
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

A GENETIC ALGORITHM BASED APPROACH

FOR SIMULTANEOUSLY SOLVING U-SHAPE

MIXED-MODEL ASSEMBLY LINE BALANCING

AND SEQUENCING PROBLEM

by

Alper HAMZADAYI

June, 2010

İZMİR

A GENETIC ALGORITHM BASED APPROACH

FOR SIMULTANEOUSLY SOLVING U-SHAPE

MIXED-MODEL ASSEMBLY LINE BALANCING

AND SEQUENCING PROBLEM

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of

Science in Industrial Engineering, Industrial Engineering Program

by

Alper HAMZADAYI

June, 2010

İZMİR

ii

M.Sc THESIS EXAMINATION RESULT FORM

 We have read the thesis entitled “A GENETIC ALGORITHM BASED

APPROACH FOR SIMULTANEOUSLY SOLVING U-SHAPE MIXED-

MODEL ASSEMBLY LINE BALANCING AND SEQUENCING PROBLEM”

completed by ALPER HAMZADAYI under supervision of ASSIST. PROF. DR.

GÖKALP YILDIZ and we certify that in our opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Gökalp YILDIZ

Supervisor

______________________________ ______________________________

(Jury Member) (Jury Member)

Prof.Dr. Mustafa SABUNCU

Director

Graduate School of Natural and Applied Sciences

iii

ACKNOWLEDGMENTS

I would like to take this opportunity to express my gratefulness to people who

helped me on my research and thesis.

 First of all, I would like to point out my gratitude to my advisor Assist. Prof. Dr.

Gökalp Yıldız for his great patience, inspiration and support throughout this master

thesis. His wisdom, encouragement and guidance always gave me the direction

during the research.

 I would like to thank Assist. Prof. Dr. Ceyhun Araz, for his comments on my

thesis and also to my friends for their support, whenever I need, and listening to my

complaints during this period.

 Last, but the most, I would like to show my deepest appreciation to my parents,

Saffet Hamzadayı and Züleyha Hamzadayı, for their endless love and support in my

whole life and also to brothers, Süleyman Hamzadayı and Erdinç Hamzadayı for

confidence, encouragement and endless support.

 Alper HAMZADAYI

iv

A GENETIC ALGORITHM BASED APPROACH FOR SIMULTANEOUSLY

SOLVING U-SHAPE MIXED-MODEL ASSEMBLY LINE BALANCING

AND SEQUENCING PROBLEM

ABSTRACT

Two important problems occur routinely on mixed-model production lines,

regardless of whether the lines are traditional or U-shaped. The first one is the

problem of how to assign tasks to stations on the line and the second one is the

problem of selecting the order or sequence in which different models will be

produced. Line balancing and model sequencing problems are tightly interrelated

with each other for the mixed-model U-shape assembly line (MMUL), because

different models require different tasks and the same tasks have different completion

times for different models.

In this thesis, a Priority-Based Genetic Algorithm (PGA) based solution approach

is proposed in order to overcome implementation difficulties of the mixed-model U-

shape assembly line balancing/sequencing problem (MMUL/BS) simultaneously. In

proposed algorithm, Simulated Annealing (SA) algorithm based fitness evaluation

approach is developed for being able to make fitness function calculations easily and

effectively. In proposed approach, new neighborhood generation logic is developed

in order to handle line balancing and model sequencing problems simultaneously.

The proposed PGA based algorithm is able to address some particular features of the

assembly process very common in real mixed-model assembly lines such as use of

parallel workstations, zoning constraints. Parallel work stations and zoning

constraints have not been used together in MMUL/BS solution so far.

 Moreover, new fitness function is developed for the cases where parallel

workstations are used and not used. New fitness function minimizes the number of

stations as primary objective, and ensures the workload balance within and between

workstations at the end of all cycles as secondary objective.

v

Eventually, in order to identify the efficient control parameters, an experimental

design is conducted and these new procedures are illustrated with a numerical

example. Performance of the proposed approach is tested through a set of test

problems with generated minimum part sets.

Keywords: Mixed-model U-shape balancing/sequencing problem; Genetic

algorithm; Simulated annealing algorithm; Fitness evaluation-relaxation; Parallel

workstation assignment; Zoning constraints

vi

U-ŞEKİLLİ KARIŞIK MODELLİ MONTAJ HATLARINDA HAT

DENGELEME VE MODEL SIRALAMA PROBLEMLERİNİN EŞZAMANLI

ÇÖZÜMÜ İÇİN GENETİK ALGORİTMA TABANLI BİR YAKLAŞIM

ÖZ

Karışık modelli montaj hatlarında (KMMH), hattın geleneksel veya U-şeklinde

olmasına bakılmayarak, iki önemli problem oluşur. Bu problemlerden ilki işlerin iş

istasyonlarına nasıl atanacağı ve ikincisi hatta üretilecek farklı modellerin hangi

sırayla üretileceğinin seçilmesidir. Hat dengeleme ve model sıralama problemleri U-

şekilli karışık modelli montaj hatlarında (UŞKMMH) birbirlerine sıkıca bağlıdır,

çünkü farklı modeller farklı işler gerektirir ve aynı işler farklı modeller için farklı iş

zamanlarına sahiptir.

Bu tezde U-şekilli karışık modelli montaj hatlarındaki hat dengeleme/model

sıralama (UŞKMMH/HDMS) problemlerinin eşzamanlı uygulanmasındaki

zorluklarının üstesinden gelebilmek için, Öncelik Tabanlı Genetik Algoritma

(ÖTGA) tabanlı bir yaklaşım önerildi. Önerilen algoritmada, çözüm

değerlendirmelerinin kolay ve etkili bir biçimde yapılabilmesi için Tavlama

Benzetimi (TB) algoritması tabanlı çözüm değerlendirme yaklaşımı geliştirildi.

Önerilen yaklaşımda, hat dengeleme ve model sıralama problemlerinin eşzamanlı ele

alınabilmesini sağlamak amacıyla yeni komşuluk üretme mekanizması geliştirildi.

Önerilen ÖTGA tabanlı yaklaşım, gerçek hayat montaj hatlarında sıkça rastlanan

paralel istasyon ve bölgesel kısıtlar gibi özellikleri ele alabilecek niteliktedir.

UŞKMMH/HDMS çözümünde paralel istasyon ve bölgesel kısıtlar daha önce hiçbir

çalışmada beraber ele alınmadı.

 Ayrıca paralel iş istasyonlarının kullanıldığı ve kullanılmadığı durumlar için ayrı

değerlendirme fonksiyonları geliştirildi. Yeni değerlendirme fonksiyonu birincil

amaç olarak istasyon sayısını minimize etmekte ve ikincil amaç olaraktan bütün

çevirimler sonunda istasyon içi-arası iş yükü dengesini sağlamaktadır.

vii

Son olarak, etkin kontrol parametrelerini saptamak amacıyla deney tasarımı

kuruldu ve bu yeni prosedürler sayısal örnekle gösterildi. Önerilen yaklaşımın

performansı test problemleri ve üretilen en küçük kısım setleriyle test edildi.

Anahtar Kelimeler: U-şekilli karışık model montaj hattı dengeleme/sıralama

problemi; Genetik algoritma; Tavlama benzetimi algoritması; Çözüm değerlendirme-

esnetme; Paralel iş istasyonu ataması; Bölgesel kısıtlar

viii

CONTENTS Page

M.Sc THESIS EXAMINATION RESULT FORM... ii

ACKNOWLEDGMENTS ..iii

ABSTRACT.. iv

ÖZ ... vi

CHAPTER ONE - INTRODUCTION ... 1

1.1 Relevance of the Problem .. 1

1.2 Objective of the Thesis .. 3

1.3 Structure of the Thesis ... 4

CHAPTER TWO - MAIN CHARACTERISTICS OF ASSEMBLY LINE

SYSTEMS AND ASSEMBLY LINE BALANCING .. 6

2.1 Introduction.. 6

2.2 Main Characteristics of Assembly Line Systems .. 6

2.2.1 Basic Concepts of Assembly Lines... 7

2.2.2 Additional Characteristics of Assembly Lines.. 8

2.2.2.1 Number of Products ... 9

2.2.2.2 Line Control ... 10

2.2.2.3 Variability of Task Times .. 11

2.2.2.4 Assignment Constraints ... 11

2.2.2.5 Line Layout .. 12

2.2.3 Performance Measures of Assembly Lines... 14

2.3 Assembly Line Balancing .. 15

2.4 Solution Approaches for Assembly Line Balancing Problems........................ 20

2.4.1 Exact Methods... 22

2.4.1.1 Branch and Bound.. 22

2.4.1.2 Dynamic Programming .. 22

2.4.1.3 Graph Search Technique.. 23

2.4.2 Approximation Methods ... 23

ix

2.4.2.1 Simple Heuristics ... 23

2.4.2.2 Meta-Heuristics .. 24

2.5 Literature Review... 24

CHAPTER THREE - BACKGROUND INFORMATION FOR SOLUTION

METHODS: GENETIC ALGORITHM AND SIMULATED ANNEALING ... 37

3.1 Introduction.. 37

3.2 Genetic Algorithms .. 37

3.3 Simulated Annealing Algorithms... 43

CHAPTER FOUR - PROPOSED GENETIC ALGORITHM BASED

APPROACH FOR SIMULTANEOUSLY SOLVING U-SHAPE MIXED-

MODEL ASSEMBLY LINE BALANCING AND SEQUENCING PROBLEM

.. 46

4.1 Chapter Introduction .. 46

4.2 Characteristics of U-shaped Assembly Lines .. 47

4.3 Problem Statement of the MMUL/BS ... 49

4.3.1 Model Assumptions .. 51

4.3.2 Notation and Equations... 51

4.3.3 New Objective Function ... 54

4.3.4 Proposed GA-Based Approach ... 56

4.3.4.1 Selected Chromosome Representation and Initialization of Population

.. 57

4.3.4.2 Selected Selection Scheme... 61

4.3.4.3 Selected Genetic Operators .. 61

4.3.4.3.1 Crossover Operator. .. 62

4.3.4.3.2 Mutation Operator... 62

4.3.4.4 Selected Survival Scheme.. 63

4.3.4.5 Selected Termination Criteria .. 63

4.3.5 The Proposed Simulated Annealing Algorithm Based Fitness Evaluation

Approach.. 63

x

4.3.5.1 Initial Solution (0LB - 0MS)... 72

4.3.5.2 Neighboring Solutions (nLB - nMS) ... 73

4.3.5.2.1 Line Balancing (LBn). ... 73

4.3.5.2.2 Sequencing (MSn). .. 82

4.3.5.3 Checking Feasibility of Workstation Times 82

4.3.6 Identifying Efficient Control Parameters .. 83

4.3.7 Numerical Illustration ... 88

4.3.8 Computational Experiments and Analysis .. 93

4.4 Use of Parallel Workstations and Zoning Constraints 94

4.4.1 Assumptions.. 96

4.4.2 Notations and Equations ... 97

4.4.3 New Objective Function ... 98

4.4.4 Numerical illustration.. 100

4.4.5 Computational Experiments and Analysis .. 106

CHAPTER FIVE - CONCLUSION ... 107

REFERENCES... 109

1

CHAPTER ONE

INTRODUCTION

1.1 Relevance of the Problem

Assembly work has a long history, and ancient people know how to create useful

objects composed of multiple parts. The evolution of manufacturing has passed

through distinct stages at various periods of history (Rekiek and Delchambre, 2006).

The most important milestone in assembly is the invention of assembly lines (ALs).

In 1913, Henry Ford invented the ALs in automobile manufacturing for the first time,

which revolutionized the concept of assembly. He also was the first to introduce a

moving belt in the factory. Employees were able to build cars one piece at a time

instead of one car at a time. This concept changed the type of manufacturing system

and reduced the cost of production.

 ALs are production systems which consist of succeeding stations, connected by a

material handling system, usually a conveyor belt, performing a set of tasks on the

product passing through them.

Over the years, the problem of designing efficient assembly lines received

considerable attention of both companies and academicians. A well-known assembly

design problem is the assembly line balancing problem (ALBP). ALBP deals with

the allocation of tasks among workstations for minimizing/maximizing a given

objective function.

Until now, the role of assembly lines has been changed. Assembly lines were

firstly used to produce a low variety of products in high volumes. However,

customers were introduced to the new marketing strategies by TV, radio etc. at their

houses. So, the emergence of new advertising channels increased the customer

requirements for goods. People wanted to choose different models with a variety of

features in different sizes and colors. For example, in the automobile industry, each

model has some options and customers can choose any model based on their

requirements and their purchasing power: options of engine power, kinds of fuel, and

2

so on. Manufacturers were confronted with the need for offering a variety of features

and finding a way to react quickly to market trends or lose market shares. Therefore,

the life cycles of products become shorter. The rapid qualitative and quantitative

changes in market demands caused manufacturers to seek the most efficient methods

for managing their assembly lines so as to produce more sophisticated and more

competitive products. Approaches like flexible manufacturing, just-in-time, and

group technology arose at that moment. In such environments, mixed-model

assembly lines (MMAL) appear to be the most appropriate ones. In MMAL, a set of

similar models of a product, which may differ from one model to another with

respect to size, color etc., can be assembled simultaneously in the same line, in order

to avoid unnecessary inventories and increase manufacturing flexibility for

responding to the changing demands of the customers.

MMAL is a production line on which a variety of product models having similar

characteristics are assembled. The produced products in MMALs usually have

differences in the amount of production, work contents, and assembly time

depending on the models. In such environments, an important decision problem, i.e.,

mixed-model assembly line balancing problem (MMAL/BP) arises. This problem

deals with the allocation of the assembly tasks equally among workstations so that

the given objective function is minimized/maximized and the precedence relations

are satisfied. MMAL/BP is NP-hard and multi-objective in nature.

Recently, U-type layouts have been utilized in many production lines in place of

the traditional straight-line configuration due to the use of just-in-time production

principles. This helps manufacturers to provide their customers with a variety of

timely and cost effective products, also reduces the efforts for adjusting production

facilities to demand changes, and increases labor productivity. U-type layouts, on

which mixed-model production is performed, are called as the Mixed-Model U-Lines

(MMUL).

3

1.2 Objective of the Thesis

In recent years, in order to provide alternative methods to traditional optimization

techniques, most of the researches have directed their works towards the

development of heuristics and meta-heuristics, such as simulated annealing, tabu

search (TS) and genetic algorithms (GAs). Among these meta-heuristics, the

applications of GAs received a considerable attention from the researchers since it

provides an alternative to traditional optimization techniques by using directed

random search to locate optimum solutions in complex landscapes; and it is also

proven to be effective in various combinatorial optimization problems.

Workloads of workstations in MMUL depend on more factors than the other type

of line balancing problems and development of solution procedures for MMUL

balancing is more complex than that of other types of line balancing (Kara and

Tekin, 2009).

The objective of this thesis is to present a solution method based on Priority-

Based Genetic Algorithm (PGA) for being able to solve line balancing and model

sequencing problems effectively in a simultaneous manner in MMULs. To

efficiently implement proposed algorithm, Simulated Annealing Algorithm (SA)

based fitness evaluation approach is developed. The proposed PGA is able to address

some particular features of the assembly process very common in real mixed-model

assembly lines such as the use of parallel workstations, zoning constraints, U-shaped

layouts. Considering these features simultaneously in a single method is a major

contribution of this thesis. A new fitness function is also developed in order to

encompass these features. New fitness function aims at minimizing the number of

workstations (Type 1) as primary goal and smoothing the workload between and

within at the end of all cycles as secondary goal.

4

1.3 Structure of the Thesis

This thesis is divided into five chapters. The first chapter briefly introduces the

theme of the study, points out the relevance of the problem and presents the main

objectives of the work.

In Chapter two, an overview of the assembly line balancing problem is given. It

presents the main characteristics of assembly lines and defines the assembly line

balancing problem. Different types of assembly line configurations and particular

features of the assembly process that may restrict the configuration of the lines are

presented. Solution approaches for assembly line balancing problems are given. And

then, to identify the current research issues, a literature review is presented for

tackling the assembly line balancing problems.

In Chapter three, the main characteristics of the selected meta-heuristics (genetic

algorithms and simulated annealing) are introduced.

In Chapter four, the simultaneous solution of balancing/sequencing (MMUL/BS)

problems in U-shaped assembly line is addressed. Firstly, general characteristics of

U-shape assembly lines are introduced and differences of Mixed-model U-shape

assembly lines from other lines are explained in detail. The problem is presented

with notations and equations so that the general characteristics of the addressed

problem can be understood better. And then, our proposed fitness function

minimizing the number of stations and ensuring workload balancing between-within

workstations at the end of all cycles is mathematically presented, and our proposed

solution method based on priority-based genetic algorithm is introduced. In our

proposed genetic algorithm based solution method, simulated annealing based fitness

evaluation approach is developed in order to perform fitness assessments.

Experimental design is conducted in order to ensure the execution of our proposed

algorithms with more efficient parameters. These new procedures are illustrated with

a numerical example and its performance is tested through a set of test problems with

the generated minimum part sets (MPS). Finally, the problem is expanded in a

manner comprising parallel workstations and zoning constraints. These new features

5

are given with notations and equations. Our proposed fitness function is expanded in

a manner comprising the characteristics of the parallel stations. Also, these

procedures are illustrated with a numerical example and its performance is tested

through a set of test problems with the generated MPS.

Finally, In Chapter five, conclusions and the possible future research directions

about the problem are pointed out.

6

flow

CHAPTER TWO

MAIN CHARACTERISTICS OF ASSEMBLY LINE SYSTEMS AND

ASSEMBLY LINE BALANCING

2.1 Introduction

In this chapter, an overview of the assembly line balancing problem is given. It

presents the main characteristics of the assembly line systems and defines the

assembly line balancing problem. Different types of assembly line configurations and

particular features of the assembly process that may restrict the configuration of the

lines are presented. Solution approaches for assembly line balancing problems are

given. And then, a literature review to tackle the assembly line balancing problems is

presented for identifying current research issues.

2.2 Main Characteristics of Assembly Line Systems

The concept of assembly line is quite simple; a number of stations are connected

through a material handling system, usually a conveyor belt, and each station

performs one or more tasks (addition of components, inspection, etc.) on partially

finished product in front of it (see Figure 2.1). For a comprehensive review on

assembly lines, see Boysen et al., 2008.

Figure 2.1 Concept of AL

WS Workstation
WS1

WS2

WS3

WS4

Unfinished
products

Finished
product

Material
handling system

7

2.2.1 Basic Concepts of Assembly Lines

Assembly is the process of collecting various parts together in order to create a

finished product.

Assembly line is a flow-line production system composed of a sequence of

workstations that are arranged along a material handling system. Unfinished and

partially finished parts are consecutively launched down the system to create finished

products, and are moved from one station to another.

Task is a small portion of the total work needed to be accomplished to assemble

the product.

Task processing time (task time) is the time necessary for performing an

operation (task).

Workstation (station) is a segment of assembly line in which one or more tasks

are performed along the work flow by one or more workers.

Precedence relations are the task sequence in which order tasks must be

performed.

Precedence diagram is a graphical representation of the sequence of tasks as

defined by the precedence relations. Figure 2.2 shows an example of a precedence

diagram, in which the nodes represent tasks and the arcs express the precedence

relationships between the tasks. For example, task 4 can only be performed after the

completion of tasks 1 and 2 (tasks 1 and 2 are direct predecessors of task 4), and its

processing time is 3.

Cycle time is the time between the departures of two consecutive products from

the line. In other words, it represents maximum amount of the work processed by

8

5

5 5

3

3
3

5 6 5

4

1

each station. Cycle time can not be smaller than the largest processing time, and

cycle time must not exceed the station time on the assembly line.

Figure 2.2 Precedence diagram

Workstation time (station time) is the total work content of a station, and it is

also referred as station workload. In other words, it represents the sum of the times of

assigned tasks in a particular workstation.

Workstation idle time is the positive difference between the cycle time and the

workstation time.

2.2.2 Additional Characteristics of Assembly Lines

Assembly line systems show a great diversity due to very different conditions in

industrial manufacturing. Assembly lines can be classified in a variety of additional

technical or organizational aspects such as the number of products, line control,

variability of task processing times, line layout, assignment restrictions, level of

automation, type of stations, and etc. (Scholl, 1999; Baudin, 2002; Becker and

Scholl, 2006; Rekiek and Delchambre, 2006; Boysen et al., 2008). Figure 2.3

illustrates main characteristics of assembly line balancing problems (Scholl, 1999).

While continuous lines indicate that a particular combination of characteristics is

typical, broken lines signify that it is unusual.

7 10 11 4

2

1 9

3 6 8

5

9

 Figure 2.3 Classification of assembly line balancing problems

 Some of most important properties of ALs can be explained as follows:

 2.2.2.1 Number of Products

The number and variety of products assembled in the line can be categorized as

single-model lines, mixed-model lines and multi-model lines (see Figure 2.4).

Single-model assembly lines; assembly lines are used to produce high-volume

production of only one product.

Mixed-model assembly lines; assembly lines are used to produce simultaneously

a set of different models of the same base product in an arbitrarily intermixed

sequence (not in batches).

Multi-model assembly lines; assembly lines are used to produce batches of

similar models with intermediate setup operations.

assembly line balancing problems

single-model mixed-model multi-model

paced / unbuffered unpaced / buffered

deterministic stochastic dynamic

10

Figure 2.4 Assembly lines for (a) single-model, (b) mixed-model products, and (c) multi-model

 2.2.2.2 Line Control

Line control can be categorized as paced assembly lines and unpaced assembly

lines. In a paced assembly line, each workstation has a fixed amount of time to

complete all the tasks which are assigned to it: the cycle time. When this time is

elapsed the sub-assembly must be transferred to the next workstation, and the

workstation receives a new sub-assembly from the previous workstation. Hence,

these assembly lines have a fixed production rate equal to the reciprocal of the cycle

time. Because tasks are indivisible work elements, cycle time can not be smaller than

the largest task time. The absence of this fixed time can be referred as unpaced

assembly lines. All workstations operate at an individual speed so that work pieces

may have to wait before entering the next workstation and workstations may be idle

when they have to wait for the next work piece. Allowing buffers between the

workstations partially overcome the above mentioned difficulties. So, the ALBP is

accompanied by the additional decision problem of positioning and dimensioning of

buffers.

SETUP SETUP

(c)

(a)

(b)

11

 2.2.2.3 Variability of Task Times

A further important characteristic defining different versions of ALs is the

variability of task times. The variability of task processing times depends on the

nature of the tasks and operators.

Deterministic task time; in assembly lines, expected variance of the task times

may remain sufficiently small, due to simple tasks or highly reliable equipment.

Modern machines and robots are able to work permanently at a constant speed. In

this case, task processing times are assumed to be deterministic.

Stochastic task time; in automated flow line-production systems, various

production rates may be caused by machine breakdowns, the instability of worker’s

pace skill and motivation. To incorporate the processing time variability, operation

times may be modified by adding the stochastic component.

