =+−−−++−− ∫
x

xxxx
dttxupexppexpupexpuexu  

This simplifies as 
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( ) ( ) ( )∫−−+=
x

xx
dttxupepxexu

0

22 1
2

1
     (7.4.4) 

Suppose the solution of Eqn. (7.4.4) has the following form: 

( ) ( ) ( ) ( ) ...2
2

10 +++= xvpxpvxvxv       (7.4.5) 

where ( )xvi , ,...2,1,0=i  are functions yet to be determined. According to equation 

(7.4.5) the initial approximation is  

( ) xexv =0  

Substituting equations (7.4.5) and (7.4.6) into Eqn. (7.4.4) and equating the terms 

with identical coefficients of the identical powers of p, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) dttvptpvtvxpepxexvpxpvxv

x

xx

∫ +++−−+=+++
0

2

2
2

10
2

2
2

10 ...1
2

1
...

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) dttvptvtpvtvxp

epxexvpxpvxv

x

xx

∫ +++−

−+=+++

0

2
1

2
10

2
0

2
2

2
10

...)2(

1
2

1
...

    (7.4.6) 

this gives 

:0p  ( ) x
exv =0  

:1p     ( ) ( ) ( )∫−−=
x

x
dttxvexxv

0

2
0

2
1 1

2

1
 

 ( ) ( ) ∫−−=
x

tx
dtxeexxv

0

22
1 1

2

1
 

 ( ) ( ) ( )1
2

1
1

2

1 22
1 −−−= xx

exexxv   ⇒  ( ) 01 =xv  

:2p  ( ) ( ) ( )∫−=
x

dttvtxvxv
0

102 2  ⇒    ( ) 02 =xv  

 . 

 . 

 . 

In general 

( ) ( )∫ ++ =
x

kk dttxvxv
0

2
12 , 0≥k  
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And according to HPM, we obtain the exact solution as 

( ) ( ) ( ) ( ) ( ) ...2101 +++== → xvxvxvxvLimxu p  

And  

( ) ( ) xexvxu ==  

with two iterations only. 

 

 
                                     Figure 7.3 The numerical results and exact solutions of 

                                      Problem 7.4 

 

 ……v(homotopy)  

             v(exact) 
 

Problem 7.5 

 

      Consider the following nonlinear integro-differential equation (Ghasemi, 

Tavassoli, and Babolian, 2007): 

( ) ( )dttuxu

x

∫+−=′
0

21         (7.5.1) 

for [ ]1,0∈x  with the boundary solution 

( ) 00 =u .         (7.5.2) 

We apply the homotopy perturbation method to solve Eqn. (7.5.1). 

     Let 

( ) ( ) ( ) 0=−′= xgxuuL , ( ) 0=
−
rf  
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By homotopy perturbation method we may choose a convex homotopy such that  

( ) ( ) ( ) ( ) ( ) ( )[ ] 0, 00 =−++−=
−
rfvNpvpLvLvLpvH  

that is 

( ) ( ) ( ) ( ) ( )( ) 0,,,,
0

=′−−′= ∫ dttvtvtxpxgxvpvH

x

κ     (7.5.3) 

and continuously trace an implicitly defined curve from a starting point ( )0,0vH  to a 

solution function ( )1,vH : 

( ) ( ) ( ) 00, =−′= xgxvvH  ⇒  ( ) ( )xgxv =′     (7.5.4) 

( ) ( ) ( ) ( ) ( )( ) 0,,,1,
0

=′−−′= ∫ dttvtvtxxgxvvH

x

κ  ⇒  

( ) ( ) ( ) ( ) 01,
0

2 =−−′= ∫ dttvxgxvvH

x

      (7.5.5) 

Eqn. (7.5.3) takes the form  

( ) ( ) ( ) 01,
0

2 =−+′= ∫ dttvpxvpvH

x

      (7.5.6) 

Let us try to obtain a solution of Eqn. (7.5.1) in the form 

( ) ( ) ( ) ( ) ...2
2

10 +++= xvpxpvxvxv       (7.5.7) 

where ( )xvi , ,...2,1,0=i  are functions yet to be determined. According to equation 

(7.5.7) the initial approximation is  

( ) ( ) 10 −== xgxv         (7.5.8) 

Substituting equations (7.5.6) and (7.5.7) into Eqn. (7.5.6) gives 

( ) ( ) ( ) ( ) ( ) ( )( ) dttvptpvtvpxvpxvpxv

x

∫ ++++−=+′+′+′
0

2

2
2

102
2

10 ...1...  

or 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )dttvtvptvptvtpvtvpxvpxvpxv

x

∫ +++++−=+′+′+′
0

20
22

1
2

10
2
02

2
10 ...221...

