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A GENETIC ALGORITHM BASED APPROACH FOR SIMULTANEOUSLY 

SOLVING U-SHAPE MIXED-MODEL ASSEMBLY LINE BALANCING 

AND SEQUENCING PROBLEM 

 

ABSTRACT 

 

Two important problems occur routinely on mixed-model production lines, 

regardless of whether the lines are traditional or U-shaped. The first one is the 

problem of how to assign tasks to stations on the line and the second one is the 

problem of selecting the order or sequence in which different models will be 

produced. Line balancing and model sequencing problems are tightly interrelated 

with each other for the mixed-model U-shape assembly line (MMUL), because 

different models require different tasks and the same tasks have different completion 

times for different models.  

 

In this thesis, a Priority-Based Genetic Algorithm (PGA) based solution approach 

is proposed in order to overcome implementation difficulties of the mixed-model U-

shape assembly line balancing/sequencing problem (MMUL/BS) simultaneously. In 

proposed algorithm, Simulated Annealing (SA) algorithm based fitness evaluation 

approach is developed for being able to make fitness function calculations easily and 

effectively. In proposed approach, new neighborhood generation logic is developed 

in order to handle line balancing and model sequencing problems simultaneously. 

The proposed PGA based algorithm is able to address some particular features of the 

assembly process very common in real mixed-model assembly lines such as use of 

parallel workstations, zoning constraints. Parallel work stations and zoning 

constraints have not been used together in MMUL/BS solution so far.   

 

  Moreover, new fitness function is developed for the cases where parallel 

workstations are used and not used. New fitness function minimizes the number of 

stations as primary objective, and ensures the workload balance within and between 

workstations at the end of all cycles as secondary objective.   
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Eventually, in order to identify the efficient control parameters, an experimental 

design is conducted and these new procedures are illustrated with a numerical 

example. Performance of the proposed approach is tested through a set of test 

problems with generated minimum part sets. 

 

Keywords: Mixed-model U-shape balancing/sequencing problem; Genetic 

algorithm; Simulated annealing algorithm; Fitness evaluation-relaxation; Parallel 

workstation assignment; Zoning constraints 
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U-ŞEKİLLİ KARIŞIK MODELLİ MONTAJ HATLARINDA HAT 

DENGELEME VE MODEL SIRALAMA PROBLEMLERİNİN EŞZAMANLI 

ÇÖZÜMÜ İÇİN GENETİK ALGORİTMA TABANLI BİR YAKLAŞIM 

 

ÖZ 

 

Karışık modelli montaj hatlarında (KMMH), hattın geleneksel veya U-şeklinde 

olmasına bakılmayarak, iki önemli problem oluşur. Bu problemlerden ilki işlerin iş 

istasyonlarına nasıl atanacağı ve ikincisi hatta üretilecek farklı modellerin hangi 

sırayla üretileceğinin seçilmesidir. Hat dengeleme ve model sıralama problemleri U-

şekilli karışık modelli montaj hatlarında (UŞKMMH) birbirlerine sıkıca bağlıdır, 

çünkü farklı modeller farklı işler gerektirir ve aynı işler farklı modeller için farklı iş 

zamanlarına sahiptir. 

 

Bu tezde U-şekilli karışık modelli montaj hatlarındaki hat dengeleme/model 

sıralama (UŞKMMH/HDMS) problemlerinin eşzamanlı uygulanmasındaki 

zorluklarının üstesinden gelebilmek için, Öncelik Tabanlı Genetik Algoritma 

(ÖTGA) tabanlı bir yaklaşım önerildi. Önerilen algoritmada, çözüm 

değerlendirmelerinin kolay ve etkili bir biçimde yapılabilmesi için Tavlama 

Benzetimi (TB) algoritması tabanlı çözüm değerlendirme yaklaşımı geliştirildi. 

Önerilen yaklaşımda, hat dengeleme ve model sıralama problemlerinin eşzamanlı ele 

alınabilmesini sağlamak amacıyla yeni komşuluk üretme mekanizması geliştirildi. 

Önerilen ÖTGA tabanlı yaklaşım, gerçek hayat montaj hatlarında sıkça rastlanan 

paralel istasyon ve bölgesel kısıtlar gibi özellikleri ele alabilecek niteliktedir. 

UŞKMMH/HDMS çözümünde paralel istasyon ve bölgesel kısıtlar daha önce hiçbir 

çalışmada beraber ele alınmadı. 

 

 Ayrıca paralel iş istasyonlarının kullanıldığı ve kullanılmadığı durumlar için ayrı 

değerlendirme fonksiyonları geliştirildi. Yeni değerlendirme fonksiyonu birincil 

amaç olarak istasyon sayısını minimize etmekte ve ikincil amaç olaraktan bütün 

çevirimler sonunda istasyon içi-arası iş yükü dengesini sağlamaktadır. 
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Son olarak, etkin kontrol parametrelerini saptamak amacıyla deney tasarımı 

kuruldu ve bu yeni prosedürler sayısal örnekle gösterildi. Önerilen yaklaşımın 

performansı test problemleri ve üretilen en küçük kısım setleriyle test edildi. 

 

Anahtar Kelimeler: U-şekilli karışık model montaj hattı dengeleme/sıralama 

problemi; Genetik algoritma; Tavlama benzetimi algoritması; Çözüm değerlendirme-

esnetme; Paralel iş istasyonu ataması; Bölgesel kısıtlar 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Relevance of the Problem 

 

Assembly work has a long history, and ancient people know how to create useful 

objects composed of multiple parts. The evolution of manufacturing has passed 

through distinct stages at various periods of history (Rekiek and Delchambre, 2006). 

The most important milestone in assembly is the invention of assembly lines (ALs). 

In 1913, Henry Ford invented the ALs in automobile manufacturing for the first time, 

which revolutionized the concept of assembly. He also was the first to introduce a 

moving belt in the factory. Employees were able to build cars one piece at a time 

instead of one car at a time. This concept changed the type of manufacturing system 

and reduced the cost of production.  

 
 ALs are production systems which consist of succeeding stations, connected by a 

material handling system, usually a conveyor belt, performing a set of tasks on the 

product passing through them. 

 

Over the years, the problem of designing efficient assembly lines received 

considerable attention of both companies and academicians. A well-known assembly 

design problem is the assembly line balancing problem (ALBP). ALBP deals with 

the allocation of tasks among workstations for minimizing/maximizing a given 

objective function. 

 
Until now, the role of assembly lines has been changed. Assembly lines were   

firstly used to produce a low variety of products in high volumes. However, 

customers were introduced to the new marketing strategies by TV, radio etc. at their 

houses. So, the emergence of new advertising channels increased the customer 

requirements for goods. People wanted to choose different models with a variety of 

features in different sizes and colors. For example, in the automobile industry, each 

model has some options and customers can choose any model based on their 

requirements and their purchasing power: options of engine power, kinds of fuel, and
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so on. Manufacturers were confronted with the need for offering a variety of features 

and finding a way to react quickly to market trends or lose market shares. Therefore, 

the life cycles of products become shorter. The rapid qualitative and quantitative 

changes in market demands caused manufacturers to seek the most efficient methods 

for managing their assembly lines so as to produce more sophisticated and more 

competitive products. Approaches like flexible manufacturing, just-in-time, and 

group technology arose at that moment. In such environments, mixed-model 

assembly lines (MMAL) appear to be the most appropriate ones. In MMAL, a set of 

similar models of a product, which may differ from one model to another with 

respect to size, color etc., can be assembled simultaneously in the same line, in order 

to avoid unnecessary inventories and increase manufacturing flexibility for 

responding to the changing demands of the customers. 

 

MMAL is a production line on which a variety of product models having similar 

characteristics are assembled. The produced products in MMALs usually have 

differences in the amount of production, work contents, and assembly time 

depending on the models. In such environments, an important decision problem, i.e., 

mixed-model assembly line balancing problem (MMAL/BP) arises. This problem 

deals with the allocation of the assembly tasks equally among workstations so that 

the given objective function is minimized/maximized and the precedence relations 

are satisfied. MMAL/BP is NP-hard and multi-objective in nature. 

 

Recently, U-type layouts have been utilized in many production lines in place of 

the traditional straight-line configuration due to the use of just-in-time production 

principles. This helps manufacturers to provide their customers with a variety of 

timely and cost effective products, also reduces the efforts for adjusting production 

facilities to demand changes, and increases labor productivity. U-type layouts, on 

which mixed-model production is performed, are called as the Mixed-Model U-Lines 

(MMUL). 
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1.2 Objective of the Thesis 

 

In recent years, in order to provide alternative methods to traditional optimization 

techniques, most of the researches have directed their works towards the 

development of heuristics and meta-heuristics, such as simulated annealing, tabu 

search (TS) and genetic algorithms (GAs). Among these meta-heuristics, the 

applications of GAs received a considerable attention from the researchers since it 

provides an alternative to traditional optimization techniques by using directed 

random search to locate optimum solutions in complex landscapes; and it is also 

proven to be effective in various combinatorial optimization problems. 

 

Workloads of workstations in MMUL depend on more factors than the other type 

of line balancing problems and development of solution procedures for MMUL 

balancing is more complex than that of other types of line balancing (Kara and 

Tekin, 2009).   

 

The objective of this thesis is to present a solution method based on Priority-

Based Genetic Algorithm (PGA) for being able to solve line balancing and model 

sequencing problems effectively in a simultaneous manner in MMULs.  To 

efficiently implement proposed algorithm, Simulated Annealing Algorithm (SA) 

based fitness evaluation approach is developed. The proposed PGA is able to address 

some particular features of the assembly process very common in real mixed-model 

assembly lines such as the use of parallel workstations, zoning constraints, U-shaped 

layouts. Considering these features simultaneously in a single method is a major 

contribution of this thesis. A new fitness function is also developed in order to 

encompass these features. New fitness function aims at minimizing the number of 

workstations (Type 1) as primary goal and smoothing the workload between and 

within at the end of all cycles as secondary goal.  
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1.3 Structure of the Thesis 

 

This thesis is divided into five chapters. The first chapter briefly introduces the 

theme of the study, points out the relevance of the problem and presents the main 

objectives of the work. 

 
In Chapter two, an overview of the assembly line balancing problem is given. It 

presents the main characteristics of assembly lines and defines the assembly line 

balancing problem. Different types of assembly line configurations and particular 

features of the assembly process that may restrict the configuration of the lines are 

presented. Solution approaches for assembly line balancing problems are given. And 

then, to identify the current research issues, a literature review is presented for 

tackling the assembly line balancing problems. 

 

In Chapter three, the main characteristics of the selected meta-heuristics (genetic 

algorithms and simulated annealing) are introduced. 

 

In Chapter four, the simultaneous solution of balancing/sequencing (MMUL/BS) 

problems in U-shaped assembly line is addressed. Firstly, general characteristics of 

U-shape assembly lines are introduced and differences of Mixed-model U-shape 

assembly lines from other lines are explained in detail. The problem is presented 

with notations and equations so that the general characteristics of the addressed 

problem can be understood better. And then, our proposed fitness function 

minimizing the number of stations and ensuring workload balancing between-within 

workstations at the end of all cycles is mathematically presented, and our proposed 

solution method based on priority-based genetic algorithm is introduced.  In our 

proposed genetic algorithm based solution method, simulated annealing based fitness 

evaluation approach is developed in order to perform fitness assessments. 

Experimental design is conducted in order to ensure the execution of our proposed 

algorithms with more efficient parameters. These new procedures are illustrated with 

a numerical example and its performance is tested through a set of test problems with 

the generated minimum part sets (MPS). Finally, the problem is expanded in a 

manner comprising parallel workstations and zoning constraints.  These new features 
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are given with notations and equations. Our proposed fitness function is expanded in 

a manner comprising the characteristics of the parallel stations. Also, these 

procedures are illustrated with a numerical example and its performance is tested 

through a set of test problems with the generated MPS. 

 
Finally, In Chapter five, conclusions and the possible future research directions 

about the problem are pointed out.  
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flow

CHAPTER TWO 

MAIN CHARACTERISTICS OF ASSEMBLY LINE SYSTEMS AND 

ASSEMBLY LINE BALANCING 

 

2.1 Introduction 

 

In this chapter, an overview of the assembly line balancing problem is given. It 

presents the main characteristics of the assembly line systems and defines the 

assembly line balancing problem. Different types of assembly line configurations and 

particular features of the assembly process that may restrict the configuration of the 

lines are presented. Solution approaches for assembly line balancing problems are 

given. And then, a literature review to tackle the assembly line balancing problems is 

presented for identifying current research issues. 

 

2.2 Main Characteristics of Assembly Line Systems 

 

The concept of assembly line is quite simple; a number of stations are connected 

through a material handling system, usually a conveyor belt, and each station 

performs one or more tasks (addition of components, inspection, etc.) on partially 

finished product in front of it (see Figure 2.1). For a comprehensive review on 

assembly lines, see Boysen et al., 2008. 

 

       

 
 

  
   

 
  

 
 
 
 

Figure 2.1 Concept of AL 
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2.2.1 Basic Concepts of Assembly Lines 

 

Assembly is the process of collecting various parts together in order to create a 

finished product. 

 

Assembly line is a flow-line production system composed of a sequence of 

workstations that are arranged along a material handling system. Unfinished and 

partially finished parts are consecutively launched down the system to create finished 

products, and are moved from one station to another. 

 

Task is a small portion of the total work needed to be accomplished to assemble 

the product. 

 

Task processing time (task time) is the time necessary for performing an 

operation (task).  

 

Workstation (station) is a segment of assembly line in which one or more tasks 

are performed along the work flow by one or more workers. 

 

Precedence relations are the task sequence in which order tasks must be 

performed. 

 

Precedence diagram is a graphical representation of the sequence of tasks as 

defined by the precedence relations. Figure 2.2 shows an example of a precedence 

diagram, in which the nodes represent tasks and the arcs express the precedence 

relationships between the tasks. For example, task 4 can only be performed after the 

completion of tasks 1 and 2 (tasks 1 and 2 are direct predecessors of task 4), and its 

processing time is 3. 

 

Cycle time is the time between the departures of two consecutive products from 

the line. In other words, it represents maximum amount of the work processed by 
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each station. Cycle time can not be smaller than the largest processing time, and 

cycle time must not exceed the station time on the assembly line. 

 
 

 
 
 
 
 
 
   
 
 
 
 
 
 
Figure 2.2 Precedence diagram 
 

 

Workstation time (station time) is the total work content of a station, and it is 

also referred as station workload. In other words, it represents the sum of the times of 

assigned tasks in a particular workstation. 

 

Workstation idle time is the positive difference between the cycle time and the 

workstation time.  

 

2.2.2 Additional Characteristics of Assembly Lines 

 

Assembly line systems show a great diversity due to very different conditions in 

industrial manufacturing. Assembly lines can be classified in a variety of additional 

technical or organizational aspects such as the number of products, line control, 

variability of task processing times, line layout, assignment restrictions, level of 

automation, type of stations, and etc. (Scholl, 1999; Baudin, 2002; Becker and 

Scholl, 2006; Rekiek and Delchambre, 2006; Boysen et al., 2008). Figure 2.3 

illustrates main characteristics of assembly line balancing problems (Scholl, 1999). 

While continuous lines indicate that a particular combination of characteristics is 

typical, broken lines signify that it is unusual. 

7 10 11 4 

2 

1 9 

3 6 8 
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  Figure 2.3 Classification of assembly line balancing problems 

  

  Some of most important properties of ALs can be explained as follows: 

 

 2.2.2.1 Number of Products 

 

The number and variety of products assembled in the line can be categorized as 

single-model lines, mixed-model lines and multi-model lines (see Figure 2.4). 

 

Single-model assembly lines; assembly lines are used to produce high-volume 

production of only one product. 

 

Mixed-model assembly lines; assembly lines are used to produce simultaneously 

a set of different models of the same base product in an arbitrarily intermixed 

sequence (not in batches). 

 

Multi-model assembly lines; assembly lines are used to produce batches of 

similar models with intermediate setup operations. 

 

 
 
 

assembly line balancing problems 

single-model mixed-model multi-model 

paced / unbuffered unpaced / buffered 

deterministic stochastic dynamic 
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Figure 2.4 Assembly lines for (a) single-model, (b) mixed-model products, and (c) multi-model 

 

 2.2.2.2 Line Control 

 

Line control can be categorized as paced assembly lines and unpaced assembly 

lines.  In a paced assembly line, each workstation has a fixed amount of time to 

complete all the tasks which are assigned to it: the cycle time. When this time is 

elapsed the sub-assembly must be transferred to the next workstation, and the 

workstation receives a new sub-assembly from the previous workstation. Hence, 

these assembly lines have a fixed production rate equal to the reciprocal of the cycle 

time. Because tasks are indivisible work elements, cycle time can not be smaller than 

the largest task time. The absence of this fixed time can be referred as unpaced 

assembly lines. All workstations operate at an individual speed so that work pieces 

may have to wait before entering the next workstation and workstations may be idle 

when they have to wait for the next work piece. Allowing buffers between the 

workstations partially overcome the above mentioned difficulties. So, the ALBP is 

accompanied by the additional decision problem of positioning and dimensioning of 

buffers. 

 

 

 

 

SETUP SETUP
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 2.2.2.3 Variability of Task Times 

 

A further important characteristic defining different versions of ALs is the 

variability of task times. The variability of task processing times depends on the 

nature of the tasks and operators. 

 

Deterministic task time; in assembly lines, expected variance of the task times 

may remain sufficiently small, due to simple tasks or highly reliable equipment. 

Modern machines and robots are able to work permanently at a constant speed. In 

this case, task processing times are assumed to be deterministic. 

 

Stochastic task time; in automated flow line-production systems, various 

production rates may be caused by machine breakdowns, the instability of worker’s 

pace skill and motivation. To incorporate the processing time variability, operation 

times may be modified by adding the stochastic component. 

 

Dynamic task time; in case of human workers, systematic reductions or 

successive improvements are possible due to learning effects of the production 

process. In this case, the task processing times are assumed to be dynamic. 

 

 2.2.2.4 Assignment Constraints 

 

Several types of assignment constraints may restrict the possible assignments of 

tasks into workstations. 

 

Task related constraints; in some situations, pairs of tasks must be assigned to 

same workstation or not, which are called positive or negative zoning constraints, 

respectively. Positive zoning constraints are related to the use of common equipment, 

tool or common processing conditions such as temperature, moisture, operator 

qualification level etc., so it is desirable that they must be assigned to the same 

workstation. In some cases, tasks are incompatible and must not be performed at the 

same workstation, which are called negative zoning constraints (e.g. milling and 
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measuring operations, painting and drilling operations must not be performed at the 

same workstations). 

 

Workstation related constraints; in some situations, special machines or tools 

requiring the execution of certain tasks are only available in one or a few 

workstations, and can not be moved another location.  

 

Position related constraints; in some situations, tasks may need a certain 

position of the work pieces so that it may be neither possible nor economical to turn 

the work pieces too often (e.g., heavy items such as car, washing machines, etc.).  

  

Operator related constraints; in some situations, tasks require different levels of 

skills, depending on their complexity. So, some operators must be assigned to the 

certain tasks. 

 

 2.2.2.5 Line Layout 

 

Assembly lines can also be distinguished with regard to layout of the assembly 

line. Most important assembly lines encountered in industrial facilities may be 

explained as follows; 

 

Traditional or Straight (serial) assembly lines: In traditional assembly lines, 

workstations are physically arranged along a conveyor belt serially, and operators 

perform tasks on a continuous portion of the line. 

 

U-shaped lines: In U-shape assembly lines, the workstations are arranged along a 

rather narrow “U” so that during the same cycle two work pieces at different 

positions on the line can be handled simultaneously. This can result in better balance 

of workstation loads due to larger number of task-workstation combinations. The U-

line assembly line balancing problem is introduced and modeled first by Miltenburg 

and Wijngaard (1994). Traditional lines may have several disadvantages. So, the 

companies have switched their lines from straight to U-shaped assembly lines since 
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the just-in-time principles were introduced. A more detailed description of U-shaped 

assembly lines is given in Chapter four. 

 

Parallel lines: The implementation of these lines allows increase in flexibility and 

decrease in failure sensitivity of the production system. Furthermore, the use of 

parallel lines allows the enlargement of cycle time which has several advantages 

such as the risk of production stoppage due to significant reduce in machine 

breakdowns; better line balances can often be obtained, because more combinations 

of tasks exist. 

 

Two-side lines: It may be necessary to operate a two-sided line which consists of 

two connected serial lines in parallel for assembly heavy work pieces. Instead of 

single workstation, pairs of opposite workstations on either side of the line (left-hand 

side and right-hand side workstations) work in parallel, i.e., they work 

simultaneously at opposite sides of the same work pieces. 

 

Feeder lines: In these lines, the main line fed by other lines where subassemblies 

are produced. Figure 2.5 illustrates some of the line layouts. 
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(c) 

 
 
 
 
 
 
 
 
 
 
                                    Figure 2.5 Line Layouts: (a) serial, (b) U-shaped, and (c) feeder lines 

 
 
2.2.3 Performance Measures of Assembly Lines 

 

The installation of an assembly line is a medium or long-term decision and 

usually requires large capital investments, hence designing and balancing the line is 

the most important issue in order to produce as efficiently as possible. Besides 

balancing a new system, a running one has to be re-balanced periodically or after 

changes in the production process or in the production program have taken place. 