Dynamic task time; in case of human workers, systematic reductions or

successive improvements are possible due to learning effects of the production

process. In this case, the task processing times are assumed to be dynamic.

 2.2.2.4 Assignment Constraints

Several types of assignment constraints may restrict the possible assignments of

tasks into workstations.

Task related constraints; in some situations, pairs of tasks must be assigned to

same workstation or not, which are called positive or negative zoning constraints,

respectively. Positive zoning constraints are related to the use of common equipment,

tool or common processing conditions such as temperature, moisture, operator

qualification level etc., so it is desirable that they must be assigned to the same

workstation. In some cases, tasks are incompatible and must not be performed at the

same workstation, which are called negative zoning constraints (e.g. milling and

12

measuring operations, painting and drilling operations must not be performed at the

same workstations).

Workstation related constraints; in some situations, special machines or tools

requiring the execution of certain tasks are only available in one or a few

workstations, and can not be moved another location.

Position related constraints; in some situations, tasks may need a certain

position of the work pieces so that it may be neither possible nor economical to turn

the work pieces too often (e.g., heavy items such as car, washing machines, etc.).

Operator related constraints; in some situations, tasks require different levels of

skills, depending on their complexity. So, some operators must be assigned to the

certain tasks.

 2.2.2.5 Line Layout

Assembly lines can also be distinguished with regard to layout of the assembly

line. Most important assembly lines encountered in industrial facilities may be

explained as follows;

Traditional or Straight (serial) assembly lines: In traditional assembly lines,

workstations are physically arranged along a conveyor belt serially, and operators

perform tasks on a continuous portion of the line.

U-shaped lines: In U-shape assembly lines, the workstations are arranged along a

rather narrow “U” so that during the same cycle two work pieces at different

positions on the line can be handled simultaneously. This can result in better balance

of workstation loads due to larger number of task-workstation combinations. The U-

line assembly line balancing problem is introduced and modeled first by Miltenburg

and Wijngaard (1994). Traditional lines may have several disadvantages. So, the

companies have switched their lines from straight to U-shaped assembly lines since

13

Flow of assembly

Flow of assembly

Flow of assembly

(a)

(b)

WS1 WS2 WS3 WS4

WS1

WS2

WS3

WS4

WS5

WS6 WS7

the just-in-time principles were introduced. A more detailed description of U-shaped

assembly lines is given in Chapter four.

Parallel lines: The implementation of these lines allows increase in flexibility and

decrease in failure sensitivity of the production system. Furthermore, the use of

parallel lines allows the enlargement of cycle time which has several advantages

such as the risk of production stoppage due to significant reduce in machine

breakdowns; better line balances can often be obtained, because more combinations

of tasks exist.

Two-side lines: It may be necessary to operate a two-sided line which consists of

two connected serial lines in parallel for assembly heavy work pieces. Instead of

single workstation, pairs of opposite workstations on either side of the line (left-hand

side and right-hand side workstations) work in parallel, i.e., they work

simultaneously at opposite sides of the same work pieces.

Feeder lines: In these lines, the main line fed by other lines where subassemblies

are produced. Figure 2.5 illustrates some of the line layouts.

14

(c)

 Figure 2.5 Line Layouts: (a) serial, (b) U-shaped, and (c) feeder lines

2.2.3 Performance Measures of Assembly Lines

The installation of an assembly line is a medium or long-term decision and

usually requires large capital investments, hence designing and balancing the line is

the most important issue in order to produce as efficiently as possible. Besides

balancing a new system, a running one has to be re-balanced periodically or after

changes in the production process or in the production program have taken place.

Because of the long-term effect of balancing decisions, the objectives which are used

have to be carefully chosen by considering the strategic goals of the enterprise

(Becker and Scholl, 2006).

The most widely used criterions are related with the maximization of the capacity

utilization which is measured by the line efficiency (the percentage of productive

time in the line) (Ghosh and Gagnon, 1989). Among them are (i) the minimization of

the number of workstations for a given cycle time, (ii) the minimization of cycle time

for a given number of workstations and (iii) the minimization of the idle time of the

line. Other capacity related criterions are as follows (Scholl, 1999): minimizing the

flow time (throughput time, i.e. the time interval between launching a work piece

down the line and removing the finished product from the line), equalizing the

utilization levels of the stations, minimizing the balance delay time (i.e. sum of the

idle times) and the balance delay (ratio) (percentage of idle times) over all stations,

and minimizing the waiting times of work pieces.

15

The economical nature criteria deal with minimizing the total cost of the line,

including long-term investment cost and short-term operating cost. Both investment

and operating costs depend mainly on the cycle time and the number of workstations.

The most important cost categories are as shown below (Scholl, 1999).

 machinery and tool costs,

 labor costs,

 materials costs,

 idle time costs,

 penalty costs for not satisfying the demand,

 incompletion costs,

 setup costs

 inventory costs

Besides capacity and cost related objectives, social goals such as job enrichment

and job enlargement etc. may be important for assigning less monotonous tasks to an

operator and for increasing the number of tasks performed by an operator.

2.3 Assembly Line Balancing

Assembly line balancing is the problem of partitioning of tasks to workstations in

such a way that some performance measures are maximized/minimized subject to

precedence relationship among tasks (Erel and Sarin, 1998; Becker and Scholl,

2006).

The simple assembly line balancing problem (SALBP) was first mathematically

formulated by Salveson (1955) and, since then, a massive body of academic

literature has covered the balancing of assembly lines.

16

The basic problem described so far is called simple assembly line balancing

problem (SALBP) in the literature (Baybars, 1986) and, since then, a few versions

have been defined by varying problem structure and objective function.

Based on the model structure, ALBP can be classified into two groups as seen in

Figure 2.6. This classification compiles the classification schemes of Baybars (1986),

Scholl (1999) and Becker and Scholl (2006). The first group includes single-model

assembly line balancing problem (SMALBP), multi-model assembly line balancing

problem (MuMALBP), and mixed-model assembly line balancing problem

(MMALBP); the second group includes simple assembly line balancing problem

(SALBP) and general assembly line balancing problem (GALBP). The GALBP

model includes all of the models that are not SALBP, such as balancing of mixed-

model, parallel, u-shaped and two sided lines with stochastic processing times;

thereby more realistic ALBP models can be formulated by GALBP (Gen et al.,

2008).

Figure 2.6 Classification of assembly line balancing models

CLASSIFICATION OF ALB MODELS BASED ON PROBLEM
STRUCTURE

According to problem structure

Single-model ALBP
(SMALBP)

Multi-model ALBP
(MuMALBP)

Mixed-model ALBP
(MMALBP)

Simple ALBP (SALBP)

General ALBP (GALBP)

According to model type

17

SALBP has the following main characteristics (Scholl, 1999);

 Mass-production of one homogeneous product

 Given production process

 Paced line with fixed cycle time

 Deterministic and integral operation times

 No assignment restrictions besides the precedence constraints

 Serial layout, one-sided stations

 All stations are equally equipped with respect to machines and workers

 Fixed rate launching, launch interval equals to cycle time

According to objective function, well-known SMALBP versions are as follows

(Baybars, 1986; Scholl, 1999);

SALBP-1 (Type-1) consists of assigning tasks to stations so that the number of

stations is minimized for a given cycle time.

SALBP-2 (Type-2) aims at maximizing the production rate, or equivalently,

minimizing the sum of the idle times for a given number of stations.

SALBP-F is a feasibility problem in which the feasible line balance whether

exists or not for a given combination of number of stations and cycle time.

SALBP-E is the most general problem version maximizing the line efficiency

thereby simultaneously minimizing cycle time and number of stations considering

their interrelationship.

Partly, MMALBP relies on same basic assumptions of SALBP, such as,

deterministic processing times, no assignment restrictions, serial line layout, fixed

rate launching, etc.

18

Additional characteristics of MMALBP are as follows (Scholl, 1999):

 The assembly of each model requires performing a set of tasks which are

connected by precedence relations (i.e., precedence graph for each model).

 A subset of tasks is common to all models; the precedence graphs of all

models can be combined into a non-cyclical joint precedence graph.

 Tasks, which are common to several models, are performed by the same

station but they may have different processing times (i.e., zero processing

times indicate that the task is not required for the model).

 The total time available for the production is fixed and known (given by the

number of shifts and the shift durations).

 The demands for all models (expected model mix) during the planning period

are fixed and known.

In Figure 2.7, precedence and joint precedence diagrams of two models can be

seen.

According to the objective function, the MMALBP can be classified into four

different types, (Scholl, 1999):

MMALBP-1 (Type-1): Minimizes the number of workstations, for a given cycle

time.

MMALBP-2 (Type-2): Minimizes the cycle time, for a given number of

workstations.

MMALBP-E: According to SALBP-E, the cycle time as well as the number of

stations may vary in certain ranges. The objective is to maximize the line efficiency

or, equivalently, to minimize the cycle time and the number of stations by

considering their interrelationship.

19

(a)

(b)

 (c)

 Figure 2.7 Precedence diagrams of (a) model 1, (b) model 2 and (c) combined

1

2

3

9

6

5

4 8
10

7

7

3 6

1 5 8 10

3

4 5

8 10

9 2

1

20

MMALBP-F: By analogy with SALBP-F, it is a feasibility problem which is to

establish whether a feasible line balance exists for a given combination of number of

stations and cycle time.

Additionally, we can define three problem versions of U-line assembly line

balancing problem (UALBP) regarding to SALBP version (Scholl, 1999):

UALBP-1 (Type-1): Given the cycle time, minimize the number of stations.

UALBP-2 (Type-2): Given the number of stations, minimize the cycle time.

UALBP-E: Maximize the line efficiency for cycle time and the number of

stations which are variable.

In this thesis, the U-shaped mixed-model assembly line balancing Type-1 problem

involving the minimization of the number of workstations for a given cycle time is

studied.

2.4 Solution Approaches for Assembly Line Balancing Problems

The assembly line balancing problem was firstly formulated by Salveson (1955)

and, since then, numerous procedures have been developed for solving the problem.

ALBP falls into the NP hard class of combinatorial optimization problems (Karp,

1972). Therefore, the complex mathematical nature of the problem makes it difficult

to solve (Erel and Gokcen, 1999). Classification of solution approaches for ALBP

(Rekiek and Delchambre, 2006) is given in Figure 2.8.

For a comprehensive literature reviews on both exact and approximation methods

for the different types of assembly line balancing problems, the readers can refer to

Ghosh and Gagnon (1989) that presents a comprehensive review and analysis of the

different methods for design, balancing and scheduling of assembly systems; Erel

and Sarin (1998) that present a comprehensive review of the procedures for single-

21

model and multi model assembly lines and by Becker and Scholl (2006) that present

a survey on problems and methods for GALBP with features such as cost/profit

oriented objectives, equipment selection/process alternatives, parallel

workstations/tasks, U-shaped line layout, assignment restrictions, stochastic task

processing times and mixed model assembly lines; Scholl and Becker (2006) present

a review and analysis of exact and heuristic solution procedures for SALBP and

lines; Rekiek and Delchambre (2006) focus on solutions methods for solving

SALBP; and Batini et al. (2007) give a classification of the published papers between

 Figure 2.8 Classification of solution approaches for ALBP

EXACT METHODS

Dynamic Programming

Branch & Bound

Graph Search Technique

APPROXIMATION

METHODS

Simple Heuristics

Meta-Heuristics

Ant Colony
Optimization

Tabu
Search

Genetic
Algorithm

Simulated
Annealing

SOLUTION METHODS FOR ASSEMBLY LINE BALANCING

PROBLEM

22

the years 1989 and 2005 in relation to the adopted balancing method and the

reference layout configuration taken into consideration.

2.4.1 Exact Methods

The optimum seeking methods, i.e., dynamic programming and branch & bound

methods have been proposed to solve ALBP. Lower bounds are obtained by solving

problems which are derived from the considered problem by omitting or relaxing

constraints (Scholl, 1999).

 2.4.1.1 Branch and Bound

The branch and bound method is a well-known general solution concept in

combinatorial optimization. Branch and bound algorithms consist of two main

components branching (enumeration) and bounding. During the branching process,

the initial problem divided into sub-problems. By continuously developing such sub-

problems, a multi-level enumeration tree (with sub-problems as nodes) is

constructed. Generally, bounding is applied for reducing the size of enumeration

trees. This is achieved by computing lower bounds on the number of stations, at least

necessary for a feasible solution, in each node. Lower bounds are obtained by solving

relaxations which are derived from the problem considered by omitting or relaxing

constraints.

 2.4.1.2 Dynamic Programming

Like branch and bound, dynamic programming is a general approach for many

types of problems including most combinatorial optimization problems. A given

problem is divided into sub-problems which are sequentially solved until the initial

problem is finally solved.

23

 2.4.1.3 Graph Search Technique

Johnson (1988) proposed a depth-first-search method called fast algorithm for

balancing line effectively (FABLE). Sub-problems are constructed by adding an

assignable task to the currently considered station k (starting with station 1). If no

such task exists, the current station load is maximal and the consecutive stations k+1

are opened. In each of the n iterations (i=1,..n), one non-marked task with the largest

process time (which has no predecessor or only marked predecessors) gets the

number i and is marked. Whenever a station is opened, the task with the smallest

number among the assignable tasks is added. Any further tasks in the station must

have a larger number than the task assigned in the ancestor node. Then, the current

branch is traced back by removing tasks assignments until an alternative branch can

be followed.

2.4.2 Approximation Methods

Numerous research efforts have been directed for optimum seeking methods in

order to obtain an optimal solution. However, none of these methods has proven to

be of practical use for large problems due to their computational inefficiency and

vast search space. So, instead of exact procedures that find optimal solutions for

simplified problems, heuristic procedures are used to find good solutions for much

more complex problems. These approaches can be divided into two categories,

simple heuristics and meta-heuristics.

 2.4.2.1 Simple Heuristics

None of the methods guarantees an optimal solution, but they are likely to result

in good solutions. Among simple heuristic methods, the most notable ones are:

Ranked Positional Weight Technique (RPWT) (Helgeson and Birnie, 1961),

Kilbridge and Wester’s (1961), and Moodie and Young's (1965) heuristics. RPWT is

the first heuristic proposed for solving ALBP.

24

 2.4.2.2 Meta-Heuristics

 Meta-heuristics are the natural extension of priority-based heuristics, as they start

with an initial solution or population (predefined number of solutions) which are

obtained through a heuristic or generated randomly. Meta-heuristics improve this

initial solution or population. It has been shown that they provide effective

approximate solutions for difficult NP-hard combinatorial optimization problems. In

recent years, the usage of meta-heuristics for solving ALBPs became popular among

researchers. Genetic Algorithm, Simulated Annealing, Tabu Search and Ant Colony

Optimization are well known meta-heuristics for solving ALBPs.

2.5 Literature Review

The mathematical formulation of the ALBP for simple assembly lines was first

stated by Salveson (1955) and, since then, extensive research has been done in this

area. Comprehensive literature reviews on this subject were provided in Baybars

(1986), Ghosh and Gagnon (1989), Erel and Sarin (1998), Scholl (1999). For

traditional mixed model straight lines, line balancing was studied by few researchers,

such as Thomopoulos (1970), Macaskill (1972), Askin and Zhou (1997), Gokcen and

Erel (1997, 1998), McMullen and Frazier (1997, 1998), Erel and Gokcen (1999),

Merengo et al. (1999), Kim et al. (2000a), Buckhin et al. (2002), Vilarinho and

Simaria (2002, 2006), Simaria and Vilarinho (2004), Choi (2009). Model sequencing

in the straight lines has been investigated by a number of researchers including

Miltenburg and Sinnamon (1989, 1992, 1995), Miltenburg (1989), Yano and

Rachamadugu (1991), Kim et al. (2000a), Duplaga and Bragg (1998), Merengo et al.

(1999), McMullen and Frazier (2000), Karabati and Sayin (2003). Model sequencing

in just-in-time (JIT) production systems has been addressed by Miltenburg (1989),

Monden (1993) and McMullen (1998). Line balancing and model sequencing in the

straight lines were solved sequentially by few researcher, such as Thomopolous

(1967), Dar-el and Navidi (1981), Bard et al. (1992).

25

In case of U-line production systems, few researches have been carried out

recently. Miltenburg and Wijngaard (1994), the first authors to study this problem,

developed a dynamic programming exact procedure and a modified ranked positional

weight technique (RPWT) heuristic being able to solve instances with up to 11 tasks.

In order to address larger problems, they proposed a set of single-pass heuristic

procedures being able to solve instances with up to 111 tasks. They also explained

the differences between SALB and SULB.

Miltenburg (1998) developed dynamic programming model for solving U-line

balancing problem. In his problem, more than one U-line assembly lines in one

production line were considered. He found an optimal solution when individual U-

lines did not have more than 22 tasks and did not have wide, sparse precedence

graphs.

The problem of balancing a U-shaped mixed-model assembly line (U-MALBP)

was first described by Sparling and Miltenburg (1998), and they proposed a four-

stage approximate solution algorithm. They used the combined precedence diagram

and the weighted average task processing times to create a single-model balancing

problem, and by using a branch-and-bound algorithm, an optimal solution for this

problem was obtained, called initial balance. Several unbalance measures regarding

mixed-model nature of the original problem were defined and computed for the

initial balance. Then, a smoothing algorithm was applied in order to reduce the

unbalance. The objective of this smoothing algorithm was to minimize the absolute

deviation of workloads (ADW) among workstations. This algorithm exchanges tasks

between workstations so that the value of the selected unbalance measure decreases.

An important aspect of this approach was that the sequence in which the models

were launched in the U-shaped line must be known, as it directly influences the

values of the unbalance measures. Although their study focuses on the minimization

of the number of workstation, their algorithm mostly leads to infeasible solutions to

the problem by means of cycle time restriction.

26

Ajenblit and Wainwright (1998) were pioneers in balancing the U-shaped

SMALBP Type-1 using GAs. The authors dealt with two possible variations of this

problem, minimizing the total idle time and balancing of workload among

workstations, or a combination of both. They developed six different assignment

algorithms to interpret a chromosome and assign tasks to workstations. These

algorithms based on both dynamic programming and various heuristic algorithms,

which were proposed in Miltenburg and Wijngaard’s research (1994). In this study,

the authors applied the proposed GA to 61 test problems. In comparison to previous

researches, the proposed GA gave superior results in 11 cases, the same results in 42

problems, superior in 11 problems and worse in 1 problem.

The first integer programming formulation (IP) formulation of SULB was

developed by Urban (1998). This formulation uses the phantom precedence diagram

concept. A phantom precedence diagram was appended to the original precedence

diagram so that assignments to the workstations could be made forward through the

original diagram, backward through the phantom diagram, or simultaneously in both

directions. The IP formulation managed to solve optimality problems with up to 45

tasks.

Scholl and Klein (1999) developed a branch-and-bound based heuristic called

ULINO (U-Line optimizer), which was adapted from a previous algorithm, called

SALOME, they had developed for balancing straight lines. The computational

experience involved a large set of problems with up to 297 tasks and proved a good

performance of the procedure, especially for the objective of minimizing the number

of workstations.

The study of Kim et al. (2000b) was the first dealing simultaneously with the

problems of balancing and sequencing mixed-model U-lines, as the line balance and

the model sequence both influence the performance measure used by the authors: the

absolute deviation of workloads (ADW). Combining these two problems results in a

new problem, called mixed-model U-line balancing and sequencing (MMUL/BS).

These authors proposed a new approach using an artificial intelligence search

27

technique, called co-evolutionary algorithm, which maintains two sets of

populations, one to represent solutions of the line balancing problem and the other to

represent solutions of the model sequencing problem. Each individual in a population

has a matching pair in the other population, and fitness (based on the absolute

deviation of workloads) was computed for the pair of individuals. To generate new

individuals, different genetic operators were defined for each of the populations. The

proposed co-evolutionary algorithm aims at minimizing the ADW for a given

number of workstations, and uses such a concept that the solution obtained from the

MMUL/LB problem is input to the MMUL/MS problem. Computational experiments

proved a good performance of the procedure when compared with that of the

hierarchical approach and of two other co-evolutionary algorithms for the same set of

test problems.

Erel et al. (2001) developed a simulated annealing (SA) based approach to solve

the problem of assembly line-balancing problem a U-type configuration (SULB).

The proposed algorithm employs an intelligent mechanism to search a large solution

space. The SA procedure aims at achieving feasibility regarding cycle time

constraints. The objective function used for the minimization of the maximum station

time, thus eliminating the unfeasibility caused by the workstation exceeding the

cycle time. They proposed a different way for building the initial solution. First, each

task was assigned to a different workstation and then the number of workstations was

reduced by combining two adjacent workstations. When the workload of the

combined workstation exceeds cycle time, the initial solution was completed and the

subsequent steps of the SA procedure were initialized. The performance of the

algorithm was measured by solving a large number of benchmark problems available

in the literature. The results of the computational experiments indicated that the

proposed SA-based algorithm performs quite effectively. It also gave the optimal

solution for most problem instances. Future research directions and a comprehensive

bibliography were also provided here.

Miltenburg (2002) developed a genetic algorithm (GA) for solving the

MMUL/BS, the balancing and sequencing problem, with fixed number of

workstation. The model aims at minimizing the ADW and the deviation of part

28

production quantities in a JIT environment to facilitate “level” production. Desired

goal to achieve was the generation of level production schedules for other production

facilities operating in JIT environment. It took into account the number of parts, from

each of the different production facilities, each model required to be assembled. The

proposed GA was found to offer good solutions. Detailed information was given

concerning the performance of the proposed GA. Average computation times per

instance were found to be 130s when the proposed GA employed two point

crossovers, 300s when the proposed GA involved cycle crossover and 300s when the

proposed GA included randomly generated solutions.

Aase et al. (2003) proposed a set of branch-and-bound procedures, called U-OPT,

with different design elements (branching strategies, fathoming criteria, etc.) to solve

the U-ALBP. They showed that design elements should be included in optimization

procedures or algorithms, including branch-and-bound procedures, for solving the U-

shaped assembly line-balancing problem. New solution procedures were proposed

and compared experimentally with several existing procedures using a variety of

problem sets from the literature. Significant improvements over the existing methods

were reported by the authors when solving problem instances of reasonable

application size for U-shaped layouts (problems with up to 50 tasks).

Guerriero and Miltenburg (2003) developed a mathematical model and recursive

algorithms to solve the U-ALBP (Type-1) with stochastic task processing times. An

equivalent shortest path network was also presented. 558 instances were solved by

the first algorithm, and the largest 198 instances were solved again by the second

algorithm. Their study suggested that the algorithms were able to solve most

instances of practical size, where practical size seemed to be 25 or fewer tasks and

precedence order strengths of 0.2 or more. So, Computational experiments showed

that the algorithms were able to solve problems of practical size.

Aase et al. (2004) addressed the impact on labor productivity. The purpose of this

research was to confirm empirically that U-shaped assembly lines improve labor

productivity. Results indicated that labor productivity would improve significantly

29

under certain conditions when switching from a straight-line layout to a U-shaped

layout but not in all cases. The research also revealed some limitations of such a

layout change when factors such as the number of tasks and cycle times were varied.