          (7.5.9) 

Equating the terms with identical powers of p in Eqn. (7.5.9), we have 

:0p  ( ) ( ) 10 −==′ xgxv  ⇒   

( ) xxv −=0         (7.5.10a) 
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:1p  ( ) ( ) dttdttvxv

xx

∫∫ ==′
0

2

0

2
01  

( )
3

3

1

x
xv =′    ⇒   ( ) 4

1
12

1
xxv =  

:2p  ( ) ( ) ( ) ( ) dtttdttvtvxv

xx









−==′ ∫∫

4

0

1

0

02
12

1
22   

            ( ) 6
2

36

1
xxv −=′    ⇒    ( ) 7

2
252

1
xxv −=  

:3p  ( ) ( ) ( ) ( )( )dttvtvtvxv

x

∫ +=′
0

2
1203 2  

 ( ) ( ) dttttxv

x

∫



















+







−−=′

0

2

47
3 12

1

252

1
2  

 ( ) 99

0

88
3

9.12

1

9.126

1

12

1

126

1
xxdtttxv

x

+−=







+−=′ ∫  

 ( ) 10
3

6048

1
xxv −=  

:4p  ( ) ( ) ( ) ( ) ( )( )dttvtvtvtvxv

x

∫ +=′
0

21304 2  

 ( ) ( ) dtttttxv

x

∫ 















−








+







−=′

0

7410
4

252

1

12

1

6048

1
2  

 ( ) dtttxv

x

∫ 







−−=′

0

1111
4

6.252

1

3024

1
 

 ( ) 13
4

157248

1
xxv −=  

Therefore, the approximate solution of this problem is 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ...43210
0

+++++==∑
∞

=

xvxvxvxvxvxvxu
n

n  

( ) ...
157248

1

6048

1

252

1

12

1 131074 +−+−+−= xxxxxxu  

Table 7.1 contains the numerical comparison between our solution using HPM and 

the exact solution of the problem at some points. 
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Table 7.1 Numerical results of problem 7.5 

x Exact solution Homotopy perturbation 

method 

0 0 0 

0.0625 -0.0625 -0.0625 

0.125 -0.12498 -0.12498 

0.250 -0.24968 -0.24968 

0.375 -0.37336 -0.37336 

0.500 -0.49482 -0.49482 

0.625 -0.61243 -0.61243 

0.750 -0.72415 -0.72415 

0.875 -0.82767 -0.82767 

1 -0.92048 -0.92048 

   

 

The table shows that HPM minimize the computational calculus and supplies 

quantitatively reliable results. (Appendix 1) 

 

Problem 7.6 

 

     Consider the following system of nonlinear Fredholm integral equations of the 

second type (Babolian, Biazar and Vahidi, 2004) 

( ) ( ) ( )( )∫ ++−=
1

0

211
3

1

18

5
dyyfyfxxf      (7.6.1a) 

( ) ( )( ) ( )( )∫ ++−=
1

0

2
2

1
2

2
3

1

9

2
dyyfyfxxf      (7.6.1b) 

with the exact solutions ( ) xxf =1 , ( ) 2
2 xxf = . 

 

By homotopy perturbation method a convex homotopy such that ( )pffH ,, 21  with 

the components ( )pffH ,, 211  and ( )pffH ,, 212 : 



66 
 

 

( ) ( ) ( ) ( ) ( )( ) 0
3

1
,,

1

0

2111211 =+−−= ∫ dyyfyfpxgxfpffH    (7.6.2a) 

( ) ( ) ( ) ( )( ) ( )( )∫ =+−−=
1

0

2

2

122212 0
3

1
,, dyyfyfpxgxfpffH   (7.6.2b) 

Here, 

( ) ( )uFuH =0,  and ( ) ( )uLuH =1,  

corresponds to the following expressions respectively: 

( ) ( ) ( ) ( )xgxfuFuH 110, −==  and ( ) ( ) ( )xgxfuH 220, −=  

( ) ( ) ( ) ( ) ( ) ( )( ) 0
3

1
1,

1

0

2111 =+−−== ∫ dssfsfxgxfuLuH  

( ) ( ) ( ) ( ) ( )( ) ( )( )∫ =+−−==
1

0

2

2

122 0
3

1
1, dssfsfxgxfuLuH  

For each equation we construct a homotopy [ ] IR→×Ω 1,0  with the following 

properties: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) 0
3

1
1,,

1

0

211111211 =







+−−+−−= ∫ dssfsfxgxfpxgxfppffH  

          (7.6.3a) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( ) 0
3

1
1,,

1

0

2

2

12222212 =







+−−+−−= ∫ dssfsfpxgxfpxgxfppffH

          (7.6.3b) 

or equivalently 

( ) 0,, 211 =pffH , ( ) 0,, 212 =pffH  gives, respectively, 

( ) ( ) ( ) ( )( ) 0
3

1 1

0

2111 =++= ∫ dssfsfpxgxf      (7.6.4a) 

( ) ( ) ( )( ) ( )( )∫ =++=
1

0

2

2

122 0
3

1
dssfsfpxgxf      (7.6.4b) 

Consider the ith equation of the system, take 

( ) ...12
2

11101
0

1 +++==∑
∞

=

fppfffpxf i

i

i      (7.6.5a) 

( ) ...22
2

21202
0

2 +++==∑
∞

=

fppfffpxf i

i

i      (7.6.5b) 
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Substituting (7.6.5) into (7.6.4) gives  

 

( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) dssfpspfsf

sfpspfsfpxgfppff

]...

