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ELECTRONIC STRUCTURE OF MANY ELECTRON

QUANTUM DOTS

ABSTRACT

In this thesis we have studied the ground state energies of two

dimensional (2D) disc-like parabolic quantum dots up to seven electrons by using

Spin Adapted Configuration Interaction (SACI) package. This package is written

in Mathematica by R. D. Muhandiramge and J. Wang and calculates the energies

and wavefunctions of a parabolic quantum dot under the influence of a magnetic

field.

The ground state energies of a six electron quantum dot for different electron

densities at zero angular momentum and magnetic field with total spin quantum

number number S = 0 and S = 3 have been calculated by using the SACI

package. Comparison SACI results with the Density Functional Theory and the

conventional Configuration Interaction results has proved the accuracy of the

method especially for the fully polarized states which correspond to the spin

quantum number S = 3.

Atomic-like properties of quantum dots have been reviewed by the

investigation the addition energy spectrum in parabolic quantum dots at zero

magnetic field up to six electrons. Addition energy has showed the maximums

for two and six electrons which proves the shell structure of the quantum dots.

Moreover in order to examine the magnetic transitions in the ground state

of quantum dots electrochemical energy versus magnetic field plots have been

reproduced for two, three and four electrons. It has been observed that the

total spin and the angular momentum of the system changes with the increasing

magnetic field.

Keywords: quantum dot, spin eigenfunctions, Configuration Interaction method.
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ÇOK ELEKTRONLU KUANTUM NOKTALARIN

ELEKTRONİK YAPISI

ÖZ

Bu tezde Spin Uyarlanmış Şekillenimli Etkileşim (SACI) paketini

kullanarak yedi elektrona kadar iki boyutlu disk-benzeri parabolik kuantum

noktaların taban durum enerjilerini hesapladık. Bu paket R. D. Muhandiramge ve

J. Wang tarafından Mathematica dilinde yazılmıştır ve manyetik alan etkisindeki

parabolik bir kuantum noktanın enerjilerini ve dalga fonksiyonlarını hesaplar.

Altı elektronlu bir kuantum noktanın farklı elektron yoğunlukları için sıfır

açısal momentum ve manyetik alanda S = 0 ve S = 3 toplam

spin kuantum sayıları durumunda taban durum enerjileri SACI paketi kullanılarak

hesaplandı. SACI sonuçlarının Yoğunluk Fonksiyoneli Teorisi ve Şekillenimli

etkileşim yöntemleriyle karşılaştırılması yöntemin özellikle tam polarize durumlar

için güvenirliğini ispatladı.

Sıfır manyetik alan altında parabolik bir kuantum noktanın altı elektrona

kadar ekleme enerjisi spektrumu elde edilerek kuantum noktaların atom benzeri-

özellikleri yeniden incelendi. Ekleme enerjisinin iki ve altı elektron için en büyük

değerleri alması kuantum noktaların tabakalı yapısını ispatlamış oldu.

Bundan başka kuantum noktaların taban durumlarındaki manyetik geçişlerin

incelenmesi için elektrokimyasal enerjiye karşı manyetik alan grafikleri iki, üç ve

dört elektron için tekrar elde edildi. Manyetik alanın artmasıyla sistemin sahip

olduğu toplam spin ve toplam açısal momentumunun değiştiği gözlendi.

Anahtar sözcükler: kuantum nokta, spin özfonksiyonları, şekillenimli etkileşim

yöntemi
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CHAPTER ONE

INTRODUCTION

Since the beginning of 1970s research on semiconductor structures with lower

dimensions has been born. First low dimensional system was quantum well

(Dingle, Wiegmann, & Henryn, 1974) which is two dimensional layer sandwiched

between semiconductor with different band gaps. Because of different band gabs

a triangular potential is formed which confines the electrons in one direction

forming a thin layer. Extraordinary properties of this two dimensional systems

has been studied in research laboratories like the the discovery of the Quantum

Hall Effect (Klitzing, Dorda, & Pepper, 1980).

The rapid progress in lithographic and self organized techniques made it

possible to confine electrons in one dimension. This low dimensional system

is called as quantum wires. Quantization in three dimensions can be formed by

trapping electrons in a quasi-zero-dimensional quantum dot. The term

quantum dot was coined by Mark Reed and suggests an exceedingly small

region of space. Quantum dot is formed from roughly a million atoms with

all their electrons tightly bound to the nuclei however free electrons in the dot

can be one and a few hundreds. Since de-Broglie wavelength of these electrons

is comparable to the size of the dot, electrons occupy discrete energy levels (like

real atoms) and have a discrete energy spectrum. Also it is possible to control the

size, shape, energy levels and number of confined electrons of quantum dots. The

energy spectrum of the few-electron quantum dot is expected to be extremely

rich since the single-electron confinement energy, the cyclotron energy for modest

fields and the electron-electron interaction energy can all be of similar magnitude

(typically a few meV), and they scale differently as far as one varies dot

parameters (Rontani, 1999). Therefore especially for small number of electrons

it is appropriate to investigate electronic correlation such as formation of Wigner
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molecule (Egger, Hasuler, Mak & Grabert, 1998).

However electron-electron interaction in quantum dots is not a simple many

body problem. Analytic solutions for more than two electrons is

impossible to obtain. Solving Schrödinger equation becomes exponentially more

difficult when the number of particles increases (Helle, 2006). It is traditional to

use Configuration Interaction (CI) method (Bryant, 1987; Pfannkuche,

Gerhardts, & Maksym, 1993). One of the first study has been done by Pfannkuche

et al who applied Hartree, Hartree Fock and exact diagonalization for

quantum dot-helium (Pfannkuche, Gerhardts, & Maksym, 1993) and indicated

the lack of electron correlation in the Hartree Fock method. However numerical

diagonalization methods can be used only small number of electrons and not too

low densities. The advantage of CI calculations is excited states can be calculated

besides ground state (Reimann & Manninen, 2002; Rontani, Cavazzoni, Bellucci,

& Goldoni, 2006). Also Density Functional Theory (DFT) have been applied to

quantum dots (Macucci, Hess, & Iafrate, 1995) as well as Quantum Monte Carlo

techniques (Bolton, 1996).

Spin Adapted Configuration Interaction (SACI) approach is an exact

diagonalisation technique which reduces the time independent

Schrödinger equation to matrix eigenvalue problem (Muhandiramge & Wang,

2006). In this approach many electron wavefunctions are antisymmetric

products of spatial and spin wavefunctions. Spatial functions are individual

products of one electron wave functions which builds an orthonormal set and spin

functions are mutual eigenfunctions of total spin operator and its z component.

Approximating spatial and spin functions with this properties results with a many

electron wavefunction which is eigenfunction of total spin operator. This approach

has an advantage over mean field approaches such as DFT and Hartree Fock

because multi-electron wavefunciton is an exact wave function which describes

the particles accurately and it gives excited states besides ground state while by
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mean field approaches one can only get ground state. However SACI approach

have an disadvantage because with this approach small number of particles can

be examined because of insufficient computational resources (Wang, Hines, &

Muhandiramge, n.d.).

In this thesis SACI package (Muhandiramge & Wang, 2006) written in

Mathematica developed by Ranga D. Muhandiramge and Jingbo Wang is used.

This program calculates the energy levels and wavefunctions of a many-electron

parabolic quantum dot under the influence of perpendicular magnetic field using

SACI method (Muhandiramge, 2003). Using this program ground state energies

of parabolic quantum dots for different confinement potentials and spin states

are calculated in order to compare the SACI results with other studies in the

literature and also review electronic properties of quantum dots.

Contrary to natural atoms, in semiconductor quantum dots the Coulomb-to-

kinetic-energy ratio can be rather large even larger than one order of magnitude,

the smaller the carrier density the larger the ratio (Rontani et al., 2006). In order

to test the accuracy of SACI method for different densities ground state energies

of a six electron quantum dot at zero magnetic field with total spin quantum

number number S = 0 and S = 3 is calculated. It is seen that SACI results are

in good agreement with Exact diagonalization and Local Density Approximation

results given in Ref. Reimann & Manninen, (2002) even in low density limit.

As mentioned above since quantum dots resemble real atoms in many

respects such as shell structure and obey Hund’s rule they are often called as

artificial atoms (Kastner, 1993; Ashoori, 1996). Similar to 3D shell structure of

real atoms which can be understood from peaks of atomic

ionization energies 2D shell structure of quantum dots in the case of two

dimensional parabolic potential at zero magnetic field have been proved

experimentally for different number of electrons by observing Coulomb
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oscillations (Tarucha, Austing, Honda, Hage, & Kouwenhoven, 1996; Tarucha

et al., 1998). In this thesis addition energy of the ground states at zero mag-

netic up to six electrons is calculated by using results of SACI package. Maxima

of addition energy for certain electron numbers prove the 2D shell structure of

parabolic quantum dots as in Ref. Lee, Rao, Martin, & Leburton, 1998; Reimann,

Koskinen, Kolehmainen, Austing, Manninen, & Tarucha, (1999)

Experimentally transitions which have never seen in natural atoms can be

observed by applying external fields in quantum dots (Kouwenhoven et al., 1997).

In this thesis changing of electrochemical potential by magnetic field is reproduced

for two, three and four electrons. Transitions in the ground states observed and

also in four electron case a manifestation of Hund’s rule (Tarucha et al., 1998) is

observerd.

This thesis is organized as follows. In order to understand the

physical system we give a brief discussion about properties of quantum dots in

Chapter 2. In Chapter 3 information about electronic structure methods are

given. Constructing spin eigenfunctions and many electron wave functions is

described in Chapter 4. Properties spin adapted basis are discussed in detail

in Chapter 5. Numerical results and conclusion are presented in Chapter 6 and

Chapter 7, respectively.



CHAPTER TWO

QUANTUM DOTS

2.1 Two Dimensional Electron Gas

Recent work on mesoscopic conductors has largely been based on GaAs-AlGaAs

heterojuctions where a thin two-dimensional conducting layer is formed at the

interface between GaAs and AlGaAs. To understand why this layer is formed

consider the conduction and valence band line-up in z direction when we first bring

the layers contact. The Fermi energy in Ef in the widegap AlGaAs layer is higher

than that in the narrow gap GaAs layer. Consequently electrons spill over from

AlGaAs leaving behind positively charged donors. This space charge gives rise to

an electrostatic potential that causes the bands to bend. At

equilibrium the Fermi energy is constant everywhere. The electron density is

sharply peaked near the GaAs-AlGaAs interface (where the Fermi energy is inside

the conduction band) forming a thin conducting layer which is usually referred

to as the two-dimensional electron gas (2DEG).

Figure 2.1 Conduction and valence band line-up at a junction between
AlGaAs and GaAs after charge transfer has been occured.

The carrier concentration in a 2DEG is typically ranges from 2 × 1011cm2

5



6

to 2×1012cm2 and can be depleted by applying a negative voltage on the surface.

The practical importance of this structure lies in its use as a field effect transistor

which goes under a variety of names such as MODFET (MODulation Doped Field

Effect Transistor) or HEMT (High Electron Mobility Transistor) (Datta, 2003).

Therefore one can say that in 2DEG electrons are free to move in two dimensions,

but they are confined in third having discrete energy levels. In most problems

confinement in the third direction is neglected.

This principle can be developed by further reducing the dimensionality of

the electron’s environment. Confinement in two direction, gives one dimensional

systems called quantum wires. The confinement on all three dimensions creates

0D quantum dots (Harrison, 2001). Figure 2.2 illustrates the different systems

in a general way, and Figure 2.3 shows how the expected density of states varies

with dimensionality. Passing from three dimensions to two dimensions the density

N(E) of states changes from a continuous dependence N(E) ∝ E1/2 to a step

like dependence. Being zero dimensional, quantum dots have a sharper density

of states than higher-dimensional structures. As a result, they have superior

transport and optical properties, and are being researched for many technological

applications (Yildiz, 2009).

Figure 2.2 (a) bulk semiconductors, 3D; (b) thin films, layer
structures, quantum wires, 2D; (c) linear chain structures,
quantum wires, 1D; (d) clusters, colloids, microcrystallites,
quantum dots, 0D. (from Ref. (Yildiz, 2009))
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Figure 2.3 Densities of states N(E) for (a) 3D, (b) 2D, (c) 1D and
(d) 0D systems (corresponding to ideal cases). (from Ref. (Yildiz,
2009))

2.2 Quantum Dots as Artifical Atoms

Quantum dots are man-made objects in which charge carriers are confined in

all three dimensions. As a result they have discrete energy levels just like real

atoms and usually quantum dots are called as artifical atoms. Quantum dots

with different sizes and properties can be produced, and the number of electrons

in the dot can be changed by external gate electrodes.

Besides having common properties with real atoms, quantum dots differ

from real atoms in many respects: in quantum dots the electrons are usually

confined to a much larger volume than the electrons in a real atom. In addition,

the shape of the confining potential in the quantum dots is quite different from

the one in a real atom. Typically a quantum dot structure resembles a two-

dimensional box with a side length of 100 nm whereas in the solids the spacing

between the atoms is of the order of a few Angstroms. A single semiconductor

quantum dot consists of the order of 106 atoms. Most of the electrons in the

material are bound to atoms but some of the electrons can be made to move

freely in the quantum dot region. The other difference, besides the huge size

difference, between real atoms and quantum dots is in the form of the potential.
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Figure 2.4 Schematic diagram of a disk shaped
dot. (from Ref. (Tarucha et al., 1998))

In real atoms the strong Coulomb attraction of the nucleus restricts the electron

motion into a small volume in the proximity of the nucleus. In quantum dots the

potential is not a central attractive, but resembles more a harmonic trap defined

by the external electrodes (lateral quantum dot) or by the physical dimensions

(vertical quantum dot). Yet another interesting feature is that there exists a class

of semiconductor quantum dots that can be considered effectively two-dimensional

which gives rise to some interesting physics (Helle, 2006).

2.3 Fabrication of Quantum Dots

There are many ways to confine electrons in semiconductors. One way to

produce a quantum dot is to isolate a small piece of metal with insulating material,

for example to grow a small island of metal on an insulating substrate (e.g. Al

island on Si). Metallic quantum dots tend to be rather large and the energy levels
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lie close to each other, thus approaching the continuum limit.

The two other approaches create the quantum dots at or near the surface of

a semiconductor crystal. Originally such quantum dots are performed by growing

a semiconductor structure. In the early method lithographic process was used to

create a two dimensional structure that could be than attach down to isolate a

quantum dot. However, these quantum dots were only nanometer scale in one

dimension-the thickness of the semiconductor were used to trap the electrons.