Martinez and Duff (2004) addressed the U-shaped SMALBP Type-1. They first

solved this problem using 10 heuristic rules adapted from a simple line balancing

problem, such as maximum ranked positional weight, maximum total number of

follower tasks or precedence tasks, and maximum processing time, and compared

these heuristic solutions with the optimal solutions obtained from previous

researches. Thereafter, they modified the Ponnambalam et al.’s GA (2000) and

inserted the solutions obtained using these heuristic rules to the initial population.

They illustrated the proposed GA using the Jackson’s problem (1956). The results

showed that the addition of a GA can improve the current solution.

Gokcen et al. (2005) presented a shortest route formulation for simple U-type

assembly line balancing (SULB) problem and illustrated on a numerical example.

This model was based on the shortest route model developed by Gutjahr and

Nemhauser (1964) for the traditional single model assembly line balancing problem.

They noted that future research directions about the developed model could also be

used as a framework to develop effective heuristic procedures for solving a simple

U-type line-balancing problem.

Erel et al. (2005) presented a beam search-based method for the stochastic

assembly line balancing problem in U-lines. The proposed method was the first

heuristic for the stochastic U-type problem with the total expected cost criterion. The

proposed method minimizes expected total cost comprised of total labor cost and

expected total incompletion cost. The performance of the proposed method was

measured on various test problems. The results of the computational experiments

indicated that the average performance of the proposed method was better than the

best-known heuristic in the literature for the traditional straight-line problem. Future

research directions and the related bibliography were also provided in this paper.

30

A goal programming approach to simultaneously consider several conflicting

objectives was presented by Gokcen and Agpak (2006). The model was based on the

integer programming formulation developed by Urban (1998) for the ULB problem

and the goal model of Deckro and Rangachari (1990) that developed for the

traditional single model assembly line balancing (ALB) problem. The proposed

model, the first multi-criteria decision making approach to the U-line version,

provides increased flexibility to the decision maker since several conflicting goals

can be simultaneously considered. No comparison with other algorithms was

provided and the computational experience was only dedicated to the study of the

multi-criteria version of the problem.

Kim et al. (2006) proposed a new evolutionary approach to deal with both

balancing and sequencing problems in mixed-model U-shaped lines with fixed

number of workstation. A new genetic approach, called endosymbiotic evolutionary

algorithm, was proposed for solving the two problems of line balancing and model

sequencing at the same time. The algorithm imitates the natural evolution process of

endosymbionts that is an extension of existing cooperative or symbiotic evolutionary

algorithm. The distinguishing feature of the proposed algorithm is that it maintains

endosymbionts being a combination of an individual and its symbiotic partner. The

existence of endosymbionts can accelerate the speed that individuals converge to

good solutions. This enhanced capability of exploitation together with the parallel

search capability of traditional symbiotic algorithms results in finding better quality

solutions than existing hierarchical approaches and symbiotic algorithms. A set of

experiments were carried out, and the results were reported.

Urban and Chiang (2006) proposed an optimal piecewise-linear program for the

U-line balancing problem with stochastic task times. This paper examined the U-line

balancing problem with stochastic task times. A chance-constrained, piecewise-

linear, integer program was formulated for finding the optimal solution. Various

approaches used to identify a tight lower bound were also presented. Computational

results showed that the proposed method was able to solve problems of practical size.

31

Kara et al. (2007a) proposed a simulated annealing algorithm based approach for

simultaneously solving the balancing and sequencing problems of mixed-model U-

lines. The primary goal of the proposed approach was to minimize the number of

workstations required on the line (Type I). To meet this aim, the proposed approach

uses such a methodology that enables the minimization of the absolute deviation of

workloads among workstations as well. In terms of minimizing the number of

workstations required on the mixed-model U-line, as well as minimizing the absolute

deviation of workloads among workstations, the proposed approach was the first

method in the literature dealing with the balancing and sequencing problems of

mixed-model U-lines at the same time. The newly developed neighborhood

generation method was inserted into the simulated annealing (SA) algorithm.

Problem illustrated on a numerical example.

Agpak and Gokcen (2007) developed four different new models of chance-

constrained binary integer programming models for the stochastic traditional and U-

type line balancing (ULB) problem. In this study, these models have been solved for

several test problems well-known in the literature and the results have been

compared with respect to the number of stations.

Toklu and Ozcan (2007) presented a fuzzy goal programming model for the

simple U-line balancing (SULB) problem with multiple objectives. The proposed

model was the first fuzzy multi-objective decision-making approach to the SULB

problem with multiple objectives which aims at simultaneously optimizing several

conflicting goals. The proposed model was illustrated using an example. A

computational study was conducted by solving a large number of test problems to

investigate the relationship between the fuzzy goals and to compare them with the

goal programming model proposed by Gokcen and Agpak (2006). The results of the

computational experiments indicated that the proposed model was more realistic than

existing models for the SULB problem with multiple objectives and also gave

increased flexibility for the decision-makers to determine different alternatives.

32

Baykasoglu and Ozbakir (2007) proposed a new multiple-rule-based genetic

algorithm (GA) for balancing U-type assembly lines with stochastic task times. The

proposed algorithm integrates the COMSOAL method, task assignment heuristics,

and a GA. The performance of the proposed algorithm was compared with the

optimal solutions found by Urban and Chiang (2006). The proposed algorithm found

optimal solutions for all problems, except one case, within considerably shorter CPU

times than the existing results. It was concluded that the proposed GA was able to

solve problems of practical size with reasonable CPU times.

Kara et al. (2007b) presented a multi-objective simulated annealing algorithm

based approach for balancing and sequencing mixed-model U-lines to minimize

simultaneously the absolute deviations of workloads across workstations, part usage

rate, and cost of setups. To increase the performance of the proposed algorithm, a

newly developed neighborhood generation method was also employed. Solution

methodology was illustrated using an example; and a two-stage comprehensive

experimental study was conducted to determine the effective values of algorithm

parameters and investigate the relationships between performance measures. Results

showed that the proposed approach was more realistic than the limited number of

existing methodologies. The proposed approach was also extended for considering

the stochastic completion times of tasks.

Boysen and Fliedner (2008) proposed a versatile algorithm for assembly line

balancing. The proposed algorithm consists of two staged graph-algorithm, which

was designed to solve line balancing problems including relevant practice constraints

(GALBP), such as parallel work stations and tasks, cost synergies, processing

alternatives, zoning restrictions, stochastic processing times or U-shaped assembly

lines. Unlike former procedures, the presented approach can be easily modified to

incorporate all of the named extensions. It is not only possible to select and solve

single classes of constraints, but rather any combination of them with just slight

modifications.

33

Hwang et al. (2008) presented a multi-objective genetic algorithm (moGA) using

the priority-based coding method to solve the U-shaped assembly line balancing

problem (UALBP). They considered both the traditional straight line system and the

U-shaped assembly line system, thus as an unbiased examination of line efficiency.

Considered performance criteria are the number of workstations (the line efficiency)

and the variation of workload. Several well-known test problems considered by

Talbot et al. (1986) were solved by using proposed multi-objective genetic algorithm.

The results of experiments showed that the proposed model produced as good or

even better line efficiency of workstation integration and improved the variation of

workload.

Sabuncuoglu et al. (2009) proposed ant colony algorithms to solve the single-

model U-type assembly line balancing problem. The problem considered in this

study is a single model, deterministic U-line balancing problem. Their objective was

to find a design with the minimum number of stations subject to the cycle time and

precedence relations constraints. They conducted an extensive experimental study in

which the performance of the proposed algorithm was tested by using the benchmark

problems in the literature, and was compared against best known algorithms reported

in the literature. They used two data sets: Talbot et al. (1986) with 64 instances of

problem sizes ranging from 8 to 111 tasks and Scholl (1993) with 168 instances

ranging from 25 to 297 tasks. The results indicated that the proposed algorithms

display very competitive performance against them.

Hwang and Katayama (2009) proposed a new evolutionary approach to deal with

workload balancing problems in mixed-model U-shaped lines without job sequence

so that all models are produced by same quantity. Their paper was an extension of

the priority-based genetic algorithm (PGA), and designs an amelioration structure

with a genetic algorithm (ASGA) to improve workload balance on MMAL

production systems. They considered both the traditional straight line system and the

U-shaped assembly line; and the performance criteria considered were the number of

workstations (the line efficiency) and the variation of workload, simultaneously.

34

Computational experiments were performed based on three well-known test

problems.

Kara and Tekin (2009) presented a mixed integer programming formulation for

optimal balancing of mixed-model U-lines. The proposed approach minimizes the

number of workstations required on the line for a given model sequence. They also

presented the comsoal algorithm based heuristic method. They solved two methods

up to 10-task, 20-task and 30-task problem instances. They reported that most of the

10-task problem instances were solved optimally, the optimality of almost none of

20-task and 30-task problem instances was not guarantied or not found, and in

addition, feasible solutions were found for most of 20-task problems but feasible

solutions could be obtained for a few of 30-task problems.

The literature review is summarized as shown in Table 2.1. This table contains the

published papers, which address the U-line assembly line balancing problem in

chronological order.

Our conclusions about this review are listed below:

 8 out of 28 articles surveyed, studied the mixed-model U-shape line

balancing problem. The other 19 articles surveyed, focused on the simple U-

shape line balancing problem. Only Aase et al. (2004) addressed the benefits

of U-shape production lines on labor productivity.

 Only one article (Kara et al., 2007a) dealt with the balancing and sequencing

problem of mixed-model U-lines simultaneously to minimize the number of

workstations (Type 1). The other five articles that focused on mixed-model

U-shape line balancing problem tried to solve model sequencing and line

balancing problem sequentially by considering the fixed number of

workstation or the fixed model sequence.

35

 None of the articles focusing on the mixed-model U-shape line balancing

problem has considered parallel workstations and zoning restrictions

simultaneously.

 Six articles that focused on mixed-model U-shape line balancing problem

used the absolute deviation of workloads (ADW) among workstations as

performance measure (Sparling and Miltenburg (1998), Miltenburg (2002),

Kim et al. (2000b), Kim et al. (2006), Kara et al. (2007a), Kara et al.

(2007b)).

 Only one article (Kara et al., 2007b) that focused on mixed-model U-shape

line balancing problem dealt with stochastic and all the others dealt with

deterministic processing times.

Table 2.1 Evolution of the solution approaches for U-shape line

PUBLICATIONS CHARACTERISTICS METHODOLOGY

Miltenburg and Wijngaard
(1994)

Single model, deterministic, type 1
dynamic programming & (RPWT)

heuristic

Miltenburg (1998) facility design, multiple U-line dynamic programming

Sparling and Miltenburg
(1998)

mixed model, deterministic , fixed number
of station, adjusted task time, sequencing,

horizontal balancing, workpace
transportation

four-stage approximate solution
algorithm

Ajenblit and Wainwright
(1998)

single model, deterministic, type 1,
vertical balancing

genetic algorithm

Urban (1998) Single model, deterministic, type 1 integer programming

Scholl and Klein (1999)
single model, deterministic, maximize the

line efficiency
branch-and-bound based heuristic

(ULINO)

Kim et al. (2000b)
mixed model, deterministic , fixed number
of station, sequencing, vertical balancing

artificial intelligence search
technique (co-evolutionary

algorithm)

Erel et al. (2001) Single model, deterministic, type 1
simulated annealing based

approach

Miltenburg (2002)
mixed model, deterministic, sequencing,
horizontal balancing, vertical balancing

genetic algorithm

Aase et al. (2003) Single model, deterministic, type 1
branch-and-bound procedures (U-

OPT)
Guerriero and Miltenburg

(2003)
single model, stochastic, type 1

mathematical model & recursive
algorithm

Aase et al. (2004) impacts on labor productivity An experimental study

Martinez and Duff (2004) Single model, deterministic, type 1
genetic algorithm with 10 heuristic

rules

Gökçen et al. (2005) Single model, deterministic, type 1

shortest route formulation

36

Table 2.1 (cont) Evolution of the solution approaches for U-shape line

Erel et al. (2005)
single model, stochastic, cost

minimization
beam search-based heuristic

Gökçen and Ağpak (2006)
single model, deterministic, multi-

criteria decision making
integer programming based goal

programming

Kim et al. (2006)
mixed model, deterministic , fixed

number of station, sequencing, vertical
balancing

endosymbiotic evolutionary
algorithm

Urban and Chiang (2006)

single model, stochastic, type 1

optimal piecewise-linear program

Kara et al. (2007a)
mixed model, deterministic,

simultaneously line balancing/ model
sequencing, type 1

simulated annealing algorithm
based approach

Ağpak and Gökcen (2007)
single model, stochastic, multi-criteria

decision making

four different chance-constrained
binary integer programming

model

Toklu and Özcan (2007)
single model, fuzzy time, multi-criteria

decision making

fuzzy goal programming model

Baykasoğlu and Özbakir
(2007)

single model, stochastic, type 1
multiple-rule-based genetic

algorithm

Kara et al. (2007b)

mixed model, deterministic, stochastic,
fixed number of station, type 1,

sequencing, vertical balancing, multi-
objective

multi-objective simulated
annealing algorithm based

approach

Boysen and Fliedner
(2008)

single model, stochastic, profit
maximization, parallel work stations and

tasks, processing alternatives, zoning
restrictions

versatile algorithm

Hwang et al. (2008)
single model, deterministic, type 1,

vertical balancing
multi-objective genetic algorithm

Sabuncuoğlu et al. (2009)

Single model, deterministic, type 1

ant colony algorithm

Hwang and Katamaya
(2009)

mixed model, deterministic , type 1,

fixed model sequence, vertical balancing
genetic algorithm

Kara and Tekin (2009)

mixed model, adjusted task times,

deterministic , type 1, given model

sequencing, vertical balancing

mixed integer programming,

comsoal algorithm based heuristic

37

CHAPTER THREE

BACKGROUND INFORMATION FOR SOLUTION METHODS:

GENETIC ALGORITHM AND SIMULATED ANNEALING

3.1 Introduction

This thesis proposes Priority-Based Genetic Algorithm (PGA) that uses newly

developed Simulated Annealing (SA) based fitness evaluation approach to solve

simultaneously MMUL/BS problems. To gain a more comprehensive understanding,

these two algorithms are explained in detail. The chapter is organized as follows. In

Section 3.2, a brief introduction of basic concepts for GA is presented and in Section

3.3, a brief introduction of basic concepts for SA is presented.

3.2 Genetic Algorithms

Since 1950’s, several evolutionary computation methodologies have emerged and

have gained popularity. These include evolutionary programming, evolution strategy,

genetic programming and genetic algorithm. Genetic Algorithm (GA) was firstly

introduced by Holland (1975) and then, Genetic Algorithm has been applied to

various types of problems. Genetic Algorithm is a stochastic search technique based

on the process of natural selection and genetics. GA does not operate directly on the

solution space. This requires a mapping mechanism between the solution space and

the search space. Solutions are coded in strings, over a finite alphabet, called

chromosomes or individuals. An encoding is selected in a way that each solution in

the search space is represented by one chromosome. Each chromosome is then

decoded according to a user defined mapping function, enabling the computation of

the corresponding fitness value, which reflects the quality of the solution represented

by the chromosome. The process of producing a phenotype from a genotype is as

shown in Figure 3.1.

38

Coding
space
genotypes

Decoding

Encoding

 Figure 3.1 Mapping between solution space and search space (Rekiek and

 Delchambre, 2006)

In the original implementation of GA by Holland, each design variable is

represented by a binary digit (see Figure 3.2) comprised of 1’s and 0’s. In later

implementations integers or real-valued continuous values etc. have been introduced.

Comprehensive literature review on chromosome representation scheme for

assembly line balancing problems is provided in Scholl and Becker (2006).

1 0 1 0 0 1 1 1 0 1

(a chromosome)

 Figure 3.2 The binary encoding scheme

In general, a GA has seven basic components; coding of solutions, population,

fitness function, selection scheme, genetic operators, i.e., crossover and mutation,

survival scheme, termination criteria. Figure 3.3 illustrates the general working

principle of GAs.

GA operates with a collection of chromosomes, called a population. Genetic

Algorithm then starts with initialization which is done by random generation, so it

starts with large search space to make sure that it does not become stuck in a local

suboptimal point. Indeed, most solutions are largely different and belong to different

areas of the search space. Over time, the population begins to converge, with the

separate individuals resembling each other more and more. The GA narrows its

search in the solution space and reduces the changes made by evolution until

eventually the population converges to a single solution (Rekiek and Delchambre,

2006). On one side, if population size is too small, the search space will not be

sufficient and will lead the search to premature coverage. On the other side, if it is

Solution
space
phenotypes

39

too big, the search will be inefficient and the solution will not be found within a

reasonable computation time (Sastry and Goldberg, 2005). Choosing an appropriate

population size is always a trade-off between solution quality and execution time.

 No

 Yes

 Figure 3.3 Main steps of a generalized genetic algorithm

 (Grupe and Jooste, 2004)

Optimal solution produced

Termination
Check?

Generate Initial
Population

Selection

Crossover

Mutation

Survival

40

Fitness function in GA is the value of the objective function for its phenotype.

Each individual represents a potential solution to a problem. The fitness function

assigns a real number as a measure of fitness to each solution.

Selection is the “survival of the fittest” operator in a genetic algorithm. This

operator determines which designs from the population will survive to form the

‘parents’ of the next generation. The selection operator is the mechanism so that it

establishes which individuals are best adapted to the fitness landscape and should

have their genes advanced to future generations. Individuals that are more fit to the

design ‘environment’ will be more likely to survive and pass on their traits. This

procedure is analogous to natural selection as described by Darwin. Using the fitness

values, the selection scheme is executed to choose the individuals from a population

for breeding offspring. Individuals in the original population are selected for

reproduction. Two popular selection methods are the roulette wheel and tournament.

The roulette wheel gives individuals a chance of selection which is equal to their

fitness relative to the population. Tournament selection randomly pits k individuals

(k >= 2) against each other, with the winner contributing to the next generation. An

additional method often used is random selection, which is completely arbitrary.

The genetic operations mimic the process of heredity of genes to create new

offspring at each generation. GA uses two operators to generate new solutions from

existing ones: crossover and mutation. Crossover is a process of breeding new

offspring by the selected individuals from the selection operator. These individuals

are combined into pairs to exchange genetic information and produce new

individuals. A two-point crossover exchanges all genes between the cut-points,

which are randomly determined in general (see Figure 3.4). The aim of crossover is

to transmit good characteristics from parents to offspring.

41

 Parent 1

1 1 0 0 0 1 0 0 1 1

 Parent 2

1 0 1 0 0 1 1 1 0 1

 Randomly generated

 Offspring 1 cutpoints

1 1 0 0 0 1 1 1 1 1

 Offspring 2

1 0 1 0 0 1 0 0 0 1

 Figure 3.4 Two point crossover

Mutation is a background operator which produces spontaneous random changes

in various chromosomes. Mutation represents new discovery in the new search space.

Figure 3.5 shows the simplest mutation, which is performed by changing the value of

a randomly selected gene from 0 to 1 (or from 1 to 0) in a binary string. In GAs,

mutation serves the crucial role of either (a) replacing the genes lost from the

population during the selection process so that they can be tried in a new context or

(b) providing the genes that were not present in the initial population (Gen and

Cheng, 1997).

 Parent

1 0 0 1 1 0 1 0 1 0

 Randomly selected gene

 Offspring

1 0 0 0 1 0 1 0 1 0

 Figure 3.5 Mutation

A replacement (survival) strategy is necessary to determine which individuals stay

in the population and which are replaced by offspring. The most common

replacement approach is elitism, which allows the best chromosome in each

42

generation to survive in the next generation, thus guaranteeing that the final

population contains the best solution ever found.

For termination criteria, the various stopping condition are listed as follows

(Sivanandam and Deepa, 2008);

Maximum generations: The genetic algorithm stops when the specified numbers

of generations has evolved.

Elapsed time: The genetic process will end when a specified time has elapsed.

Note: If the maximum number of generation has been reached before the specified

time has elapsed, the process will end.

No change in fitness: The genetic process will end if there is no change in the

population’s best fitness for a specified number of generations.

Note: If the maximum number of generation has been reached before the specified

number of generation with no changes has been reached, the process will end.

Stall generations: The algorithm stops if there is no improvement in the objective

function for a sequence of consecutive generations of length Stall generations.

Stall time limit: The algorithm stops if there is no improvement in the objective

function during an interval of time in seconds equal to stall time limit.

The procedure of a generic GA (Goldberg, 1989) is given as follows:

Step1: Set 1t . Randomly generate N solutions to form the first population, 1P

and evaluate the fitness of solutions in 1P .

 Step2: Crossover: Generate an offspring population tQ as follows:

2.1. Choose two solutions x and y from tP based on the fitness values.

2.2. Using a crossover operator, generate offspring and add them to tQ .

 Step3: Mutation: Mutate each solution tQx with a predefined mutation rate.

43

Step4: Fitness assignment: Evaluate and assign a fitness value to each solution

tQx based on its objective function value and infeasibility.

Step5: Selection: Select N solutions from tQ based on their fitness and copy

them to 1tP .

Step6: If the termination criterion is satisfied, terminate the search and return to

the current population, else, set 1 tt go to Step 2.

3.3 Simulated Annealing Algorithms

The SA algorithm was introduced by Kirkpatrick et al. (1983) to solve NP-hard

combinatorial optimization problems, by using the analogy with the simulation of the

physical annealing of solids, in order to minimize/maximize the value of an objective

function. The simulated annealing meta-heuristic is based on the analogy with the

thermodynamic annealing process. Thermodynamic annealing is a method in

metallurgy to reduce the defects in a metal, alloy, or other material by heating them

to a very high temperature and then having a controlled cooling. This causes

molecules with high-energy state to move randomly in their neighborhood to find a

configuration with lower energy state than the current energy state. The result of this

process is to have an ordered crystalline structure. If the metal is cooled too slowly or

too fast, defects will be formed in the metal, which in our case represents local

minimum or maximum. Similarly, in simulated annealing (SA) heuristic it is

important to have a proper cooling schedule. The procedure for the SA process is

defined as below:

Create a random initial solution 0S

Determine initial temperature 0T , crystallization temperature cryT , iteration length at

each level of energy state IT and cooling rate q

0TTc  , 0SS 

Repeat
For (i = 1 to IT)) {

Generate a random solution from S to 'S

)()(' SevaluateSevaluate 

If (0) then 'SS 

44

0T

cryT

IT

Else {
If (Perform probability ()/exp(cT) that S’ is still accepted solution)

'SS 
} End Else
} End For
Reduce temperature qTT cc 

Until (cT  cryT)

Optimal Solution = S

It starts from an initial solution to the problem, 0S and a control parameter, cT ,

which is set to an initial temperature value, 0T . During the algorithm, the value of

cT is systematically decreased according to an annealing schedule as shown in

Figure 3.6. In this schedule the following issues are defined: a temperature reduction

function, q , and the length of each temperature level, IT , that determines the number

of solutions generated at a certain temperature level.

 time
 Figure 3.6 Annealing schedule

For each iteration, neighboring solutions, 'S , the current solution are generated

and the value of the objective function is calculated. If the value is better than the

current solution, the neighboring solution becomes the new current solution. On the

other hand, if the neighboring solution provides an objective function value inferior

to that of the current solution, the neighboring solution may still become the current

solution according to certain acceptance probability. The acceptance probability p is

45

computed according to the criterion established by Metropolis (Metropolis et al.,

1953) as follows:

)/exp(cTp 

where;  = change in the objective function.