...[
3

1
...

22
2

2120

1

0

12
2

1110112
2

1110

+++

+++++=+++ ∫  

          (7.6.6a) 

( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) dssfpspfsf

sfpspfsfpxgfppff

]...

...[
3

1
...

22
2

2120

1

0

2

12
2

1110222
2

2120

+++

+++++=+++ ∫  

          (7.6.6b) 

and equating the terms with identical powers of p, we have 

:0
p  ( ) ( )xgxf 110 =   ⇒  ( ) 2778.0

18

5
10 −≅−= xxxf   

(7.6.7a) 

 ( ) ( )xgxf 220 =  ⇒  ( ) 2222.0
9

2 22
20 −≅−= xxxf  

(7.6.7b) 

:1p  ( ) ( ) ( )( )dssfsfxf ∫ +=
1

0

201011
3

1
 

 ( ) dsssdsssxf ∫∫ 







−+=








−+−=

1

0

2
1

0

2
11

2

1

3

1

9

2

18

5

3

1
 

 ( ) 1111.0
9

1
11 ≅=xf        (7.6.8a) 

 ( ) ( )( ) ( )( )dssfsfxf ∫ +=
1

0

20

2

1021
3

1
 

 ( ) dsssxf ∫











−+








−=

1

0

2

2

21 9

2

18

5

3

1
 

 ( ) 0813.0
972

79
21 ≅=xf       (7.6.8b) 

:kp  ( ) ( ) ( )( )dssfsfxf kkk ∫ −− +=
1

0

12111
3

1
     (7.6.9a) 
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 ( ) ( )( ) ( )( )dssfsfxf kkk ∫ −− +=
1

0

12

2

112
3

1
     (7.6.9b) 

Therefore, the approximate solution can be readily obtained by 

( ) ( )∑
∞

=

=
0

11
k

k xfxf ,   ( ) ( )∑
∞

=

=
0

22
k

k xfxf    (7.6.10) 

For the first iteration, we have: 

( ) 1111.0
9

1
11 ≅=xf  

( ) 0813.0
972

79
21 ≅=xf  

In practice, all terms of series (7.6.10) can not be determined and so we can use an 

approximation of the solution by the following truncated series 

( ) ( )∑
−

=

=
1

0
1,1

m

k

km xfxϕ ,  ( ) ( )∑
−

=

=
1

0
2,2

m

k

km xfxϕ     (7.6.11) 

Using the truncated series (7.6.11), the solutions with two terms are  

( ) ( ) ( ) ( ) 1667.0
18

3

9

1

18

5
1110

1

0
12,1 −≅−=+−=+==∑

=

xxxxfxfxfx
k

kϕ  

( ) ( ) ( ) ( ) 1409.0
792

79

9

2 22
2120

1

0
22,2 −≅+−=+==∑

=

xxxfxfxfx
k

kϕ  

For the second iteration we have 

( ) 0641.0
2916

187
12 ≅=xf  

( ) 0312.0
2916

91
22 ≅=xf  

Considering (7.6.11), the solutions with three terms are 

( ) ( ) ( ) ( ) 1025.0
2916

187

9

1

18

5
1211103,1 −≅++−=++= xxxfxfxfxϕ  

( ) ( ) ( ) ( ) 0974.0
2916

91

792

79

9

2 22
2221203,2 −≅++−=++= xxxfxfxfxϕ  

and so on the rest of components of the iteration formula (7.6.9) can be obtained in a 

similar way. 

The solutions with ten terms are given as 
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( ) ( ) ( ) ( ) ( ) ( ) ( )xfxfxfxfxfxfx
k

k 1913121110

9

0
110,1 ... +++++==∑

=

ϕ  

( ) ( ) ( ) ( ) ( ) ( ) ( )xfxfxfxfxfxfx
k

k 2923222120

9

0
210,2 ... +++++==∑

=

ϕ  

That is 

( ) 0458.010,1 −≅ xxϕ  

( ) 0915.02
10,2 −≅ xxϕ  

 

     The values of the ten terms approximations to the solutions at some points with 

the corresponding absolute errors for HPM at various values of x in Table 7.2. 

 

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

f1 HxL

 

                                        Figure 7.4 The numerical results and exact solutions 

                                         of problem 7.6 

 

 

…. (homotopy)1f  
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0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

f2 HxL

 
                                       Figure 7.5 The numerical results and exact solutions 

                                       of problem 7.6 

 

…. (homotopy)2f  

 

As the results in Table 7.2 show the more terms in approximations would cause the 

more accuracy in solutions. 

