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CAPACITY IMPROVEMENT IN A REAL MANUFACTURING SYSTEM 

USING A HYBRID SIMULATION / GENETIC ALGORITHM APPROACH 

 

ABSTRACT 

 

          The primary aim of this M.Sc study is to suggest simulation and genetic 

algorithm based hybrid approach for capacity improvement in a real manufacturing 

system. In the first phase of the study, a detailed simulation model of the 

manufacturing system studied is developed using simulation language, Arena 10.0. 

Following, the verification and the validation of the model developed, potential 

bottleneck machines in this system are identified using this simulation model. In the 

following phase, the suggested hybrid method which combines genetic algorithm and 

simulation is employed to allocate buffers so that the capacity of the production line 

can be improved.   

 

 

Keywords: Simulation, genetic algorithm, hybridization, capacity improvement 
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GERÇEK BİR ÜRETİM SİSTEMİNDE HİBRİD SİMÜLASYON VE 

GENETİK ALGORİTMA YAKLAŞIMI KULLANILARAK KAPASİTE 

İYİLEŞTİRME 

 

ÖZ 

 

        Bu yüksek lisans çalışmasının esas amacı, gerçek bir üretim sisteminde kapasite 

iyileştirmek için simülasyon ve genetik algoritma tabanlı hibrid yaklaşımı ortaya 

koymaktır. 

 

    Çalışmanın ilk aşamasında, mevcut üretim sistemi Arena 10.0 ortamında 

modellenmiştir. İzleyen aşamada geliştirilen model değerlendirilip doğrulandıktan 

sonra mevcut sistemin simülasyon modeli ile sistemde darboğaz teşkil eden 

istasyonlar belirlenmiştir. Daha sonra, üretim hattında kapasite iyileştirmek için en 

uygun ara stok miktarlarını belirlemek amacıyla genetik algoritma ve simülasyon 

tabanlı hibrid yaklaşım geliştirilmiştir.  

 

 

Anahtar sözcükler: Simülasyon, genetik algoritma, melezleme, kapasite iyileştirme 
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CHAPTER ONE 

INTRODUCTION 
 

 

          In a world of increasing competition, it is of a great importance to improve the 

capacity of limited production resources. There are various factors affecting the 

capacity of production systems such as policies for demand management, layout, 

process technology, bottleneck machines and etc. Within the scope of capacity 

improvement studies bottleneck identification and optimal buffer allocation have 

been the subject of many studies and these subjects are still very active research 

areas.  

 

         As illustrated in Figure 1.1, bottleneck machines limit the output of a 

production system.  In other words, the capacity of a production system is 

determined by bottleneck machines. Any time lost on bottleneck machines affects the 

capacity of the whole system.  

 

 

 

                           Figure 1.1 A representation of bottlenecks in the product flow 

 

           As seen in Figure 1.2, placing buffers in front of bottleneck machines will 

help to reduce the starving time and blocking time, and increase the utilization of 

bottleneck machines and in turn, the capacity of the production line will improve.  

Solving the buffer allocation problem efficiently has a great effect on the 

performance of a system.  However, it should be noted that the improvement in 

system performance through buffer allocation is achieved at the expense of 

increasing in-process inventory levels. If the buffers are too large then the capital 
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cost incurred may outweigh the benefit of the increased productivity. If the buffers 

are too small, the machines will be underutilized or demand will not be met.  

 
 
 
  

 

 

 

 

 

 
           Figure 1.2 A representation of buffers in front of bottlenecks in the product flow 

 

 

        Due to these reasons, bottleneck detection and buffer allocation problems are 

still attracting many researchers. The most commonly used approaches to solve these 

problems are analytical methods, simulation modeling, and metaheuristics. Buffer 

allocation problem can be formulated analytically, but analytical results can be found 

for very simple cases under very restrictive assumptions.  Hence, it becomes 

necessary to develop alternate techniques which are computationally tractable and 

able to develop near optimal solutions.  

 

       Simulation modeling approach provides many advantages in modeling dynamic 

and stochastic systems in detail. As computer technology and simulation software 

have advanced in recent years, the cost of computer time has become much cheaper, 

and simulation software has become more widely available and in turn the use of 

simulation in modeling complex systems has become quite widespread. However, it 

should be noted that simulation modeling is not an optimization method and finding 

optimal system configuration with simulation is a time consuming process. 

Therefore, it is essential to employ an optimization method in conjunction with 

simulation model and this method is called as simulation optimization.  
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   Due to increasing success of metaheuristics such as tabu search, genetic 

algorithms, simulated annealing and etc. in solving many manufacturing optimization 

problems, the trend in recent years is to solve buffer allocation problem using these 

metaheuristics. Among these metaheuristic methods, genetic algorithms (GA) have 

many advantages such as performing multiple directional searches by using a set of 

candidate solutions, requiring no domain knowledge and using stochastic transition 

rules to guide the search. 

 

           Considering the advantages of both simulation modeling and genetic 

algorithms, this M.Sc. study focuses on production lines and proposes a hybrid GA-

based simulation approach to allocate limited buffer capacities to the stations so that 

some capacity improvements can be achieved in the line. As a result,  the approach 

taken in this study combines the key advantages of both simulation modeling and 

genetic algorithms. Specifically, the proposed approach employs a two-phase 

simulation-genetic algoritm procedure. In the first phase, a detailed bottleneck 

analysis has been carried out to identify what limits the capacity of the system by 

developing a discrete-event simulation model of the system. Following, the proposed 

hybrid approach is employed to allocate buffers to the machines so as to improve the 

performance of the system. In this hybrid approach, the simulation model of the 

production line is used to evaluate the fitness function of the genetic algorithm.  

 

       The rest of the study is organized as follows. In Chapter 2, detailed background 

information about bottleneck identification problem, buffer allocation for capacity 

improvement at bottleneck stations, simulation methodology, genetic algorithms and 

GA–based simulation optimization are given. In order to highlight the place of this 

study in the current literature, the current relevant studies are extensively discussed 

in Chapter 3. The proposed hybrid GA-based simulation approach is presented in 

Chapter 4. Finally, concluding remarks and the future research directions are given in 

the last section. 
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CHAPTER TWO 

BACKGROUND INFORMATION 

 

This section presents detailed background information about bottleneck 

identification problem, buffer allocation for capacity improvement of bottleneck 

stations, simulation methodology, genetic algorithms and GA-based simulation 

optimization.  

 

2.1 Bottleneck Identification Problem 
 

     Bottleneck identification problem has gained attention after the book “The Goal” 

was come onto the market. The author presented in his book a new vision on how to 

obtain a better process improvement by identifying bottlenecks to improve 

productivity. It is quite well known that the root cause of many performance 

problems is linked to the bottlenecks in the system (Lima et al., 2008). 

 

     According to Goldratt (1992), the flow of goods of an entire system is limited by 

the capacity of different machines. Depending on the nature of the system, some 

machines affect the overall system performance more than other machines. These 

machines are commonly called as bottlenecks.  

 

In general, the bottleneck types can be classified into three categories: 

 

• Simple Bottleneck (Grosfeld-Nir, 1995), 

• Multiple Bottlenecks (Aneja and Punnen, 1999), 

• Shifting Bottlenecks (Roser et al., 2002). 
 

In the case of simple bottleneck, there is only one bottleneck machine during the 

entire period considered as seen in Figure 2.1. For the multiple bottlenecks situation, 

the system consists of multiple stable bottlenecks through the entire period (see 

Figure 2.1). In shifting bottlenecks, as seen in Figure 2.1, the location of bottleneck 

machines in the system may change at any time. 
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      Figure 2.1 The basic configurations of bottleneck types (Lima et al., 2008) 

 
 

 In order to improve the performance of the system, the throughput of the 

bottlenecks has to be improved. In this case, it is necessary to first detect the 

bottlenecks in the system. During the survey of relevant literature, a number of 

methods have been noted to detect the bottlenecks. Some of these methods are based 

on utilization, using for example a matrix based approach to determine the overall 

constraint (Luthi, 1998; Luthi and Haring, 1997) or the ratio of the cycle time 
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divided by the processing time (Delp et al. 2003). Other methods use a system 

theoretic approach to determine the sensitivity of the machine throughput to the 

system throughput (Chiang, Kuo, and Meerkov, 1998; Chiang, Kuo, and Meerkov, 

2000; Chiang, Kuo, and Meerkov, 2002; Kuo, Lim, and Meerkov, 1996; Li and 

Meerkov, 2000). Bukchin (1998) compared a number of theoretical estimations of 

the system performance, and found that an estimator based on the machine 

bottlenecks works best (Roser et al., 2003). Moreover, Kasemset and 

Kachitvichyanukul presented a simulation-based procedure considering the 

machine/process utilization, the process utilization and the product bottleneck rate to 

identify potential bottleneck candidates (Kasemset and Kachitvichyanukul, 2007).    

 

     The main characteristics of the bottleneck detection methods are summarized in 

Table 2.1.  
 
 

  Table 2.1 Bottleneck detection methods (Kasemset and Kachitvichyanukul, (2007); Lima et al., (2008)) 
 

Method Characteristic Measurement 

 

1. Utilization Rate (%) 

 

The percentage of time that 
the production station is in 
use. The machine with 
higher utilization would be 
the bottleneck. 

 

Percentage (%) 

 

2. Bottleneck Rate (Rb) 

 

The bottleneck rate is the 
rate of parts/jobs per unit 
time. The machine having 
low value of output rate 
would be the bottleneck. 

 

- 

 

    3. Queue size in front of 

machine 

 

The number of products 
waiting the machine to be 
available. The machine that 
has the longest queue would 
be the bottleneck. 

 

Quantity of products 
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Continuation of Table 2.1 

 

         4. Waiting time in front of 
the machine 

 

It measures how long a 
product waits in front of a 
machine to be processed. 

 

Time 

 

5. Active period time 

 

Two states (i.e., active and 
non active) are considered. It 
measures the total time that a 
machine is in active state. 
The machine with the 
highest active period time 
would be the bottleneck. 

 

Time unit or percentage of time 

 

6. Shifting bottleneck method 

 

Total time (or percentage) 
that a machine is in the 
active state without any 
interruption.  

 

Time unit or percentage of time 

 

     In manufacturing systems, there often exists a bottleneck machine whose capacity 

is equal to or less than the market demand. Any idle or waste time at the bottleneck 

machine directly impacts the output of the entire plant because it results in a loss of 

throughput. After finding the bottleneck machine of a system, it is then possible to 

improve the performance of the bottleneck in order to improve the overall 

performance of the system. As a result, detecting and managing bottlenecks can have 

a major impact on performance of a manufacturing system.  

 

2.2 Buffer Allocation for Capacity Improvement at Bottleneck Stations 

 

     The buffer allocation problem (BAP) is an NP-hard combinatorial optimization 

problem. Many manufacturing systems such as transfer lines, flexible manufacturing 

systems or robotic assembly lines are vulnerable to bottleneck problems. BAP is 

mainly concerned with how to distribute a certain amount of buffers among the 
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intermediate storage spaces so that the production capacity of the system can be 

improved.  

 

By providing additional parts, buffers reduce the starving time and blocking 

time; hence, the utilization of bottleneck machines is increased. Figure 2.2 illustrates 

a configuration of a manufacturing system with input buffer & output buffer.  

 

 

 

 

 

 

 

 

 

 

 
            

        Figure 2.2 Manufacturing system with input buffer & output buffer 

 

 

However, the improvement in system performance is achieved at the expense of 

increasing in-process inventory levels. If the buffers are too large then the capital 

cost incurred may outweigh the benefit of the increased productivity. If the buffers 

are too small, the machines will be underutilized or demand will not be met. Since 

buffers have a great effect on the performance of the system, the buffer allocation 

problem is still a major optimization problem faced by manufacturing designers. 

 

The buffer allocation problem consists of distributing a certain amount of buffer 

space among the intermediate buffers of a production line. Figure 2.3 shows a serial 

production line consisting of M machines and M−1 buffers.  

 
 

WorkstationMachine

Input buffer Output buffer
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  Figure 2.3 A serial production line with buffers. 

 

 

The buffer allocation problem was considered in the literature with respect to 

different optimality criteria. The commonly used among them are summarized as 

follows (Dolgui et al., 2002): 

 

• The average steady-state production rate, P(B), i.e. the average number of 

parts produced in time unit, 

• The total buffer capacity, B = B1 + B2 + B3 +…+ BM-1, 

• The average steady-state inventory cost, Q(B)=c1B1+c2B2+...+cM-1BM-1, 

where Bi is the average steady-state number of parts in buffer i and ci is the 

cost for each buffer size. 

• and different combinations of the above criteria.   

 

Considering these optimality criteria, the buffer allocation problem can be 

represented mathematically in three forms. As seen below, while one employs the 

maximization of the throughput rate of the line as an objective function, the second 

one focuses on the minimization of the total buffer space. In the case of third 

optimality criterion, the minimization of the inventory cost is achieved. 

 

Formulation 1: This formulation expresses the maximization of the throughput 

rate, given a certain fixed amount of buffers, as follows: 

 

Find B = (B1, B2,  B3,…, BM-1)            so as to  

    max P(B)                                                                                             (1) 
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  subject to 

       ∑
−

=

1

1

M

i

Bi  = K                                                                                            (2) 

             Bi nonnegative integers (i = 1,2,…, M-1)                                         (3) 

 

where K is a fixed nonnegative integer denoting the total buffer space available in the 

system which has to be allocated among the M-1 buffer locations so as to maximize 

throughput of the production line. In this formulation B represents a buffer vector, 

and P(B) represents the throughput rate of the production line. 

 

Formulation 2: This formulation expresses achieving the desired throughput rate 

with the minimum total buffer space, as follows: 

 

Find B = (B1, B2,  B3,…, BM-1)  so as to  

              min ∑
−

=

1

1

M

i
Bi                                                                                             (4) 

     subject to 

              *)( PBP ≥                                                                  (5) 

 

              Bi nonnegative integers (i = 1,2,…, M-1)                                         (6) 

 

where M is the number of machines in the line, B  is a buffer vector, P(B) is the 

throughput rate of the production line and P* is the desired throughput rate. 

 

Formulation 3: This formulation expresses the minimization of the average 

steady-state inventory cost subject to the total buffer constraint. 

 

Find B = (B1, B2,  B3,…, BM-1)  so as to  

             min i

M

i
i BcBQ ∑

−

=

=
1

1

)(                                                                           (7) 

     subject to 
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                      ∑
−

=

1

1

M

i

Bi  ≤ K                                                                   (8)                 

 

              Bi nonnegative integers (i = 1,2,…, M-1)                                        (9) 

 

     In this formulation B represents a buffer vector, ci represents the cost for each 

buffer location and K is a fixed nonnegative integer denoting the total buffer space 

available in the system which has to be allocated among the M-1 buffer locations so 

as to minimize the averae steady-state inventory cost of the production system.  