Because of the long-term effect of balancing decisions, the objectives which are used 

have to be carefully chosen by considering the strategic goals of the enterprise 

(Becker and Scholl, 2006). 

 

The most widely used criterions are related with the maximization of the capacity 

utilization which is measured by the line efficiency (the percentage of productive 

time in the line) (Ghosh and Gagnon, 1989). Among them are (i) the minimization of 

the number of workstations for a given cycle time, (ii) the minimization of cycle time 

for a given number of workstations and (iii) the minimization of the idle time of the 

line. Other capacity related criterions are as follows (Scholl, 1999): minimizing the 

flow time (throughput time, i.e. the time interval between launching a work piece 

down the line and removing the finished product from the line), equalizing the 

utilization levels of the stations, minimizing the balance delay time (i.e. sum of the 

idle times) and the balance delay (ratio) (percentage of idle times) over all stations, 

and minimizing the waiting times of work pieces. 
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The economical nature criteria deal with minimizing the total cost of the line, 

including long-term investment cost and short-term operating cost. Both investment 

and operating costs depend mainly on the cycle time and the number of workstations. 

The most important cost categories are as shown below (Scholl, 1999). 

  

 machinery and tool costs,  

 labor costs,  

 materials costs,  

 idle time costs,  

 penalty costs for not satisfying the demand,  

 incompletion costs,  

 setup costs  

 inventory costs 

 

Besides capacity and cost related objectives, social goals such as job enrichment 

and job enlargement etc. may be important for assigning less monotonous tasks to an 

operator and for increasing the number of tasks performed by an operator. 

 

2.3 Assembly Line Balancing 

 

Assembly line balancing is the problem of partitioning of tasks to workstations in 

such a way that some performance measures are maximized/minimized subject to 

precedence relationship among tasks (Erel and Sarin, 1998; Becker and Scholl, 

2006).  

 

The simple assembly line balancing problem (SALBP) was first mathematically 

formulated by Salveson (1955) and, since then, a massive body of academic 

literature has covered the balancing of assembly lines. 
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The basic problem described so far is called simple assembly line balancing 

problem (SALBP) in the literature (Baybars, 1986) and, since then, a few versions 

have been defined by varying problem structure and objective function. 

 

Based on the model structure, ALBP can be classified into two groups as seen in 

Figure 2.6. This classification compiles the classification schemes of Baybars (1986), 

Scholl (1999) and Becker and Scholl (2006). The first group includes single-model 

assembly line balancing problem (SMALBP), multi-model assembly line balancing 

problem (MuMALBP), and mixed-model assembly line balancing problem 

(MMALBP); the second group includes simple assembly line balancing problem 

(SALBP) and general assembly line balancing problem (GALBP). The GALBP 

model includes all of the models that are not SALBP, such as balancing of mixed-

model, parallel, u-shaped and two sided lines with stochastic processing times; 

thereby more realistic ALBP models can be formulated by GALBP (Gen et al., 

2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Classification of assembly line balancing models 
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SALBP has the following main characteristics (Scholl, 1999); 

 

 Mass-production of one homogeneous product  

 Given production process 

 Paced line with fixed cycle time 

 Deterministic and integral operation times 

 No assignment restrictions besides the precedence constraints 

 Serial layout, one-sided stations 

 All stations are equally equipped with respect to machines and workers 

 Fixed rate launching, launch interval equals to cycle time 

 
According to objective function, well-known SMALBP versions are as follows 

(Baybars, 1986; Scholl, 1999); 

 

SALBP-1 (Type-1) consists of assigning tasks to stations so that the number of 

stations is minimized for a given cycle time. 

 

SALBP-2 (Type-2) aims at maximizing the production rate, or equivalently, 

minimizing the sum of the idle times for a given number of stations. 

 

SALBP-F is a feasibility problem in which the feasible line balance whether 

exists or not for a given combination of number of stations and cycle time.  

 

SALBP-E is the most general problem version maximizing the line efficiency 

thereby simultaneously minimizing cycle time and number of stations considering 

their interrelationship. 

 

Partly, MMALBP relies on same basic assumptions of SALBP, such as, 

deterministic processing times, no assignment restrictions, serial line layout, fixed 

rate launching, etc.  
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Additional characteristics of MMALBP are as follows (Scholl, 1999): 

 

 The assembly of each model requires performing a set of tasks which are 

connected by precedence relations (i.e., precedence graph for each model). 

 A subset of tasks is common to all models; the precedence graphs of all 

models can be combined into a non-cyclical joint precedence graph. 

 Tasks, which are common to several models, are performed by the same 

station but they may have different processing times (i.e., zero processing 

times indicate that the task is not required for the model). 

 The total time available for the production is fixed and known (given by the 

number of shifts and the shift durations). 

 The demands for all models (expected model mix) during the planning period 

are fixed and known. 

 

In Figure 2.7, precedence and joint precedence diagrams of two models can be 

seen. 

 

According to the objective function, the MMALBP can be classified into four 

different types, (Scholl, 1999): 

 

MMALBP-1 (Type-1): Minimizes the number of workstations, for a given cycle 

time. 

 

MMALBP-2 (Type-2): Minimizes the cycle time, for a given number of 

workstations. 

 

MMALBP-E: According to SALBP-E, the cycle time as well as the number of 

stations may vary in certain ranges. The objective is to maximize the line efficiency 

or, equivalently, to minimize the cycle time and the number of stations by 

considering their interrelationship. 
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(b) 

 

     (c) 

 

                  Figure 2.7 Precedence diagrams of (a) model 1, (b) model 2 and (c) combined 
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MMALBP-F: By analogy with SALBP-F, it is a feasibility problem which is to 

establish whether a feasible line balance exists for a given combination of number of 

stations and cycle time.  

 

Additionally, we can define three problem versions of U-line assembly line 

balancing problem (UALBP) regarding to SALBP version (Scholl, 1999): 

 

UALBP-1 (Type-1): Given the cycle time, minimize the number of stations. 

 

UALBP-2 (Type-2): Given the number of stations, minimize the cycle time. 

  

UALBP-E: Maximize the line efficiency for cycle time and the number of 

stations which are variable. 

 

In this thesis, the U-shaped mixed-model assembly line balancing Type-1 problem 

involving the minimization of the number of workstations for a given cycle time is 

studied. 

 

2.4 Solution Approaches for Assembly Line Balancing Problems 

 

The assembly line balancing problem was firstly formulated by Salveson (1955) 

and, since then, numerous procedures have been developed for solving the problem. 

ALBP falls into the NP hard class of combinatorial optimization problems (Karp, 

1972). Therefore, the complex mathematical nature of the problem makes it difficult 

to solve (Erel and Gokcen, 1999). Classification of solution approaches for ALBP 

(Rekiek and Delchambre, 2006) is given in Figure 2.8.  

 

For a comprehensive literature reviews on both exact and approximation methods 

for the different types of assembly line balancing problems, the readers can refer to 

Ghosh and Gagnon (1989) that presents a comprehensive review and analysis of the 

different methods for design, balancing and scheduling of assembly systems; Erel 

and Sarin (1998) that present a comprehensive review of the procedures for single-
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model and multi model assembly lines and by Becker and Scholl (2006) that present 

a survey on problems and methods for GALBP with features such as cost/profit 

oriented objectives, equipment selection/process alternatives, parallel 

workstations/tasks, U-shaped line layout, assignment restrictions, stochastic task 

processing times and mixed model assembly lines; Scholl and Becker (2006) present 

a review and analysis of exact and heuristic solution procedures for SALBP and 

lines; Rekiek and Delchambre (2006) focus on solutions methods for solving 

SALBP; and Batini et al. (2007) give a classification of the published papers between  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
  
 
 
 
 
 
 

    Figure 2.8 Classification of solution approaches for ALBP 
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the years 1989 and 2005 in relation to the adopted balancing method and the 

reference layout configuration taken into consideration. 

 

2.4.1 Exact Methods 

 

The optimum seeking methods, i.e., dynamic programming and branch & bound 

methods have been proposed to solve ALBP. Lower bounds are obtained by solving 

problems which are derived from the considered problem by omitting or relaxing 

constraints (Scholl, 1999). 

 

 2.4.1.1 Branch and Bound 

 

The branch and bound method is a well-known general solution concept in 

combinatorial optimization. Branch and bound algorithms consist of two main 

components branching (enumeration) and bounding. During the branching process, 

the initial problem divided into sub-problems. By continuously developing such sub-

problems, a multi-level enumeration tree (with sub-problems as nodes) is 

constructed. Generally, bounding is applied for reducing the size of enumeration 

trees. This is achieved by computing lower bounds on the number of stations, at least 

necessary for a feasible solution, in each node. Lower bounds are obtained by solving 

relaxations which are derived from the problem considered by omitting or relaxing 

constraints.  

 

 2.4.1.2 Dynamic Programming 

 

Like branch and bound, dynamic programming is a general approach for many 

types of problems including most combinatorial optimization problems. A given 

problem is divided into sub-problems which are sequentially solved until the initial 

problem is finally solved. 
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 2.4.1.3 Graph Search Technique 

 

Johnson (1988) proposed a depth-first-search method called fast algorithm for 

balancing line effectively (FABLE). Sub-problems are constructed by adding an 

assignable task to the currently considered station k (starting with station 1). If no 

such task exists, the current station load is maximal and the consecutive stations k+1 

are opened. In each of the n iterations (i=1,..n), one non-marked task with the largest 

process time (which has no predecessor or only marked predecessors) gets the 

number i and is marked. Whenever a station is opened, the task with the smallest 

number among the assignable tasks is added. Any further tasks in the station must 

have a larger number than the task assigned in the ancestor node. Then, the current 

branch is traced back by removing tasks assignments until an alternative branch can 

be followed. 

 

2.4.2 Approximation Methods 

 

Numerous research efforts have been directed for optimum seeking methods in 

order to obtain an optimal solution. However, none of these methods has proven to 

be of practical use for large problems due to their computational inefficiency and 

vast search space. So, instead of exact procedures that find optimal solutions for 

simplified problems, heuristic procedures are used to find good solutions for much 

more complex problems. These approaches can be divided into two categories, 

simple heuristics and meta-heuristics. 

 

 2.4.2.1 Simple Heuristics 

 

None of the methods guarantees an optimal solution, but they are likely to result 

in good solutions. Among simple heuristic methods, the most notable ones are: 

Ranked Positional Weight Technique (RPWT) (Helgeson and Birnie, 1961), 

Kilbridge and Wester’s (1961), and Moodie and Young's (1965) heuristics. RPWT is 

the first heuristic proposed for solving ALBP. 
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 2.4.2.2 Meta-Heuristics 

 

 Meta-heuristics are the natural extension of priority-based heuristics, as they start 

with an initial solution or population (predefined number of solutions) which are 

obtained through a heuristic or generated randomly. Meta-heuristics improve this 

initial solution or population. It has been shown that they provide effective 

approximate solutions for difficult NP-hard combinatorial optimization problems. In 

recent years, the usage of meta-heuristics for solving ALBPs became popular among 

researchers. Genetic Algorithm, Simulated Annealing, Tabu Search and Ant Colony 

Optimization are well known meta-heuristics for solving ALBPs. 

 

2.5 Literature Review 

 

The mathematical formulation of the ALBP for simple assembly lines was first 

stated by Salveson (1955) and, since then, extensive research has been done in this 

area. Comprehensive literature reviews on this subject were provided in Baybars 

(1986), Ghosh and Gagnon (1989), Erel and Sarin (1998), Scholl (1999). For 

traditional mixed model straight lines, line balancing was studied by few researchers, 

such as Thomopoulos (1970), Macaskill (1972), Askin and Zhou (1997), Gokcen and 

Erel (1997, 1998), McMullen and Frazier (1997, 1998), Erel and Gokcen (1999), 

Merengo et al. (1999), Kim et al. (2000a), Buckhin et al. (2002), Vilarinho and 

Simaria (2002, 2006), Simaria and Vilarinho (2004), Choi (2009). Model sequencing 

in the straight lines has been investigated by a number of researchers including 

Miltenburg and Sinnamon (1989, 1992, 1995), Miltenburg (1989), Yano and 

Rachamadugu (1991), Kim et al. (2000a), Duplaga and Bragg (1998), Merengo et al. 

(1999), McMullen and Frazier (2000), Karabati and Sayin (2003). Model sequencing 

in just-in-time (JIT) production systems has been addressed by Miltenburg (1989), 

Monden (1993) and McMullen (1998). Line balancing and model sequencing in the 

straight lines were solved sequentially by few researcher, such as Thomopolous 

(1967), Dar-el and Navidi (1981), Bard et al. (1992).  
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In case of U-line production systems, few researches have been carried out 

recently. Miltenburg and Wijngaard (1994), the first authors to study this problem, 

developed a dynamic programming exact procedure and a modified ranked positional 

weight technique (RPWT) heuristic being able to solve instances with up to 11 tasks. 

In order to address larger problems, they proposed a set of single-pass heuristic 

procedures being able to solve instances with up to 111 tasks. They also explained 

the differences between SALB and SULB. 

 

Miltenburg (1998) developed dynamic programming model for solving U-line 

balancing problem. In his problem, more than one U-line assembly lines in one 

production line were considered. He found an optimal solution when individual U-

lines did not have more than 22 tasks and did not have wide, sparse precedence 

graphs. 

 

The problem of balancing a U-shaped mixed-model assembly line (U-MALBP) 

was first described by Sparling and Miltenburg (1998), and they proposed a four-

stage approximate solution algorithm. They used the combined precedence diagram 

and the weighted average task processing times to create a single-model balancing 

problem, and by using a branch-and-bound algorithm, an optimal solution for this 

problem was obtained, called initial balance. Several unbalance measures regarding 

mixed-model nature of the original problem were defined and computed for the 

initial balance. Then, a smoothing algorithm was applied in order to reduce the 

unbalance. The objective of this smoothing algorithm was to minimize the absolute 

deviation of workloads (ADW) among workstations.  This algorithm exchanges tasks 

between workstations so that the value of the selected unbalance measure decreases. 

An important aspect of this approach was that the sequence in which the models 

were launched in the U-shaped line must be known, as it directly influences the 

values of the unbalance measures. Although their study focuses on the minimization 

of the number of workstation, their algorithm mostly leads to infeasible solutions to 

the problem by means of cycle time restriction. 
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Ajenblit and Wainwright (1998) were pioneers in balancing the U-shaped 

SMALBP Type-1 using GAs. The authors dealt with two possible variations of this 

problem, minimizing the total idle time and balancing of workload among 

workstations, or a combination of both. They developed six different assignment 

algorithms to interpret a chromosome and assign tasks to workstations. These 

algorithms based on both dynamic programming and various heuristic algorithms, 

which were proposed in Miltenburg and Wijngaard’s research (1994). In this study, 

the authors applied the proposed GA to 61 test problems. In comparison to previous 

researches, the proposed GA gave superior results in 11 cases, the same results in 42 

problems, superior in 11 problems and worse in 1 problem. 

 

The first integer programming formulation (IP) formulation of SULB was 

developed by Urban (1998). This formulation uses the phantom precedence diagram 

concept. A phantom precedence diagram was appended to the original precedence 

diagram so that assignments to the workstations could be made forward through the 

original diagram, backward through the phantom diagram, or simultaneously in both 

directions. The IP formulation managed to solve optimality problems with up to 45 

tasks. 

 

Scholl and Klein (1999) developed a branch-and-bound based heuristic called 

ULINO (U-Line optimizer), which was adapted from a previous algorithm, called 

SALOME, they had developed for balancing straight lines. The computational 

experience involved a large set of problems with up to 297 tasks and proved a good 

performance of the procedure, especially for the objective of minimizing the number 

of workstations. 

 

The study of Kim et al. (2000b) was the first dealing simultaneously with the 

problems of balancing and sequencing mixed-model U-lines, as the line balance and 

the model sequence both influence the performance measure used by the authors: the 

absolute deviation of workloads (ADW).  Combining these two problems results in a 

new problem, called mixed-model U-line balancing and sequencing (MMUL/BS). 

These authors proposed a new approach using an artificial intelligence search 
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technique, called co-evolutionary algorithm, which maintains two sets of 

populations, one to represent solutions of the line balancing problem and the other to 

represent solutions of the model sequencing problem. Each individual in a population 

has a matching pair in the other population, and fitness (based on the absolute 

deviation of workloads) was computed for the pair of individuals. To generate new 

individuals, different genetic operators were defined for each of the populations. The 

proposed co-evolutionary algorithm aims at minimizing the ADW for a given 

number of workstations, and uses such a concept that the solution obtained from the 

MMUL/LB problem is input to the MMUL/MS problem. Computational experiments 

proved a good performance of the procedure when compared with that of the 

hierarchical approach and of two other co-evolutionary algorithms for the same set of 

test problems. 

 

Erel et al. (2001) developed a simulated annealing (SA) based approach to solve 

the problem of assembly line-balancing problem a U-type configuration (SULB). 

The proposed algorithm employs an intelligent mechanism to search a large solution 

space. The SA procedure aims at achieving feasibility regarding cycle time 

constraints. The objective function used for the minimization of the maximum station 

time, thus eliminating the unfeasibility caused by the workstation exceeding the 

cycle time. They proposed a different way for building the initial solution. First, each 

task was assigned to a different workstation and then the number of workstations was 

reduced by combining two adjacent workstations. When the workload of the 

combined workstation exceeds cycle time, the initial solution was completed and the 

subsequent steps of the SA procedure were initialized. The performance of the 

algorithm was measured by solving a large number of benchmark problems available 

in the literature. The results of the computational experiments indicated that the 

proposed SA-based algorithm performs quite effectively. It also gave the optimal 

solution for most problem instances. Future research directions and a comprehensive 

bibliography were also provided here.  

 

Miltenburg (2002) developed a genetic algorithm (GA) for solving the 

MMUL/BS, the balancing and sequencing problem, with fixed number of 

workstation. The model aims at minimizing the ADW and the deviation of part 
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production quantities in a JIT environment to facilitate “level” production. Desired 

goal to achieve was the generation of level production schedules for other production 

facilities operating in JIT environment. It took into account the number of parts, from 

each of the different production facilities, each model required to be assembled. The 

proposed GA was found to offer good solutions. Detailed information was given 

concerning the performance of the proposed GA. Average computation times per 

instance were found to be 130s when the proposed GA employed two point 

crossovers, 300s when the proposed GA involved cycle crossover and 300s when the 

proposed GA included randomly generated solutions. 

 

Aase et al. (2003) proposed a set of branch-and-bound procedures, called U-OPT, 

with different design elements (branching strategies, fathoming criteria, etc.) to solve 

the U-ALBP. They showed that design elements should be included in optimization 

procedures or algorithms, including branch-and-bound procedures, for solving the U-

shaped assembly line-balancing problem. New solution procedures were proposed 

and compared experimentally with several existing procedures using a variety of 

problem sets from the literature. Significant improvements over the existing methods 

were reported by the authors when solving problem instances of reasonable 

application size for U-shaped layouts (problems with up to 50 tasks).  

 

Guerriero and Miltenburg (2003) developed a mathematical model and recursive 

algorithms to solve the U-ALBP (Type-1) with stochastic task processing times. An 

equivalent shortest path network was also presented. 558 instances were solved by 

the first algorithm, and the largest 198 instances were solved again by the second 

algorithm. Their study suggested that the algorithms were able to solve most 

instances of practical size, where practical size seemed to be 25 or fewer tasks and 

precedence order strengths of 0.2 or more. So, Computational experiments showed 

that the algorithms were able to solve problems of practical size. 

 

Aase et al. (2004) addressed the impact on labor productivity. The purpose of this 

research was to confirm empirically that U-shaped assembly lines improve labor 

productivity. Results indicated that labor productivity would improve significantly 
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under certain conditions when switching from a straight-line layout to a U-shaped 

layout but not in all cases. The research also revealed some limitations of such a 

layout change when factors such as the number of tasks and cycle times were varied.  

 

Martinez and Duff (2004) addressed the U-shaped SMALBP Type-1. They first 

solved this problem using 10 heuristic rules adapted from a simple line balancing 

problem, such as maximum ranked positional weight, maximum total number of 

follower tasks or precedence tasks, and maximum processing time, and compared 

these heuristic solutions with the optimal solutions obtained from previous 

researches. Thereafter, they modified the Ponnambalam et al.’s GA (2000) and 

inserted the solutions obtained using these heuristic rules to the initial population. 

They illustrated the proposed GA using the Jackson’s problem (1956). The results 

showed that the addition of a GA can improve the current solution. 

 

Gokcen et al. (2005) presented a shortest route formulation for simple U-type 

assembly line balancing (SULB) problem and illustrated on a numerical example. 

This model was based on the shortest route model developed by Gutjahr and 

Nemhauser (1964) for the traditional single model assembly line balancing problem. 