A random number between zero and one is generated, if the random number is

smaller than p the solution is accepted. This strategy prevents the algorithm from

getting trap in a local optimum.

46

CHAPTER FOUR

PROPOSED GENETIC ALGORITHM BASED APPROACH FOR

SIMULTANEOUSLY SOLVING U-SHAPE MIXED-MODEL ASSEMBLY

LINE BALANCING AND SEQUENCING PROBLEM

4.1 Chapter Introduction

In chapter four, simultaneous solution of balancing/sequencing (MMUL/BS)

problems in mixed model U-shaped assembly lines are addressed, and this chapter is

divided into 3 sub-titles in general.

Firstly, general characteristics of U-shaped production lines are presented, and

differences of mixed-model U-shaped assembly line from other lines are explained in

detail.

And then, the problem is presented with notations and equations for being able to

understand better the general characteristics of the problem. Fitness function aims at

minimizing the number of stations as primary objective and workload balancing

between-within workstations at the end of all cycles as secondary objective is

mathematically presented, and our proposed solution method based on genetic

algorithm for the solution of the problem is introduced. In our solution method based

on priority based-genetic algorithm, simulated annealing based fitness evaluation that

we developed for carrying out fitness assessments is improved. Experimental design

is established in order to ensure the execution of our proposed algorithm with more

efficient parameters. These new procedures are illustrated with a numerical example

and its performance is tested through a set of test problems with the generated

minimum part sets (MPS).

Finally, the problem is expanded in a manner comprising parallel station and

zoning constraints. This new case is showed by notations – equations. Our fitness

function is mathematically expressed in a manner comprising this new case.

47

Moreover, these procedures are illustrated with a numerical example and its

performance is tested through a set of test problems with the generated MPS.

4.2 Characteristics of U-shaped Assembly Lines

In recent years, many manufacturers have adopted a Just-in-Time (JIT) approach

for manufacturing, finding that it improves their productivity, profits, and product

quality. Straight assembly lines have been an important part of traditional mass

production while U-shaped assembly lines have been emerged as a consequence of

continuous improvement and cost reduction efforts of just-in-time (JIT) production

(Monden, 1993). One of the important changes resulting from JIT implementation is

the replacement of the traditional straight lines with U-shaped production lines. The

reason for this is that JIT use of multi-skilled workers and efficient facility layouts,

so many companies are rearranging their traditional straight assembly lines into a U-

shaped layout (Scholl and Klein, 1999, Aase et al., 2004). The UALB is more

complex than the SALB because tasks can be assigned by moving forward,

backward, or simultaneously in both directions through the precedence diagram

(Scholl and Klein, 1999).

Miltenburg and Wijngaard (1994) and Cheng et al. (2000) summarized the major

benefits and factors of U-shaped assembly lines and explain its popularity among JIT

practitioners. The major benefits and factors of U-lines are as followings:

 Volume Flexibility: As a consequence of just-in-time principles, the output

from a U-line may need to be adjusted from time to time for matching the rate

at which the produced parts are consumed by subsequent operations. The

production rate as required in this situation on U-line can be adjusted by

adding or removing workers. This level of volume flexibility is harder to

obtain with a straight line because of the fact that rebalancing is more

difficult on a traditional "straight line" with its narrowly trained operators.

 Operator Flexibility: Since they rotate through many stations in the U-line

each day, it is easier for one operator to oversee several work centers. Hence,

operators are involved in different parts of the assembly process; they can

48

easily enlarge their skills. So, they can respond to the problems quickly.

Also, the acquisition of multiple skills leads to higher motivation, improved

product quality and increased flexibility.

 Number of Workstations: The number of workstations required on a U-line is

never more than, and is sometimes less than, that required on a straight line.

The reason of this is that there are more possibilities for grouping tasks into

workstations on a U-line.

 Material Handling: A U-line eliminates the need for special material-

handling equipment such as conveyors and special material-handling

operators. Instead, production operators move products from machine to

machine.

 Visibility and Teamwork: The compact size of a U-line improves visibility

and communication. This enhances teamwork, gives a greater sense of

belonging, and increases responsibility and ownership compared to a straight

line, where operators are spread out along a long line and may be separated

by walls of inventory.

 Rework: A tenet of the total quality management (TQM) is quality at the

source, which calls for correcting quality problems as soon as possible after

they occur by returning a defective product to the station where it was

produced. In a U-line, the distance to return the defective product is short,

making it easier to follow this tenet. This is in contrast to the traditional

policy of sending the defective product to a separate rework area.

Miltenburg (2001) presented a review of the theory and practice on U-shaped

production lines on a set of US and Japanese companies which changed their straight

lines to U-lines. The results showed that the adoption of U-shaped lines leads to

remarkable benefits: productivity improvement of 76%, decreasing of work-in-

process inventory 86%, decreasing of lead time 75% and dropping of defective rates

83%, on average.

49

4.3 Problem Statement of the MMUL/BS

The problem of balancing a U-shaped assembly line to produce a set of models of

a product is the mixed-model U-ALBP (U-MALBP), and it was first described by

Sparling and Miltenburg (1998). The key difference between the single model

assembly line balancing problem and the mixed-model assembly line balancing

problem is that more than one product models are produced on mixed-model

assembly lines while only one product model is produced on single model assembly

lines. An additional and very important issue of mixed-model U-lines, when

compared to single-model U-lines, is that a workstation may perform its tasks in the

same cycle in two different models, one at each leg of the line. A successful

implementation of a mixed-model U-line requires solutions for two important

problems, called mixed-model U-line line balancing (MMUL/LB) and mixed-model

U-line model sequencing (MMUL/MS). These two problems are tightly interrelated

with each other and can not be set independently (Sparling and Miltenburg, 1998,

Kim et al., 2000b and Kara et al., 2007a). The balancing problem, MMUL/LB, is the

assigning tasks to an ordered sequence of workstations on the mixed-model U-line in

such a way that some performance measures are optimized. The sequencing problem,

MMUL/MS, is the determining the production sequence of models produced on the

mixed-model U-line. It is NP-hard. For example, a small U-line of 8 tasks producing

2 models with demands of 6 and 4 units each could have more than

8!(6+4)!/(6!4!)=8.5×10 6 solutions. Even the problem of determining the number of

feasible solutions is NP-hard (Miltenburg, 2002).

Miltenburg (2002) presented two observations about the reason why the balancing

and sequencing problem can not be set independently when JIT principles are being

used are as in the followings:

 The sequence in which different models are produced cannot be set

independently of the line balance (i.e., the assignment of tasks to stations).

Different models require different tasks and the same tasks have different

completion times for different models. On a U-line two different models may

50

be worked on in the same station in the same cycle. On a straight line, only

one model is worked on in each station in each cycle.

 The sequence in which the different models are produced on a U-line cannot

be set independently of the schedules of other lines and production facilities

when JIT principles are being used. JIT uses a pull rather than a push system

of production control, which means that model sequence at the U-shaped

mixed-model final assembly line sets the schedules at the other production

facilities. Most often, JIT requires these latter schedules to be “level”, and

this imposes additional constraints on model sequence.

Figure 4.1 illustrates the Mixed-Model Production on a U-Shaped Assembly Line.

The line produces three models in the sequence ABC. At the first cycle; the operator

of workstation 1 (w-1) performs tasks 1 and 2 on model C at the front of the line and

then crosses to the back to complete tasks 13 and 14 on model A, the operator of

workstation 2 (w-2) performs tasks 3 and 4 on model B at the front of the line and

then crosses to the back to complete task 12 on model B, the operator of workstation

3 (w-3) performs tasks 5,6,7 and 8 on model A and lastly the operator of workstation

4 (w-4) performs tasks 9,10 and 11 on model C. This line consists of 4 workstations

and 6 regions where the models are processed at workstations.

 Figure 4.1 Mixed-model productions on a U-shaped assembly line

51

4.3.1 Model Assumptions

The U-lines considered in this study operates under the following assumptions:

 Product models having similar production attributions are produced on the

same U-shaped production lines.

 Zoning restrictions and parallel workstations are not allowed.

 The travel times of operators and setup times are ignored.

 Precedence diagrams of different models are known, and a combined

precedence diagrams is employed (Macaskill 1972).

 The completion times of tasks may differ from one model to another and can

be equal to zero. Common tasks among different models exist.

 Task completion times are deterministic and independent from each others.

 Paced assembly line considered and no work-in-process is allowed.

 Minimum Part Set (MPS) principle is used (Bard et al., 1992, Merengo et al.,

1999, Kara et al., 2007a, Kim et al., 2000b).

 Equally equipped stations and fixed rate launching are considered.

4.3.2 Notation and Equations

The following notation and equations will be used to describe the problem

characteristics:

N Total numbers of tasks are performed in a set of workstations (Ni ,...,2,1)

K Number of workstations utilized on the mixed-model U-line (Kk ,...,2,1)

P The planning horizon has a fixed length

M Number of different models produced on the MMUL (Mm ,...,2,1)

kX Set of tasks assigned to workstation k

T Set of tasks performed on the mixed-model U-line

PR Set of merged precedence constraints for all models

MS Model sequence of the mixed-model U-line

52

D The vector that represents the total demand for each model

 MDDDD ,...,, 21

cd The greatest common divisor of the elements of D

md Over the planning horizon, the forecast demand for model m for one MPS

cdDd mm / , (Mm ,...,2,1) (1)

MPS Minimum part set, calculated by dividing the total demands of the models by

the greatest common divisor of these demands  mdddMPS ,...,, 21

R The length of the model sequence for one MPS

  
 M

m mdR
1

 (2)

R Also represent the number of the possible cycle (Rr ,...,2,1)

C Cycle time RPC / (3)

imt The required time to perform task i on the model m

iIP Set of the immediate predecessors of task i

rCS Depicts the appearance of the models in model points at the cycle r

krS Idle time of workstation k at the cycle r

kKI Total idle time of all cycles in the workstation k

rRI Total idle time of all workstations at the cycle r

minC Theoretical minimum cycle time (Kim et al., 2000b)

  
 N

i

M

m immtdRKC
1 1min))/(1((4)

For a given line balance and model sequence:

kXF Set of tasks in workstation k located on the front of the U-line

kXB Set of tasks in workstation k located on the back of the U-line

r
kf Model produced on the front of station k at the cycle r in the sequence

r
kb Model produced on the back of station k at the cycle r in the sequence

krW Amount of work assigned to station k at the cycle r

53

  


k k
r
k

r
kXFi XBi ibifkr ttW (Kk ,...,2,1), (Rr ,...,2,1) (5)

The following mathematical model is only used as a means to formally describe

the problem, as its high complexity makes it impossible to be solved to optimality.

The model is based on the model of Sparling and Miltenburg (1998) developed for

MMUL/LB. The model was modified and expanded to include model sequencing by

Kara et al. (2007a) and is shown below.


K

k
k TX

1

 (6)

0



vu
vu XX (7)

CWkr  (Kk ,...,2,1), (Rr ,...,2,1) (8)

For every task Ty : (9)

either: if PRyi ),(, uXi , vXy , then vu  for all i

 or : if PRzy ),(, vXy , xXz , then vx  for all z


R

r

r
k MPSf

1

 (Kk ,...,2,1) (10)


R

r

r
k MPSb

1

 (Kk ,...,2,1) (11)

The constraint in Eq. 6 ensures that all tasks are assigned to a workstation. The

constraint in Eq. 7 ensures that each task is assigned to only one workstation. By the

constraint in Eq. 8, each workstation capacity does not exceeded the predetermined

cycle time, C. The constraint in Eq. 9 ensures that a task can be assigned to a

workstation if either all its predecessors or all its successors have been assigned to

the same or to an earlier workstation and the last two constraints (Eq. 10 and Eq. 11)

ensure that all workstations are visited by all models for which the demands are met.

54

4.3.3 New Objective Function

A new task can be assigned to a workstation as long as the sum of total processing

time does not exceed the cycle time at each cycle. In a U-shape production system,

the workload of a workstation will depend on the models performed on the front and

the back of the line at each cycle. Then, finding the best model sequence (the

sequence in which the models are launched to the line) is more important in order to

allow a good workload balance. Due to the mixed-model nature of the problem, in

the MMUL/BS, this issue becomes even more important (models may be located to

different locations (back front or in front of the line) at each cycle by satisfying the

assignment constraints and the given model sequence (MS)).

The main goal of ALBP of type I is to minimize the number of workstations for a

given cycle time. In addition to main goal, different performance measures must also

be taken into consideration. Vilarinho and Simaria (2002) introduced a performance

measure that provides equally distribution of the workload between and within

workstations for the straight mixed-model assembly line balancing. In this study, a

new fitness function based on Vilarinho and Simaria’s (2002) objective function is

developed to the U-shape mixed-model assembly line balancing for aiming at

minimizing the number of workstations as primary goal and smoothing the workload

between - within workstations at the end of all cycles as secondary goal.

The new fitness function is explained by following equations:

)(krkr WCS  (Kk ,...,2,1), (Rr ,...,2,1) (12)

  R
r krk SKI

1
 (Kk ,...,2,1) (13)

 

2

1 1
1

1    















 K

k
R
r

k

kr
b RKI

S

RK

R
C (14)

  K
k krr SRI

1
 (Rr ,...,2,1) (15)

55

 

2

1 1
1

1
   
















 R

r
K
k

r

kr
w KRI

S

KR

K
C (16)

wb CC  K Zmin (17)

krS (Eq. 12) represents the idle time of workstation k at the cycle r . The idle

time of a workstation is the difference between the capacity of the workstation and

its workload.

kKI (Eq. 13) represents the total idle time at the end of all cycles in the

workstation k .

In the objective function (Eq. 17), bC (Eq. 14) aims at smoothing the workload of

workstations between the cycles, i.e., the idle time is distributed across all cycles as

equally as possible for any workstation. The value of function bC varies between a

maximum of 1, when the total idle time of a workstation at the end of all cycles equal

to only one cycle’s idle time, and a minimum of 0, when the idle times of a

workstation at the each cycle are equal to each other.

rRI (Eq. 15) represents the total idle time of all workstations at the cycle r .

In the objective function (Eq. 17), wC (Eq. 16) aims at workload balance of all

workstations within any cycles, i.e., the idle time is distributed across all

workstations as equally as possible at any cycle. The value of function wC varies

between a maximum of 1, when the total idle times of all workstations at any cycle

equal to only one workstation’s idle time, and a minimum of 0, when the idle times

of each workstation at any cycle are equal to each other.

The first term (K) of the fitness function (Eq. 17) is to minimize the number of

the workstations required on the line. The second term (bC) is to smooth the

56

workloads of workstations between the cycles. The third term (wC) is to smooth the

workloads of workstations within the cycles. The second and the third terms are

within the value range [0, 1]. So, the model minimizes the number of workstations,

before the secondary goal becomes active. The proposed performance measure may

vary depending on the balance and the model sequence.

Note:

If kKI equals to 0 ,

2

1
1  












R

r
k

kr

RKI

S
will be equal to 0.

If rRI equals to 0,

2

1
1  












K

k
r

kr

KRI

S
will be equal to 0.

4.3.4 Proposed GA-Based Approach

The workloads of workstations in MMULs depend on various factors; therefore

development of solution procedures for MMUL is more complex than that of other

types of line balancing (Kara and Tekin 2009). The NP-hard nature of this problem

expedites the development of computer-aided effective heuristic solution procedures.

Nowadays, evolutionary approaches have been developed for solving this problem.

The GA combines the exploitation of past results with new areas of space search

exploration. Using survival of the fittest techniques, combined with a structured yet

randomized information exchange, a GA can mimic some of the innovative attributes

of a human search (Hwang et al.2007).

Hwang et al. (2007) have studied the assembly line balancing problem with

genetic algorithms and have used the priority-based encoding method to treat the

precedence constraints efficiently, but they only considered single model assembly

lines and more recently, Hwang and Katamaya (2009) have studied the mixed-model

U- line balancing problem without a job sequence.

57

In this thesis, we used the priority-based genetic algorithm (PGA) (Gen and

Cheng 2000) for simultaneously solving the balancing and sequencing problems of

mixed-model U-lines. The simulated annealing algorithm (SA) based fitness

evaluation approach is developed and inserted into PGA to evaluate the fitness value

of the task sequences TS that will discussed in Chapter 4.3.5.

The newly developed Simulated Annealing Algorithm based fitness evaluation

approach is the most significant property of proposed algorithm. This enables us to

consider the line balancing/model sequencing problems of mixed-model U-lines

simultaneously.

In this new approach, our fitness function developed is capable of comparing the

performances of the task sequences that have been used. As mentioned before, this

new fitness function minimizes the number of stations as primary goal, and provides

the workload balance within station and between stations by considering all possible

cycles.

Genetic algorithms and its main concepts have been previously characterized in

Chapter 3. The main steps of the proposed genetic algorithm are presented in Figure

4.2.

The general specifications of proposed GA approach are summarized in the

following subsections.

 4.3.4.1 Selected Chromosome Representation and Initialization of Population

We used the priority-based encoding method (Gen and Cheng 2000) for working

effectively with precedence constraints. The position of a gene was used to represent

a task node, and the value of the gene was used to represent the priority of the task

node for constructing a task sequence among candidates (Hwang et al., 2008).

58

 Figure 4.2 General structure of the proposed approach

YES

NO

START GA

APPLY CROSSOVER AND
MUTATION

EVALUATE FITNESS FUNC.
OF OFFSPINGS USING THE

PROPOSED SA-BASED FITNESS
EVALUATION APPROACH

NEW POPULATION

CREATE INITIAL POPULATION

EVALUATE FITNESS FUNC. USING
THE PROPOSED SA-BASED

FITNESS EVALUATION APPROACH

SELECT PARENTS

Input: precedence relations & processing
times

SURVIVE NEXT GENERATION

TERMINATE?

STOP GA

59

The initial chromosome is generated randomly as shown in procedure 1 (Figure

4.3). Each chromosome position is called a gene. Each gene will use the priority of

nodes in an assembly network. This encoding method easily verifies any permutation

of the encoding to correspond to the sequences, so that most existing genetic

operators can easily be applied to the encoding (Hwang et al., 2008).

Each chromosome is created by using the priority-based encoding method, and

then the priority-based decoding (Hwang et al., 2008) procedure 2 ensuring the use

of precedence relations to obtain feasible chromosomes (Figure 4.4). The priorities of

eligible nodes with the highest priority are placed into the task sequence (TS). So,

infeasible solutions violating the precedence constraints are not allowed.

Figure 4.3 Priority-based encoding procedures

Step 0: Input the priority number

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Step 1: Swapping two nodes randomly

1 2 3 4 5 6 7 8 9 10

6 2 3 4 5 1 7 8 9 10

Step 2: Output priority based-chromosome

1 2 3 4 5 6 7 8 9 10

6 5 3 4 9 1 10 8 7 2

Procedure 1: priority-based encoding (initial chromosome)
Input: number of tasks N

Output: chromosome)]([iv

begin
for 1i to N

);,1()(Niv 

for 1i to]2/[N

i random),1(N ;

k random),1(N ;

if ki  then

swap)};(),({ kviv

output the chromosome)]([iv

task ID i :

priority)(iv :

task ID i :

priority)(iv :

task ID i :

priority)(iv :

60

 Figure 4.4 Priority-based decoding procedures

 Figure 4.5 An example output of priority-based encoding method

 Figure 4.6 Combined precedence diagram (Kara et al., 2007a)

Procedure 2: priority-based decoding
Input: number of tasks N , chromosome (.)v , the set of task nodes

Output: task sequence TS
Begin



N , TS ;

0N , 0i ;

while)(Ni  do

)(isucN 


;

)(ipreN 


;

}|)(max{arg


  Niivi ;


 NN \ i ;

 iTSTS ;

 ii ;
end
output task sequence TS

10

9

8

7

6

5

4

3 2 1

1 2 3 4 5 6 7 8 9 10
6 5 3 4 9 1 10 8 7 2

task ID i :
priority)(iv :

61

In this encoding method, the position of a gene is used to represent a task node,

and the value of the gene is used to represent the priority of the task node for

constructing a task sequence among candidates. An example output of this encoding

method is given in Figure 4.5. Then, the generated chromosomes are converted to the

feasible task sequences by using priority-based decoding method. In Figure 4.6, the

nodes eligible to be assigned to the first position of task sequence are 1, 2, 3, 8 and

10. The priorities of nodes are 6, 5, 3, 8 and 2 respectively, so the task 8 having the

highest priority is placed into the task sequenceTS . For the second position the

possible nodes are 1, 2, 3 and 10 which have priorities 6, 5, 3 and 2 respectively. So,

task 1 is placed next into the task sequenceTS . These steps are repeated until we

obtain a complete task sequence TS = {8, 1, 2, 4, 5, 3, 10, 9, 7, 6}, and these

procedures continue as long as the initial population is generated.

 4.3.4.2 Selected Selection Scheme

Roulette wheel selection scheme (Holland, 1975) is used, which is a method for

reproducing a new generation proportional to the fitness of each individual. In this

procedure, the fitness values of the members scales within the population so that the

sum of the rescaled fitness values equals to 1. To select a parent, a uniform random

number within the interval (0, 1) is generated firstly (wheel is spun), and then the

member whose cumulative rescaled fitness value is greater than the generated

number is selected as parent.

 4.3.4.3 Selected Genetic Operators

There are two kinds of genetic operators, i.e., crossover and mutation. Crossover

is the operation by which two individuals in the current population create offspring

for the next population. Mutation operator is used to change randomly the value of

single genes within chromosomes. We used weight mapping crossover (WMX)

(Hwang et al. 2006) and swap mutation.

62

parent 1:

parent 2:

offspring 1:

offspring 2:

4.3.4.3.1 Crossover Operator. Here the position-based crossover operator can be

viewed as a two-point crossover of a real number string by weight mapping

crossover (WMX) that we used and a remapping by order of different real number

strings is shown in Figure 4.7 (Hwang et al. 2006).

Step0: select the substring at random

6 5 3 4 9 1 10 8 7 2

7 1 5 4 10 8 9 3 6 2

 Step1: determine mapping relationship

 Step2: legalize offspring with mapping relationship

 Figure 4.7 Two point-based weight mapping crossover (WMX)

4.3.4.3.2 Mutation Operator. We used the swap mutation operator, in which two

positions are selected randomly, and their contents are swapped (see Figure 4.8).