 

     Solution approaches to solve buffer allocation problem involve applying a 

generative method and an evaluative method in an iterative manner. In other words 

generative methods and evaluative methods are combined in a closed loop 

configuration. In this configuration an evaluative method is used to obtain the value 

of the objective function for a set of inputs. To search for an optimal solution, the 

value of the objective function is then communicated to the generative model. 

 

     Simulation and analytical methods such as traditional Markov state models, 

decomposition methods, aggregation methods are examples of evaluative 

approaches. In comparison to simulation, analytical methods are faster but they are 

usually constructed under some restrictive assumptions which may not be 

computationally effective in dealing with real world buffer allocation problems. If 

the objective is to realistically model a large and complex system, as in the case of 

our study, simulation provides many advantages in comparison to analytical 

methods. However, simulation is generally an expensive tool in terms of time and 

monetary resources. 

 

In buffer allocation problem, the simplest method to obtain the optimal buffer 

sizes is complete enumeration. But the total number of feasible solutions increases 

exponentially when the total buffer size, K, and the number of machines in the 

system, M, are large. The number of possible buffer configurations can be calculated 

as follows: 
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2

2
−
−+

M
MKC  =  

)!2(
)2)...(2)(1(

−
−+++

M
MKKK                             (10) 

   

     For instance, if the production system involves only ten machines and the number 

of total buffers to allocate is 50, then the total number of feasible buffer allocations 

becomes 1.916.797.311 indicating the computational difficulty to search through the 

whole solution space by complete enumeration even for small sized problems. Thus 

various search methods and metaheuristics have been tried to effectively deal with 

the combinatorial nature of the buffer allocation problems. The Hooke-Jeeves 

method, knowledge based methods, dynamic programming based methods and 

various heuristic procedures are as examples of the search methods category. In 

recent years, metaheuristic approaches are also widely used to solve buffer allocation 

problem such as Genetic Algorithms (GAs), Tabu Search, Simulated Annealing, and 

Ant Colony Optimization. 

 

    In particular it is proven that Genetic algorithms is an effective tool for various 

combinatorial optimization problems. The power and simplicity of GA make it 

popular for even large scale optimization problems (Boyabatlı&Sabuncuoğlu, 2004). 

However, as problems get larger and more complex as in real life, pure GAs may 

lack the capability of exploring the solution space effectively. Hence, over the last 

years, a number of studies have been reported combining the various methods and 

metaheuristics named as hybridization. In this M.Sc. study,  a hybrid approach 

combining simulation and GAs is proposed to solve the buffer allocation problem in 

a real-world production system. The further details about these two methods are 

explained in the following sections. 

  

2.3 Simulation Methodology 

    Simulation is one of the most commonly used tool for the design and operation of 

complex processes or systems (Kozan, 2003). Banks et al. (2001) define simulation 

as the imitation of the operation of a real-world process or system over time. This 

method involves building a model of a system and experimenting with the model 

to determine how the system reacts to various conditions. One of the disadvantages 
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of simulation is that it does not provide an optimum solution, rather simulation is a 

descriptive tool and it only provides estimates of some performance measures. 

Simulation technique simply provides us with a mechanism to understand and 

predict the behaviour of a system. Once developed and validated, a model can be 

used to investigate a wide variety of “what-if” questions about the real world system. 

 

As it is stated above, simulation can be used to investigate systems in the 

design stage, before such systems are built. Thus, simulation modelling can be 

used both as an analysis tool to predict the effects of changes to existing systems, 

and also as a design tool to predict the performance of new systems under varying 

sets of circumstances (Banks et al., 2001). Due to the recent advancements in 

simulation technology and also increasing computational power with less cost, 

the use of simulation has evolved to the point that the decision makers do not 

consider the simulation models developed for design of a system as throw-away 

tools any more. Rather, once the system in operation, they extend the use of these 

models to performance evaluation and performance improvement.  

 

It should be noted that besides developing simulation models with animation 

features using special purpose simulation languages such as ARENA and 

PROMODEL in a microcomputer environment, some rudimentary simulations can 

be performed in hand-held pocket computers using spreadsheet software. So all 

these developments summarize the widespread use of simulation in recent years.  

 

As given in Figure 2.4., a simulation study involves many steps (Banks et 

al.,2001).  
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      Figure 2.4 Steps of a simulation study 
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The short explanations for these steps are given as follows: 

 

• Problem Definition: Simulation studies are initiated because a problem is faced 

by a decision maker or group of decision makers and a solution is needed (Ay, 

2009). Once the problem at system is defined and decision makers all agree 

that is a problem, model builder must ensure that the problem being described 

is clearly understood.  During the development process by the model builder, 

the problem can be reformulated as the study progresses in accordance with 

desicion makers’ demand. 

 

•     Setting of Objectives and Overall Project Plan: The objectives indicate the 

questions to be answered by simulation (Banks et al., 2001). Simulation 

models can be developed for a wide variety of purposes such as: 

 
 Evaluation of system performance, 

 Prediction of system behaviour in response to recent changes made in the 

system, 

 Comparison of different system designs, 

 Optimization of any system parameters by hybridizing simulation with other 

methods, 

 Sensitivity analysis, bottleneck analysis. 

 

         Following the formulation of the problem and stating the objectives explicitly 

as given above, it is made sure that simulation is the appropriate methodology and 

the overall project is planned in terms of cost, the number of people to be involved in 

this project and time required to accomplish each phase of the work.  

 

•     Model Conceptualization: The construction of a model of a system is as 

much art as science. The art of modelling is enhanced by an ability to abstract the 

essential features of a problem, to select and modify basic assumptions that 

characterize the system, and then to enrich and elaborate the model until a useful 

approximation results. Thus it is best to start with a simple model and build 
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toward greater complexity (Banks et al., 2001). Graphical representations (block 

diagrams, flow charts, etc.), and pseudo-codes are used to conceptualize the 

model. Figure 2.5 depicts the model conceptualization scheme as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                        Figure 2.5 Model conceptualization 

 

•     Data Collection: There is a constant interplay between the construction of the 

model and the collection of the needed data (Shannon, 1975). The necessary 

input data can be collected through different information sources. In general, 

historical data is used for simulation analyzes. Since data collection for 

simulation study takes such a large portion of the total time reqired to perform 

a simulation, it is essential to begin for data collection from the early stages of 

model building. 

REAL WORLD SYSTEM 

 
ASSUMED SYSTEM 

 
CONCEPTUAL MODEL 

 
LOGICAL MODEL 
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•    Simulation Model Development: Since most real world systems result in models 

that require a great deal of information storage and computation, the model is 

translated into a computer-recognizable format (Banks et al., 2001). The model 

builder can achieve the model translation in two ways: programming the model 

in a general purpose language or in a special purpose simulation software as seen 

Figure 2.6.  

 

 

 

 

 

 

 

 

 

 
        Figure 2.6 Coding schemes 

 

 

•      Model Verification: Model verification is the process of determining if the 

operational logic is correct. In other words, to assure that the conceptual model 

is reflected accurately in the computerized representation is the main purpose 

of model verfication. The model builder must observe if the simulation model 

translated performs accurately during this phase. In complex models, it is 

difficult and sometimes impossible to debug the simulation software 

successfully. Many common-sense suggestions which are explained in the 

book of Banks et al. (2001) are used for the verification process as follows: 

 

 asking someone else to check the model,  

 making a flow diagram that includes each logically possible action a 

system can take when an event occurs,  

CODING 

General Purpose Language Special Purpose Simulation 
f

C++, Visual Basic, GPSS/H, ARENA, ProModel, WITNESS, 
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 examining the model output for reasonableness under a variety of input 

parameter settings,  

 printing the input parameters at the end of the simulation to check that 

they have not been changed inadvertently, 

 Using graphical representations to simplify the task of model 

understanding. 

 

         Also, it should be noted that use of an interactive run controller, or 

debugger, is highly encouraged as an aid to the verification process. Once 

logical structure of the model is correctly represented in the computer, 

verification has been completed. 

 

•     Model Validation: Model validation is the determination that the conceptual 

model is an accurate representation of the real system (Bank 2000). There are 

many methods to perform validation process. Most common way to validate 

the model is to compare its output to that of the real system using a wide 

variety of techniques. Some of them can be summarized as follows: 

 

  High face validity: Insuring by consulting knowledgeable people and 

sensitivity analysis, 

  Statistical tests: Conducting these tests on assumed distrtibutional forms 

(i.e. hypothesis tests, confidence interval tests, etc), 

  Turing test: Utilizing persons’ knowledge about the system. 

 

• Experimental Design: In this step, decisions need to be made for simulation 

model in terms of the length of simulation process, the number of replications 

to be made each run and the length of the initialization period. 

  

• Execution of Experiments: Once experimental designs are carried out, the 

simulation runs and the subsequent analysis are done to estimate performance 

measures for the model that is being simulated. 
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• Documentation&Reporting: Documentation is an important step for a 

simulation study. This process eases the modification of the simulation in the 

future and also allows for others to understand how the program operates. 

Musselman (1998), discusses progress reports that provide the important, 

written history of a simulation project. These reports give a chronology of 

work done and decisions made. This can prove to be of great value in keeping 

the project on course (Banks et al., 2001). 

 
•  Implementation: As a last step,  all the decisions made as a result of simulation 

study are implemented in the real system and the performance is observed for 

follow-up studies.  

 
 
2.4 Genetic Algorithms 

 

     In recent years, metaheuristic approaches have been widely adopted by a number 

of researchers to solve buffer allocation problems. One of the most popular 

metaheuristic approaches dealing with this problem is Genetic Algorithms. 

 

  Genetic Algorithms (GAs) are adaptive heuristic search algorithm premised on 

the evolutionary ideas of natural selection and genetic. The basic concept of GAs is 

designed to simulate processes in natural system necessary for evolution, specifically 

those that follow the principles first laid down by Charles Darwin of survival of the 

fittest (Calvino et al., 2007).  

Algorithms (GAs)  
First pioneered by John Holland in 1975, Genetic Algorithms have been widely 

studied, experimented and applied in many fields. Many of the real world problems 

involve finding optimal parameters, which might prove difficult for traditional 

methods but ideal for GAs. (De Jong, 1993). GAs have been succesfully adapted to 

solve several combinatorial optimization problems in the literature and have become 

increasingly popular among metaheuristic approaches for finding optimal or near 

optimal solutions in a reasonable time. As explained in the book of Haupt&Haupt 
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(2004), the popularity of GAs among other metahuristic approaches can be attributed 

to the following features of GAs. GAs 

 

 Optimize continuous or discrete variables, 

  Work with numerically generated data, experimental data, or analytical 

functions. 

 Do not require derivative information, 

 Simultaneously search from a wide sampling of the cost surface, 

 Deal with a large number of variables, 

 Are well suited for parallel computers, 

 Optimize variables with extremely complex cost surfaces,  

 Provide a list of optimum variables, not just a single solution, and 

 May encode the variables so that the optimization is done with the encoded 

variables 

 
Genetic algorithms simulate natural evolution on a computer in which a 

population of abstract representations (called chromosomes) of candidate solutions 

(called individuals) to an optimization problem evolves toward better solutions 

(Akgündüz, 2008). Each solution is represented through a chromosome, which is just 

an abstract representation (Sivanandam and Deepa, 2008). In GAs, chromosome 

representation, which considers the structure of the search space and reproduction 

operators is one of the most difficult task. The chromosomes can be represented with 

various encoding schemes such as using bits, numbers, arrays, etc. and the encoding 

scheme depends on the structure of the problem. In other words, the way the 

encoding process performs differs from problem to problem. 

 

       The genetic search initializes with an initial population of individuals and 

proceeds throughout the generations. In each generation, individuals are 

stochastically selected from the current population depending on the relative fitness 
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values and following, these individuals are modified to form a new population using 

crossover and mutation operators. The new population generated from this process is 

then used in the next iteration of the algorithm. The algorithm terminates when the 

population converges to the optimal solution. The aim during the iterative search is 

eventually to find solutions to a combinatorial optimization problem where the 

objective function value approaches the global optimum. 

 

        The Genetic Algorithm process is illustrated in Figure 2.7. 

 
  

 

 

 

 

 

 

 

 

  Figure 2.7 Genetic algorithm cycle 

 

2.4.1 Terminology of Genetic Algorithms 

 

In order to understand the philosophy of genetic algorithms, the basic terms 

relating to GAs must be defined. These basic components include encoding scheme, 

initial population, fitness function, selection scheme, genetic operators (mutation and 

crossover), replacement scheme and termination criteria. 

 

In GA terminology, chromosomes are made of discrete units called genes, each of 

them controls one or more features of the chromosome. Genes are assumed to be 

Genetic operations 

Selection 

Evaluation             
(Fitness function) 

Population 
(Chromosomes) Offspring Decoded string 

Reproduction 
Mate 
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binary digits in the original implementation of GA by Holland (see Figure 2.8). 

However various chromosome types have been introduced in later implementations 

such as given in Figure 2.9. 

 
 

1 1 0 1 0 0 1 0 1 1
 

                                              Figure 2.8 Binary chromosome representation 

 

 

 

 

 

                                                   Figure 2.9 Value encoding scheme 

 

 

     Normally, a chromosome corresponds to a unique solution in the solution space. 

This requires a mapping mechanism between the solution space and the 

chromosomes. This mapping is called an encoding. In fact, GA works on the 

encoding of a problem, not on the problem itself. The use of an inappropriate coding 

scheme has been the cause of many GA failures (Taşan, 2007). The encoding process 

can be performed using bits, numbers, trees, arrays, lists or any other objects.  

 

     GAs operate with a group of chromosomes, called a population. The two 

important aspects of population used in Genetic Algorithms are the initial population 

generation scheme and the population size. 

 

     In most of the cases, the initial population is generated randomly.  But there may 

be instances where the initialization of population is carried out with some known 

good solutions. Moreover, sometimes some heuristics can be used to seed the initial 

population.  

 

     As for population size, it is generally known that the population size depends on 

the complexity of the problem. Goldberg has shown that GA efficiency to reach 

A C A B C D E D E E
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global optimum instead of local ones is largely determined by the size of the 

population. To sum up, a large population is quite useful. But it requires much more 

computational cost, memory and time. 

 

     The fitness of an individual in a genetic algorithm is the value of an objective 

function for its phenotype. For calculating fitness, the chromosome has to be first 

decoded and the objective function has to be evaluated. The fitness not only indicates 

how good the solution is, but also corresponds to how close the chromosome is to the 

optimal one (Sivanandam&Deepa, 2008). 

 

     Selection is the process that randomly picks individuals out of the population 

according to their fitness function. The individuals are selected among existing 

chromosomes in the population with preference towards fitness and exposed to 

genetic operations such as crossover and mutation. The Figure 2.10 illustrates the 

basic selection process.  
 