They noted that future research directions about the developed model could also be 

used as a framework to develop effective heuristic procedures for solving a simple 

U-type line-balancing problem.  

 

Erel et al. (2005) presented a beam search-based method for the stochastic 

assembly line balancing problem in U-lines. The proposed method was the first 

heuristic for the stochastic U-type problem with the total expected cost criterion. The 

proposed method minimizes expected total cost comprised of total labor cost and 

expected total incompletion cost. The performance of the proposed method was 

measured on various test problems. The results of the computational experiments 

indicated that the average performance of the proposed method was better than the 

best-known heuristic in the literature for the traditional straight-line problem. Future 

research directions and the related bibliography were also provided in this paper.  
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A goal programming approach to simultaneously consider several conflicting 

objectives was presented by Gokcen and Agpak (2006). The model was based on the 

integer programming formulation developed by Urban (1998) for the ULB problem 

and the goal model of Deckro and Rangachari (1990) that developed for the 

traditional single model assembly line balancing (ALB) problem. The proposed 

model, the first multi-criteria decision making approach to the U-line version, 

provides increased flexibility to the decision maker since several conflicting goals 

can be simultaneously considered. No comparison with other algorithms was 

provided and the computational experience was only dedicated to the study of the 

multi-criteria version of the problem. 

 

Kim et al. (2006) proposed a new evolutionary approach to deal with both 

balancing and sequencing problems in mixed-model U-shaped lines with fixed 

number of workstation. A new genetic approach, called endosymbiotic evolutionary 

algorithm, was proposed for solving the two problems of line balancing and model 

sequencing at the same time. The algorithm imitates the natural evolution process of 

endosymbionts that is an extension of existing cooperative or symbiotic evolutionary 

algorithm. The distinguishing feature of the proposed algorithm is that it maintains 

endosymbionts being a combination of an individual and its symbiotic partner. The 

existence of endosymbionts can accelerate the speed that individuals converge to 

good solutions. This enhanced capability of exploitation together with the parallel 

search capability of traditional symbiotic algorithms results in finding better quality 

solutions than existing hierarchical approaches and symbiotic algorithms. A set of 

experiments were carried out, and the results were reported.  

 

Urban and Chiang (2006) proposed an optimal piecewise-linear program for the 

U-line balancing problem with stochastic task times. This paper examined the U-line 

balancing problem with stochastic task times. A chance-constrained, piecewise-

linear, integer program was formulated for finding the optimal solution. Various 

approaches used to identify a tight lower bound were also presented. Computational 

results showed that the proposed method was able to solve problems of practical size.  
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Kara et al. (2007a) proposed a simulated annealing algorithm based approach for 

simultaneously solving the balancing and sequencing problems of mixed-model U-

lines. The primary goal of the proposed approach was to minimize the number of 

workstations required on the line (Type I). To meet this aim, the proposed approach 

uses such a methodology that enables the minimization of the absolute deviation of 

workloads among workstations as well. In terms of minimizing the number of 

workstations required on the mixed-model U-line, as well as minimizing the absolute 

deviation of workloads among workstations, the proposed approach was the first 

method in the literature dealing with the balancing and sequencing problems of 

mixed-model U-lines at the same time. The newly developed neighborhood 

generation method was inserted into the simulated annealing (SA) algorithm. 

Problem illustrated on a numerical example. 

 

Agpak and Gokcen (2007) developed four different new models of chance-

constrained binary integer programming models for the stochastic traditional and U-

type line balancing (ULB) problem. In this study, these models have been solved for 

several test problems well-known in the literature and the results have been 

compared with respect to the number of stations. 

 

Toklu and Ozcan (2007) presented a fuzzy goal programming model for the 

simple U-line balancing (SULB) problem with multiple objectives. The proposed 

model was the first fuzzy multi-objective decision-making approach to the SULB 

problem with multiple objectives which aims at simultaneously optimizing several 

conflicting goals. The proposed model was illustrated using an example. A 

computational study was conducted by solving a large number of test problems to 

investigate the relationship between the fuzzy goals and to compare them with the 

goal programming model proposed by Gokcen and Agpak (2006). The results of the 

computational experiments indicated that the proposed model was more realistic than 

existing models for the SULB problem with multiple objectives and also gave 

increased flexibility for the decision-makers to determine different alternatives. 
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Baykasoglu and Ozbakir (2007) proposed a new multiple-rule-based genetic 

algorithm (GA) for balancing U-type assembly lines with stochastic task times. The 

proposed algorithm integrates the COMSOAL method, task assignment heuristics, 

and a GA. The performance of the proposed algorithm was compared with the 

optimal solutions found by Urban and Chiang (2006). The proposed algorithm found 

optimal solutions for all problems, except one case, within considerably shorter CPU 

times than the existing results. It was concluded that the proposed GA was able to 

solve problems of practical size with reasonable CPU times. 

 

Kara et al. (2007b) presented a multi-objective simulated annealing algorithm 

based approach for balancing and sequencing mixed-model U-lines to minimize 

simultaneously the absolute deviations of workloads across workstations, part usage 

rate, and cost of setups. To increase the performance of the proposed algorithm, a 

newly developed neighborhood generation method was also employed. Solution 

methodology was illustrated using an example; and a two-stage comprehensive 

experimental study was conducted to determine the effective values of algorithm 

parameters and investigate the relationships between performance measures. Results 

showed that the proposed approach was more realistic than the limited number of 

existing methodologies. The proposed approach was also extended for considering 

the stochastic completion times of tasks. 

 

Boysen and Fliedner (2008) proposed a versatile algorithm for assembly line 

balancing. The proposed algorithm consists of two staged graph-algorithm, which 

was designed to solve line balancing problems including relevant practice constraints 

(GALBP), such as parallel work stations and tasks, cost synergies, processing 

alternatives, zoning restrictions, stochastic processing times or U-shaped assembly 

lines. Unlike former procedures, the presented approach can be easily modified to 

incorporate all of the named extensions. It is not only possible to select and solve 

single classes of constraints, but rather any combination of them with just slight 

modifications.  
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Hwang et al. (2008) presented a multi-objective genetic algorithm (moGA) using 

the priority-based coding method to solve the U-shaped assembly line balancing 

problem (UALBP). They considered both the traditional straight line system and the 

U-shaped assembly line system, thus as an unbiased examination of line efficiency. 

Considered performance criteria are the number of workstations (the line efficiency) 

and the variation of workload. Several well-known test problems considered by 

Talbot et al. (1986) were solved by using proposed multi-objective genetic algorithm. 

The results of experiments showed that the proposed model produced as good or 

even better line efficiency of workstation integration and improved the variation of 

workload.  

 

Sabuncuoglu et al. (2009) proposed ant colony algorithms to solve the single-

model U-type assembly line balancing problem. The problem considered in this 

study is a single model, deterministic U-line balancing problem. Their objective was 

to find a design with the minimum number of stations subject to the cycle time and 

precedence relations constraints. They conducted an extensive experimental study in 

which the performance of the proposed algorithm was tested by using the benchmark 

problems in the literature, and was compared against best known algorithms reported 

in the literature. They used two data sets: Talbot et al. (1986) with 64 instances of 

problem sizes ranging from 8 to 111 tasks and Scholl (1993) with 168 instances 

ranging from 25 to 297 tasks. The results indicated that the proposed algorithms 

display very competitive performance against them. 

 

Hwang and Katayama (2009) proposed a new evolutionary approach to deal with 

workload balancing problems in mixed-model U-shaped lines without job sequence 

so that all models are produced by same quantity. Their paper was an extension of 

the priority-based genetic algorithm (PGA), and designs an amelioration structure 

with a genetic algorithm (ASGA) to improve workload balance on MMAL 

production systems. They considered both the traditional straight line system and the 

U-shaped assembly line; and the performance criteria considered were the number of 

workstations (the line efficiency) and the variation of workload, simultaneously. 
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Computational experiments were performed based on three well-known test 

problems. 

 

Kara and Tekin (2009) presented a mixed integer programming formulation for 

optimal balancing of mixed-model U-lines. The proposed approach minimizes the 

number of workstations required on the line for a given model sequence. They also 

presented the comsoal algorithm based heuristic method. They solved two methods 

up to 10-task, 20-task and 30-task problem instances. They reported that most of the 

10-task problem instances were solved optimally, the optimality of almost none of 

20-task and 30-task problem instances was not guarantied or not found, and in 

addition, feasible solutions were found for most of 20-task problems but feasible 

solutions could be obtained for a few of 30-task problems. 

The literature review is summarized as shown in Table 2.1. This table contains the 

published papers, which address the U-line assembly line balancing problem in 

chronological order.  

 

Our conclusions about this review are listed below: 

 

 8 out of 28 articles surveyed, studied the mixed-model U-shape line 

balancing problem. The other 19 articles surveyed, focused on the simple U-

shape line balancing problem. Only Aase et al. (2004) addressed the benefits 

of U-shape production lines on labor productivity. 

 

 Only one article (Kara et al., 2007a) dealt with the balancing and sequencing 

problem of mixed-model U-lines simultaneously to minimize the number of 

workstations (Type 1). The other five articles that focused on mixed-model 

U-shape line balancing problem tried to solve model sequencing and line 

balancing problem sequentially by considering the fixed number of 

workstation or the fixed model sequence. 
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 None of the articles focusing on the mixed-model U-shape line balancing 

problem has considered parallel workstations and zoning restrictions 

simultaneously.  

 

 Six articles that focused on mixed-model U-shape line balancing problem 

used the absolute deviation of workloads (ADW) among workstations as 

performance measure (Sparling and Miltenburg (1998), Miltenburg (2002), 

Kim et al. (2000b), Kim et al. (2006), Kara et al. (2007a), Kara et al. 

(2007b)). 

 

 Only one article (Kara et al., 2007b) that focused on mixed-model U-shape 

line balancing problem dealt with stochastic and all the others dealt with 

deterministic processing times. 

 

Table 2.1 Evolution of the solution approaches for U-shape line 

PUBLICATIONS CHARACTERISTICS METHODOLOGY 

Miltenburg and Wijngaard 
(1994) 

Single model, deterministic, type 1 
dynamic programming & (RPWT) 

heuristic 

Miltenburg (1998) facility design, multiple U-line dynamic programming 

Sparling and Miltenburg 
(1998) 

mixed model, deterministic , fixed number 
of station, adjusted task time, sequencing, 

horizontal balancing, workpace 
transportation 

four-stage approximate solution 
algorithm 

Ajenblit and Wainwright 
(1998) 

single model, deterministic, type 1, 
vertical balancing 

genetic algorithm 

Urban (1998) Single model, deterministic, type 1 integer programming 

Scholl and Klein (1999) 
single model, deterministic, maximize the 

line efficiency 
branch-and-bound based heuristic 

(ULINO) 

Kim et al. (2000b) 
mixed model, deterministic , fixed number 
of station, sequencing, vertical balancing 

artificial intelligence search 
technique (co-evolutionary 

algorithm) 

Erel et al. (2001) Single model, deterministic, type 1 
simulated annealing based 

approach 

Miltenburg (2002) 
mixed model, deterministic, sequencing, 
horizontal balancing, vertical balancing 

genetic algorithm 

Aase et al. (2003) Single model, deterministic, type 1 
branch-and-bound procedures (U-

OPT) 
Guerriero and Miltenburg 

(2003) 
single model, stochastic, type 1 

mathematical model & recursive 
algorithm 

Aase et al. (2004) impacts on labor productivity An experimental study 

Martinez and Duff (2004) Single model, deterministic, type 1 
genetic algorithm with 10 heuristic 

rules 

Gökçen et al. (2005) Single model, deterministic, type 1 
 

shortest route formulation 
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Table 2.1 (cont) Evolution of the solution approaches for U-shape line 

Erel et al. (2005) 
single model, stochastic, cost 

minimization 
beam search-based heuristic 

Gökçen and Ağpak (2006) 
single model, deterministic, multi-

criteria decision making 
integer programming based goal 

programming 

Kim et al. (2006) 
mixed model, deterministic , fixed 

number of station, sequencing, vertical 
balancing 

endosymbiotic evolutionary 
algorithm 

Urban and Chiang (2006) 
 

single model, stochastic, type 1 
 

optimal piecewise-linear program 

Kara et al. (2007a) 
mixed model, deterministic, 

simultaneously line balancing/ model 
sequencing, type 1 

simulated annealing algorithm 
based approach 

Ağpak and Gökcen (2007) 
single model, stochastic, multi-criteria 

decision making 

four different chance-constrained 
binary integer programming 

model 

Toklu and Özcan (2007) 
single model, fuzzy time, multi-criteria 

decision making 

 
fuzzy goal programming model 

 
 

Baykasoğlu and Özbakir 
(2007) 

single model, stochastic, type 1 
multiple-rule-based genetic 

algorithm 

Kara et al. (2007b) 

mixed model, deterministic, stochastic, 
fixed number of station, type 1, 

sequencing, vertical balancing, multi-
objective 

multi-objective simulated 
annealing algorithm based 

approach 

Boysen and Fliedner 
(2008) 

single model, stochastic, profit 
maximization, parallel work stations and 

tasks, processing alternatives, zoning 
restrictions 

versatile algorithm 

Hwang et al. (2008) 
single model, deterministic, type 1, 

vertical balancing 
multi-objective genetic algorithm 

Sabuncuoğlu et al. (2009) 
 

Single model, deterministic, type 1 
 

ant colony algorithm 

Hwang and Katamaya 
(2009) 

mixed model, deterministic , type 1, 

fixed model sequence, vertical balancing
genetic algorithm 

Kara and Tekin (2009) 

mixed model, adjusted task times, 

deterministic , type 1, given model 

sequencing, vertical balancing 

mixed integer programming, 

comsoal algorithm based heuristic 
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CHAPTER THREE 

BACKGROUND INFORMATION FOR SOLUTION METHODS: 

GENETIC ALGORITHM AND SIMULATED ANNEALING 

 

3.1 Introduction 

 

This thesis proposes Priority-Based Genetic Algorithm (PGA) that uses newly 

developed Simulated Annealing (SA) based fitness evaluation approach to solve 

simultaneously MMUL/BS problems. To gain a more comprehensive understanding, 

these two algorithms are explained in detail. The chapter is organized as follows. In 

Section 3.2, a brief introduction of basic concepts for GA is presented and in Section 

3.3, a brief introduction of basic concepts for SA is presented.  

 

3.2 Genetic Algorithms 

 

Since 1950’s, several evolutionary computation methodologies have emerged and 

have gained popularity. These include evolutionary programming, evolution strategy, 

genetic programming and genetic algorithm. Genetic Algorithm (GA) was firstly 

introduced by Holland (1975) and then, Genetic Algorithm has been applied to 

various types of problems. Genetic Algorithm is a stochastic search technique based 

on the process of natural selection and genetics. GA does not operate directly on the 

solution space. This requires a mapping mechanism between the solution space and 

the search space. Solutions are coded in strings, over a finite alphabet, called 

chromosomes or individuals. An encoding is selected in a way that each solution in 

the search space is represented by one chromosome. Each chromosome is then 

decoded according to a user defined mapping function, enabling the computation of 

the corresponding fitness value, which reflects the quality of the solution represented 

by the chromosome. The process of producing a phenotype from a genotype is as 

shown in Figure 3.1. 
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Coding 
space 
genotypes 

Decoding 

Encoding 

 

 

 

 

 

         Figure 3.1 Mapping between solution space and search space (Rekiek and 

         Delchambre, 2006) 

 

In the original implementation of GA by Holland, each design variable is 

represented by a binary digit (see Figure 3.2) comprised of 1’s and 0’s. In later 

implementations integers or real-valued continuous values etc. have been introduced. 

Comprehensive literature review on chromosome representation scheme for 

assembly line balancing problems is provided in Scholl and Becker (2006).  

 

1 0 1 0 0 1 1 1 0 1

(a chromosome) 

  Figure 3.2 The binary encoding scheme 

 

In general, a GA has seven basic components; coding of solutions, population, 

fitness function, selection scheme, genetic operators, i.e., crossover and mutation, 

survival scheme, termination criteria. Figure 3.3 illustrates the general working 

principle of GAs. 

 

GA operates with a collection of chromosomes, called a population. Genetic 

Algorithm then starts with initialization which is done by random generation, so it 

starts with large search space to make sure that it does not become stuck in a local 

suboptimal point. Indeed, most solutions are largely different and belong to different 

areas of the search space. Over time, the population begins to converge, with the 

separate individuals resembling each other more and more. The GA narrows its 

search in the solution space and reduces the changes made by evolution until 

eventually the population converges to a single solution (Rekiek and Delchambre, 

2006). On one side, if population size is too small, the search space will not be 

sufficient and will lead the search to premature coverage. On the other side, if it is 

Solution 
space 
phenotypes 
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too big, the search will be inefficient and the solution will not be found within a 

reasonable computation time (Sastry and Goldberg, 2005). Choosing an appropriate 

population size is always a trade-off between solution quality and execution time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                           No 

                                                                                                

                                                                                   Yes                                                                  

                                                                    

 

 
              Figure 3.3 Main steps of a generalized genetic algorithm  

                                            (Grupe and Jooste, 2004) 
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Fitness function in GA is the value of the objective function for its phenotype. 

Each individual represents a potential solution to a problem. The fitness function 

assigns a real number as a measure of fitness to each solution. 

 

Selection is the “survival of the fittest” operator in a genetic algorithm. This 

operator determines which designs from the population will survive to form the 

‘parents’ of the next generation. The selection operator is the mechanism so that it 

establishes which individuals are best adapted to the fitness landscape and should 

have their genes advanced to future generations. Individuals that are more fit to the 

design ‘environment’ will be more likely to survive and pass on their traits. This 

procedure is analogous to natural selection as described by Darwin. Using the fitness 

values, the selection scheme is executed to choose the individuals from a population 

for breeding offspring. Individuals in the original population are selected for 

reproduction. Two popular selection methods are the roulette wheel and tournament. 

The roulette wheel gives individuals a chance of selection which is equal to their 

fitness relative to the population. Tournament selection randomly pits k individuals 

(k >= 2) against each other, with the winner contributing to the next generation. An 

additional method often used is random selection, which is completely arbitrary. 

 

The genetic operations mimic the process of heredity of genes to create new 

offspring at each generation. GA uses two operators to generate new solutions from 

existing ones: crossover and mutation. Crossover is a process of breeding new 

offspring by the selected individuals from the selection operator. These individuals 

are combined into pairs to exchange genetic information and produce new 

individuals. A two-point crossover exchanges all genes between the cut-points, 

which are randomly determined in general (see Figure 3.4). The aim of crossover is 

to transmit good characteristics from parents to offspring. 
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    Parent 1 

1 1 0 0 0 1 0 0 1 1

   Parent 2 

1 0 1 0 0 1 1 1 0 1

 

         Randomly generated  

   Offspring 1    cutpoints 

1 1 0 0 0 1 1 1 1 1

   Offspring 2 

1 0 1 0 0 1 0 0 0 1
            

  Figure 3.4 Two point crossover 
 
 

Mutation is a background operator which produces spontaneous random changes 

in various chromosomes. Mutation represents new discovery in the new search space. 

Figure 3.5 shows the simplest mutation, which is performed by changing the value of 

a randomly selected gene from 0 to 1 (or from 1 to 0) in a binary string. In GAs, 

mutation serves the crucial role of either (a) replacing the genes lost from the 

population during the selection process so that they can be tried in a new context or 

(b) providing the genes that were not present in the initial population (Gen and 

Cheng, 1997). 

 

   Parent 

1 0 0 1 1 0 1 0 1 0

 

                                      Randomly selected gene  

   Offspring  

1 0 0 0 1 0 1 0 1 0

                                        Figure 3.5 Mutation 

 

A replacement (survival) strategy is necessary to determine which individuals stay 

in the population and which are replaced by offspring. The most common 

replacement approach is elitism, which allows the best chromosome in each 
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generation to survive in the next generation, thus guaranteeing that the final 

population contains the best solution ever found.  

 
For termination criteria, the various stopping condition are listed as follows 

(Sivanandam and Deepa, 2008); 

 

Maximum generations: The genetic algorithm stops when the specified numbers 

of generations has evolved. 

 

Elapsed time: The genetic process will end when a specified time has elapsed. 

Note: If the maximum number of generation has been reached before the specified 

time has elapsed, the process will end. 

 

No change in fitness: The genetic process will end if there is no change in the 

population’s best fitness for a specified number of generations. 

Note: If the maximum number of generation has been reached before the specified 

number of generation with no changes has been reached, the process will end. 

 

Stall generations: The algorithm stops if there is no improvement in the objective 

function for a sequence of consecutive generations of length Stall generations. 

 

Stall time limit: The algorithm stops if there is no improvement in the objective 

function during an interval of time in seconds equal to stall time limit. 

 

The procedure of a generic GA (Goldberg, 1989) is given as follows: 

 

Step1: Set 1t . Randomly generate N  solutions to form the first population, 1P  

and evaluate the fitness of solutions in 1P . 