6 5 3 4 9 8 10 1 7 2

6 5 7 4 9 8 10 1 3 2

 Figure 4.8 Swap mutation operator

 4 1 2 3

1 10 8 7 1 10 8 7
 2 1 4 3
8 9 3 6 8 9 3 6

2 1 4 3

8 10 1 7
4 1 2 3
3 9 8 6

6 5 3 4 9 8 10 1 7 2

7 1 5 4 10 3 9 8 6 2

63

 4.3.4.4 Selected Survival Scheme

Survival is an essential process in GAs that removes individuals with a low fitness

and drives the population towards better solutions. The transfer of the best solution

of the previous population to the next one is carried out for continuous survival of the

best solution.

 4.3.4.5 Selected Termination Criteria

The genetic algorithm stops when the specified numbers of generations have

evolved (maxGN).

4.3.5 The Proposed Simulated Annealing Algorithm Based Fitness Evaluation

Approach

In general, the assignment of tasks to workstations benefits from a single-pass

decision rule procedure using a feasible task sequence as a basis. Tasks are listed in a

sequence, and then an attempt is made for assigning them to workstations in that

sequence (Hwang and Katamaya 2009). If total time of the tasks previously assigned

to a workstation and new task to be assigned is smaller than cycle time or equal to

cycle time, the said task can be assigned to this station. When the cycle time is

exceeded, a new workstation can be opened and this new task is assigned to the new

workstation. This procedure continues until the assignment of all tasks in task

sequence to workstation is completed.

This simple procedure is not valid for being able to solve mixed-model U-lines

under varying model sequence. Because u-shaped lines may include both traditional

and crossover workstations as a general characteristic, it cannot be known which task

will take which model time.

In order to optimize a certain performance measure, it is also very difficult to

make these assignments by considering all different cases that can be formed under

64

fixed model sequence and fixed number of stations only if at least one task is

assigned to each workstation. Especially, as the number of tasks increases, the

number of cases that must be taken into consideration increases exponentially.

Furthermore, none of these different cases may give a feasible solution.

Suppose that we will assign a feasible task sequence (TS={1,8,2,3,4,6,5,7})

obtained from the precedence diagram in Figure 4.9 and consisting of 8 tasks (N=8)

to 3 stations (K=3). Twenty-one ())1,1(( KNC different cases are formed in a

manner that at least one task will be assigned to each station. In order to optimize

the desired performance measure, we must take each of these different cases into

consideration. Cases to be evaluated for this example are presented in Table 4.1.

 Figure 4.9 Precedence diagram

Table 4.1 Cases to be evaluated for being able to assign the tasks in feasible task sequence
in the example to 3 stations

C. No Combinations C. No Combinations
1 1 | 8 | 2 3 4 6 5 7 12 1 8 2 | 3 | 4 6 5 7
2 1 | 8 2 | 3 4 6 5 7 13 1 8 2 | 3 4 | 6 5 7
3 1 | 8 2 3 | 4 6 5 7 14 1 8 2 | 3 4 6 | 5 7
4 1 | 8 2 3 4 | 6 5 7 15 1 8 2 | 3 4 6 5 | 7
5 1 | 8 2 3 4 6 | 5 7 16 1 8 2 3 | 4 | 6 5 7
6 1 | 8 2 3 4 6 5 | 7 17 1 8 2 3 | 4 6 | 5 7
7 1 8 | 2 | 3 4 6 5 7 18 1 8 2 3 | 4 6 5 | 7
8 1 8 | 2 3 | 4 6 5 7 19 1 8 2 3 4 | 6 | 5 7
9 1 8 | 2 3 4 | 6 5 7 20 1 8 2 3 4 | 6 5 | 7
10 1 8 | 2 3 4 6 | 5 7 21 1 8 2 3 4 6 | 5 | 7
11 1 8 | 2 3 4 6 5 | 7

1

4

3

2

7

5 6

8

65

Suppose that 2 models processed in U-line are with MPS={2,1} and the cycle

time is 12. Task times of the models are as shown in Table 4.2. If we assess the

cases 10 and 16 in Table 4.1 by taking AAB as model sequence constant;

Table 4.2 Task times for two models
Task Model A Model B

1 5 3
2 1 5
3 6 0
4 0 1
5 2 6
6 0 4
7 4 2
8 3 5

 Figure 4.10 U-line structure of the case 10

Table 4.3 Workloads of workstations for the case 10
Workstation 1 2 3

Tasks assigned {front}, {back} {1}, {8} {2, 3, 4}, {6} {5, 7}, { }

Models processed [front, back] A, A B, A A, B A, A A, B B, A A A B
Total workload 8 6 10 7 11 6 6 6 8

 U-line configuration structure of the case 10 and workloads of the workstations

are shown in Figure 4.10 and Table 4.3 respectively. As it can be seen, the workload

of any station for the case 10 did not exceed the cycle time.

66

 If we consider the case 16, as shown in Table 4.4, 1st workstation exceeded the

cycle time at all cycles (15,15,13). U-line configuration structure of the case 16 is

shown in Figure 4.11.

 Figure 4.11 U-line structure of the case 16

Table 4.4 Workloads of workstations for the case 16
Workstation 1 2 3

Tasks assigned {front}, {back} {1, 2, 3}, {8} {4}, { } {6, 5, 7}, { }

Models processed [front, back] A, A A, A B, B B A A A B A
Total workload 15 15 13 1 0 0 6 12 6

 If noticed, the number of the zones processed for the case 10 (zones where the

tasks are processed in the line) is 5, and 4 for the case 16. We will call these zones as

model point. The appearance of the models processed at 1st cycle from the beginning

point of the line to the endpoint at model points will be {A,A,B,A,A} for the case 10,

and {A,B,A,A} for the case 16. We will call these appearances formed at cycle k as

cycle sequence (rCS).

 The number of all cycles to be formed until the completion of the production of

all products (R) is equal to the length of the model sequence (MS). Because the

model sequence is 3 in the given example, so the number of cycles is 3.

 As mentioned before, the best line configuration can be obtained by considering

all cases under a fixed model sequence and the number of fixed stations. However,

67

there may also be cases where any feasible solution can not be found for desired

number of stations. For example, if the number of stations is taken as 1 for the above

mentioned example, there is only one case to be considered, and all tasks are

assigned to one station, but no feasible solution can be obtained.

 While evaluating a task sequence by a given minimum part set (MPS), if we

consider all different model sequences to be formed rather than under a fixed model

sequence assumption, the permutation














  
)!!...!(

)!(

21

1

M

M
m m

ddd

d
 is formed. In this given

example, there are 3 permutations to be formed (3!/2!1!) because MPS={2,1}. If we

consider all model sequences that may be formed in order to optimize a certain

performance,

))1,1(( KNC 














  
)!!...!(

)!(

21

1

M

M
m m

ddd

d

different cases are formed that we must consider for evaluating a tasks sequence

under the number of fixed stations.

 In case where model sequence is not accepted as fixed at MMULs, a procedure

that calculate a lower bound has not be developed yet. Therefore, the number of

stations must be increased one by one beginning from the station number one until

the feasible solution is found in order to find minimum station number (type 1) and

all obtained cases must be assessed (including number of stations giving the feasible

solution). In this case, the number of all cases that must be evaluated for N pieces of

tasks until finding a feasible solution (including the station giving the feasible

solution) in a given task sequence (under variable model sequence assumption) is

given at following equation:

))1,1(...)1,1()0,1(( KNCNCNC 














  
)!!...!(

)!(

21

1

M

M
m m

ddd

d

68

As it is seen, evaluation of all cases to be formed for only one task sequence is a

difficult and very time consuming work, and shows NP-hard structure.

 As indicated by Jin et al. (2002), one essential difficulty in employing

evolutionary algorithms in some applications is the huge time consumption due to

the high complexity of performance analyses for fitness evaluation and the large

number of evaluations needed in the evolutionary optimization. Various efficiency-

enhancement techniques have been developed in order to facilitate the solution of

large-scale complex problems, and further enhance the performance of GAs. One

such class of efficiency-enhancement technique is called evaluation relaxation. In

evaluation relaxation, an accurate, but computationally expensive fitness evaluation

is replaced with a less accurate, but computationally inexpensive fitness estimate

(Goldberg, 2002).

 In this thesis, simulated annealing based fitness evaluation approach is developed

in order to facilitate fitness function calculation in PGA and to perform it in an

effective manner. Simulated annealing algorithm is chosen, among other meta-

heuristics, mainly because of its flexibility to respond to modifications in the

objective functions or in the problem constraints. When these changes occur, the

basic simulated annealing program remains unchanged. In addition, the ALBP

solutions and neighborhood structures can be easily defined by using simulated

annealing.

Kara et al. (2007a) developed a neighborhood generation mechanism by

changing the model sequence or the line balancing. In this study, we modified this

neighborhood generation mechanism. Our modified neighborhood generation

mechanism can make station assignments by randomly dividing the task in a manner

at least one task will be assigned to each station under a certain number of stations

or change the model sequence. We inserted this modified neighborhood generation

mechanism into our simulated annealing algorithm based fitness evaluation

approach.

69

The proposed SA-based approach is described by the following steps:

Step0. Specify the problem parameters (SA algorithm parameters

(0T , cryT , q , IT), a task sequence (TS) from GA and a feasible model

sequence (0MS)); Set cE =a very high value, bestE =a very high value,

0con , K =a user-defined station number. Then, go to Step 1.

Step1. Generate an initial line balance (0LB) by using the line balancing

procedure (see Chapter 4.3.5.1) with the current K ; Set 0TTC  ,

1n , 0LBLBc  and 0MSMSc  . Then, go to Step 2.

Step2. Generate a neighbor (a new nLB or nMS can be generated

changing cLB or cMS) by using the neighborhood generating procedure

(see Chapter 4.3.5.2) and go to Step 3.

Step3. Check the workstations time feasibility (The each station time at each

cycle is checked with generated combination of nLB , nMS and the given

cycle time (C)) by using the checking feasibility of workstation time

procedure (see Chapter 4.3.5.3) and then, assign 1f to feasible case

and 0f to infeasible case. Then, go to Step 4.

Step4. If f equal to 1, then go to Step 5. Otherwise; go to Step 9.

Step5. Set; 1 concon . Calculate; the cost of this neighbor solution (nE) and

then calculate the difference between the cost of neighbor solution (nE)

and the cost of current solution (cE) by the following equation:

cn EE  and then, go to Step 6.

Step6. If   0, then accept the sequence (nMS) as a new sequence (cMS), set

cE = nE , nc LBLB  , nc MSMS  and then, go to Step 7. Otherwise; go

to Step 8.

Step7. If cE < bestE ;set cbest EE  , cbest LBLB  , cbest MSMS  . Otherwise;

bestE , bestLB and bestMS are not change. Go to Step 9.

70

Step8. If  > 0, then accept the neighbor solution as the current solution with

the probability of)/exp(cT and set cbest EE  , cbest LBLB  ,

cbest MSMS  . Otherwise; cE , cLB , cMS are not change. Then, go to

Step 9.

Step9. If ITn  , then g o to Step 10. Otherwise; set 1 nn and go to Step 2.

Step10. Set; qTT cc  , 1n and then go to Step 11.

Step11. If cryc TT  , then go to Step 2. Otherwise; go to Step 12.

Step12. If 1con , then Stop. Otherwise; set 1 KK and go to Step 1.

The flowchart of the proposed SA-based fitness evaluation approach is given in

Figure 4.12.

Developed simulated annealing algorithm based fitness evaluation approach uses

user defined station number, a feasible model sequence given by user (0MS -initial

model sequence), and SA algorithm parameters (cryT , 0T , q , IT) suitable for the

problem. At the beginning, a high value is assigned to the current cost function

(cE =a very high value), a high value for the best cost function (bestE =a very high

value), and the value zero (0con) to the variable con which is used for controlling

whether a feasible solution is found under current station number of the algorithm.

Initial solution for line balancing (0LB) is generated by using line balancing part of

the modified neighborhood generation mechanism (with the current number of

stations). This line balancing and feasible model sequence given by user form

current line configuration (0LBLBc  and 0MSMSc ). Current temperature is

equalized to initial temperature (0TTC ), and iteration number at length of each

temperature level is equalized to 1 (1n). Feasible solution is sought after the

assignments of the said variable and parameter by generating new neighborhoods

from the current line configuration (cLB and cMS) for the addressed task sequence

(TS). New neighborhoods generated for line balancing are generated depending on

the probability 1p . New neighborhoods formed for line balancing (nLB) are

generated randomly completely independently from the current line balancing,

71

Y

Figure 4.12 Flow-chart of the proposed SA-based fitness evaluation approach

START

Input SA parameters (0T , cryT ,

q , IT), a task sequence (TS)

and a feasible model sequence
(0MS)

Set cE = a very large positive

integer, bestE = a very large

positive integer, 0con and

K = a user-defined value

Generate initial line balance
(0LB) by using the line balancing

procedure with the current K ; set

0TTC  , 1n , 0LBcLB  and

0MScMS 

Generate a new neighbor (a new

nLB or nMS can be generated)

by using the neighborhood
generating procedure (new
neighbor is generated from cLB

or cMS)

Check the workstations time
feasibility by using the checking
feasibility of workstation time
procedure (Assign 1f for

feasible case and 0f for

infeasible case.)

1f

Set 1 concon ,
calculate nE ,

calculate cEnE 

0

Set nEcE  ,

nLBcLB  ,
nMScMS 

bestEcE 

Set cEbestE  ,

cLBbestLB  ,

cMSbestMS 

ITn 

Set 1 nn

Set qTT cc  ,
1n

cryTcT 

1con

Generate rnd from
)1,0.(.du

)/(cTernd 

STOP

Set 1 KK

N

N

N

Y

Y

Y

Y

Y

Y

N

N

N

N

72

depending on the current number of stations, and in a manner at least one task will be

assigned to each station. New neighborhoods for model sequencing are generated

depending on the probability (11 p). New neighborhoods for model sequencing

(nMS) are generated by swapping (depending on the probability 2p) or inserting

(depending on the probability (21 p)) by depending on the current model sequence

(cMS). Iteration as much as the length of each temperature level (IT) is carried out

at each energy level (qTT cc ) until initial temperature (0T) reaches at

crystallization temperature (cryT). As a result, if a feasible solution is found in the

system (1,1  conf), the algorithm continues searching solution until termination

conditions of the algorithm are ensured. Cost functions (nE) of obtained new

feasible solutions are calculated by our proposed fitness function. Depending either

on the fact that the cost function of the new solution is lesser or the probability of

accepting bad results (metropolis criterion); cE , cLB and cMS are updated. After

the termination of the algorithm, the solution giving the minimum cost function

(bestE) is the solution giving the best line balancing (bestLB) and model sequencing

(bestMS) configuration. If feasible solution (0f) cannot be found, the number

station is increased by one (1 KK) and these processes continue until the

feasible solution is found by updating simulated annealing algorithm parameters with

initial parameters. Therefore, it may start and stop more than once.

 4.3.5.1 Initial Solution (0LB - 0MS)

The initial solution for the proposed SA based algorithm contains solutions for

two problems: MMUL/LB and MMUL/MS. The combination of these solutions

provides an initial solution to MMUL/BS problem. So, the proposed SA based

algorithm is adopted to generate initial solution (0LB), randomly, for MMUL/LB by

using a procedure which will be discussed in Chapter 4.3.5.2.1, and a user defined

feasible model sequence (0MS) is used as an initial solution for MMUL/BS.

73

Swap Insert

 4.3.5.2 Neighboring Solutions (nLB - nMS)

We modified the neighborhood generation logic developed by Kara et al. (2007a)

in a manner corresponding to our problem characteristic. A neighbor solution can be

either a new line balancing or a new model sequence. New line balancing solution is

randomly generated depending on current number of stations (K) and consists of

three successive phases. A new model sequence is generated by changing the

positions of models in the model sequence.

The modified neighborhood generation logic enables us to consider the line

balancing and model sequencing problems of mixed-model U-lines simultaneously

as shown in Figure 4.13.

 Generate two random number (1p , 2p) from)1,0.(.du

 Line Balancing Sequencing

 segmentation of the task sequence

 identifying the indexes of stations

 identifying the indexes of model points

 Figure 4.13 Neighborhood generation mechanism of the proposed SA

 Initially, two random numbers (1p , 2p) are specified to determine the type of the

new neighbor solution.

4.3.5.2.1 Line Balancing (LBn). Line balancing neighborhood is generated

depending on the probability 1p and consists of three successive phases.

 First of all, task sequence is randomly divided into segments as much as

the number of stations (K) in a manner at least one task will be assigned to

2p

11 p 1p

21 p

74

each station, and each length of segment is placed in the list that we will

call as assignment list (AL) in sequence.

Division of the task sequence (TS) to segments and formation of assignment list

(AL) is shown in following procedure step-by-step.

Input: a feasible task sequence, number of tasks (N), number of stations (K)

Output: assignment list (AL)

Step0. Set;)]1([ KNu , 1z , 1I and then, go to Step 1.

Step1. If I not equal to K , then go to Step 2. Otherwise; go to Step 3.

Step2. Generate a random number between z and u. Set;

)(IAL =)]1(),([ zuzrnd ,)(IALzz  , 1 uu , 1 II

 and then, go to Step 1.

Step3. Set;)]1([)( zuIAL and then, Stop.

For example, let a feasible task sequence obtained by using priority based

decoding procedure from precedence diagram consisting of 10 tasks in Figure 4.6 be

}8,7,6,5,9,2,3,10,4,1{TS , and suppose that the tasks in this task sequence will be

assigned to 4 stations. Because the task sequence length is 10 and at least one task

must be assigned to each workstation, a number between 1 and 7 is randomly

generated, and suppose that generated random number is 3. This shows that the tasks

in this segment will be at the same station and placed in the assignment list,

}3{AL . Because of the fact that remaining number of stations is 3 for carrying out

segmentation, a random number is generated between 4 and 8 in order to form next

segment. Suppose that generated random number is 6. Due to the fact that the stand

point of its previous segment is 3, the difference between generated number and the

length of previous segment is assigned for this segment (6-3). This segment is also

placed in this assignment list, }3,3{AL . Now, because the remaining number of

stations for making segmentation is 2, a random number is generated between 7 and

9. Suppose that generated random number is 8. Again this segment is placed in this

assignment list according to stand point of the previous segment in task sequence,

75

}2,3,3{AL . Finally, because of the fact that remaining number of stations is 1,

remaining tasks (two tasks) in task sequence are placed for the last segment in the

assignment list }2,2,3,3{AL . The output of this procedure is shown in Figure 4.14.

 Figure 4.14 The output of the example for dividing into segments

 And then, precedence relations of the tasks forming each segment in the

assignment list are controlled, and which station index ()SI will be taken

is determined. Station indexes start from 1 in a manner not breaking

process flow of the tasks and are as much as current station number. These

station indexes are placed respectively in the list to be called as station

index sequence (AIS).

Determination of station index numbers of the tasks divided into segments ()SI

and placement of these indexes to station index sequence (AIS) are shown step-by-

step in the following procedure.

Input: assignment list ((.)AL) from previous phase, task sequence ((.)TS),

number of tasks (N), number of stations (K), the set of task nodes, and an empty

precedence control list ()CPR

Output: station index sequence (AIS)

Step0. Set 1SI (index) and go to Step 1.

Step1. Set 1z , 1I and go to Step 2.

 Step2. Set 



I

i

iALu
1

)(and go to Step 3.

 Step3. for (zj  to u ; 1 jj){

 ;0control

 3 3 2 2

Stand points 1 2 3 4 5 6 7 8 9 10

Task sequence 1 4 10 3 2 9 5 6 7 8

76

 if (CPR contains)(jTSIP){

 ;1control

 for (zi  to u ; 1 ii){

 Set SIiAIS )(;

 Set)()(iTSiCPR  ;

 }end for.

 Set 1 SISI ;

 if ((1SI) equal to K) Stop.

 } end if.

 if (control equal to 1){

 Go to Step 4 (break).

 } end if.

 } end for. Then, go to Step 4

Step4. if u is not equal to N , set 



I

i

iALz
1

1)(, 1 II , and then go to Step

 2. Otherwise; go to Step 1.

For example; let’s determine which station indexes will be possessed by tasks in

task sequence (}8,7,6,5,9,2,3,10,4,1{TS) corresponding to the segments in

assignment list (}2,2,3,3{AL) obtained from abovementioned example.

 Tasks corresponding to the first segment are 1, 4 and 10. As seen from the

precedence diagram in Figure 4.6, immediate predecessors of these tasks are

1IP ={}, 4IP = }1{ and 10IP = }9{ , respectively. Because there is no task to be

performed before Task 1, all tasks in this segment take the index numbered 1(1SI)

and they are placed in station index sequence (}1,1,1{AIS). Tasks numbered 3, 2

and 9 take place in the second segment. Immediate predecessors of these tasks are

3IP ={}, 2IP ={} and 9IP = }7,3{ , respectively. Because there is no task to be

performed before Task 2 and 3, all tasks of that segment take the subsequent station

index and are placed in the station index sequence (}2,2,2,1,1,1{AIS). Tasks

77

numbered 5 and 6 whose immediate predecessors are 5IP = }4{ , 6IP = }5,2{ take place

in the third segment. Because the tasks that must be performed immediately before

these tasks have previously taken their station indexes, these tasks numbered 5 and 6

in queue take the station index numbered 3 (3SI) and are placed in station index

sequence list (}3,3,2,2,2,1,1,1{AIS). Finally, immediate predecessors of the tasks

numbered 7 and 8 taking place in the fourth segment are 7IP = }6{ , 8IP = }7{ ,

respectively. Because task numbered 6 has previously taken station index, these tasks

(7 and 8) takes the station index numbered 4 (4SI) and are placed in station index

sequence list (}4,4,3,3,2,2,2,1,1,1{AIS). The output of this procedure is shown in

Figure 4.15.

TS 1 4 10 3 2 9 5 6 7 8

SI 1 1 1 2 2 2 3 3 4 4

 Figure 4.15 The output of the example of
 station index determination

 Finally, model point indexes (MP) are detected by considering

precedence relationship among tasks in order to determine which model

time will be taken by tasks whose station indexes are set, and these model

point indexes are placed respectively in the list that we will call model

point index sequence (MIS). As already mentioned before, once all tasks

take their model point indexes, maximum model point index becomes

equal to the length of cycle sequence.

Determination of which model point index will be taken by tasks whose station

indexes ()SI are set, and placement of these determined indexes to the list of model

point index sequence (MIS) are shown step-by-step in following procedure.

Input: number of tasks (N), number of workstations (K), assignment list

((.)AL) from first phase, station index sequence ((.)AIS) from second phase, task

sequence ((.)TS) (the same task sequence with previous phase), and an empty

precedence control list ()CPR

78

Output: Model index sequence (MIS)

Step0. Set 1MP (index), 1z , 1I and then go to Step 1.

Step1. Set 



I

i

iALu
1

)(. Then, go to Step 2.

Step2. For (zi  to u ; 1 ii){

 Set)()(iTSiCPR  ;

 }end for. Then, go to Step 3.