 

              Figure 2.10 Basic selection process  (Sivanandam &Deepa, 2008) 

 

 

    Two popular selection schemes are roulette wheel selection and tournament 

selection. Roulette wheel selection, proposed by Holland (1975), is the best known 

selection type (Gen and Cheng, 2000). Coley (2003) summarizes the roulette wheel 

selection as follows: 
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11..  Sum the fitness of all the population members. Call this fsum. 

 

22..  Choose a random number, Rs, between 0 and fsum. 

 

33..  Add together the fitness of the population members (one at a time) stopping 

immediately when the sum is greater Rs. The last individual added is the 

selected individual and copy is passed to the next generation. 

 

     Other popular selection scheme, tournament selection is proposed by Goldberg 

and Deb in 1991. In this scheme, two individuals are randomly choosen from the 

population, and then a random value (r) is generated for the fittest individual 

selection. If the random value (r) is smaller than a probability value of the individual, 

that individual is selected. Otherwise, the other one is chosen. Selected individuals 

are returned to the population and can be chosen again as a parent (Park et al., 2003). 

 

     Crossover and mutation are the genetic operators in GAs in order to generate new 

individuals from selected chromosomes in a population. In crossover, two 

chromosomes, namely parents, are selected and they are combined together to form 

new chromosomes, namely offspring. Crossover operator is used for the hope that it 

creates a better offspring. This operation proceeds in three steps: 

 

1. The reproduction operator selects at random a pair of two individual strings for 

the recombination, 

2. A cross site is selected randomly along the string length, 

3. Finally, the position values are swapped between the two strings selected 

following the cross site. 

 

The Figure 2.11 explains one-point crossover operation. 
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Parent 1:                                                            Parent 2:   

                                                  

1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1  1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1

 

 

 

 

 

 

 

 

Offspring 1:                                                                Offspring 2: 

 

1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1  1 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1
 

 
  Figure 2.11  One-point crossover 
 

     Crossover rate, Rc, is defined as the ratio of the number of offspring produced in 

each generation to the population size. This ratio controls the expected number of 

chromosomes to undergo the crossover operation. A higher crossover rate allows 

exploration of more of the solution space and reduces the chances of settling for a 

false optimum; but if this rate is too high, it results in the wastage of a lot of 

computation time in exploring unpromising regions of the solution space (Gen and 

Cheng, 1997).  

 

     Mutation has traditionally been considered as a simple search operator. Crossover 

and mutation operators are used in a genetic search in such a way that crossover 

exploits the current solution to find better ones, and mutation helps for the 

exploration of the whole search space. Mutation is viewed as a background operator 

to maintain genetic diversity in the population. It introduces new genetic structures in 

the population by randomly modifying some of its building blocks. Mutation helps to 

Cross site
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escape from local minima’s trap and maintains diversity in the population. It also 

keeps the gene pool well stocked, and thus ensuring ergodicity. A search space is 

said to be ergodic if there is a non-zero probability of generating any solution from 

any population state (Sivanandam et al., 2008). There are many different forms of 

mutation for the different kinds of representation.  Figure 2.12 shows the simplest 

mutation, which is performed by changing the value of a randomly selected gene 

from 0 to 1 (or from 1 to 0) in a binary string.  
 

   Parent 

1 0 0 1 1 0 1 0 1 0 

 

                                              Randomly selected gene  

   Offspring  

1 0 0 0 1 0 1 0 1 0 

 

    Figure 2.12 The simplest mutation 

 

 

     Mutation rate, denoted by Rm, controls the rate at which new genes are introduced 

into the population for trial. If this rate is too low, many genes that would have been 

useful are never tried out; but if it is too high, there will be much random 

perturbation, the offspring will start losing their resemblance to the parents, and the 

algorithm will lose the ability to learn from the history of the search (Gen and Cheng, 

1997).  

 

     A replacement scheme is used to decide which individual stay in a population and 

which are replaced by offsprings, generated by crossover or mutation. The 

individuals of the new generation can be generated in three different ways. These 

ways are summarized as follows:  

 

(i)  individuals from the current generation,  

(ii) offspring product of crossover, 

(iii) individuals who underwent mutation.  
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     The most commonly used replacement strategy is elitism, which makes survival 

of some number of the best individuals at each generation; hence guaranteeing that 

the final population contains the best solution ever found.  

 

     Through a termination criterion embedded into the genetic algorithm it is decided 

whether to continue the genetic search or stop the search. The various stopping 

conditions which are explained in the book of Sivanandam&Deepa (2008) are 

summarized as follows: 

 

• Maximum generations: The genetic algorithm stops when the specified 

number of generations evolves. 

• Elapsed time: The genetic process ends when a specified time elapses. If the 

maximum number of generation is reached before the specified time elapses, 

the process ends. 

• No change in fitness: The genetic process ends if there is no change to the            

best fitness of population for a specified number of generations. If the                   

maximum number of generation is reached before the specified number of 

generation with no changes is reached, the process ends. 

• Stall generations: The algorithm stops if there is no improvement in the 

objective function for a sequence of consecutive generations. 

• Stall time limit: The algorithm stops if there is no improvement in the 

objective function during an interval of time.  

 

      As seen in Figure 2.13, the genetic search is carried out following all the steps 

explained above.  
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    Figure 2.13 The flow chart of genetic algorithm 
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2.4.2 Identifying Efficient GA Control Parameters 

 

      Another important decision faced in many GA applications is the identification of 

efficient GA control parameters to ensure high performance. Although GA seems to 

be a robust algorithm which contains same operators and has the same algorithmic 

logic for different applications, in fact the algorithm itself is significantly different 

for distinct problems. The main reason is that GA has several parameters and any 

combination of these parameters has different impacts on the performance of GA 

(Boyabatlı&Sabuncuoğlu, 2004). As a result, identification of the efficient GA 

parameters plays a crucial role on the quality of solution and convergence speed of 

GA application. The control parameters such as the population size, the generation 

number, the crossover rate, the mutation rate, the selection type and the termination 

criteria must be chosen with care before the evolution starts. Since, the efficient 

control parameter values are problem specific, it is necessary to carry out extensive 

experimental studies to identify the values of these control parameters. But it should 

be noted that this is often a time consuming task.  

 

      The two important aspects of parameter setting efforts which are explained in the 

study of Eiben et al. (1999) are used to identify the efficient GA control parameters: 

parameter tuning and parameter control. Parameter tuning is commonly used in 

evolutionary computation. Before the algorithm performs, the values of each 

parameter are selected and then the genetic search starts with these parameter values 

and these values remain fixed during the iterative search. In contrast to parameter 

tuning, in the case of parameter control the algorithm starts with some initial 

parameter values and these values are allowed to be changed during the run.  

 
 

2.5 GA-based Simulation Optimization 

 

      The optimization of manufacturing system simulations is one of the most 

important and most researched subjects in discrete event simulation (Boesel et al. 

2001; Fu et al. 2000). In simulation optimization, simulation is used as a tool to 

optimize certain parameters of a simulated system in order to improve the system 
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performance. Simulation-based optimization has been a fruitful domain considering 

the approximate optimization techniques, such as stochastic approximation, random 

search, metaheuristics (Can et al., 2008). Simulation-based optimization techniques 

have been widely applied to various combinatorial optimization problems. Among 

these optimization techniques, use of metaheuristics, in particular genetic algorithms 

has led to an increased interest in simulation optimization.  

 

       In GA-based simulation optimization, GA is integrated with simulation 

modeling during the calculation of the fitness value of the selected individuals. The 

fitness value as a performance function is estimated by means of simulation. For 

every individual of a particular generation simulation results are used to assess the 

fitness of the corresponding individual. During the survey of current relative 

literature, we have noted quite number of studies (Bulgak et al., 1995; Wellman and 

Gemmill, 1995; Ding et al., 2003; Boyabatlı and Sabuncuoğlu, 2004; Gholami and 

Zandieh, 2008) successfully integrating discrete-event system simulation with GAs 

for the optimization of manufacturing systems.  
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CHAPTER THREE 

REVIEW OF CURRENT LITERATURE 

 

      This chapter presents a review of current relevant literature. Particularly, we 

focused on studies dealing with the problem of buffer allocation for capacity 

improvement at bottleneck stations. The surveyed literature has been discussed with 

respect to methodology (i.e. exact methods or hybrid approaches), application 

environment (i.e. real or hypothetical), objective function (i.e. single or multiple 

objective function) and the type of the problem (deterministic or stochastic) as seen 

in Figure 3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1 Structural framework for reviewing 

 

      Following the review of current relevant literature, motivation for this M.Sc. 

study is explained in detail.  
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3.1 Discussion of Current Relevant Literature 

 

     Buffer allocation problems have been studied by many researchers since 1950s 

(Vladzievskii, 1950, 1951; Sevastyanov, 1962; Buzacott 1967). During the last 

twenty years, there has been even a growing interest in this problem. A chronological 

list of the work published since 1998 is given in Table 3.1 As seen in the table, the 

features of these studies are summarized with respect to the methodology, the 

application environment, the objective functions and type of the problems studied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

33 
 

 

Table 3.1 Overview on buffer allocation in the literature since 1998 

Methodology Application 
Environment Objective Function Problem Type 

Paper 
Exact Method Hybrid Real Hypothetic Single Multiobjective Deterministic Stochastic 

Lutz et al. (1998)   Simulation-
Tabu search   x   Max througput 

Min. İnventory   x 

Yamashita and 
Altiok (1998)  

Simulation- 
Dynamic 

programming 
algorithm  

  x Min total 
buffer space     x 

Vouros and 
Papadopoulos (1998)   

Simulation-
Knowledge-
based system 

(ASBA2) 

  x Max 
throughput      x 

Harris and Powell 
(1999)   

Simulation-
Simplex search 

algorithm 
  x Max 

throughput      x 

Spinellis and 
Papadopoulos (2000)  

Genetic 
Algorithm-
Simulated 
annealing 
algorithm- 

Decomposition 
method  

  x Max 
throughput      x 

Gershwin and Schor 
(2000) 

Gradient method-
dual solution     x   

Min total buffer 
space            

Max throughput 
  x 

Papadopoulos and 
Vidalis (2001) 

Segmentation 
approach     x Max 

throughput      x 
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Continuation of Table 3.1  

Dolgui et al. (2002)  

Genetic 
Algorithm- 

Markov-model 
aggregation 
approach  

  x   Min cost         
Max throughput   x 

Altiparmak et al. 
(2002)  

Arttificial 
neural network, 

Simulated 
Annealing-

Approximation 
method  

 x Max 
throughput      x 

Patchong et al. 
(2003)  

Simulation-
Markov chain 

models 
x     

Min capital 
investment        
Max profit 

  x 

Shi and Men (2003)  
Hybrid nested 

partitions-Tabu 
search 

  x Max 
throughput      x 

Nourelfath et al. 
(2005)  

Ant system 
algorithm      x Max system 

efficiency     x  

Hillier and Hillier 
(2006) 

Cost-based 
modeling     x Max revenue     x  

Nahas (2006)   

Decomposition-
type 

approximation-
Degraded 

ceiling 
approach 

  x Max average 
throughput      x 
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Continuation of Table 3.1  

Bulgak (2006)  

Artificial neural 
network-
Genetic 

algorithm  

 x Max 
throughput     x 

Altiparmak et al. 
(2007) 

Artificial neural 
network 

metamodeling 
  x 

Comparison 
of 

metamodels 
  x 

Dolgui et al. (2007)  

Genetic 
algorithm-
Branch and 

bound approach

 x Max given 
function   x 

Nourelfath et al. 
(2008)  

Ant colony 
optimization-

Simulated 
annealing  

 x Max 
throughput   x 

Shi and Gershwin 
(2009) 

Nonlinear 
programming 

approach 
  x Max profit  x  

Massim et al. (2010)  

Artificial 
immune system 

optimization 
algorithm-

decomposition 
method 

 x  Max throughput 
Max profit  x 
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     In the literature, one broad categorization of methodologies for buffer allocation 

problems can be made by dividing into those that employ analytical methods and 

those that employ simulation. A number of studies also use some heuristics in 

combination with these approaches. Some of the analytical methods use Markov 

process to analyze the short production lines (Hunt 1956, Buzacott, 1967, Hillier and 

So, 1991, Hendricks 1992, Hillier et al., 1993, Hillier 2000, Hillier and Hillier 2006) 

while the others employ approximation methods such as decomposition method 

(Gershwin and Schor 2000, Helber 2001, Tempelmeir 2003, Shi and Men 2003, 

Nahas et al., 2006) and aggregation approach (Dolguie et al. 2002, 2007) in 

conjunction with an optimization method to determine the optimal buffer sizes for 

long production lines. During the survey of current literature, it has been noted that 

majority of studies listed in Table 3.1 including Powell and Pyke 1998, Yamashita 

and Altiok 1998, Harris and Powell 1999, Allon et al. 2005, Bulgak 2006, 

Sabuncuoglu et al. 2006, and Altiparmak 2007 employed an optimization method 

(i.e., exact methods or metaheuristics) in conjunction with simulation to solve the 

buffer allocation problem in production lines. In these studies,  simulation is used to 

obtain the value of the objective function for a set of inputs. To search for an optimal 

solution, the value of the objective function is then communicated to the optimization 

method. Considering the capability of modeling large and complex systems by 

simulation, simulation optimization method is widely used for solving buffer 

allocation problem as well as other manufacturing design problems.  

 

      The optimization methods used for solving buffer allocation problem can be 

classified as complete enumeration, dynamic programming, various search methods 

and metaheuristics. Among these methods, metaheuristic methods such as Genetic 

Algorithms (Dolguie et al, 2002, 2007), Tabu Search (Lutz et al, 1998, Shi and Men, 

2003), Simulated Annealing (Spinellis et al. 1999) and Ant Colony Optimization 

(Nourelfath, 2008) have been successfully used to solve buffer allocation problems.  

 

       Lutz et al. (1998) developed a simulation-search heuristic procedure based on 

tabu search, combined with simulation for the buffer location and storage size 

problem in a manufacturing line. Simulation is used to model the manufacturing 
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process and tabu search is used to guide the search to overcome the problem of being 

trapped at local optimal solutions. The procedure employs a Swap Search routine to 

identify good performing buffer profiles and determine the maximum output level for 

any given storage level and also Global Search routine to locate promising 

neighborhood of buffer profiles quickly. The objective of the specified problem is to 

maximize the output level of the line for the given buffer profile and minimize the 

total number of storage spaces in the production line given the buffer profile. 

 

       Yamashita and Altiok (1998) implemented a dynamic programming algorithm 

that uses a decomposition method to approximate the system throughput at every 

stage to find the minimum total buffer allocation for a desired throughput in 

production lines with phase-type processing times. Powell and Pyke (1998) studied 

simple asynchronous assembly systems with random processing times and developed 

simple heuristic rules that can be used to improve existing operations and to support 

line designers who are faced with increasingly rapid cycles of new product 

introduction. They also applied these heuristics in their study to several larger 

systems and discovered that perform quite well. Moreover in 1998, Vouros and 

Papadopoulos presented a knowledge based system, ASBA2, in close cooperation 

with a simulation method to maximize throughput of production line. In this study, 

ASBA2 determines near optimal buffer allocation plans and simulation provides 

ASBA2 with performance measures concerning production line behaviour. 