 Step2: Crossover: Generate an offspring population tQ  as follows: 

2.1. Choose two solutions x  and y  from tP  based on the fitness values. 

2.2. Using a crossover operator, generate offspring and add them to tQ . 

 Step3: Mutation: Mutate each solution tQx with a predefined mutation rate. 
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Step4: Fitness assignment: Evaluate and assign a fitness value to each solution 

tQx  based on its objective function value and infeasibility. 

Step5: Selection: Select N solutions from tQ  based on their fitness and copy 

them to 1tP . 

Step6: If the termination criterion is satisfied, terminate the search and return to 

the current population, else, set 1 tt  go to Step 2. 

 
3.3 Simulated Annealing Algorithms 

 

The SA algorithm was introduced by Kirkpatrick et al. (1983) to solve NP-hard 

combinatorial optimization problems, by using the analogy with the simulation of the 

physical annealing of solids, in order to minimize/maximize the value of an objective 

function. The simulated annealing meta-heuristic is based on the analogy with the 

thermodynamic annealing process. Thermodynamic annealing is a method in 

metallurgy to reduce the defects in a metal, alloy, or other material by heating them 

to a very high temperature and then having a controlled cooling. This causes 

molecules with high-energy state to move randomly in their neighborhood to find a 

configuration with lower energy state than the current energy state. The result of this 

process is to have an ordered crystalline structure. If the metal is cooled too slowly or 

too fast, defects will be formed in the metal, which in our case represents local 

minimum or maximum. Similarly, in simulated annealing (SA) heuristic it is 

important to have a proper cooling schedule. The procedure for the SA process is 

defined as below: 

 

Create a random initial solution 0S  

Determine initial temperature 0T , crystallization temperature cryT , iteration length at 

each level of energy state IT   and cooling rate q  

0TTc  , 0SS     

Repeat 
For ( i  = 1 to IT )) { 

Generate a random solution from S  to 'S  

)()( ' SevaluateSevaluate   

If ( 0 ) then 'SS   
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0T  

cryT  

IT

Else { 
If (Perform probability ( )/exp( cT ) that S’ is still accepted solution) 

'SS   
} End Else 
} End For 
Reduce temperature qTT cc   

Until ( cT  cryT ) 

Optimal Solution = S  
 

It starts from an initial solution to the problem, 0S  and a control parameter, cT , 

which is set to an initial temperature value, 0T . During the algorithm, the value of 

cT  is systematically decreased according to an annealing schedule as shown in 

Figure 3.6. In this schedule the following issues are defined:  a temperature reduction 

function, q , and the length of each temperature level, IT , that determines the number 

of solutions generated at a certain temperature level. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 time 
          Figure 3.6 Annealing schedule 
 

 

For each iteration, neighboring solutions, 'S , the current solution are generated 

and the value of the objective function is calculated. If the value is better than the 

current solution, the neighboring solution becomes the new current solution. On the 

other hand, if the neighboring solution provides an objective function value inferior 

to that of the current solution, the neighboring solution may still become the current 

solution according to certain acceptance probability. The acceptance probability p  is 
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computed according to the criterion established by Metropolis (Metropolis et al., 

1953) as follows: 

 

)/exp( cTp   

 

where;   = change in the objective function. 

 

A random number between zero and one is generated, if the random number is 

smaller than p  the solution is accepted. This strategy prevents the algorithm from 

getting trap in a local optimum. 
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CHAPTER FOUR 

PROPOSED GENETIC ALGORITHM BASED APPROACH FOR 

SIMULTANEOUSLY SOLVING U-SHAPE MIXED-MODEL ASSEMBLY 

LINE BALANCING AND SEQUENCING PROBLEM 

 

4.1 Chapter Introduction  

 

In chapter four, simultaneous solution of balancing/sequencing (MMUL/BS) 

problems in mixed model U-shaped assembly lines are addressed, and this chapter is 

divided into 3 sub-titles in general.  

 

Firstly, general characteristics of U-shaped production lines are presented, and 

differences of mixed-model U-shaped assembly line from other lines are explained in 

detail.  

 

And then, the problem is presented with notations and equations for being able to 

understand better the general characteristics of the problem. Fitness function aims at 

minimizing the number of stations as primary objective and workload balancing 

between-within workstations at the end of all cycles as secondary objective is 

mathematically presented, and our proposed solution method based on genetic 

algorithm for the solution of the problem is introduced.  In our solution method based 

on priority based-genetic algorithm, simulated annealing based fitness evaluation that 

we developed for carrying out fitness assessments is improved.  Experimental design 

is established in order to ensure the execution of our proposed algorithm with more 

efficient parameters.  These new procedures are illustrated with a numerical example 

and its performance is tested through a set of test problems with the generated 

minimum part sets (MPS). 

 

Finally, the problem is expanded in a manner comprising parallel station and 

zoning constraints.  This new case is showed by notations – equations. Our fitness 

function is mathematically expressed in a manner comprising this new case. 
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Moreover, these procedures are illustrated with a numerical example and its 

performance is tested through a set of test problems with the generated MPS. 

 

4.2 Characteristics of U-shaped Assembly Lines 

 

In recent years, many manufacturers have adopted a Just-in-Time (JIT) approach 

for manufacturing, finding that it improves their productivity, profits, and product 

quality. Straight assembly lines have been an important part of traditional mass 

production while U-shaped assembly lines have been emerged as a consequence of 

continuous improvement and cost reduction efforts of just-in-time (JIT) production 

(Monden, 1993). One of the important changes resulting from JIT implementation is 

the replacement of the traditional straight lines with U-shaped production lines. The 

reason for this is that JIT use of multi-skilled workers and efficient facility layouts, 

so many companies are rearranging their traditional straight assembly lines into a U-

shaped layout (Scholl and Klein, 1999, Aase et al., 2004). The UALB is more 

complex than the SALB because tasks can be assigned by moving forward, 

backward, or simultaneously in both directions through the precedence diagram 

(Scholl and Klein, 1999).  

 

Miltenburg and Wijngaard (1994) and Cheng et al. (2000) summarized the major 

benefits and factors of U-shaped assembly lines and explain its popularity among JIT 

practitioners. The major benefits and factors of U-lines are as followings: 

 

 Volume Flexibility: As a consequence of just-in-time principles, the output 

from a U-line may need to be adjusted from time to time for matching the rate 

at which the produced parts are consumed by subsequent operations.  The 

production rate as required in this situation on U-line can be adjusted by 

adding or removing workers.  This level of volume flexibility is harder to 

obtain with a straight line because of the fact that rebalancing is more 

difficult on a traditional "straight line" with its narrowly trained operators.  

 Operator Flexibility: Since they rotate through many stations in the U-line 

each day, it is easier for one operator to oversee several work centers. Hence, 

operators are involved in different parts of the assembly process; they can 
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easily enlarge their skills.  So, they can respond to the problems quickly. 

Also, the acquisition of multiple skills leads to higher motivation, improved 

product quality and increased flexibility. 

 Number of Workstations: The number of workstations required on a U-line is 

never more than, and is sometimes less than, that required on a straight line. 

The reason of this is that there are more possibilities for grouping tasks into 

workstations on a U-line. 

 Material Handling: A U-line eliminates the need for special material-

handling equipment such as conveyors and special material-handling 

operators. Instead, production operators move products from machine to 

machine. 

 Visibility and Teamwork: The compact size of a U-line improves visibility 

and communication. This enhances teamwork, gives a greater sense of 

belonging, and increases responsibility and ownership compared to a straight 

line, where operators are spread out along a long line and may be separated 

by walls of inventory. 

 Rework: A tenet of the total quality management (TQM) is quality at the 

source, which calls for correcting quality problems as soon as possible after 

they occur by returning a defective product to the station where it was 

produced. In a U-line, the distance to return the defective product is short, 

making it easier to follow this tenet. This is in contrast to the traditional 

policy of sending the defective product to a separate rework area. 

 

Miltenburg (2001) presented a review of the theory and practice on U-shaped 

production lines on a set of US and Japanese companies which changed their straight 

lines to U-lines. The results showed that the adoption of U-shaped lines leads to 

remarkable benefits: productivity improvement of 76%, decreasing of work-in-

process inventory 86%, decreasing of lead time 75% and dropping of defective rates 

83%, on average. 
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4.3 Problem Statement of the MMUL/BS 

 

The problem of balancing a U-shaped assembly line to produce a set of models of 

a product is the mixed-model U-ALBP (U-MALBP), and it was first described by 

Sparling and Miltenburg (1998). The key difference between the single model 

assembly line balancing problem and the mixed-model assembly line balancing 

problem is that more than one product models are produced on mixed-model 

assembly lines while only one product model is produced on single model assembly 

lines. An additional and very important issue of mixed-model U-lines, when 

compared to single-model U-lines, is that a workstation may perform its tasks in the 

same cycle in two different models, one at each leg of the line. A successful 

implementation of a mixed-model U-line requires solutions for two important 

problems, called mixed-model U-line line balancing (MMUL/LB) and mixed-model 

U-line model sequencing (MMUL/MS). These two problems are tightly interrelated 

with each other and can not be set independently (Sparling and Miltenburg, 1998, 

Kim et al., 2000b and Kara et al., 2007a). The balancing problem, MMUL/LB, is the 

assigning tasks to an ordered sequence of workstations on the mixed-model U-line in 

such a way that some performance measures are optimized. The sequencing problem, 

MMUL/MS, is the determining the production sequence of models produced on the 

mixed-model U-line. It is NP-hard. For example, a small U-line of 8 tasks producing 

2 models with demands of 6 and 4 units each could have more than 

8!(6+4)!/(6!4!)=8.5×10 6  solutions. Even the problem of determining the number of 

feasible solutions is NP-hard (Miltenburg, 2002). 

 

Miltenburg (2002) presented two observations about the reason why the balancing 

and sequencing problem can not be set independently when JIT principles are being 

used are as in the followings: 

 
 The sequence in which different models are produced cannot be set 

independently of the line balance (i.e., the assignment of tasks to stations). 

Different models require different tasks and the same tasks have different 

completion times for different models. On a U-line two different models may 
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be worked on in the same station in the same cycle. On a straight line, only 

one model is worked on in each station in each cycle. 

 The sequence in which the different models are produced on a U-line cannot 

be set independently of the schedules of other lines and production facilities 

when JIT principles are being used. JIT uses a pull rather than a push system 

of production control, which means that model sequence at the U-shaped 

mixed-model final assembly line sets the schedules at the other production 

facilities. Most often, JIT requires these latter schedules to be “level”, and 

this imposes additional constraints on model sequence.  

 

Figure 4.1 illustrates the Mixed-Model Production on a U-Shaped Assembly Line.  

The line produces three models in the sequence ABC. At the first cycle; the operator 

of workstation 1 (w-1) performs tasks 1 and 2 on model C at the front of the line and 

then crosses to the back to complete tasks 13 and 14 on model A, the operator of 

workstation 2 (w-2) performs tasks 3 and 4 on model B at the front of the line and 

then crosses to the back to complete task 12  on model B, the operator of workstation 

3 (w-3) performs tasks 5,6,7 and 8 on model A and lastly the operator of workstation 

4 (w-4) performs tasks 9,10 and 11 on model C.  This line consists of 4 workstations 

and 6 regions where the models are processed at workstations.  

 

 
                   Figure 4.1 Mixed-model productions on a U-shaped assembly line   
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4.3.1 Model Assumptions  

 

The U-lines considered in this study operates under the following assumptions: 

 

 Product models having similar production attributions are produced on the 

same U-shaped production lines. 

 Zoning restrictions and parallel workstations are not allowed. 

 The travel times of operators and setup times are ignored. 

 Precedence diagrams of different models are known, and a combined 

precedence diagrams is employed (Macaskill 1972). 

 The completion times of tasks may differ from one model to another and can 

be equal to zero. Common tasks among different models exist. 

 Task completion times are deterministic and independent from each others. 

 Paced assembly line considered and no work-in-process is allowed. 

 Minimum Part Set ( MPS ) principle is used (Bard et al., 1992, Merengo et al., 

1999, Kara et al., 2007a, Kim et al., 2000b). 

 Equally equipped stations and fixed rate launching are considered. 
 

4.3.2 Notation and Equations  

 

The following notation and equations will be used to describe the problem 

characteristics: 

 

N       Total numbers of tasks are performed in a set of workstations ( Ni ,...,2,1 ) 

K   Number of workstations utilized on the mixed-model U-line ( Kk ,...,2,1 ) 

P   The planning horizon has a fixed length 

M      Number of different models produced on the MMUL ( Mm ,...,2,1 ) 

kX     Set of tasks assigned to workstation k  

T       Set of tasks performed on the mixed-model U-line 

PR     Set of merged precedence constraints for all models 

MS    Model sequence of the mixed-model U-line 
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D  The vector that represents the total demand for each model        

 MDDDD ,...,, 21  

cd      The greatest common divisor of the elements of D  

md     Over the planning horizon, the forecast demand for model m  for one MPS    

cdDd mm / , ( Mm ,...,2,1 )                                                                      (1) 

MPS   Minimum part set, calculated by dividing the total demands of the models by 

the greatest common divisor of these demands   mdddMPS ,...,, 21  

R        The length of the model sequence for one MPS  

            
 M

m mdR
1

                                                                                                  (2) 

R        Also represent the number of the possible cycle ( Rr ,...,2,1 ) 

C        Cycle time  RPC /                                                                                       (3) 

imt       The required time to perform task i  on the model m  

iIP      Set of the immediate predecessors of task i  

rCS    Depicts the appearance of the models in model points at the cycle r   

krS     Idle time of workstation k  at the cycle r  

kKI     Total idle time of all cycles in the workstation k  

rRI     Total idle time of all workstations at the cycle r   

minC    Theoretical minimum cycle time (Kim et al., 2000b) 

  
 N

i

M

m immtdRKC
1 1min ))/(1(                                                                            (4) 

 

For a given line balance and model sequence: 

 

kXF     Set of tasks in workstation k  located on the front of the U-line 

kXB   Set of tasks in workstation k  located on the back of the U-line 

r
kf   Model produced on the front of station k  at the cycle r   in the sequence 

r
kb   Model produced on the back of station k  at the cycle r  in the sequence 

krW   Amount of work assigned to station k  at the cycle r  
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  


k k
r
k

r
kXFi XBi ibifkr ttW  ( Kk ,...,2,1 ), ( Rr ,...,2,1 )                      (5) 

 

The following mathematical model is only used as a means to formally describe 

the problem, as its high complexity makes it impossible to be solved to optimality. 

The model is based on the model of Sparling and Miltenburg (1998) developed for 

MMUL/LB. The model was modified and expanded to include model sequencing by 

Kara et al. (2007a) and is shown below. 

 


K

k
k TX

1

                                                                                                                   (6) 

0



vu
vu XX                                                                                                             (7) 

CWkr    ( Kk ,...,2,1 ), ( Rr ,...,2,1 )                                                                    (8) 

For every task Ty :                                                                                                  (9) 

either: if PRyi ),( , uXi , vXy , then vu   for all i  

   or   : if PRzy ),( , vXy , xXz , then vx   for all z  


R

r

r
k MPSf

1

  ( Kk ,...,2,1 )                                                                                   (10) 


R

r

r
k MPSb

1

   ( Kk ,...,2,1 )                                                                                   (11) 

 

The constraint in Eq. 6 ensures that all tasks are assigned to a workstation. The 

constraint in Eq. 7 ensures that each task is assigned to only one workstation. By the 

constraint in Eq. 8, each workstation capacity does not exceeded the predetermined 

cycle time, C.  The constraint in Eq. 9 ensures that a task can be assigned to a 

workstation if either all its predecessors  or all its successors have been assigned to 

the same or to an earlier workstation and the last two constraints (Eq. 10 and Eq. 11) 

ensure that all workstations are visited by all models for which the demands are met. 
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4.3.3 New Objective Function   

 

A new task can be assigned to a workstation as long as the sum of total processing 

time does not exceed the cycle time at each cycle. In a U-shape production system, 

the workload of a workstation will depend on the models performed on the front and 

the back of the line at each cycle. Then, finding the best model sequence (the 

sequence in which the models are launched to the line) is more important in order to 

allow a good workload balance. Due to the mixed-model nature of the problem, in 

the MMUL/BS, this issue becomes even more important (models may be located to 

different locations (back front or in front of the line) at each cycle by satisfying the 

assignment constraints and the given model sequence ( MS )). 

 

The main goal of ALBP of type I is to minimize the number of workstations for a 

given cycle time. In addition to main goal, different performance measures must also 

be taken into consideration. Vilarinho and Simaria (2002) introduced a performance 

measure that provides equally distribution of the workload between and within 

workstations for the straight mixed-model assembly line balancing. In this study, a 

new fitness function based on Vilarinho and Simaria’s (2002) objective function is 

developed to the U-shape mixed-model assembly line balancing for aiming at 

minimizing the number of workstations as primary goal and smoothing the workload 

between - within workstations at the end of all cycles as secondary goal.  

 

The new fitness function is explained by following equations: 

 

)( krkr WCS   ( Kk ,...,2,1 ), ( Rr ,...,2,1 )                                                      (12) 

  R
r krk SKI

1
 ( Kk ,...,2,1 )                                                                             (13) 

 

2

1 1
1

1    















 K

k
R
r

k

kr
b RKI

S

RK

R
C                                                                 (14) 

  K
k krr SRI

1
    ( Rr ,...,2,1 )                                                                            (15) 
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 

2

1 1
1

1
   
















 R

r
K
k

r

kr
w KRI

S

KR

K
C                                                                  (16) 

wb CC  K  Zmin                                                                                                (17) 

 

krS  (Eq. 12) represents the idle time of workstation k  at the cycle r . The idle 

time of a workstation is the difference between the capacity of the workstation and 

its workload. 

 

kKI   (Eq. 13) represents the total idle time at the end of all cycles in the 

workstation k .  

 

In the objective function (Eq. 17), bC   (Eq. 14) aims at smoothing the workload of 

workstations between the cycles, i.e., the idle time is distributed across all cycles as 

equally as possible for any workstation. The value of function bC  varies between a 

maximum of 1, when the total idle time of a workstation at the end of all cycles equal 

to only one cycle’s idle time, and a minimum of 0, when the idle times of a 

workstation at the each cycle are equal to each other. 

 

rRI  (Eq. 15) represents the total idle time of all workstations at the cycle r .  

 

In the objective function (Eq. 17), wC   (Eq. 16) aims at workload balance of all 

workstations within any cycles, i.e., the idle time is distributed across all 

workstations as equally as possible at any cycle. The value of function wC  varies 

between a maximum of 1, when the total idle times of all workstations at any cycle 

equal to only one workstation’s idle time, and a minimum of 0, when the idle times 

of each workstation at any cycle are equal to each other. 

 

The first term ( K ) of the fitness function (Eq. 17) is to minimize the number of 

the workstations required on the line. The second term ( bC ) is to smooth the 
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workloads of workstations between the cycles. The third term ( wC ) is to smooth the 

workloads of workstations within the cycles. The second and the third terms are 

within the value range [0, 1]. So, the model minimizes the number of workstations, 

before the secondary goal becomes active. The proposed performance measure may 

vary depending on the balance and the model sequence. 

 

Note: 

If  kKI  equals to 0 , 

2

1
1  












R

r
k

kr

RKI

S
will be equal to 0. 

If rRI  equals to 0, 

2

1
1  












K

k
r

kr

KRI

S
will be equal to 0. 

 

4.3.4 Proposed GA-Based Approach  

 

The workloads of workstations in MMULs depend on various factors; therefore 

development of solution procedures for MMUL is more complex than that of other 

types of line balancing (Kara and Tekin 2009). The NP-hard nature of this problem 

expedites the development of computer-aided effective heuristic solution procedures. 

Nowadays, evolutionary approaches have been developed for solving this problem. 

 

The GA combines the exploitation of past results with new areas of space search 

exploration. Using survival of the fittest techniques, combined with a structured yet 

randomized information exchange, a GA can mimic some of the innovative attributes 

of a human search (Hwang et al.2007). 

 

Hwang et al. (2007) have studied the assembly line balancing problem with 

genetic algorithms and have used the priority-based encoding method to treat the 

precedence constraints efficiently, but they only considered single model assembly 

lines and more recently, Hwang and Katamaya (2009) have studied the mixed-model 

U- line balancing problem without a job sequence. 
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In this thesis, we used the priority-based genetic algorithm (PGA) (Gen and 

Cheng 2000) for simultaneously solving the balancing and sequencing problems of 

mixed-model U-lines. The simulated annealing algorithm (SA) based fitness 

evaluation approach is developed and inserted into PGA to evaluate the fitness value 

of the task sequences TS  that will discussed in Chapter 4.3.5. 

 

The newly developed Simulated Annealing Algorithm based fitness evaluation 

approach is the most significant property of proposed algorithm. This enables us to 

consider the line balancing/model sequencing problems of mixed-model U-lines 

simultaneously. 

 

In this new approach, our fitness function developed is capable of comparing the 

performances of the task sequences that have been used. As mentioned before, this 

new fitness function minimizes the number of stations as primary goal, and provides 

the workload balance within station and between stations by considering all possible 

cycles.   

 

Genetic algorithms and its main concepts have been previously characterized in 

Chapter 3. The main steps of the proposed genetic algorithm are presented in Figure 

4.2.   