The other two dimensions were limited by the resolution of the lithography, and

could be as big as a micron. This meant that electrical studies performed in

this dots had to be carried out in the extremely low temperatures to freeze out

thermal effects.

Later (third method) researchers began to grow self-assembled quantum

dots by depositing a semiconductor material with a larger lattice constant onto a

semiconductor with a smaller lattice constant. Typical systems were germanium

on silicon and indium arsenide on gallium arsenide. It is this quantum dots that

have been used to fabricate quantum dot lasers (Cientifica Ltd., 2003).

2.4 Applications

Initially targeted at biotechnology applications, such as biological reagents

and cellular imaging, quantum dots are being eyed by producers for eventual use

in light-emitting diodes (LEDs), lasers, and telecommunication devices such as

optical amplifiers and waveguides. The strong commercial interest has renewed

fundamental research and directed it to achieving better control of quantum

dot self-assembly in hopes of one day using these unique materials for quantum

computing (Ouellette, 2003). By applying small voltages to the leads, one can

control the flow of electrons through the quantum dot and thereby
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make precise measurements of the spin and other properties therein. With several

entangled quantum dots, or qubits, plus a way of performing operations, quantum

calculations might be possible.

Quantum dots have quickly found their way into homes in many electronics.

The new PlayStation 3 and DVD players to come out all use a blue laser for data

reading. The blue laser up until only a few years ago was beginning to be seen

as something of an impossibility, until the synthesis of a blue quantum dot laser

(Nanofm Ltd., n.d.). In modern biological analysis, various kinds of organic dyes

are used. However, with each passing year, more flexibility is being required

of these dyes, and the traditional dyes are simply unable to meet the necessary

standards at times. To this end, quantum dots have quickly filled in the role,

being found to be superior to traditional organic dyes on several counts, one of

the most immediately obvious being brightness (owing to the high quantum yield)

as well as their stability. Currently under research as well is tuning of the toxicity.

(Deak Lam Ltd., n.d.)

Sharper density of states, superior transport and optical properties and

are being researched for use in diode lasers, amplifiers, and biological sensors.

use in solid-state quantum computation . By applying small voltages to the

leads, one can control the flow of electrons through the quantum dot and thereby

make precise measurements of the spin and other properties Another cutting edge

application of quantum dots is also being researched as potential artificial

fluorophore for intra-operative detection of tumors using fluorescence spectroscopy.

Quantum dots may have the potential to increase the efficiency and reduce the

cost of todays typical silicon photovoltaic cells .



CHAPTER THREE

THEORETICAL BASIS

3.1 Introduction

Since de Broglie wavelength of an electron in quantum dot is comparable

with confinement region, electron behavior can be described by their quantum

mechanical properties. In quantum mechanics non-relativistic Schrodinger

equation describes how the quantum state changes with time:

Ĥψ = i~
∂ψ

∂t
(3.1.1)

where Ĥ is the Hamiltonian operator, ψ is the system wavefunction.

Stationary states of this equation as considered in this thesis are found by solving

the eigenvalue-eigenfunction (time-independent) form of the Schrödinger

equation:

Ĥψ = Eψ (3.1.2)

Solving the Schrödinger equation analytically, or even numerically, becomes

intractable for systems with more than a few particles, and therefore

different levels of approximations must be introduced. This results in a variety of

computational methods with different levels of accuracy.

3.1.1 Quantum Dot Hamiltonian

In previous chapter we have discussed properties of electron in quantum dots.

Although an electron is effectively free to move, its motion is affected by the

surrounding semiconductor material. One can rather accurately describe electron

motion in a quantum dot by substituting the mass of a free electron with the

effective mass of electrons of the host semiconductor material in the Hamiltonian

11
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(m→ m∗). This is called the effective-mass approximation (Helle, 2006). We use

effective mass approximation throughout this thesis. The effective permittivity

ǫ∗ is also different from the vacuum permittivity ǫ0 due to screening effect in

the semi-conductor. For gallium arsenide, the effective mass m∗ is approximately

0.067me and the effective permittivity ǫ∗ is approximately 12.4ǫ0. Under this

assumptions quantum dot Hamiltonian take the form:

Ĥ =

N
∑

i=1

{

1

2m∗ (
~Pi −

e

c
~Ai)

2 + Vc(~ri)

}

+

N
∑

i<j

e2

ǫ∗|~ri − ~rj |

=

N
∑

i=1

Ĥ0i +
∑

j>i

Ĥ(i, j)

= Ĥ0 + ĤI

(3.1.3)

where N is the number electrons in the quantum dot. e, m∗ and ǫ∗ are,

respectively, the electron charge, effective mass, and relative dielectric constant

of the host semiconductor, ~ri is the position of the i. electron, ~Pi is its canonically

conjugated momentum, and ~Ai is the vector potential associated with an

external magnetic field. The potential Vc(~ri) describes the quantum dot

confinement. In this Hamiltonian spin-spin and spin orbit interaction is

neglected. The first part Ĥ0, shows the sum over N electrons in the quantum

dot and the second interaction part, ĤI represents the total Coulomb repulsion

between electron pairs. In this thesis we ignore relativistic effects such as spin-spin

and spin orbit interaction which are small in comparison with Coulomb energy.

3.1.2 Single Electron Quantum Dot

The confinement in the two-dimensional semiconductor interface is created by

the external electrodes which define the shape and size of the quantum dot. In

many cases the confinement potential of a single quantum dot can be assumed

to be parabolic. Since confinement in z direction is much stronger than in plane
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region confinement potential is given by:

Vc(~ri) =
1

2
m∗w2

0(x
2 + y2) + V (z) (3.1.4)

where w0 gives the strength of confinement. In the case of large quantum dots

(diameter ∼ 100nm) ~w0 is typically of the order of a meV (Helle, 2006.) The

confinement potential in z direction V (z) is narrow triangular well. The energy

level in z direction is generally hundreds of greater than many of the low energy

states in the x − y plane. This property allows us to model electron motion

in a quantum dot as two dimensional as the electrons are tightly confined in z

direction as they only occupy the ground state in this direction (Wang, Hines,

& Muhandiramge, n.d.). There is analytical solution for two-dimensional single-

electron quantum dot systems which was first established by Fock, (1928) and

later independently by Darwin, (1930). Following Fock’s work, Hamiltonian of

the system can be written as the following:

Ĥ =
1

2m∗ (
~P − e

c
~A)2 +

1

2
m∗ω2

0 r̂
2 (3.1.5)

where vector potential in symmetric gauge: ~A = (+1
2
Bŷ,−1

2
Bx̂, 0) as

∇XÂ = (0, 0,−B). Then the Hamiltonian becomes:

Ĥψ =
1

2m∗

(

i~
∂

∂x
+

1

2

e

c
Bŷ, i~

∂

∂y
− 1

2

e

c
Bx̂, 0

)2

ψ +
1

2
m∗ω2

0(x̂
2 + ŷ2)ψ

=
1

2m∗

(

−~
2

(

∂2

∂x2
+

∂2

∂y2

)

− B2e2

4c2
(x2 + y2) +

i~eB

c

(

y
∂

∂x
− x

∂

∂y

))

ψ

+
1

2
m∗ω2

0(x̂
2 + ŷ2)ψ

= − ~
2

2m∗

(

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂θ2

)

+
i~eB

2m∗c

∂ψ

∂θ
+

(

B2e2r2

8m∗c2+
+

1

2
m∗ω2

0

)

ψ

(3.1.6)
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To study in polar coordinates in the last step we have used x = rsinθ y = rcosθ

and also
∂2ψ

∂x2
+
∂2ψ

∂y2
=
∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂θ2
(3.1.7)

y
∂ψ

∂x
− x

∂ψ

∂y
=
∂ψ

∂θ
(3.1.8)

Cyclotron frequency is defined as :

ωc =
eB

m∗c
(3.1.9)

Then equation (3.1.6) becomes:

Ĥψ = − ~
2

2m∗

(

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂θ2

)

+
iωc~

2

∂ψ

∂θ
+

(

m∗ω2
cr

2

8
+

1

2
m∗ω2

0r
2

)

(3.1.10)

If we insert

ψ =
1√
2
f(r)eimθ (3.1.11)

into the Schrödinger equation we get:

− ~
2

2m∗

(

f ′′(r) +
1

r
f ′(r)− m2

r2
f(r)

)

+ (
1

8
m∗(ω2

c + 4ω2
0)r

2 − E − mωc~

2
)f(r) = 0

(3.1.12)

−1

2

(

f ′′(r) +
1

r
f ′(r)− m2

r2
f(r)

)

+

(

m∗2

2~2
(
1

4
ω2
c + ω2

0)r
2 − Em∗

~2
− mm∗ωc

2~

)

f(r) = 0

(3.1.13)

(−1

2r

∂

∂r
(r
∂

∂r
) +

m2

2r2
+

Ω2m∗2

2~2
r2 − Em∗

~2
− mm∗wc

2~

)

f(r) = 0 (3.1.14)

where Ω2 =
1

4
w2
c + w2

0. If r → 0 differential equation simplifies to:

(

− 1

2r

∂

∂r
(r
∂

∂r
) +

m2

2r2

)

f(r) = 0 (3.1.15)
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Inserting f(r) = rp we obtain:

1

2
(m2 − p2)rp−2 = 0 (3.1.16)

Solution must be finite at the origin so it must be p = |m|.

m∗Ω

2~
=

m∗
√

1
4
w2
c + w2

0

2~

=
m∗wc

√

1 + 4
w2

0

w2
c

2~

=
m∗eBb

2~m∗c

=
b

2l20

= k

(3.1.17)

where b =

√

1

4
w2
c + w2

0, l0 =

√

~c

eB
and k =

b

2l20
. If r → ∞ equation (3.1.14)

becomes:
(

− 1

2r

∂

∂r
(r
∂

∂r
) +

k2

2
r2
)

f(r) = 0 (3.1.18)

The solution of this differential equation is

f(r) = d1I0(
kr2

2
) + d2J0(

kr2

2
) (3.1.19)

d1 and d2 are constants, I0 and J0 are modified Bessel functions. If r → ∞, I0(
kr2

2
)

diverges. K0 has the value e−
kr2

2 for large r. If we use a trial wavefunction:

f(r) = r|m|e−
m∗

Ωr2

2~ g(r) (3.1.20)

and
γ2

2
=
Em∗

~2
+
mm∗wc

2~
(3.1.21)
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Therefore a differential equation is obtained:

(γ2 − 2k(|m|+ 1))g(r) + (−2kr2 + 2|m|+ 1)g
′

(r) + rg
′′

(r) = 0 (3.1.22)

which has a solution:

g(r) = e1 1F1(
1

4
(−γ

2

k
−2|m|+2); 1−|m|; kr2)+e2 1F1(

1

4
(−γ

2

k
+2|m|+2); |m|+1; kr2)

(3.1.23)

where e1 and e2 are constants and 1F1 is the hypergeometric function. To be able

to normalize the solution, the hypergeometric function must terminate. This

implies that for 1F1(c, z, a) = −n and c 6= −n where n = 0, 1, 2, 3, ... This

condition is satisfied by the second hypergeometric function since c = |m|+2 ≤ 1.

−n =
1

4
(−γ

2

k
+ 2|m|+ 2) (3.1.24)

Substituting γ and k in equation (3.1.24) we can find the energy equation:

E = (2n+ |m|+ 1)~Ω− m

2
~wc (3.1.25)

Generalized Laguerre Polynomials are related to Hypergeometric functions as:

Lmn (kr
2) =





n+m

n





1F1(−n,m+ 1; kr2) (3.1.26)

f(r) = Nn,|m|r
|m|e−

1

2
kr2Lmn (kr

2) (3.1.27)

where Nn,|m| is a normalization constant. Using orthogonality relations of

Laguerre polynomials, one electron wavefunction is found as:

ψnm(r, θ) = k(|m|+1)/2

√

n!

π(n+m)!
r|m|e−kr

2/2L|m|
n (kr2)e−imθ (3.1.28)

In Figure 3.1 lowest ten energy levels (n,m) as a function of magnetic field
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Figure 3.1 Fock Darwin energy levels as a function of magnetic field with
external confinement ~w0 = 3meV in the left panel and ~w0 = 6meV in the
right panel

is plotted in confinement ~w0 = 3meV in the left panel. For a comparison, the

single-particle energy levels of ~w0 = 6meV parabolic quantum dot are plotted

in the right panel of Fig. 3.1. As the magnetic field strength increases, energy

levels shift and split. In high magnetic fields energy equation becomes:

E(n,m) = (2n+ |m| −m+ 1)
~wc
2

(3.1.29)

with energy levels
~wc
2
,
3~wc
2

,
5~wc
2

forming Landau levels. The most obvious

advantage for choosing single particle basis as Fock-Darwin solutions is that they

represent a natural and simple starting point with regards to

physics of problem (Rontani, Cavazzoni, Bellucci, & Goldoni, 2006). Also, two

dimensional Coulomb matrix elements are known analytically in the case of

using single particle basis as Fock-Darwin solutions (derivation can be found in

Appendix Two).
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3.1.3 Hartree Fock Method

Hartree method is a mean-field model in which it is assumed that electrons

move in an averaged potential formed by other electrons in the system (Hartree,

1928). In this case Schrödinger equation for many electrons in the system is

reduced to a single electron Hartree equation :

(

Ĥi +

N
∑

j=1

∫

Ψ∗
j(rj)

1

rij
Ψj(rj)

)

Ψi(ri) = EiΨi(ri) (3.1.30)

where Ĥi, is the single-electron Hamiltonian acting only on the ith electron as

defined in Equation (3.1.5), Ψi(ri) is the single-electron wavefunction for the ith

electron, and Ei is the corresponding eigenenergy. In Hartree theory wavefunction

of the system is described as products of single electron spin orbitals. However this

wavefunction doesn’t include the antisymmetry requirement. In order to include

this requirement Fock and Slater (Fock, 1930) established Hartree Fock Method

which estimates the many electron wave function as a single Slater determinant:

ΦD(q1,q2, ...,qn) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψα(q1) ψβ(q1) . . . ψγ(q1)

ψα(q2) ψβ(q2) . . . ψγ(q2)
...

...
...

...