 

       Harris and Powell (1999) developed a simple search algorithm to determine 

optimal allocation of a fixed amount of buffer capacity in an n-station serial line. The 

algorithm, which is an adaptation of the Spendley-Hext and Nelder-Mead simplex 

search algorithms, uses simulation to estimate throughput for every allocation 

considered.  

 

       Spinellis and Papadopoulos (2000) presented two stochastic approaches -genetic 

algorithms and simulated annealing- and compared them for solving the buffer 

allocation problem in reliable production lines. The problem entails the 

determination of near optimal buffer allocation plans in large production lines with 
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the objective of maximizing their throughput. The allocation plan is calculated 

subject to a given amount of total buffer slots using simulated annealing and genetic 

algorithms and decomposition method is used to calculate the throughput of the 

production system. Gershwin and Schor (2000) were concerned with two problems: 

primal problem and dual problem. The primal problem, which minimizes total buffer 

space under a production rate constraint, is solved using the dual solution. The dual 

problem, which maximizes production rate subject to a total buffer space constraint, 

is solved by means of a gradient method in their study. Hiller (2000) considered 

optimal allocation of buffer storage spaces in unpaced production lines with variable 

processing times.  

 

      In 2001, Papadopoulos and Vidalis presented a heuristic approach based on 

segmentation for buffer allocation problem in short unbalanced production lines 

consisting of up to six machines that are subject to breakdowns. Sörensen and 

Janssens (2001) studied on n-machines production system which machines are 

separated by a finite buffer and subject to breakdowns. They investigated how the 

allocation of buffers can be expressed as a non-linear optimization problem in which 

the total cost of installing and using the buffers are minimized. 

 

      Dolgui et al. (2002) focused on a flow line manufacturing system organized as a 

series of workstations separated by finite buffers. The authors proposed a genetic 

algorithm where the tentative solutions are evaluated with an approximate method 

based on the Markov-model aggregation approach. The performance of the flow-line 

is measured in terms of average production rate (i.e. the steady-state average number 

of parts produced per unit of time). In another study, the same authors (Dolgui et al., 

2007) focused on the buffer space allocation problem for a tandem production line 

where the parts are moved from one machine to the next by some kind of transfer 

mechanism with unreliable machines is considered. They measured the performance 

of the proposed genetic algorithm with respect to the average steady-state production 

rate of the line and the buffer equipment acquisition cost. The fitness function is 

formulated as a maximization function considering amortization time of the line, 

revenue for the sold production per time unit, buffers acquisition cost.  
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       Grant et al. (2002) employed a simulation-based approach to determine delivery 

dates of orders based on dynamic buffer adjustment coupled with various methods to 

forecast the amount of buffer required by. The basic concept of their study is that, if 

a good job on buffer adjustment can be done, than the current behavior of the system 

can be exploited more effectively to actually establish promise dates (Grant et al., 

2002). 

 

      Altiparmak et al. (2002) integrated artificial neural networks metamodel 

approach with simulated annealing method for buffer size optimization in an 

asynchronous assembly system. An approximation method using Taylor series 

expansion probability generating function technique is suggested for the analysis of 

the average steady state throughput of serial production lines with unreliable 

machines.  

 

      Shi and Men (2003) introduced a hybrid algorithm based on nested partitions and 

a Tabu search method for production line optimization and they focused on 

maximizing the production rate of the line under a total buffer space constraint, 

rather than the profit of the line. 

 

      Roser et al. (2003) focused on the area of buffer allocation by creating a 

prediction model to estimate the effect of additional buffer capacity onto the system 

performance using only a single simulation. Their proposed method works for large 

systems, balanced and unbalanced systems, and serial and parallel manufacturing 

systems and the authors stated that their approach can be adapted to non-

manufacturing discrete event systems. 

 

      An excellent illustration of the value to industry in solving problems of buffer 

allocation was given by Patchong et al. in 2003. The authors demonstrated how 

methods for buffer allocation in designing PSA Peugeot Citroën car-body shop 

yielded substantial profits. 
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       Chararsoghi and Nahavandi (2003) proposed a heuristic approach to find the 

optimal allocation of buffers that maximizes throughput in the system. In this study, 

since the algorithm finds allocation without predetermined total buffer capacity, the 

proposed algorithm finds the optimal, or near optimal, allocation with less WIP.  

 

       Diamantidis and Papadopoulos (2004) also presented a dynamic programming 

algorithm for optimizing buffer allocation based on the aggregation method given by 

Lim, Meerkov, and Top (1990). The main focus of the authors was to suggest new 

dynamic programming based approaches to the production line design, rather than 

focusing on profit maximization (Shi and Gershwin, 2009).  

 

       Nourelfath et al. (2005) developed an efficient heuristic approach to solve 

optimal design problem. The aim of this study was to maximize the efficiency of 

system subject to a total cost constraint. The optimal design problem is solved by 

developing and demonstrating a problem-specific ant system algorithm inspired by 

the work of real ant colonies that exhibit highly structured. It has been noted that this 

algorithm can always find near-optimal or optimal solutions quickly. In the next 

publication of these authors in 2008, to estimate series-parallel production line 

performance, an analytical decomposition type approximation was proposed. The 

optimal design problem in this paper was formulated as a combinatorial optimization 

one where the decision variables are buffers and types of machines. The objective 

was to maximize production rate subject to a total cost constraint. To solve this 

design problem, ant colony optimization and simulated annealing methods were used 

and their performance were compared empirically through several test problems. 

 

        Smith and Cruz (2005) solved the buffer allocation problem for general finite 

buffer queueing networks in which they minimized buffer space cost under the 

production rate constraint, but they did not consider the average inventory cost. Alon 

et all. (2005) presented a stochastic algorithm for solving the buffer allocation 

problem, based on the cross-entropy method. Colledani et al. (2005) presented an 

approximate analytical method for the performance evaluation of a production line 

with finite buffer capacity, multiple failure modes and multiple part types.  
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       Bulgak (2006) presented a new approach in optimal buffer allocation problem of 

split-and-merge unpaced open assembly systems. In this approach, GA based 

artificial neural networks metamodeling procedure was developed and buffer 

allocations to accommodate the work-in-process inventories were optimized in an 

attempt to maximize the overall system production rate using.  

 

       Hillier and Hillier (2006) used a basic cost-based model that includes both 

revenue per unit of throughput and cost per unit of buffer space. They also 

investigated how the bowl phenomenon for workload allocation and the storage bowl 

phenomenon for buffer allocation interact when performing both allocations 

simultaneously.  

 

       Nahas et al. (2006) described a new local search approach for solving the buffer 

allocation problem to maximize the average throughput in unreliable production 

lines. An analytical decomposition-type approximation was used to estimate the 

production line throughput. It has been noted that the proposed approach allows the 

allocation plan to be calculated subject to a given amount of total buffers slots in a 

computationally efficient way. 

 

        Sabuncuoglu et al. (2006) characterized the optimal buffer allocation problem 

and specifically studied on the cases with single and multiple bottleneck stations 

under various experimental conditions. Moreover, an efficient heuristic procedure to 

allocate buffers in serial production lines was developed to maximize throughput. 

From the results of the computational experiments in this study, it can be stated that 

the proposed algorithm was very efficient in terms of both solution quality and CPU 

time requirements.  

 

       Altioklar et al. (2007) reviewed various applications of artificial intelligence 

techniques on manufacturing systems problems, in particular related to artificial 

neural networks. Due to this context, a metamodeling approach in terms of artificial 
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neural network metamodel has been proposed for asynchronous assembly systems 

buffer design problems.  

  

       Um et al. (2007) presented the simulation methodology for the buffer size 

determination in flexible manufacturing system cell line which was categorized into 

cell buffer and machine buffer. The simulation model was designed for developing 

flexible manufacturing system design in an Aspect-oriented environment. Aspect-

oriented approach provides a new way of thinking about flexible manufacturing 

system simulation design. They used the evolution strategy in order to find the 

optimal buffer sizes in the flexible manufacturing system cell line. Another 

simulation based study which discusses an optimal buffer allocation for short 

unpaced reliable production line was developed by Othman et al. in 2007. Simulation 

method was used to estimate throughput rate of the production line. As a result of 

this study showed that the allocation of buffers affects the throughput as an increased 

rate. 

 

       Qudeiri et al. (2008) presented a new GA-simulation-based method to find the 

nearest optimal design for serial-parallel production lines. In this study, three 

decision variables: buffer size between each pair of work stations, machine numbers 

in each of the work stations, and machine types have been considered for 

optimization. As a result, they attempt to find the nearest optimal design of a serial–

parallel production line that will maximize production efficiency.  According to the 

authors, one of the important tasks in using a GA is how to express a chromosome. 

For the efficient use of a GA, their GA methodology is based on a technique that is 

called the gene family arrangement method (GFAM), which arranges the genes 

inside individuals. 

 

      In a recent study, Shi and Gershwin (2009) introduced an unconstrained problem 

and they adopted a nonlinear programming approach for maximizing profits through 

buffer size optimization for production lines. In this study, both buffer space cost and 

average inventory cost with distinct cost coefficients for different buffers and a 

nonlinear production rate constraint have been considered. Battini et al. (2009) also 
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focused on allocation of storage capacity in serial production lines. They employed a 

new experimental cross matrix as a tool to determine the optimal buffer sizes. Using 

a simulation approach, this study evaluates the effects of workstation reliability 

parameters on buffer capacity level.  

 

      Massim et al. (2010) implemented a combined artificial immune system 

optimization algorithm in conjunction with a decomposition method to optimally 

allocate buffers in transfer lines. In this study the immune decomposition algorithm 

is used to determine optimal buffer allocation for maximum line throughput and 

maximum line economic profit. 

 

3.2 Motivation for This Study 

 

      As a result of surveying current relevant research, we might state that various 

approaches have been applied for the optimization of buffer allocation problem. 

Some of the most popular approaches include simulation, exact methods, 

metaheuristics or hybrid methods integrating different approaches. Some researchers 

employed exact methods to find optimal buffer allocation. However, the applicability 

of these methods is restricted to very specific systems.  

 

      Simulation method provides many advantages in comparison to exact methods to 

realistically model the buffer allocation problem in a large and complex system. 

However, the major drawback of simulation methods for practical applications is that 

it is generally an expensive tool in terms of time and monetary resources. Another 

drawback of simulation method is that it is a descriptive tool rather than a 

prescriptive tool. In other words, to use simulation method for optimization of 

decision variables is computationally very expensive. Due to the success of 

metaheuristics such as Ant Colony Optimization, Evolutionary Computation, 

Simulated Annealing, Tabu Search in solving combinatorial optimization problems, 

the trend in recent years is to integrate metaheuristics with simulation. The advantage 

of the metaheuristic approaches is that they always reach feasible solutions, but they 

do not guarantee optimality. We believe that when metaheuristic approaches are 
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integrated with simulation and the simulation model of the production line which 

models the stochastic behaviour of production line such as random machine 

breakdowns and stochastic processing times is used to evaluate the fitness function 

of the metaheuristic approach, the behaviour of real-world systems will be captured 

more realistically.  

 

        Therefore, the main goal of this study is to develop a hybrid method which 

combines a very widely used metaheuristic method, genetic algorithms and discrete-

event simulation model for optimization of buffer allocation problem. It is hoped 

that, the suggested hybrid approach for buffer allocation problem will be effective in 

improving the capacity of the production line studied and so that the company’s 

competitiveness in the long run will be enhanced. 
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CHAPTER FOUR 

PROPOSED HYBRID APPROACH  

 

      The main objective of this M.Sc. study is to develop a a hybrid approach 

combining genetic algorithm and simulation to improve the capacity of a production 

line in a real manufacturing environment. The proposed approach consists of genetic 

algorithms (GAs) and simulation modeling. GAs search the solution space by 

building and than evolving a population of solutions. The objective in this hybrid 

approach is to bring together the advantages of GAs and simulation modeling in 

solving buffer allocation problem. The main advantage of GAs over those based in 

sampling the neighbourhood of a single solution is that they are capable of exploring 

a larger area of the solution space with a a smaller number of objective function 

evaluations. In this study, during the iterative search the simulation model of the 

manufacturing system studied is used to evaluate the objective function of GAs. 

Reflecting dynamic and stochastic features of the manufacturing system, this 

simulation model helps to solve the buffer allocation problem in a more efficient and 

also more realistic way.  

 
       The following sections present how the GA is adapted to solve the buffer 

allocation problem and also the specifications of proposed hybrid simulation-GA 

approach. 

 

 
4.1 Hybrid Simulation-GA Approach 

 

      As given in Figure 4.1, the proposed hybrid simulation-GA approach is 

implemented in the second phase of this study. First, a simulation-based procedure is 

implemented to identify bottleneck stations in the system. The steps followed during 

these two phases are given in Figure 4.1.  
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   Figure 4.1 The flow diagram of the proposed hybrid approach 
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4.2 Specifications of the GA -Based Approach 

 

     In this section, the general specifications of the proposed GA-based approach are 

introduced. As it can be clearly seen from the Figure 4.1, the second phase of this 

proposed approach is based on the genetic search process for optimum buffer 

allocation. First, this process begins with the creation of the initial population. Once 

the initial population is generated, the fitness value of each individual is evaluated by 

a detailed simulation model of the production system. It should be noted that this 

simulation model was constructed for bottleneck identification in the first phase of 

the study. Next, the survival probabilities which are used to select individuals for 

possible crossover and mutation are calculated.  

 

     The selection of the individuals from the current population for reproduction has 

been done using roulette wheel selection scheme and the selected individual pairs 

produce the offsprings under genetic operations named as crossover and mutation. In 

the following phase, the quality of these newly created offsprings is evaluated using 

simulation model of the production system and the new population is generated by 

taking into account the replacement strategy (i.e elitism and random replacement). 

Lastly, the satisfaction of termination criterion is checked. If it is satisfied, this new 

generation becomes the final generation of the genetic search process and the best 

individual of this generation is accepted as optimum buffer sizes. If the termination 

criterion is not met, the generated population is transferred to the next generation for 

crossover and mutation operations. 

 

      In the following subsections, the specifications of the proposed GA based 

approach such as chromosome representation, initialization, fitness evaluation, 

selection, crossover, mutation, replacement and search termination schemes are 

explained in detail. 
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4.2.1 Chromosome Representation 

 

      Chromosome representation is one of the most important task for a successful 

application of GA. The way bit strings can code differs from problem to problem. In 

general, a binary string representation is the most common way of encoding genes 

because of its compatibility with genetic operations. The binary alphabet {0,1} is 

used to represent these genes which are encoded as a finite length string. 