 

The general specifications of proposed GA approach are summarized in the 

following subsections.  

 

 4.3.4.1 Selected Chromosome Representation and Initialization of Population  

 

We used the priority-based encoding method (Gen and Cheng 2000) for working 

effectively with precedence constraints. The position of a gene was used to represent 

a task node, and the value of the gene was used to represent the priority of the task 

node for constructing a task sequence among candidates (Hwang et al., 2008). 
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                Figure 4.2 General structure of the proposed approach 
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The initial chromosome is generated randomly as shown in procedure 1 (Figure 

4.3). Each chromosome position is called a gene. Each gene will use the priority of 

nodes in an assembly network. This encoding method easily verifies any permutation 

of the encoding to correspond to the sequences, so that most existing genetic 

operators can easily be applied to the encoding (Hwang et al., 2008). 

 

Each chromosome is created by using the priority-based encoding method, and 

then the priority-based decoding (Hwang et al., 2008) procedure 2 ensuring the use 

of precedence relations to obtain feasible chromosomes (Figure 4.4). The priorities of 

eligible nodes with the highest priority are placed into the task sequence (TS ). So, 

infeasible solutions violating the precedence constraints are not allowed. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3 Priority-based encoding procedures 
 
 

Step 0: Input the priority number 
 

1 2 3 4 5 6 7 8 9 10 

1 2 3 4 5 6 7 8 9 10 
 
Step 1: Swapping two nodes randomly 
 
 

1 2 3 4 5 6 7 8 9 10 

6 2 3 4 5 1 7 8 9 10 
 
 
Step 2: Output priority based-chromosome 
 

1 2 3 4 5 6 7 8 9 10 

6 5 3 4 9 1 10 8 7 2 
 

Procedure 1: priority-based encoding (initial chromosome) 
Input: number of tasks N  

Output: chromosome )]([ iv  

begin 
for 1i  to N  

);,1()( Niv   

for 1i  to ]2/[N  

i random ),1( N ; 

k random ),1( N ; 

if  ki   then 

swap )};(),({ kviv  

output the chromosome )]([ iv  

task ID i :           

priority )(iv  :     

task ID i : 

priority )(iv : 

task ID i : 

priority )(iv : 
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              Figure 4.4 Priority-based decoding procedures 
 
 
 
  
    
 
 
 
                                 Figure 4.5 An example output of priority-based encoding method 
 

 

 

 

 

 

 

 

 

 

 

 

                                              Figure 4.6 Combined precedence diagram (Kara et al., 2007a) 
 

Procedure 2: priority-based decoding 
Input: number of tasks N , chromosome (.)v , the set of task nodes 

Output: task sequence TS  
Begin 



N , TS ; 

0N , 0i ; 

while )( Ni   do  

)(isucN 


; 

)(ipreN 


; 

}|)(max{arg


  Niivi ; 


 NN \ i ; 

 iTSTS ; 

 ii ; 
end 
output task sequence TS  

10 

9 

8 

7 

6 

5 

4 

3 2 1 

 
1 2 3 4 5 6 7 8 9 10
6 5 3 4 9 1 10 8 7 2 

 

task ID i : 
priority )(iv : 
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In this encoding method, the position of a gene is used to represent a task node, 

and the value of the gene is used to represent the priority of the task node for 

constructing a task sequence among candidates. An example output of this encoding 

method is given in Figure 4.5. Then, the generated chromosomes are converted to the 

feasible task sequences by using priority-based decoding method. In Figure 4.6, the 

nodes eligible to be assigned to the first position of task sequence are 1, 2, 3, 8 and 

10. The priorities of nodes are 6, 5, 3, 8 and 2 respectively, so the task 8 having the 

highest priority is placed into the task sequenceTS . For the second position the 

possible nodes are 1, 2, 3 and 10 which have priorities 6, 5, 3 and 2 respectively. So, 

task 1 is placed next into the task sequenceTS .  These steps are repeated until we 

obtain a complete task sequence TS = {8, 1, 2, 4, 5, 3, 10, 9, 7, 6}, and these 

procedures continue as long as the initial population is generated. 

 

 4.3.4.2 Selected Selection Scheme  

 

Roulette wheel selection scheme (Holland, 1975) is used, which is a method for 

reproducing a new generation proportional to the fitness of each individual. In this 

procedure, the fitness values of the members scales within the population so that the 

sum of the rescaled fitness values equals to 1. To select a parent, a uniform random 

number within the interval (0, 1) is generated firstly (wheel is spun), and then the 

member whose cumulative rescaled fitness value is greater than the generated 

number is selected as parent. 

 
 
 4.3.4.3 Selected Genetic Operators 

 

There are two kinds of genetic operators, i.e., crossover and mutation. Crossover 

is the operation by which two individuals in the current population create offspring 

for the next population. Mutation operator is used to change randomly the value of 

single genes within chromosomes. We used weight mapping crossover (WMX) 

(Hwang et al. 2006) and swap mutation. 
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parent 1: 
 
parent 2: 

offspring 1: 
 
offspring 2: 

4.3.4.3.1 Crossover Operator. Here the position-based crossover operator can be 

viewed as a two-point crossover of a real number string by weight mapping 

crossover (WMX) that we used and a remapping by order of different real number 

strings is shown in Figure 4.7 (Hwang et al. 2006). 

 

 

Step0: select the substring at random 

 

6 5 3 4 9 1 10 8 7 2
          

7 1 5 4 10 8 9 3 6 2

 

 Step1: determine mapping relationship 

 

 

       

 

 

 Step2: legalize offspring with mapping relationship 

 

  

 

 

  Figure 4.7 Two point-based weight mapping crossover (WMX) 

 

4.3.4.3.2 Mutation Operator. We used the swap mutation operator, in which two 

positions are selected randomly, and their contents are swapped (see Figure 4.8). 

 

 

6 5 3 4 9 8 10 1 7 2

 

6 5 7 4 9 8 10 1 3 2

 

                                                  Figure 4.8 Swap mutation operator 

     4 1 2 3

1 10 8 7  1 10 8 7
        2 1 4 3
8 9 3 6  8 9 3 6

2 1 4 3 

8 10 1 7 
4 1 2 3 
3 9 8 6 

6 5 3 4 9 8 10 1 7 2

          

7 1 5 4 10 3 9 8 6 2
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 4.3.4.4 Selected Survival Scheme 

 

Survival is an essential process in GAs that removes individuals with a low fitness 

and drives the population towards better solutions. The transfer of the best solution 

of the previous population to the next one is carried out for continuous survival of the 

best solution.  

  
 4.3.4.5 Selected Termination Criteria  

 

The genetic algorithm stops when the specified numbers of generations have 

evolved ( maxGN ). 

 

4.3.5 The Proposed Simulated Annealing Algorithm Based Fitness Evaluation 

Approach 

 

In general, the assignment of tasks to workstations benefits from a single-pass 

decision rule procedure using a feasible task sequence as a basis. Tasks are listed in a 

sequence, and then an attempt is made for assigning them to workstations in that 

sequence (Hwang and Katamaya 2009). If total time of the tasks previously assigned 

to a workstation and new task to be assigned is smaller than cycle time or equal to 

cycle time, the said task can be assigned to this station. When the cycle time is 

exceeded, a new workstation can be opened and this new task is assigned to the new 

workstation. This procedure continues until the assignment of all tasks in task 

sequence to workstation is completed.   

 

This simple procedure is not valid for being able to solve mixed-model U-lines 

under varying model sequence.  Because u-shaped lines may include both traditional 

and crossover workstations as a general characteristic, it cannot be known which task 

will take which model time.   

 

In order to optimize a certain performance measure, it is also very difficult to 

make these assignments by considering all different cases that can be formed under 
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fixed model sequence and fixed number of stations only if at least one task is 

assigned to each workstation. Especially, as the number of tasks increases, the 

number of cases that must be taken into consideration increases exponentially. 

Furthermore, none of these different cases may give a feasible solution.  

 

Suppose that we will assign a feasible task sequence (TS={1,8,2,3,4,6,5,7}) 

obtained from the precedence diagram in Figure 4.9 and consisting of 8 tasks (N=8) 

to 3 stations (K=3). Twenty-one ( ))1,1((  KNC different cases are formed in a 

manner that at least one task will be assigned to each station.  In order to optimize 

the desired performance measure, we must take each of these different cases into 

consideration.  Cases to be evaluated for this example are presented in Table 4.1.  

               

 

 

 

 

 

 

 

      Figure 4.9 Precedence diagram 

 

Table 4.1 Cases to be evaluated for being able to assign the tasks in feasible task sequence 
in the example to 3 stations 

C. No Combinations C. No Combinations 
1 1 | 8 | 2 3 4 6 5 7 12 1 8 2 | 3 | 4 6 5 7 
2 1 | 8 2 | 3 4 6 5 7 13 1 8 2 | 3 4 | 6 5 7 
3 1 | 8 2 3 | 4 6 5 7 14 1 8 2 | 3 4 6 | 5 7 
4 1 | 8 2 3 4 | 6 5 7 15 1 8 2 | 3 4 6 5 | 7 
5 1 | 8 2 3 4 6 | 5 7 16 1 8 2 3 | 4 | 6 5 7 
6 1 | 8 2 3 4 6 5 | 7 17 1 8 2 3 | 4 6 | 5 7 
7 1 8 | 2 | 3 4 6 5 7 18 1 8 2 3 | 4 6 5 | 7 
8 1 8 | 2 3 | 4 6 5 7 19 1 8 2 3 4 | 6 | 5 7 
9 1 8 | 2 3 4 | 6 5 7 20 1 8 2 3 4 | 6 5 | 7 
10 1 8 | 2 3 4 6 | 5 7 21 1 8 2 3 4 6 | 5 | 7 
11 1 8 | 2 3 4 6 5 | 7   

 

1

4

3

2

7

5 6

8 
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Suppose that 2 models processed in U-line are with MPS={2,1} and the cycle 

time is 12. Task times of the models are as shown in Table 4.2.  If we assess the 

cases 10 and 16 in Table 4.1 by taking AAB as model sequence constant;  

 
 
Table 4.2 Task times for two models 
Task Model A Model B 

1 5 3 
2 1 5 
3 6 0 
4 0 1 
5 2 6 
6 0 4 
7 4 2 
8 3 5 

 
 

 
                        Figure 4.10 U-line structure of the case 10  
 
 
Table 4.3 Workloads of workstations for the case 10  
Workstation 1 2 3 

Tasks assigned {front}, {back} {1}, {8} {2, 3, 4}, {6} {5, 7}, { } 

Models processed [front, back] A, A  B, A  A, B A, A  A, B  B, A A    A    B 
Total workload    8       6     10    7      11     6     6     6    8    
 
 
 U-line configuration structure of the case 10 and workloads of the workstations 

are shown in Figure 4.10 and Table 4.3 respectively. As it can be seen, the workload 

of any station for the case 10 did not exceed the cycle time.  
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 If we consider the case 16, as shown in Table 4.4, 1st workstation exceeded the 

cycle time at all cycles (15,15,13). U-line configuration structure of the case 16 is 

shown in Figure 4.11.  

 

 
                            Figure 4.11 U-line structure of the case 16 
 
 
Table 4.4    Workloads of workstations for the case 16  
Workstation 1 2 3 

Tasks assigned {front}, {back} {1, 2, 3}, {8} {4}, { } {6, 5, 7}, { } 

Models processed [front, back] A, A  A, A  B, B B  A  A A    B    A 
Total workload   15     15    13 1   0   0 6    12   6    

 

 If noticed, the number of the zones processed for the case 10 (zones where the 

tasks are processed in the line) is 5, and 4 for the case 16. We will call these zones as 

model point.  The appearance of the models processed at 1st cycle from the beginning 

point of the line to the endpoint at model points will be {A,A,B,A,A} for the case 10, 

and {A,B,A,A} for the case 16. We will call these appearances formed at cycle k  as 

cycle sequence ( rCS ).   

 

 The number of all cycles to be formed until the completion of the production of 

all products (R) is equal to the length of the model sequence (MS). Because the 

model sequence is 3 in the given example, so the number of cycles is 3.   

 

 As mentioned before, the best line configuration can be obtained by considering 

all cases under a fixed model sequence and the number of fixed stations.  However, 
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there may also be cases where any feasible solution can not be found for desired 

number of stations. For example, if the number of stations is taken as 1 for the above 

mentioned example, there is only one case to be considered, and all tasks are 

assigned to one station, but no feasible solution can be obtained.  

 While evaluating a task sequence by a given minimum part set (MPS), if we 

consider all different model sequences to be formed rather than under a fixed model 

sequence assumption, the permutation 



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d
 is formed.  In this given 

example, there are 3 permutations to be formed (3!/2!1!) because MPS={2,1}. If we 

consider all model sequences that may be formed in order to optimize a certain 

performance,  
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different cases are formed that we must consider for evaluating a tasks sequence 

under the number of fixed stations.   

 

 In case where model sequence is not accepted as fixed at MMULs, a procedure 

that calculate a lower bound has not be developed yet.  Therefore, the number of 

stations must be increased one by one beginning from the station number one until 

the feasible solution is found in order to find minimum station number (type 1) and 

all obtained cases must be assessed (including number of stations giving the feasible 

solution). In this case, the number of all cases that must be evaluated for N pieces of 

tasks until finding a feasible solution (including the station giving the feasible 

solution) in a given task sequence (under variable model sequence assumption) is 

given at following equation:  
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As it is seen, evaluation of all cases to be formed for only one task sequence is a 

difficult and very time consuming work, and shows NP-hard structure.   

 

 As indicated by Jin et al. (2002), one essential difficulty in employing 

evolutionary algorithms in some applications is the huge time consumption due to 

the high complexity of performance analyses for fitness evaluation and the large 

number of evaluations needed in the evolutionary optimization. Various efficiency-

enhancement techniques have been developed in order to facilitate the solution of 

large-scale complex problems, and further enhance the performance of GAs. One 

such class of efficiency-enhancement technique is called evaluation relaxation. In 

evaluation relaxation, an accurate, but computationally expensive fitness evaluation 

is replaced with a less accurate, but computationally inexpensive fitness estimate 

(Goldberg, 2002). 

 
 
 In this thesis, simulated annealing based fitness evaluation approach is developed 

in order to facilitate fitness function calculation in PGA and to perform it in an 

effective manner.  Simulated annealing algorithm is chosen, among other meta-

heuristics, mainly because of its flexibility to respond to modifications in the 

objective functions or in the problem constraints. When these changes occur, the 

basic simulated annealing program remains unchanged. In addition, the ALBP 

solutions and neighborhood structures can be easily defined by using simulated 

annealing. 

 
Kara et al. (2007a) developed a neighborhood generation mechanism by 

changing the model sequence or the line balancing.  In this study, we modified this 

neighborhood generation mechanism. Our modified neighborhood generation 

mechanism can make station assignments by randomly dividing the task in a manner 

at least one task will be assigned to each station under a certain number of stations 

or change the model sequence. We inserted this modified neighborhood generation 

mechanism into our simulated annealing algorithm based fitness evaluation 

approach.   
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The proposed SA-based approach is described by the following steps: 

 

Step0. Specify the problem parameters (SA algorithm parameters 

( 0T , cryT , q , IT ), a task sequence (TS ) from GA and a feasible model  

sequence ( 0MS ) ); Set cE =a very high value, bestE =a very high value, 

0con , K =a user-defined station number. Then, go to Step 1. 

Step1.  Generate an initial line balance ( 0LB ) by using the line balancing 

procedure (see Chapter 4.3.5.1) with the current K ; Set 0TTC  , 

1n , 0LBLBc   and 0MSMSc  . Then, go to Step 2. 

Step2. Generate a neighbor (a new nLB  or nMS  can be generated 

changing cLB or cMS ) by using the neighborhood generating procedure 

(see Chapter 4.3.5.2) and go to Step 3. 

Step3.  Check the workstations time feasibility (The each station time at each 

cycle is checked with generated combination of nLB  , nMS  and the given 

cycle time (C )) by using the checking feasibility of workstation time  

procedure (see Chapter 4.3.5.3) and then, assign 1f  to feasible case 

and 0f   to infeasible case. Then, go to Step 4.  

Step4.    If f equal to 1, then go to Step 5. Otherwise; go to Step 9. 

Step5.   Set; 1 concon . Calculate; the cost of this neighbor solution ( nE ) and 

then calculate the difference between the cost of neighbor solution ( nE ) 

and the cost of current solution ( cE ) by the following equation: 

cn EE   and then, go to Step 6. 

Step6.    If    0, then accept the sequence ( nMS ) as a new sequence ( cMS ), set 

cE = nE , nc LBLB  , nc MSMS    and then, go to Step 7. Otherwise; go 

to Step 8. 

Step7.    If cE < bestE ;set cbest EE  , cbest LBLB  , cbest MSMS  . Otherwise; 

bestE , bestLB  and bestMS  are not change. Go to Step 9. 
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Step8.    If    > 0, then accept the neighbor solution as the current solution with   

the probability of )/exp( cT  and set cbest EE  , cbest LBLB  , 

cbest MSMS  . Otherwise; cE , cLB , cMS  are not change. Then, go to 

Step 9. 

Step9.    If ITn  , then g o to Step 10. Otherwise; set 1 nn  and go to Step 2. 

Step10.   Set; qTT cc  , 1n  and then go to Step 11. 

Step11.  If cryc TT  , then go to Step 2. Otherwise; go to Step 12. 

Step12.  If 1con , then Stop. Otherwise; set 1 KK  and go to Step 1. 

 

The flowchart of the proposed SA-based fitness evaluation approach is given in 

Figure 4.12. 

 

Developed simulated annealing algorithm based fitness evaluation approach uses 

user defined station number, a feasible model sequence given by user ( 0MS -initial 

model sequence), and SA algorithm parameters ( cryT , 0T , q , IT )  suitable for the 

problem. At the beginning, a high value is assigned to the current cost function 

( cE =a very high value), a high value for the best cost function ( bestE =a very high 

value), and the value zero ( 0con ) to the variable con which is used for controlling 

whether a feasible solution is found under current station number of the algorithm. 

Initial solution for line balancing ( 0LB ) is generated by using line balancing part of 

the modified neighborhood generation mechanism (with the current number of 

stations).  This line balancing and feasible model sequence given by user form 

current line configuration ( 0LBLBc   and 0MSMSc  ). Current temperature is 

equalized to initial temperature ( 0TTC  ), and iteration number at length of each 

temperature level is equalized to 1 ( 1n ).  Feasible solution is sought after the 

assignments of the said variable and parameter by generating new neighborhoods 

from the current line configuration ( cLB  and cMS ) for the addressed task sequence 

(TS ).  New neighborhoods generated for line balancing are generated depending on 

the probability 1p . New neighborhoods formed for line balancing ( nLB ) are 

generated randomly completely independently from the current line balancing,  
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Figure 4.12 Flow-chart of the proposed SA-based fitness evaluation approach 

START 

 
Input SA parameters ( 0T , cryT , 
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K = a user-defined value  

Generate initial line balance 
( 0LB ) by using the line balancing 

procedure with the current K ; set 

0TTC  , 1n , 0LBcLB   and 
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depending on the current number of stations, and in a manner at least one task will be 

assigned to each station. New neighborhoods for model sequencing are generated 

depending on the probability ( 11 p ).  New neighborhoods for model sequencing 

( nMS ) are generated by swapping (depending on the probability 2p ) or inserting 

(depending on the probability ( 21 p )) by depending on the current model sequence 

( cMS ).  Iteration as much as the length of each temperature level ( IT  ) is carried out 

at each energy level ( qTT cc  ) until initial temperature ( 0T ) reaches at 

crystallization temperature ( cryT ). As a result, if a feasible solution is found in the 

system ( 1,1  conf ), the algorithm continues searching solution until termination 

conditions of the algorithm are ensured. Cost functions ( nE ) of obtained new 

feasible solutions are calculated by our proposed fitness function.  Depending either 

on the fact that the cost function of the new solution is lesser or the probability of 

accepting bad results (metropolis criterion); cE , cLB  and cMS  are updated. After 

the termination of the algorithm, the solution giving the minimum cost function 

( bestE ) is the solution giving the best line balancing ( bestLB ) and model sequencing 

( bestMS ) configuration.  If feasible solution ( 0f ) cannot be found, the number 

station is increased by one ( 1 KK ) and these processes continue until the 

feasible solution is found by updating simulated annealing algorithm parameters with 

initial parameters.  Therefore, it may start and stop more than once.  

 

 4.3.5.1 Initial Solution ( 0LB  - 0MS ) 

 

The initial solution for the proposed SA based algorithm contains solutions for 

two problems: MMUL/LB and MMUL/MS. The combination of these solutions 

provides an initial solution to MMUL/BS problem. So, the proposed SA based 

algorithm is adopted to generate initial solution ( 0LB ), randomly, for MMUL/LB by 

using a procedure which will be discussed in Chapter 4.3.5.2.1, and a user defined 

feasible model sequence ( 0MS ) is used as an initial solution for MMUL/BS.  
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Swap Insert 

 4.3.5.2 Neighboring Solutions ( nLB - nMS ) 

 

We modified the neighborhood generation logic developed by Kara et al. (2007a) 

in a manner corresponding to our problem characteristic. A neighbor solution can be 

either a new line balancing or a new model sequence. New line balancing solution is 

randomly generated depending on current number of stations (K) and consists of 

three successive phases.  A new model sequence is generated by changing the 

positions of models in the model sequence.  