ψα(qn) ψβ(qn) . . . ψγ(qn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.1.31)

where
1√
N !

is normalization constant. qi = (ri, σi), represents the spatial and

the spin coordinate of the ith electron, ψλ(qi) = uλ(ri)χλ is spin orbital of the

i. electron with a quantum number λ and uλ(ri) and χλ the spatial and the

spin coordinate of the ith electron (Wang, Hines, & Muhandiramge, n.d.). Spin

orbitals are orthogonal to each other:

〈ψµ|ψλ〉 = δµ,λ (3.1.32)
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Slater determinant can be written in a more compact form:

ΦD(q1,q2, ...,qn) =
1√
N !

∑

P

(−1)pP̂ψα(q1)ψβ(q2)...ψγ(qn) = ÂΦ (3.1.33)

where Φ is the product of individual spin orbitals:

Φ = ψα(q1)ψβ(q2)...ψγ(qn)

P̂ is permutation operator which interchanges both spatial and spin coordinates

of electron pairs. Â is an operator which makes a wave function of N identical

fermions antisymmetric under the exchange of the coordinates of any pair of

fermions. After application of the wave function satisfies the Pauli principle.

Â =
1√
N !

∑

P

(−1)pP̂ (3.1.34)

According to variational principle

E0 ≤ 〈Φ|Ĥ|Φ〉 (3.1.35)

If variational principle is applied, one can get a set of equations called Hartree

Fock equations (McCarthy, Wang, & Abbott, 2001):

(

Ĥi + V c
λ (qi)− V exc

λ (qi)
)

ψλ(qi) = Eλψλ(qi) (3.1.36)

V c
λ (qi) =

∑

µ6=λ

∫ |ψµ(rj)|2
rij

drj (3.1.37)

V exc
λ (qi)ψλ(qi) =

∑

µ6=λ

(
∫

ψµ(rj)ψλ(rj)

rij
drj

)

ψµ(ri) (3.1.38)
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where V c
λ (qi) is called as Coulomb term and V c

λ (qi) exchange term. Coulomb term

is averaged Coulomb potential (-e) charged particle feels. It depends on average

positions of electrons in the system. The essence of Hartree Fock approximation

is to replace complicated many electron problem by one electron problem in which

electron-electron repulsion is treated in an averaged way. Hartree Fock equation

is nonlinear and must be solved iteratively. The procedure for solving Hartree

Fock equation is called the self-consistent-field (SCF). The basic idea of the SCF

method is simple. By making a initial guess at the spin orbitals, one can calculate

the average field seen by each electron an then solve eigenvalue equation for a new

set of spin orbitals. For this new orbitals one can obtain new orbitals and repeat

the process until self-consistency reached.(i,e. until the fields no longer change

and the spin orbitals are the same as Fock operators eigenfunctions) (Szabo,

1996). Deficiency in the Hartree Fock approximation is that it is an independent

particle approximation, i.e. an electron moves in an averaged field of the other

electrons and it does not actually feel the instantaneous repulsion. The Hartree

Fock wavefunction do not minimise the actual electronic repulsion energy and,

in reality, the electrons are further away from each other reducing the repulsion

energy. (Lehtonen, 2007).

3.1.4 Density Functional Theory

Another mean-field approach to solve the many electron Schrödinger

equation is Density Functional Theory (DFT). However, in DFT electron density

distribution n(r) is used in stead of many electron wavefunction In this method

systems with large number of electrons can be examined while in wavefunction

based approaches one can deal with small number of electrons. At the heart

of the Density functional theory is the self-consistent single-electron Kohn-Sham
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equation (Kohn & Sham, 1965)

− ~
2

2m∗∇
2ψi(r) + [Vext + Vc(r) + Vxc(r)]ψi(r) (3.1.39)

developed from the Hohenberg-Kohn theorems (Hohenberg & Kohn, 1964). Vext

represents the external electric potential imposed by, for example,

external electrodes. ψi is the wavefunction for the ith electron, which is solved

from the Kohn-Sham equation to provide the electron density distribution n(r)

defined as

n(r) =
N
∑

i=1

|ψi(r)|2 (3.1.40)

The Coulomb potential is then given by

Vc(r) =
e2

4πǫ∗

∫

n(r
′

)

|r− r′|dr
′

(3.1.41)

while the exchange-correlation potential Vxcr depends functionally on the electron

density distribution n(r). If the exact exchange-correlation functional Exc[n(r)]

is used, the Kohn-Sham equation incorporates all many-particle effects. However,

exchange effects come directly from the antisymmetrisation of wavefunctions

as required by the Pauli’s exclusion principle. In the density function theory,

this is a major problem since the mathematical object is the electron density

distribution function rather than the electron wavefunction, making evaluation of

the exchange interaction intrinsically difficult. For many quantum systems, this

functional cannot be exactly defined and recent work has involved a considerable

amount of empirical parameterization. The simplest and the most widely used

representation for Exc[n(r)] is the so-called local-density approximation (LDA),

i.e.

ELDA
xc =

∫

exc(ζ)n(r
′

)dr
′

(3.1.42)

where ζ represents the spin polarization and exc is the exchange-correlation energy.

LDA for homogeneous two-dimensional electrons and also for systems with small
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variation in e density. The exchange-correlation energy can be parameterized as

exc(ζ) =
a0(ζ)(1 + a1(ζ))

√

(x)

1 + a1(ζ)
√

(x) + a2(ζ)x+ a3(ζ)x1/3
(3.1.43)

where x relates to the electron density and is defines as the radius of a sphere

containing one electron. The coefficients ai(0) and ai(1) were determined by

Tanatar and Ceperley (Tanatar & Ceperley, 1989) for the ground state of 2D

electron gas using the Green’s function Monte Carlo method. For other values of

ζ one can use,

exc(ζ) = exc(0) +
(1 + ζ)3/2 + (1− ζ)3/2 − 2

23/2 − 2
(exc(1)− exc(0)) (3.1.44)

The Kohn-Sham equations are solved iteratively. This is similar to the Hartree

method. The wavefunction of each electron is solved taking into account a

potential field determined by the average position of all other electrons.

After a solution is obtained, the potential field is recalculated and the Kohn-Sham

equation is solved for a new solution. The calculation is thus iterated until both

the potential field and the solution tend to change (Wang, Hines, &

Muhandiramge, n.d.).

3.1.5 Electron Correlation Methods

The energy difference between the exact nonrelativistic solution of the

Schrödinger equation and the Hartree Fock energy is called the correlation energy.

The difference is due to that the Hartree Fock approximation restricts the ground

state wavefunction to be described by a single determinant with doubly occupied

orbitals, but the many-body wavefunction cannot be represented in such a way

(Lehtonen, 2007)

A certain amount of electron correlation is already considered within the HF
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approximation, found in the electron exchange term describing the

correlation between electrons with parallel spin. This basic correlation prevents

two parallel-spin electrons from being found at the same point in space and is

often called Fermi correlation. Coulomb correlation, on the other hand, describes

the correlation between the spatial position of electrons with opposite spin due

to their Coulomb repulsion.

How can we build a wave function that contains electron correlation? We could

expand the exact wave function as a linear combination of approximate wave

functions, provided these approximate wave functions form a complete set. For

example, we could expand the exact wave function in terms of a linear combination

of Slater determinants. This approach is called the Configuration Interaction (CI)

method. CI method is discussed in detail in the next section.

3.1.6 Configuration Interaction Approach

Both Hartree Fock and local (spin) density functional approximation (LDA)

have an advantage in treating large number of particles. However, Hartree Fock

and LDA cannot treat properly a sort of correlation effect and have relatively poor

information on the excited states. In CI method, electron correlation is taken into

account by taking wavefunction as a linear combination of Slater determinants

which is formed from orthogonal spin orbitals. CI wavefunction can be written

as:

Ψ =

Ndet
∑

i=1

diΦD (3.1.45)

where ΦD is Slater determinant defined as equation (3.1.31). Ndet is the number

of Slater determinants included in the expansion.

Ndet =





ℵ
N↑









ℵ
N↓



 (3.1.46)
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where ℵ is the number of available spin-orbitals to be used in the expansion,N↑

and N↓ are the number of electrons with up and down spin, respectively, and

N↓ +N↑ = N is the total number of electrons in the system. In other words N↑

and N↓ electrons can ocuppy ℵ spin orbitals in Ndet different ways. According

to Pauli principle there can be only two electron with opposite spins in a spin

orbital (Wensauer, Korkusinski, & Hawrylak, 2004):

N

2
≤ max(N↑, N↓) ≤ ℵ ≤ N

Slater determinants in equation (3.1.45) can be formed by exciting electrons from

occuppied to unoccupied orbitals. Therefore each Slater determinant corresponds

to a different configuration.

Expansion coefficients in equation (3.1.31) can be determined by the

variational principle. The linear Rayleigh-Ritz variation principal can be used to

determine the expansion coefficients di, namely by solving the eigenvalue problem

of an Hamitonian:

H C = E C (3.1.47)

where H is a matrix having the expectation values 〈ΦD|Ĥ|ΦjD〉 between

different Slater determinats, C has the eigenvectors as columns and E the

eigenvalues on its diagonal. The matrix elements of Hamiltonian can be

expressed in terms of one and two-electron integrals using Slater-Condon rules

(Slater, 1931). As the Hamiltonian contains only one and two electron operators,

all the expectation values between Slater determinants which differ by more than

two orbitals are zero. Additionally, all the matrix elements between the Hartree

Fock reference and singly excited Slater determinants are zero due to Brillouins

theorem. According to (3.1.47) equation to solve energy-eigenvalue problem we
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must find Hamiltonian matrix elements (Lehtonen, 2007):

〈ΦD|Ĥ|Φ′

D〉 = 〈ÂΦ|Ĥ|ÂΦ′〉
= 〈Φ|Ĥ|Â†ÂΦ

′〉
=

√
N !〈Φ|Ĥ|ÂΦ′〉

(3.1.48)

The matrix elements of Hamiltonian can be expressed in terms of one and

two-electron integrals using Slater-Condon rules which allow us to reduce the N-

electron integral to a sum of one or two-electron integrals, and furthermore, to

identify zero Hamiltonian matrix elements.

For completeness, the derivation of these rules which are taken from Wang,

Hines, & Muhandiramge, (n.d.) are given below. Note that the standard Slater-

Condon rules are only applicable if the two Slater determinants applicable ΦD and

Φ
′

D are lined up in maximum coincidence. For example if we have

Φ = ψ1ψ2ψ3ψ4ψ6 and Φ
′

= ψ1ψ3ψ4ψ5ψ6 would need be be aligned up by pairwise

permutation to Φ
′

= ψ1ψ5ψ3ψ4ψ6. Also the formulas derived below require the

one electron wavfunctions to be an orthogonal set.

Rule-1: Ĥ = h0 is constant which is independent of electron coordinates. If

ΦD = Φ
′

D then 〈ΦD|h0|Φ
′

D〉 = h0 and otherwise 〈ΦD|h0|Φ
′

D〉 = 0

〈ΦD|h0|Φ′

D〉 =
√
N !〈Φ|h0|ÂΦ′〉

= h0
∑

P

(−1)p〈Φ|PΦ′〉

= h0
∑

P

(−1)p〈ψ1|ψ
′

p1〉〈ψ2|ψ
′

p2〉...〈ψN |ψ
′

pN〉
(3.1.49)

Because of orthogonality of one electron integrals unless ψi = ψ
′

pi above expression

is zero. For this case Φ and Φ
′

must have identity elements. This can be obtained

only with one permutation i.e. identity permutation which have the property
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(−1)p = 1. Assuming that h0 = 1, one can get the orthogonality of Slater

determinants.

Rule-2: ĥi is one electron operator which contains one electron coordinates.

If we have Ĥ =
N
∑

i=1

ĥi:

a. 〈ΦD|Ĥ|Φ′

D〉 = 0, if Φ and Φ
′

differ by more than one orbital.

b. 〈ΦD|Ĥ|Φ′

D〉 = (−1)|l − m|〈ψl|ĥl|ψ′

m〉 if Φ and Φ
′

differ by one orbital ψl

versus ψ
′

m, where l is the position of ψl in Φ and m is the position of ψ
′

m in Φ
′

.

c. 〈ΦD|Ĥ|Φ′

D〉 =
N
∑

i=1

〈ψi|ĥi|ψi〉, if Φ = Φ
′

.

〈ΦD|ĥi|Φ′

D〉 =
∑

P

(−1)p〈ψ1|ψ
′

p1〉〈ψ2|ψ
′

p2〉...〈ψi|ĥi|ψ
′

pi〉...〈ψN |ψ
′

pN〉

=
∑

P

(−1)p〈ψi|ĥi|ψ
′

pi〉
∏

j 6=i
〈ψj|ψ

′

pj〉
(3.1.50)

which is equals to zero if for ψj 6= ψ
′

pj . If there exits two orbitals which occurs

in Φ but not in Φ
′

, no permutation can provide equation (3.1.50) therefore

〈ΦD|ĥi|Φ
′

D〉 = 0 when Φ and Φ
′

differ by more than one orbital. ψl is an orbital

which appears in Φ but not Φ
′

. There is one i = l which provides
∏

j 6=i
〈ψj |ψ

′

pj〉.

〈ΦD|Ĥ|Φ′

D〉 =

N
∑

i=1

〈ΦD|ĥi|Φ
′

D〉

=
∑

P

(−1)p〈ψl|ĥl|ψ
′

pl〉
∏

j 6=i
〈ψj |ψ

′

pj〉

=
∑

P

(−1)p〈ψl|ĥl|ψ
′

pl〉

(3.1.51)
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where (−1)p = (−1)|l−m| since we need |l − m| permutations to have the same

orbitals in the same order. Finally we consider the case Φ = Φ
′

. Every value of

j provides
∏

j 6=i
〈ψj |ψ

′

pj〉 so equation (3.1.50) becomes:

〈ΦD|Ĥ|ΦD〉 =
N
∑

i=1

〈ψi|ĥi|ψi〉 (3.1.52)

Rule-3 : Ĥ =

N
∑

j>i

ĥi,j is two electron operator depending on coordinates of ith

and jth electrons.

a. 〈ΦD|Ĥ|Φ′

D〉 = 0, if Φ and Φ
′

differ by more than two orbitals.

b. 〈ΦD|Ĥ|Φ′

D〉 = (−1)|l−m|+|s−t|(〈ψlψs|ĥi,j|ψ′

mψ
′

t〉 − 〈ψlψs|ĥi,j|ψ′

tψ
′

m〉) if Φ
′

and

Φ differ by two orbitals ψl and ψs in Φ and ψ
′

m and ψ
′

t in Φ
′

.

c. 〈ΦD|Ĥ|Φ′

D〉 = (−1)|l−m|
∑

i 6=l
(〈ψlψi|ĥi,j|ψ

′

mψi〉− 〈ψlψi|ĥi,j|ψiψ
′

m〉), if Φ differs

by one orbital, ψl in position l from Φ
′

which has ψ
′

m in position m instead.

d.