 

      It should be noted that the binary string representation of coding schemes is used 

for buffer allocation problems. The whole string can represent an integer value, so 

this has been mapped each buffer size in this problem. Each buffer size represented 

increases with string length. Having identified bottleneck machines in the production 

system, next we employ this GA-based hybrid approach to decide how to allocate 

buffers to the machines in the system so as to improve the performance of the 

system. In this study, a chromosome represents a possible configuration of the buffer 

sizes as decision variables. Hence, each chromosome is composed of some unique 

parts to be allocated. For instance, the buffer size configuration of 13, 4, 15, 7 units 

means that 13, 4, 15 and 7 units of buffer stock will be allocated to the four 

machines. The integer value of each buffer size as a decision variable is represented 

as a binary string and the length of the string depends on the upper bound of each 

variable. When upper bound of a buffer size equals 15 as a constraint, four binary 

bits will be used to represent the variable. As a result, a chromosome of the buffer 

size configuration,  Buffer_sizes = [13, 4, 15, 7],  given in Figure 4.2 will be 

represented as a string of chrom. 
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     Chrom =   
 
 
 
 
 
                    
                                 
                                  1st                         2nd                            3rd                           4th 
                               variable                 variable                    variable                    variable 
 
 
  
                                                     
 
 
                                                                     
                                                            
                                                                    Buffer_sizes =  [13  4  15  7] 
 

 

           Figure 4.2 Binary coding representation of chromosome 

 

 

4.2.2 Initial Population 

 

      Initial population of chromosomes has been generated randomly and heuristically 

in this study. Such an initialization approach may yield illegal chromosomes in two 

aspects: violating the system constraints (i.e. facility capacity constraints, material 

handling constraints) and / or violating the upper bound (i.e. total number of buffers 

to allocate) (Gen&Cheng, 1997). It should be noted that a feasible checking step is 

constructed through the initialization procedure and as a result, infeasible solutions, 

which violate the system constraints, are not allowed in the population.  

 

      The initialization procedure can be summarized as follows:  

 

• Initilization Procedure: 

for i = 1 to population size, pop_size, 

      generate a chromosome, chromx; 

1 1 0 1 0 1 0 0 1 1 1 1 0 1 1 1 
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          if chromx is not feasible  

          i = i-1; 

          end 

end 

 

4.2.3 Fitness Evaluation  

 

       The aim of the GA-based simulation optimization approach proposed in this 

study is to determine optimum buffer capacities. Genetic algorithm module is 

combined with the simulation model in a closed loop configuration. In this 

configuration, the simulation model of the production line is used to estimate the 

fitness value i.e. average daily production rate as a function of buffer sizes. To search 

the solution space to determine optimal buffer sizes, the estimated fitness values are 

then communicated to the genetic algorithm module. 
 
       The fitness evaluation procedure in our proposed approach is given below: 
 

 

• Fitness Evaluation Procedure: 

for any individual to obtain the fitness value 

      write Buffer_sizes to an external file  

      execute the system file to run the simulation model 

read average fitness value and maximum fitness value from an external 

file   

            end 

 

4.2.4 Selection Scheme 

 

       The most commonly used traditional GA selection schemes are roulette wheel 

and tournament selection. In roulette wheel selection, the principle is a linear search 

through a roulette wheel with the slots in the wheel weighted in proportion to the 

fitness values of individuals. Unlike the roulette wheel selection, tournament 

selection provides selective pressure by holding a tournament competition among the 
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individuals. To decide which selection scheme to use in this study, a comparative 

experimental study has ben carried out considering the existing production system 

and in this experimental study the total buffer capacity, population size, generation 

number, crossover rate, mutation rate, and elitism percent are set to 60, 30, 40, 0.6, 

0.042, and 25%, respectively. The results of this experimental study comparing the 

two selection schemes based on average production rate, maximum production rate 

and total buffer capacity are given in Table 4.1. As it is seen in the table, the 

performance of the roulette wheel selection scheme dominates the performance of 

tournament selection scheme in all criteria.  

 

Table 4.1 Results of experiment for selection scheme 

Selection Scheme 
 Tournament selection Roulette wheel selection 

Average 0.1345 0.1374 
Best solution 0.1351 0.1381 
Buffer sizes B={ 21 13 13 11} B={ 5 15 12 14} 
Total buffer capacity 58 46 

 

 

Hence, as a result of this pilot experimental study, it has been decided to use 

the roulette wheel sampling which employs the fitness proportionate selection 

method. In roulette wheel selection, first, the fitness values of the individuals within 

the population are scaled and then cumulative survival probabilities are calculated. 

Below the algorithm of this selection sheme is given. 

 

•  Fitness Proportionate Procedure: 

           for i = 1 to pop_size 

       calculate Total_Fitness    i.e.,  the sum of all fitness values in the population. 

end 
for i = 1 to pop_size 

             calculate Prob_Fitness     i.e., survival probabilities for every individual. 

             calculate Cum_Prob_Fitness  i.e., cumulative survival probabilities for every 
individual. 

            end  
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      Following, two individuals are chosen at random from the current population for 

reproduction. To select an individual, first, a uniform random number within the 

interval (0, 1) is generated, and then the member whose cumulative survival 

probability is greater than the generated number has been selected as an individual.  

 

      The selection procedure is given as follows: 

 

• Selection Procedure: 

 loop until offspring_candidate = 2  i.e., two individuals to select a parent; 

     generate a random number, rand_num,  between 0 and 1  

       for i = 1 to pop_size 

         if rand_num less than cumulative survival probability 

            offspring_candidate has been selected  

        end 

        end 

  end 

 

4.2.5 Crossover (Recombination) 

 

      Crossover is the main genetic operator that combines two chromosomes from the 

current population to produce two new offsprings for the next population. The idea 

behind crossover operation is that the offspring may be better than both of the 

parents if it takes the best characteristics from each of the parents. Crossover 

operation occurs during evolution according to a specified crossover probability rate. 

The crossover probability rate, Rc, is used to determine if the offspring will represent 

a blend of the parents. If no crossover takes place according to the crossover 

probability, the two offsprings are clones of their parents. But, if crossover occurs, 

the two offsprings are produced for the next population.  

 

       Once the fitness proportionate calculations and the selection process have been 

carried out, crossover operation can begin. The proposed GA performs two-point 
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crossover operation (Sivanandam&Deepa., 2008). In two-point crossover, first, two 

crossover points are chosen randomly and then the contents between these points are 

exchanged between two parents to produce two new offspring. The process of 

crossover operation is illustrated in Figure 4.3. 

 

 

Parent 1:                                                                        Parent 2:   

                                                  

1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1  1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1

 

 

Offspring 1:                                                                Offspring 2: 

 

 

 

1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1  1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1
 

 
 

 

Figure 4.3  Two-point crossover 
 

  

4.2.6 Mutation 

 

      Mutation is an important part of the genetic search to introduce new genetic 

structures in the population by modifying one ore more gene values in a 

chromosome. This can result in entirely new chromosomes being added to the next 

population. Similar to the crossover operation, mutation operation occurs during 

evolution according to a specified mutation probability rate defined as Rm. This rate 

is used to decide how often gene values of chromosomes will be mutated.  

 

      In our proposed GA,  the mutation operator, which is applied to each gene, is 

implemented by interchanging mutation (Sivanandam&Deepa., 2008). In the 

  Crossover points
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interchanging mutation, two random positions on the chromosome are chosen and 

the bits corresponding those pozitions are interchanged 0 to 1 or 1 to 0. Figure 4.4 

illustrates how the interchanging mutation operates.  

 

                      Parent: 

1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1
 
                     Offspring: 
 

1 1 0 1 0 0 0 1 0 0 0 1 1 1 0 1
 

                         

                           Figure 4.4  Interchanging  mutation 

 

 

4.2.7 Replacement Scheme 

 

      Replacement is a vital stage in GAs to form a new population for the next 

generation. This scheme is used to decide which individual to stay in a population 

and which are transferred to the next generation. The most commonly used 

replacement scheme is elitism, which enables the survival of some number of the 

best individuals at each generation. Hence, this scheme guarantees that these best 

individuals from previous generation are always present in a population.  

 

     In this study, elitism replacement scheme is employed to ensure preservation of 

the best chromosomes at each generation. The rest of individuals in each generation 

are selected randomly from the current population using crossover and mutation 

operators. 

     

      The replacement procedure can be summarized as follows: 

 

• Replacement Procedure: 

 

   calculate elitist_value based on pre-defined percent rate 
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   loop until elitist_value is satisfied  

     select the best individuals to new population for the next generation  

     end 
     loop until the value of (pop_size - elitist_value) is met 

     select the individuals randomly among the current population and 
individuals who                                          

     underwent crossover and mutation    

     end 
    new_population for the next generation has been created  

 

 

4.2.8 GA Search Termination 

 

      Termination criterion is the last decision point by which the genetic algorithm 

decides whether to continue searching the solution space or stop evolution. Hence, 

after each generation, it has been checked to see if it is time to terminate the 

algorithm. 

 
      As explained in earlier chapter, the search of solution space is terminated using 

various stopping conditions. In this study, the performance of genetic process is 

evaluated by calculating the maximum fitness and average fitness for each generation 

and this procedure continues for prespecified number of generations. When the 

number of generations created is equal to this prespecified number, the relative 

difference between maximum fitness and average fitness is checked. If the difference 

is less than 0.5 (i.e, commonly used threshold value in published literature), the 

genetic process ends. Otherwise, the algorithm proceeds with further generations. 



 

 57 
 

  CHAPTER FIVE  

AN INDUSTRIAL CASE STUDY 

 
 
      This chapter presents an industrial case study carried out a local company 

operating in Izmir, Turkey.  The objective is to improve the capacity of heat 

exchanger production line by implementing the proposed hybrid approach in two 

phases. In the first phase of the study,  a detailed stochastic and dynamic simulation 

model of the line is developed to identify bottleneck machines. The objective is to 

use this information for initial population generation in the second phase of hybrid 

simulation-GA approach. In the second phase, hybrid simulation-GA approach is 

employed to decide how to allocate buffers to the machines so that throughput of the 

line can be maximized. The following section explains the application environment 

and the problem studied.  

 

5.1 Application Environment and Problem Definition 

     The manufacturing company considered in this study was founded in Izmir. It is 

one of the largest European manufacturers of thermotechnology (heating units, etc.) 

sector. Moreover, this company participates in the areas of automotive and industrial 

technology, building technology and consumer goods in Turkey. The company 

adopts customer oriented manufacturing and commits themselves to producing high 

quality industrial products for domestic and foreign markets. 

      Since 1991, this manufacturing company has been conducting its operations at its 

facilities over 25.500 sqm. total production capacity.  It produces different types of 

heat exchangers, copper pipe coils, atmospheric brulors and various copper pipes at 

this manufacturing area. Among these products, the production of heat exchangers is 

considerably high in comparison to others. Since thousands of component parts and 

various models of heat exchangers are produced in the heat exchanger production 

line, a great portion of the setup times and production times are spent in this line. 

That is why, capacity improvements in this line is expected to have a great effect on 

the performance of manufacturing system. Because of these reasons, this industrial 
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case study has been carried out in the heat exchanger production line which is 

composed of pressing, forming, welding and test stations. As it is seen in Figure 5.1, 

at some stations parallel machines take place. 

 

 

 

 

 

 

 

 

 

 

 

 
      Figure 5.1 Production flow in the heat exchanger production line 

 

     In heat exchanger production line, seven types of heat exchangers are produced. 

In this study, these products are named as HE1, HE2, HE3, HE4, HE5, HE6 and 

HE7. As it is seen in Figure 5.2, these products are subject to seven processing 

operations which are pressing, subassembly, oven process, welding, testing-

controlling and finally packaging.  
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    Figure 5.2 Description of heat exchanger process
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     It should be noted that this company is produce-to-order type. First, based on 

customer specifications, the steel rolls are smoothed and cut. Next, using different 

types of moulds for each type, the steel rolls are processed at the press station in 

batches. As a result of press operation, six types of parts which are named as LM1, 

LM2, LM3, LM4, LM5 and LM6 are produced (see Table 5.1 for process times) and 

as seen in Figure 5.1 these parts are temporarily stocked at the supermarket area 

before they are sent to the subassembly station. 

 

Table 5.1 Process times at the press station 

 
Parts 

Process Times            
(in minutes) 

LM1 0.0103 

LM2 0.0138 

LM3 0.0097 

LM4 0.013 

LM5 0.0217 

LM6 0.013 
 

 

      Changing from one type of mould to another requires a set-up operation. To fit an 

appropriate distribution to the setup time records kept in the company, Input 

Analyzer of ARENA 10.0 has been employed, and input distributions given in Table 

5.2 are estimated.   

 

 

 

  

 

 

 

 

 

                  

Table 5.2 Modeling set-up times at the pres station 

 Setup Times (in minutes) 

Parts LM1 LM2 LM3 LM4 LM5 LM6 

LM1  ---------- unif(41,47) unif(27,33) unif(32,38) unif(42,48) unif(37,43) 

LM2 unif(27,33) ----------  unif(28,34) unif(27,33) unif(27,33) unif(42,48) 

LM3 unif(27,33) unif(39,45) ----------  unif(32,38) unif(42,48) unif(27,33) 

LM4 unif(32,38) unif(35,41) unif(32,38) -----------  unif(35,41) unif(35,41) 

LM5 unif(27,33) unif(32,38) unif(34,40) unif(27,33) ----------  unif(35,41) 

LM6 unif(35,41) unif(27,33) unif(29,35) unif(27,33) unif(27,33) -----------  
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      Following the machine visitation sequences given in Table 5.3, these parts are 

eventually converted into four types of heat exchangers which are named as HE1, 

HE2, HE3 and HE4. Unlike these four products,  the subassemblies for other three 

products (i.e., HE5, HE6 and HE7) are outsourced, and they are further processed in 

heat exchanger production line following the machine visitation sequences in Table 

5.3. 

 

       It should be noted that like in the case of set-up times, input analysis of ARENA 

V10.0 has been employed to fit a distribution to process times kept in the company 

records, and input distributions given in the last column of Table 5.3 are estimated. 

