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APPROXIMATE ANALYTIC SOLUTIONS OF NONLINEAR
INTEGRAL EQUATIONS

ABSTRACT

This thesis is related with nonlinear integral equations, nonlinear systems of
integral equations and integro-differential equations. The existence and uniqueness
of these equations for Lipschitz continuous kernels are investigated. An analytic
method based on He’s Homotopy Perturbation Method (HPM) for the solution of
nonlinear integral equations and systems are studied and applied. This method is
extended for nonlinear integro-differential equations. Moreover, some examples of
the mathematics program, solutions are given by MATHEMATICA 7. The
approximate solutions of these equations are compared with the analytic
approximation methods such as Adomian Decomposition Method (ADM) and
Taylor—Series Expansion Method. The comparison shows that the (HPM) is quite

conform and efficient for solving nonlinear problems.

Keywords: Linear and nonlinear integral equations, nonlinear systems of integral

equations, Homotopy Perturbation Method.
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DOGRUSAL OLMAYAN INTEGRAL DENKLEMLERIN
YAKLASIK ANALITIiK COZUMLERI

0z

Bu tezde dogrusal olmayan integral denklemler, dogrusal olmayan integral
denklem sistemleri, integro-diferansiyel denklemler incelenmis, bu denklemlerin
cOziimlerinin varlik ve tekligi Lipschitz siirekli ¢ekirdekler i¢in arastirilmistir.
Dogrusal olmayan integral denklemlerin ve denklem sistemlerinin ¢dziimii i¢in
analitik bir yontem olan He’nin Homotopi Perturbasyon Yonteminin uygulanmasi
incelenmistir. Yontem dogrusal olmayan integro-diferansiyel denklemler i¢in
genisletilmistir. Ayrica matematik programi MATHEMATICA 7 ile de baz
orneklerin ¢oziimleri verilmistir. Bu denklemlerin yaklasik ¢oziimleri analitik
yaklagim yontemleri olan Adomian Ayrisim Yontemi (ADM) ve Taylor Serisi
Acilim Yontemi ile karsilastirilmis ve Homotopi Perturbasyon Yonteminin
dogrusal olmayan problemlerin ¢éziimiinde uyumlu ve elverigli sonuglar verdigi

gbzlenmistir.

Anahtar kelimeler: Dogrusal ve dogrusal olmayan integral denklemler, dogrusal

olmayan integral denklem sistemleri, Homotopi Perturbasyon Yontemi
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CHAPTER ONE

INTRODUCTION

Nonlinear phenomena, that appear in many applications in scientific fields, such
as fluid dynamics, solid state physics, plasma physics, mathematical biology and
chemical kinetics, can be modelled by partial differential equations and by integral

equations as well.

There are many new analytical approximate methods to solve two—point boundary
value problems and initial value problems in the literature. Among these, Adomian
decomposition method (ADM) (Adomian, 1994) for stochastic and deterministic
problems, the Modified Decomposition Method (MDM) (Wazwaz, 1997) and He’s
Homotopy Perturbation Method (HPM) (He, 1999; 2000; 2003; 2004; 2005) have
been receiving much attention in recent years in applied mathematics in general, in
the area of series solutions in particular. These methods have been applied to a wide
class of functional equations of linear and nonlinear problems. In this study, we
investigate He’s Homotopy Perturbation Method (HPM) for certain class of
nonlinear integral equations and compare these methods for solving the chosen

model integral equations.

The application of the Homotopy Perturbation Method in nonlinear problems
have been devoted by scientist and engineers, because this method is continuously
deform a simple problem which is easy to solve into the under study problem which

1s difficult to solve.

In Chapter 2, we introduce types of integral equations and some examples for

these equations.

Chapter 3 deals with nonlinear Fredholm, Volterra integral equations, their
classifications and some examples of physical problems leading to nonlinear integral

equations.



The existence and uniqueness theorems for nonlinear Fredholm and Volterra

integral equations are given in Chapter 4.

In Chapter 5, we illustrate the basic idea of He’s Homotopy Perturbation Method
(HPM) which has became a powerful mathematical tool, when it successfully
coupled with the perturbation theory. In this chapter we investigate He’s Homotopy
Perturbation Method (HPM) in details for nonlinear Fredholm and Volterra integral

equations. The convergence of the method is also given in this chapter.

In Chapter 6, we give the analysis of He’s Homotopy Perturbation Method

(HPM) for solving systems of nonlinear Fredholm and Volterra integral equations.

In the last Chapter, we show the efficiency of the Homotopy Perturbation Method
(HPM) for chosen problems in the literature. Moreover, some problems of the

mathematics program, solutions are given by Mathematica 7.



CHAPTER TWO

INTEGRAL EQUATIONS

2.1 Introduction

An integral equation is an equation in which an unknown function appears under one
or more integral signs. Naturally, in such an equation, there can occur other terms as
well.

For example, fora < x<b, a <t < b, the equations

7= [ st o) e
¢(0)= F(x)+ [l .2

g(x)= | xlx.0)lg ()] dr (2.3)

Q C— >

where the functiong(x) is the unknown function while the other functions are
known, are integral equations. The function x(x,r) is called the kernel and the
function f(x) is called the free term, in general, the kernel and free term will be
complex value functions of the real variables x and t. A condition such as a < x<b
means that the equation holds for all values of x in the given integral. Thus for the
integral equations (2.1), (2.2) and (2.3) we seek a solution g(x) satisfying the

equation for all x in [a, b].

In more general case in integral equations the unknown function is dependent not

only one variable but on several variables. Such, for example, is the equation

g(x)= £ (x)+ [ xlx, 1)g(¢)de (2.4)

Q
where x and t are n-dimensional vectors and Q is the region of n-dimensional space.
Similarly, we can also consider systems of integral equations with several unknown

functions.



2.2 Classification of Integral Equations

The classification of integral equations centers on three basic characteristics

which together describe their overall structure:

(1) The kind of an integral equation refers the location of the unknown function. First
kind equations have the unknown function present under the integral sign only

second and third kind equations also have the unknown function outside the integral.

(2) The historical descriptions Fredholm and Volterra equations are concerned with
the integration interval. In a Fredholm integral equation the integral is over a finite
interval with fixed end points. In a Volterra integral equation the integral is

indefinite.

(3) The term singular is sometimes used when the integration is improper, either
because the interval is indefinite, or because the interval is unbounded within the
given interval or the kernel becomes infinite at one or more points within the range

of integration. Clearly an integral equation can be singular on both counts.

The most general type of linear integral equations is of the form

X

hx)g(x) = f () + 2] wlx.)g (0)ar (2.5)

a

where the upper limit may be either variable or fixed. The functions f, h and x are
known functions, while g is to be determined; A is nonzero real or complex
numerical parameter. In practical applications, A4 is usually composed of physical
quantities. The function x(x,7) is called the kernel. Using this classification, we can

give the following special cases of equation (2.5).
2.2.1 Fredholm Integral Equations

In all Fredholm integral equations the limits of integration are finite and the upper

limit of integration b is fixed.



i. First Kind Fredholm Integral Equation
h(x) =0

£+ 2] sl g o)t =0 .6

ii. Second Kind Fredholm Integral Equation
h(x)=1

2(0)= £(x)+ Af sl e )

iti. The Homogeneous Fredholm Integral Equation of the Second Kind
flx)=0

o(0)= 2] sl g0l 0

2.2.2 Volterra Integral Equations
In all Volterra Equations, the upper limit of integration b is variable, b=x.

i. First Kind Volterra Integral Equation
h(x) =0

X

fx)+A j K(x,1)g(t)dt =0 (2.9)

a

ii. Second Kind Volterra Integral Equation
h(x)=1

g(x)= f(x)+/1j Klx,t)g (¢)dt (2.10)



iii. The Homogeneous Volterra Integral Equation of the Second Kind
flx)=0

g(x)= A[ xlx, 1)g(¢)dr @.11)
Equation (2.7) itself called Volterra equation of the third kind.
2.2.3 Singular Integral Equations

When one or both limits of integration become infinite or when the kernel
becomes infinite at one or more points within the range of integration, the integral

equation is called singular.

For example, the integral equations

g(x)=Fx)+ A j e g(t)dt (2.12)
and
f(x)zjf ! g(r)dt O<a<l (2.13)

0 (x_t)a

are singular equations.
2.2.4 Linear and Nonlinear Integral Equations

The linearity is related to the degree of the unknown function g(z) in an integral
equation the degree of g(r) must be one.

The second kind linear and nonlinear nonhomogeneous Fredholm integral equations,

respectively are:

b

g(x) = f(x) + J. K‘(x, t)g(t)dt (2.14)

a

o) = £(x)+ [ s, g0 2.15)

a

If f(x)=0, equations (2.14) and (2.15) are called as the homogeneous.



V4

g(x) = '[cos(x - t)g(t)dt

0

is linear homogeneous and
¢()= [ r)sin(glo )
0
is nonlinear homogeneous but
glx) = £(x)+ | s e
0
is linear nonhomogeneous and

8(x) = £(x)+ | il )sin(g o))

is nonlinear nonhomogeneous Fredholm integral equations.

The second kind linear and nonlinear nonhomogeneous Volterra integral

equations, respectively, are

¢(x) = £()+ [ sl )e o) 2.16)
8()= )+ [ et glo ) @17)

If f(x)=0, equations (2.16) and (2.17) are called as homogeneous.

g(x)= Iex"g(t)dt

is linear homogeneous and

X

g(x)= [ xlx1)sin(g(e))dr

0

is nonlinear homogeneous but

is linear nonhomogeneous and



9(x)= £(0)+ [ . )sin(g )t

is nonlinear nonhomogeneous Volterra integral equations.
2.2.5 Regularity Conditions

In integral equations theory, the functions are either continuous or integrable or

square integrable. By a square integrable function g(r), we mean that

b

[1ge)Pdr <o

a

This is called an L, function.

The regularity conditions on the kernel &(x,7) as a function of two variables are
similar.
K(x,t) isan L, function if,

a) for each set of values x, ¢ in the square a <x<b, a<t<bh,

b b

[ [1x(e,0)Pdt < oo

a a

b) for each set of value of x in a<x<bh,

b
j| K(x,1)1Pdt < oo

a

c) foreach setof value of t in a <t <b,

b
'[I xx, 1) Pdr < oo

a



2.2.6 Special Types of Kernels
i) Separable or Degenerate Kernels

Let K(x, t) be a kernel defined on the square [a, b]x[a, b] and let there are finitely

many functions aj, ay, ..., a,; by, by, ..., by on [a, b] such that
Kk(x,1)=>"a,(x)b,(¢) a<xt<b (2.18)
i=1

In this case the kernel x(x,r) is said to be separable or degenerate. The functions
ai(s) can be assumed linearly independent; otherwise the number of terms in the

expression of x(x,7) can be reduced.
ii) Symmetric Kernels

A complex-valued function x(x,z) is called symmetric (or Hermitian) if
x(x,t)=x"(x,1)
for almost all xand ¢; where &*(x,¢) is the complex conjugate of K(x,t). For a

real - valued kernel this property reduces to

k(x,1)=x(r,s)
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CHAPTER THREE
NONLINEAR INTEGRAL EQUATIONS
3.1 Introduction

The theory of nonlinear integral equations is very important in pure and applied
mathematics. The nonlinear integral equations arise in many problems of physics and
technology especially in the theory of elasticity and the theory of aircraft wing, is

played by singular integral equations with Cauchy type kernels.

The initial-value problems for ordinary differential equations can be reduced to a
nonlinear Volterra integral equation. The theory of Volterra integral equations
incorporates the problem of the growth of populations the influences of heredity. The

problem of the growth of a single population in which the growth as influenced

® by a generative factor proportional to the population,

¢ an inhibiting influence proportional to the square of the population,

¢ a heredity component composed of the sum of individual factors encountered
in the past (Davis, 1962).

This problem lead to an integro-differential equation of the form

1 t

—ﬂ=a+by+_[l((t,s)y(s)ds 3.1.1)
y dt 0

In the case of two competing populations, one preying on the other, Volterra

introduced the following system:

l@:a—by— JKl(t—s)y(s)ds (3.1.2a)
x dt i

1 dy 0

—— =—ay+ fx+ IKz(t—s)y(s)ds (3.1.2b)
y dt b

where a, b, @ and f are positive constants.