Step3. Set 0control ;

 for (zi  to u ; 1 ii){

 if (CPR contains)(iTSIP){

 Set 1control ;

 Set MPiMIS )(;

 } end if.

 }end for. Then, go to Step 4.

Step4. if (control equal to 1){

 Set 1 MPMP

 }end if.

if all location of MIP have indexes of model points (MP) Stop;

Otherwise go to Step 5.

Step5. Set 



I

i

iALz
1

1)(, 1 II . if z bigger than N and then go to Step 6.

 Otherwise; go to Step 1.

Step6. Set 1 KI and then, go to Step 7.

Step7. Set 



I

i

iALu
1

)(. If I not equal to 1 then, set 





1

1

1)(
I

i

iALz .

 Otherwise; set 1z and go to Step 8.

Step8. Set 0control ;

 for (ui  to z ; 1 ii){

 if)(iMIS has not any index of model point (MP){

 Set MPiMIS )(

 Set 1control ;

79

 }end if.

 }end for. Then, go to Step 9.

Step9. If control equal to 1 then, set 1 MPMP and go to Step 10.

 Otherwise; go to Step 10.

Step10. Set 1 II . If I is equal to 0 Stop. Otherwise; go to Step 7.

 Let’s determine which model point index (MP) will be possessed by tasks whose

station indexes are determined (}4,4,3,3,2,2,2,1,1,1{AIS) and see how these are

transferred to the model point index sequence by continuing the example explained

in previous procedure.

 Tasks assigned to the station having station index numbered 1 are 1, 4 and 10; and

immediate predecessors of these tasks are 1IP ={}, 4IP = }1{ and 10IP = }9{ ,

respectively. Because there is no task in the precedence of the task numbered 1, the

model point index numbered 1 (1MP) is assigned to the task numbered 1 (to the

said task), }1{MIS . Because the task numbered 4 is at the same station with the

task numbered 1, and the task numbered 1 takes place in immediate predecessor of

the task numbered 4, the task numbered 4 also takes the model point index numbered

1 (1MP), }1,1{MIS . Due to the fact that a model point index is not assigned yet

to the task numbered 9 in immediate predecessor of the task numbered 10, a model

point index cannot be assigned now to the task numbered 10, },1,1{ MIS . It is

understood from this situation that this station is a crossover station. After having

evaluated model point indexes of all of the remaining tasks in task sequence order,

the tasks in task sequence are re-evaluated from back to front for the tasks whose

model point indexes are not assigned. The model point index is increased by

one, 2MP , and we pass to the segment having next station index, 2SI . Tasks

assigned to the station having the station index numbered 2 are 3, 2 and 9;

and immediate predecessors of these tasks are 3IP ={}, 2IP ={}, and

9IP = }7,3{ respectively. Because there is no task in the precedence of the task

numbered 3 and 2, the model point index of the tasks numbered 3 and 2 is assigned

as 2 (2MP), }2,2,,1,1{ MIS . Because the tasks in immediate predecessor of the

80

task numbered 9 are task 3 and 7, and task 3 is already at the same station, it does not

hinder the assignment of the model point index for the task numbered 9, however, a

model point index cannot be assigned now to task numbered 9 because a model point

index is not assigned previously to the task numbered 7, },2,2,,1,1{ MIS . This

station is also a crossover station. Model point index is increased by one, 3MP ,

and we pass to the station having the next station index, 3SI . Tasks assigned to

the station having the station index numbered 3 are 5 and 6, and immediate

predecessors of these tasks are 5IP = }4{ and 6IP = }5,2{ respectively. Because the

task numbered 4 in immediate predecessor of the task 5 has previously taken a model

point index, 3MP is assigned to the task 5, }3,,2,2,,1,1{ MIS . Because the

task 5 in immediate predecessor of the task 6 is at the same station, and a model

point index is also assigned to task 2 previously, 3MP is assigned to the task 6,

}3,3,,2,2,,1,1{ MIS . Model point index is increased by one, 4MP , and we

pass to the station having the next station index, 4SI . Tasks assigned to the station

having the station index numbered 4 are 7 and 8, and immediate predecessors of

these tasks are 7IP = }6{ and 8IP = }7{ respectively. Because a model point index is

previously assigned to the task 6 in immediate precedence of the task 7 and they are

at the same station with the task 7 in immediate precedence of the task 8, 4MP is

assigned to these two tasks, }4,4,3,3,,2,2,,1,1{ MIS . Model point index is

increased by one, 5MP . All tasks in the task sequence were evaluated; however, a

model point index could not be assigned yet to tasks 10 and 9. Therefore, the tasks

whose station indexes are determined in the task sequence are re-evaluated from the

station having the last station index until the station having the station index

numbered 1. All of the tasks assigned to the station having the station index

numbered 4 and 3 have a model point index. The model point index of the tasks

numbered 9 assigned to the station having the station index numbered 2 is not

assigned yet. The task 3 is assigned to the same station and a model point index is

also assigned to the task 7 previously in immediate precedence of the task 9, so

5MP is assigned to the task 9, }4,4,3,3,5,2,2,,1,1{ MIS . Model point index is

increased by one, 6MP , and we pass to the station having the station index

numbered 1. At this station, because a model point index is just assigned to the task

81

9 in immediate precedence of the task 10 whose model point index is not assigned,

6MP is assigned to the task 10, }4,4,3,3,5,2,2,6,1,1{MIS . Thus, all tasks have

taken their model point indexes. At the end of this procedure, which tasks will be

processed at which zone of the assembly line will have been determined. The output

of the end of the application of this procedure to the example is as in Figure 4.16.

TS 1 4 10 3 2 9 5 6 7 8

AIS 1 1 1 2 2 2 3 3 4 4

MIS 1 1 6 2 2 5 3 3 4 4

 Figure 4.16 The output of the example of
 the determination of model point indexes

This line balancing solution (see output of the example) contains six model point

indexes (maximum MP of MIS) and four workstations (maximum SI of AIS) .

The production process must follow these model point indexes of locations from 1 to

the last index so as to provide precedence constrains. These indexes for this line

balance configuration are shown in Figure 4.17.

 Figure 4.17 Indexes of model points

 As mentioned before, rCS represents the cycle sequence at the cycle r . The

length of each cycle sequence is equal to maximum MP of MIS . For example, if the

model sequence is selected as AABBC, the cycle sequences (rCS) which are proper

82

according to these model points can be seen in Table 4.5. Cycle sequences will be

used for controlling whether line configuration solutions are feasible or not.

Table 4.5 Cycle sequences

 MP
 rCS 1 2 3 4 5 6

1CS A C B B A A

2CS A A C B B A

3CS B A A C B B

4CS B B A A C B

5CS C B B A A C

4.3.5.2.2 Sequencing (MSn). A new model sequence is generated using swapping

or inserting.

 Swap: A new model sequence generated by swapping two randomly

selected models in the model sequence with the probability of)1(1p

 2p . Note that these models should be different.

 Insert: A new model sequence generated by inserting a randomly selected

model before another randomly selected model with the probability of

)1(1p )1(2p .

 4.3.5.3 Checking Feasibility of Workstation Times

Every station time in each cycle will be checked with regard to following

procedure and the proposed algorithm keeps running by taking into consideration if

the solution is feasible (f=1) or not (f=0).

1f ; (feasible)

for (1k to K (for all workstations); 1 kk){
 for (1r to R (for all cycles); 1 rr){
 krW =0;(initially, workload of the workstation k at the cycle r is equal to zero)

 for (1i to N (for all tasks); 1 ii){
if))()((kk XBXFiTS  {

)(iMISMP  ;

83

krW = krW +)()(MPCSiTS r
t ;

if (krW >C){(workload of workstation k at the cycle r can not

exceed the cycle time)
0f ; (infeasible)

Stop.
}end if.

}end if.
}end for.

 }end for.
}end for.

Output of this procedure 1f (feasible) or 0f (unfeasible).

4.3.6 Identifying Efficient Control Parameters

 In this section, a comprehensive experiment is conducted to evaluate the

performance of proposed algorithm. The performance of proposed algorithm may

vary according to some problem factors. The parameters of the proposed algorithm

can be classified into two categories. These are Genetic Algorithm’s control

parameters and proposed SA-based fitness evaluation approach’s control parameters.

Each control parameter varied at two levels (low and high).

Genetic Algorithm’s Control Parameters:

 The population size (PS): 60-200,

 The crossover rate (RC): 0.50-0.95,

 The mutation rate (RM): 0.005-0.20,

 Maximum number of generations (maxGN): 50-200.

Simulated Annealing Algorithm’s Control Parameters:

 The cooling rate (q): 0.70-0.95,

 The probability of new line balancing(1p) : 0.55-0.90,

 The initial temperature (0T): 20-100.

84

Some parameters of the proposed algorithms are fixed to following statements:

 The minimum part set (MPS) is fixed to: {3,2,1},

 The length of the each temperature level (IT) is fixed to: 2,

 The crystallization temperature (cryT) is fixed to: 1, and

 The probability of new sequencing (2p) is fixed to: 0.5.

To identify the efficient control parameters, we employed statistical design of

experiments (DOE) approach (Montgomery and Runger, 2005). DOE is a well-

regarded investigative method both for its effectiveness and its efficiency in

evaluating the effect of multiple factors upon a process. Thomopoulos19 problem

(Thomopoulos, 1970) was chosen as the example for identifying the effect of

different control parameters.

We conducted the 272  fractional factorial design to analyze how much proposed

algorithm’s parameters interrelated with each other. The 272  fractional factorial

experimental layout was used for carrying out the experiments (see Table 4.6).

At each parameter setting, we performed multiple runs, i.e., 5 runs to determine

the variation in the results. As a result, a total of (32*5) 160 runs were carried out.

The proposed algorithm was coded in Matlab 7.6.0 and run on a 3.00 GHz Pentium 4

computer. Minitab 14 statistical package was used for analyzing the data.

85

Table 4.6 The 272  fractional factorial design

Experiment
no PS RC RM q 1p 0T maxGN

1 (-) 60 (-) 0.50 (-) 0.005 (-) 0.70 (-) 0.55 (+) 100 (+) 200
2 (+) 200 (-) 0.50 (-) 0.005 (-) 0.70 (-) 0.55 (-) 20 (-) 50
3 (-) 60 (+) 0.95 (-) 0.005 (-) 0.70 (-) 0.55 (-) 20 (-) 50
4 (+) 200 (+) 0.95 (-) 0.005 (-) 0.70 (-) 0.55 (+) 100 (+) 200
5 (-) 60 (-) 0.50 (+) 0.20 (-) 0.70 (-) 0.55 (-) 20 (+) 200
6 (+) 200 (-) 0.50 (+) 0.20 (-) 0.70 (-) 0.55 (+) 100 (-) 50
7 (-) 60 (+) 0.95 (+) 0.20 (-) 0.70 (-) 0.55 (+) 100 (-) 50
8 (+) 200 (+) 0.95 (+) 0.20 (-) 0.70 (-) 0.55 (-) 20 (+) 200
9 (-) 60 (-) 0.50 (-) 0.005 (+) 0.95 (-) 0.55 (-) 20 (-) 50
10 (+) 200 (-) 0.50 (-) 0.005 (+) 0.95 (-) 0.55 (+) 100 (+) 200
11 (-) 60 (+) 0.95 (-) 0.005 (+) 0.95 (-) 0.55 (+) 100 (+) 200
12 (+) 200 (+) 0.95 (-) 0.005 (+) 0.95 (-) 0.55 (-) 20 (-) 50
13 (-) 60 (-) 0.50 (+) 0.20 (+) 0.95 (-) 0.55 (+) 100 (-) 50
14 (+) 200 (-) 0.50 (+) 0.20 (+) 0.95 (-) 0.55 (-) 20 (+) 200
15 (-) 60 (+) 0.95 (+) 0.20 (+) 0.95 (-) 0.55 (-) 20 (+) 200

 16 (+) 200 (+) 0.95 (+) 0.20 (+) 0.95 (-) 0.55 (+) 100 (-) 50
17 (-) 60 (-) 0.50 (-) 0.005 (-) 0.70 (+) 0.90 (+) 100 (-) 50
18 (+) 200 (-) 0.50 (-) 0.005 (-) 0.70 (+) 0.90 (-) 20 (+) 200
19 (-) 60 (+) 0.95 (-) 0.005 (-) 0.70 (+) 0.90 (-) 20 (+) 200
20 (+) 200 (+) 0.95 (-) 0.005 (-) 0.70 (+) 0.90 (+) 100 (-) 50
21 (-) 60 (-) 0.50 (+) 0.20 (-) 0.70 (+) 0.90 (-) 20 (-) 50
22 (+) 200 (-) 0.50 (+) 0.20 (-) 0.70 (+) 0.90 (+) 100 (+) 200
23 (-) 60 (+) 0.95 (+) 0.20 (-) 0.70 (+) 0.90 (+) 100 (+) 200
24 (+) 200 (+) 0.95 (+) 0.20 (-) 0.70 (+) 0.90 (-) 20 (-) 50
25 (-) 60 (-) 0.50 (-) 0.005 (+) 0.95 (+) 0.90 (-) 20 (+) 200
26 (+) 200 (-) 0.50 (-) 0.005 (+) 0.95 (+) 0.90 (+) 100 (-) 50
27 (-) 60 (+) 0.95 (-) 0.005 (+) 0.95 (+) 0.90 (+) 100 (-) 50
28 (+) 200 (+) 0.95 (-) 0.005 (+) 0.95 (+) 0.90 (-) 20 (+) 200
29 (-) 60 (-) 0.50 (+) 0.20 (+) 0.95 (+) 0.90 (+) 100 (+) 200
30 (+) 200 (-) 0.50 (+) 0.20 (+) 0.95 (+) 0.90 (-) 20 (-) 50
31 (-) 60 (+) 0.95 (+) 0.20 (+) 0.95 (+) 0.90 (-) 20 (-) 50
32 (+) 200 (+) 0.95 (+) 0.20 (+) 0.95 (+) 0.90 (+) 100 (+) 200

Table 4.7 Analysis of variance for responses

Source DF Seq SS Adj SS Adj MS F P
Main Effects 7 7.7263 7.7263 1.10375 21.34 0.000
2-Way Interactions 18 2.1417 2.1417 0.11898 2.30 0.004
3-Way Interactions 6 0.1556 0.1556 0.02593 0.50 0.806
Residual Error 128 6.6192 6.6192 0.05171
Pure Error 128 6.6192 6.6192 0.05171
Total 159 16.6428

86

In order to determine which control parameter effects are significant, a statistical

analysis of variance (ANOVA) is conducted. Table 4.7 shows the results of

ANOVA, which indicates that each of the main effects is significant and some

interactions are also found to be significant for the proposed performance measure

(Z). Table 4.8 shows estimated effects and coefficients for responses.

Table 4.8 Estimated effects and coefficients for responses

Term Effect Coef SE Coef T P
Constant 3.3681 0.01798 187.35 0.000
PS -0.1635 -0.0818 0.01798 -4.55 0.000
RC -0.1027 -0.0513 0.01798 -2.86 0.005
RM -0.1184 -0.0592 0.01798 -3.29 0.001
q -0.1038 -0.0519 0.01798 -2.89 0.005
p1 -0.1036 -0.0518 0.01798 -2.88 0.005
T0 -0.2351 -0.1176 0.01798 -6.54 0.000
GN(max) -0.2550 -0.1275 0.01798 -7.09 0.000
PS*RC 0.0626 0.0313 0.01798 1.74 0.084
PS*RM -0.0176 -0.0088 0.01798 -0.49 0.626
PS*q 0.0066 0.0033 0.01798 0.18 0.856
PS*p1 0.0147 0.0074 0.01798 0.41 0.682
PS*T0 0.0642 0.0321 0.01798 1.79 0.077
PS*GN(max) 0.0530 0.0265 0.01798 1.47 0.143
RC*RM -0.0117 -0.0058 0.01798 -0.32 0.746
RC*q 0.0113 0.0056 0.01798 0.31 0.754
RC*p1 0.0422 0.0211 0.01798 1.17 0.243
RC*T0 0.0036 0.0018 0.01798 0.10 0.919
RC*GN(max) 0.0197 0.0098 0.01798 0.55 0.585
RM*q 0.0110 0.0055 0.01798 0.31 0.759
RM*p1 0.1324 0.0662 0.01798 3.68 0.000
RM*T0 0.0850 0.0425 0.01798 2.37 0.020
RM*GN(max) 0.0574 0.0287 0.01798 1.60 0.113
q*p1 -0.0244 -0.0122 0.01798 -0.68 0.499
q*T0 0.0983 0.0492 0.01798 2.74 0.007
q*GN(max) 0.0350 0.0175 0.01798 0.97 0.333
PS*RM*p1 -0.0139 -0.0069 0.01798 -0.39 0.701
PS*RM*GN(max) 0.0152 0.0076 0.01798 0.42 0.673
RC*RM*p1 0.0091 0.0045 0.01798 0.25 0.801
RC*RM*GN(max) 0.0038 0.0019 0.01798 0.10 0.917
RM*q*p1 -0.0576 -0.0288 0.01798 -1.60 0.112
RM*q*GN(max) -0.0072 -0.0036 0.01798 -0.20 0.843

S = 0.227404 R-Sq = 60.23% R-Sq(adj) = 50.60%

 Normal probability plot of the standardized effects and Pareto chart of the largest

30 effects are shown in Figure 4.18, Figure 4.19, respectively.

87

Standardized Effect

Pe
rc

en
t

5,02,50,0-2,5-5,0-7,5

99

95

90

80

70

60

50

40

30

20

10

5

1

F actor

q
E p1
F T0
G G N (max)

N ame
A P S
B RC
C RM
D

Effect Type
Not Significant
Significant

DF
CF

CE

G

F

E
D

C

B

A

 Figure 4.18 Normal probability plots of the standardized effects

Te
rm

Standardized Effect

BCG
AD

CDG
BCE
CD
BD
BC

ACE
AE

ACG
AC
BG
DE
DG
BE
AG
CG

CDE
AB
AF
CF
DF

B
E
D
C

CE
A
F
G

876543210

1,979
F actor

q
E p1
F T0
G GN(max)

Name
A PS
B RC
C RM
D

 Figure 4.19 Pareto charts of the standardized effects

In addition to analysis above, the following linear equation is estimated from the

results of the experiment:

Response = 3.37 - 0.0818* PS - 0.0513* RC - 0.0592* RM - 0.0519* q - 0.0518* 1p

-0.118* 0T - 0.128* maxGN

It is possible to estimate the response of the solution when the parameters of the

algorithm changed. For example, if the cooling rate is changed from 0.70 to 0.99, we

expect to have a better solution for all problems, and this situation is valid for the

other handled control parameters.

88

4.3.7 Numerical Illustration

To describe the characteristics of proposed solution method for the problem of

MMUL/BS, we used 10-task problem with three models (Kara et al., 2007a).

Combined precedence diagram relationships among tasks and task completion times

are given in Figure 4.20 and Table 4.9, respectively.

 Figure 4.20 Combined precedence diagram

Table 4.9 Task completion times for the example problem

Task Completion time

 A B C
1 5 4 5
2 2 0 7
3 2 6 5
4 4 0 2
5 0 6 6
6 4 1 5
7 9 4 0
8 3 7 5
9 0 6 5

10 3 7 1

Suppose the demand rates of products A, B, and C is 40, 40, and 20 units in a

planning period (P) of 1200 minutes (D ={40, 40, 20}). The greatest divisor (cd)

of vector D is 20. By dividing the elements of D by 20, MPS={2, 2, 1}. So, the

10

9

8

7

6

5

4

3 2 1

89

example line is running at a cycle (C) of 12 minutes/units (1200/(40+40+20)). The

initial model sequence (0MS) of the example U-line is selected as AABBC and, thus

the length of model sequence (R) is 5.

 As mentioned, each task sequence (TS) is evaluated for calculating their fitness

value by using the SA based fitness evaluation approach. SA based approach starts

with the proper SA algorithm parameters, a task sequence (TS), a feasible model

sequence (MS) and the user defined station number (K), at first. If the feasible

solution is not found, the value of (K) is increased by one. Then, the parameters of

SA algorithm are updated with initial parameters (cryT , 0T , q , IT). This case

continues whenever a feasible solution is found. After a feasible solution is found,

the algorithm will continue the search until the SA termination conditions are met.

The parameters that are used in the GA and SA based evaluation algorithm runs are

listed in Table 4.10.

Table 4.10 Selected control parameters
Parameters Value
Minimum part sets {2,2,1}
Initial number of workstation (K) 1
Population size 100
Number of generations 100
Crossover probability 0.95
Mutation probability 0.2
Initial temperature 100
Cooling rate 0.95
Length of the each temperature level 2
Crystallization temperature 1
Probability of p1 0.75
Probability of p2 0.5

90

Table 4.11 Step-by-step illustration of the solution process

 Stage 0: Evaluation of the initial population
Station

(k)
Task (i) }{ kXF , }{ kXB Idle time (krS) },...2,1{ Rr 

1 {1,3},{ } {2,2,5,5,2}

2 {2},{10} {4,5,5,7,7}
3 {4},{8} {1,3,9,9,3}
4 {5,6},{ } {8,8,1,5,5}

5 {7,9},{ } {2,3,3,7,2}

 :MS CBBAA; 1336.5Z
 Stage 1: Evaluation of the 1.generation

Station
(k)

Task (i) }{ kXF , }{ kXB Idle time (krS) },...2,1{ Rr 

1 {1,4},{10} {1,0,1,0,4}
2 {2,3},{9} {0,0,8,1,2}
3 {5,6},{ } {8,1,5,8,5}

4 {7,8},{ } {1,0,7,1,0}

 :MS BABAC; 8265.4Z
 Stage 10: Evaluation of the 10.generation

Station
(k)

Task (i) }{ kXF , }{ kXB Idle time (krS) },...2,1{ Rr 

1 {1,4},{10} {0,1,1,4,0}
2 {2,3},{9} {2,2,1,6,0}
3 {5,6},{ } {1,8,8,5,5}

4 {7,8},{ } {1,7,0,0,1}

 :MS ABBCA; 6196.4Z
 Stage 20: Evaluation of the 20.generation

Station
(k)

Task (i) }{ kXF , }{ kXB Idle time (krS) },...2,1{ Rr 

1 {2},{10} {7,7,4,5,5}
2 {1,3,4},{ } {2,1,1,0,2}

3 {5,6},{9} {5,0,2,2,1}
4 {7,8},{ } {7,1,1,0,0}

 :MS AACBB; 4910.4Z
 Stage 60: Evaluation of the 60.generation

Station
(k)

Task (i) }{ kXF , }{ kXB Idle time (krS) },...2,1{ Rr 

1 {1,3,4},{ } {0,1,2,1,2}

2 {5},{10} {5,3,5,3,5}
3 {2,6},{9} {6,5,0,0,6}
4 {7,8},{ } {1,0,1,7,0}

 :MS CABAB; 4587.4Z

91

Table 4.11 (cont) Step-by-step illustration of the solution process

 Stage 70: Evaluation of the 70.generation

Station
(k)

Task (i) }{ kXF , }{ kXB Idle time (krS) },...2,1{ Rr 

1 {1},{8} {5,0,5,0,2}
2 {4,5},{10} {1,3,1,5,1}
3 {2,6},{9} {0,0,6,6,5}
4 {3,7},{ } {2,7,1,2,1}

 :MS ABABC; 4271.4Z
 Stage 80: Evaluation of the 80.generation

Station
(k)

Task (i) }{ kXF , }{ kXB Idle time (krS) },...2,1{ Rr 

1 {1,3},{ } {5,2,2,5,2}

2 {4,5},{10} {3,1,5,1,1}
3 {2,6},{9} {0,6,6,5,0}
4 {7,8},{ } {7,0,1,0,1}

 :MS ABCAB; 4251.4Z
 Stage 100: Evaluation of the 100.generation

Station
(k)

Task (i) }{ kXF , }{ kXB Idle time (krS) },...2,1{ Rr 

1 {1,3},{ } {2,5,2,2,5}

2 {4,5},{10} {1,3,1,5,1}
3 {2,6},{9} {0,0,6,6,5}
4 {7,8},{ } {1,7,0,1,0}

 :MS BABCA; 4251.4Z

Table 4.11 illustrates some steps of the procedure applied to the numerical

example. A final MMUL/BS is shown in each of the small tables. To simplify the

schema, only the fitness function where reductions occurred is represented in the

proposed GA approach. The content of each column in these small tables is the

following: (1) workstation index, k , (2) set of tasks assigned to the workstations, and

(3) the idle time of the workstations at each cycle, krS . Given information under the

in each small table contains the best model sequence of the final line balance for the

evaluated generation, MS , and the best objective function for evaluated

generation, Z .