 

 

Table 5.3 Product routes and process times (in minutes) in each machine 

 Product routing - Process times (in minutes) 

Product Type Total Number of 
operations 

Machine in 
visitation 
sequence 

Process time (in 
minutes) 

2 unif(15.285, 17.1683) 
6 norm(7.89,1.167) 
7 unif(8.167,8.252) 
8 norm(1.467,0.0333) 
9 unif(0.666,0.917) 

HE1 6 

13 unif(1.25,1.417) 
3 unif(15.017, 15.55) 
6 norm(7.373, 0.08) 

10 unif(2.75, 3.11) 
11 unif(2.25, 2.42) 
12 unif(1.67, 2.13) 

HE2 6 

13 unif(1.25, 1.42) 
4 unif(18.167, 16.583) 
6 norm(3.89, 1.08) 
7 unif(18.17, 18.33) 
8 unif(1.19, 1.31) 
9 unif(0.67, 1.25) 

HE3 6 

13 unif(1.25, 1.42) 
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Continuation of  Table 5.3 
 Product routing - Process times (in minutes) 

Product Type Total Number of 
operations 

Machine in 
visitation 
sequence 

Process time (in 
minutes) 

5 unif(22.067, 22.4) 
6 norm(6.89, 1.08) 
7 unif(9.33, 9.53) 
8 unif(1.03, 1.11) 

HE4 5 

9 unif(0.73, 0.87) 
6 norm(5.89, 1.17) 
7 unif(22.17, 22.25) 
8 norm(2.47, 1.73) 
9 unif(3.67, 4.32) 

HE5 5 

13 unif(2.25, 2.42) 
6 norm(1.37, 0.08) 
7 unif(14.43, 14.63) 
8 unif(3.19, 4.91) 
9 unif(3.67, 4.25) 

HE6 5 

13 unif(2.25, 2.42) 
6 norm(5.89, 1.08) 
10 unif(4.75, 6.35) 
11 unif(4.25, 5.42) 
12 unif(5.67, 6.33) 

HE7 5 

13 unif(2.25, 2.42) 
 

 

5.2 Phase I: Bottleneck Identification Using Simulation Modelling 

 

     This section presents a simulation-based procedure to identify bottleneck 

machines in heat exchanger production line. To develop a simulation model of the 

line, first a conceptual model is developed, next it is coded in ARENA V10.0, and 

before the model is run to identify the bottleneck machines, it is verified and 

validated. These steps are given in detail in the following sections. 
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5.2.1 Model Conceptualization 

 

      Model conceptualization is an important part in a simulation study. A conceptual 

model reflects the control structure of a simulation model. The logic followed to 

develop the simulation model of the heat exchanger production line is given in 

figures 5.3 and 5.4. Figure 5.3 represents the logic followed in simulating the 

production of parts LM1, LM2, LM3, LM4, LM5, LM6. Likewise, Figure 5.4 

exemplifies the logic followed in simulating the processing of both in-house 

produced and also outsourced parts.    
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 Figure 5.3 The control logic of simulation model for part production 
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     Figure 4.4 The logic for system modelling approach 
 
 

 

 

 

 

 

 

 

 

Figure 5.4 The control logic of simulation model for main production system 
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Continuation of Figure 5.4 
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 Continuation of Figure 5.4 

 

 

5.2.2 Simulation Model Development 

 

     Discrete-event simulation models are generally used to imitate the operations of 

systems over time. Due to their ability to evalute the performance of systems 

realistically they are used for decision support in many areas including facility layout 

design, supply chain management, production planning, etc. In this M.Sc. study, 

discrete-event simulation modeling has been employed for bottleneck identification 

in heat exchanger production line. The detailed simulation model of this line has 

been developed under the following assumptions using simulation language Arena 

V10.0:  
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• The plant operates eight hours per day and five days in a week including 50 

and 15 minutes breaks for meal and cleaning, respectively. 

• Raw materials are always available and there is always space for the finished 

products, 

• The capacity of storage for work-in-process is not limited. 

• Each workstation is operated by one operator, except for Welding_Op1 station, 

• The processing times at all stations, except for press station which is 

automated are stochastic, 

• Setup times are stochastic, 

• Travel times between the stations are negligible, 

• Machines are subject to breakdown. Input Analyzer of ARENA V10.0 has 

been employed to fit appropriate distributions to the records of failure and 

repair rates kept in the company. (see Table 5.4)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Since the company operates on the basis of make to order and starts production 

with no work-in-process, the warm-up period has not been considered. 

Table 5.4 Modeling machine failures and repair times (in minutes) 
 

 
Time between failures 

(min) 
Repair time          

(min) 

Press_machine expo(140) expo(20) 

Subassembly_machine1 expo(70) expo(25) 

Subassembly_machine2 expo(100) expo(30) 

Subassembly_machine3 expo(55) expo(36) 

Subassembly_machine4 expo(145) expo(48) 

Oven expo(240) expo(60) 

Welding_machine1 expo(40) expo(33) 

Welding_machine2 expo(150) expo(20) 

Test_machine1 expo(90) expo(28) 

Test_machine2 expo(190) expo(10) 

Control_machine1 expo(200) expo(115) 

Control_machine2 expo(150) expo(120) 

Package_machine expo(90) expo(28) 
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     In simulation modeling, to determine the correctness of the model, two essential 

functions should be carried out. These two functions are verification and 

validation. Next section explains verification and validation of the simulation 

model developed. 

 

5.2.3 Verification and Validation 

 

     Model verification makes sure that the conceptual model is correctly converted 

into a computer simulation model. Unlike model verification, validation of model is 

usually defined to measure the accuracy of model within its applicability of system. 

Computerized model should be in a satisfactory range of accuracy consistent with the 

intended application of the model. Hence, verification and validation are of crucial 

importance in the development of computer simulations. 

 

     In this study, the verification has been done by developing the model in a modular 

manner, using interactive debuggers, and manually checking the results. Using 

Arena’s build-in Trace element, it is possible to observe whether a product moves on 

its route harmonized to the system logic or not. As a result, all the movements of 

products through the model have been observed step by step using the trace element.  

 

      Moreover, the operational model has been animated to verify the actual system 

until no logical errors related to the flow of products are observed.  A screenshot of 

animation environment is represented in Figure 5.5.  
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Figure 5.5 Animation view of the whole system  
 

 

     Furthermore, the accuracy of the simulation model developed in this study has 

been validated by using hypothesis testing and confidence interval testing at a 95% 

level of confidence. Hypothesis tests are conducted to compare the model output 

with the observed output of the actual system.  Similarly, confidence interval testing 

is used to evaluate whether the simulation and the real system performance measures 

are close enough. As a result of a field study at company site, it has been noted that 

at average, 50 heat exchangers are produced per day. To compare this observed 

value, with the simulation output, the simulation model of the heat exchanger 

production line has been replicated 10 times, and the confidence interval at 95% 

level of confidence has been estimated. As shown in Figure 5.6, since this confidence 

interval covers the observed daily production, we might state that the simulation 

model truly represents the real system at 95% level of confidence.   

  
 
 
 
 
 
 
 



 

 

71

 

 
 

 

 

 

 

 
 

 

 

 

 

  Figure 5.6 Average daily throughput at 95% confidence interval 

 

5.2.4 Bottleneck Identification 

      Having verified and validated the simulation model, next we carried out various 

experimental studies to identify the bottleneck machines. For this purpose, we run 

the simulation model 10 times and recorded average machine utilizations and 

average number of parts in each machine queue. As it is seen in Figures 5.7 and 5.8, 

the machines 4, 5, 6 and 7 (i.e. subassemly machine_3, subassemly machine_4, oven, 

and welding_op1) having highest utilizations and highest number of parts waiting to 

be processed are identified as bottleneck machines. 

 

 

 

 

 

 

 
  

 

 

 

    Figure 5.7 Utilization rates of machines 
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  Figure 5.8 Number of parts in queue 

 

 

     The next section explains how the capacity of this line can be improved by using 

the proposed hybrid approach. It should be noted that in the following phase the 

information about potential bottleneck stations is taken into consideration in 

generating the initial population of GA. The objective is to allocate buffers as 

effectively as possible both with respect to solution time and also solution quality. 

 

 

5.3 Phase II: Capacity Improvement by Employing the Proposed Hybrid 

Approach  

      In this phase, we employed our hybrid simulation-GA approach to make a 

decision on how to allocate buffers to the machines in the line so that the throughput 

of the line can be improved.  

       As it is seen in Figure 5.9, the proposed hybrid approach is based on integration 

of a genetic algorithm module with a simulation module in a closed loop 

configuration. It should be noted that as explained in section four the proposed 

genetic algorithm is adapted to the intrinsic features of the production line studied. 

Through this integration the genetic algorithm module suggests a buffer 

configuration at each iteration. Next, this buffer configuration is used as an input in 
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the simulation model of heat exchanger production line. The other set of data 

provided as input data to the simulation model include daily production plans for 

each part and product type, product routes, machine failure and repair rates, and 

machine processing and setup times. Using all these input data, the simulation model 

evaluates the fitness of a given buffer configuration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
 

 

Figure 5.9 Structure of the proposed hybrid approach 

 

 

      Next section presents the computational experiments done for the efficient GA 

parameter setting.  
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5.3.1 Identifying Efficient GA Control Parameters 

 

      Genetic algorithms have several parameters and any combination of these 

parameters has different impacts on the performance on GA. For this reason, 

identification of the efficient GA parameters is very important to the accuracy of 

solution and convergence speed of GA application.  

 

      In this study, by fixing the total number of chromosomes at 1200, the 

experimental design given in Table 5.5 was employed to identify the effects of 

different control parameters (i.e. the combination of the population size and number 

of generations (P/G), the crossover rate (Rc), the mutation rate (Rm) and selection 

percent for elitism (Se). 

 
Table 5.5 Experimental factors 

 

Factors Levels 

Population size / Generation number  (P/G) 20/60 30/40 

Crossover rate (Rc) 0.60 0.80 

Mutation rate (Rm) 0.028 0.033 

Selection percent for elitism (Se) 25% 50% 

 

 

      As it is seen in Table 5.6, there are four distinct control parameters and hence, 24 

factorial design is employed to search for efficient levels of these GA control 

parameters.  Five independent runs were carried out at each design point leading to 

80 runs and ANOVA was used to determine the statistical significance of each effect 

on fitness. The fitness function involves estimation of average daily throughput per 

minute using the simulation model of the heat exchanger production line. 
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Table 5.6 24 full factorial experimental layout 

        

    

     As given in earlier sections, the heat exchanger production line consists of 

thirteen workstations. In front of twelve stations, buffers are allocated using proposed 

hybrid approach. Hence, this buffer allocation problem involves twelve decision 

variables denoting how to allocate the existing buffer capacity to these twelve 

stations. The genetic algorithm has been coded in Matlab V7.6 language and the 

results of ANOVA are summarized in Table 5.7.  As seen in Table 5.7, only 

population size/generation number, P/G is found to be statistically significant factor 

as a result of this factorial experiment.  
 

 

 

 

 

 

 

 

 

Experiment 
no 

Population size / 
Generation 

number 

Crossover 
rate, Mutation rate, Selection percent 

for elitism 

 PS/G Rc Rm Se 

1  20/60 0.60  0.033  25% 
2  20/60 0.60  0.033 50% 
3  20/60 0.60  0.028 25% 
4  20/60 0.60  0.028 50% 
5  20/60 0.80 0.033  25% 
6  20/60 0.80 0.033 50% 
7  20/60 0.80 0.028 25% 
8  20/60 0.80 0.028 50% 
9  30/40  0.60  0.033  25% 
10  30/40 0.60  0.033 50% 
11  30/40  0.60  0.028 25% 
12  30/40 0.60  0.028 50% 
13  30/40  0.80  0.033  25% 
14  30/40 0.80 0.033 50% 
15  30/40  0.80  0.028 25% 
16  30/40 0.80 0.028 50% 
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Table 5.7 ANOVA results 

Source of variation df Fcalc Prob(F>Fcalc) 

Within + residual 15 4.614 0.000 
P/G 1 62.136     0.000  * 
Rc 1 0.505 0.205 
Rm 1 0.174 0.822 
Se 1 0.194 0.539 
Ps/G * Rc 1 1.187 0.768 
Ps/G * Rm 1 0.004 0.717 
Ps/G * Se 1 0.000 0.924 
Rc * Rm 1 0.078 0.662 
Rc * Se 1 1.009 0.263 
Rm * Se 1 0.151 0.768 
Ps/G * Rc * Rm 1 3.218 0.075 
Ps/G * Rc * Se 1 0.392 0.522 
Ps/G * Rm * Se 1 0.020 0.779 
Rc * Rm * Se 1 0.019 0.556 
Ps/G * Rc * Rm * Se 1 0.119 0.495 

 

     A scatter plot of responses for each run (i.e., average daily throughput) with 

respect to all factors studied is given in Figures  5.10 through 5.13. The scatter plot in 

Figure 5.10 suggests that the runs involving a population of 30 with 40 generations 

achieve the higher throughput rate with the minimum spread. Increasing the 

population size enlarges the search space and apparently more individuals are 

created. Hence, probability of reaching better solutions increases. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
       Figure 5.10 Analysis of different population sizes 
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      As it is seen in Figure 5.11 and also supported by the findings of ANOVA 

analysis, it appears that different levels of crossover rate has no discernible effect on 

fitness value. It should be noted that a similar behaviour is observed with mutation 

probability rates and also with selection rates for elitism replacement scheme (see 

Figures 5.12 and 5.13). 

 

 
      

 

 

 

 

 

 

 

 

 

 

               

                Figure 5.11 Analysis of different crossover probability rates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

              Figure 5.12 Analysis of different mutation probability rates 
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       Figure 5.13 Analysis of different selection percent rates for elitism replacement scheme 

 

      In summary, except for indicating population size/generation number as a 

statistically significant factor the results of ANOVA did not help much to give a 

direction for significant control parameters. Likewise, the scatter plot of responses 

for each run with respect to each GA parameter led to a consistent pattern only for 

population size/generation number. Hence, to determine efficient GA parameter 

settings, we closely examined each scatter plot given above and decided that the GA 

control parameters, P/G, Rc, Rm, and percent of elitism for replacement strategy with 

values 30/40, 0.80, 0.033 and 50%, respectively are giving higher fitness values in 

majority of runs. So the values of these four GA parameters are set accordingly.  

Next section explains the steps involved in implementation of the proposed hybrid 

GA-based simulation approach.  
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5.3.2 Structure of the Proposed Hybrid Approach 

 

     In general, the problem of optimal buffer allocation has been considered with 

respect to different optimality criteria. The most commonly used criterion is the 

average steady-state production rate, i.e. the average number of parts produced in 

time unit as in the case of this study. Considering the available floor space in the heat 

exchanger production line to accommodate buffers, the upper limit of the total 

number of buffers to allocate is set to 70. It should be noted that the total buffer 

capacity, K, is considered as system constraint do determine the feasibility of the 

solutions obtained. Based on this limitation, for total number of buffers, K= 70 and 

the number of machines, n=13,  the whole search space has a volume of 11
81C  = 

2.371.707.585 over 2 billion solutions. In this case, the search for a globally 

optimum solution in such a large search space is very difficult. Hence, using 

metaheuristic methods to solve such problems becomes inevitable.  

 

     In this study, the genetic algorithm has been implemented in Matlab V7.6 

language. The simulation model of the heat exchanger production line which has 

been developed using Arena 10.0 simulation language. The simulation model has 

been run for 10 times to obtain the fitness value of the candidate solution, i.e. 

production rate, and this value is communicated to the genetic search module in an 

iterative manner. 