The existence theorems of Picards for the differential equation

10
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@ _ flx,y) (3.1.3)
dx

and for the system

d d.
—y:f(x’y’z), —Zzg(x,y,z) (3.1.4)
dx dx

depends upon expressing Equation (3.1.3) as the integral equation
y= o+ [l yhx (3.1.5)

and system (3.1.4) in the following form

y=yo+[fleyahe,  z=z0+ [glryzhx (3.1.6)

X X

A generalization of (3.1.5) can be written as
y(x) = £(x)+ [ e, s, y(s)as 3.1.7)

which includes as a special case the linear Volterra equation of the second kind,

(given in section 2.2.2 as equation (2.10)), namely

X

y(x): f(x)+J.K‘(x,s)y(s)ds (3.1.8)

a

Unlike linear integral equations we can not, in general, solve nonlinear integral
equations; we can do so only for sufficiently small values of the diameter of the
region of integration by employing the method of successive approximations, the
topological Schauder method, Adomian’ s method and He’ s Homotopy Perturbation

Method.

Existence theorems for equation
y()= £ () + [ b5, (5l 617

have been given by T. Lalesco, E. Cotton, M. Picone, and others in which the

essential idea is an adaptation of a Lipschitz condition to the more general problem
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(Davis, 1962). These proofs can be extended to a functional equation sufficiently

general to include integro-differential equations such as equation (3.1.1).

Lalesco has given an existence proof under general conditions for the Fredholm

equation

b

()= £(x)+ [ s (o s (3.19)

a

and Bratu (1914) has studied the following special cases:

1

y(5) = £ () [ s s ) G.110)
and
()= () + [ sk G.L1D

3.2 Classification of Nonlinear Integral Equations
3.2.1 Nonlinear Fredholm Integral Equations of the Second Type

The nonlinear integral Fredholm equation of the second kind, after the Swedish

mathematician I. Fredholm, has the form
b
y(x)= f(x)+ 4] e, y(e)ie (3.2.1)

where y(x) is the unknown function of x in the domain D which is assumed to be a

bounded open set.

We make the following assumptions under which a solution exists for the

equation (3.2.1);

a) f(x) is a known real function which is defined continuous and bounded in the

interval: a<x<b ,

| f(x)k f
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b) The kernel x(x, y, z) is integrable and bounded,
K(x, v, z) <M

inthe domainD: a<x , y<b ,lzkc.

¢) The kernel x(x,y,z) satisfies the Lipschitz condition with respect to z in D,
namely
| &(xy,2,) = k(2 y,2,) IS K T2~ 2, |

K being a positive constant.

d) Moreover, let m; and m, denote the lower and upper bounds of f (x),

respectively, that is,

and assume that
a<m,<m,<b

For instance,

y(x)=1+ Zj. y2(¢)dt

)=+ [y

are nonlinear second kind Fredholm integral equations.
3.2.2 Nonlinear Volterra Integral Equations of the Second Type

The nonlinear Volterra integral equation of the second type, after the Italian

mathematician Vito Volterra, has the form

X

y(0)= £ )+ [, y(0)in (322)

a

where y(x) in the unknown function of x in the region D which is assumed to be a

bounded open set.
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We consider conditions under which a solution exists for the equation (3.2.2).We

make the following assumptions;

a) f(x) is a known real function which is defined integrable and bounded,

| F(x)k f

in the interval: a < x<b ,

b) The following Lipschitz condition is satisfied by f(x) in the interval (a,b):

L F ()= ) Kkl = x, |

K being a positive constant.

¢) The function x(x, y, z) is integrable and bounded,
Kk(x,y.2)<M

inthe domainD: a<x, y<b ,lzkec.

d) The kernel x(x,y,z) satisfies the Lipschitz condition with respect to z in its
domain of definition:
I K(x,y,zl)—K(x,y,zz)IS Klz,—z,1

K being a positive constant

e) Moreover, let m, and m, denote the lower and upper bounds of f (x),

respectively, that is,

and assume that
¢, <m <m,<c,

where lzl<c thatis ¢, <z <c,.

For instance,

y(x)z x—i)c4 +'[ly2(t)dt
0
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y(x)= 2x+éx5 —Ily3(t)dt
0

are nonlinear second kind Volterra integral equations.

Equations (3.2.1), (3.2.2) are called homogeneous integral equations if

f(x)=0and nonhomogeneous integral equations if f(x) is not vanish in the

interval [a, b] .

3.3 Some Examples of Physical Problems Leading to Integral Equations
3.3.1 Duffing’s Variation Problem

The forced vibrations of finite amplitude of a pendulum are governed by the

differential equation

2

d”y
dt?

+atsiny = f(¢). (3.3.1)

Assuming driving function f is an odd-periodic function of period 2, then the
problem of finding an odd-periodic solution with the same period can be easily
reduced to finding a solution on the interval 0 <7 <1 which satisfies the boundary

conditions
y(0)=y(1)=0

This boundary value problem is equivalent to the integral equation.

1
y(0)==[ «lt.)[f (s) - o sin y(s)lis (332)
0
where the kernel x(z, s) is given by
K(x,t):t(l—x) 0<r<x<1

K(x,t):x(l—t) 0<x<t<1
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3.3.2 Bending of a Rod by a Longitudinal Force

When a thin uniform rod is hinged at one end and acted upon by a longitudinal
compressive force P at the other end, the equation for the bending moment is
L =—Py, where y is the deflection of the rod from its original straight-line position
and the bending moment 4 is given by
U =Elk
where E is Young’s Modulus, I is the moment of inertia of the cross-section and k is
the curvature at the point under consideration. Let the arc length s be measured from

the hinged end as the independent variable. Then the curvature is
po V)
)}
- 6r)

and the equation for the bending moment i =—Py takes the form

Y (s)+ Ay 1= (y(s))* =0 (3.3.3)

where A = % is a positive parameter, 4 >0.

The boundary conditions appropriate to this problem are

¥(0)=»1)=0

if the length of the rod is taken to be unity. Taking

x(s)=3'(s) (3.3.4)

we obtain
1
3(5) = [ s,y (e
0

or

1

y(s) = J K‘(s,t)x(t)dt

0

where the kernel x(s,?) is given by
K(x,t):t(l—x) 0<r<x<1
K(x,t)zx(l—t) 0<x<r<l1

Differentiation gives
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1

()= |2

o Os
where
aK(S’t)=1—r , s<t
os
dx(s,1)
=—t, 85>t
os >

Then the problem given by the differential equation for y together with the boundary
conditions can be reduced to the following Fredholm integral equation of the first

kind

)= 4] K‘(s,t)x(t)\/l —“mx(u)du} a (335

0 o Os

for the unknown function x.



CHAPTER FOUR
THEORETICAL BACKGROUND
4.1 Definitions and Theorems on Nonlinear Integral Equations

Definition 4.1.1 (Normed Space)

Let X be a linear space on a field K. The mapping”." X >R, x> ||x|| is called a

norm on X if satisfies the following properties:
= =0

||x||:O<:>x:O

ez = e+

||x+ y|| < ||x|| + ||y|| (Triangle inequality)

for all x,ye X and forall ¢ € K . Hence, a norm on X is real-valued function on X.
The normed space is denoted by (X , ||||)

A norm on X defines a metric d which is given by

d(x,y):”x—y , x,ye X

and is called metric induced by the norm.
Definition 4.1.2 (Metric Space)

A metric space is a pair (X, d), where X is a set and d is a metric on X (or distance
function on X), that is, a function defined on the Cartesian product XxX such that
for all x,y,ze X we have:

(M1) d is a real-valued, finite and nonnegative,
(M2) d(x, y)=0 if and only if x=y
(M3) d(x, y)=d(y, x) (symmetry)
(M4) d(x,y)<d(x,z)+d(z,y) (Triangle inequality)
A metric space X is called compact if every sequence in X has a convergent

subsequence.

18
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Definition 4.1.3 (Function Space)

The space on which the metric is defined by
d(x, y) = max|x(r) - y(r)
where J = [a, b] is a closed interval and max denotes the maximum is called C '[a,b]

function space.(because every point of C '[a,b] is a function)
Definition 4.1.4 (Cauchy Sequence)

Let (X ,||||) be a normed space and { f”} be a sequence in X. A sequence { fn} is

said to be Cauchy (or fundamental) if for every £ >0 and for every m,n > N there

isan N = N(¢&)e€ IN such that

If, — £,

<€.

Definition 4.1.5 (Complete Metric Space)

Let (X , ) be a normed space and { f”} be a Cauchy sequence in X. If for every

£ >0 there is an N(&) > 0 such that

If, — £

then X is said to be complete. In other words, if

Jo= T

i.e. every Cauchy sequence in X converges and X is said to be complete metric

< & forevery m,n> N

len,m—wo = O ’

space.
Ordinary Euclidean space and the space L’of functions quadratically integrable

are complete normed (metric) spaces.

Definition 4.1.6 (Banach Space)

If a space is linear, normed, metric and complete then it is called a Banach space.
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Definition 4.1.7 (Contraction Operator)

Let X be a Banach space and t is a bounded operator (not necessarily linear) in X.
The operator T is called a contraction operator in X if for every functions f; and f,
in X there is a positive constant & <1 such that

||Tf1 —sz|| < ||f1 _f2||
In his case there exists a unique point f of the space X which satisfies the equation
f=1f

that is, point fixed with respect to the operator T.
4.1.2 Schauder’s Fixed Point Theorem

The proofs of existence of solutions of nonlinear integral equations where the
classical methods are useless are based on the fixed point theorem proved by the

Polish mathematician Schauder (1942).

The geometrical nature of the problem of solving the nonlinear integral equation

F)=[Flx,y, f(3)hy (4.1.2)

is finding a point f* of the function space C '[a,b] which corresponds to itself under

the transformation (the functional operation)

F) =T (y)= [ Flx,y, £ (v)ly (4.1.2b)

This point f* is called the fixed point of the function space with respect to the

operation (4.1.2b).
Theorem 4.1.2(Schauder’s Theorem)
Let T be a contraction operator in the Banach space X. Then the equation

1f = f

has a unique solution in X.
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The Schauder Fixed Point Theorem makes it possible to prove the existence of
solutions of nonlinear integral equations under very general considerations, where

the classical theory is inapplicable.
4.2 An Existence Theorem for Nonlinear Integral Equations of Volterra Type

We give the conditions under which a solution exists for the nonlinear Volterra

integral equation

y(0)= £G0)+ [ s, (o) @2

making the following assumptions: (Davis, 1962)

a) The function f(x) is integrable and bounded, | f (x)| < f,inthe intervala < x<b.

b) The following Lipschitz condition is satisfied by f(x) in the interval (a, b):
| F(x)= f(xX)ISklx—x" (4.2.2)
¢) The function x(x, y, z) is integrable and bounded,

|K‘(x, v, z)| <K
in the domaina<x , y<b ,lzkec.
d) The following Lipschitz condition is satisfied by x(x, y,z) within its domain of
definition
| k(x, y,2)— x(x, v, 2")IKM 1 z =71 (4.2.3)
By the method of successive approximations we have

Yo (x)= f(x)= f(a), (as the first approximation)

from which we get
()= £ )+ [ s, v, (s)Hs (4.2.4)

and in general

X

v, (0)= £ (0)+ [ alx.s, v, (s)Hs (4.2.5)

a



Using our assumptions given above, we can obtain a bound (4.2.7) for the
approximation y, (x):

From (4.2.4), we have

|y, (x) +Ikxsy0

x] + ﬁl((x, S5 Yo (s))|ds

< |f(xl + |K‘(x, 8, Yo (S)Mx - a|

<|f(x)- fla)+ fla) +|xlx.s, y,(s)]x—q

From this inequality and the Lipschitz condition on f we get,

3y < |7 ()= £ @)+ @) + x5, v (e~
<klx—al+|f(a)+K|x—d|

50

|y, (x) < K|x — a| +|f (a) + K|x —

<k|x—d|+ K|x—a|+ f(a)

<(f+K)x—d (4.2.6)

If fis the larger of the two numbers K and f(a) and |x - a| <a’.If x is so limited

that

lx—al < /

f+K
then
f

R
or
v, () < £ 4.2.7)

f =max(k, f(a))

22



Next let h be the smallest of the numbers a” and f , that is# = min| @’, f
f+K +K

Then, for each approximation we have the following inequality

y,(x)< £, (4.2.8)
where
|x—a| <h= min(a', f J

f+K

Let us now first construct the series

y(x) = v () + [y, (x) = v ()] + [y, () = 3, ()] + .+ [y, () =y, ()] + ..