N
∑

j>i

(〈ψiψj |ĥi,j|ψiψj〉 − 〈ψiψj |ĥi,j|ψjψi〉), if Φ = Φ
′

.

〈ΦD|Ĥ|Φ′

D〉 =
N
∑

j>i

P
∑

(−1)P 〈ψ1|ψ
′

p1〉〈ψ2|ψ
′

p2〉...〈ψiψj |ĥi,j|ψ
′

piψ
′

pj〉...〈ψN |ψ
′

pN〉

=
N
∑

j>i

P
∑

(−1)P 〈ψiψj |ĥi,j|ψ
′

piψ
′

pj〉
∏

k 6=i,j
〈ψk|ψ

′

pk〉

(3.1.53)

If we do not have ψk = ψ
′

pk for ∀k 6= i, j equation (3.1.53) is zero. Asuming
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that Φ and Φ
′

differ by more than two orbitals there is not any permutation

which provides
∏

k 6=i,j〈ψk|ψ
′

pk〉 = 1 thus 〈ΦD|Ĥ|Φ′

D〉 = 0 If Φ and Φ
′

differ by

two orbitals, ψl and ψs in Φ and ψ
′

m, ψ
′

t in ψ
′

m, there are only two possible

permutations. P̂ andL̂ = P̂l,sP̂ satisfying these conditions, where:

ψk = ψ
′

Pk

ψ
′

m = ψ
′

P l

ψ
′

t = ψ
′

Ps

(3.1.54)

and

ψk = ψ
′

Lk

ψ
′

m = ψ
′

Ll

ψ
′

t = ψ
′

Ls

(3.1.55)

〈ΦD|Ĥ|Φ′

D〉 = (−1)p〈ψlψs|ĥi,j|ψ
′

P lψ
′

Ps〉+ (−1)l〈ψlψs|ĥi,j|ψ
′

Llψ
′

Ls〉
= (−1)p〈ψlψs|ĥi,j|ψ

′

mψ
′

t〉+ (−1)l〈ψlψs|ĥi,j|ψ
′

tψ
′

m〉
= (−1)p(〈ψlψs|ĥi,j|ψ

′

mψ
′

t〉 − 〈ψlψs|ĥi,j|ψ
′

tψ
′

m〉)
(3.1.56)

where (−1)L =( −1)P is used. Also |l − m| permutations is used to line-up ψl

and ψ
′

m, |s − t| permutations for ψs and ψ
′

t. Therefore (−1)p = (−1)|l−m|+|s−t.

If Φ and Φ
′

differ by only one orbital, ψl in Φ and ψ
′

m in Φ
′

, the conditions can

be satisfied when i = l. But j can take on any value allowed by the original

definition of H . For any given value of j, there are two possible permutations

which give non-zero results, so again we have:

〈ΦD|Ĥ|Φ′

D〉 =

N
∑

j 6=l
(−1)|l−m|(〈ψlψs|ĥi,j|ψ

′

mψ
′

t〉 − 〈ψlψs|ĥi,j|ψ
′

tψ
′

m〉) (3.1.57)

Finally if Φ and Φ
′

are identical all permutations provides the condition so we
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have:

〈ΦD|Ĥ|Φ′

D〉 =

N
∑

j>i

(〈ψiψj |ĥi,j|ψiψj〉 − 〈ψiψj |ĥi,j|ψjψi〉 (3.1.58)



CHAPTER FOUR

SPIN EIGENFUNCTIONS

4.1 One Electron Spin Eigenfunctions

In quantum mechanics spin is the essential property of elementary particles.

Every elementary particle has a specific and immutable spin quantum number

S. If one measures spin angular momentum of an electron along an axis usually

denoted by z, the result is either ~/2 or −~/2 where ~ is the Plancks constant. z

component of spin operator Ŝz has two eigenvalues: α and β represents spin up

and spin down, respectively.

Ŝzα =
~

2
α

Ŝzβ = −~

2
β

Spin angular momemntum compenents of a system for example electron

cannot measured be simultaneously because they don’t commute and they have

commutation relations as follows:

[Ŝx, Ŝy] = iŜz

[Ŝy, Ŝz] = iŜx

[Ŝz, Ŝx] = iŜy

However square of spin angular momentum operator Ŝ2 = Ŝ2
x+ Ŝ

2
y+ Ŝ

2
z commutes

with Ŝz so we can construct common eigenfunctions of this operators.

Ŝ2α = S(S + 1)α =
3

4
~
2α

Ŝ2β = S(S + 1)β =
3

4
~
2β

30
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This formation brief information about one electron spin operators and their

eigenfunctions will be basis for many electron case.

4.2 Many Electron Spin Eigenfunctions

In this section we will give information about building eigenfunctions of many

electron spin operators. Initially constructing eigenfunctions of z component of

total spin operator Ŝz is discussed, then a straightforward method for constituting

eigenfunctions of square of total spin operator Ŝ2 is explained which are derived

originally in Pauncz, (1979).

4.2.1 Ŝz Eigenfunctions

Ŝz operator is the sum of one electron operators:

Ŝz =

N
∑

i=1

Ŝz(i) (4.2.1)

where Ŝz(i) represents one electron operator. As the operator Ŝz is the sum of one

electron operators, the eigenfunctions are products of one-electron spin functions;

we shall call them primitive spin functions and denote them by θi:

θi = θ1(1)θ2(2)...θN (N) (4.2.2)

Each θ(j), can be either α or β. If we have N electrons, dimension of the spin space

must be equal to 2N . This space can be decomposed into subspaces according to

the eigenvalues of Ŝz:

Szθi(µ, γ) =
1

2
(µ− γ)θi(µ, γ) i = 1, 2, ...,





N

µ



 (4.2.3)
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θi(µ, γ) is a primitive spin eigenfunction with µ α’s and γ β’s. The number of

these functions:




N

µ



 =





N

γ



 =
N !

µ!γ!

Evidently:
N
∑

γ=0





N

γ



 = 2N

4.2.2 Construction of Ŝ2 Eigenfunctions by the Diagonalization Method

In N electron case Ŝ2 operator take the form:

Ŝ2X =
∑

j>i

P̂ijX +
N

4
(4−N)X (4.2.4)

where P̂ij is the permutation operator which changes the positions of i. and j.

electron. This equation is called as Dirac Identity and derivation can be found

in Appendix One. Our goal is to find eigenfunctions of this operator. There are

many ways to do this. In this section we will discuss a straightforward procedure

in which all we need to do is to write Ŝ2 operator in matrix form using primitive

spin functions.

Since Ŝ2 and Ŝz operators commute we can build simultaneous

eigenfunctions of this operators. However primitive spin functions in general

are not eigenfunctions of Ŝ2 operator. But it can be obtained by using proper

linear combinations of primitive spin functions X =
∑

k

ckθk which belongs to

same eigenvalue.

If there is one function with a given Ŝz eigenvalue, then this must be

eigenfunction of both of these operators. For example the primitive function
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α(1)α(2)...α(N), is an eigenfunction of Ŝ2 with eigenvalue M = N/2. If there is

more than one function with a given Ŝz eigenvalue, then one can set up matrix

representation of Ŝ2 in the space spanned by





N

µ



 primitive spin functions.

Matrix elements of Ŝ2 operator can be found by using Dirac identity. As an

example consider the case electron number is 3 and M = 1/2. Primitive spin

functions must be θ1 = ααβ, θ2 = αβα, θ3 = βαα.

Ŝ2|θ1〉 =
∑

j>i

P̂ij |θ1〉+
N

4
(4−N)|θ1〉

= P12|ααβ〉+ P13|ααβ〉+ P23|ααβ〉+
3

4
(4− 3)|ααβ〉

= |ααβ〉+ |βαα〉+ |αβα〉+ 3

4
|ααβ〉

=
7

4
|θ1〉+ |θ2〉+ |θ3〉

(4.2.5)

In a similar way

Ŝ2|θ2〉 = |θ1〉+
7

4
|θ2〉+ |θ3〉 (4.2.6)

Ŝ2|θ3〉 = |θ1〉+ |θ2〉+
7

4
|θ3〉 (4.2.7)

Therefore {Ŝ2} matrix:








7
4

1 1

1 7
4

1

1 1 7
4









(4.2.8)

Eigenvalues of this matrix 15
4

and 3
4
corresponding to spin quantum numbers

S = 3
2
and S = 1

2
, respectively. Eigenvectors are (1, 1, 1),(−1, 0, 1),(−1, 1, 0).

Because Ŝ2 is an hermitian operator different eigenvalues correspond to different

eigenfunctions must be orthogonal. S = 1/2 case is degenerate so eigenvalues are

not orthogonal to each other. Therefore the orthonormalised spin eigenfunctions

are obtained by applying the Gram- Schmidt orthonormalization procedure. New

eigenfunctions are ( 1√
3
, 1√

3
, 1√

3
), (− 1√

2
, 0, 1√

2
), (− 1√

6
, 2√

6
,− 1√

6
). For N = 3 and
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M = 1/2 spin eigenfunctions are:

X(3, 3
2
, 1
2
; 1) =

1√
3
(ααβ + αβα+ βαα)

X(3, 1
2
, 1
2
; 1) =

1√
2
(−ααβ + βαα)

X(3, 1
2
, 1
2
; 2) =

1√
6
(−ααβ + 2αβα− βαα)

(4.2.9)

X(N, S,M ; k), are eigenfunctions of Ŝ2 operator. N is electron number, S spin

quantum number, M magnetic quantum number and k is an integer represents

different eigenfunctions in a multidimensional spin eigenspace (Wang, Hines,

& Muhandiramge, n.d.). Diagonalization of Ŝ2 matrix is a straight forward

procedure. The drawback of this method lies in the fact that the dimension

of subspace is usually quite large (Pauncz, 1979).



CHAPTER FIVE

SPIN ADAPTED BASE

5.1 Combination of Spatial and Spin Functions

So far we have discussed constructing spin eigenfunctions. In this section

we will discuss to construct spin adapted basis (Muhandiramge, 2003) formed

from antisymmetric N electron wavefunctions that contain both spatial and spin

coordinates and also eigenfunctions of Ŝ2 operator. The derivations given below

can be found originally in Ruedenberg & Poshusta, (1972); Salmon & Ruedenberg,

(1972); Pauncz, (1979); Pauncz, (1979); Muhandiramge, (2003).

As we know total wavefunction of N electron wavefunction must be

antisymmetric, i,.e., it must change sign if we interchange the coordinates of two

electrons. Let’s start with a spatial wavefunction φ(r1, r2, .., rn) which

depends the spatial coordinates of electrons 1, 2, .., N . Many electron

wavefunction (Pauncz, 1979):

Ψi = ÂΦ(r1, r2, .., rn)X(N, S,M ; i) i = 1, 2, ...f(N, S) (5.1.1)

Â is antisymmetrizer:

Â =
1√
N !

∑

P

(−1)pP̂ (5.1.2)

X(N, S,M ; i) is spin function which is eigenfunciton of Ŝ2 operator and spatial

function:

Φ(r1, r2, .., rn) = φ1(r1)φ2(r2)...φN(rN )

where φi(ri) represents one electron spatial wavefunction. In a given calculation

N, S,M will be fixed numbers so we can show X(N, S,M ; i) spin eigenfunction

as Xi We can show that this many electron wavefunction is eigenfunction of Ŝ2

35
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(Pauncz, 1979):

Ŝ2Ψi = Ŝ2ÂΦXi = ÂΦŜ2Xi = S(S + 1)Ψi (5.1.3)

Properties of Antisymmetrizer

a) P̂ Â = P̂ Â = (−1)pÂ

Proof: Multiply by a given permutation, say R̂, on the left.

R̂Â = R̂
1√
N !

∑

P

(−1)pP̂

=
1√
N !

∑

P

(−1)pR̂P̂
(5.1.4)

As P̂ runs over all permutations, R̂P̂ = Q̂ also runs over all permutations (in a

different order). We can therefore replace sum over P̂ by a summation over Q̂:

(−1)r(−1)p = (−1)rp

R̂Â =
1√
N !

∑

Q

(−1)q+rQ̂

= (−1)rÂ

(5.1.5)

b) Antisymmetrizer is a hermitian operator:(Â† = Â)

Proof:

Â† =
1√
N !

∑

p

(−1)pP̂ †

=
1√
N !

∑

P

(−1)pP̂−1
(5.1.6)
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P ve P−1 have the same parity.

Â† =
1√
N !

∑

P−1

(−1)p
−1

P̂−1

= Â

(5.1.7)

c) The antisymmetrizer is an essentially idempotent operator:

Â2 = (N !)1/2Â =
∑

p(−1)pP̂

Proof:

Â2 =
1√
N !

∑

P

(−1)pP̂
1√
N !

∑

R

(−1)rR̂

=
1

N !

∑

P

∑

R

(−1)p(−1)rP̂ R̂

=
1

N !

∑

P

∑

R

(−1)q(−1)rQ̂

(5.1.8)

The product P̂ R̂ = Q̂ is again a permutation. If P̂ is held constant and R̂ runs

over all the permutations, so does Q̂ We shall replace the sum over R̂ over sum

over Q̂:

Â2 =
∑

P

(N !)1/2Â

= (N !)1/2Â

(5.1.9)

The first property is the most important one; from it follows that Ψi is

antisymmetric. The other properties will be useful for the calculation of matrix

elements (Pauncz, 2000).

5.1.1 Properties of Spin Adapted Basis

The base which is formed from antisymmetric space-spin wavefunction is called

as spin adapted base (Muhandiramge, 2003). In the following properties of spin

adapted base are given briefly. More details can be get from Salmon &

Ruedenberg, (1972), Pauncz, (2000) and Muhandiramge, (2003).
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Lineer Dependence: Unless special precautions are taken, some of them

will be linearly dependent (Salmon & Ruedenberg, 1972).