 

More iteration will reduce the error. Obviously, the maximum absolute error for 

[ ]1,0∈x  is 0.954 for ( )xf1  and 0.908 for ( )xf 2 . (Appendix 2) 
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Table 7.2 The values of ten terms approximations with the related errors  

x  ( )ixf1  ( )iHPM
xf1  ( )ixe1  ( )ixf 2  ( )iHPM

xf 2  ( )ixe2  

0 0 -0.046 0.046 0 -0.09 0.09 

0.1 0.1 0.054 0.046 0.01 -0.08 0.09 

0.2 0.2 0.154 0.046 0.04 -0.05 0.09 

0.3 0.3 0.254 0.046 0.09 -0.001  0.091 

0.4 0.4 0.354 0.046 0.14 0.07 0.09 

0.5 0.5 0.454 0.046 0.25 0.16 0.09 

0.6 0.6 0.554 0.046 0.36 0.27 0.09 

0.7 0.7 0.654 0.046 0.49 0.40 0.09 

0.8 0.8 0.754 0.046 0.64 0.55 0.09 

0.9 0.9 0.854 0.046 0.81 0.72 0.09 

1 1 0.954 0.046 1 0.91 0.09 

       

 

Problem 7.7 

 

     Consider the following system of Volterra integral equations of the first kind with 

the exact solution ( ) 2
1 xxf =  and ( ) xxf =2  (Biazar, Babolian, and Islam, 2003). 

( ) ( ) ( )( ) 3456

0

3
21

22

3

1

4

1

15

2

12

1
1 xxxxdyyfyfyx

x

++−−=++−∫   (7.7.1a) 

( ) ( ) ( )( ) 8732

0

2
3

1
56

1

7

5

6

1

2

5
5 xxxxdyyfyfyx

x

++−−=−−+∫   (7.7.1b) 

     We use the homotopy perturbation method to solve system (7.7.1). First we put 

system (7.7.1) into the canonical form. To derive this form, differentiate of the both 

sides of Eqn. (7.7.1), with respect to x, and according to the Leibnitz generalized rule 

as in Section 6.2. This process changes the system of integral equations (7.7.1) to the 

second kind: 

( ) ( ) ( ) ( )( ) 2345

0

3
21

3
21

3

2

2

1
2 xxxxdyyfyfxxfxf

x

++−−=+−+ ∫   (7.7.2a) 
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( ) ( ) ( ) ( )( ) 762

0

2
3

12
3

1
35

1

10

1

5

1
xxxxdyyfyfxfxf

x

++−−=−+− ∫   (7.7.2b) 

Let’s choose 

( ) 2345
1

3

2

2

1
xxxxxg ++−−=  ( ) 762

2
35

1

10

1
xxxxxg ++−−=  

( ) ( ) ( )xfxfxh 3
211 +=    ( ) ( ) ( )xfxfxh 2

3
12 −=  

( ) ( ) ( )xgdyyhxxh

x

1

0

11 2 =− ∫   ( ) ( ) ( )xgdyyhxh

x

2

0

22
5

1
=+ ∫  

( ) ( ) ( )dyyhxxgxh

x

∫+=
0

111 2   ( ) ( ) ( )dyyhxgxh

x

∫−=
0

222
5

1
 

Using homotopy perturbation method; 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 021,,
0

11111211 =







−−+−−= ∫

x

dyyhxxgxhpxgxhpphhH  

( ) ( ) ( ) ( ) ( ) ( ) ( ) 02
0

1111111 =−−++−− ∫ dyyhxpxpgxphxpgxphxgxh

x

 

( ) ( ) ( )dyyhxpxgxh

x

∫+=
0

111 2        (7.7.3a) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 0
5

1
1,,

0

22222212 =







+−+−−= ∫

x

dyyhxgxhpxgxhpphhH  

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0
5

1

0

2222222 =+−++−− ∫ dyyhpxpgxphxpgxphxgxh

x

 

( ) ( ) ( )dyyhpxgxh

x

∫−=
0

222
5

1
       (7.7.3b) 

...2
2

10 +++= iiii hpphhh  

...12
2

11101 +++= hpphhh  ...22
2

21202 +++= hpphhh  

 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]dyyhpyphyhxpxgxhpxphxh

x

∫ ++++=+++
0

12
2

1110112
2

1110 ...2...  

          (7.7.4a) 
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( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]dyyhpyphyhpxgxhpxphxh

x

∫ +++−=+++
0

22
2

2120222
2

2120 ...
5

1
...  

          (7.7.4b) 

:0
p  ( ) ( )xgxh 110 =   ⇒  ( ) 2345

10
3

2

2

1
xxxxxh ++−−=  

 ( ) ( )xgxh 220 =  ⇒  ( ) 762
20

35

1

10

1
xxxxxh ++−−=  

:1
p  ( ) ( )dyyhxxh

x

∫=
0

1011 2  

 ( ) ∫ 







++−−=

x

dyyyyyxxh
0

2345
11

3

2

2

1
2  

 ( ) 4567
11

3

2

2

1

15

4

6

1
xxxxxh ++−−=  

 ( ) ( )dyyhxh

x

∫−=
0

2021
5

1
 

 ( ) dyyyyyxh

x

∫ 





++−−−=

0

762
21

35

1

10

1

5

1
 

          
x

yyyy

0

8732

835

1

7310

1

25

1








++−−−=  

 ( )
14003515010

8732

21

xxxx
xh −−+=  

 . 