(4.2.9)

23

|

and then using (4.2.5) we can obtain the desired solution of given integral equation

(4.2.1), provided the series (4.2.9) converges uniformly.
Uniform Convergence of Series (4.2.9)

Since we have

503 0)= [l o) a3,

(4.2.10)

it follows from the Lipschitz condition (4.2.3) on x that we have the inequality

f Ul s, v, ()] = &lx.s, 3, (s)ids

yn( ) ynl

v, ()= v, (x) <M @.2.11)

I[y"-l (s)- Vo2 (S)]ds

Letting n =2,3... in (4.2.11), we obtain the following sequence of inequalities

|)’2(x)_

() = [ i, 5., ()] e s, 4 (s

I[Y1

|)’2
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—M? (S_a)z !
2

=M

jiM[s - a]ds

0

2

)=y, () <2 L

r 2(5_61)2 3(5_41)3 '
=M|[m ds|=M
0 2! 32! |,
x—a
)y, L
and in general,
x—d|"
. () =y, () <m % (4.2.12)
Since we have |x —d| < &, then
n hn
v, )=y, ) s Mt = (4.2.13)
A majorante for the series (4.2.9) is given by the sum
2 3 n
Y=f+Mh+%+%+...+M+m (4.2.14)
! ! n!

or by the sum

n=1

This majorant series converges and therefore the series (4.2.9) converges uniformly.
4.3 An Existence Theorem for Nonlinear Integral Equations of Fredholm Type

We consider the problem of establishing criteria for the existence of solutions for

the nonlinear Fredholm integral equation

y(x)= fF(x)+ /ljl xlx, s, y(s)ds (4.3.1)
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where A is a parameter.

From the theory of linear Volterra and Fredholm equations, we know that the
parameter A plays a significant role. The most essential difference between Volterra
and Fredholm equations for bounded kernels, integrable functions and a finite range
of integration is as follows:

We can establish criteria under which a solution exists for (4.3.1), making the
following assumptions similar for equations of Volterra type given in Sec 4.2 (Davis,

1962):

a) The function f(x) is bounded in the intervala < x < b, that is, | f (x)| <f.

b) The kernel x(x, y,z) is integrable and bounded,

|x(x, y,z) < K (4.3.2)
in the domain D:a<x<b , Izl c.

¢) k(x, y, z)satisfies the Lipschitz condition in D, namely,

| k(x, y,2)—x(x, v, 2" )< M 1 2= 7’| (4.3.3)
By successive approximations we have

Yo (x)= f(x)= f(a), (as the first approximation)

from which we get

y,(x)= f(x)+/1_h[ xlx, s, y, (s)Ms (4.3.4)
and, in general,

1,9 = £+ A s, v, 5)bs

From these we obtain

Yi=Yo = ij."{x’S’yo(s)}ZS"‘f(Q)

o= 3 = 2 (5.3, (5] T, o 5l
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= v = A 55, ()] ks, v, (5]

Using the conditions given above, we have

|y, = vo| <[Alxc(b—a) +| £ (@) <[ A6 - a)K{l - Iﬂlld%a)} (4.3.5)

|y1 - yo| < |ﬂ|m(b— 0)7

where

_ f
m_K[l+|2|K(b—a)} (4.3.6)

From this inequality and the Lipschitz condition on x, we get
b
|y2 - y1| < |/1|M'|.|y1 - y0|ds < |/1|2Mm(b - a)2 < |/?v|2k2 (b - a)2 4.3.7)

where k is the LARGER of the two numbers M and m.

Similarly we obtain the inequalities:

|y, = ya| <] k(b -a), 4.3.8)

"k"(b—a)' (4.3.9)

<|4

Yo = Yuu
A majorante for the series
()= yo (1) + [y, (0) = yo (] + [y, (0) = 3, )+ o4+ [y, (1) =y, ()] 4.

(4.3.10)

is given by the sum

Y=f+i|/1”k”(b—a)", (4.3.11)

n=1

and thus the series converges uniformly for all values of 4 for which we have

1

A< k(b—-a)

(4.3.12)

Although the condition (4.3.12) is equivalent to that obtained when equation (4.3.1)
is linear, the role played by A in the case where f(x)=A is quite different in

nonlinear equations from that which it has in the linear case (Davis, 1962).



CHAPTER FIVE

HOMOTOPY PERTURBATION METHOD

5.1 Introduction

The homotopy perturbation method (HPM) which was firstly presented by
Liao(1995) and by He (1999) in 1998 and was further developed and improved by
He (2000; 2003; 2004) provides an effective procedure for explicit and numerical
solutions of a wide and general class of (linear and nonlinear) differential and
integral systems representing real physical problems. The essential of this method is
to continuously deform a simple problem which is easy to solve into the under study

problem which is difficult to solve.

This method is based on both homotopy in topology and the Maclauren series and
yields a very rapid convergence of the solution series in most cases. It is a new

perturbation technique coupled with the homotopy technique (He, 2003).

The nonlinear analytical methods most widely applied are perturbation techniques
(Nayfeh, 1981). In perturbation methods, a nonlinear equation is transformed into an
infinite number of linear equations by means of the small parameter assumption. But

perturbation methods have some limitations:

e perturbation techniques are based on small or large parameters but not every
nonlinear equation has such a small parameter. (The homotopy perturbation
method has been proposed to eliminate the small parameter.)

e even if there exists such a parameter, the results given by the perturbation
methods are valid, in most cases, only for small values of the parameter.

e mostly, the simplified linear equations have different properties from the
original nonlinear equation.

e sometimes some initial and boundary conditions are superfluous for the

simplified linear equations.

27
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Liao (1995) has described a nonlinear analytic technique does not require small
parameters and thus can be applied to solve nonlinear problems without small or

large parameters. This technique is based on homotopy.

Using one interesting property of homotopy which is given in Section 5.2, we can
transform any nonlinear problem into an infinite number of linear problems, no

matter whether or not there exists a small or large parameter.

This is in opposition to classical perturbation techniques the homotopy

perturbation method have some advantages (He, 2003):

e it does not require small or large parameters in the equations, so the
limitations of the classical perturbation methods can be eliminated.

e the initial approximations can be freely selected with possible unknown
constants.

e the approximations obtained by this method are valid not only for small
parameters, but also for very large parameters,

® it may give better approximations which are uniformly valid for both small
or large parameters or variables. Because this method is based on the simple
property of homotopy in topology, that is, the kth-order deformation

equations are linear.

As aresult, in this method the solution of functional equations is considered as the
summation of an infinite series usually converging to the solution. Using homotopy
technique in topology, a homotopy is constructed with an embedding
parameter p € [0,1] which is considered as a small parameter. The approximations
obtained by the proposed method are uniformly valid not only for small parameters,

but also for very large parameters (Biazar, 2009).

Then He’s homotopy perturbation method has been also used by many
mathematicians and engineers to solve the linear or nonlinear systems of Fredholm

and Volterra type integral equations (Biazar, 2009; Yusufoglu, 2008).
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5.2 What is Homotopy?

The idea in homotopy is: we should consider two functions to be equivalent or

homotopic, if one can be deformed into the other.
5.2.1 Example

Let f:[0,2] — IR be the function
flx)= 1+x2()c—2)2

shown in Figure a. This is almost a constant function to 1, but with a small deviation

around x=1. If we take the function

fi6) =1+ (x-2)

then this has a similar shape, but with a small deviation. Similarly
ful) =142 (x-2)

has the same shape but with an even smaller deviation in Figure b.

/@)

Figure b

Generally, for eachn > 1, we can define
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and thus we obtain a family of functions interpolating between f and the constant
function provided that these interpolating functions to provide a continuous
deformation of the one function into the other. This can be done by indexing the

interpolating functions f, f,,..., f,,... by real numbers in some fixed range, say
between 0 and 1. So we have a family of functions { f }te[O,l]’ such that f, = f and
fi1s the constant function 1.

In this example, we can set

£ (x)=1+(1—-1)x*(x—2)" for each r < [0,1]

Then

fo(x): 1+)€2(Jc—2)2

and

fi (x) =1 is the constant function.

Such a deformation then assigns a function to each point in [0, 1], so the

deformation is a function from [0, 1] to the set of continuous maps [0,2] — IR which
takest e [0,1] to the function f,. That is, the family {ft }re[o,llassigns, to each
pointt e [0,1], a function

f.:[0.2] > IR.

And this assigns to each point xe [O,Z]a value f, (x)e IR . Thus we can think of

this family as assigning to each pair (x,7)e [0,2]x[0,1]the value f,(x)e IR, Figure c.

0 .
t Jix) 5
0 X 2 v X
Figure ¢

In other words, we have a function
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[0.2]x[0,1] = IR,
where we have a topology on [0,2], and we know a topology on [0,1], SO wWe can use

the product topology to topologize [0,2]>< [0,1] and therefore the interpolating family

corresponds to a function between two topological spaces. And the family to be

continuous if the corresponding function is continuous. Hence we have;

Definition (Homotopy between two functions)

Two maps f,g:S — T are homotopic if there is a continuous function
F:Sx[01]>T
such that
F(s5,0)= f(s)forall se S and
F(s,1)= g(s)for all se S
In this case, F is homotopy between f and g, and we write f = g .
In the example 5.2.1,
f:[0.2]- IR
is given by
f(x)=1+x2(x—2)2,
the function
F:[0,2]x[0,1] > Ir
is given by
F(x,t)=1+(1-1)(x-2)* = f(x) and
F(x]1)=1.

Thus, F is a homotopy from f to the constant function 1.

5.3 He’s Homotopy Perturbation Method

In He’s homotopy perturbation method the solution of the functional equation is
considered as a summation of an infinite series (which converges rapidly to accurate

solutions) usually converging to the solution. Using homotopy technique of topology
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given in Section 5.2, a homotopy is constructed with an embedding parameter
PE [0,1] which is considered as a small parameter.

Consider a nonlinear functional equation

Alw)=f(r), reQ (5.3.1)

with the boundary conditions

B(u,a—uJ=O, redQ=s (5.3.2)
on

where A is a general integral operator, B is a boundary operator, f(r) is a known
analytic function on a Banach space s =0dQ is the boundary of the domainQ . The
operator A generally can be divided into two parts L. and N, where L is a functional

operator with known solutionv,, which can be obtained easily and satisfies the

boundary conditions, whereas N is the nonlinear part. Therefore equation (5.3.1) can

be rewritten as follows:

L(u)+N(u)= f(r) (5.3.3)
We define a homotopy H(v, p) by
H(v,0)=L(v)-L(v,) =0, H(v1)=AW)-f(r)=0

Vv, 1s an initial approximation of Eqn.(5.3.1). By the homotopy technique (He, 2003)

we can construct a convex homotopy v(r, p): Qx [0,1] — IR which satisfies

H(v, p)= (1= p)ILO) = L(v, )]+ plAG) - f(r)]=0 (5.3.4)
or equivalently
H(v, p)=L(v)=Llv,)+ pL(vy)+ pIN ()= £ (r)]= 0 (5.3.5)

and continuously trace an implicitly defined curve from H(v, 0) to a solution function
H(g, 1) where g is a solution of Eqn.(5.3.1). The embedding parameter p
monotonically changes from zero to unity as the trivial problemrz(v)- L(v,)is
continuously deformed to the original problem A(v)— f(r). In topology, this is called
deformation, .(v)- L(v,) and A(v)- f(r) are called homotopic. If the embedding
parameter p is considered as a small parameter applying the classical perturbation

technique, we can assume that the solution of Eqn. (5.3.5) can be given by a power

series in p, that is,
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V= Zpivi =V, +pv, + PV, +... (5.3.6)
i=0

and p=1 results in the approximate solution of Eqn.(5.3.1) as

u=Lim_ v=v,+v, +v,+.. (5.3.7)

p—1

A combination of the perturbation method and the homotopy method is called the
homotopy perturbation method (HPM), which has eliminated the limitations of
classical perturbation methods.

The series (5.3.7) is convergent for most cases. The convergence rate depends on

the nonlinear operator A[u]which has been given by He(1999):
1) The second derivative of N(v) with respect to v must be small, because the

parameter p may be relatively large, i.e. p — 1.