If two of the space products Φ and Φ′ are related by a permutation

Φ′ = P̂Φ

then wavefunctions containing Φ′ will be linearly dependent on those containing

Φ:

ÂΦ′Xi = ÂP̂ΦXi

= ÂP̂ [ΦP̂−1Xi]

= P̂ Â[ΦP̂−1Xi]

= ǫ(p)Â[Φ

f
∑

j=1

U(P )j,iXj ]

= ǫ(p)

f
∑

j=1

U(P )j,iÂΦXj

(5.1.10)

where ǫ(p) is +1 when P is even and +1 when P is odd. Therefore in order to avoid

this dependence, we must include spatial wavefunction that are not permutations

of each other. In other words Φ should include only one space product for each

choice of orbitals. Still, there is a linear dependence when space products are

doubly occupied. Suppose that Φ contains at least one doubly occupied orbital,

so that there exists a transposition t̂ = t̂−1 under which Φ is invariant: Φ = Φ′

ÂΦXi = Ât̂ΦXi

= Ât̂[Φt̂−1Xi]

= −Â[Φt̂−1Xi]

= −ÂΦt̂Xi

= −
f
∑

j=1

U(t)j,iÂΦXj

(5.1.11)

U(t)j,i = −δj,i (5.1.12)

This means that spin adapted wavefunctions can be linearly independent only if
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their spin functions are antisymmetric with respect to every interchange of two

electrons occupying the same space orbital (Salmon & Ruedenberg, 1972). Also

any space orbital may not occur more than two in a space

product Φ . We must define linear independent base to construct a well defined

eigenvalue problem. Therefore we should make some conventions about spatial

and spin functions.

Space Products : It is convenient to make some definitions about spin

adapted base (Salmon & Ruedenberg, 1972). Two electrons numbered by 2i− 1

and 2i will be called as geminal pair. A transposition P̂2i−1,2i interchanging

electrons 2i−1 and 2i will be called geminal transposition. Permutation which can

be written as a product of geminal transpositions is called

geminal permutation. Geminal subgroup SΦ is a group of all permutations formed

from {P1,2, P3,4, .., P2d−1,2d}. d is the number of doubly occupied

orbitals in space product. An element of this group P = P n1

1,2 ∗ P n2

3,4 ∗ ... ∗P nd

2d−1,2d.

(ni = 0 or 1, i = 1, .., d). The order of this group is 2d (Muhandiramge, 2003).

In order to have a linearly independent base in a given space product dou-

bly occupied orbitals must be in (1, 2), (3, 4), ..., (2d − 1, 2d) positions. In other

words doubly occupied orbitals are listed first in the order of ascending order

(Ruedenberg, 1971). And also spatial functions of different spin adapted wave

functions should not be permutations of each other.

Spin Eigenfunctions : According to equation (5.1.12) spin eigenfunction

must be antisymmetric with respect to geminal transpositions. Spin

eigenfunctions must have the property:

P̂2i−1,2i = −Xi (5.1.13)

It is certainly possible to construct such spin functions. Since geminal
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permutations and spin operators commute we can construct orthonormal spin

eigenfunctions which are simultaneous eigenfunctions of this operators:

Ŝ2P̂X(N, S,M ; k) = P̂ Ŝ2X(N, S,M ; k) = S(S + 1)P̂X(N, S,M ; k) (5.1.14)

ŜzP̂X(N, S,M ; k) = P̂ ŜzX(N, S,M ; k) =MP̂X(N, S,M ; k) (5.1.15)

where X(N, S,M ; k) is eigenfunction of Ŝ2 operator. New spin function

P̂X(N, S,M ; k) belongs to the f(N, S) dimensional spin space by the

orthogonal set of functions, so it can be expressed as a linear combination of

them:

P̂X(N, S,M ; k) =

f
∑

l=1

X(N, S,M ; l)U(P̂ )lk (5.1.16)

The expansion coefficient U(P̂ )lk can be obtained left by X(N, S,M ; l) and

integrating over spin N -electron spin space. By orthogonality we should have

one contribution:

〈X(N, S,M ;m)|P̂ |X(N, S,M ; l)〉 = U(P̂ )mk (5.1.17)

Let us apply another permutation to the result of the first permutation:

R̂P̂ =

f
∑

l=1

R̂X(N, S,M ; l)U(P̂ )lk

=

f
∑

l=1

f
∑

m=1

X(N, S,M ;m)U(R̂)mlU(P̂ )lk

(5.1.18)

The product of two permutations P̂ and R̂ is again a permutation Q̂ = P̂ R̂ and

if we apply Q̂ directly to X(N, S,M ; k) we then have

Q̂X(N, S,M ; k) =

f
∑

m=1

X(N, S,M ;m)U(Q̂)mk (5.1.19)

Comparing the right hand side of equations (5.1.18) and (5.1.19) we must have
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the same coefficient in both equations:

U(Q̂)mk =

f
∑

l=1

U(R̂)mlU(P̂ )lk (5.1.20)

The matrix corresponding to the product of permutations P̂ and R̂ is equal to

the matrix corresponding to Q̂ = P̂ R̂. Therefore we can write

U(RP ) = U(R)U(P ) (5.1.21)

satisfying the condition for a representation of the symmetric group (Pauncz,

2000). Let’s show spin function which are eigenfunctions of Ŝ2 by X0(N, S,M ; k).

This functions in general not eigenfunctions of geminal permutations. However

the orthonormalised eigenvectors of U(P2i−1,2i) will give the linear combinations of

vectorsX0 that form a new orthonormal basis. This new orthonormal basis will be

eigenfunctions of geminal permutations. As an example N = 3, S = 1/2,M = 1/2

X0(3,
1

2
,
1

2
; 1) =

1√
2
(−ααβ + βαα) (5.1.22)

X0(3,
1

2
,
1

2
; 2) =

1√
6
(−ααβ + 2αβα− βαα) (5.1.23)

P̂12X
0(3, 1

2
, 1
2
; 1) =

1√
2
(−ααβ + βαα)

=
1√
2
(−ααβ + αβα)

=
1

2
X0(3,

1

2
,
1

2
; 1) +

√
3

2
X0(3,

1

2
,
1

2
; 2)

(5.1.24)

P̂12X
0(3, 1

2
, 1
2
; 2) =

1√
6
(−ααβ + 2αβα− βαα)

=
1√
6
(−ααβ + 2βαα− αβα)

=

√
3

2
X0(3,

1

2
,
1

2
; 1)− 1

2
X0(3,

1

2
,
1

2
; 2)

(5.1.25)
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Therefore U(P̂12) matrix:




1
2

√
3
2√

3
2

−1
2





Eigenvalues of this matrix ±1 and eigenvectors (
√
3
2
, 1
2
) and (−1

2
,
√
3
2
). New spin

eigenfunctions:

X1(3, 1
2
, 1
2
; 1) =

√
3

2
X0(3,

1

2
,
1

2
; 1) +

1

2
X0(3,

1

2
,
1

2
; 2)

=

√
3

2

1√
2
(−ααβ + βαα) +

1

2

1√
6
(−ααβ + 2αβα− βαα)

=
1√
6
(−2ααβ + αβα+ βαα)

(5.1.26)

X1(3, 1
2
, 1
2
; 2) = −1

2
X0(3,

1

2
,
1

2
; 1) +

√
3

2
X0(3,

1

2
,
1

2
; 2)

=
1

2

1√
2
(−ααβ + βαα) +

√
3

2

1√
6
(−ααβ + 2αβα− βαα)

=
1√
2
(−αβα+ βαα)

(5.1.27)

This new spin functions are eigenfunctions of P12. First spin eigenfunction is

symmetric under permutation P12 while second is antisymmetric. This means

that the first function will vanish if we multiply it with a spatial function with

doubly occupied orbitals in positions one an two. But we can product second spin

eigenfunction with a spatial function in which two orbitals are the same

(Muhandiramge, 2003).

So far we have construct spin adapted basis which has elements ÂΦXi.

Xi is a spin eigenfunction which is also eigenfunction of geminal transpositions.

In spatial wavefunctions doubly occupied orbitals must be in sequentially in the

geminal positions. Also,two representative wavefunctions for different basis

elements are not permutations of each other. With this conventions

orthonormal basis can be constructed. Following theorems (Wang, Hines, &

Muhandiramge, n.d.) proves the orthogonality and linear independence of spin
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adapted base.

Theorem-1: Let Φ = φ1φ2...φn with φ2i−1,2i = φ2i (i.e. there is a doubly

occupied orbital at this position). Then if ÂΦXk = 0 we have P2i−1,2iXk = −Xk

and U(P2i−1,2i)kk = −1.

Proof:

U(P2i−1,2i)j,i = 〈Xj|P2i−1,2i|Xi〉
= 〈Xj|P2i−1,2i|Xi〉
= λj〈Xj|Xi〉
= λjδj,i

(5.1.28)

According to equation (5.1.12)

λjδj,i = −δj,i

λj = −1

And also

P̂2i−1,2iXj = λjXj

= −Xj

(5.1.29)

We can say that representations of geminal transpositions are diagonal:

U(P )kk = (−1)p

Theorem-2: Φ = φ1φ2...φn with φ1 = φ2, ..., φ2d−1,2d = φ2d where d is the

number of doubly occupied orbitals in Φ. Then if P̂ is element of SΦ, with

ÂΦXk 6= 0 we have U(P )kk = (−1)p where (−1)p is the parity of the permutation

P.
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Proof:

U(P ) = U(P n1

1,2) ∗ U(P n2

3,4) ∗ ... ∗ U(P nd

2d−1,2d)

= U(P1,2)
n1 ∗ U(P3,4)

n2 ∗ ... ∗ U(P2d−1,2d)
nd

(5.1.30)

U(P )0 is identity matrix. U(P2i−1,2i) is diagonal. U(P )0 birim matristir. The

parity of P is given by (−1)p = (−1)n1+n2+...+nd so U(P )kk = (−1)p.

Theorem-3: The basis functions ÂΦXj and ÂΨXk are orthogonal if Φ 6= Ψ

for all permutations P .

Proof:

〈ÂΦXj |ÂψXk〉 = 〈ΦXj |Â†ÂψXk〉
= 〈ΦXj |

√
N !ÂψXk〉

=
∑

P (−1)p〈Φ|P̂ψ〉〈Xj|P̂Xk〉
=

∑

P (−1)p〈Φ|P̂ψ〉U(P )jk

(5.1.31)

This means basis elements are orthogonal for different spatial wavefunctions.

Note that our basis does not include spatial wavefunctions that are non-invariant

permutations of each other. The only case where two basis elements would

have the same spatial wavefunction is when it is multiplied by a different spin

eigenfunction. This case is dealt with by the next theorem.

Teorem-4: The basis elements ÂΦXj and ÂΦXk are orthogonal where

ÂΦXj , ÂΦXk 6= 0 That is for j = k their inner product is 0. Furthermore for

j = k their inner product is 2d , where d is the number of pairs of doubly occupied

orbitals in Φ.

Proof:

〈ÂΦXj |ÂΦXk〉 =
∑

P

(−1)p〈Φ|P̂Φ〉U(P )jk (5.1.32)
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〈Φ|PΦ〉 =







1, PSΦ;

0, otherwise
(5.1.33)

In this case (5.1.32) equation:

〈ÂΦXj |ÂΦXk〉 =
∑

PǫSΦ

(−1)pU(P )jk (5.1.34)

If j = k then 〈ÂΦXj |ÂΦXk〉 = 0 as U(P )jk is diagonal for PǫSΦ.

If j = k then

〈ÂΦXk|ÂΦXk〉 =
∑

PǫSΦ

(−1)pU(P )kk

=
∑

PǫSΦ

(−1)p(−1)p

= |SΦ|
= 2d

(5.1.35)

Thus NΦÂΦXk is a properly normalised basis functions with NΦ = 1√
2d
.

5.2 Hamiltonian Matrix Elements

In this section analytic derivations of Hamiltonian matrix element in the spin

adapted base and special cases are discussed. These derivations are can be found

originally Muhandiramge, (2003). In order to construct Hamiltonian matrix

we must find 〈NΦÂφXk|Ĥ|NψÂψXj〉 matrix elements with Hamiltonian Ĥ =

Ĥ0 + Ĥint. Ĥ0 = Ĥ0i where is the one electron component Ĥint =

N
∑

j>i

Ĥi,j is the

interaction component that acts pairwise. One electron orbitals are the eigen-

functions of Ĥ0i i.e. (Ĥ0iφri = Eiφri) .This is the general form of a spin- free

Hamiltonian in which spin-orbit and spin-spin interactions are neglected. This
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gives us:

〈NΦÂφXj |Ĥ|NψÂψXk〉 = 〈NΦÂφXj|Ĥ0 + Ĥint|NψÂψXk〉
= 〈NΦÂφXj|Ĥ0|NψÂψXk〉+ 〈NΦÂφXj|Ĥint|NψÂψXk〉

(5.2.1)

5.2.1 The Single Electron Integral

As one electron orbitals are eigenfuncitons of Ĥ0i’nin the single electron integral

is straightforward.

〈NΦÂΦXj |Ĥ0|NψÂψXk〉 = NΦNψi
∑

P

(−1)p〈Φ|Ĥ0|Pψ〉U(P )jk

= NΦNψ

N
∑

i=1

∑

P

(−1)p〈Φ|Ĥ0i|Pψ〉U(P )jk

= NΦNψ

N
∑

i=1

∑

P

(−1)pEP (i)〈Φ|Pψ〉U(P )jk

(5.2.2)

where Ĥ0i(Pψ) = EP (i)(Pψ). EP (i) is the single electron energy of ith orbital in

Pψ.

If Φ 6= ψ then 〈Φ|Pψ〉 = 0 therefore we have 〈NΦÂΦXj |Ĥ0|NΦÂψXk〉 = 0.

But if Φ = ψ and PǫSφ according to (5.1.33) equation it must be 〈Φ|Pψ〉 = 1.
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Therefore

〈NΦÂΦXj |Ĥ0|NΦÂψXk〉 = N2
Φ

∑N
i=1

∑

PǫSφ
(−1)pEp(i)〈Φ|Φ〉U(P )jk

= N2
Φ

N
∑

i=1

∑

PǫSφ

(−1)p(−1)pδj,kEi

= N2
Φ

N
∑

i=1

∑

PǫSφ

(−1)2pδj,kEi

= N2
Φ‖Sφ|

N
∑

i=1

δj,kEi

= δj,k

N
∑

i=1

Ei

(5.2.3)

In other words ÂΦXj and ÂψXk wavefunctions is same in both space and spin

functions i.e. Φ = ψ and j = k then 〈NΦÂΦXj |Ĥ0|NψÂψXk〉 expectation value

is the sum of one electron energies
N
∑

i=1

Ei, otherwise it is equal to zero.