 . 

 . 

and in general 

( ) ( ) ( )dyyhxxh

x

nn ∫=+

0

111 2  ,...2,1,0=n  

( ) ( ) ( )dyyhxh

x

nn ∫−=+

0

212
5

1
 

( ) ( )∑
−

=

=
1

0
1,1

m

n

nm xhxϕ  ( ) ( )∑
−

=

=
1

0
2,2

m

n

nm xhxϕ  
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Considering the solutions with two terms, we obtain 

( ) ( ) ( )xhxhx 11102,1 +=ϕ  

( ) 7632
2,1

6

1

15

4
xxxxx −−+=ϕ  

( ) ( ) ( )xhxhx 21202,2 +=ϕ  

( )
1400150

8
6

3

2,2

x
x

x
xx −+++−=ϕ  

( ) ( ) ( ) ...11101 ++= xphxhxh  

( ) ...
3

2

2

1

15

4

6

1

3

2

2

1 45672345
1 +








++−−+++−−= xxxxpxxxxxh  

( ) ...
1400351501035

1

10

1 8732
762

2 +









−−++++−−=

xxxx
pxxxxxh  

 

The numerical results obtained by Adomian Decomposition Method and the HPM 

are represented in Table 7.3 and Table7.4. 

 

Table 7.3 Numerical results for problem 7.7  

n 
ix  ( )ixf1  ( )iHPM

xf1  ( )ixe1  ( )ixf 2  ( )iHPM
xf 2  ( )ixe2  

1 0 0 0 0 0 0 0 

2 0.1 0.01 0.01 0 0.1 -0.10 0.2 

3 0.3 0.09 0.14 -0.05 0.3 -0.29 0.59 

4 0.5 0.25 0.45 -0.20 0.5 -0.48 0.98 
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Table 7.4 Numerical results for problem 7.7  

n 
ix  ( )ixf1  ( )iADM

xf1  ( )ixe1  ( )ixf 2  ( )iADM
xf 2  ( )ixe2  

1 0 0 0 0 0 0 0 

2 0.1 0.01 0.0100 0 0.1 0.1 0 

3 0.3 0.09 0.0877 0.0023 0.3 0.3006 -0.0006 

4 0.5 0.25 0.2440 0.006 0.5 0.5162 -0.0162 

        

 

The computations associated with in this example were performed using 

MATHEMATICA 7. (Appendix 3) 

 

Problem 7.8 

 

Let us solve the following nonlinear system of three integral equations of the second 

type with the exact solutions ( ) xxf ln1 = , ( ) xxf =2  and ( ) 2
3 xxf =  (Biazar and 

Ghazvini, 2009): 

( ) ( ) ( )dssfsfxxxxxf

x

2

0

1
22

1 4ln2ln ∫++−=      (7.8.1a) 

( ) ( ) ( )dssfssfxxxxxf

x

2
3

0

1
66

2
36

1
ln

6

1
∫++−=     (7.8.1b) 

( ) ( ) ( )dssfssfxxxf

x

2

0

3
52

3
3

1

15

1
∫−+=       (7.8.1c) 

For solving this system by He’s homotopy perturbation method (HPM) a convex 

homotopy such that ( ) [ ] 3
321 1,0:,,, IRpfffH →×Ω  is constructed for each equation 

with the following properties: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) 041,,, 2

0

111113211 =







−−+−−= ∫ dssfsfxgxfpxgxfppfffH

x

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) 01,,, 2
3

0

122223212 =







−−+−−= ∫ dssfssfxgxfpxgxfppfffH

x
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( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) 0
3

1
1,,, 2

0

333333213 =







+−+−−= ∫ dssfssfxgxfpxgxfppfffH

x

 

          (7.8.2) 

or equivalently  

( ) 0,,, 3211 =pfffH ,  ( ) 0,,, 3212 =pfffH ,  ( ) 0,,, 3213 =pfffH  

gives respectively 

( ) ( ) ( ) ( )dssfsfpxgxf

x

2

0

111 4 ∫+= , 

( ) ( ) ( ) ( )dssfssfpxgxf

x

2
3

0

122 ∫+= ,      (7.8.3) 

( ) ( ) ( ) ( )dssfssfpxgxf

x

2

0

333
3

1
∫−= . 

Suppose the solutions of the system (7.8.2) have the form  

( ) ( ) ( ) ( ) ...2,
2

1,0, +++= xfpxpfxfxF iiii  3,2,1=i    (7.8.4) 

where ( )xf ij  3,2,1=i  and 3,2,1=j  are functions to be determined. 

The initial approximations to the solutions ( )xf i 0,  are taken to be ( )xg i
. 