2) The norm of L a—Nmust be smaller than one so that the series converges. We
v

have the following theorem (He, 1999):
Theorem 5.3.1

Suppose that X and Y be Banach spaces and N: X — Y is a contraction nonlinear

mapping, which satisfy the following condition
[NG) = NG < Ay =]
for allv,ve X and O0<y<1. With according to Banach’s fixed point theorem,

having the fixed point u, that is N(u)=u .

The sequence generated by the homotopy perturbation method will be taken as

and suppose that V, = v, = u, € B, (u), ,where
B, (u)= {u* eX mu* - u“ < r}, then V, satisfies the following statements:
b IV, -l Iy, il

i)V, € B, (u)
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) Lim .V =u

n—oo " n

( Biazar, Ghazvini, 2009)
Proof

i) By the induction method on n, for n=1 we have

IV, = IV (V) = NG < 7, o

Assume that ||Vk_1 - u" < 7""1”\/0 - u” as an induction hypothesis, then n=k gives
Vi = =[N V)= M) < AV =l < 3 oy o]

ok
=7 ”"0 _“”

Thus, it is true for any integer n.

ii) Using (i) and the hypothesis

v, —ul<y"

Vo —u|| <y'r<r

implies V, € B, (u)

1i1) Because of (i) we have

V, —u|<y"lvo —ul.

and
Lim,__|V,—ul|=0,
that is,

Lim V =u.

n—oo " n

5.4 Homotopy Perturbation Method for Nonlinear Fredholm Integral Equations
of the Second Kind

We consider the following Fredholm integral equation of the second kind

()= £(x)+ [ e VGl ey
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or equivalently
()= £(x)+ [ ke VRGO + Nl (5.41)

where u(x) is an unknown function that will be determined, K(x, y) is the kernel of the
integral equation, f(x) is a known analytic function, R(u) and N(u) are linear and
nonlinear functions of u, respectively.(Ganji, Afrouzi, 2007)

To illustrate the homotopy perturbation method (HPM), we rewrite Eqn. (5.4.1) as

L(u)=u(x)= f(x)= | xlx y)[Ru(y)+ Nu(y)dy =0 (5.4.2)

Q'q@‘

In this case we construct a homotopy
H(u,0)= F(u), H(u,1)= L(u) (5.4.3)
where F(u) is an integral operator with known solution u,, which can be obtained

easily, we then choose a convex homotopy by

H(u,p)=(1-p)F(u)+ pL(u)=0 (5.4.4)

The changing process of p from zero to unity is just that of H(x,p) from a
starting point H (uO,O) to a solution function H (u,1) that is the known problem F (x)

is transformed continuously to the original problem L(x)=0.

Setting

= | & y)RGu(y) + N(uly))lty =0

!
—_
S
N—
I
=
—_—
=
N—
I
~
—_
[
N—
™~
—
<
N—
I
=
—_
=
N—
I
5
—_
=
v
Q '—.w

(5.4.5)

the homotopy takes the form

s p)= (1= p)ue)~ £+ ] )= £6) - [l MR+ NGl | =

(5.4.6)

Substituting

uy (x)+ pu, (x)+ p2u, (x)+... (5.4.7)

<
—_—
=
N—
Il
gl
’.EN.
=
—_
[
N—
Il

i=0

into Eqn. (5.4.6) and equating the coefficients of p with the same powers leads to
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P’ uy(x)-f(x)=0 = uy(x)= f(x) (5.4.8a)
P ) [rle MR ) N (D=0 =

() = [ e 7RGt (1) Nty () (5.4.80)
P usle)= [l G (3)+ N () (5.4.80)
and in general,
uy(x)= f(x) (5.4.92)
Uy (x)=irc(x,y)[R(un)+N(u,l Jldy . (5.4.9b)

The approximated solution of Eqn. (5.4.1) therefore, can be obtained by setting p=1.

Ulx)=Lim, ;Y p'u,(x). (5.4.10)
i=0

Example

Consider the nonlinear Fredholm integral equation of the second kind (Wazwaz,

1997)

u(x) = sinhx — 1+ [ (cosh (r) - u? (1) it (5.4.11)
0

where

u,(x) = sinh x (5.4.12)

He’s homotopy perturbation method can be constructed as follows:

H(u, p)= (1= p)F(u)+ pL(u)=0
Taking
F(u) = u(x)— sinh x,

L) = ulx) - sinh x-+1 [ cosh? ()-u* (i

We have
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H(u. p) = (1 p)u(x)sinh ]+ p{u(x)—sinhx+1—j(coshz(t)—uz(t))dt _0

0

(5.4.13)
This gives
H(u, p) = u(x)—sinh x — pu(x)+ psinh x + pu(x)— psinhx + p
1
- pJ. (cosh2 (t)—u? (t))dt =0
0
or
1
H(u, p)=u(x)—sinhx+ p — p{[ (coshz(t)—uz(t))dt} =0 (5.4.14)
0
Suppose the solution of Eqn. (5.4.14) have the following form
v(x)= vo(x)+ pv, (x)+ p’v, (x)+...+ p'v, (x)+... (5.4.15)

where vl.(x) i=0,1,2,...are functions yet to be determined. According to Eqn.

(5.4.15) the initial approximation is
v, (x) = sinh x (5.4.16)
Substituting equations (5.4.15), (5.4.16) into Eqn. (5.4.14) and equating the terms

with the coefficients of the identical powers of p yields:

vy (x)+ pv, (x)+ p*v,(x)+...=sinhx— p + p'l[ [coshz(t)—(v0(1)+ v, )+ pzvz(t)+...)2]jt

(5.4.17)
p’: v,(x)=sinhx (5.4.18a)
P ovx)= —1+J(cosh2(t)—v§ (t))dt
2 (x)=-1+ j(coshz (t)—sinh? (t)}lt
v, (x)=0 (5.4.18b)

e )= [2n (0
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v,(x)=0 (5.4.18¢)

In the same manner, the rest of components can be obtained:

1
veo(0)=[leosh?()=v2, 0k = v,(x)=0, k20 (5.4.19)

0
Hence, according to the homotopy perturbation method the solution will be as
follows:

u(x)= Limp_ﬂv(x) =V, (x)+ v, (x)+ v, (x)+... (5.4.20)

Therefore

u(x) = v(x) =sinh x

This is the exact solution of the integral equation. The success of obtaining the exact

solution by using two iterations is a result of the proper selection of uo(x). The plot

of the solution is given in Figure 5.4.

0.0 02 04 0.6 0.8 10

Figure 5.4 The numerical results and exact solutions

of example

...... v(homotopy) v(exact)
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5.5 Homotopy Perturbation Method for Nonlinear Volterra Integral Equations
of the Second Type

We consider the following Volterra integral equation of the second type
)= () e, Y (a y

or equivalently
() = £+ [ sl DIRG() + Ny 551

where u(x) is an unknown function that will be determined, x(x, y)is the kernel of the
integral equation, f(x) is a known analytic function, R(u) and N(u) are linear and
nonlinear functions of u, respectively and a < x.

To illustrate the homotopy perturbation method (HPM), we rewrite Eqn. (5.5.1) as

L{u) = ulx)= £ ()= | &lx. y)RG(y))+ Nuly))ldy =0 (5.5.2)

N S—

with a =0.
For solving Eqn. (5.5.2), by He’s HPM, we construct a homotopy
H(u,0)= F(u), H(u,1)= L(u) (5.5.3)
where F(u) is an integral operator with known solution u,, which can be obtained
easily, we then choose a convex homotopy by
H(u,p)=01-p)F(u)+ pL(u)=0 (5.5.4)

The changing process of p from zero to unity is just that of H(x,p) from a
starting point H (uO,O) to a solution function H (x,1) that is, the known problem F (u)
is transformed to the original problem L(x)=0.

Setting

Flu)=ulx)=f(x) . Lu)=ulx)- f(x)- I xe, Y)R@(y))+ N(u(y)ldy =0

(5.5.5)
the homotopy takes the form
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X

H(u, p)= (1= p)lulx) = £ (x)]+ p| u x) = [ &, y)RG(y))+ Nu(y)ay | =
“ (5.5.6)

Substituting

u(x)= ipiui(x) =u, (x)+ pul(x)+ pu, (x)+... (5.5.7)

into Eqn. (5.5.6) and equating the coefficients of p with the same powers leads to

P’ uy(x)=f(x) (5.5.82)
jl(x YRy () + Nluey (v))ldy (5.5.8b)
()= J e RG, () + Mo, (3t (5580

and in general,

uy(x)= f(x) (5.5.92)

() = [ e, y)[RGw, )+ N,y (5.5.9b)

zt_m

The approximated solution of Eqn. (5.5.1) therefore, can be obtained by setting p=1.

Ulx)= Limp_,li p'u,(x) (5.5.10)
i=0

Example

Let us solve the following nonlinear Volterra integral equation of the second kind,
with the exact solution u(x) = sec x by the homotopy perturbation method (Wazwaz,

1997)

X

u(x):secx+tanx+x—f(l+u2(t)ﬁt, xS% (5.5.11)

0

u,(x)=secx (5.5.12)
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To solve equation (5.5.11) by homotopy perturbation method we can construct a

homotopy as follows:

H(u, p)= (1= p)F(u)+ pL(u)=0
Taking

F(u) = u(x)— secx

L(u): u(x)—secx—tanx—x+ji(1+u2(t))dt

0

We have

H(u, p)=(01- p)u(x)—secx)+ p(u(x)—secx—tanx—x+ ji(1+u2(t)}ltJ =0

0

(5.5.13)
This gives

H(u, p)=u(x)—secx— pu(x)+ psecx+ pu(x)— psecx— ptanx— px + p](1+u2(t)}lt =0
0

or

H(u,p)zu(x)—secx— ptanx— px+ pj(l—i—uz(t)}ltzo (5.5.14)
Let

v(x)z vo(x)+ PV, (x)+ p’v, (x)+... (5.5.15)

be a solution of Eqn. (5.5.14).Here v, (x) i =0,1,2,...are functions to be determined.
According to Eqn. (5.5.1.5) the initial approximation is

v, (x) = secx (5.5.16)
Substituting equations (5.5.15), (5.5.16) into Eqn. (5.5.14) and comparing the

coefficients of the powers of p yields the following scheme:

vo(x)+ pvl(x)+ pzvz(x)+... =secx+ ptanx+ px—pﬂl+(v0(t)+ pvl(t)+ pzvz(t)+...)2]ﬁ

(5.5.17)
P’ vy(x)=secx (5.5.18a)
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X

p': vl(x)ztanx+x—j(1+v§(t))it

0

X

vl(x):tanx+x—j(l+secztﬁt =
0

v, (x)=0 (5.5.18b)

P vl =2 0

v, (x) =— I 2xsecx.0.dt
0

v,(x)=0 (5.5.18¢)
In general
Vit2 (x) = _'[ (1 + _V13+1 (t)}lt =
0

v, (x)=0, k=>0. (5.5.19)
And according to the HPM, we can conclude

u(x) = Limp_ﬂv(x) =V, (x)+ 12 (x) +v, (x) +... (5.5.20)
Therefore

u(x)=v(x)=secx (5.5.21)

Here we used two iterations only to obtain the exact solution. The plot of the exact

solution is presented in Figure 5.5.
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Figure 5.5 The plot of the exact solution of this example

...... v(homotopy) v (exact)

5.6 Application of Homotopy Perturbation Method to Integro-Differential

Equations

We can apply the He’s homotopy perturbation method for the solution of

integro-differential equations of the form

F/(6)= g(x)+ [ ale, £ (e), £ (0t (5.6.1)
0
To construct a convex homotopy, we write the integro-differential equation (5.6.1)
as
L) =1'(x) = [ xle, £(0), £ /() - g(x) =0 (5.6.2)

0
with solution f(x). By using homotopy technique, we can construct a homotopy as

given in Chapter 5.

Example (The Nonlinear Volterra Integro-Differential Equation)

Consider the nonlinear Volterra integro-differential equation (Alizadeh, Seyed S.