5.2.2 Line-up Permutation

NΦÂΦXj and NψÂψXk are different wavefunctions with Φ = φ1φ2...φN and

Ψ = ψ1ψ2...ψN . There is a permutation called linu-up permutation which makes

the orbitals in Ψ to bring into maximum coincidence with in Φ. If we assume that

Ψ and Φ have N − q orbitals in common, the remaining q orbitals of Φ will not

occur in Ψ. There is a permutation like W = L̂ψ which has following properties.

a) (N − q) common orbitals occur in same position in Ψ and Φ.

b) The remaining q orbitals occur in Φ in the same order as they occur in

Ψ
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There always exists a line-up permutation. However if there are doubly

occupied orbitals it is not unique. Using W = L̂ψ = w1w2...wN notation the

following conventions will be adopted in the presence of doubly occupied orbitals:

a) Assuming that φα occurs twice in Φ and once in Ψ if φ2i−1 = φ2i = φα

then it must be w2i−1 6= φ2i−1 and w2i = φα.

b)If φβ occurs twice in Ψ and once in Φ it must be ψ2i = φ2i.

c) If the orbital is doubly occupied in both Φ and Ψ then it should be

ψ2i−1 = φ2i−1 and ψ2i = φ2i.

According to this three properties line-up permutation must be function of

Φ and Ψ : (L̂(Φ, ψ)).

5.2.3 Interaction Integral

Interaction integral which depends on two elecron coordinates is

Ĥint =
∑

j>i

Ĥi,j where Ĥi,j represents the interaction between two electrons.

〈Φ|Ĥi,j|Ψ〉 = 〈φ1φ2...φN |Ĥi,j|ψ1ψ2...ψN 〉

= 〈ψiψj |Ĥi,j|φiφj〉
N
∏

k 6=i,j
〈|φk|ψk〉

(5.2.4)
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Therefore expectation value of interaction integral

〈Φ|Ĥi,j|Ψ〉 = 0 unless for φk = ψk ∀ 6= i, j Using this

〈NΦÂφXj |Ĥint|NΨÂψXk〉 = NφNΨ
∑

P

(−1)p〈Φ|Ĥint|PΨ〉U(P )jk

= NφNΨ

∑

j>i

∑

P

(−1)p〈Φ|Ĥ(i, j)|PΨ〉U(P )jk

= NφNΨ

∑

j>i

∑

P

((−1)p〈φiφj|Ĥ(i, j)|(PΨ)i(PΨ)j〉×
∏N

k 6=i,j〈φk|(PΨ)k〉U(P )jk)
(5.2.5)

where (PΨ)i represents the ith orbital in (PΨ).

We can define a permutation Li,j which lines up Φ and Ψ such that

φk = (Li,jψk) for ∀ 6= i, j. If there is not a permutation for particular Φ,Ψ, i, j

then Li,j = 0 and U(Li,j) = 0. For this permutation
N
∏

k 6=i,j
〈φk|(Li,jΨ)k〉 = 1

However this permutation will not be unique because for QǫSΦ Li,jQ and Pi,jLi,jQ

are line-up permutations. It must be noticed that for the case of i = j

((PΨ)i = (PΨ)j) Li,jQ and Pi,jLi,jQ will produce same integrals. Define wi

as wi = (Li,jΨ)i and wj as wj = (Li,jΨ)j, also

〈Φ|PΦ〉 =







1, wi = wj;

0, otherwise
(5.2.6)

In this case we have:

〈NΦÂφXj|Ĥint|NΨÂψXk〉 = NφNΨ

∑

j>i

∑

QǫSφ

2−δ(wi,wj)

((−1)li,jqU(Li,jQ)kl〈φiφj|Ĥi,j|wi, wj〉+(−1)pi,jli,jqU(Pi,jLi,jQ)kl〈φiφj |Ĥi,j|wj, wi〉)

which is the reduction of interaction integral equation (5.2.5). 2−δ(wi,wj) product
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is used in order to not to calculate integral twice in the case of i = j.

〈NΦÂφXj |Ĥint|NΨÂψXk〉 = NφNΨ

∑

j>i

∑

QǫSφ
2−δ(wi,wj)((−1)li,jq(−1)qU(Li,j)km×

U(Q)ml〈φiφj|Ĥi,j|wi, wj〉

−(−1)li,jq(−1)qU(Pi,jLi,j)kmU(Q)ml〈φiφj|Ĥi,j|wj, wi〉)

〈NΦÂφXj|Ĥint|NΨÂψXk〉 = NφNΨ

∑

j>i

∑

QǫSφ
2−δ(wi,wj)((−1)li,j (−1)q×

U(Li,j)kl(−1)q〈φiφj|Ĥi,j|wi, wj〉

−(−1)li,j (−1)qU(Pi,jLi,j)kl(−1)q〈φiφj|Ĥi,j|wj, wi〉)

〈NΦÂφXj |Ĥint|NΨÂψXk〉 = NφNΨ

∑

j>i |SΦ|2−δ(wi,wj)(−1)li,jU(Li,j)kl×

〈φiφj|Ĥi,j|wi, wj〉 − U(Pi,jLi,j)kl〈φiφj|Ĥi,j|wj, wi〉)

〈NΦÂφXj|Ĥint|NΨÂψXk〉 = 2−δ(wi,wj)(−1)li,j (U(Li,j)kl〈φiφj|Ĥi,j|wi, wj〉×

NΦ

Nψ

∑

j>i

−U(Pi,jLi,j)kl〈φiφj |Ĥi,j|wj, wi〉)

(5.2.7)

So the sum of integral over all permutations is reduced because of orthogonality

of orbitals. In the next section we will see that this formula can be reduce further

if we know more information about Φ and Ψ

5.3 Special Cases of the Hamiltonian Elements

5.3.1 Orbital Difference Equals to Zero

It is proper to define orbital difference between two special functions Φ and

Ψ. Orbital difference is the number of orbitals which appear in Ψ but not in Φ

considering doubly occupied orbitals.
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If orbital difference equals to one two spatial functions must be equal because

in spin adapted base we do not include special functions which are permutations

of each other. Therefore the line-up permutation for any pair i, j is equal to

identity permutation e.

〈NφÂφXj |Ĥint|NΨÂψXk〉 =
NΦ

NΨ

∑

j>i

2−δ(wi,wj)(−1)li,j (U(Li,j)kl〈φiφj |Ĥi,j|wi, wj〉

−U(Pi,jLi,j)kl〈φiφj|Ĥi,j|wj, wi〉)
(5.3.1)

〈NΦÂφXj|Ĥint|NΨÂψXk〉 =
NΦ

NΨ

∑

j>i

2−δ(wi,wj)(−1)e(U(e)kl〈φiφj|Ĥi,j|wi, wj〉

−U(Pi,je)kl〈φiφj|Ĥi,j|wj, wi〉)
(5.3.2)

〈NΦÂφXj|Ĥint|NΨÂψXk〉 =
NΦ

NΨ

∑

j>i

2−δ(wi,wj)(δkl〈φiφj|Ĥi,j|wi, wj〉

−U(Pi,j)kl〈φiφj |Ĥi,j|wj, wi〉)

(5.3.3)

5.3.2 Orbital Difference Equals to One

In this case there is one orbital which appears in Φ but not Ψ. We represent

this orbital as φdif . This orbital can occur in Φ once. For instance if Φ = φ1φ2φ3

and Ψ = φ1φ4φ2 then φdif = φ4 or it can occur twice in Φ, for example if

Φ = φ1φ1φ3 and Ψ = φ1φ2φ3 then φdif = φ1. Therefore we should take into

consideration this two cases when simplifying matrix elements.

The (i, j) pairs which will not give nonzero elements are one includes φdif

orbital. If φdif appears once in Φ then

(1, i), (2, i), ..., (i− 1, i), (i, i+ 1), ..., (i, N)
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pairs will give nonzero results. If φdif appears twice in position (i, i+1) the pairs

which will not give nonzero elements are:

(1, i), (2, i), ..., (i− 1, i), (i, i+ 1), ..., (i, N)

(1, i+ 1), (2, i+ 1), ..., (i− 1, i+ 1), (i+ 1, i+ 2), ..., (i+ 1, N)

It is important to note that φi = φi+1 = φdif , so the integrals in the second

case are the same as the integrals in the first case except for (i, i+ 1) pair.

If the line-up permutation is Li,j for the pair (i, j) then for (i+1, j) it must

be Pi,i+1Li,j. Taking into account all this we have:

〈NφÂφXj |Ĥint|NΨÂψXk〉 =
NΦ

NΨ

∑

j=1,j 6=i
2−δ(wi,wj)(−1)li,j (U(Li,j)jk〈φiφj|Ĥi,j|wi, wj〉

− U(Pi,jLi,j)jk〈φiφj |Ĥi,j|wj, wi〉) + (ndif − 1)
NΦ

NΨ
×

(
∑

j=1,j 6=i+1 2
−δ(wi+1,wj)(−1)pi,i+1li,j (U(Pi,i+1Li,j)jk×

〈φi+1φj |Ĥi+1,j|wi+1, wj〉 − (U(Pi,i+1Pi,jLi,j)jk×

〈φi+1φj |Ĥi+1,j|wj, wi+1〉))− 2−δ(wi+1,wj)(−1)li,i+1×

(U(Li,i+1)jk〈φiφi+1|Ĥi,i+1|wi, wi+1〉

− (U(Pi,i+1Li,i+1)jk〈φiφi+1|Ĥi,i+1|wi+1, wi〉))
(5.3.4)
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〈NφÂφXj |Ĥint|NΨÂψXk〉 =
NΦ

NΨ

∑

j=1,j 6=i
2−δ(wi,wj)(−1)li,j (U(Li,j)jk〈φiφj|Ĥi,j|wi, wj〉

− U(Pi,jLi,j)jk〈φiφj |Ĥi,j|wj, wi〉) + (ndif − 1)NΦ

NΨ
×

(
∑

j=1,j 6=i
2−δ(wi,wj)(−1)(−1)li,j ((−1)U(Li,j)jk×

〈φiφj|Ĥi,j|wi, wj〉 − ((−1)U(Pi,jLi,j)jk×

〈φiφj|Ĥi,j|wj, wi〉))− 2−δ(wi+1,wj)(−1)li,i+1×

(U(Li,i+1)jk〈φiφi+1|Ĥi,i+1|wi, wi+1〉

− (U(Pi,i+1Li,i+1)jk〈φiφi+1|Ĥi,i+1|wi+1, wi〉))
(5.3.5)

where we have used the case φi = φi+1 and

U(Pi,i+1R)kl = U(Pi,i+1)kkU(R)kl = (−1)pi,i+1 = −U(R)kl

Grouping terms we have the final result:

〈NφÂφXj |Ĥint|NΨÂψXk〉 =
NΦ

NΨ

ndif
∑

j=1,j 6=i
2−δ(wi,wj)(−1)li,j (U(Li,j)jk×

〈φiφj|Ĥi,j|wi, wj〉 − U(Pi,jLi,j)jk〈φiφj|Ĥi,j|wj, wi〉)

− NΦ

NΨ
(ndif − 1)(2−δ(wi+1,wj)(−1)li,i+1×

(U(Li,i+1)jk〈φiφi+1|Ĥi,i+1|wi, wi+1〉
− (U(Pi,i+1Li,i+1)jk〈φiφi+1|Ĥi,i+1|wi+1, wi〉))

(5.3.6)
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5.3.3 Orbital Difference Equals to Two

If the orbital difference is equal to two then only pairs which include orbitals

appear in Φ but not in Ψ will have line-up permutation and therefore nonzero

result. If φi and φj are orbitals that appear in Φ and not in Ψ. Although there

is only one choice for the orbitals, this could correspond to more than one pair of

i, j as each of i and j could appear up to twice in Φ. We can have φi 6= φj and

either or both of φi and φj appear twice in Φ. As an example if Φ = φ1φ1φ3φ3

and Ψ = φ1φ2φ3φ4 then different orbitals φ1 and φ3 which appears twice in Φ.

Taking into account all this cases:

〈NφÂφXj |Ĥint|NΨÂψXk〉 =
NΦ

NΨ
2−δ(wi,wj)((−1)li,j (U(Li,j)jk〈φiφj |Ĥi,j|wi, wj〉

− U(Pi,jLi,j)jk〈φiφj |Ĥi,j|wj, wi〉)
+ (ni − 1)(−1)li,jpi,i+1(U(Pi,i+1Li,j)jk〈φiφj|Ĥi,j|wi, wj〉
− U(Pi,i+1Pi,jLi,j)jk〈φiφj|Ĥi,j|wj, wi〉)
+ (nj − 1)(−1)li,jpi,i+1(U(Pj,j+1Li,j)jk〈φiφj|Ĥi,j|wi, wj〉
− U(Pj,j+1Pi,jLi,j)jk〈φiφj|Ĥi,j|wj, wi〉)
+ (ni − 1)(nj − 1)(−1)li,jpi,i+1pj,j+1

(U(Pi,i+1Pj,j+1Li,j)jk〈φiφj|Ĥi,j|wi, wj〉
− U(Pi,i+1Pj,j+1Pi,jLi,j)jk〈φiφj|Ĥi,j|wj, wi〉)

(5.3.7)
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〈NφÂφXj |Ĥint|NΨÂψXk〉 =
NΦ

NΨ

2−δ(wi,wj)(−1)li,j ((U(Li,j)jk〈φiφj |Ĥi,j|wi, wj〉

− U(Pi,jLi,j)jk〈φiφj |Ĥi,j|wj, wi〉)
+ (ni − 1)(−1)((−1)U(Li,j)jk〈φiφj |Ĥi,j|wi, wj〉
− (−1)U(Pi,jLi,j)jk〈φiφj |Ĥi,j|wj, wi〉)
+ (nj − 1)(−1)((−1)U(Li,j)jk〈φiφj|Ĥi,j|wi, wj〉
− (−1)U(Pi,jLi,j)jk〈φiφj |Ĥi,j|wj, wi〉)
+ (ni − 1)(nj − 1)(−1)((−1)(−1)U(Li,j)jk〈φiφj|Ĥi,j|wi, wj〉
− (−1)(−1)U(Pi,jLi,j)jk〈φiφj|Ĥi,j|wj, wi〉)))

(5.3.8)

〈NφÂφXj|Ĥint|NΨÂψXk〉 =
NΦ

NΨ

2−δ(wi,wj)(−1)li,j ((U(Li,j)jk〈φiφj|Ĥi,j|wi, wj〉

− U(Pi,jLi,j)jk〈φiφj |Ĥi,j|wj, wi〉)
+ (ni − 1)(U(Li,j)jk〈φiφj|Ĥi,j|wi, wj〉
− U(Pi,jLi,j)jk〈φiφj |Ĥi,j|wj, wi〉)
+ (nj − 1)(U(Li,j)jk〈φiφj|Ĥi,j|wi, wj〉
− U(Pi,jLi,j)jk〈φiφj |Ĥi,j|wj, wi〉)
+ (ni − 1)(nj − 1)(U(Li,j)jk〈φiφj |Ĥi,j|wi, wj〉
− U(Pi,jLi,j)jk〈φiφj |Ĥi,j|wj, wi〉)))

(5.3.9)

〈NφÂφXj|Ĥint|NΨÂψXk〉 =
NΦ

NΨ
2−δ(wi,wj)(−1)li,j ((U(Li,j)jk〈φiφj|Ĥi,j|wi, wj〉

− U(Pi,jLi,j)jk〈φiφj |Ĥi,j|wj, wi〉)×
(1 + (ni − 1) + (nj − 1) + (ni − 1)(nj − 1))

(5.3.10)
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〈NφÂφXj |Ĥint|NΨÂψXk〉 =
NΦ

NΨ

2−δ(wi,wj)(−1)li,j (ninj)((U(Li,j)jk×

〈φiφj|Ĥi,j|wi, wj〉 − U(Pi,jLi,j)jk〈φiφj |Ĥi,j|wj, wi〉)
(5.3.11)

Since ni and nj can take values 1 and 2 we can define a relation as ninj = 2(ni+nj−2)

Combining the conditions φi = φj and φi 6= φj we finally get:

s(υi, υj,Φ) =







0, υi = υj;

n(υi,Φ) + n(υj,Φ)− 2, υi = υj
(5.3.12)

where ni = n(υi,Φ) and nj = n(υj ,Φ).