( ) ( ) ( )xgxfxF iii == 0,0,  3,2,1=i  

That is  

( ) ( ) 22
0,110 2ln xInxxxxfxF +−==  

( ) ( ) 66
0,220

36

1

6

1
xInxxxxfxF +−==      (7.8.5) 

( ) ( ) 52
0,330

15

1
xxxfxF +==  

     Substituting (7.8.4) into (7.8.3) and comparing the coefficients of the powers of p 

yields the following schemes: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )dssfpspfsfsfpspfsfpxgxf

x

∫ +++++++=
0

22
2

212012
2

111011 ......4  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) dssfpspfsfsfpspfsfspxgxf

x
3

32
2

313012
2

1110

0

22 ...... +++++++= ∫
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( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )dssfpspfsfsfpspfsfpxgxf

x

∫ ++++++−=
0

22
2

212032
2

313033 ......
3

1

 

and in general 

( ) ( ) ( )dssfsfxf

x j

k

kjkj ∫∑
−

=
−−=

0

1

0
1,2,1,1 4  3,2,1=j  

( ) ( ) ( ) ( )dssfsfsfsxf ikjk

x j

i

ij

k

ij 1,3,3

0

1

0

1

0
,1,2 −−−

−

=

−−

=
∫ ∑ ∑=  3,2,1=j    (7.8.6) 

( ) ( ) ( )dssfsfsxf

x j

k

kjkj ∫ ∑
−

=
−−=

0

1

0
1,3,2,3

3

1
 3,2,1=j  

From (7.8.6), if the first six terms approximations are sufficient, we find that 

( ) ( ) ( )∑
=

→ ==
6

0
,1111

k

kp xFxFLimxf  

( ) ( ) ( )∑
=

→ ==
6

0
,2211

k

kp xFxFLimxf  

( ) ( ) ( )∑
=

→ ==
6

0
,3313

k

kp xFxFLimxf  

The values of six terms approximations with the related errors are given in the 

following Table 7.5, Table 7.6 and Table7.7. The computations with in this example 

were performed using MATHEMATICA 7. (Appendix 4) 

 

Table 7.5 Numerical results for problem 7.8 with m=6 

 

 

 

 

 

 

 

 

 

 

x  ( )
ixf1  ( )

iHPM
xf1  ( )

ixe1  

0.1 -2.302585093 -2.302585093 0 

0.2 -1.609437912 -1.609437911 910−−  

0.3 -1.203972804 -1.203972712 8102.9 −×−  

0.4 -0.916290731 -0.9162887123 6100187.2 −×−  

0.5 -0.69314718 -0.6931287262 51084538.1 −×−

 
0.6 -0.510825623 -0.5107359296 51096934.8 −×−
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Table 7.6 Numerical results for problem 7.8 with m=6 

x  ( )
ixf2  ( )iHPM

xf 2  ( )ixe2  

0.1 0.1 0.1     0 

0.2 0.2 0.2     0 

0.3 0.3 0.3000000002 10102 −×−  

0.4 0.4 0.4000000120 8102.1 −×−  

0.5 0.5 0.5000003436 710436.3 −×−  

0.6 0.6 0.6000052560 610256.5 −×−  

 

Table 7.6 Numerical results for problem 7.8 with m=6 

x  ( )
ixf3  ( )iHPM

xf3  ( )ixe3  

0.1 0.01 0.01    0 

0.2 0.04 0.04    0 

0.3 0.09 0.09000000001 1110−−  

0.4 0.16 0.1599999998 10102 −×  

0.5 0.25 0.2499999953 9107.4 −×  

0.6 0.36 0.3599998863 710137.1 −×  

 

The table shows that the HPM give very good approximation to the solutions. 

 

 
                Figure 7.6 The plots of approximation and exact solutions 
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Problem 7.9 

 

     Consider the following nonlinear Fredholm system of integral equations 

(Maleknejad, Aghazadeh, and Rabbani, ,2006) 

( ) ( )( ) ( )( ) ( )xgdtttfxdttxftxf 1

1

0

21

1

0

1 sincos =++ ∫∫  

          (7.9.1) 

( ) ( ) ( ) ( ) ( )xgdttftxdttfexf
xt

2

1

0

2

1

0

12

2

=+++ ∫∫  

with  ( ) x
xx

xg ++=
2

1sin

3

cos 2

1  

( ) ( ) 11cos1sin1cos
2

1
2 −++++

−
= xx

x

e
xg

x

 

and with exact solutions ( ) xxf =1  and ( ) xxf cos2 = . 

 

     For solving this system by He’s homotopy perturbation method a convex 

homotopy is constructed for each equation with the following properties: 

 

 

( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) 0sincos1 1

1

0

21

1

0

10,11 =









−+−+−− ∫∫ xgdtttFxdttxFtxFpxFxFp  

          (7.9.2) 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) 01 2

1

0

2

1

0

120,22

2

=









−++−+−− ∫∫ xgdttFtxdttFexFpxFxFp

xt  

Suppose the solutions of the system (7.9.2) have the form 

( ) ( ) ( ) ( ) ...2,
2

1,0, +++= xFpxpFxFxF iiii  ni ,...,2,1=  

The initial approximations to the solutions ( )xf i 0,  are taken to be ( )xg i . 