R., Domairy, G. G. and Karimpour, S. (2008))

du(x) _ 10u(x) - 101’ (x) — 10u(x)

o u(t)dx (5.6.3)

O C— =
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where the initial condition u(0)=0.
In order to solve nonlinear Volterra integral equation (5.6.3) using He’s homotopy

perturbation method we construct a homotopy H (v, p) such that

Hv,p)=(1- p){i v(x)} + p{i v(x)-10v(x)+10v*(x)+ lOv(x)j. v(t)dx | =0
dx dx 0
(5.6.4)
Substituting
V=v,+py, +piv, +. (5.6.5)

into Eqn. (5.6.4) we obtain
d
H(v,p)=(1- P)[E(Vo +pv +py, +)]
+ p[di(v0 +pv, +p’v, +...)—10(v0 +pv, +p’v, +...)+10(v0 +pv, +p’v, +...)2
x

+10(v0 + pv, + pzv2 + pv1 + p v2 )dx]

o'—.x

dv dv , dv
Hv,p)=01-p)| —2+p—L+p>—2+..
(v, p)=( p)[( s p’ o j]

dv, , dv, )
oo, 2 0 0 — 1007,
L P PP 0 TP TP (5.6.6)

+10(V§ + PVl +2pvyv, +2p7 vV, +)
+ IOVOIVO (¢)dx + 10pvl;|.pv1 (¢ )dx + IOpzsz.pzv2 (tdx+..1=0
0 0 0

Rearranging based on powers of p terms, we find that:

pO . de(x) — 0 =
dx
v,(x)=0 (5.6.7a)
P ) o1 09=0 =
dx
v, (x) =—0.5x* +0.9x (5.6.7b)
P dval0) g5 725+ x(=0.05x +0.9x)— = = 0 =
dx 60
1 4 7 3 2
vz(x):—x ——x" +3.6x (5.6.7¢)

60 12



Thus, the approximate solution given by He’s HPM with three iterations have the

following form

2
Uppy :ZVi(x)zvo(x)+v1(x)+v2(x) (5.6.8)
i=0
1 7
U,y =0+ (-0.05x +0.9x)+(@x4 —Ex3 +3.6x2j
Ly 7 3 2
Uppys zax —Ex +3.55x" +0.9x (5.6.9)

The approximation (5.6.9) is in full agreement with the approximation (5.6.10)

obtained by using the ADM solution method with two iterations

2
Uupy = Zvi (x)z %x“ —%Jf +3.55x +0.9x (5.6.10)
i=1

45



CHAPTER SIX
SYSTEMS OF NONLINEAR INTEGRAL EQUATIONS
6.1 Introduction

In this section we give an application of He’s homotopy perturbation method

(HPM) to solve nonlinear systems of Fredholm and Volterra integral equations.

The Adomian decomposition method was being used to solve linear and nonlinear
systems of Volterra integral equations of the first kind and Fredholm integral
equations of the first kind. The He’s homotopy perturbation method is applied to
solve the nonlinear Volterra-Fredholm integral equations of the second kind

[M.Ghasemi, T.Tavassoli].

In this chapter, we extend the homotopy perturbation method to solve nonlinear
integral equations such that Fredholm and Volterra integral equations. Then we
compare this method with the analytic approximation methods such as Adomian
Decomposition Method (ADM) and Taylor-Series Expansion Method. The results
reveal that the Homotopy Perturbation Method is very effective and simple.

A system of Fredholm and Volterra type integral equations can be presented,

respectively, as the following:

f,.(x)z gi(x)+ zZ; (x,f(x))+ vi(x,s,f(s))ds i=12,...,n (6.1.1)

QA ey

f,.(x)z gi(x)+ zZ; (x, f(x))+ v, (x,s, f(s)ds i=12,...n (6.1.2)

S e—

where f(x):(fl(x),f2(x),...,fn(x)), and fl(x) and gi(x) are known functions,
Xe [a,b]. We suppose that the systems (6.1.1) and (6.1.2) have a unique solution.

The necessary and sufficient conditions for the existence and uniqueness of the

solution of the system (6.1.1) and (6.1.2) is given by Delves.

46
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Concerning the system of Fredholm and Volterra type integral equations of

(6.1.1) and (6.1.2) the solution would be taken in the following form:
F)=3 P S = fuo+ P+ P fs b

(6.1.3)
F)= 30 fu = fa b D0 st

In practice, all terms of the series (6.1.3) can not be determined and so we use an

approximation of the solution by the truncated series:

m—1 m—1

0,x)=> f.(x). 0,,,(x)=> £, (x) (6.1.4)

i=0 i=0
6.2 System of Volterra Integral Equations of the First Kind

A system of integral equations of the first kind can be presented as:

X

IKl.(x,t)g,.(ul(t),uz(t),...,un (t))dr = ﬁ(x) i=12,..,n (6.2.1)

0
where f; are known functions, k; (x,1) are the kernels of the ith integral equation,
g, are linear and nonlinear functional of the unknown functions u,. In the system

(6.2.1) the equations are not in the canonical form. To derive this form, we

differentiate of the both sides of equation (6.2.1), with respect to x, and according to

the  Leibnitz  generalized formula and we obtain (ifk, (x,x)#0)

P a X, Y/
) (0 ot () e )0, ) = £
(6.2.2)
i=12,..,n
And then
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, xakl.(x,t)
&) (o () = 2B ot Ot 620

K‘i('x’ 'x) 0 i ('x’ 'x)
The nonlinear system of integral of integral equations (6.2.4) can be reduced into

a simpler system of integral equations of the second type. There are two procedures.

(Biazar, Babolian and Islam, 2003)
First Approach

If we can recognize invertible functions gi(ui(x)) for each unknown ul.(x) and
we set v, = gi(ui (x)) then the nonlinear system of integral equations reduces to a

simpler system of integral equations and can be easily solved by the Homotopy

Perturbation Method.

Second Approach

Let
h, (x): 8,-(“1 (x),uz(x),...,un (x)) (6.2.5)

Then the system of integral equations (6.2.4) can be rewritten as:

/| xaKi(x’t)
h(x) = 1) | - Axhi(x)dt i=01.2,.. (6.2.6)

' K (x,x) o K(xx)
which is a system of linear integral equations of the second kind, which can be

solved easily by the Homotopy Perturbation Method.

6.2.1 Analysis of the Homotopy Perturbation Method for Systems of Volterra
Integral Equations of the First Kind

To apply the homotopy perturbation method (HPM) we consider Eqn. (6.1.4) as

, L (x,t)
e () =, ()~ L) 5k (0 ©27)

P A T Py

where i =1,2,...,n and j=12,...,n
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with the solution g, (ui ), where fl.(gl.(ui (x)) = fl.(qol. (x)).

We can define homotopy H(g(x, ), p) by

H(g(u,), p)=(~p)L(g,())+ pf.(g,())=0 (6.2.8)
where L(gi (ui )) is a functional operator with known solution gi(uio), which can be
obtained easily. From Eqn. (6.2.8) we have

H(g(u,)0)=L,(g,(,)), H(glu,11)=f,(g,(u,)) (6.2.9)

that is,

H,.(g(u,.),o)=L,.(g,.(ui)):gi(ul(x),...,un(x))_KJ_};(CX))C) =120 (62100

, Xaki(x,t)
H(g(u,)1) = f(g,(u,)) = g, (u,(x) - HGI ' Axgi(u,-(t))dt (6.2.10b)

The changing process of p from zero to unity is just that of H (g(ul.), p) from a

starting point H (g(ul. ).0) to a solution function H (g ; (q)l. (x))1).

We can assume that the solution of Eqn. (6.2.7) can be expressed as a series in p

using the perturbation technique:
8i (Ml (x),uz ('x)""’un (x) = 8i (”i,o )+ P8, (ui,l )+ p’s (ui,Z )+ (6.2.11)
The initial approximations to the solutions g, (u l.,o) are taken to be

gi(u,-o(t)):&

i=12,...n. (6.2.12)
K, (x, x)

Substituting (6.2.11) into (6.2.8) and equating the coefficients of p with the same

power leads to the following equations:

P’ glu, ()= =120 (6.2.13a)
K, (x, x)
xaKi(x,t)/

P g, 0)=] e x?xgi(um(t))dt i=12,..n (6.2.13b)
0 i ’

g, (1))dr i=12,..n (6.2.13¢)
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and in general by the initial approximations

8i (”io ) = fi/(X)

&)
we have
Lok, ( x,t/
()= ] 9% i (6.2.14)
K, (x,x)
That is

oo

81 (”i (x)) = Z 8 (uli (x)) =8 (ul() (x))+ 81 (”11 (x))+ 81 (1412(35))+ (6.2.15a)

i=0

oo

gz(”z (x)) = ; g2(u2i (x)) = gz(uzo (x))+ gz(“21(x))+ gz(uzz (x))+ (6.2.15b)

As p —1, Eqn. (6.2.8) tends to Eqns.(6.2.7) and (6.2.11) to the solution of Eqn.

(6.2.7). Therefore the approximated solutions of (6.2.7), can be obtained by setting

p=1.
g, (u)=Lim, ., f (g =if,] i=12,..,n. (6.2.16)
J=
In practice some terms of this series solution will serve as an approximation
solution
g.lor ()= glu,) (6.2.17)

=0
is a m+1 terms approximated solution. This series is convergent for most cases, and

the rate of convergence depends on f; (g ; (14,- )) (Adomian, 1986).

6.2 Systems of Volterra Integral Equations of the Second Type

A system of Volterra integral equations of the second kind can be presented as:

X

h, (x)+IK‘l.(x,t)g,.(ul(t),uz(t),...,un (t))dr = f,(x) i=12,...,n

0

where f, and h, are known functions, ,(x,z) are the kernels of the ith integral
equation, g, are linear and nonlinear functional of the unknown functions u;.The

procedure for the Volterra integral equations of the second type as in Section 6.2.1.
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6.2.2 Analysis of the Homotopy Perturbation Method for Systems of Fredholm
Integral Equations of the Second Type

Consider the following system of Fredholm integral equations of the second kind

£(0)= 5(x)+ [ ) 0 0= 3 <1 ©2.17)
where 0

wnt) = [, (e )l= -0 | i j=1.2,0m (6.2.18a)
F)=1A) £ f, @] (6.2.18b)
g(x)=[g,(x). g, (x)....g, (X (6.2.18¢)

In Eqn. (6.2.17) the functions x(x,7) and g(x) are given, and f(x) is the solution to

be determined (Delves, Mohamed, 1985). We assume that Eqn. (6.2.17) has the
unique solution. The necessary and sufficient conditions for existence and

uniqueness of the solution of the system (6.2.17) given in (Delves, Mohamed, 1985).

Let us consider the ith equation of (6.2.17)

1 n

(%)= g, (x)+ [ D ke (o) f, (), i =1.2,...0m (6.2.19)

0 Jj=0

By the homotopy, we construct a convex homotopy for Eqn. (6.2.19) which satisfies

H,-(J_”,p)=(1—p)ﬁ({j+pL,-(J_‘)=0 (6.2.20)
afs0)=sls). mls1)=(s) 6221
where

7 £)=t-e

L[1)= 7)== [ Sk, (e, 6222

0 Jj=0
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and pe [0,1] is an embedding parameter. The embedding parameter p monotonically

increases from zero to unit as f; ( f j is continuously deformed to the L, ( f j

According to the homotopy perturbation method, we assume that the solution of

Eqn. (6.2.19) can be expressed in a series of p

f(X)=fo+pfi + P fir e (6.2.23)

Substituting Eqn. (6.2.23) into Eqn. (6.2.20), we find that

120 =0= X6 ] (0= )=, ) ok | =0
- 0 Jj=0

or equivalently

H,-(J_ﬁpj=(l—p)(ﬁo +pfa+ 0 fa +---—g,-)+

Lon

plfio+pfa+p f;z — & _J.Z(x_t)q” (fj() +pfj1 +p2fj2 +---)dt]:0

0 j=0

(6.2.24)
Eqn. (6.2.24) can be rewritten in the form:
Hi(f’pj:(l_p)(fi() + ol +p2fi2 +"'_gi)+
plfio + pfy +p2fi2 T8~
jzz )q' F(f 0@+ pf 0+ p2f )+ ] =0
0 j=0 k=1
(6.2.25)

where C (ql.j , k) states the Binomial coefficients in the Binomial series expansion.