 

The modified neighborhood generation logic enables us to consider the line 

balancing and model sequencing problems of mixed-model U-lines simultaneously 

as shown in Figure 4.13.  

   

 Generate two random number ( 1p , 2p ) from )1,0.(.du  
 

  

 

               Line Balancing                                                            Sequencing 

 segmentation of  the task sequence  

 identifying the indexes of stations  

 identifying the indexes of model points  

 

               Figure 4.13 Neighborhood generation mechanism of the proposed SA 

 

     Initially, two random numbers ( 1p , 2p ) are specified to determine the type of the 

new neighbor solution. 

 

4.3.5.2.1 Line Balancing (LBn). Line balancing neighborhood is generated 

depending on the probability 1p  and consists of three successive phases. 

  

 First of all, task sequence is randomly divided into segments as much as 

the number of stations (K) in a manner at least one task will be assigned to 

2p  

11 p  1p  

21 p  
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each station, and each length of segment is placed in the list that we will 

call as assignment list (AL) in sequence.   

 

Division of the task sequence (TS) to segments and formation of assignment list 

( AL ) is shown in following procedure step-by-step.   

 

Input: a feasible task sequence, number of tasks ( N ), number of stations ( K ) 

Output: assignment list ( AL ) 

 

Step0. Set; )]1([  KNu , 1z , 1I  and then, go  to Step 1. 

Step1. If  I  not equal to K , then go to Step 2. Otherwise; go to Step 3. 

Step2. Generate a random number between z  and u. Set;  

               )(IAL = )]1(),([  zuzrnd , )(IALzz  , 1 uu , 1 II  

  and then, go to Step 1. 

Step3. Set; )]1([)(  zuIAL  and then, Stop. 

 

For example, let a feasible task sequence obtained by using priority based 

decoding procedure from precedence diagram consisting of 10 tasks in Figure 4.6 be 

}8,7,6,5,9,2,3,10,4,1{TS , and suppose that the tasks in this task sequence will be 

assigned to 4 stations.  Because the task sequence length is 10 and at least one task 

must be assigned to each workstation, a number between 1 and 7 is randomly 

generated, and suppose that generated random number is 3.  This shows that the tasks 

in this segment will be at the same station and placed in the assignment list, 

}3{AL . Because of the fact that remaining number of stations is 3 for carrying out 

segmentation, a random number is generated between 4 and 8 in order to form next 

segment.  Suppose that generated random number is 6.  Due to the fact that the stand 

point of its previous segment is 3, the difference between generated number and the 

length of previous segment is assigned for this segment (6-3).  This segment is also 

placed in this assignment list, }3,3{AL . Now, because the remaining number of 

stations for making segmentation is 2, a random number is generated between 7 and 

9.  Suppose that generated random number is 8.  Again this segment is placed in this 

assignment list according to stand point of the previous segment in task sequence, 



 

 

75
 

}2,3,3{AL . Finally, because of the fact that remaining number of stations is 1, 

remaining tasks (two tasks) in task sequence are placed for the last segment in the 

assignment list }2,2,3,3{AL .  The output of this procedure is shown in Figure 4.14.  

 
 
 
 
 
 
 
                                       Figure 4.14 The output of the example for dividing into segments  
 

 And then, precedence relations of the tasks forming each segment in the 

assignment list are controlled, and which station index ( )SI  will be taken 

is determined. Station indexes start from 1 in a manner not breaking 

process flow of the tasks and are as much as current station number. These 

station indexes are placed respectively in the list to be called as station 

index sequence ( AIS ).   

 

Determination of station index numbers of the tasks divided into segments ( )SI  

and placement of these indexes to station index sequence ( AIS ) are shown step-by-

step in the following procedure.  

 

Input: assignment list ( (.)AL ) from previous phase, task sequence ( (.)TS ), 

number of tasks ( N ), number of stations ( K ), the set of task nodes, and an empty 

precedence control list ( )CPR  

Output: station index sequence ( AIS ) 

 

Step0. Set 1SI (index) and go to Step 1. 

Step1. Set 1z , 1I  and go to Step 2. 

     Step2. Set 



I

i

iALu
1

)( and go to Step 3. 

     Step3.  for ( zj   to u ; 1 jj ){ 

                   ;0control  

 3 3 2 2 
                

Stand points 1 2 3 4 5 6 7 8 9 10 

Task sequence 1 4 10 3 2 9 5 6 7 8 
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                      if   (CPR  contains )( jTSIP ){ 

                             ;1control  

                             for ( zi   to u ; 1 ii ){ 

                                   Set SIiAIS )( ;  

                                   Set )()( iTSiCPR  ; 

      }end for.  

                              Set 1 SISI ;  

      if (( 1SI )  equal to K )  Stop.  

 } end if.  

                        if ( control equal to 1){ 

     Go to Step 4 (break).             

                         } end if. 

                  } end for. Then, go to Step 4 

Step4. if u  is not equal to N , set 



I

i

iALz
1

1)( , 1 II , and then go to Step    

            2. Otherwise; go to Step 1. 

 

For example; let’s determine which station indexes will be possessed by tasks in 

task sequence ( }8,7,6,5,9,2,3,10,4,1{TS ) corresponding to the segments in 

assignment list ( }2,2,3,3{AL ) obtained from abovementioned example.   

 

 Tasks corresponding to the first segment are 1, 4 and 10.  As seen from the 

precedence diagram in Figure 4.6, immediate predecessors of these tasks are 

1IP ={}, 4IP = }1{  and 10IP = }9{ , respectively. Because there is no task to be 

performed before Task 1, all tasks in this segment take the index numbered 1( 1SI ) 

and they are placed in station index sequence ( }1,1,1{AIS ).  Tasks numbered 3, 2 

and 9 take place in the second segment. Immediate predecessors of these tasks are 

3IP ={}, 2IP ={} and 9IP = }7,3{ , respectively. Because there is no task to be 

performed before Task 2 and 3, all tasks of that segment take the subsequent station 

index and are placed in the station index sequence ( }2,2,2,1,1,1{AIS ). Tasks 
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numbered 5 and 6 whose immediate predecessors are 5IP = }4{ , 6IP = }5,2{  take place 

in the third segment.  Because the tasks that must be performed immediately before 

these tasks have previously taken their station indexes, these tasks numbered 5 and 6 

in queue take the station index numbered 3 ( 3SI ) and are placed in station index 

sequence list ( }3,3,2,2,2,1,1,1{AIS ). Finally, immediate predecessors of the tasks 

numbered 7 and 8 taking place in the fourth segment are 7IP = }6{ , 8IP = }7{ , 

respectively. Because task numbered 6 has previously taken station index, these tasks 

(7 and 8) takes the station index numbered 4 ( 4SI ) and are placed in station index 

sequence list ( }4,4,3,3,2,2,2,1,1,1{AIS ).  The output of this procedure is shown in 

Figure 4.15.   

 

TS 1 4 10 3 2 9 5 6 7 8

SI 1 1 1 2 2 2 3 3 4 4
 

                                                  Figure 4.15 The output of the example of  
                                                  station index determination 

 
 

 Finally, model point indexes ( MP ) are detected by considering 

precedence relationship among tasks in order to determine which model 

time will be taken by tasks whose station indexes are set, and these model 

point indexes are placed respectively in the list that we will call model 

point index sequence ( MIS ). As already mentioned before, once all tasks 

take their model point indexes, maximum model point index becomes 

equal to the length of cycle sequence.   

 

Determination of which model point index will be taken by tasks whose station 

indexes ( )SI  are set, and placement of these determined indexes to the list of model 

point index sequence ( MIS ) are shown step-by-step in following procedure.  

 

Input: number of tasks ( N ), number of workstations ( K ), assignment list 

( (.)AL ) from first phase, station index sequence ( (.)AIS ) from second phase, task 

sequence ( (.)TS ) (the same task sequence with previous phase), and an empty 

precedence control list ( )CPR  
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Output: Model index sequence ( MIS ) 

Step0. Set 1MP  (index), 1z , 1I  and then go to Step 1. 

Step1. Set 



I

i

iALu
1

)( . Then, go to Step 2. 

Step2. For ( zi   to u ; 1 ii ){ 

                        Set )()( iTSiCPR  ;  

                }end for. Then, go to Step 3.  

Step3.  Set 0control ;  

   for ( zi   to u ; 1 ii ){ 

   if  (CPR  contains )(iTSIP ){ 

                         Set 1control ; 

                         Set MPiMIS )( ; 

                     } end if.  

                }end for. Then, go to Step 4.  

Step4. if ( control  equal to 1){ 

                      Set 1 MPMP  

                   }end if.  

if all location of MIP  have indexes of model points ( MP ) Stop; 

Otherwise   go to Step 5. 

Step5. Set 



I

i

iALz
1

1)( , 1 II . if z  bigger than N  and then go to Step 6.  

               Otherwise; go to Step 1. 

Step6. Set 1 KI  and then, go to Step 7. 

Step7. Set 



I

i

iALu
1

)( . If I  not equal to 1 then, set 





1

1

1)(
I

i

iALz .  

                Otherwise; set 1z  and go to Step 8. 

Step8.  Set 0control ;  

                    for ( ui   to z ; 1 ii ){ 

                              if )(iMIS has not any index of model point ( MP ){ 

                                  Set MPiMIS )(  

                                  Set 1control ; 
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                              }end if.              

                         }end for. Then, go to Step 9. 

Step9. If control equal to 1 then, set 1 MPMP  and go to Step 10.  

              Otherwise; go to Step 10.  

Step10. Set 1 II . If I is equal to 0 Stop. Otherwise; go to Step 7.   

 

 Let’s determine which model point index ( MP ) will be possessed by tasks whose 

station indexes are determined ( }4,4,3,3,2,2,2,1,1,1{AIS ) and see how these are 

transferred to the model point index sequence by continuing the example explained 

in previous procedure.  

 

 Tasks assigned to the station having station index numbered 1 are 1, 4 and 10; and 

immediate predecessors of these tasks are 1IP ={}, 4IP = }1{  and 10IP = }9{ , 

respectively.  Because there is no task in the precedence of the task numbered 1, the 

model point index numbered 1 ( 1MP ) is assigned to the task numbered 1 (to the 

said task), }1{MIS .  Because the task numbered 4 is at the same station with the 

task numbered 1, and the task numbered 1 takes place in immediate predecessor of 

the task numbered 4, the task numbered 4 also takes the model point index numbered 

1 ( 1MP ), }1,1{MIS .  Due to the fact that a model point index is not assigned yet 

to the task numbered 9 in immediate predecessor of the task numbered 10, a model 

point index cannot be assigned now to the task numbered 10, },1,1{ MIS .  It is 

understood from this situation that this station is a crossover station. After having 

evaluated model point indexes of all of the remaining tasks in task sequence order, 

the tasks in task sequence are re-evaluated from back to front for the tasks whose 

model point indexes are not assigned. The model point index is increased by 

one, 2MP , and we pass to the segment having next station index, 2SI . Tasks 

assigned to the station having the station index numbered 2 are 3, 2 and 9; 

and immediate predecessors of these tasks are 3IP ={}, 2IP ={}, and 

9IP = }7,3{ respectively. Because there is no task in the precedence of the task 

numbered 3 and 2, the model point index of the tasks numbered 3 and 2 is assigned 

as 2 ( 2MP ), }2,2,,1,1{ MIS .  Because the tasks in immediate predecessor of the 
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task numbered 9 are task 3 and 7, and task 3 is already at the same station, it does not 

hinder the assignment of the model point index for the task numbered 9, however, a 

model point index cannot be assigned now to task numbered 9 because a model point 

index is not assigned previously to the task numbered 7, },2,2,,1,1{ MIS .  This 

station is also a crossover station. Model point index is increased by one, 3MP , 

and we pass to the station having the next station index, 3SI . Tasks assigned to 

the station having the station index numbered 3 are 5 and 6, and immediate 

predecessors of these tasks are 5IP = }4{  and 6IP = }5,2{ respectively.  Because the 

task numbered 4 in immediate predecessor of the task 5 has previously taken a model 

point index, 3MP is assigned to the task 5, }3,,2,2,,1,1{ MIS .  Because the 

task 5 in immediate predecessor of the task 6 is at the same station, and a model 

point index is also assigned to task 2 previously, 3MP is assigned to the task 6, 

}3,3,,2,2,,1,1{ MIS .  Model point index is increased by one, 4MP , and we 

pass to the station having the next station index, 4SI . Tasks assigned to the station 

having the station index numbered 4 are 7 and 8, and immediate predecessors of 

these tasks are 7IP = }6{  and 8IP = }7{ respectively. Because a model point index is 

previously assigned to the task 6 in immediate precedence of the task 7 and they are 

at the same station with the task 7 in immediate precedence of the task 8, 4MP  is 

assigned to these two tasks, }4,4,3,3,,2,2,,1,1{ MIS .  Model point index is 

increased by one, 5MP . All tasks in the task sequence were evaluated; however, a 

model point index could not be assigned yet to tasks 10 and 9.  Therefore, the tasks 

whose station indexes are determined in the task sequence are re-evaluated from the 

station having the last station index until the station having the station index 

numbered 1. All of the tasks assigned to the station having the station index 

numbered 4 and 3 have a model point index.  The model point index of the tasks 

numbered 9 assigned to the station having the station index numbered 2 is not 

assigned yet. The task 3 is assigned to the same station and a model point index is 

also assigned to the task 7 previously in immediate precedence of the task 9, so 

5MP  is assigned to the task 9, }4,4,3,3,5,2,2,,1,1{ MIS .  Model point index is 

increased by one, 6MP , and we pass to the station having the station index 

numbered 1.  At this station, because a model point index is just assigned to the task 
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9 in immediate precedence of the task 10 whose model point index is not assigned, 

6MP  is assigned to the task 10, }4,4,3,3,5,2,2,6,1,1{MIS .  Thus, all tasks have 

taken their model point indexes.  At the end of this procedure, which tasks will be 

processed at which zone of the assembly line will have been determined.  The output 

of the end of the application of this procedure to the example is as in Figure 4.16.  

 

TS 1 4 10 3 2 9 5 6 7 8

AIS 1 1 1 2 2 2 3 3 4 4

MIS 1 1 6 2 2 5 3 3 4 4
 

 Figure 4.16 The output of the example of 
  the determination of model point indexes 

 

This line balancing solution (see output of the example) contains six model point 

indexes (maximum MP  of MIS ) and four workstations ( maximum SI  of AIS ) . 

The production process must follow these model point indexes of locations from 1 to 

the last index so as to provide precedence constrains. These indexes for this line 

balance configuration are shown in Figure 4.17. 

 

 
                    Figure 4.17 Indexes of model points 
 
 

 As mentioned before, rCS   represents the cycle sequence at the cycle r . The 

length of each cycle sequence is equal to maximum MP  of MIS . For example, if the 

model sequence is selected as AABBC, the cycle sequences ( rCS ) which are proper 
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according to these model points can be seen in Table 4.5. Cycle sequences will be 

used for controlling whether line configuration solutions are feasible or not. 

 
Table 4.5 Cycle sequences 

          MP    
  rCS        1 2 3       4 5 6 

1CS  A C B B A A 

2CS  A A C B B A 

3CS  B A A C B B 

4CS  B B A A C B 

5CS  C B B A A C 

 

4.3.5.2.2 Sequencing (MSn). A new model sequence is generated using swapping 

or inserting. 

 

 Swap: A new model sequence generated by swapping two randomly 

selected models in the model sequence with the probability of  )1( 1p  

 2p . Note that these models should be different. 

 Insert: A new model sequence generated by inserting a randomly selected 

model before another randomly selected model with the probability of 

)1( 1p   )1( 2p .  

 

  4.3.5.3 Checking Feasibility of Workstation Times  

 

Every station time in each cycle will be checked with regard to following 

procedure and the proposed algorithm keeps running by taking into consideration if 

the solution is feasible (f=1) or not (f=0). 

 
1f ; (feasible) 

for ( 1k  to K (for all  workstations); 1 kk ){      
         for ( 1r  to R (for all cycles); 1 rr ){ 
           krW =0;(initially, workload of the workstation k at the cycle r is equal to zero) 

                    for ( 1i  to N (for all tasks); 1 ii ){ 
if ))()(( kk XBXFiTS  { 

)(iMISMP  ; 
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krW = krW + )()( MPCSiTS r
t ; 

if ( krW >C ){(workload of workstation k at the cycle r can not  

exceed the cycle time) 
0f ; (infeasible) 

Stop. 
}end if. 

}end if. 
}end for. 

            }end for. 
}end for. 
 

Output of this procedure 1f (feasible) or 0f (unfeasible). 
 
 

4.3.6 Identifying Efficient Control Parameters 

 

 In this section, a comprehensive experiment is conducted to evaluate the 

performance of proposed algorithm. The performance of proposed algorithm may 

vary according to some problem factors. The parameters of the proposed algorithm 

can be classified into two categories. These are Genetic Algorithm’s control 

parameters and proposed SA-based fitness evaluation approach’s control parameters.  

 

Each control parameter varied at two levels (low and high).  

 

Genetic Algorithm’s Control Parameters: 

 The population size ( PS ): 60-200, 

 The crossover rate ( RC ): 0.50-0.95, 

 The mutation rate ( RM ): 0.005-0.20, 

 Maximum number of generations ( maxGN ): 50-200. 

 

Simulated Annealing Algorithm’s Control Parameters: 

 The cooling rate ( q ): 0.70-0.95,  

 The probability of new line balancing( 1p ) : 0.55-0.90, 

 The initial temperature ( 0T ): 20-100. 
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Some parameters of the proposed algorithms are fixed to following statements: 

 The minimum part set ( MPS ) is fixed to: {3,2,1}, 

 The length of the each temperature level ( IT ) is fixed to: 2, 

 The crystallization temperature ( cryT )  is fixed to: 1, and 

 The probability of new sequencing ( 2p ) is fixed to: 0.5. 

 

To identify the efficient control parameters, we employed statistical design of 

experiments (DOE) approach (Montgomery and Runger, 2005). DOE is a well-

regarded investigative method both for its effectiveness and its efficiency in 

evaluating the effect of multiple factors upon a process. Thomopoulos19 problem 

(Thomopoulos, 1970) was chosen as the example for identifying the effect of 

different control parameters. 

 

We conducted the 272   fractional factorial design to analyze how much proposed 

algorithm’s parameters interrelated with each other. The 272   fractional factorial 

experimental layout was used for carrying out the experiments (see Table 4.6). 

 

At each parameter setting, we performed multiple runs, i.e., 5 runs to determine 

the variation in the results. As a result, a total of (32*5) 160 runs were carried out. 