( ) ( ) ( )xgxfxF iii == 0,0,  

That is  
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( ) ( ) x
xx

xfxF ++==
2

1sin

3

cos 2

0,10,1  

          (7.9.3) 

( ) ( ) ( ) 11cos1sin1cos
2

1
0,20,2 −++++

−
== xx

x

e
xfxF

x

 

     Substituting (7.9.3) into (7.9.2) and equating the terms with the coefficients of the 

identical powers of p, we have 

 

( ) ( )( ) ( )( )∫∫ −− −−=
1

0

1,21,1

1

0

,1 sincos dtttFxdttxFtxF jjj   ,...3,2,1=j  

          (7.9.4) 

( ) ( ) ( ) ( )∫∫ −− +−−=
1

0

1,2

1

0

1,1,2

2

dttFtxdttFexF jj

xt

j   ,...3,2,1=j  

Suppose ( ) ( )∑
=

≈
5

0
,11

j

j xFxf  and ( ) ( )∑
=

≈
5

0
,22

j

j xFxf  

 

The numerical results obtained by the modified Taylor series expansion method and 

the HPM are represented in Table 7.7 and Table 7.8. 
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Table 7.7 Numerical results for problem 7.9 with m=10 
 

ix  ( )iHPM
xf1  ( )itaylor

xf1  ( )ixe1  ( )iHPM
xf 2  ( )itaylor

xf 2  ( )ixe2  

0 0.047592 0.047592 -0.047592 0.98839 0.98839 0.01161 

0.1 0.138096 0.138096 -0.038096 1.00141 1.00141 -0.051369 

0.2 0.227486 0.227486 -0.027486 0.984326 0.984326 -0.004259 

0.3 0.317454 0.317454 -0.017454 0.95576 0.95576 -0.000424 

0.4 0.408999 0.408999 -0.008999 0.918226 0.918226 0.002835 

0.5 0.502914 0.502914 -0.002914 0.873939 0.873939 0.003644 

0.6 0.599623 0.599623 0.000377 0.824824 0.824824 0.000512 

0.7 0.69903 0.69903 0.00097 0.772597 0.772597 -0.007755 

0.8 0.800329 0.800329 -0.000329 0.718871 0.718871 -0.022164 

0.9 0.901818 0.901818 -0.00181811 0.66528 0.66528 -0.04367 

1 1.00072 1.00072 -0.00072 0.613598 0.613598 -0.073296 

       

 
 
 
Table 7.8 The exact values of 1f  and 2f  for problem 7.9 with m=10 

( )
ixf1  ( )

ixf2  

0 1.0 
0.1 0.95004 
0.2 0.980067 
0.3 0.955336 
0.4 0.921061 
0.5 0.877583 
0.6 0.825336 
0.7 0.764842 
0.8 0.696707 
0.9 0.62161 
1 0.540302 

 
The obtained solutions in comparison with the modified Taylor series expansion 

method and exact solutions admit a remarkable accuracy. (Appendix 5) 
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CHAPTER EIGHT 

 

CONCLUSION 

 

     In this study, the Homotopy Perturbation Method (HPM) has been successfully 

used for finding the solution of nonlinear problems for integral equations and 

systems for integral equations. The absolute error, exact and numerical results are 

presented and compared each other in table, for some values of x or t. The analytic 

approximate solution shows that the HPM gives efficient results closer to the 

accurate solutions in bounded domains. 

 

     The advantage of this method is that it does need a small parameter in the system, 

leading to wide approximation in nonlinear integral equations. With the help of some 

mathematical software, such as MATHEMATICA, MATLAP, the method provides a 

powerful mathematical tool to more complex nonlinear systems. 

 

     The study shows that the HPM is simple and easy to use. Moreover, it minimizes 

the computational calculus and supplies quantitatively reliable results and can be 

considered an alternative method for solving a wide class of nonlinear problems 

which arise in various fields of pure and applied sciences. 
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APPENDICES 

 

Appendix 1 

 

Taking the boundary condition ( ) 00 =u  the solution of integro-differential equation 

(7.5.1) is as follows: 

 

( ) ( )∫+−=′
x

dttuxu
0

21         (7.5.1) 

 

( ) 10101
0

−=+−=+−=′ ∫
x

dtxu  

 

( )
1−=

dx

xdu
 

 

( ) cxxu +−=  

( ) 00 =u  

0=c  

( ) xxu −=  

 

At the point 0625.0=x  the solution of integro-differential equation (7.5.1) is, 

 

( ) 0625.00625.0 −=u  

 

At the point 125.0=x  the solution of integro-differential equation (7.5.1) is 

 

( ) ∫+−=′
x

dttxu
0

4

12

1
1  

( )
x

t
xu

0

5

512

1
1+−=′  
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( ) 5

60

1
1 xxu +−=′  

( ) 5

60

1
1 x

dx

xdu
+−=  

( ) 6

360

1
xxxu +−=  

( ) ( )6
125.0

360

1
125.0125.0 −+−=u  

( ) 12498.0125.0 −=u  

 