Eqn. (6.2.25) again can be rewritten in terms of the powers of p as the following

form:

S

n Ul

=
i

po(fio - gi)+ pl|:fi1 - (_1)k C(qij’k)xq”kjtkfjo(t)dt:|

0

1€ g, k) jt 7,0 } (6.2.26)

(1) c, (g, k)x jtf dt]i— =0

Jj=0

S

n

+P2|:fiz -

i

Jj=0

El
2

+ p3|:fi3 -

=0

~
]

1

Equating the coefficients of like powers of p yields



n  9biij
Pl f =2 YD Clay kT [ £ e
j=0 k=1 0
2 1 di k ;i ; k
PYi =23 (1) Clay kT [ f
j=0 k=1 0
3. n  diij X 4k 1 %
p fi3 = (_ 1) C(qwk) ' Jt sz (t)dt
j=0 k=1 0

and in general
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(6.2.27a)

(6.2.27b)

(6.2.28a)

(6.2.28b)

(6.2.29)



CHAPTER SEVEN

PROBLEMS ON NONLINEAR INTEGRAL EQUATIONS AND ON
NONLINEAR SYSTEMS OF INTEGRAL EQUATIONS

In this chapter some problems of nonlinear integral equations, systems of
nonlinear integral equations, and an integro-differential equation are provided to
illustrate the ability of the homotopy perturbation method.

Problem 7.1

Consider the following nonlinear Fredholm integral equation of the second type
(Wazwaz, 1997)

w? (1)t (7.1.1)

. T+2
u(x):s1nx+cosx——+

O 0 [y

1
4
uo(x): sin x + cos x (7.1.2)

He’s homotopy perturbation method consists of the following scheme:

H(v. p)=(1- p)[LO)- Ly, )]+ pla()- £r)=0

That is
. . T+2 1%,
H(v,p):(l—p)[v(x)—smx—cosx]+p v(x)—smx—cosx+T—Z % (t)dt =0
0

This gives

3
v(x):sinx+cosx—ﬂT+2p+iva2(t)dt (7.1.3)

0

We can try to obtain a solution of equation (7.1.3) in the form:
v(x)z Vo (x)+ pv, (x)+ pzv2 (x)+... (7.1.4)
where v, (x), i=0,12,... are functions yet to be determined. According to equation

(7.1.4) the initial approximation is

vo(x): sin x +cos x (7.1.5)
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Substituting equations (7.1.4) and (7.1.5) into Eqn. (7.1.3) and equating the terms

with the coefficients of the identical powers of p, we will have

3
vo(x)+ pvl(x)+ pzvz(x)+... = sinx+cosx—ﬁT+2p+ipJ‘(v0(t)+ pvl(t)+ pzvz(t)+...)2dt
0

p vo(x):sinx+cosx

2 (x) =0
P o) =2
v, (x) =0

In the same manner, the rest of components will be obtained by using the
Mathematica 7 package.

According to the HPM we can conclude

u(x) = Limp_)lv(x) =V, (x) +v, (x)+ v, (x) +...

And therefore the exact solution

u(x)=v(x)=sin x +cos x

is readily obtained. Here the only two iterations are cased to obtain this exact

solution. The plot of the solution is given in Figure 7.1.
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......

0.0 05 10 15

Figure 7.1 The numerical results and exact

solutions of Problem 7.1

...... v(homotopy)

—— v(exact)

Problem 7.2
Consider the following nonlinear Volterra integral equation of the second type
(Wazwaz, 1997):
X 1 3x 1 I 3
u(x):e —gxe +§x+J.xu (t)dt (7.2.1)
0

X

with the exact solution u(x)=e".

A homotopy can be readily constructed as follows:

H(v, p)=(1- p)LO) - L]+ p|AG) - £lr)=0

or

H(v, p)=(1-p)p(x)-e*]+ p| v(x)-e* +§xe3x —%x—fxv‘(z)dr} =0 (7.22)
)

or

v(x)=e* = pul(x)+ pe* + pulx)= pe* + péxeax _é pr— pvas(t)dt ~0

This gives
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v(x)=e" + % px(l e )+ pjxv3(t)dt (7.2.3)
Let
v(x)z Vo (x)+ pv, (x)+ pzv2 (x)+... (7.2.4)

be a solution of Eqn. (7.2.3). Herev, (x), i=0,1,2,... are functions to be determined.

According to equation (7.2.4) the initial approximation is

X

v, (x)=e¢’ (7.2.5)
Substituting equations (7.2.4) and (7.2.5) into Eqn. (7.2.3) and equating the terms
with identical powers of p, we find Eqn. (7.2.6):

X

Vo (x)+ pv, (x)+ pzvz(x)+... =e" +%px(l—e3x)+ pJ.x(vo (t)+ pv, (t)+ pzvz(t)+...)3dt

Vo (x)+ pv, (x)+ p’v, (x)+..=e" +%px(l—eax)

x (7.2.6)
+ p[ x5 (0)+3pvi (1, (6)+3p%v, (1} (1) + p*vi (1) + . e

0

0.

P wx)=e

pli v (x)= %x(l —e™ )+ jxvg (¢)dt
0
v, (x)= %x(l —e™ )+ j.xeStdt
0

vl(x):%x(l—ea)‘)+§x(e’3)C —1) = v,(x)=0

X

P, (x) = 3J. x(vé (t)v1 (t))dt

0

vz(x)=3]£x(e2’.0)dt = v,(x)=0

In general

Vo (x)= [l (e, k20
0
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According to the HPM, when p — 1, Eqn. (7.2.4) corresponds to Eqn. (7.2.2) and
becomes the approximate solution of Eqn. (7.2.1), that is,

u(x) = Limp_)lv(x) =V, (x)+ v, (x)+ v, (x)+

and

X

u(x) = v(x) =e
Problem 7.3

Consider the following nonlinear Volterra integral equation (Wazwaz, 1997)

u(x)=cosx—%x—isin2x+'[u2(t)dt (7.3.1)

0
u,(x)=cos x (7.3.2)
By homotopy perturbation method we may choose a convex homotopy such that
H(v, p)= (- p)L(r)— Ly, )]+ plAG) - £lr)|= 0

That is

H, p)=(1-p)v(x)-cosx)+ p(v(x)—cosx+ %x+ isin 2x+ ]Evz(t)}it =0

0

or

v(x)—cosx—pv(x)+ pcosx+ pv(x)—pcosx+ p%x+ pisin2x+p'|‘v2(t)dt =0
0

or
1 | ¢
v(x)= cosx—pr—Zpsm 2x— pJ-v (t)dt (7.3.3)
0
Let
v(x): vo(x)+ )28 (x)+ p2v2 (x)+... (7.3.4)

be a solution of Eqn.(7.3.3). Herev, (x) i=0,1,2,... are functions to be determined.

According to equation (7.3.4) the initial approximation is

vy (x)=cosx (7.3.5)
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Substituting equations (7.3.4) and (7.3.5) into Eqn. (7.3.3) and equating the terms

with identical powers of p, we have

vo(x)+ pvl(x)+ pzvz(x)+... = cosx—%px—%psin 2x— pj(v()(t)+ pvl(t)+ pzvz(t)+...)2dt
0

that is

P’ v,(x)=cosx

p': vl(x):—%x—isinbc—.([vf(t)dt

vl(x)z—%x—%sinbc—Icos2 tdt = v,(x)=0
0

P =20 0ar = v (=0

or in general
v, (x) = —'[ 2v, (t)vk+1 (t)dt = v, (x)=0, k>0
0

Therefore, the approximate solution of example can be readily obtained by

u(x) = Limp_)lv(x) =V, (x) +v, (x)+ v, (x) +...

or

u(x) = u, (x)
k=0

Therefore

u(x)=v(x)=cosx

Here we used two iterations only to obtain the exact solutioncosx. The plot of the

solution is given in Figure 7.2 for0 < x <1.
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Figure 7.2 The numerical results and exact solutions

of Problem 7.3

...... v(homotopy)

v(exact)

Problem 7.4
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Let us solve the following nonlinear Volterra integral equation of the second type:

X

u(x)=e* +%x(€2x —1)—Ixu2(t)dt (7.4.1)

0

X

u,(x)=e".

He’s homotopy perturbation method states that

)= 0= PN L )= = e 1) <o

0

(7.4.2)
that is

H(u,p)=(1- p)[u(x)—ex]+ p[u(x)—ex —%x(ez" —1)+J{xu2(t)dt} =0

This gives
u(x)—e* — pu(x)+ pe* + pu(x)— pe* - p%x(ez)‘ —1)+ pIxuz(t)dt =0
0

This simplifies as
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u(x)=e* +%px(e2x —1)— pjxuz(t)dt (7.4.4)

Suppose the solution of Eqn. (7.4.4) has the following form:
v(x)= Vo (x)+ PV, (x)+ P, (x)+... (7.4.5)
where v, (x), i=0,1,2,... are functions yet to be determined. According to equation

(7.4.5) the initial approximation is

X

Vo (x ) =e
Substituting equations (7.4.5) and (7.4.6) into Eqn. (7.4.4) and equating the terms

with identical coefficients of the identical powers of p, we have

X

Vo (x)+ pv, (x)+ p’v, (x)+... =e" +%px(ezx —1)— pJ.x(vo (t)+ pv, (t)+ pzvz(t)+...)2dt

vy (x)+ pv, (x)+ p?v, (x)+...=e" +%px(e2x —1)
. (7.4.6)
— pjx(vj () +2pvy (v, () + p*v] () +..)dt

this gives

In general

Vo ()= [0f, (0)de, k20
0
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And according to HPM, we obtain the exact solution as
u(x) = LimlHlv(x) =v, (x) +v, (x)+ v, (x) +...

And

u(x)=v(x)=e"

with two iterations only.

04 0.6 0 T
Figure 7.3 The numerical results and exact solutions of

Problem 7.4

...... v(homotopy)

v(exact)

Problem 7.5

Consider the following nonlinear integro-differential equation (Ghasemi,
Tavassoli, and Babolian, 2007):

u'(x)= —1+j.u2(t)dt (7.5.1)

for xe [0,1] with the boundary solution

u(0)=0. (7.5.2)

We apply the homotopy perturbation method to solve Eqn. (7.5.1).
Let

Lw)=u'(x)-g(x)=0, f(r)z 0
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By homotopy perturbation method we may choose a convex homotopy such that
H(v, p)=L(v)- L(v,)+ pL(v,)+ p[N ()= £lr)|=0

that is
H, p)=v(x)-gx)- pj xlx, 1,v(t),v'(e))dr = 0 (7.5.3)

and continuously trace an implicitly defined curve from a starting point H (VO ,0) toa

solution function H(v,1):

H1,0)=v(x)-g(x)=0 = V(x)=gx) (7.5.4)

H(v.1)=v'(x)-g(x)-

O S
A
=
o
<
—_
-~
\.‘/
<
—
-~
SN—
-~
Il
=)

X

H(v,l) =v(x)- g(x)—jvz(t)dt =0 (7.5.5)

0

Eqn. (7.5.3) takes the form
H(V,p):v'(x)+1—pj.v2(t)dt =0 (7.5.6)
0

Let us try to obtain a solution of Eqn. (7.5.1) in the form

v(x)z Vo (x)+ pv, (x)+ pzv2 (x)+... (7.5.7)
where v, (x) i =0,1,2,... are functions yet to be determined. According to equation
(7.5.7) the initial approximation is

vo(x): g(x)=-1 (7.5.8)

Substituting equations (7.5.6) and (7.5.7) into Eqn. (7.5.6) gives

vo(x)+ pvi(x)+ pv (x)+...=—1+ pJ. (vO )+ pv, () + p*v, () + ...)Zdt
0

or

vo(x)+ pv(x)+ pv (x)+...=—1+ pj. (vé () +2pv, (e, () + p*vi(e)+2pv, (v, (£) + }It
0 (7.5.9)
Equating the terms with identical powers of p in Eqn. (7.5.9), we have
p' vil)=gl)=-1 =
vy (x)=—x (7.5.10a)
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Vi (x)= I(—Lt*‘ +itgjdt S SR
o\ 126 12 126.9 12.9

v (x) = -@xm
P Iz 1), (e, 0
vi(x)= IZ[(— r)(@t“’j + (ét“)(— ﬁﬂ ﬂdt

ji( 1 tll 1 tll}t
30247 2526
by () = —

157248

Therefore, the approximate solution of this problem is

oo

u(x) =" v, (x) = vy () + v, (x) + v, () + v3 (x) + v, (x) + ..

n=0

u(x):—x+ix —L ! Lxm— ! .