〈NφÂφXj |Ĥint|NΨÂψXk〉 =
NΦ

NΨ

2−δ(wi,wj)2s(υi,υj ,Φ)(−1)li,j ((U(Li,j)jk×

〈υiυj |Ĥi,j|wi, wj〉 − U(Pi,jLi,j)jk〈υiυj|Ĥi,j|wj, wi〉)
(5.3.13)

5.3.4 Orbital Difference Equals to Three

In this case a line-up permutation does not exist for any pair i, j:

〈NΦÂφXj |Ĥint|NΨÂψXk〉 =
NΦ

Nψ

∑

j>i

2−δ(wi,wj)(−1)li,j (U(Li,j)kl×

〈φiφj|Ĥi,j|wi, wj〉 − U(Pi,jLi,j)kl〈φiφj|Ĥi,j|wj, wi〉)
= 0

(5.3.14)

In the last step we have used U(Li,j) = 0.



CHAPTER SIX

NUMERICAL RESULTS

6.1 Addition Energy

As mentioned in Chapter 2 quantum dots resemble the real atoms in many

respects. One of them is having shell structure. Experimentally two-dimensional

2D shell structure of the parabolic quantum dots have been proved by measuring

Coulomb oscillations at zero magnetic field by Tarucha et al., (1996). They have

observed 2D shell structure from the addition energies, analogous to 3D shell

structure from atomic ionization energies.

In the one electron case the energy E(n,m), of a a parabolic quantum dot

with a radial quantum number n = 0, 1, 2, ... and angular momentum quantum

number m = 0,±1,±2, ... is given by:

E(n,m) = (2n+ |m|+ 1)~ω0 (6.1.1)

where ~ω0 is the electrostatic confinement energy. Energy, has degenerate sets

of states, which are separated by hω0 from each other as seen in Figure 6.1 and

are completely filled for N = 2, 6, 12, 20, etc. These N values are called as magic

numbers since they signify the complete filling of a shell (Tarucha et al., 1996).

In this thesis addition energy ∆µ(N), needed to place an extra electron in

a system, is calculated for up to six electrons in a parabolic quantum dot with

harmonic well constant 5.5meV at zero magnetic field. For this purpose initially

the ground state energies of the system are found up to seven electrons. These

results are used to calculate chemical energy which is defined as:

µ(N) = U(N)− U(N − 1) (6.1.2)

57
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Figure 6.1 Single particle energies for 2D parabolic
quantum dot in absence of magnetic field. n and
m denotes radial and angular momentum quantum
number respectively.

where U(N) is the energy of N electron system. Then addition energies are

calculated according to equation:

∆µ(N) = µ(N + 1)− µ(N) (6.1.3)

In Figure 6.2 the addition energy spectrum is plotted from N = 1 to 6 electrons

where labels of peaks with ”N” corresponds to the energy difference µ(N + 1)−
µ(N) between (N + 1) and N electron ground states. It is clearly seen that the

addition energy is large for 2, 6 which correspond to full filling of first and second

shells. Also there is a second maximum for 4 electron which is due to the half

filling of second shell with parallel spins according to the Hund’s rule (Tarucha

et al., 1996).
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Figure 6.2 Change of addition energy calculated for 2D
parabolic quantum dot with ~w0 = 5.5meV

6.2 Magnetic Transitions

Tarucha et. al., (1998) have observed magnetic field induced transitions in

the ground states of disk-shaped semiconductor quantum dots experimentally.

Also they have discussed these transitions in the conjunction with the exact

diagonalization calculations.

In this thesis in order to observe the magnetic transitions which have been

observed in experiment by Tarucha et al., (1998) electrochemical energy versus

magnetic field plots are reproduced for 2, 3 end 4 electrons. For this calculations

we take harmonic well constant ~w0 = 5.5meV , relative mass m∗ = 0.67m0 and

dielectric constant ǫ∗ = 13.1ǫ0.

In figure 6.3 electrochemical energies versus magnetic field are plotted for

2 electrons. A transition occurs at about 4 T (labeled by �) from the singlet

(S, L) = (0, 0) to triplet state (S, L) = (1, 1) in the ground state which is in
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agreement with the experiment and also the exact results done by Tarucha et. al.,

(1998). Also in the experiment this transition is observed at 4 T . With increasing

magnetic field electrons will feel increasing Coulomb interaction. Because of this

the increasing Coulomb interaction one electron will be forced to occupy a higher

level. In this case one electron will be in (S, L) = (0, 0) and the other one

in (S, L) = (1, 1) with a larger kinetic energy before the transition. However

this transition reduces the Coulomb interaction because of larger spatial distance

between electrons.The transition in angular momentum state is compensated by

transition in singlet (S = 0) to triplet state (S = 1) (Tarucha et al., 1998).
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Figure 6.3 Ground state energies versus magnetic field of a
2 electron 2D parabolic quantum dot with ~w0 = 5.5meV .

For 3 electron case energy spectrum versus magnetic field is plotted in

Figure 6.4. Spin and angular momentum quantum numbers change from

(S, L) = (
1

2
, 1) to (

1

2
, 2) at 4 T and to (

3

2
, 3) 4.8 T . In the experiment these

transitions are observed at 4.3 T and 4.8 T , respectively. In these transitions the

angular momentum states increase meanwhile reducing the Coulomb potential of

the system. On the other hand the total spin increases gaining exchange energy.
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Similar to the 2 electron case reducing Coulomb energy is accompanied with the

increasing exchange energy.
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Figure 6.4 Ground state energies versus magnetic field of a
3 electron 2D parabolic quantum dot with ~w0 = 5.5meV .

In four electron ground state there is a transition at 0.43 T which is in

agreement with the experiment and the exact result from (S, L) = (1, 0) to (0, 2)

state as shown in Figure 6.5 which is identified as manifestation of Hund’s rule

(Tarucha et al., 1998). A transition from parallel spins to antiparallel spins occurs.
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Figure 6.5 Ground state energies versus magnetic field of a
4 electron 2D parabolic quantum dot with ~w0 = 5.5meV .

6.3 Comparision with Other Results

The ground state energies of six electron parabolic quantum dot with the

total spin quantum numbers S = 0 and S = 3 at zero magnetic field and the

total angular momentum L = 0 are calculated in this section. These calculations

are done for different values of the the density parameter rs , which determines

the average particle density in the dot and related to the electron density as:

n0 =
1

πr2s
(6.3.1)

Harmonic well constant can be approximated in terms of rs as (Reimann & Man-

ninen, 2002):

w2
0 =

e2

4πǫ∗m∗r3s
√
N

(6.3.2)

For every density parameter, harmonic well constant is calculated according to

equation (6.3.2). Also atomic units are used and effective mass and effective
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dielectric constant are taken as m∗ = 0.67m0, ǫ
∗ = 12.4ǫ0 respectively for which

the length and energy units then scale to a∗b = 9.79 nm and Ha∗ = 11.9meV . In

order to build spin space, z component of total spin operator is taken as Sz = 0

for both S = 0 and S = 3 because all the spin states have components with this

value.

Table 6.1 and 6.2 total energy results of the ground state with spin zero and

the with spin S = 3 with the SACI, exact and DFT results obtained by Reimann

& Manninen, (2002). In the DFT they treated the exchange-correlation part

of the electron-electron interactions in the Local Spin Density Approximation

(LSDA). In the paramagnetic case LSDA gives lower energies than exact and CI

results when rs > 2ab. However in the ferromagnetic case SACI gives the lowest

energies. Figure 6.6 shows the energy difference between the fully polarized state

and the ferromagnetic state versus
1

rs
. The LDA gives larger energy difference

than the exact and SACI.
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Table 6.1 Comparision between the SACI ground state energies (units ofHa∗) obtained
in this thesis and the exact and LDA results taken from Ref. (Reimann & Manninen,
2002) at zero magnetic field in a six electron quantum dot for paramagnetic case.

rs/a
∗
B ~w0/meV LDA EXACT SACI

1 7.58 14.30 14.27 14.30

1.5 4.12 8.988 8.983 9.002

2 2.68 6.503 6.508 6.522

2.5 1.92 5.073 5.084 5.085

3 1.46 4.148 4.162 4.167

3.5 1.16 3.502 3.519 3.531

4 0.94 3.027 3.045 3.048

Table 6.2 Comparision between the SACI ground state energies (units ofHa∗) obtained
in this thesis and the exact and LDA results taken from Ref. (Reimann & Manninen,
2002) at zero magnetic field in a six electron quantum dot for ferromagnetic case.

rs/a
∗
B ~w0/meV LDA EXACT SACI

1 7.58 15.30 15.22 15.22

1.5 4.12 9.409 9.363 9.360

2 2.68 6.724 6.695 6.691

2.5 1.92 5.204 5.188 5.183

3 1.46 4.233 4.225 4.220

3.5 1.16 3.560 3.559 3.555

4 0.94 3.068 3.071 3.053
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For reasons of numerical feasibility it is necessary to truncate the set of

basis functions to be used in the diagonalization (Reimann & Manninen, 2002).

For this purpose the SACI package includes the states with the sum of occupied

single particle energies less than or equal to a specified cutoff energy Ec. In

this calculations for ferromagnetic case we take the cut-off energy 22~w0 which

corresponds to 1456 basis elements. Since correlation becomes stronger with

increasing rs value, for the paramagnetic case the cut-off energy is taken 24~w0

for rs ≤ 2.5. Also for every calculation convergence is tested. SACI package gives

the convergence plots as in Figure 6.7 in which the ground state and the first

excited state energy values versus basis size is plotted for rs = 2. After 2500 basis

elements have been used energy value begin to be stable.
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Figure 6.7 Convergence plot of six electron parabolic
quantum dot for rs = 2.



CHAPTER SEVEN

CONCLUSION

In this thesis we have calculated the ground state energies of two

dimensional (2D) disc-like parabolic quantum dots up to seven electrons by using

Spin Adapted Configuration Interaction (SACI) package. This package calculates

the energies and wavefunctions of a parabolic quantum dot under the influence

of magnetic field.

The total ground state energies with spin zero (paramagnetic state) and the

state with spin S = 3 (ferromagnetic state) are obtained at zero magnetic field

and zero angular momentum for different densities. These results are compared

with the exact and the LSDA results to test the accuracy of the method. In the

ferromagnetic case the SACI results are found to be lower than both the the exact

and the LSDA results for all the density parameter values. In paramagnetic case

the results found to be higher than both the exact and the LSDA results with a

relative error %0.2 to exact results. This error could be lowered by using a larger

basis. Also it is seen that for the large density parameter values larger basis must

be used since correlation effects become stronger with the decreasing density.

In order to exhibit the atomic-like properties of the quantum dots we have

plotted the addition energy which is the energy required to add an extra electron

to the system. Just like the real atoms 2D parabolic quantum dot has shown

maximum addition energies when the Fock-Darwin shells are full filled. Also we

have examined secondary maximums when the shells are half filled with parallel

spins.

Also we have plotted electrochemical energy versus magnetic field and

observed magnetic transitions in the ground state of the multi-electron system

which is in agreement with experiment done by Tarucha et al.. In the case of

66
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2 electrons a transition has been ocurred at 4 T from singlet to triplet state

gaining the exchange energy. Similar transitions has been observed in 3 electron

case. Also breaking of the Hunds rule in the case of 4 electrons for relatively low

magnetic field of 0.5 T have been observed.

This work could be extended for more electrons using powerful computers

and using more efficient programming language such as Fortran in the

future. And also this method can be applied to the systems having more complex

geometry.
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McCarthy, S. A., Wang, J. & Abbott, P. C. (2001). Electronic structure calcu-

lation for n-electron quantum dots. Computer Physics Communications , 141 ,

175-204.

Muhandiramge R. D. (2003). Spin adapted configuration study of n-electron quan-

tum dots. Australia: Ph.D. Thessis.

Muhandiramge R. D., & Wang, J. (2006). Electronic structure of multi-electron

quantum dots. The Mathematica Journal , 10 :2, 398-414.

Muhandiramge R. D., & Wang, J. (2006). Spin-adapted states: a basis for quan-

tum dot structure calculation. Int. J. Quant. Chem., 106 , 27-53.

Pauncz R. (2000). The construction of spin eigenfunctions: an exercise book, New

York: Kluwer Academic/Plenum Publishers.

Pauncz R. (1979). Spin eiegenfunctions: construction and use, New York: Plenum

Press.



71

Pfannkuche, D, Gerhardts, R. R., & Maksym, P. A. (1993). Theory of quantum

dot helium. Physica B , 189 , 6.