The proposed algorithm was coded in Matlab 7.6.0 and run on a 3.00 GHz Pentium 4 

computer. Minitab 14 statistical package was used for analyzing the data.  
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Table 4.6 The 272   fractional factorial design 

Experiment 
no PS  RC  RM  q  1p       0T  maxGN

1 (-) 60 (-) 0.50  (-) 0.005 (-) 0.70 (-) 0.55 (+) 100 (+) 200 
2 (+) 200 (-) 0.50  (-) 0.005 (-) 0.70 (-) 0.55 (-) 20 (-) 50 
3 (-) 60 (+) 0.95 (-) 0.005 (-) 0.70 (-) 0.55 (-) 20 (-) 50 
4 (+) 200 (+) 0.95 (-) 0.005 (-) 0.70 (-) 0.55 (+) 100 (+) 200 
5 (-) 60 (-) 0.50  (+) 0.20 (-) 0.70 (-) 0.55 (-) 20 (+) 200 
6 (+) 200 (-) 0.50  (+) 0.20 (-) 0.70 (-) 0.55 (+) 100 (-) 50 
7 (-) 60 (+) 0.95 (+) 0.20 (-) 0.70 (-) 0.55 (+) 100 (-) 50 
8 (+) 200 (+) 0.95 (+) 0.20 (-) 0.70 (-) 0.55 (-) 20 (+) 200 
9 (-) 60 (-) 0.50  (-) 0.005 (+) 0.95 (-) 0.55 (-) 20 (-) 50 
10 (+) 200 (-) 0.50  (-) 0.005 (+) 0.95 (-) 0.55 (+) 100 (+) 200 
11 (-) 60 (+) 0.95 (-) 0.005 (+) 0.95 (-) 0.55 (+) 100 (+) 200 
12 (+) 200 (+) 0.95 (-) 0.005 (+) 0.95 (-) 0.55 (-) 20 (-) 50 
13 (-) 60 (-) 0.50  (+) 0.20 (+) 0.95 (-) 0.55 (+) 100 (-) 50 
14 (+) 200 (-) 0.50  (+) 0.20 (+) 0.95 (-) 0.55 (-) 20 (+) 200 
15 (-) 60 (+) 0.95 (+) 0.20 (+) 0.95 (-) 0.55 (-) 20 (+) 200 

 16 (+) 200 (+) 0.95 (+) 0.20 (+) 0.95 (-) 0.55 (+) 100 (-) 50 
17 (-) 60 (-) 0.50  (-) 0.005 (-) 0.70 (+) 0.90 (+) 100 (-) 50 
18 (+) 200 (-) 0.50  (-) 0.005 (-) 0.70 (+) 0.90 (-) 20 (+) 200 
19 (-) 60 (+) 0.95 (-) 0.005 (-) 0.70 (+) 0.90 (-) 20 (+) 200 
20 (+) 200 (+) 0.95 (-) 0.005 (-) 0.70 (+) 0.90 (+) 100 (-) 50 
21 (-) 60 (-) 0.50  (+) 0.20 (-) 0.70 (+) 0.90 (-) 20 (-) 50 
22 (+) 200 (-) 0.50  (+) 0.20 (-) 0.70 (+) 0.90 (+) 100 (+) 200 
23 (-) 60 (+) 0.95 (+) 0.20 (-) 0.70 (+) 0.90 (+) 100 (+) 200 
24 (+) 200 (+) 0.95 (+) 0.20 (-) 0.70 (+) 0.90 (-) 20 (-) 50 
25 (-) 60 (-) 0.50  (-) 0.005 (+) 0.95 (+) 0.90 (-) 20 (+) 200 
26 (+) 200 (-) 0.50  (-) 0.005 (+) 0.95 (+) 0.90 (+) 100 (-) 50 
27 (-) 60 (+) 0.95 (-) 0.005 (+) 0.95 (+) 0.90 (+) 100 (-) 50 
28 (+) 200 (+) 0.95 (-) 0.005 (+) 0.95 (+) 0.90 (-) 20 (+) 200 
29 (-) 60 (-) 0.50  (+) 0.20 (+) 0.95 (+) 0.90 (+) 100 (+) 200 
30 (+) 200 (-) 0.50  (+) 0.20 (+) 0.95 (+) 0.90 (-) 20 (-) 50 
31 (-) 60 (+) 0.95 (+) 0.20 (+) 0.95 (+) 0.90 (-) 20 (-) 50 
32 (+) 200 (+) 0.95 (+) 0.20 (+) 0.95 (+) 0.90 (+) 100 (+) 200 

 
 
Table 4.7 Analysis of variance for responses 

Source    DF Seq SS Adj SS Adj MS  F P 
Main Effects 7 7.7263 7.7263 1.10375 21.34 0.000 
2-Way Interactions  18 2.1417 2.1417 0.11898 2.30 0.004 
3-Way Interactions 6 0.1556 0.1556 0.02593 0.50 0.806 
Residual Error 128 6.6192 6.6192 0.05171   
Pure Error  128 6.6192 6.6192 0.05171   
Total 159 16.6428     
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In order to determine which control parameter effects are significant, a statistical 

analysis of variance (ANOVA) is conducted. Table 4.7 shows the results of 

ANOVA, which indicates that each of the main effects is significant and some 

interactions are also found to be significant for the proposed performance measure 

( Z ). Table 4.8 shows estimated effects and coefficients for responses.  

 
Table 4.8 Estimated effects and coefficients for responses 

Term              Effect  Coef  SE Coef  T  P 
Constant    3.3681 0.01798 187.35 0.000 
PS    -0.1635 -0.0818 0.01798 -4.55 0.000 
RC       -0.1027 -0.0513 0.01798 -2.86 0.005 
RM        -0.1184 -0.0592 0.01798 -3.29 0.001 
q     -0.1038 -0.0519 0.01798 -2.89 0.005 
p1      -0.1036 -0.0518 0.01798 -2.88 0.005 
T0         -0.2351 -0.1176 0.01798 -6.54 0.000 
GN(max) -0.2550 -0.1275 0.01798 -7.09 0.000 
PS*RC    0.0626 0.0313 0.01798 1.74 0.084 
PS*RM   -0.0176 -0.0088 0.01798 -0.49 0.626 
PS*q     0.0066 0.0033 0.01798 0.18 0.856 
PS*p1   0.0147 0.0074 0.01798 0.41 0.682 
PS*T0 0.0642 0.0321 0.01798 1.79 0.077 
PS*GN(max)  0.0530 0.0265 0.01798 1.47 0.143 
RC*RM    -0.0117 -0.0058 0.01798 -0.32 0.746 
RC*q       0.0113 0.0056 0.01798 0.31 0.754 
RC*p1   0.0422 0.0211 0.01798 1.17 0.243 
RC*T0    0.0036 0.0018 0.01798 0.10 0.919 
RC*GN(max) 0.0197 0.0098 0.01798 0.55 0.585 
RM*q      0.0110 0.0055 0.01798 0.31 0.759 
RM*p1     0.1324 0.0662 0.01798 3.68 0.000 
RM*T0    0.0850 0.0425 0.01798 2.37 0.020 
RM*GN(max) 0.0574 0.0287 0.01798 1.60 0.113 
q*p1     -0.0244 -0.0122 0.01798 -0.68 0.499 
q*T0        0.0983 0.0492 0.01798 2.74 0.007 
q*GN(max) 0.0350 0.0175 0.01798 0.97 0.333 
PS*RM*p1 -0.0139 -0.0069 0.01798 -0.39 0.701 
PS*RM*GN(max) 0.0152 0.0076 0.01798 0.42 0.673 
RC*RM*p1 0.0091 0.0045 0.01798 0.25 0.801 
RC*RM*GN(max) 0.0038 0.0019 0.01798 0.10 0.917 
RM*q*p1 -0.0576 -0.0288 0.01798 -1.60 0.112 
RM*q*GN(max) -0.0072 -0.0036 0.01798 -0.20 0.843 

S = 0.227404   R-Sq = 60.23%   R-Sq(adj) = 50.60% 

 
 
 Normal probability plot of the standardized effects and Pareto chart of the largest 

30 effects are shown in Figure 4.18, Figure 4.19, respectively. 
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                   Figure 4.18 Normal probability plots of the standardized effects 
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                    Figure 4.19 Pareto charts of the standardized effects 
 
 

In addition to analysis above, the following linear equation is estimated from the 

results of the experiment: 

 
Response = 3.37 - 0.0818* PS - 0.0513* RC - 0.0592* RM - 0.0519* q - 0.0518* 1p  

-0.118* 0T - 0.128* maxGN  

 
It is possible to estimate the response of the solution when the parameters of the 

algorithm changed. For example, if the cooling rate is changed from 0.70 to 0.99, we 

expect to have a better solution for all problems, and this situation is valid for the 

other handled control parameters.  
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4.3.7 Numerical Illustration 

 

To describe the characteristics of proposed solution method for the problem of 

MMUL/BS, we used 10-task problem with three models (Kara et al., 2007a). 

Combined precedence diagram relationships among tasks and task completion times 

are given in Figure 4.20 and Table 4.9, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                     Figure 4.20 Combined precedence diagram  
 
 

Table 4.9 Task completion times for the example problem 

Task Completion time 

 A          B        C 
1 5           4         5 
2 2           0         7 
3 2           6         5 
4 4           0         2 
5 0           6         6 
6 4           1         5 
7 9           4         0 
8 3           7         5 
9 0           6         5 

10 3           7         1 
 

Suppose the demand rates of products A, B, and C is 40, 40, and 20 units in a 

planning period ( P ) of 1200 minutes ( D ={40, 40, 20}).  The greatest divisor (cd ) 

of vector D  is 20. By dividing the elements of D  by 20, MPS={2, 2, 1}. So, the 

10 

9 

8 

7 

6 
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3 2 1 
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example line is running at a cycle (C ) of 12 minutes/units (1200/(40+40+20)). The 

initial model sequence ( 0MS ) of the example U-line is selected as AABBC and, thus 

the length of model sequence ( R ) is 5.  

 
 As mentioned, each task sequence (TS ) is evaluated for calculating their fitness 

value by using the SA based fitness evaluation approach. SA based approach starts 

with the proper SA algorithm parameters, a task sequence (TS ), a feasible model 

sequence (MS) and the user defined station number (K), at first. If the feasible 

solution is not found, the value of (K) is increased by one. Then, the parameters of 

SA algorithm are updated with initial parameters ( cryT , 0T , q , IT ). This case 

continues whenever a feasible solution is found. After a feasible solution is found, 

the algorithm will continue the search until the SA termination conditions are met. 

The parameters that are used in the GA and SA based evaluation algorithm runs are 

listed in Table 4.10. 

 

Table 4.10 Selected control parameters 
Parameters Value 
Minimum part sets                                     {2,2,1} 
Initial number of workstation (K) 1 
Population size                                           100 
Number of generations  100 
Crossover probability  0.95 
Mutation probability  0.2 
Initial temperature  100 
Cooling rate  0.95 
Length of the each temperature level  2 
Crystallization temperature  1 
Probability of p1 0.75 
Probability of p2 0.5 
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Table 4.11 Step-by-step illustration of the solution process  
 

        Stage 0: Evaluation of the initial population 
Station 

( k ) 
Task ( i ) }{ kXF , }{ kXB  Idle time ( krS ) },...2,1{ Rr   

1 {1,3},{ } {2,2,5,5,2} 

2 {2},{10} {4,5,5,7,7} 
3 {4},{8} {1,3,9,9,3} 
4 {5,6},{ } {8,8,1,5,5} 

5 {7,9},{ } {2,3,3,7,2} 

       :MS CBBAA; 1336.5Z  
        Stage 1: Evaluation of the 1.generation 

Station 
( k ) 

Task ( i ) }{ kXF , }{ kXB  Idle time ( krS ) },...2,1{ Rr   

1 {1,4},{10} {1,0,1,0,4} 
2 {2,3},{9} {0,0,8,1,2} 
3 {5,6},{ } {8,1,5,8,5} 

4 {7,8},{ } {1,0,7,1,0} 

       :MS BABAC; 8265.4Z  
        Stage 10: Evaluation of the 10.generation 

Station 
( k ) 

Task ( i ) }{ kXF , }{ kXB  Idle time ( krS ) },...2,1{ Rr   

1 {1,4},{10} {0,1,1,4,0} 
2 {2,3},{9} {2,2,1,6,0} 
3 {5,6},{ } {1,8,8,5,5} 

4 {7,8},{ } {1,7,0,0,1} 

       :MS ABBCA; 6196.4Z  
        Stage 20: Evaluation of the 20.generation 

Station 
( k ) 

Task ( i ) }{ kXF , }{ kXB  Idle time ( krS ) },...2,1{ Rr   

1 {2},{10} {7,7,4,5,5} 
2 {1,3,4},{ } {2,1,1,0,2} 

3 {5,6},{9} {5,0,2,2,1} 
4 {7,8},{ } {7,1,1,0,0} 

       :MS AACBB; 4910.4Z  
        Stage 60: Evaluation of the 60.generation 

Station 
( k ) 

Task ( i ) }{ kXF , }{ kXB  Idle time ( krS ) },...2,1{ Rr   

1 {1,3,4},{ } {0,1,2,1,2} 

2 {5},{10} {5,3,5,3,5} 
3 {2,6},{9} {6,5,0,0,6} 
4 {7,8},{ } {1,0,1,7,0} 

       :MS CABAB; 4587.4Z  
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Table 4.11 (cont) Step-by-step illustration of the solution process  

 
     Stage 70: Evaluation of the 70.generation 

Station 
( k ) 

Task ( i ) }{ kXF , }{ kXB  Idle time ( krS ) },...2,1{ Rr   

1 {1},{8} {5,0,5,0,2} 
2 {4,5},{10} {1,3,1,5,1} 
3 {2,6},{9} {0,0,6,6,5} 
4 {3,7},{ } {2,7,1,2,1} 

    :MS ABABC; 4271.4Z  
        Stage 80: Evaluation of the 80.generation 

Station 
( k ) 

Task ( i ) }{ kXF , }{ kXB  Idle time ( krS ) },...2,1{ Rr   

1 {1,3},{ } {5,2,2,5,2} 

2 {4,5},{10} {3,1,5,1,1} 
3 {2,6},{9} {0,6,6,5,0} 
4 {7,8},{ } {7,0,1,0,1} 

    :MS ABCAB; 4251.4Z  
     Stage 100: Evaluation of the 100.generation 

Station 
( k ) 

Task ( i ) }{ kXF , }{ kXB  Idle time ( krS ) },...2,1{ Rr   

1 {1,3},{ } {2,5,2,2,5} 

2 {4,5},{10} {1,3,1,5,1} 
3 {2,6},{9} {0,0,6,6,5} 
4 {7,8},{ } {1,7,0,1,0} 

    :MS BABCA; 4251.4Z  

 

Table 4.11 illustrates some steps of the procedure applied to the numerical 

example.  A final MMUL/BS is shown in each of the small tables. To simplify the 

schema, only the fitness function where reductions occurred is represented in the 

proposed GA approach. The content of each column in these small tables is the 

following: (1) workstation index, k , (2) set of tasks assigned to the workstations, and 

(3) the idle time of the workstations at each cycle, krS .  Given information under the 

in each small table contains the best model sequence of the final line balance for the 

evaluated generation, MS , and the best objective function for evaluated 

generation, Z .   

 

After the evaluation of initial population, a total of 5 workstation with Z=5.1336 

is detected. Beginning this solution, the proposed heuristic approach is able to reduce 



 

 

92
 

the objective function. The best solution found at the evaluation of the eightieth 

generation a total of 4 workstation with Z=4.4251. The best model sequence of the 

final line balance is found as BABCA. As shown in Table 4.11, there is no workload 

exceeding the pre-determined cycle time for the final U-line balance of the evaluated 

generation.  

 

The final U-line balance that consists two of the workstations have tasks at both 

sides of U-line, and the others have tasks at only one side of U-line. Final U-line 

balance of the example is shown Figure 4.21. Model mixes of workstations for each 

cycle of the final U-line balance are also given in Table 4.12. 

 

 
                Figure 4.21 Final U-line balance of the example 
 
 

Table 4.12 Model mixes of workstations for each cycle of the final U-line balance 
Station 

( k ) 
Model ( m ) 

{ 1
kf },{ 1

kb } 

Model ( m ) 

{ 2
kf },{ 2

kb } 

Model ( m ) 

{ 3
kf },{ 3

kb } 

Model ( m ) 

{ 4
kf },{ 4

kb } 

Model ( m ) 

{ 5
kf },{ 5

kb } 

1 {B},{ } {A},{ } {B},{ } {C},{ } {A},{ } 
2 {A},{B} {B},{A} {A},{B} {B},{C} {C},{A} 
3 {C},{A} {A},{B} {B},{C} {A},{A} {B},{B} 
4 {B},{ } {C},{ } {A},{ } {B},{ } {A},{ } 

 

ADW (absolute deviation of workload) was used for evaluating the workload 

smoothness of MMULs by Sparling and Miltenburg (1998), Miltenburg (2002), Kara 

et al. (2007a, 2007b) and Kim et al. (2000b, 2006). It is shown by the following 

equation: 
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  
 K

k

R

r kr CWADW
1 1 min  

 

 When ADW is used alone as performance measure, handled problem may give 

more than one solution with the same fitness value, and line configurations of these 

solutions with the same fitness values can be completely different from each other.  

Therefore, it is not obvious that which of these solutions has more fitted line 

configuration.  This situation becomes more important when the number of task and 

the number of products to be produced in the problem are increased.  Our proposed 

performance measure may be used as secondary goal in order to determine which 

configuration is more stable when such situations are encountered.   

 

 For example, although the ADW of the stage 70 and the stage 100 is the same with 

each other (41.6) in numerical example in Table 4.11, their line configurations are 

completely different. Again as it can be seen in Table 4.11, our proposed 

performance measure ensures us to handle these problems from a different aspect 

and help us to determine which solution has more balanced line configuration.   

 

Note: MMUL/BS solution of the stage 70 is equal to final solution of the Kara et al.’s 

(2007a) illustrative example. 

 

4.3.8 Computational Experiments and Analysis 

 

No comparable study dealing with the balancing and sequencing problems of 

mixed-model U-lines in minimizing the number of workstations (Type I) exists in the 

literature. Thus, to evaluate the performance of the proposed algorithm, we randomly 

generated different numbers of MPS  (see Table 4.13) for three sets of problems. The 

number of tasks performed on real world U-lines varies between 1 and 24 with an 

average value of 10.2 (Miltenburg 2001). At this juncture, the selected sets of 

problems are 10-task with 3-model in Kara et al. (2007a), 19-task with 3-model in 

Thomopoulos (1970) and 20-task with 5-model in Kara et al. (2007b). The 

experiment is repeated 5 times for every test problem by taking into account only the 
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proposed fitness function; and the minimum, mean and maximum value of the 

solutions were shown in the last three column of Table 4.13, respectively.  

 
Table 4.13 Test problems 

Problem 
Name of 
problem 

Number of 
models 

Cycle 
time 

MPS Min. Mean Max. 

1 Kara10 3 12 {1,1,1} 4.9586 4.9586 4.9586 
2 Kara10 3 12 {2,1,2} 4.4755 4.4755 4.4755 
3 Kara10 3 12 {2,2,1} 4.4251 4.4251 4.4251 
4 Kara10 3 12 {2,3,2} 5.0767 5.0767 5.0767 
5 Kara10 3 12 {4,2,3} 4.3116 4.3116 4.3116 
6 Kara10 3 12 {5,4,2} 4.3376 4.3447 4.3732 
7 Thomopoulos19 3 2.2 {1,1,1} 3.2952 3.2952 3.2952 
8 Thomopoulos19 3 2.2 {2,1,2} 3.2918 3.7094 4.0183 
9 Thomopoulos19 3 2.2 {2,2,1} 3.1713 3.1806 3.1947 

10 Thomopoulos19 3 2.2 {2,3,2} 3.3702 3.3874 3.4389 
11 Thomopoulos19 3 2.2 {4,2,3} 3.3482 3.4711 3.6085 
12 Thomopoulos19 3 2.2 {5,4,2} 3.1258 3.1453 3.2168 
13 Kara20 5 55 {1,1,1,1,1} 3.0396 3.0708 3.1131 
14 Kara20 5 55 {2,1,1,3,2} 3.2393 3.2948 3.4326 
15 Kara20 5 55 {1,3,2,2,1} 3.0973 3.1086 3.1182 
16 Kara20 5 55 {5,3,2,1,1} 3.0589 3.0717 3.0889 
17 Kara20 5 55 {1,2,4,5,8} 3.1869 3.1942 3.2113 
18 Kara20 5 55 {1,4,8,3,1} 3.1234 3.1349 3.1573 

 

As can be seen from Table 4.13, the value of fitness function may be varying 

according to different MPSs for the same test problem. This situation indicates that 

the sequence in which different models are produced cannot be set independently of 

the line balance. In fact, this is because of the difference of the combination of 

models assigned to stations according to varying cycles. As a result, the 

configuration of the MPS on the line is more important than the total number of 

models for the MPS. Actually, this is the effect of the best model sequence derived 

from the proposed SA based algorithm with regard to MPS. For example, tasks 

assigned to 5 workstations with MPS={2,3,2} while tasks assigned to 4 workstations 

with the other five MPSs for the test problem of Kara10. 

 

4.4 Use of Parallel Workstations and Zoning Constraints  

 

In this subchapter, the proposed algorithm is extended to efficiently tackle the U-

shape mixed-model balancing and sequencing problem simultaneously with some 

particular features such as parallel workstations and zoning constraints. 
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The workload corresponding to the set of tasks assigned to a workstation cannot 

exceed the workstation’s capacity, a crucial factor for the line production rate. The 

production rate is limited by the longest task time so that the longest task time is a 

lower bound on the cycle time. Parallel stations allow the reduction of the (global) 

cycle time of the system if certain tasks have task times longer than the desired cycle 

time (Buxey 1974; Pinto et al., 1981; Sarker and Shanthikumar, 1983; Bard, 1989). 

There are many important benefits by allowing stations to perform tasks in parallel 

(Buxey, 1974). One benefit is the potential improvement of balance efficiency 

(reduction of station idle time). Each station that is duplicated has an effective cycle 

time of (cycle timestation multiple), thus a range of times is available and there is 

more likelihood of a good fit. Another benefit of using stations in parallel, is 

enabling to meet required high production rates (resulting in short cycle times) when 

some work element times exceed the required cycle time. Last benefit of a line 

design with stations in parallel is increased flexibility. Thus, a failure of a station 

stops the entire line, while a failure of a parallel station allows continuing the line 

operation at a reduced production rate. 

 

Most of the works to solve assembly line balancing problem with parallel stations 

aim at attaining cost oriented objectives that are a trade-off between the incremental 

tooling/equipment cost of the duplicated workstations and the cost of hiring workers 

for the original line in order to satisfy the demand. Pinto et al. (1975) present a 

branch and bound procedure for selecting tasks to be paralleled, with the objective to 

minimize total cost (labor, including overtime, and equipment duplication costs). 