 

      The details of this hybridized GA-based simulation approach is summarized step 

by step as follows: 

 

Step 0: Initialization  

    As a result of experimental studies for efficient GA parameter setting, the 

population size is set to 30 and the genetic search is terminated after 40 generations. 

Initially,  population of buffer configurations is empty and generation number,  k, is 

set to 0. Since buffers are allocated to twelve machines in the production line, a 

chromosome is composed of twelve unique parts.  So, each chromosome represents a 

possible configuration of the buffer sizes as a decision variable. The integer value of 
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each decision variable is represented as a binary string. The length of the string 

depends on the upper bound of total number of buffers to allocate. A chromosome 

alternative which is named as chrom1 in Figure 5.14 represents that 7, 1, 2, 5, 2, 2, 0, 

4, 1, 12, 0 and 3 units of buffer will be allocated to these twelve machines.  

 

chrom1: 

 

 
   1st               2nd         3rd       4th           5th          6th    7th        8th         9th        10th        11st   12nd                           
                                
 
 
 
                                                     
                                               
 
              
                                                    Buffer_sizes =  [7  1  2  5  2  2  0  4  1  12  0  3] 
 
 

Figure 5.14 Binary coding representation of alternative chromosome 

 

 

Step 1: Initial population generation 

     At this step, an initial population is generated in two ways: randomly and 

heuristically. Meanwhile, the feasibility of each individual is checked by considering 

system constraints such as the maximum capacity of each buffer location and also the 

total buffer capacity.  

  

Step 2: Evaluation of initial population 

     Once all chromosomes of the current solution are created, the fitness of each 

chromosome is evaluated using the simulation module.  Then, the generation 

iteration number, k, is set to 1. 
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Step 3: Selection of parents 
       Based on the results of comparative experimental study explained in previous 

chapter,  the roulette wheel selection scheme, which scales the fitness values of the 

members within the population so that the sum of the rescaled fitness values equals 

to 1, has been used for the reproduction process in the algorithm.  

 

Step 4: Crossover and mutation 

      Using 0.80 and 0.033 as values of the crossover and mutation parameters, 

respectively, new populations are created by crossover and mutation, and individuals 

are checked for feasibiliy.  Infeasible individuals are excluded from the population 

and the new parents are selected for crossover. After selection, the crossover 

operation has been repeated and recombination has been carried out. Unlike the 

crossover operation, individuals which violate the system constraints have been 

directly eliminated after mutation operation without any repetition.  

 
Step 5: Evaluation of offsprings 

       The fitness of the newly formed offsprings is evaluated based on daily 

production rate using the simulation module.   

 
Step 6: Replacement of the individuals to next generation 

     To survive the individuals to the next generation, elitism replacement scheme, 

which provides 50% of the best individuals in the new population is used and the rest 

of other individuals to survive to the next generation is selected randomly among the 

current population and the new individuals are formed by crossover and mutation. 

After all, the generation iteration number, k, is set to k+1 and the genetic search 

continues by Step 3 until the termination criterion is satisfied.   
 
Step 7: Search Termination 

     As mentioned before, the algorithm is terminated after a specified number of 

generations by taking into consideration the maximum fitness and average fitness. If 

there is a significant difference between the maximum fitness and the average fitness,  

the algorithm proceeds with further generations. 
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      Next section presents the implementation of the proposed hybrid GA-based 

simulation approach to a real-world industrial problem. Namely, this industrial case 

study illustrates the benefits (i.e., capacity improvement by buffer allocation to the 

machines in the line ) that can be obtained by implementation of this hybrid 

approach.   

 

5.3.3 Implementation of the Hybrid Approach 

 

     In this section, three alternative genetic searches have been carried out to make a 

decision on optimum buffer allocation for capacity improvement in the heat 

exchanger production line.  These alternative genetic searches are summarized as 

follows: 

• Search 1: Using random initial population generation, 

• Search 2:  Using heuristically initial population generation, 

• Search 3: Using random initial population generation considering bottleneck 

machines. 

 

     The implementations of these alternative genetic searches are explained in detail 

in the following subsections. 
 

 

      5.3.3.1 Hybrid GA-Based Simulation Approach Using Random Initialization 

Scheme 

 

     This section presents the implementation of the hybrid approach using random 

initialization scheme for buffer allocation problem. This scheme involves allocating 

the total buffer capacity through all the machines in the production line randomly. A 

representation of buffer areas in the heat exchanger production line is given in Figure 

5.15.  
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Figure 5.15 Buffer areas in front of all machines in the production line 

   
 
 

The mathematical formulation of this buffer allocation problem can be 

depicted as follows: 

 

Find B = (B1, B2,  B3,…, B12)            so as to  

        max P(B)                                                             

    subject to  ∑
=

12

1i

Bi  ≤ 70  

     B1≤5,   B2≤7,    B3≤15,   B4≤20,   B5≤25,   B6≤15,              

             B7≤3,    B8≤3,    B9≤3,     B10≤3,    B11≤3,    B12≤3 

 

                   Bi nonnegative integers (i = 0,1,2, …, 12)  
                            
 

     This formulation expresses the maximization of the throughput rate P(B), under a 

given amount of buffers. The total buffer space available in the system which has to 

be allocated among twelve buffer locations is considered to be at most 70. Moreover, 

it should be noted that an upper bound is considered for each buffer location.  
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     The results of implementing the proposed alternative approach using random 

initial population generation to solve the buffer allocation problem in heat exchanger 

production line are given in Table 5.8.  The columns in this table show the genaration 

number, the buffer size configurations, maximum production rate, average 

production rate and the relative difference which is found as by dividing (maximum 

fitness – average fitness) to maximum fitness. 
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Table 5.8 Results of  the genetic search       

 

Gen. 
No B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

Max 
Fitness / 

Production 
Rate 

Average 
Fitness / 

Production 
Rate 

Relative 
Difference (*)

0 0 0 0 0 15 5 3 3 2 0 1 0 0.0940 0.0496 0.472   
1 3 4 0 0 15 5 3 3 2 0 1 2 0.1325 0.0860 0.351   
2 4 0 0 0 15 8 2 2 2 0 1 2 0.1639 0.1145 0.301   
3 3 4 1 16 23 9 3 3 2 2 1 2 0.1494 0.1145 0.234   
4 1 4 4 0 23 9 3 3 3 0 1 2 0.1470 0.1157 0.213   
5 1 4 0 1 3 9 3 3 3 0 1 2 0.1590 0.1169 0.265   
6 3 5 8 16 15 10 2 2 3 0 3 2 0.1639 0.1248 0.238   
7 1 6 2 1 3 9 3 3 3 0 1 2 0.1687 0.1325 0.214   
8 1 4 8 9 3 9 3 3 3 1 1 2 0.1687 0.1325 0.214   
9 1 6 2 1 3 9 3 3 3 0 1 2 0.1687 0.1325 0.214   

10 3 4 0 9 10 9 3 3 2 3 3 2 0.1687 0.1342 0.204   
11 3 4 0 9 10 9 3 3 2 3 3 2 0.1687 0.1342 0.204   
12 1 4 0 9 10 9 3 3 3 1 1 2 0.1711 0.1349 0.211   
13 1 4 0 9 10 9 3 3 3 1 1 2 0.1711 0.1349 0.211   
14 1 5 0 9 10 9 2 3 3 1 1 2 0.1711 0.1349 0.211   
15 1 6 0 9 10 9 3 3 3 0 1 2 0.1711 0.1349 0.211   
16 1 5 0 9 10 9 2 3 3 1 1 2 0.1711 0.1349 0.211   
17 3 6 0 9 10 9 3 3 3 1 1 2 0.1711 0.1349 0.211   
18 1 6 0 9 10 9 3 3 3 1 1 2 0.1711 0.1349 0.211   
19 1 6 0 9 10 9 3 3 3 1 1 2 0.1711 0.1349 0.211   
20 1 5 0 9 10 9 2 3 3 1 1 2 0.1711 0.1349 0.211   
21 1 4 0 9 10 9 2 3 3 1 1 2 0.1711 0.1349 0.211   
22 1 4 0 9 10 9 3 3 3 1 1 2 0.1711 0.1349 0.211   
23 1 6 0 9 10 9 2 3 3 0 1 2 0.1711 0.1349 0.211   
24 1 5 0 9 10 9 2 3 3 1 1 2 0.1711 0.1349 0.211   
25 5 5 0 13 10 9 2 3 3 1 1 2 0.1711 0.1349 0.211   
26 1 6 0 9 10 9 2 3 3 1 1 3 0.1711 0.1349 0.211   
27 4 5 0 11 10 9 2 3 3 1 1 2 0.1711 0.1349 0.211   
28 1 4 0 9 10 9 2 3 3 1 1 2 0.1711 0.1349 0.211   
29 1 6 0 9 10 9 3 3 3 1 1 2 0.1711 0.1349 0.211   
30 3 6 0 9 18 10 3 3 3 1 1 2 0.1687 0.1357 0.196 * 
31 3 6 0 9 18 10 3 3 3 1 1 2 0.1687 0.1357 0.196   
32 1 4 0 9 18 10 3 3 3 1 1 2 0.1687 0.1357 0.196   
33 1 4 0 9 18 10 3 3 3 1 1 2 0.1687 0.1357 0.196   
34 1 6 0 9 18 10 3 3 3 1 1 2 0.1687 0.1357 0.196   
35 1 4 0 9 18 10 3 3 3 1 1 2 0.1687 0.1357 0.196   
36 1 4 0 8 18 10 3 3 3 1 1 2 0.1687 0.1357 0.196   
37 1 6 0 9 18 10 3 3 3 1 1 2 0.1687 0.1357 0.196   
38 1 4 0 9 18 10 3 3 3 1 1 2 0.1687 0.1357 0.196   
39 1 4 0 9 18 10 3 3 3 1 1 2 0.1687 0.1357 0.196   
40 1 4 0 9 18 10 3 3 3 1 1 2 0.1687 0.1357 0.196   
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According to these results, it has been noted that the best average throughput rate 

is found after thirty iterations as a rate of 0.1357 parts per unit time. During the 

genetic search, the result implies approximately 63% increase in average daily 

production rate (i.e., from the initial value of approximately 21 to 57). Between the 

30th and 40th generations, almost all buffer configurations result in the same average 

daily production rate with different buffer sizes in configurations. Among these 

configurations, the buffer configuration of 1, 4, 0, 8, 18, 10, 3, 3, 3, 1, 1, 2 is 

identified as optimum buffer allocation configuration because of the minimum total 

buffer capacity usage, 54 (see Table 5.9). 

 
 Table 5.9 Buffer configurations that give the best average production rate 

Buffer Configuration 
Total 
Buffer 
Size 

Average 
Production 

Rate 
3 6 0 9 18 10 3 3 3 1 1 2 59 0.1357 
1 4 0 9 18 10 3 3 3 1 1 2 55 0.1357 
1 6 0 9 18 10 3 3 3 1 1 2 57 0.1357 
1 4 0 8 18 10 3 3 3 1 1 2 54 0.1357 

 

Furthermore, as seen in Figure 5.16, the relative difference decreases during 

the iterative search and it converges at a value, 0.196 and after thirty iterations. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 5.16 Convergence rate of the proposed approach 
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     Having allocated 1, 4, 0, 8, 18, 10, 3, 3, 3, 1, 1, 2 number of buffers to the 

machines in the heat exchanger production line, the simulation model of the system 

is run again with specified buffer sizes The proposed approach results in 

0.1357/minute which implies 56.3 exchangers per shift, so approximately 12.6% 

(i.e., from the average daily throughput rate of 50 to 56.3) increase on average daily 

production rate with a buffer configuration of B= {1, 4, 0, 8, 18, 10, 3, 3, 3, 1, 1, 2}  

is  achieved. As seen in Figure 5.17, simulating the production line with these buffer 

allocation decisions lead to a decrease in number of parts waiting for potential 

bottleneck machines to be available.  
 

 

 

 

 

 

 

 

 

 

 

 

       Figure 5.17 Number of parts in queues after buffer allocation 

 

 

      5.3.3.2 Hybrid GA-Based Simulation Approach Using Heuristic Initialization 

Scheme  

 

      In this part of the study, the suggested hybrid approach is used with heuristically 

generated initial population to solve the same buffer allocation problem given earlier 

in section 5.3.3.1. As given earlier, in the first phase of the study, a detailed 

stochastic and dynamic simulation model of the line is developed to identify 

bottleneck machines. The objective is to use this information for initial population 

generation in the second phase of hybrid simulation-GA approach. Hence, using this 

information, initial population is generated in such a way that more buffers allocated 
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to these potential bottleneck machines. Table 5.10 shows the results of computational 

experiments including the genaration number, the buffer size configurations, 

maximum production rate, average production rate and the relative difference,  

respectively.  
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Table 5.10 Results of the genetic search 

      

Gen. 
No B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

Max 
Fitness / 

Production 
Rate 

Average 
Fitness / 

Production 
Rate 

Relative 
Difference (*)

0 0 0 14 17 16 8 2 1 2 0 0 0 0.0892 0.0588 0.341   
1 4 1 8 14 20 5 2 2 3 0 1 1 0.1494 0.0935 0.374   
2 4 1 8 17 16 8 2 2 3 1 3 1 0.1470 0.1007 0.315   
3 0 4 14 17 16 9 2 2 2 0 1 3 0.1518 0.1198 0.211   
4 0 4 14 17 16 9 2 2 2 0 1 3 0.1518 0.1198 0.211   
5 0 4 14 17 16 9 2 2 2 0 1 3 0.1518 0.1198 0.211   
6 0 4 9 17 16 9 2 2 2 0 1 3 0.1518 0.1198 0.211   
7 0 4 9 17 16 9 3 2 2 0 1 3 0.1518 0.1198 0.211   
8 0 4 9 17 16 9 3 2 2 0 1 3 0.1518 0.1198 0.211   
9 5 0 8 17 17 8 2 2 3 0 2 3 0.1639 0.1205 0.265   