127 " 250" Te0as8” T 1s7048"

Table 7.1 contains the numerical comparison between our solution using HPM and

the exact solution of the problem at some points.
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Table 7.1 Numerical results of problem 7.5

X Exact solution Homotopy  perturbation
method
0 0 0
0.0625 -0.0625 -0.0625
0.125 -0.12498 -0.12498
0.250 -0.24968 -0.24968
0.375 -0.37336 -0.37336
0.500 -0.49482 -0.49482
0.625 -0.61243 -0.61243
0.750 -0.72415 -0.72415
0.875 -0.82767 -0.82767
1 -0.92048 -0.92048

The table shows that HPM minimize the computational calculus and supplies

quantitatively reliable results. (Appendix 1)

Problem 7.6

Consider the following system of nonlinear Fredholm integral equations of the

second type (Babolian, Biazar and Vahidi, 2004)

)= 43 ) ey 7610
£)= 2 =24 L [0+ 20 (7.6.1b)

0

with the exact solutions f, (x)=x, s (x)=x2.

By homotopy perturbation method a convex homotopy such that H ( fis [ p) with

the components Hl(fl,fz,p) ande(fl,fz,p):



1,71 202)= 098,00~ p () £y =0

H (£ P)= 1209800 pJ (0 + £,y =0

Here,
H(,0)= F(u) and H(u,1)= L(x)
corresponds to the following expressions respectively:

H(u.0)=F(u)= f,(x)-g,(x) and H(u.0) = f,(x)~ g, (x)
H(u,l) = L(u)

wl»—

j s)+ f,(s))ds =0
0

H ()= ()= f,(x)- g,(x)- j((fl( )+ £u(s)ds =0

()

(7.6.2a)

(7.6.2b)
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For each equation we construct a homotopy Qx[0,1]]— IR with the following

properties:

HL (i foop) = 1 XA () ())+p[f1

b)l»—\

ot_,._

s)+ (s ds}:o

(7.6.3a)

Hz(fl,fz,P)=(1—P)(fz(X)—gz(X))+p{fz(X)—gz(X)—épj((fl(S))z +f2(S))dS}=0

or equivalently

H,(f..f,,p)=0, H,(f,. f,,p)=0 gives, respectively,

7= () ] (o) £ s =0

0=+ p[ (67 + 1,6 s =0

Consider the ith equation of the system, take

x)zzpifli = fio+ 2/ +P2f12 +
i=0

x):zpile, :fz()+l7f21+p2f22+

i=0

(7.6.3b)

(7.6.4a)

(7.6.4b)

(7.6.5a)

(7.6.5b)



Substituting (7.6.5) into (7.6.4) gives

f10+pf11+p2f12 _gl + PI[ fm +pf11( )+p f12( ) )+

(fzo(s)"'ple( +P fzz )]ds
(7.6.6a)

Jao + Pfa +p2f22 +..= gz(x)+lpj.[(fw(s)+pfll(s)+p2f12(s)+...)2 +
(fzo(s)"'ple( +P fzz )]ds

(7.6.6b)
and equating the terms with identical powers of p, we have
P’ ful)=g) = flo(x)zx—%zx—0.2778
(7.6.7a)
fald=g) = ful)=xt gz -02222
(7.6.7b)
| 1
p fu(x)zgj.(fm( )+f20( )y
1 5 , 2 1¢( ,
fll(X)zg-(‘).(s_E+s —§jd =§_([(s +S——JJS
fu(x)zéso.nu (7.6.82)
1 )
le(x)zg"-((fm(s)) +f20(s)hs
1; 5,
le(x) 3:‘:|:(S—Ej +5 —§:|JS
9
flw)= 5= 00813 (7.6.8b)

p*: Ji (x) _[(flk 1( )+f2k—1(s))ds (7.6.9a)

()
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lj-((flk—l (S))2 + fo (S)hs (7.6.9b)

fzk(X):?)()

Therefore, the approximate solution can be readily obtained by

=3 F ), £0)=3 £.(x) (7.6.10)

k=0 k=0

For the first iteration, we have:

filx)===0.1111

O | —

79
for(x)= 977 = 0.0813

In practice, all terms of series (7.6.10) can not be determined and so we can use an

approximation of the solution by the following truncated series

m=1 m=1

?, m Zflk (oz,m(x):Zfzk (x) (7.6.11)
k=0

Using the truncated series (7.6.11), the solutions with two terms are

5 1 3
¢12 ;flk fl() +f11( ) x_ﬁ+§:x_ﬁzx_0-l667

x)+ ——+—=1x"-0.1409
¢22 Zf2k fzo le( ) x? 9 70, X
For the second iteration we have
187
=0.0641
fuld) =251
91
= =0.0312
Fal¥)= o
Considering (7.6.11), the solutions with three terms are
5 1 187
¢1,3(x): f10(x)+ fll(x)+ f12( ) x_ﬁ“‘g“‘ 2016 =x-0.1025
2 79 91 )
= + + -—+—+——=x"-0.0974

(02,3()6) fzo(x) le(x) fzz( ) x? 9" 792 " 2916

and so on the rest of components of the iteration formula (7.6.9) can be obtained in a
similar way.

The solutions with ten terms are given as
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(0110 Zflk flO )+fll(x)+f12(x)+f13('x)+"'+f19(x)

(02,10 Zka fzo )+le(x)"‘fzz(x)"'fza(x)+~~+f29(x)

That is
@0 (x) = x—0.0458

@, 0(x)= x> —0.0915

The values of the ten terms approximations to the solutions at some points with

the corresponding absolute errors for HPM at various values of x in Table 7.2.

i
10

08| e

04] .

02 P

Figure 7.4 The numerical results and exact solutions

of problem 7.6

— filexact)

.. f;(homotopy)
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Figure 7.5 The numerical results and exact solutions

of problem 7.6
— fiy(exact)

.... f,(homotopy)

As the results in Table 7.2 show the more terms in approximations would cause the

more accuracy in solutions.

More iteration will reduce the error. Obviously, the maximum absolute error for

xe [0,1] is 0.954 for f,(x) and 0.908 for f,(x). (Appendix 2)
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Table 7.2 The values of ten terms approximations with the related errors

X f1(xi) Siueu ('xi) € (xi) fZ(Xi) Jaupu (xi) ez(xi)

0 0 -0.046 0.046 0 -0.09 0.09
0.1 0.1 0.054 0.046 0.01 -0.08 0.09
0.2 0.2 0.154 0.046 0.04 -0.05 0.09
0.3 0.3 0.254 0.046 0.09 -0.001 0.091
0.4 0.4 0.354 0.046 0.14 0.07 0.09
0.5 0.5 0.454 0.046 0.25 0.16 0.09
0.6 0.6 0.554 0.046 0.36 0.27 0.09
0.7 0.7 0.654 0.046 0.49 0.40 0.09
0.8 0.8 0.754 0.046 0.64 0.55 0.09
0.9 0.9 0.854 0.046 0.81 0.72 0.09
1 1 0.954 0.046 1 0.91 0.09
Problem 7.7

Consider the following system of Volterra integral equations of the first kind with

the exact solution f (x)=x* and 1> (x) = x (Biazar, Babolian, and Islam, 2003).

I 1 2 1 1
1—x* +y? + f5 =X - x4y 7.1
!( 2+ y2 A ()+ £ 0y 5% Tps¥ ty¥ tgx (7.7.1a)

I 3 _ __é 2_1 3 E 7 i 8
!(5+x—y)(f1 (y)- £ (3)hy = S e e (7.7.1b)

We use the homotopy perturbation method to solve system (7.7.1). First we put
system (7.7.1) into the canonical form. To derive this form, differentiate of the both
sides of Eqn. (7.7.1), with respect to x, and according to the Leibnitz generalized rule
as in Section 6.2. This process changes the system of integral equations (7.7.1) to the
second kind:

( 1

£+ £ )= 2x[ (£, () + £ (5)hy = -5 —%ﬁ +x7 (7.7.2a)



A=+ [0y = e o 7.7.20)
Let’s choose

gl(x):—%x*‘—%x“+x3+x2 gz(x)=—x—%x2+x6+3—15x7

()= A+ 75 6) ()= £ ()= £

O O N A B (XTI EAC

W= 2Oy ()= 8= i

Using homotopy perturbation method;

Hl(hwhz’p): (1_ p)(hl(x)_ gl(x))+ p|:h1(x)— gl(x)_zxj.hl ()’)dy:| =0
hy(x) = g,(x)= ph, (x)+ pg, (x)+ ph, (x)~ pg, (x)- 2pr hy(yMdy =0
()= ,(x)+ 200 Iy (Y )y (7730

H, (. hy, p) = (1= p)i, (x) = g, (x))+ p{hz (x)- gz(X)Jr%Ihz (y)dy} =0

X

hy ()= 8, (x) = phy (x)+ pg, (x)+ ph, (x) - pgz(X)+%thz (Yky=0

i (x) = 8, (x) =2 o[ 1 (hy (7.7.3b)

h.=h,+ ph, + p°h, +...

h, =hy + ph, +p°h, +... h, =hy + phy +p°h,, +...

hlo(x)"‘ Phu(x)"' P2h12 (x)"‘--- = gl(x)+ ZXPI [hlo (y)"‘ Phu(y)"' chlz()’)"‘ ky

(7.7.4a)
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By (x)"‘ phy, (x)"‘ P2h22 (x)"‘ =8 (x)_ l Pj [hzo (y)"' phy, (y)"‘ P2h22 (y)"‘ ky

5
(7.7.4b)
1
pO th(x)_gl(x) = hl()(x)__zxs _x4+.x3+x2
hay () = g, (%) O ) LI N
20 2 20 10 35

p': hu(x): 2xj.hm(y)dy

0

Y12
hy, (x) = 2Xf(—5y5 AR yzjdy
0

Y0150 35 1400

X X X X
i (%)

and in general

hl(n+l) ('x) = ZXJ. hln (yﬁy n= 051,2,---

0

X

h2(n+l) (x) =7 j h,, (yﬂy

0

0, (0=, (x) @y, ()= h,(x)

73
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Considering the solutions with two terms, we obtain
D, (x) =hy (x)+ hy, (x)

o)zt - Ly

15 6
(2% (x) = hy, (x)+ h21(x)

3 8

0, (x)=—x+— +x°+—
' 150 1400

h, (x) = hm(x)"' phll(x)+"'

hl(x)z—lx5 —Ex4 +x’+x*+p —lx7 -—x° +lx5 +zx4 +...
3 6 2 3

X2 X } X ! X8
10 150 35 1400}

1 1
hx)=—x——x*+x*+—x" +
2() 10 35 P(

The numerical results obtained by Adomian Decomposition Method and the HPM
are represented in Table 7.3 and Table7.4.

Table 7.3 Numerical results for problem 7.7

n xi fl (xi ) lePM (‘xi ) el (xi ) f2 (‘xi ) fZHPM (xi ) €2 (‘xi )

1 0 0 0 0 0 0 0
2 0.1 0.01 0.01 0 0.1 -0.10 0.2

3 0.3 0.09 0.14 -0.05 0.3 -0.29 0.59
4 05 025 0.45 -0.20 0.5 -0.48 0.98
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Table 7.4 Numerical results for problem 7.7

nox, A6) A ale)  fAG) () elx)
10 0 0 0 0 0 0
2 0.1 0.01 0.0100 0 0.1 0.1 0
303 0.09 0.0877 00023 03 0.3006  -0.0006
4 05 0.25 0.2440  0.006 0.5 0.5162  -0.0162

The computations associated with in this example were performed using

MATHEMATICA 7. (Appendix 3)

Problem 7.8

Let us solve the following nonlinear system of three integral equations of the second
type with the exact solutions f, (x)=1Inx, fs (x)=x and 1 (x)=x? (Biazar and

Ghazvini, 2009):

filx)=Inx-2x"Inx+ x> +4j‘ £,(s)f, (s)ds (7.8.1a)
fz(x):x—éx(’ lnx+3—l6x6 +;Isf1(s)f32(s)ds (7.8.1b)
f3(x): x’ +%x5 —%J:sjg(s)fz(s)ds (7.8.1¢)

For solving this system by He’s homotopy perturbation method (HPM) a convex

homotopy such that H ( fisfas fss p): Qx [0,1] — IR’ is constructed for each equation

with the following properties:

Hl(f1’fzsf3’p)=(l_p)(f1(x)_g1(x))+p|:f1(x)_gl(x)_4jif1(s) 2(S)ds}=0

0

Hz(fl,fz,f3,p)=(1—p)(fz(x)—gz(x))+p{fz(x)—gz(x)—]isfl(s)ff(S)ds}=0

0
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H3(f1’f2’f3’p)=(l_p)(f3(x)_g3(x))+p f3(x)—g3(x)+%jisf3( ) 2( )d -

(7.8.2)

or equivalently
H,(f..f,. f5.0)=0, H,(f,. f,. f3.p)=0, Hy(f. f,. fy.p)=0

gives respectively

£1(0)= &, () + 4p] £ ()ds
£2(6) = 8 (0)+ p[ 5 (5)2 5 ) (753)

£9= 8= o) 0N

Suppose the solutions of the system (7.8.2) have the form
F(x)=f,x)+pf,(x)+ P> f(x)+...  i=123 (7.8.4)
where f,y (x) i=1,2,3 and j=1,2,3 are functions to be determined.