Other most important works related to cost oriented objectives are provided in Pinto 

et al. (1981), Johnson (1983), Bard (1989), Daganzo and Blumenfeld (1994), Askin 

and Zhou (1997) and Bukchin and Tzur (2000). Sarker and Shantikumar (1983) 

suggest a general approach that can be applied for both serial and parallel line 

balancing, and they define a limit on the number of parallel workstations to control 

the replication process. McMullen and Frazier (1997) suggest a simple heuristic 

procedure to solve a mixed-model assembly line problem with stochastic task times 

when paralleling of tasks is permitted and they allow the replication of a workstation 

as long as its utilization increases. In another work, they use a simulated annealing 
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heuristic to solve the same problem for a multi-objective combined mainly of the 

total cost of labor and equipment and the balance efficiency (McMullen and Frazier, 

1998). Vilarinho and Simaria (2002) present a two-stage simulated annealing 

approach to solve MALBP-1 with additional assignment restrictions and parallel 

stations. As secondary objective, terms for measuring vertical and horizontal 

imbalances are minimized. In another work, they use an ant colony optimization 

algorithm to solve the same problem (Vilarinho and Simaria, 2006). A detailed 

survey paper including parallel station on assembly line balancing problems is 

provided by Becker and Scholl (2006). 

 

This thesis is the first study dealing with the balancing and sequencing problems 

simultaneously of the U-lines using parallel workstations and zoning constraints for 

minimizing the number of workstations (Type 1). In addition, this newly developed 

performance measure aims at the workload balance within and between workstations 

at the end of all cycles as secondary goal. 

 

4.4.1 Assumptions  

 

The U-lines with parallel workstations and zoning constraints considered in this 

study operates in accordance with following assumptions: 

 

 Product models having similar production attributions are produced on the 

same U-shaped production lines. 

 The travel times of operators and setup times are ignored. 

 Precedence diagrams of different models are known, and a combined 

precedence diagrams is employed (Macaskill 1972). 

 The completion times of tasks may differ from one model to another and can 

be equal to zero. Common tasks among different models exist. 

 Task completion times are deterministic and independent from each others. 

 Paced assembly line considered and no work-in-process is allowed. 

 Minimum Part Set (MPS) principle is used (Bard et al., 1992, Merengo et al., 

1999, Kara et al., 2007a, Kim et al., 2000b). 
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1; if workstation k  is required more than one operator ( 1kRW  ) 

0; otherwise 

 Equally equipped workstations and fixed rate launching are considered. 

 

4.4.2 Notations and Equations  

 

Parallel workstations are explained by the following notations and equations: 

kRW  Represents that minimum how many operators must be assigned to this 

workstation for being able to perform the task having maximal task time under a 

cycle time limitation when all cycles are taken into consideration at the 

workstation k .  

 

kRW =


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kRP  is a decision variable defined as follows: 

 

 kRP                                                                                     

),...,1( Kk   

 

A workstation can be replicated as long as its utilization increases (McMullen and 

Frazier, 1997, 1998). Therefore, we expanded our algorithm in a manner that other 

operators can be assigned to the same workstation additionally to minimum number 

of operators necessary for enabling the decision making under different performance 

measures in cases requiring parallel station.  

 

To obtain alternative paralleling conditions, the decision maker may define the 

extra replicas of operator, CP . Thus, a operator in a particular workstation can be 

replicated up to an upper bound on the maximum number of replicas, MAXRP . 

 

MAXRP  is defined as follows; 

 

CPRWMAXRP k   ),...,1( Kk   
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  The total number of operators working on the assembly line )(S  is computed by 

the sum of the number of replicas of operators in all workstations, as follows: 

 





K

k
k MAXRPRPS

1

)]1(1[  

 

The workload capacity of the workstation k  will be equal to: 

 

kST = )]1(1[  MAXRPRPC k  Kk ,...,2,1  

 

The workload of the workstation k cannot exceed the workload capacity in any 

cycle.  This case is shown by following equation:  

 

 ( kkr STW  )  Kk ,...,2,1 ; Rr ,...,2,1  

 

Also, we included zoning constraints to our problem. As mentioned in Chapter 2, 

zoning constraints can be either positive or negative. Positive zoning constraints 

force the assignment of certain tasks to a specific workstation. In the proposed 

approach, the tasks that need to be allocated to the same Workstation are merged and 

treated by the procedure as only one task. Negative zoning constraints forbid the 

assignment of tasks to the same workstation. In the proposed procedure, a task is not 

available for being assigned to a workstation if there is an incompatible task already 

assigned to that workstation. 

 

4.4.3 New Objective Function   

 

We explained new fitness function by following equations in a manner 

comprising also parallel workstations. 

  

)( krkkr WSTS   ( Kk ,...,2,1 ), ( Rr ,...,2,1 )                                                    (1) 
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krS  (Eq. 1) represents the idle time of workstation k  at the cycle r . The idle time 

of a workstation is the difference between the capacity of the workstation and its 

workload. 

 

kKI   (Eq. 2) represents the total idle time at the end of all cycles in the 

workstation k .  

 

In the objective function (Eq. 6), bC   (Eq. 3) aims at smoothing the workload of 

workstations between cycles, i.e., the idle time is distributed across all cycles as 

equally as possible for any workstation. The value of function bC  varies between a 

maximum of 1, when the total idle time of a workstation at the end of all cycles equal 

to only one cycle’s idle time, and a minimum of 0, when the idle times of a 

workstation at the each cycle are equal to each other. 

 

rRI  (Eq. 4) represents the total idle time of all workstations at the cycle r .  

 

In the objective function (Eq. 6), wC   (Eq. 5) aims at workload balance of all 

workstations within any cycles, i.e., the idle time is distributed across all 

workstations as equally as possible at any cycle. The value of function wC  varies 

between a maximum of 1, when the total idle times of all workstations at any cycle 
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equal to only one workstation’s idle time, and a minimum of 0, when the idle times 

of each workstation at any cycle are equal to each other. 

 

The first term ( S ) of the fitness function (Eq. 6) is to minimize the total number 

of the operators required on the line. The second term ( bC ) is to smooth the 

workloads of workstations between cycles. The third term ( wC ) is to smooth the 

workloads of workstations within cycles. The second and the third terms are within 

the value range [0, 1]. So, the model minimizes the number of workstations before 

the secondary goal becomes active. The proposed performance measure may vary 

depending on the balance and the model sequence. 

Note: 

If  kKI  equals to 0, 

2

1
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If rRI  equals to 0, 

2
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
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will be equal to 0. 

 

4.4.4 Numerical illustration 

 

We used the precedence diagram of 10-task problem (Kara et al., 2007a) to 

describe the characteristics of the problem of MMUL/BS with parallel workstations 

and zoning constraints; and the task processing times were randomly generated for 

describing better the characteristics of our problem. 

 

Combined precedence diagram relationships among tasks and task completion 

times are given in Figure 4.22 and Table 4.14, respectively. 

 

 The example line is running at a cycle (C ) of 6 s/model, an MPS  of {221}, 

and, thus, a length of model sequence ( R ) of 5,   

 Tasks 9 and 10 cannot be executed on the same workstation, 
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 If a task time exceeds the capacity of a workstation, the number of extra 

replicas of operator for this workstation is given as zero ( 0CP ), 

 The control parameters of the GA and SA based algorithm are listed in Figure 

4.15. 

 The initial model sequence of the example U-line is selected as AABBC.   

 

 

 

 

 

 

 

 

 

 
 

  
            Figure 4.22 Combined precedence diagram  

 

Table 4.14 Task completion times for the example problem 

Task Completion time 

  A          B        C 
1 8           1         3 
2 2           0         7 
3 2           6         4 
4 4           0         2 
5 0           3         3 
6 4           1         2 
7 5           4         0 
8 3           1         5 
9 0           6         4 

10 1           7         1 
 

 As mentioned before, each task sequence (TS ) is evaluated to calculate their 

fitness value by using the SA based fitness evaluation approach. SA based approach 

starts with the proper initial SA parameters, a task sequence (TS ), a feasible model 

sequence, at first. If the feasible solution is not found, the value of (K) is increased 

by one. Then, the parameters ( cryT , 0T , q , IT ) of SA algorithm are updated with 

10 

9 

8 

7 

6 

5 

4 

3 2 1 
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initial parameters. This case continues whenever a feasible solution is found. After a 

feasible solution is found, the algorithm will continue to search until the termination 

conditions are met.  

 

Table 4.15 Selected control parameters 

Parameters Value 
Initial number of workstation (K) 1 
Population size                                          100 
Number of generations  100 
Crossover probability  0.95 
Mutation probability  0.2 
Initial temperature  100 
Cooling rate  0.95 
Length of the each temperature level  2 
Crystallization temperature  1 
Probability of p1 0.75 
Probability of p2 0.5 

 

 

Table 4.16 Step-by-step illustration of the solution process 

  

 Stage 0: Evaluation of the initial population 

Station ( k ) Task ( i ) }{ kXF , }{ kXB  Idle time ( krS ) },...2,1{ Rr   

  1 *  {2},{10} {9,3,11,4,5} 

  2*  
{1},{9} {5,4,4,5,5} 

3 {3,4},{ } {0,0,0,0,0} 

4 {5,6},{ } {2,1,2,2,2} 

5 {7},{ } {1,2,6,2,1} 

6 {8},{ } {3,3,5,1,5} 

 :MS CBAAB; 1548.8Z  
 Stage 1: Evaluation of the 1.generation 

Station ( k ) Task ( i ) }{ kXF , }{ kXB  Idle time ( krS ) },...2,1{ Rr   

  1*  {1},{8,10} {3,0,3,0,3} 

2 {3},{ } {0,0,4,2,4} 

3 {4,5},{ } {2,3,3,2,1} 

  4*  {2,6,7},{ } {3,1,7,7,1} 

5 {9},{ } {6,2,6,0,0} 

:MS BACAB; 3301.7Z  
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Table 4.16 (cont) Step-by-step illustration of the solution process 

 
 Stage 10: Evaluation of the 10.generation 

Station ( k ) Task ( i ) }{ kXF , }{ kXB  Idle time ( krS ) },...2,1{ Rr   

  1*  {1},{10} {4,3,4,3,8} 

2 {3,4},{ } {0,0,0,0,0} 

  3*  {2,5,6,7},{ } {1,0,4,1,4} 

4 {9},{ } {0,6,2,0,6} 

5 {8},{ } {3,5,3,1,5} 

 :MS BABAC; 2846.7Z  
 Stage 30: Evaluation of the 30.generation 

Station ( k ) Task ( i ) }{ kXF , }{ kXB  Idle time ( krS ) },...2,1{ Rr   

  1*  {2,3},{10} {5,5,1,1,0} 

  2*  {1},{9} {5,5,5,4,4} 

3 {4,5},{ } {2,1,3,3,2} 

4 {6},{8} {1,1,1,2,0} 
5 {7},{ } {2,1,1,6,2} 

 :MS ACBBA; 2251.7Z  
 Stage 50: Evaluation of the 50.generation 

Station ( k ) Task ( i ) }{ kXF , }{ kXB  Idle time ( krS ) },...2,1{ Rr   

  1*  {1},{8,10} {0,0,3,3,3} 

2 {3,4},{ } {0,0,0,0,0} 

  3*  {2},{7,9} {7,8,0,0,0} 

4 {5,6},{ } {1,2,2,2,2} 

 :MS AACBB; 6115.6Z  
 Stage 60: Evaluation of the 60.generation 

Station ( k ) Task ( i ) }{ kXF , }{ kXB  Idle time ( krS ) },...2,1{ Rr   

  1*  {1},{8,10} {3,3,0,3,0} 

2 {3,4},{ }  {0,0,0,0,0} 

   3*  {2,5,6},{9} {4,6,2,0,0} 

4 {7},{ } {1,2,1,2,6} 

 :MS BCABA; 5745.6Z  
 Stage 70: Evaluation of the 70.generation 

Station ( k ) Task ( i ) }{ kXF , }{ kXB  Idle time ( krS ) },...2,1{ Rr   

  1*  {1},{8,10} {3,3,0,0,3} 

  2*  {2},{7,9} {2,0,7,0,6} 

3 {3,4},{ } {0,0,0,0,0} 

4 {5,6},{ } {2,2,2,1,2} 

 :MS CBAAB; 5529.6Z  
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Table 4.16 (cont) Step-by-step illustration of the solution process 

       
       Stage 80: Evaluation of the 80.generation 

Station ( k ) Task ( i ) }{ kXF , }{ kXB  Idle time ( krS ) },...2,1{ Rr   

  1*  {1},{8,10} {3,0,3,3,0} 

  2*  {2},{7,9} {5,8,0,0,2} 

3 {3,4},{ } {0,0,0,0,0} 

4 {5,6},{ } {1,2,2,2,2} 

       :MS BACBA; 4853.6Z  
       Stage 100: Evaluation of the 100.generation 

Station ( k ) Task ( i ) }{ kXF , }{ kXB  Idle time ( krS ) },...2,1{ Rr   

  1*  {1},{8,10} {3,0,3,3,0} 

  2*  {2},{7,9} {5,8,0,0,2} 

3 {3,4},{ } {0,0,0,0,0} 

4 {5,6},{ } {1,2,2,2,2} 

:MS BACBA; 4853.6Z     (*  represents parallel workstations) 

 

Table 4.16 illustrates some steps of the procedure applied to the numerical 

example. A final MMUL/BS is shown in each of the small tables. To simplify the 

schema, only the fitness function where reductions occurred is represented in the 

proposed GA approach. Followings are the content of each column in these small 

tables: (1) workstation index, k , (2) set of tasks assigned to the workstations, and (3) 

the idle time of the workstations at each cycle, krS . Given information under each 

small table shows the best model sequence of the final line balance for the evaluated 

generation, MS , and the best objective function for evaluated generation , Z ,. 

Workstations to which more than one operator is assigned are represented at the table 

with the sign (*).  

 

After the evaluation of the initial population, it is determined that the line 

balancing consists of 6 stations in total and that the best model sequence is CBAAB 

at line configuration forming the best solution. Two operators each work at the first 

two workstations in the line balancing forming this solution, and one operator each 

works at others. The value of our proposed fitness function is 8, 1548. The proposed 

approach can reduce the value of the fitness function in next generations beginning 

from this solution; and the best solutions of the generations where decreases are 



 

 

105
 

observed only in the fitness function are shown at small tables in Table 4.16. The 

best solution until the satisfaction of the termination conditions of priority-based GA 

are found in the evaluation of the 80th generation, and the best solution did not 

change at the last 20 generations.  It is detected that the line balancing consists of 4 

workstations in the line configuration giving the best solution, and also that the 

model sequence is BACBA.  Two operators each work at the first two workstations 

and one operator each works at other two workstations in the line balancing forming 

this solution (see Figure 4.21).  

               
 

                   Figure 4.23 Final U-line balance of the example 
 

Model mixes of workstations for each cycle of the final U-line balance are also 

given in Table 4.17.  

 

Table 4.17 Model mixes of workstations for each cycle of the final U-line balance 

Station 
( k ) 

Model ( m ) 

{ 1
kf },{ 1

kb } 

Model ( m ) 

{ 2
kf },{ 2

kb } 

Model ( m ) 

{ 3
kf },{ 3

kb } 

Model ( m ) 

{ 4
kf },{ 4

kb } 

Model ( m ) 

{ 5
kf },{ 5

kb } 

1 {B},{B} {A},{A} {C},{C} {B},{B} {A},{A} 
2 {A},{A} {B},{C} {A},{B} {C},{A} {B},{B} 
3 {B},{ } {A},{ } {B},{ } {A},{ } {C},{ } 
4 {C},{ } {B},{ } {A},{ } {B},{ } {A},{ } 
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4.4.5 Computational Experiments and Analysis 

 

No comparable study dealing with the balancing and sequencing problems of 

mixed-model U-lines in minimizing the number of workstations (Type I) exists in the 

literature. Thus, we randomly generated different numbers of MPS  (see Table 4.18) 

for three sets of problems in order to evaluate the performance of the proposed 

algorithm. The number of tasks performed on real world U-lines varies between 1 

and 24 with an average value of 10.2 (Miltenburg 2001). At this juncture, the 

selected sets of problems are 10-tasks with 3-models in Kara et al. (2007a), 19-tasks 

with 3-models in Thomopoulos (1970) and 20-tasks with 5-models in Kara et al. 

(2007b). Task processing times of the tasks in the problem consisting of 10 tasks are 

randomly generated for being able to better understand general characteristics of the 

proposed approach. The number of extra operators to be assigned additionally in 

cases requiring more than one operator at any station is accepted to be 0. Negative 

zoning constraints between the tasks are shown at 6th column of Table 4.18. The 

experiment is repeated 5 times for every test problem by taking into account only the 

proposed fitness function; and the minimum, mean and maximum value of the 

solutions are shown in the last three column of Table 4.13, respectively.  

 
Table 4.18 Test problems 

Problem 
Name of 
problem 

Number 
of models

Cycle 
time 

MPS 
Negative 
zoning 

constraints
Min. Mean Max. 

1 Kara10 3 6 {1,1,1} Task 9-10 6.3158 6.3158 6.3158 

2 Kara10 3 6 {2,1,2} Task 9-10 6.5452 6.5452 6.5452 

3 Kara10 3 6 {2,2,1} Task 9-10 6.4853 6.4853 6.4853 

4 Kara10 3 6 {2,3,2} Task 9-10 7.1518 7.1518 7.1518 

5 Kara10 3 6 {4,2,3} Task 9-10 7.1496 7.1496 7.1496 

6 Kara10 3 6 {5,4,2} Task 9-10 7.1325 7.1325 7.1325 

7 Thomopoulos19 3 0.8 {1,1,1} Task 10-19 9.3552 9.3552 9.3552 

8 Thomopoulos19 3 0.8 {2,1,2} Task 10-19 9.2618 9.2651 9.3139 

9 Thomopoulos19 3 0.8 {2,2,1} Task 10-19 9.2363 9.2873 9.3635 

10 Thomopoulos19 3 0.8 {2,3,2} Task 10-19 9.2449 9.4312 10.0937

11 Thomopoulos19 3 0.8 {4,2,3} Task 10-19 10.0776 10.1118 10.1401

12 Thomopoulos19 3 0.8 {5,4,2} Task 10-19 9.1667 9.3786 10.0533

13 Kara20 5 14 {1,1,1,1,1} Task 15-18 14.1981 14.4151 15.1631

14 Kara20 5 14 {2,1,1,3,2} Task 15-18 14.1826 14.7628 15.1557

15 Kara20 5 14 {1,3,2,2,1} Task 15-18 15.1146 15.3217 16.1238  

16 Kara20 5 14 {5,3,2,1,1} Task 15-18 13.1856 13.9255 14.1163

17 Kara20 5 14 {1,2,4,5,8} Task 15-18 15.0751 15.2756 16.0684

18 Kara20 5 14 {1,4,8,3,1} Task 15-18 14.1215 14.6964 15.0854
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CHAPTER FIVE 

CONCLUSION 

 

 

 Two important problems occur in mixed model U-shaped assembly lines.  First 

one is the line balancing, and the other is model sequencing. These two problems are 

tightly interrelated in mixed model U-shaped assembly line, and these problems must 

be considered at the same time to be able to use these lines more efficiently. 

Therefore, these lines have more complex structures when compared to other lines.   

 

 In this thesis, simulated annealing based fitness evaluation approach is developed 

in order to ensure the performance of easy and effective fitness evaluations in 

priority based generic algorithm to be able to solve line balancing/model sequencing 

problems occurring in mixed model U-shape assembly lines, simultaneously.   

 

 We modified the neighborhood generating mechanism developed by Kara et al. 

(2007b) in a manner adaptable to the characteristics of our simulated annealing based 

solution method that we developed to evaluate our resulting task sequences by the 

method that we developed. The simulated annealing based solution method that we 

developed tries to find the minimum number of workstations rendering the possible 

solution by using the number of user defined stations and our modified fitness 

function (Type 1). As secondary goal, it tries to optimize workload balance between 

and within workstations by taking all cycles into consideration.  

 

 Our modified fitness function whose primary goal is to minimize the number of 

stations and as the secondary goal it tries to ensure the balance of the workload 

within and between stations at the end of all possible cycles is developed for 

responding to the use of parallel station.  The number of replications can be increased 

in a user defined manner additionally to minimum number of replications necessary 

for the use of parallel stations in order to be able to allow the decision maker to make 

comparisons by considering different parallel station structures. This situation allows 

the decision maker to work in different scenarios. 
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This thesis is the first study dealing with simultaneously solving the balancing and 

sequencing problems of the mixed-model U-lines by using parallel workstations and 

zoning constraints to minimize the number of workstations (Type 1).  

 

 Our proposed approach is tested separately in cases with and without parallel 

station-zoning constraints in minimum part sets (MPS) produced for problem sets 

consisting of 10 tasks-3 models, 19 tasks-3 models, and 20 tasks-5 models by 

thinking that real life U-shaped mixed model assembly lines consist of 10.2 tasks in 

average.   

 

 Results showed that our proposed simulated annealing based fitness evaluation 

approach works with the generic algorithm very concordantly; and it is an effective 

method in solving simultaneous sequencing-line balancing problems in mixed-model 

U-lines with and without the existence of parallel station-zoning constraints.   
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