10 5 0 12 17 17 8 2 2 2 0 2 3 0.1639 0.1205 0.265   
11 5 0 12 17 17 8 2 2 2 0 2 3 0.1639 0.1205 0.265   
12 0 4 9 17 16 9 1 2 2 0 3 3 0.1735 0.1212 0.301   
13 0 4 9 17 16 9 1 2 2 0 3 3 0.1735 0.1212 0.301   
14 0 4 8 17 16 9 1 2 2 0 3 3 0.1735 0.1212 0.301   
15 0 4 12 17 16 9 1 2 2 0 3 3 0.1735 0.1212 0.301   
16 0 4 8 17 16 9 1 2 2 0 3 3 0.1735 0.1212 0.301   
17 0 4 9 17 16 9 1 2 2 0 3 3 0.1735 0.1212 0.301   
18 0 4 9 17 16 9 1 2 2 0 3 3 0.1735 0.1212 0.301   
19 0 4 9 17 16 9 1 2 3 2 3 3 0.1735 0.1212 0.301   
20 0 4 9 17 16 9 1 2 2 0 3 3 0.1735 0.1212 0.301   
21 0 4 9 17 16 9 1 2 2 0 3 3 0.1735 0.1212 0.301   
22 0 4 12 16 16 9 1 2 2 0 3 3 0.1735 0.1212 0.301   
23 0 4 9 17 16 9 1 2 2 0 2 2 0.1759 0.1248 0.290 * 
24 0 4 9 17 16 9 1 2 2 0 2 2 0.1759 0.1248 0.290   
25 0 4 9 17 16 9 1 2 2 0 2 2 0.1759 0.1248 0.290   
26 0 4 9 17 16 9 1 2 2 0 2 2 0.1759 0.1248 0.290   
27 0 4 5 18 16 9 1 2 2 0 2 2 0.1759 0.1248 0.290   
28 0 4 9 16 16 9 1 2 2 0 2 2 0.1759 0.1248 0.290   
29 0 4 9 17 16 9 1 2 2 0 2 2 0.1759 0.1248 0.290   
30 0 4 9 17 16 9 1 2 2 0 2 2 0.1759 0.1248 0.290   
31 0 4 9 17 16 9 1 2 2 0 2 2 0.1759 0.1248 0.290   
32 0 4 9 17 16 9 1 2 2 0 2 2 0.1759 0.1248 0.290   
33 0 4 9 19 16 9 1 2 2 0 2 2 0.1759 0.1248 0.290   
34 0 4 9 17 16 9 1 2 2 0 2 2 0.1759 0.1248 0.290   
35 0 4 9 17 16 9 1 2 2 0 2 2 0.1759 0.1248 0.290   
36 0 4 9 17 16 9 1 2 2 0 2 2 0.1759 0.1248 0.290   
37 0 4 9 17 16 9 1 2 2 0 2 2 0.1759 0.1248 0.290   
38 0 4 9 17 16 9 1 2 2 0 2 2 0.1759 0.1248 0.290   
39 0 4 9 18 16 9 1 2 2 0 2 2 0.1759 0.1248 0.290   
40 0 4 9 16 16 9 1 2 2 0 2 2 0.1759 0.1248 0.290   
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     According to Table 5.10, it has been noted that the proposed approach converges 

the best average throughput rate after twenty three iterations and the algorithm 

arrives at an average production rate of 0.1248. The suggested solution remains 

stagnant during the next 17 generations. In other words, almost all buffer 

configurations result in the same average daily production rate. Hence, to suggest a 

buffer configuration, the other criterion which is total buffer size is used and the 

solution which uses minimum buffer capacity is identified as optimum buffer 

allocation. As seen in Table 5.11, the buffer configuration of 0, 4, 5, 18, 16, 9, 1, 2, 

2, 0, 2 and 2 results in minimum buffer size, 59.  

 
 Table 5.11 Buffer configurations that give the best average production rate 

Buffer Configuration 
Total 

Buffer 
Size 

Average 
Production 

Rate 
0 4 9 17 16 9 1 2 2 0 2 2 62 0.1248 
0 4 5 18 16 9 1 2 2 0 2 2 59 0.1248 
0 4 9 16 16 9 1 2 2 0 2 2 61 0.1248 
0 4 9 19 16 9 1 2 2 0 2 2 64 0.1248 
0 4 9 18 16 9 1 2 2 0 2 2 63 0.1248 
  

 

       Moreover, the convergence rate with respect to the relative difference is 

summarized in Figure 5.16. Similar to the trend observed in average daily production 

rate it is obvious that the relative difference converges after twenty three generations.  
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 Figure 5.18 Convergence rate of the proposed approach 

 
 

As a result, 0, 4, 5, 18, 16, 9, 1, 2, 2, 0, 2 and 2 number of buffers have been 

allocated to the machines in the line and the simulation model of the system is run 

again with specified buffer sizes, resulting in a production rate of 0.1248/minute, 

51.8 exchangers per shift. As it is seen from Figure 5.19, the number of parts waiting 

in queue is significantly decreased by placing buffer storages in front of bottleneck 

machines in comparison with Figure 5.8. 
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 Figure 5.19 Number of parts in queues after buffer allocation 

 

      Based on the company records, the average daily throughput is 50 heat 

exchangers. The optimum solution suggested by the proposed hybrid approach 

results in average daily production of approximately 52 heat exchangers with a 

buffer configuration of B= {0, 4, 5, 18, 16, 9, 1, 2, 2, 0, 2, 2}. This result implies that 

just 4% improvement occurs in average daily production. 

 

     5.3.3.3 Hybrid GA-Based Simulation Approach Using Random Initialization 

Scheme for Bottleneck Machines 
 

      Lastly, in generating initial population to implement the proposed hybrid 

approach, as candidate buffer locations, we just considered bottleneck machines 

identified during the first phase. In another words, we did not take into consideration 

all of the twelwe machines as candidate buffer locations.  Figure 5.20 depicts the 

representation of buffer areas in front of bottleneck machines in the production line. 
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Figure 5.20 Buffer areas in front of identified bottleneck machines in the production line 

 

 

      It should be noted that the upper limit of the total number of buffers to allocate in 

front of machines is set to 70 considering the available floor space in the heat 

exchanger production line to accommodate buffers. In similar to the implementations 

of the alternative searches in previous sections, all GA control parameters such as 

P/G, Rc, Rm, and percent of elitism for replacement strategy are as with the levels of 

30/40, 0.80, 0.033 and 50%, respectively. Moreover, the general structure of 

algorithm in terms of initial population scheme, selection scheme, crossover and 

mutation techniques, replacement scheme and termination crieria is same as the 

previous implementation except the chromosome representation scheme. Since four 

of the machines are identified as bottleneck machines, a chromosome is composed of 

four unique parts and each chromosome represents a possible buffer configuration. 

As seen in Figure 5.21, a chromosome alternative represents that 21, 17, 11 and 3 

units of buffer will be allocated to these bottleneck machines.  
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Figure 5.21 Binary coding representation of alternative chromosome 

 

As a result, the proposed hybrid approch with random initilization for bottleneck 

machines in the line is employed to solve the buffer allocation problem and the 

results are given in Table 5.12. According to these results, it has been noted that the 

proposed approach converges the best average throughput rate after two iterations as 

a rate of 0.1357  and that occurs 3.68% increase in  average daily production rate 

(i.e., from the initial value of 54.3 to 56.3).  

Table 5.12  Results of  the genetic search 

Gen. 
No 

Buffer 
1 

Buffer 
2 

Buffer 
3 

Buffer 
4 

Max 
Fitness / 

Production 
Rate 

Average 
Fitness / 

Production 
Rate 

Relative 
Difference (*) 

0 1 13 14 18 0.1639 0.1308 0.201   
1 1 13 14 18 0.1639 0.1308 0.201   
2 10 16 14 15 0.1687 0.1357 0.196 * 
3 10 16 14 15 0.1687 0.1357 0.196   
4 10 16 14 15 0.1687 0.1357 0.196   
5 10 16 14 15 0.1687 0.1357 0.196   
6 10 17 14 15 0.1687 0.1357 0.196   
7 10 16 14 15 0.1687 0.1357 0.196   
8 10 16 14 15 0.1687 0.1357 0.196   
9 10 16 14 15 0.1687 0.1357 0.196   
10 10 16 14 15 0.1687 0.1357 0.196   
11 12 18 14 11 0.1831 0.1357 0.259   
12 10 16 14 15 0.1687 0.1357 0.196   
13 12 18 14 11 0.1831 0.1357 0.259   
14 12 16 14 15 0.1831 0.1357 0.259   
15 12 16 14 11 0.1831 0.1357 0.259   

 

 

0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 
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Continuation of Table 5.12 

Gen. No Buffer 1 Buffer 2 Buffer 3 Buffer 4
Max 

Fitness / 
Production 

Rate 

Average 
Fitness / 

Production 
Rate 

Relative 
Difference (*)

16 12 18 14 15 0.1831 0.1357 0.259   
17 12 18 14 11 0.1831 0.1357 0.259   
18 12 16 14 11 0.1831 0.1357 0.259   
19 12 18 14 11 0.1831 0.1357 0.259   
20 12 18 14 11 0.1831 0.1357 0.259   
21 12 16 14 11 0.1831 0.1357 0.259   
22 12 18 14 15 0.1831 0.1357 0.259   
23 12 18 14 15 0.1831 0.1357 0.259   
24 12 18 14 11 0.1831 0.1357 0.259   
25 12 18 14 15 0.1831 0.1357 0.259   
26 12 18 14 13 0.1831 0.1357 0.259   
27 12 18 14 12 0.1831 0.1357 0.259   
28 12 16 14 11 0.1831 0.1357 0.259   
29 12 18 14 13 0.1831 0.1357 0.259   
30 12 18 14 12 0.1831 0.1357 0.259   
31 12 18 14 15 0.1831 0.1357 0.259   
32 12 18 14 15 0.1831 0.1357 0.259   
33 12 18 14 11 0.1831 0.1357 0.259   
34 12 18 14 15 0.1831 0.1357 0.259   
35 12 18 14 11 0.1831 0.1357 0.259   
36 12 18 14 15 0.1831 0.1357 0.259   
37 12 18 14 15 0.1831 0.1357 0.259   
38 12 18 14 11 0.1831 0.1357 0.259   
39 12 18 14 15 0.1831 0.1357 0.259   
40 12 18 14 15 0.1831 0.1357 0.259   

 

     The suggested solution remains stagnant during the next 38 generations and for 

each generation buffer configurations result in the same average daily production 

rate. In this case, to suggest optimal buffer configuration, minimum buffer capacity 

used should be considered as an other criterion. Hence, as seen in Table 5.13, the 

buffer configuration of 12, 16, 14 and 11 which results in minimum buffer size, 53 is 

identified as optimum buffer allocation. 
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Table 5.13 Buffer configurations that give the best average production rate 

Buffer Configuration Total Buffer 
Size Average Production Rate 

10 16 14 15 55 0.1357 
10 17 14 15 56 0.1357 
12 18 14 11 55 0.1357 
12 16 14 15 57 0.1357 
12 16 14 11 53 0.1357 
12 18 14 15 59 0.1357 
12 18 14 13 57 0.1357 
12 18 14 12 56 0.1357 

 

 

Moreover, the convergence rate with respect to the relative difference is 

summarized in Figure 5.22. As it is seen clearly in this figure, the relative difference 

converges quickly within relatively small number of generations. This can be 

attributed to the fact that the solution space in the case of just considering identified 

bottleneck machines as candidate buffer storage places is relatively small. 
    

 

 

Figure 5.22 Convergence rate of the proposed approach 

 

In conclusion, 12, 16, 14, 11 number of buffers have been allocated to the 

bottleneck machines and the simulation model of the system is run again with 
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specified buffer sizes, resulting in a production rate of 0.1357/minute, 56.3 

exchangers per shift. As it is seen from Figure 5.23, the number of parts waiting in 

queue is significantly decreased by placing buffer storages in front of bottleneck 

machines in comparison with Figure 5.8. 

 

 
 
 
 
 

 

 

 

 

           

 

 

        Figure 5.17 Number of parts in queues after buffer allocation 

 

            Based on these results,  with a buffer configuration of B= {12, 16, 14, 11}, 

company records, approximately 13% improvement occurs in average daily 

production using random initialization scheme of GA considering bottleneck 

machines in the system.   

 

5.3.4 Comparison of Alternative Results 

 

       As mentioned earlier, based on a field study at the company site, it is observed 

that at average, 50 heat exchangers are produced per day in the pruduction line 

studied. In order to improve the capacity of this production line, a hybrid simulation-

GA approach is proposed for optimum buffer allocation. As a result of experimental 

studies comparing the performance of the proposed algorithm under three initial 
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population generation schemes, three sets of solutions are found. The solution quality 

of three approaches are compared in Figure 5.18. 

 

    

    Figure 5.18 Comparison of experimental results 

 
 

As seen in the figure, the best performance is observed when the proposed 

hybrid approach is implemented with random initial population and considering 

bottleneck machines as candidate buffer locations. 
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CHAPTER SIX 

CONCLUSION 

 

             The buffer allocation problem is a combinatorial optimization problem 

which can be observed in many manufacturing systems such as assembly lines, 

transfer lines or flexible manufacturing systems. A significant number of methods 

(i.e. analytical methods, approximation methods, aggregation method, simulation, 

optimization methods and hybrid methods) have been proposed to solve this 

problem. In this study, a hybrid approach combining the key advantages of both 

simulation and metaheuristics is presented to find optimal buffer sizes in a real-life 

production line so as to maximize the production rate, i.e. throughput of the plant.  

 

          In the first phase of the M.Sc. study, a detailed bottleneck analysis has been 

carried out to identify what limits the capacity of the system by developing a 

stochastic and dynamic simulation model of the system. Having verified and 

validated the simulation model, various experimental studies have been carried out to 

identify the bottleneck machines. Considering average machine utilizations and 

average number of parts in each machine queue for the production line, the 

bottleneck machines are identified in the heat exchanger production line. In the 

following phase, GA-based simulation optimization approach is employed to allocate 

buffers to these bottleneck machines so as to improve the performance of the system. 

The GA module which includes some problem specific features is combined with a 

simulation module in a closed loop configuration to solve the buffer allocation 

problem. Through this integration the genetic algorithm module suggests a buffer 

configuration at each iteration. Given the candidate buffer configuration, the model 

generator generates corresponding stochastic and dynamic simulation model. 

Subsequently, the simulation model of heat exchanger production line has been run 

to obtain the fitness value of the candidate buffer configuration, i.e. average daily 

production rate, and this value is communicated to the genetic search module in an 

iterative manner. 
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      Experimental results show that allocating buffers to the bottleneck machines 

improves the production rate of the system. It was found that average daily 

production rate could be increased by about 13% in the real-life production line. 

Based on these results, it can be stated that the proposed method has great potential 

to improve the capacity of real manufacturing systems.  

 

      One extension of this M.Sc. study could be to integrate this GA-based simulation 

optimization procedure into a Decision Support System framework. So that both the 

input data entrance step and also the link among two phases such as bottleneck 

identification and buffer allocation for capacity improvement can be automated. In 

doing so, the use of this hybrid approach in an industrial environment will be eased 

and also the capacity improvement will be achieved with up-to-date data. 

 

       Finally, it must be highlighted that, there is usually more than one objective (low 

costs, low WIP, high revenue) when attempting to optimize the performance of a 

production system. This necessitates a multi-objective procedure and hence, a future 

research opportunity for this study would be to employ a multi-objective GA-based 

simulation optimization procedure for the buffer allocation problem. 
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