At the point 250.0=x  the solution of integro-differential equation (7.5.1) is 

 

( ) ∫−−=′
x

dttxu
0

7

252

1
1  

( )
x

t
xu

0

8

8252

1
1−−=′  

( ) 8

2016

1
1 xxu −−=′  

( ) 9

18144

1
xxxu −−=  

( ) ( )9250.0
18144

1
250.0250.0 −−=u  

( ) 24968.0250.0 −=u  

 

Appendix 2 

 

[ ][ ] ;
18

5
:_0,1 −= xxh  

[ ][ ] ;
9

2
:_0,2 2 −= xxh  
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[ ][ ] [ ][ ] [ ][ ]( )

[ ][ ] [ ][ ]( ) [ ][ ]( ) ];,2,1
3

1
_1,2

;,2,1
3

1
_1,1,,10,0[

1

0

2

1

0

dssihsihxih

dssihsihxihiiiFor

∫

∫

+∗=+

+∗=+++<=

 

 

{ }[ ];,1,0,,: BlackPlotStylexxPlota →=  

[ ][ ] { } ;,1,0,,,1:
9

0








→= ∑

=n

DashedPlotStylexxnhPlotb  

[ ]AllPlotRangebaShow →,,  

 

 

Appendix 3 

 

[ ] ;:_1 2xxf =  

[ ] ;:_2 xxf =  

[ ][ ] ;
3

2

2

1
:_0,1 2345

xxxxxh ++−−=  

[ ][ ] ;
35

1

10

1
:_0,2 762

xxxxxh ++−−=  

 

[ ][ ] [ ][ ]

[ ][ ] [ ][ ] ];,2
5

1
_1,2

;,12_1,1,,10,0[

0

0

∫

∫

∗−=+

∗=+++<=

x

x

dssihxih

dssihxihiiiFor

 

 

{ } [ ][ ];5.0,1,0,,: HuePlotStylexxPlotc →=  

[ ][ ] { } [ ] ;0.1,1,0,,,2:
9

0








→= ∑

=n

HuePlotStylexxnhPlotd  

[ ]AllPlotRangedcShow →,,  
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Appendix 4 

 

[ ][ ] [ ] [ ]

[ ][ ] [ ][ ] { }];,0,,1,2,1

,ln2ln,0[:__,1
1

0

22

xsskjFskFNIntegrate

xxxxjIfjxF

j

k









−−∗

+∗∗−==

∑
−

=

 

 

[ ][ ] [ ]

[ ][ ] [ ][ ] [ ][ ] { }];,0,,1,3,3,1

,
36

1
ln

6

1
,0[:__,2

1

0

1

0

66

xssikjFsiFsiFNIntegrate

xxxxjIfjxF

j

i

ij

k









−−−∗∗

+−==

∑∑
−

=

−−

=

 

 

[ ][ ]

[ ][ ] [ ][ ] { }];,0,,1,3,2
3

1

,
15

1
,0[:__,3

1

0

52

xsskjFskFNIntegrates

xxjIfjxF

j

k









−−∗∗∗

+==

∑
−

=

 

 

[ ] [ ][ ];,1:_
5

0
1 jtFtf

j

∑
=

=  

[ ] [ ][ ];,2:_
5

0
2 jtFtf

j

∑
=

=  

[ ] [ ][ ];,3:_
5

0
3 jtFtf

j

∑
=

=  

{ } { }[ ]1,0,,,ln ttxPlot  

{ }[ ];,1,0,,ln: BlackPlotStylexxPlota →=  

[ ][ ] { } ;,1,0,,,1:
5

0








→= ∑

=j

DashedPlotStylexjtFPlotb  

[ ]AllPlotRangebaShow →,,  
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Appendix 5 

 

[ ][ ] [ ] [ ]( )

[ ][ ][ ] { }[ ]
[ ][ ][ ] { }[ ]];1,0,,1,2

1,0,,1,1

,
2

.1

3
,0[:__,1

2

tjtFtSinNIntegratex

tjtFxCostNIntegrate

x
Sin

x
xCos

jIfjxF

−∗∗

−−∗∗−

++==

 

 

[ ][ ] [ ] ( ) [ ] [ ]

[ ][ ] { }[ ] ( ) [ ][ ] { }[ ]];1,0,,1,21,0,,1,1

,1.1.11
2

1
,0[:__,2

2

tjtFtxNIntegratetjtFeNIntegrate

CosSinxxCos
x

e
jIfjxF

xt

x

−+−−−

−++++
−

==
 

 

[ ] [ ][ ];,1:_
5

0
1 jtFtf

j

∑
=

=  

 

[ ] [ ][ ];,2:_
5

0
2 jtFtf

j

∑
=

=  

 

[ ]{ } { }[ ]1,0,,,1 tttfPlot  

 

[ ] [ ]{ } { } { }[ ]DashedBlackPlotStyleoAspectRatittCostfPlot ,,2
5,1,0,,,2 →→  

 