After the evaluation of initial population, a total of 5 workstation with Z=5.1336

is detected. Beginning this solution, the proposed heuristic approach is able to reduce

92

the objective function. The best solution found at the evaluation of the eightieth

generation a total of 4 workstation with Z=4.4251. The best model sequence of the

final line balance is found as BABCA. As shown in Table 4.11, there is no workload

exceeding the pre-determined cycle time for the final U-line balance of the evaluated

generation.

The final U-line balance that consists two of the workstations have tasks at both

sides of U-line, and the others have tasks at only one side of U-line. Final U-line

balance of the example is shown Figure 4.21. Model mixes of workstations for each

cycle of the final U-line balance are also given in Table 4.12.

 Figure 4.21 Final U-line balance of the example

Table 4.12 Model mixes of workstations for each cycle of the final U-line balance
Station

(k)
Model (m)

{ 1
kf },{ 1

kb }

Model (m)

{ 2
kf },{ 2

kb }

Model (m)

{ 3
kf },{ 3

kb }

Model (m)

{ 4
kf },{ 4

kb }

Model (m)

{ 5
kf },{ 5

kb }

1 {B},{ } {A},{ } {B},{ } {C},{ } {A},{ }
2 {A},{B} {B},{A} {A},{B} {B},{C} {C},{A}
3 {C},{A} {A},{B} {B},{C} {A},{A} {B},{B}
4 {B},{ } {C},{ } {A},{ } {B},{ } {A},{ }

ADW (absolute deviation of workload) was used for evaluating the workload

smoothness of MMULs by Sparling and Miltenburg (1998), Miltenburg (2002), Kara

et al. (2007a, 2007b) and Kim et al. (2000b, 2006). It is shown by the following

equation:

93

  
 K

k

R

r kr CWADW
1 1 min

 When ADW is used alone as performance measure, handled problem may give

more than one solution with the same fitness value, and line configurations of these

solutions with the same fitness values can be completely different from each other.

Therefore, it is not obvious that which of these solutions has more fitted line

configuration. This situation becomes more important when the number of task and

the number of products to be produced in the problem are increased. Our proposed

performance measure may be used as secondary goal in order to determine which

configuration is more stable when such situations are encountered.

 For example, although the ADW of the stage 70 and the stage 100 is the same with

each other (41.6) in numerical example in Table 4.11, their line configurations are

completely different. Again as it can be seen in Table 4.11, our proposed

performance measure ensures us to handle these problems from a different aspect

and help us to determine which solution has more balanced line configuration.

Note: MMUL/BS solution of the stage 70 is equal to final solution of the Kara et al.’s

(2007a) illustrative example.

4.3.8 Computational Experiments and Analysis

No comparable study dealing with the balancing and sequencing problems of

mixed-model U-lines in minimizing the number of workstations (Type I) exists in the

literature. Thus, to evaluate the performance of the proposed algorithm, we randomly

generated different numbers of MPS (see Table 4.13) for three sets of problems. The

number of tasks performed on real world U-lines varies between 1 and 24 with an

average value of 10.2 (Miltenburg 2001). At this juncture, the selected sets of

problems are 10-task with 3-model in Kara et al. (2007a), 19-task with 3-model in

Thomopoulos (1970) and 20-task with 5-model in Kara et al. (2007b). The

experiment is repeated 5 times for every test problem by taking into account only the

94

proposed fitness function; and the minimum, mean and maximum value of the

solutions were shown in the last three column of Table 4.13, respectively.

Table 4.13 Test problems

Problem
Name of
problem

Number of
models

Cycle
time

MPS Min. Mean Max.

1 Kara10 3 12 {1,1,1} 4.9586 4.9586 4.9586
2 Kara10 3 12 {2,1,2} 4.4755 4.4755 4.4755
3 Kara10 3 12 {2,2,1} 4.4251 4.4251 4.4251
4 Kara10 3 12 {2,3,2} 5.0767 5.0767 5.0767
5 Kara10 3 12 {4,2,3} 4.3116 4.3116 4.3116
6 Kara10 3 12 {5,4,2} 4.3376 4.3447 4.3732
7 Thomopoulos19 3 2.2 {1,1,1} 3.2952 3.2952 3.2952
8 Thomopoulos19 3 2.2 {2,1,2} 3.2918 3.7094 4.0183
9 Thomopoulos19 3 2.2 {2,2,1} 3.1713 3.1806 3.1947

10 Thomopoulos19 3 2.2 {2,3,2} 3.3702 3.3874 3.4389
11 Thomopoulos19 3 2.2 {4,2,3} 3.3482 3.4711 3.6085
12 Thomopoulos19 3 2.2 {5,4,2} 3.1258 3.1453 3.2168
13 Kara20 5 55 {1,1,1,1,1} 3.0396 3.0708 3.1131
14 Kara20 5 55 {2,1,1,3,2} 3.2393 3.2948 3.4326
15 Kara20 5 55 {1,3,2,2,1} 3.0973 3.1086 3.1182
16 Kara20 5 55 {5,3,2,1,1} 3.0589 3.0717 3.0889
17 Kara20 5 55 {1,2,4,5,8} 3.1869 3.1942 3.2113
18 Kara20 5 55 {1,4,8,3,1} 3.1234 3.1349 3.1573

As can be seen from Table 4.13, the value of fitness function may be varying

according to different MPSs for the same test problem. This situation indicates that

the sequence in which different models are produced cannot be set independently of

the line balance. In fact, this is because of the difference of the combination of

models assigned to stations according to varying cycles. As a result, the

configuration of the MPS on the line is more important than the total number of

models for the MPS. Actually, this is the effect of the best model sequence derived

from the proposed SA based algorithm with regard to MPS. For example, tasks

assigned to 5 workstations with MPS={2,3,2} while tasks assigned to 4 workstations

with the other five MPSs for the test problem of Kara10.

4.4 Use of Parallel Workstations and Zoning Constraints

In this subchapter, the proposed algorithm is extended to efficiently tackle the U-

shape mixed-model balancing and sequencing problem simultaneously with some

particular features such as parallel workstations and zoning constraints.

95

The workload corresponding to the set of tasks assigned to a workstation cannot

exceed the workstation’s capacity, a crucial factor for the line production rate. The

production rate is limited by the longest task time so that the longest task time is a

lower bound on the cycle time. Parallel stations allow the reduction of the (global)

cycle time of the system if certain tasks have task times longer than the desired cycle

time (Buxey 1974; Pinto et al., 1981; Sarker and Shanthikumar, 1983; Bard, 1989).

There are many important benefits by allowing stations to perform tasks in parallel

(Buxey, 1974). One benefit is the potential improvement of balance efficiency

(reduction of station idle time). Each station that is duplicated has an effective cycle

time of (cycle timestation multiple), thus a range of times is available and there is

more likelihood of a good fit. Another benefit of using stations in parallel, is

enabling to meet required high production rates (resulting in short cycle times) when

some work element times exceed the required cycle time. Last benefit of a line

design with stations in parallel is increased flexibility. Thus, a failure of a station

stops the entire line, while a failure of a parallel station allows continuing the line

operation at a reduced production rate.

Most of the works to solve assembly line balancing problem with parallel stations

aim at attaining cost oriented objectives that are a trade-off between the incremental

tooling/equipment cost of the duplicated workstations and the cost of hiring workers

for the original line in order to satisfy the demand. Pinto et al. (1975) present a

branch and bound procedure for selecting tasks to be paralleled, with the objective to

minimize total cost (labor, including overtime, and equipment duplication costs).

Other most important works related to cost oriented objectives are provided in Pinto

et al. (1981), Johnson (1983), Bard (1989), Daganzo and Blumenfeld (1994), Askin

and Zhou (1997) and Bukchin and Tzur (2000). Sarker and Shantikumar (1983)

suggest a general approach that can be applied for both serial and parallel line

balancing, and they define a limit on the number of parallel workstations to control

the replication process. McMullen and Frazier (1997) suggest a simple heuristic

procedure to solve a mixed-model assembly line problem with stochastic task times

when paralleling of tasks is permitted and they allow the replication of a workstation

as long as its utilization increases. In another work, they use a simulated annealing

96

heuristic to solve the same problem for a multi-objective combined mainly of the

total cost of labor and equipment and the balance efficiency (McMullen and Frazier,

1998). Vilarinho and Simaria (2002) present a two-stage simulated annealing

approach to solve MALBP-1 with additional assignment restrictions and parallel

stations. As secondary objective, terms for measuring vertical and horizontal

imbalances are minimized. In another work, they use an ant colony optimization

algorithm to solve the same problem (Vilarinho and Simaria, 2006). A detailed

survey paper including parallel station on assembly line balancing problems is

provided by Becker and Scholl (2006).

This thesis is the first study dealing with the balancing and sequencing problems

simultaneously of the U-lines using parallel workstations and zoning constraints for

minimizing the number of workstations (Type 1). In addition, this newly developed

performance measure aims at the workload balance within and between workstations

at the end of all cycles as secondary goal.

4.4.1 Assumptions

The U-lines with parallel workstations and zoning constraints considered in this

study operates in accordance with following assumptions:

 Product models having similar production attributions are produced on the

same U-shaped production lines.

 The travel times of operators and setup times are ignored.

 Precedence diagrams of different models are known, and a combined

precedence diagrams is employed (Macaskill 1972).

 The completion times of tasks may differ from one model to another and can

be equal to zero. Common tasks among different models exist.

 Task completion times are deterministic and independent from each others.

 Paced assembly line considered and no work-in-process is allowed.

 Minimum Part Set (MPS) principle is used (Bard et al., 1992, Merengo et al.,

1999, Kara et al., 2007a, Kim et al., 2000b).

97

1; if workstation k is required more than one operator (1kRW)

0; otherwise

 Equally equipped workstations and fixed rate launching are considered.

4.4.2 Notations and Equations

Parallel workstations are explained by the following notations and equations:

kRW Represents that minimum how many operators must be assigned to this

workstation for being able to perform the task having maximal task time under a

cycle time limitation when all cycles are taken into consideration at the

workstation k .

kRW =

















);(

,..1

)(

)max(kkr
k

r
k

XBXFi

Rr

bfi

C

t
),...,1(Kk 

kRP is a decision variable defined as follows:

 kRP

),...,1(Kk 

A workstation can be replicated as long as its utilization increases (McMullen and

Frazier, 1997, 1998). Therefore, we expanded our algorithm in a manner that other

operators can be assigned to the same workstation additionally to minimum number

of operators necessary for enabling the decision making under different performance

measures in cases requiring parallel station.

To obtain alternative paralleling conditions, the decision maker may define the

extra replicas of operator, CP . Thus, a operator in a particular workstation can be

replicated up to an upper bound on the maximum number of replicas, MAXRP .

MAXRP is defined as follows;

CPRWMAXRP k ),...,1(Kk 

98

 The total number of operators working on the assembly line)(S is computed by

the sum of the number of replicas of operators in all workstations, as follows:





K

k
k MAXRPRPS

1

)]1(1[

The workload capacity of the workstation k will be equal to:

kST =)]1(1[ MAXRPRPC k Kk ,...,2,1

The workload of the workstation k cannot exceed the workload capacity in any

cycle. This case is shown by following equation:

 (kkr STW ) Kk ,...,2,1 ; Rr ,...,2,1

Also, we included zoning constraints to our problem. As mentioned in Chapter 2,

zoning constraints can be either positive or negative. Positive zoning constraints

force the assignment of certain tasks to a specific workstation. In the proposed

approach, the tasks that need to be allocated to the same Workstation are merged and

treated by the procedure as only one task. Negative zoning constraints forbid the

assignment of tasks to the same workstation. In the proposed procedure, a task is not

available for being assigned to a workstation if there is an incompatible task already

assigned to that workstation.

4.4.3 New Objective Function

We explained new fitness function by following equations in a manner

comprising also parallel workstations.

)(krkkr WSTS  (Kk ,...,2,1), (Rr ,...,2,1) (1)

99

  R
r krk SKI

1
 (Kk ,...,2,1) (2)

 

2

1 1
1

1    















 K

k
R
r

k

kr
b RKI

S

RK

R
C (3)

  K
k krr SRI

1
 (Rr ,...,2,1) (4)

 

2

1 1
1

1
   
















 R

r
K
k

r

kr
w KRI

S

KR

K
C (5)

wb CC  S Zmin (6)

krS (Eq. 1) represents the idle time of workstation k at the cycle r . The idle time

of a workstation is the difference between the capacity of the workstation and its

workload.

kKI (Eq. 2) represents the total idle time at the end of all cycles in the

workstation k .

In the objective function (Eq. 6), bC (Eq. 3) aims at smoothing the workload of

workstations between cycles, i.e., the idle time is distributed across all cycles as

equally as possible for any workstation. The value of function bC varies between a

maximum of 1, when the total idle time of a workstation at the end of all cycles equal

to only one cycle’s idle time, and a minimum of 0, when the idle times of a

workstation at the each cycle are equal to each other.

rRI (Eq. 4) represents the total idle time of all workstations at the cycle r .

In the objective function (Eq. 6), wC (Eq. 5) aims at workload balance of all

workstations within any cycles, i.e., the idle time is distributed across all

workstations as equally as possible at any cycle. The value of function wC varies

between a maximum of 1, when the total idle times of all workstations at any cycle

100

equal to only one workstation’s idle time, and a minimum of 0, when the idle times

of each workstation at any cycle are equal to each other.

The first term (S) of the fitness function (Eq. 6) is to minimize the total number

of the operators required on the line. The second term (bC) is to smooth the

workloads of workstations between cycles. The third term (wC) is to smooth the

workloads of workstations within cycles. The second and the third terms are within

the value range [0, 1]. So, the model minimizes the number of workstations before

the secondary goal becomes active. The proposed performance measure may vary

depending on the balance and the model sequence.

Note:

If kKI equals to 0,

2

1
1  












R

r
k

kr

RKI

S
will be equal to 0.

If rRI equals to 0,

2

1
1  












K

k
r

kr

KRI

S
will be equal to 0.

4.4.4 Numerical illustration

We used the precedence diagram of 10-task problem (Kara et al., 2007a) to

describe the characteristics of the problem of MMUL/BS with parallel workstations

and zoning constraints; and the task processing times were randomly generated for

describing better the characteristics of our problem.

Combined precedence diagram relationships among tasks and task completion

times are given in Figure 4.22 and Table 4.14, respectively.

 The example line is running at a cycle (C) of 6 s/model, an MPS of {221},

and, thus, a length of model sequence (R) of 5,

 Tasks 9 and 10 cannot be executed on the same workstation,

101

 If a task time exceeds the capacity of a workstation, the number of extra

replicas of operator for this workstation is given as zero (0CP),

 The control parameters of the GA and SA based algorithm are listed in Figure

4.15.

 The initial model sequence of the example U-line is selected as AABBC.

 Figure 4.22 Combined precedence diagram

Table 4.14 Task completion times for the example problem

Task Completion time

 A B C
1 8 1 3
2 2 0 7
3 2 6 4
4 4 0 2
5 0 3 3
6 4 1 2
7 5 4 0
8 3 1 5
9 0 6 4

10 1 7 1

 As mentioned before, each task sequence (TS) is evaluated to calculate their

fitness value by using the SA based fitness evaluation approach. SA based approach

starts with the proper initial SA parameters, a task sequence (TS), a feasible model

sequence, at first. If the feasible solution is not found, the value of (K) is increased

by one. Then, the parameters (cryT , 0T , q , IT) of SA algorithm are updated with

10

9

8

7

6

5

4

3 2 1

102

initial parameters. This case continues whenever a feasible solution is found. After a

feasible solution is found, the algorithm will continue to search until the termination

conditions are met.

Table 4.15 Selected control parameters

Parameters Value
Initial number of workstation (K) 1
Population size 100
Number of generations 100
Crossover probability 0.95
Mutation probability 0.2
Initial temperature 100
Cooling rate 0.95
Length of the each temperature level 2
Crystallization temperature 1
Probability of p1 0.75
Probability of p2 0.5

Table 4.16 Step-by-step illustration of the solution process

 Stage 0: Evaluation of the initial population

Station (k) Task (i) }{ kXF , }{ kXB Idle time (krS) },...2,1{ Rr 

 1 * {2},{10} {9,3,11,4,5}

 2*
{1},{9} {5,4,4,5,5}

3 {3,4},{ } {0,0,0,0,0}

4 {5,6},{ } {2,1,2,2,2}

5 {7},{ } {1,2,6,2,1}

6 {8},{ } {3,3,5,1,5}

 :MS CBAAB; 1548.8Z
 Stage 1: Evaluation of the 1.generation

Station (k) Task (i) }{ kXF , }{ kXB Idle time (krS) },...2,1{ Rr 

 1* {1},{8,10} {3,0,3,0,3}

2 {3},{ } {0,0,4,2,4}

3 {4,5},{ } {2,3,3,2,1}

 4* {2,6,7},{ } {3,1,7,7,1}

5 {9},{ } {6,2,6,0,0}

:MS BACAB; 3301.7Z

103

Table 4.16 (cont) Step-by-step illustration of the solution process

 Stage 10: Evaluation of the 10.generation

Station (k) Task (i) }{ kXF , }{ kXB Idle time (krS) },...2,1{ Rr 

 1* {1},{10} {4,3,4,3,8}

2 {3,4},{ } {0,0,0,0,0}

 3* {2,5,6,7},{ } {1,0,4,1,4}

4 {9},{ } {0,6,2,0,6}

5 {8},{ } {3,5,3,1,5}

 :MS BABAC; 2846.7Z
 Stage 30: Evaluation of the 30.generation

Station (k) Task (i) }{ kXF , }{ kXB Idle time (krS) },...2,1{ Rr 

 1* {2,3},{10} {5,5,1,1,0}

 2* {1},{9} {5,5,5,4,4}

3 {4,5},{ } {2,1,3,3,2}

4 {6},{8} {1,1,1,2,0}
5 {7},{ } {2,1,1,6,2}

 :MS ACBBA; 2251.7Z
 Stage 50: Evaluation of the 50.generation

Station (k) Task (i) }{ kXF , }{ kXB Idle time (krS) },...2,1{ Rr 

 1* {1},{8,10} {0,0,3,3,3}

2 {3,4},{ } {0,0,0,0,0}

 3* {2},{7,9} {7,8,0,0,0}

4 {5,6},{ } {1,2,2,2,2}

 :MS AACBB; 6115.6Z
 Stage 60: Evaluation of the 60.generation

Station (k) Task (i) }{ kXF , }{ kXB Idle time (krS) },...2,1{ Rr 

 1* {1},{8,10} {3,3,0,3,0}

2 {3,4},{ } {0,0,0,0,0}

 3* {2,5,6},{9} {4,6,2,0,0}

4 {7},{ } {1,2,1,2,6}

 :MS BCABA; 5745.6Z
 Stage 70: Evaluation of the 70.generation

Station (k) Task (i) }{ kXF , }{ kXB Idle time (krS) },...2,1{ Rr 

 1* {1},{8,10} {3,3,0,0,3}

 2* {2},{7,9} {2,0,7,0,6}

3 {3,4},{ } {0,0,0,0,0}

4 {5,6},{ } {2,2,2,1,2}

 :MS CBAAB; 5529.6Z

104

Table 4.16 (cont) Step-by-step illustration of the solution process

 Stage 80: Evaluation of the 80.generation

Station (k) Task (i) }{ kXF , }{ kXB Idle time (krS) },...2,1{ Rr 

 1* {1},{8,10} {3,0,3,3,0}

 2* {2},{7,9} {5,8,0,0,2}

3 {3,4},{ } {0,0,0,0,0}

4 {5,6},{ } {1,2,2,2,2}

 :MS BACBA; 4853.6Z
 Stage 100: Evaluation of the 100.generation

Station (k) Task (i) }{ kXF , }{ kXB Idle time (krS) },...2,1{ Rr 

 1* {1},{8,10} {3,0,3,3,0}

 2* {2},{7,9} {5,8,0,0,2}

3 {3,4},{ } {0,0,0,0,0}

4 {5,6},{ } {1,2,2,2,2}

:MS BACBA; 4853.6Z (* represents parallel workstations)

Table 4.16 illustrates some steps of the procedure applied to the numerical

example. A final MMUL/BS is shown in each of the small tables. To simplify the

schema, only the fitness function where reductions occurred is represented in the

proposed GA approach. Followings are the content of each column in these small

tables: (1) workstation index, k , (2) set of tasks assigned to the workstations, and (3)

the idle time of the workstations at each cycle, krS . Given information under each

small table shows the best model sequence of the final line balance for the evaluated

generation, MS , and the best objective function for evaluated generation , Z ,.

Workstations to which more than one operator is assigned are represented at the table

with the sign (*).

After the evaluation of the initial population, it is determined that the line

balancing consists of 6 stations in total and that the best model sequence is CBAAB

at line configuration forming the best solution. Two operators each work at the first

two workstations in the line balancing forming this solution, and one operator each

works at others. The value of our proposed fitness function is 8, 1548. The proposed

approach can reduce the value of the fitness function in next generations beginning

from this solution; and the best solutions of the generations where decreases are

105

observed only in the fitness function are shown at small tables in Table 4.16. The

best solution until the satisfaction of the termination conditions of priority-based GA

are found in the evaluation of the 80th generation, and the best solution did not

change at the last 20 generations. It is detected that the line balancing consists of 4

workstations in the line configuration giving the best solution, and also that the

model sequence is BACBA. Two operators each work at the first two workstations

and one operator each works at other two workstations in the line balancing forming

this solution (see Figure 4.21).