The initial approximations to the solutions f; (x) are taken to be g ; (x).
Fox)=fo(x)=gx)  i=123

That is

10() fl()() Inx—2x*Inx + x°

1 6 I
F = =x——x"Inx+— 7.8.5
20(x) fz,o(x) X 6x nx 36x ( )

30() f30() x2+%x5

Substituting (7.8.4) into (7.8.3) and comparing the coefficients of the powers of p

yields the following schemes:

f( ) gl +4PJ. fm +Pf11( +p f12 )(fzo +Pf21 +p fzz( ) hs

fz(X)=gz(X)+pj.S(f1()(S)+pf11( )+P f12 )(f30 +pf31( )+P2f32(s)+"')3ds
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f3(x): g3(x)—%pj.(f30(s)+pf31(s)+p2f32(s)+...)(f20(s)+pfm(s)+p2f22(s)+...)is

and in general

j-1

fl,j (x) = 4J. Six (S)fz,j—k—l (sﬁs Jj=123

.
|
—_
.
|
|
—_

fz,j (x) = _[S : fl,i (S) 3.k (S)f3,j—k—i—l (S)ds j=123 (7.8.6)

The values of six terms approximations with the related errors are given in the
following Table 7.5, Table 7.6 and Table7.7. The computations with in this example
were performed using MATHEMATICA 7. (Appendix 4)

Table 7.5 Numerical results for problem 7.8 with m=6

x fx) Fromw (1) e/(x,)

0.1 -2.302585093 -2.302585093 0

0.2 -1.609437912 -1.609437911 -107

0.3 -1.203972804 -1.203972712 -9.2x10°*

04 -0.916290731 -0.9162887123 ~2.0187x10°
0.5 -0.69314718 -0.6931287262 —1.84538x107°

0.6 -0.510825623 -0.5107359296 -8.96934x107




Table 7.6 Numerical results for problem 7.8 with m=6

x L&) o () e (x,)

0.1 0.1 0.1 0

0.2 0.2 0.2 0

0.3 0.3 0.3000000002 _—2x%x107"°
0.4 0.4 0.4000000120 —12x10°®
0.5 0.5 0.5000003436 _3.436%1077
0.6 0.6 0.6000052560 _5256%10°°

Table 7.6 Numerical results for problem 7.8 with m=6

x L) fo () es(x;)

0.1 0.01 0.01 0

0.2 0.04 0.04 0

0.3 0.09 0.09000000001 _q10™

04 0.16 0.1599999998 2 %107'"°
0.5 0.25 0.2499999953  4.7%x107°
0.6 0.36 0.3599998863  1.137x1077

The table shows that the HPM give very good approximation to the solutions.
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filx) falx) fi(x)
. OB . i
16 - e ME;
18 ‘,.-'/‘ 05 o 03'5
4 -~ r g ]
~ ra 0.51
12 - 04 # |
14 g 01 4
1. : 'pl
16 03 '{,- [l.sE p.
1w § 014 .
¥ 02 1 &
2 / [”E;:/f’/.f
a2y X 014 o | X
a1 02 a3 a4 o0& o0& a1 o2 03 04 0s 0& o1 02 03 04 s DE
t i 1
fleeact ] — filaxac)

.. fi(hom otopy)

— filexacr)

> (hom otop ¥ top
e J 2 xd .(homao op )
-- Jak S

Figure 7.6 The plots of approximation and exact solutions
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Problem 7.9

Consider the following nonlinear Fredholm system of integral equations

(Maleknejad, Aghazadeh, and Rabbani, ,2006)
1 1
() + [ cos( ()t + [ esinef, ()t = g, (x)
0 0
(7.9.1)

£+ [ ek [ (e )7, (0 = g.(2)

cosx xsin®1
= + +x
3 2

with g, (x)

X

gz(x)z €2 +cosx+(x+1)sinl+cosl—l
X

and with exact solutions f, (x)=x and s (x)=cosx.

For solving this system by He’s homotopy perturbation method a convex

homotopy is constructed for each equation with the following properties:

(1—p><m(x)—a,o(x>>+p(m(x)—jzcos(xm(ﬁ)mxsin(ze(z))dr—gl(x)]=o

1

(1= pNE ()~ o) p(a ()= " Fy ki + [ e +1)F, )~ gz(x>j ~0

0

Suppose the solutions of the system (7.9.2) have the form
F, (x) =F, (x)+ PF;, (x)+ pzﬂz (x)+ i=12,.,n

1

The initial approximations to the solutions f; (x) are taken to be g ; (x).

F,, (x) = fio (x) =8 (x)
That is
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cosx xsin’l
Fo)= fign) =254 20 Ly

(7.9.3)

X

20() fzo() 62;1+cosx+(x+1)sin1+cos1—1

Substituting (7.9.3) into (7.9.2) and equating the terms with the coefficients of the

identical powers of p, we have

1
Fl,j(x): —jtcos Lj1 )dt—stm(th 1 ))dt Jj=123,...
0

(7.9.4)

z,j(X)=—j U, (0 - f(x+r) F, ;. (t)dt j=123,..

The numerical results obtained by the modified Taylor series expansion method and

the HPM are represented in Table 7.7 and Table 7.8.
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Table 7.7 Numerical results for problem 7.9 with m=10

X Jiuem (xi) Jiiayior (xi) € (xi) J2upm (xi) Frraytor (xi) € (xi)

0 0.047592  0.047592  -0.047592 0.98839 0.98839 0.01161
0.1 0.138096 0.138096  -0.038096 1.00141 1.00141 -0.051369
0.2 0.227486 0.227486  -0.027486 0.984326  0.984326  -0.004259
0.3 0.317454 0.317454  -0.017454 0.95576 0.95576 -0.000424
0.4 0.408999 0.408999  -0.008999 0.918226  0.918226  0.002835
0.5 0.502914 0.502914  -0.002914 0.873939  0.873939  0.003644
0.6 0.599623 0.599623  0.000377 0.824824  0.824824  0.000512
0.7 0.69903  0.69903 0.00097 0.772597  0.772597  -0.007755
0.8 0.800329 0.800329  -0.000329 0.718871  0.718871  -0.022164
0.9 0901818 0.901818 -0.00181811 0.66528 0.66528 -0.04367

1 1.00072  1.00072 -0.00072 0.613598 0.613598  -0.073296

Table 7.8 The exact values of f; and f, for problem 7.9 with m=10

h (xi ) /s ('xi)
0 1.0
0.1 0.95004
0.2 0.980067
0.3 0.955336
0.4 0.921061
0.5 0.877583
0.6 0.825336
0.7 0.764842
0.8 0.696707
09 0.62161
1 0.540302

The obtained solutions in comparison with the modified Taylor series expansion

method and exact solutions admit a remarkable accuracy. (Appendix 5)



CHAPTER EIGHT

CONCLUSION

In this study, the Homotopy Perturbation Method (HPM) has been successfully
used for finding the solution of nonlinear problems for integral equations and
systems for integral equations. The absolute error, exact and numerical results are
presented and compared each other in table, for some values of x or t. The analytic
approximate solution shows that the HPM gives efficient results closer to the

accurate solutions in bounded domains.

The advantage of this method is that it does need a small parameter in the system,
leading to wide approximation in nonlinear integral equations. With the help of some
mathematical software, such as MATHEMATICA, MATLAP, the method provides a

powerful mathematical tool to more complex nonlinear systems.

The study shows that the HPM is simple and easy to use. Moreover, it minimizes
the computational calculus and supplies quantitatively reliable results and can be
considered an alternative method for solving a wide class of nonlinear problems

which arise in various fields of pure and applied sciences.
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APPENDICES
Appendix 1

Taking the boundary condition #(0)= 0 the solution of integro-differential equation

(7.5.1) is as follows:

u'(x)= —1+iu2(t)dt (7.5.1)

u’(x)=—1+j0dt=—1+0=—1
0

At the point x = 0.0625 the solution of integro-differential equation (7.5.1) is,

1(0.0625) = -0.0625

At the point x =0.125 the solution of integro-differential equation (7.5.1) is
u'(x)=—-1+ ILI“dt
012

5«
u'(x):—l+it—
1251,



/ L
=—1+—
u’(x) 0"
du(x)=—1+ix5
dx 60
S
u(x)=—x 360>

u(0.125)=—0.125 + L(— 0.125)°
360

u(0.125) = —0.12498

At the point x = 0.250 the solution of integro-differential equation (7.5.1) is

1
u'(x)=—-1-—1"dr
!252

2528,
MV 1 g
w'(x)= 2016

ulx)= 18144

1(0.250) = —0.250 — L (0.250)’
18144

1(0.250) = —0.24968
Appendix 2

WL0]x_]:= x— %;

ZeTy PR
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1

o [ (ulL, ills ]+ 2. ils Dds;

0

# j( Al ils]7 +nl2. s s1:

Forli=0,i <10,i ++h[L,i + 1][x_]=%

A2,i+1]x_]=

W | =

a= Plot[x, {x,O,l}, PlotStyle — Black];

n=0

9
b= Plo{z h[l,n][x], {x,0,1}, PlotStyle — Dashed };

Show[a,b, PlotRange — All]

Appendix 3

fl[x_] =x%;
f2[x_] =X

AL0]x_]= —%xs —%x“ +x7 +x7;

1 1
h[20][x ] —x—Ex +x° +§x ;

Forli =0,i <10,i++hLi +1]lx_]=2 [n[L,i]ls]as;
0

il _l= =L s [il2ilskis

c= Plot[x, {x,O,l}, PlotStyle — Hue[O.S]];

9
d = Plo{z h[2,n][x], {x,O,l}, PlotStyle — Hue[l.O]};

n=0

Show[c, d, PlotRange — All]
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Appendix 4

F[l][x_,j_]:z Iflj= 0,1n[x]—2>l<x2 *ln[x]+ X,

NIntegrate{g F[l, k][s] * F[2, j—k-— l][s]}{s,O, xJ1;

Fl2fx_j_l=111j= O,x—éx6 IH[X]+3—16x6,
Jj=1 j=i-1

Nintegrate {z S FlL i)+ FB.is)« 3 j—k—i—l][s]}{s,o, i

i=0 k=0

PBLe_ L= 111 = 0.5 + o'

% * 5 % Nlntegrate{i F[2, k][s] * F[3, j—k-— 1][s]} {5,0, x}1;

k=0

£l 1= File b

j=0

Ll 1= FRI )

j=0

£l 1= FBI )

j=0

Plot[{In x,t},{t,0,1}]

a= Plot[ln x,{x,0,1}, PlotStyle — Black];
5

b = Plot ZF [1][t, j], {x,0.1}, PlotStyle — Dashed |;
j=0

Showl|a, b, PlotRange — All



Appendix 5

Flillx_,j_l=1f1j=0, CO;[X] xS i”£1‘])2 +x,

- Nlntegrate[t * Cos[x * F [1][t, Jj— 1]], {t,O,l}] -
X * NIntegrate[Sin[t * F [2][t, Jj— 1]], {t,O,l}]];

e’ —1

Flale_.j_l=111j=0.~

—+ Cos|x]+ (x +1)Sin[1.]+ Cos[1.]-1,

— Nintegrate [e Fl1]z, j-1] {t,O,l}]— Nintegrate|(x +1)F[2]z, j = 1] {,0,1}]};

ﬁh_}=§;FﬁEhﬂ

Ahhiﬂwﬂ

Plotl{f,[1] 1} {r.0.1}]

Plotl{ /s [t], Cos[t]}, {t,O,l}, AspectRatio — % , PlotStyle — {Black, Dashed }J
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