 Figure 4.23 Final U-line balance of the example

Model mixes of workstations for each cycle of the final U-line balance are also

given in Table 4.17.

Table 4.17 Model mixes of workstations for each cycle of the final U-line balance

Station
(k)

Model (m)

{ 1
kf },{ 1

kb }

Model (m)

{ 2
kf },{ 2

kb }

Model (m)

{ 3
kf },{ 3

kb }

Model (m)

{ 4
kf },{ 4

kb }

Model (m)

{ 5
kf },{ 5

kb }

1 {B},{B} {A},{A} {C},{C} {B},{B} {A},{A}
2 {A},{A} {B},{C} {A},{B} {C},{A} {B},{B}
3 {B},{ } {A},{ } {B},{ } {A},{ } {C},{ }
4 {C},{ } {B},{ } {A},{ } {B},{ } {A},{ }

106

4.4.5 Computational Experiments and Analysis

No comparable study dealing with the balancing and sequencing problems of

mixed-model U-lines in minimizing the number of workstations (Type I) exists in the

literature. Thus, we randomly generated different numbers of MPS (see Table 4.18)

for three sets of problems in order to evaluate the performance of the proposed

algorithm. The number of tasks performed on real world U-lines varies between 1

and 24 with an average value of 10.2 (Miltenburg 2001). At this juncture, the

selected sets of problems are 10-tasks with 3-models in Kara et al. (2007a), 19-tasks

with 3-models in Thomopoulos (1970) and 20-tasks with 5-models in Kara et al.

(2007b). Task processing times of the tasks in the problem consisting of 10 tasks are

randomly generated for being able to better understand general characteristics of the

proposed approach. The number of extra operators to be assigned additionally in

cases requiring more than one operator at any station is accepted to be 0. Negative

zoning constraints between the tasks are shown at 6th column of Table 4.18. The

experiment is repeated 5 times for every test problem by taking into account only the

proposed fitness function; and the minimum, mean and maximum value of the

solutions are shown in the last three column of Table 4.13, respectively.

Table 4.18 Test problems

Problem
Name of
problem

Number
of models

Cycle
time

MPS
Negative
zoning

constraints
Min. Mean Max.

1 Kara10 3 6 {1,1,1} Task 9-10 6.3158 6.3158 6.3158

2 Kara10 3 6 {2,1,2} Task 9-10 6.5452 6.5452 6.5452

3 Kara10 3 6 {2,2,1} Task 9-10 6.4853 6.4853 6.4853

4 Kara10 3 6 {2,3,2} Task 9-10 7.1518 7.1518 7.1518

5 Kara10 3 6 {4,2,3} Task 9-10 7.1496 7.1496 7.1496

6 Kara10 3 6 {5,4,2} Task 9-10 7.1325 7.1325 7.1325

7 Thomopoulos19 3 0.8 {1,1,1} Task 10-19 9.3552 9.3552 9.3552

8 Thomopoulos19 3 0.8 {2,1,2} Task 10-19 9.2618 9.2651 9.3139

9 Thomopoulos19 3 0.8 {2,2,1} Task 10-19 9.2363 9.2873 9.3635

10 Thomopoulos19 3 0.8 {2,3,2} Task 10-19 9.2449 9.4312 10.0937

11 Thomopoulos19 3 0.8 {4,2,3} Task 10-19 10.0776 10.1118 10.1401

12 Thomopoulos19 3 0.8 {5,4,2} Task 10-19 9.1667 9.3786 10.0533

13 Kara20 5 14 {1,1,1,1,1} Task 15-18 14.1981 14.4151 15.1631

14 Kara20 5 14 {2,1,1,3,2} Task 15-18 14.1826 14.7628 15.1557

15 Kara20 5 14 {1,3,2,2,1} Task 15-18 15.1146 15.3217 16.1238

16 Kara20 5 14 {5,3,2,1,1} Task 15-18 13.1856 13.9255 14.1163

17 Kara20 5 14 {1,2,4,5,8} Task 15-18 15.0751 15.2756 16.0684

18 Kara20 5 14 {1,4,8,3,1} Task 15-18 14.1215 14.6964 15.0854

 107

CHAPTER FIVE

CONCLUSION

 Two important problems occur in mixed model U-shaped assembly lines. First

one is the line balancing, and the other is model sequencing. These two problems are

tightly interrelated in mixed model U-shaped assembly line, and these problems must

be considered at the same time to be able to use these lines more efficiently.

Therefore, these lines have more complex structures when compared to other lines.

 In this thesis, simulated annealing based fitness evaluation approach is developed

in order to ensure the performance of easy and effective fitness evaluations in

priority based generic algorithm to be able to solve line balancing/model sequencing

problems occurring in mixed model U-shape assembly lines, simultaneously.

 We modified the neighborhood generating mechanism developed by Kara et al.

(2007b) in a manner adaptable to the characteristics of our simulated annealing based

solution method that we developed to evaluate our resulting task sequences by the

method that we developed. The simulated annealing based solution method that we

developed tries to find the minimum number of workstations rendering the possible

solution by using the number of user defined stations and our modified fitness

function (Type 1). As secondary goal, it tries to optimize workload balance between

and within workstations by taking all cycles into consideration.

 Our modified fitness function whose primary goal is to minimize the number of

stations and as the secondary goal it tries to ensure the balance of the workload

within and between stations at the end of all possible cycles is developed for

responding to the use of parallel station. The number of replications can be increased

in a user defined manner additionally to minimum number of replications necessary

for the use of parallel stations in order to be able to allow the decision maker to make

comparisons by considering different parallel station structures. This situation allows

the decision maker to work in different scenarios.

108

This thesis is the first study dealing with simultaneously solving the balancing and

sequencing problems of the mixed-model U-lines by using parallel workstations and

zoning constraints to minimize the number of workstations (Type 1).

 Our proposed approach is tested separately in cases with and without parallel

station-zoning constraints in minimum part sets (MPS) produced for problem sets

consisting of 10 tasks-3 models, 19 tasks-3 models, and 20 tasks-5 models by

thinking that real life U-shaped mixed model assembly lines consist of 10.2 tasks in

average.

 Results showed that our proposed simulated annealing based fitness evaluation

approach works with the generic algorithm very concordantly; and it is an effective

method in solving simultaneous sequencing-line balancing problems in mixed-model

U-lines with and without the existence of parallel station-zoning constraints.

109

REFERENCES

Aase, G. R., Schniederjans, M. J., & Olson, J. R. (2003). U-OPT: an analysis of exact

U-shaped line balancing procedures. International Journal of Production

Research, 41, 4185-4210.

Aase, G. R., Olson, J. R., & Schniederjans, M. J. (2004). U-shaped assembly line

layouts and their impact on labour productivity: an experimental study. European

Journal of Operational Research, 156, 698-711.

Agpak, K., & Gokcen, H. (2007). A chance-constrained approach to stochastic line

balancing problem. European Journal of Operational Research, 180, 1098–1115.

Ajenblit, D. A., & Wainwright, R. L. (1998). Applying genetic algorithms to the U-

shaped assembly line balancing problem. In the Proceeding of the 1998 IEEE

International Conference on Evolutionary Computation, Anchorage, Alaska,

USA, 96-101.

Askin, R. G., & Zhou, M. (1997). A parallel station heuristic for the mixed-model

production line balancing problem. International Journal of Production Research,

35, 3095-3106.

Bard, J. F. (1989). Assembly line balancing with parallel workstations and dead time.

International Journal of Production Research, 27, 1005-1018.

Bard, J. F., Dar-el, E. M., & Shtub, A. (1992). An analytic framework for sequencing

mixed model assembly lines. International Journal of Production Research, 30,

35-48.

Batini, D., Faccio, M., Ferrari, E., Persona, A., & Sgarbossa, F. (2007). Design

configuration for a mixed-model assembly system in case of low product demand.

110

 The International Journal of Advanced Manufacturing Technology, 34(1-2), 188-

200.

Baudin, M. (2002). Lean Assembly: The nuts and bolts of making assembly

operations flow. Productivity, New York.

Baybars, I. (1986). A Survey of Exact Algorithms for the Simple Assembly Line

Balancing Problem. Management Science, 32, 909-932.

Baykasoglu, A., & Ozbakir, L. (2007). Stochastic U-line balancing using genetic

algorithms. International Journal of Advanced Manufacturing Technology, 32,

139–147.

Becker, C., & Scholl, A. (2006). A survey on problems and methods in generalized

assembly line balancing. European Journal of Operational Research, 168, 694-

715.

Boysen, N., & Fliedner, M. (2008). A versatile algorithm for assembly line

balancing. European Journal of Operational Research, 184, 39–56.

Boysen, N., Fliedner, M., & Scholl, A. (2008). Assembly line balancing: Which

model to use when?. International Journal of Production Economics, 111, 509–

528.

Bukchin, J., & Tzur, M. (2000). Design of flexible assembly line to minimize

equipment cost. IIE Transactions, 32(7), 585-598.

Bukchin, J., Dar-El, E. M., & Rubinovitz, J. (2002). Mixed model assembly line

design in a make-to-order environment. Computers and Industrial Engineering,

41, 405-421.

111

Buxey, G. M. (1974). Assembly line balancing with multiple stations. Management

Science, 20, 1010-1021.

Cheng, C.H., Miltenburg, J., & Motwani, J. (2000). The effect of straight- and u-

shaped lines on quality. IEEE Transactions on Engineering Management, 47,

321-334.

Choi, G. (2009). A goal programming mixed-model line balancing for processing

time and physical workload. Computers and Industrial Engineering, 57, 395–400.

Daganzo, C. F., & Blumenfeld, D. E. (1994). Assembly system design principles and

trade-offs. International Journal of Production Research, 32, 669-681.

Dar-el, E. M., & Navidi, A. (1981). A mixed-model sequencing application.

International Journal of Production Research, 19, 69-84.

Deckro, R. F., & Rangachari, S. (1990). A goal approach to assembly line balancing.

Computers and Operations Research, 17, 509–521.

Duplaga E. A., & Bragg D. J. (1998). Mixed-model assembly line sequencing

heuristics for smoothing component parts usage: a comparative analysis.

International Journal of Production Research, 36(8), 2209–2224.

Erel, E., & Gokcen, H. (1999). Shortest-route formulation of mixed-model assembly

line balancing problem. Europen Journal of Operational Research, 116, 194-204.

Erel, E., Sabuncuoglu, I., & Aksu, B.A. (2001). Balancing of U-type assembly

systems using simulated annealing. International Journal of Production Research,

39, 3003–3015.

112

Erel, E., Sabuncuoglu, I., & Sekerci H. (2005). Stochastic assembly line balancing

using beam search. International Journal of Production Research, 43(7), 1411–

1426.

Erel, E., & Sarin, S. C. (1998). A survey of the assembly line balancing procedures.

Production Planning and Control, 9, 414-434.

Gen, M., & Cheng, R. (1997). Genetic Algorithms & Engineering Design. New

York: John Wiley & Sons.

Gen, M., & Cheng, R. (2000). Genetic Algorithms & Engineering Optimization. New

York: John Wiley & Sons.

Gen, M., Cheng, R., & Lin, L. (2008). Network Models and Optimization. Springer-

Verlag London Limited.

Ghosh, S., & Gagnon, R. J. (1989). A comprehensive literature review and analysis

of the design, balancing and scheduling of assembly systems. International

Journal of Production Research, 27, 637-670.

Gokcen, H., & Agpak, K. (2006). A goal programming approach to simple U-line

balancing problem. European Journal of Operational Research, 171, 577-585.

Gokcen, H., Agpak, K., Gencer, C., & Kizilkaya, E. (2005). A shortest route

formulation of simple U-type assembly line balancing problem. Applied

Mathematical Modelling, 29, 373–380.

Gokcen, H., & Erel, E. (1997). A goal programming approach to mixed-model

assembly line balancing problem. International Journal of Production Economics,

48(2), 177-185.

113

Gokcen, H., & Erel, E. (1998). Binary integer formulation for mixed-model assembly

line balancing problem. Computers and Industrial Engineering, 23, 451-461.

Goldberg, D. E. (1989). GAs in search, optimization and machine learning. Reading,

Massachusetts: Addison-Wesley.

Goldberg, D. E. (2002). Design of innovation: Lessons from and for competent

genetic algorithms. Boston, MA: Kluwer Acadamic Publishers.

Grupe, F. H., & Jooste, S. (2004). Genetic algorithms: A business perspective.

Information Management & Computer Security, 12 (3), 289-298.

Guerriero, F., & Miltenburg, J. (2003). The stochastic U-line balancing problem.

Naval Research Logistics, 50, 31-57.

Gutjahr, A. L., & Nemhauser, G. L. (1964). An algorithm for the line balancing

problem. Management Science, 11 (2), 308–315.

Helgeson, N. B., & Birnie, D. P. (1961). Assembly line balancing using the ranked

positional weight technique. Journal of Industrial Engineering, 12(6), 394-398.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. The University

of Michigan Press, Ann Arbor, Michigan.

Hwang, R. K., Gen, M., & Katayama, H. (2006). A performance evaluation of

multiprocessor scheduling with genetic algorithm. Asia Pacific Management

Review, 11, 67–72.

Hwang, R. K., Katayama, H., & Gen, M. (2008). U-shaped assembly line balancing

problem with genetic algorithm. International Journal of Production Research,

46(16), 4637–4649.

114

Hwang, R. K., & Katayama, H. (2009). A multi-decision genetic approach for

workload balancing of mixed-model U-shaped assembly line systems.

International Journal of Production Research, 47(14), 3797–3822.

Jackson, J. R. (1956). A Computing Procedure for a Line Balancing Problem.

Management Science, 2, 261-272.

Johnson, R. V. (1983). A branch and bound algorithm for assembly line balancing

problems with formulation irregularities. International Journal of Production

Research, 19, 277-287.

Johnson, R. V. (1988). Optimally balancing large assembly lines with fable.

Management Science, 34, 240–253.

Jin, Y., Olhofer, M., & Sendhoff, B. (2002). A Framework for Evolutionary

Optimization with Approximate Fitness Functions. IEEE Transactions on

Evolutionary Computation, 6(5), 481-494.

Kara Y., Ozcan, U., & Peker, A. (2007a). An approach for balancing and sequencing

mixed-model JIT U-lines. International Journal of Advanced Manufacturing

Technology, 32, 1218–1231.

Kara Y., Ozcan, U., & Peker, A. (2007b). Balancing and sequencing mixed-model

just-in-time U-lines with multiple objectives. Applied Mathematics and

Computation, 184, 566–588.

Kara, Y., & Tekin, M. (2009). A mixed integer linear programming formulation for

optimal balancing of mixed-model U-lines. International Journal of Production

Research, 47(15), 4201–4233.

115

Karabati, S., & Sayin, S. (2003). Assembly line balancing in a mixed-model

sequencing environment with synchronous transfers. European Journal of

Operational Research, 149(2), 417–429.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Miller R.E &

Thatcher J.W. Editors: Complexity of Computer Applications, 85-104, New York:

Plenum Press.

Kilbridge, M. D., & Wester, L. (1961). A heuristic method of assembly line

balancing. The Journal of Industrial Engineering, 12(4), 292-298.

Kim, Y. K., Kim, J. Y., & Kim, Y. (2000a). A Coevolutionary Algorithm for

Balancing and Sequencing in Mixed Model Assembly Lines. Applied Intelligence,

13, 247-258.

Kim, Y. K., Kim, J. Y., & Kim, Y. (2006). An endosymbiotic evolutionary algorithm

for the integration of balancing and sequencing in mixed-model U-lines.

European Journal of Operational Research, 168 (2006), 838–852.

Kim, Y. K., Kim, S. J., & Kim, J. Y. (2000b). Balancing and sequencing mixed

model U-lines with a co-evolutionary algorithm. Production Planning and

Control, 11, 754-764.

Kirkpatrick, S., Gelatt Jr, C. D., & Vecchi, M. P. (1983). Optimization by Simulated

Annealing. Science, 220, 671-680.

Macaskill, J. L. C. (1972). Production-line balances for mixed model lines.

Management Science 19(4), 423–434.

Martinez, U., & Duff, W. S. (2004). Heuristic approaches to solve the U-shaped line

balancing problem augmented by Genetic Algorithms. In the Proceedings of the

2004 Systems and Information Engineering Design Symposium, 287-293.

116

McMullen, P. R., & Frazier, G. V. (1997). A heuristic for solving mixed-model line

balancing problems with stochastic task durations and parallel stations.

International Journal of Production Economics, 51, 177-190.

McMullen, P. R., & Frazier, G. V. (1998). Using simulated annealing to solve a

multiobjective assembly line balancing problem with parallel workstations.

International Journal of Production Research, 36, 2717–2741.

McMullen, P. R., & Frazier, G. V. (2000). A simulated annealing approach to mixed-

model sequencing with multiple objectives on a just-in-time line. IIE

Transactions, 32(8), 679–686.

Merengo, C., Nava, F., & Pozzetti, A. (1999). Balancing and sequencing manual

mixed-model assembly lines. International Journal of Production Research, 37,

2835-2860.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E.

(1953). Equations of State Calculations by Fast Computing Machines. Journal of

Chemical Physics, 21(6), 1087–1092.

Miltenburg, J. (1989). Level schedules for mixed-model assembly lines in just-in-

time production systems. Management Science, 35(2):192–207.

Miltenburg, J. (1998). Balancing U-lines in a multiple U-line facility. European

Journal of Operational Research, 109, 1-23.

Miltenburg, J. (2001). U-shaped production lines: a review of theory and practice.

International Journal of Production Economics, 70, 201-214.

Miltenburg, J. (2002). Balancing and sequencing mixed-model U-shaped production

lines. International Journal of Flexible Manufacturing Systems, 14, 119-151.

117

Miltenburg, J., & Sinnamon, G. (1989). Scheduling mixed model multi-level just-in-

time production systems. International Journal of Production Research, 27(9),

1487–1509.

Miltenburg, J., & Sinnamon, G. (1992). Algorithms for scheduling multi-level just-

in-time production systems. IIE Transactions, 24(2), 121–130.

Miltenburg, J., & Sinnamon, G. (1995). Revisiting the mixed-model multi-level just-

in-time scheduling problem, International Journal of Production Research, 33,

2049–2052.

Miltenburg, J., & Wijngaard, J. (1994). The U-line line balancing problem.

Management Science, 40(10), 1378-1388.

Monden, Y. (1993). Toyota production system, 2nd edition. Engineering and

Management Press, Norcross, Georgia.

Moodie, C. L., & Young, H. H. (1965). A heuristic method of assembly line

balancing for assumptions of constant or variable work element times. Journal of

Industrial Engineering, 16, 23-29.

Montgomery, D. C., & Runger, G. C. (2005). Applied Statistics and Probability for

Engineers. New York: John Wiley & Sons.

Pinto, P. A., Danneenbring, D. G., & Khumawala, B. M. (1975). A branch and bound

algorithm for assembly line balancing with paralleling. International Journal of

Production Research, 13, 183-196.

Pinto, P. A., Dannenbring, D. G., & Khumawala, B. M. (1981). Branch and bound

and heuristic procedures for assembly line balancing with paralleling of stations.

International Journal of Production Research, 19, 565-576.

118

Ponnambalam, S. G., Aravindan, P., Naidu, G., & Mogileeswar, G. (2000).

Multiobjective genetic algorithm for solving assembly line balancing problem.

International Journal of Advanced Manufacturing Technology, 16(5), 341-352.

Rekiek, B., & Delchambre, A. (2006). Assembly line design: The balancing of

mixed-model hybrid assembly lines with genetic algorithms. Springer Series in

Advanced Manufacturing, London.

Sabuncuoglu, I., Erel, E., & Alp, A. (2009). Ant colony optimization for the single

model U-type assembly line balancing problem. International Journal of

Production Economics, 120, 287–300.

Salveson, M. E. (1955). The assembly line balancing problem. Journal of Industrial

Engineering, 6, 18-25.

Sarker, B. R., & Shantikhumar, J. G. (1983). A generalised approach for serial or

parallel line balancing. International Journal of Production Research, 21, 109-

133.

Sastry, K., & Goldberg, D. (2005). Genetic Algorithm (Search Methodologies).

Springer.

Scholl, A. (1993). Data of assembly line balancing problems. Schriften zur

Quantitativen Betriebswirtschaftslehre 16/93, TU Darmstadt.

Scholl, A. (1999). Balancing and Sequencing of Assembly Lines. Physica-Verlag,

Heidelberg.

Scholl, A., & Becker, C. (2006). State-of-the-art exact and heuristic solution

procedures for simple assembly line balancing. European Journal of Operational

Research, 168, 666-693.

119

Scholl, A., & Klein, R. (1999). ULINO: optimally balancing U-shaped JIT assembly

lines. International Journal of Production Research, 7(4), 721–736.

Simaria, A. S., & Vilarinho, P. M. (2004). A genetic algorithm based approach to

mixed model assembly line balancing problem of type II. Computers and

Industrial Engineering, 47, 391-407.

Sivanandam, S. N., & Deepa, S. N. (2008). Introduction to Genetic Algorithms.

Springer-Verlag Berlin Heidelberg.

Sparling, D., & Miltenburg, J. (1998). The mixed-model U-line balancing problem.

International Journal of Production Research, 36, 485-501.

Talbot, F. B., Patterson, J. H., & Gehrlein, W. V. (1986). A comparative evaluation

of heuristic line balancing techniques. Management Science, 32, 430–454.

Thomopoulos, N. T. (1967). Line balancing-sequencing for mixed-model assembly.

Management Science, 14(2), 59–75.

Thomopoulos, N. T. (1970). Mixed model line balancing with smoothed station

assignments. Management Science, 16, 593-603.

Toklu, B., & Ozcan, U. (2008). A fuzzy goal programming model for the simple U-

line balancing problem with multiple objectives. Engineering Optimization, 40(3),

191–204.

Urban, T. L. (1998). Optimal balancing of U-shaped assembly lines. Management

Science, 44, 738-741.

Urban, T. L., & Chiang, W. (2006). An optimal piecewise-linear program for the U-

line balancing problem with stochastic task times. European Journal of

Operational Research, 168, 771–782.

120

Vilarinho, P. M., & Simaria S. A. (2002). A two-stage heuristic method for balancing

mixed-model assembly lines with parallel workstations. International Journal of

Production Research, 40(6), 1405–1420.

Vilarinho, P. M., & Simaria, A. S. (2006). ANTBAL: an ant colony optimization

approach for balancing mixed model assembly lines with parallel workstations.

International Journal of Production Research, 44, 291-303.

Yano, C. A., & Rachamadugu, R. (1991). Sequencing to minimize work overload in

assembly lines with product options. Management Science, 37, 572–586.