Pfannkuche, D, Koskinen, V., & Maksym, P. A. (1993). Comparasion of a Hartree,

a Hartree Fock and an exact treatment of quantum-dot Helium. Phys. Rev. B ,

47 (4), 2244-2250.

Ouellette, J. (2003). Quantum dots for sale. The Industrial Physicist , American

Institute of Physics, 14.

Reimann, S. M., Koskinen, M., Kolehmainen, J., Manninen, J., Austing, D. G.,

& Tarucha, S. (1999). Electronic and magnetic structure of artificial atoms.

Eur. Phys. J. D , 62 (12), 105-110.

Reimann, S. M., Koskinen, M., & Manninen, M. (2000). Formation of wigner

molecules in small quantum dots. Phys. Rev. B , 9 , 8108-8113.

Reimann, S. M., & Manninen, M. (2002). Electronic structure of quantum dots.

Reviews of Modern Physics , 74 (4), 1283-1343.

Rontani M. (1999). Electronic states in semiconductor quantum dots. Ottobre:

Ph.D. Thessis.

Rontani, M., Cavazzoni, C., Belluci, D., & Goldoni, G. (2006). Full configura-

tion interaction approach to the few-electron problem in artificial atoms. The

Journal of Chemical Physics , 124 , 124102.

Rontani, M., Armstrong, J. R., Yu, Y., Aberg, S., & Reimann S. M. (2009).Cold



72

fermionic atoms in two-dimensional traps: pairing versus Hunds Rule. Phys.

Rev. Lett., 102 , 060401.

Ruedenberg, K. (1971). Expectation Values of many-fermion spin eigenstates.

Phys. Rev. Lett., 27 ,17.

Ruedenberg, K., & Poshusta, R. (1972). Matrix Elements and density matrices for

many-electron spin eigenstates built from orthonormal orbitals. Adv. Quantum

Chem., 6 , 267-297.

Salmon, W. I., & Ruedenberg, K. (1972). Many-electron wavefunctions expanded

in spin-adapted antisymmetrized products and their expectation values. J.

Chem. Phys., 57 (7),2776-2786.

Shim, Y. P., Delgado, F., Korkusinski, M. & Hawrylak, P. (2007). Spin-transitions

in a triple lateral quantum dot molecule in a magnetic field. Physica E , 40 ,

1133-1135.

Siljamaki S. (2003)Wave function methods for quantum dots in magnetic field.

Espoo: Ph.D. Thessis.

Slater, J. C. (1931). Molecular energy levels and valence bonds. Phys. Rev., 38 ,

1109-1144.

Szabo A. & Ostlund N. O. (1996). Modern quantum chemistry:introduction to

advanced electronic structure theory, New York: Dover Publications.

Tarucha, S., Austing, D. G., Honda, T., Hage, R. J., & Kouwenhoven, L. P.



73

(1996). Shell filling and spin effects in a few electron quantum dot. Phys. Rev.

Lett.,77 ,(17), 3613-3616.

Tarucha, S., Honda, T., Austing, D. G., Tokura, Y., Muraki, K., Oosterkamp,

T. H. Janssen & Kouwenhoven, L. P. (1998). Electronic states in quantum dot

and molecules. Physica E ,3 , 112-120.

Tokura, Y. (29.12.2000). Configuration interaction method for calculating en-

ergy spectrum of vertical quantum dots. Retrieved March 15, 2010, from

http://www.brl.ntt.co.jp/group/butsuden-g/tokura/ci/ci.html.

Wang J. B., Hines C., Muhandiramge R.D. (n.d.) Electronic structre of quantum

dots, School of Physics, The University of Western Australia

Wensauer, A., Korkusinski, M., & Hawrylak, P. (2006). Configuration inteaction

method for Fock-Darwin states. Solid State Communications , 130 , 115-120.

Yildiz A.(2009) Quantum monte carlo investigations of quantum dots. İzmir:
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APPENDIX ONE

A.1 Dirac Identity

In this appendix Ŝ2 operator for many electron case is derived following Ref.

(Pauncz, 1979). Ŝx, Ŝy and Ŝz operators

Ŝx =

N
∑

i=1

Ŝx(i), Ŝy =

N
∑

i=1

Ŝy(i), Ŝz =

N
∑

i=1

Ŝz(i) (A.1.1)

Similarly way we can define step-up and step-down operators:

Ŝ+ =
N
∑

i=1

Ŝ+(i), Ŝ− =
N
∑

i=1

Ŝ−(i) (A.1.2)

Ŝ2 operator can be written in the form:

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z = Ŝ+Ŝ− + Ŝ2

z − Ŝz = Ŝ−Ŝ+ + Ŝ2
z + Ŝz (A.1.3)

For convenience let us look at common eigenfunctions of Ŝ2 and Ŝz. Using equa-

tion (A.1.1) and (A.1.3):

Ŝ2 =

[

N
∑

i=1

Ŝx(i)

]2

+

[

N
∑

i=1

Ŝy(i)

]2

+

[

N
∑

i=1

Ŝz(i)

]2

=
N
∑

i=1

Ŝ2
x(i) +

N
∑

i=1

Ŝ2
y(i) +

N
∑

i=1

Ŝ2
z (i) + 2

N
∑

j>i

Ŝx(i)Ŝx(j)

+2
N
∑

j>i

Ŝy(i)Ŝy(j) + 2
N
∑

j>i

Ŝy(i)Ŝy(j)
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=

N
∑

i=1

[

Ŝ2
x(i) + Ŝ2

y(i) + Ŝ2
z (i)
]

+ 2

N
∑

j>i

[

Ŝx(i)Ŝx(j) + Ŝy(i)Ŝy(j) + Ŝz(i).Ŝz(j)
]

(A.1.4)

Ŝ2 =

N
∑

i=1

Ŝ2(i) + 2

N
∑

j>i

Ŝ(i).Ŝ(j) (A.1.5)

Ŝ(i).Ŝ(j) scalar product in terms of step-up and step-down operators take the

form:

Ŝ(i).Ŝ(j) =
1

2
[Ŝ+(i)Ŝ−(j) + Ŝ−(i)Ŝ+(j)] + Ŝz(i)Ŝz(j) (A.1.6)

Let us apply Ŝ(i).Ŝ(j) operator to primitive spin functions for two electron case:

[Ŝ(1).Ŝ(2)]α(1)α(2) = {1
2
[Ŝ+(1)Ŝ−(2) + Ŝ−(1)Ŝ+(2)] + Ŝz(1)Ŝz(2)}α(1)α(2)

= [Ŝ+(1)α(1)Ŝ−(2)α(2) + Ŝ−(1)α(1)Ŝ+(2)α(2)]

+Ŝz(1)α(1)Ŝz(2)α(2)

=
1

2
α(1)

1

2
α(2)

=
1

4
α(1)α(2)

(A.1.7)

where α and β represents spin-up and spin-down, respectively. We use following

relations.

S+α = 0 S−α = β

S+β = α S−β = 0
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In a similar way

[

Ŝ(1).Ŝ(2)
]

β(1)β(2) = 1
4
β(1)β(2)

[

Ŝ(1).Ŝ(2)
]

α(1)β(2) = 1
2
β(1)α(2)− 1

4
α(1)β(2)

[

Ŝ(1).Ŝ(2)
]

β(1)α(2) = 1
2
α(1)β(2)− 1

4
β(1)α(2)

(A.1.8)

can be written. Using permutation operator to change spin coordinates of elec-

trons 1 and 2 we have:

P̂12α(1)α(2) = α(1)α(2)

P̂12α(1)β(2) = β(1)α(2)

P̂12β(1)α(2) = α(1)β(2)

P̂12β(1)β(2) = β(1)β(2)

(A.1.9)

If we compare (A.1.8) and (A.1.9) equations we can define an operator which

makes the same effect with Ŝ(1).Ŝ(2) operator:

[Ŝ(1).Ŝ(2)]θ(1, 2) = (
1

2
P̂12 −

1

4
)θ(1, 2) (A.1.10)

θ(1, 2) represents the two electron spin functions or linear combination of them.

(A.1.10) equation is called as Dirac Identity. It can be written in the form:

Ŝ2θ(1, 2) = {Ŝ2(1) + Ŝ2(2) + 2[Ŝ(1).Ŝ(2)]}θ(1, 2)
= 2(

3

4
+

1

2
P̂12 −

1

4
)θ(1, 2)

= (1 + P̂12)θ(1, 2)

(A.1.11)

Using the form of Dirac equation for many electron case we can write Ŝ2 operator.

Ŝ2θ = N
3

4
θ + 2

∑

j>i

(−1

4
+

1

2
P̂ij)θ (A.1.12)
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Ŝ2θ =
−N(N − 4)

4
θ +

∑

j>i

P̂ijθ (A.1.13)

where θ is an eigenfunction in 2N dimensional spin space

As an example let’s apply Dirac Identity for two electron spin functions:

Ŝ2α(1)α(2) =
−2(2− 4)

4
α(1)α(2) + α(1)α(2)

= 2α(1)α(2)
(A.1.14)

Ŝ2β(1)β(2) = 2β(1)β(2) (A.1.15)

Ŝ2β(1)α(2) = β(1)α(2) + α(1)β(2) (A.1.16)

Ŝ2α(1)β(2) = α(1)β(2) + β(1)α(2) (A.1.17)

It is clearly seen that α(1)α(2) and β(1)β(2) are eigenfunctions of Ŝ2 with eigen-

value 2 which corresponds spin quantum number S = 1 Adding and subtracting

equations (A.1.16) and (A.1.17), we can find following relations:

Ŝ2[β(1)α(2) + α(1)β(2)] = 2[β(1)α(2) + α(1)β(2)] (A.1.18)

Ŝ2[β(1)α(2)− α(1)β(2)] = 0 (A.1.19)

We see that proper linear combinations of primitive spin functions are common

eigenvectors of Ŝ2 and Ŝz. We can summarize the results:

Ŝ2















α(1)α(2)

(α(1)β(2) + β(1)α(2))2−1/2

β(1)β(2)















= 1.2















α(1)α(2)

(α(1)β(2) + β(1)α(2))2−1/2

β(1)β(2)















(A.1.20)

These three results belong to the triplet state with spin quantum number S = 1

and also eigenfunction of Sz with eigenvalues +1,−1, 0. Other linear combination

is eigenfunction of both Ŝ2 and Sz with eigenvalue 0 and it corresponds to singlet

state.
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APPENDIX TWO

A.2 Coulomb Matrix Element

In this appendix analytic form of Coulomb matrix element for two dimensional

parabolic quantum dot following (Rontani, 1999).

In order to evaluate Hamiltonian matrix elements we need to find expec-

tation value of two electron operators. Wavefunction of an electron in parabolic

quantum dot is:

ψnm(ρ, ϕ) = k(|m|+1)/2

√

n!

π(n+m)!
ρ|m|e−kρ

2/2L|m|
n (kρ2)e−imϕ (A.2.1)

Coulomb interaction conserves angular momentum i.e. if (n1, m1),(n2, m2) and

(n3, m3),(n4, m4) are quantum numbers before and after scattering respectively

we must have m1 +m1 = m3 +m4 =M .

〈n1m1, n2m2|
e2

ǫ∗|~r1 − ~r2|
|n3m3, n4m4〉 =

∫ ∫

ψ∗
n1m1

(ρ1, ϕ1)ψ
∗
n2m2

(ρ2, ϕ2)

× e2

κr|~r1 − ~r2|
ψn3m3

(ρ2, ϕ2)ψn4m4
(ρ1, ϕ1) (A.2.2)

In order to work with dimensionless coordinates, we should make a (x, y) = k1/2r

transformation.

dx1dy1 = kd~r1

dx2dy2 = kd~r2

√

(x1 − x2)2 + (y1 − y2)2 = k1/2|~r1 − ~r2|

ρ
′

= k1/2ρ ρ
′2 = kρ
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Vn1m1,n2m2,n3m3,n4m4
=
e2
√
k

ǫ∗
1

π2

√

n1!n2!n3!n4!

(n1 + |m1|)!(n2 + |m2|)!(n3 + |m3|)!(n4 + |m4|)!

×
∫

dx1

∫

dy1

∫

dx2

∫

dy2
ρ
|m1|
1 ρ

|m2|
2 ρ

|m3|
2 ρ

|m4|
2

√

(x1 − x2)2 + (y1 − y2)2

× L|m1|
n1

(ρ21)L
|m2|
n2

(ρ22)L
|m3|
n3

(ρ22)L
|m4|
n4

(ρ21)

× e−(ρ21+ρ
2
2)eim1ϕ1eim2ϕ2e−im3ϕ2e−im4ϕ1

(A.2.3)

Using the expansion of the Generalized Laguerre Polynomial:

L|m|
n (ρ2) =

n
∑

j=0

(−1)j





n + |m|
n− j





ρ2j

j!
(A.2.4)

Vn1m1,n2m2,n3m3,n4m4
=
e2
√
k

ǫ∗
1

π2

[

4
∏

i=1

ni!

(ni +mi!)

]1/2

×
n
∑

(4)j=0

=
(−1)j1+j2+j3+j4

j1!j2!j3!j4!

4
∏

i=1





nl + |ml|
nl − jl





∫

dx1

∫

dy1

∫

dx2

∫

dy2

× e−(ρ2
1
+ρ2

2
)ei(m1−m4)ϕ1ei(m2−m3)ϕ2

√

(x21 − x22)
1/2 + (y21 − y22)

1/2
ρ
|m1|+|m4|+2j1+2j4
1 ρ

|m2|+|m3|+2j2+2j3
2

(A.2.5)

We make an abbreviation:

n1
∑

(4)j=0

=

n1
∑

j1=0

n2
∑

j2=0

n3
∑

j3=0

n4
∑

j4=0
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γ1 = j1 + j4 + (|m1|+m1)/2 + (|m4| −m4)/2

γ2 = j2 + j3 + (|m2|+m2)/2 + (|m3| −m3)/2

γ3 = j2 + j3 + (|m2| −m2)/2 + (|m3|+m3)/2

γ4 = j1 + j4 + (|m1| −m1)/2 + (|m4|+m4)/2

(A.2.6)

γ1 + γ4 = |m1|+ |m4|+ 2j1 + 2j4 γ1 − γ4 = m1 −m4

γ2 + γ3 = |m2|+ |m3|+ 2j2 + 2j3 γ2 − γ3 = m2 −m3

If we write equation (A.2.5) using this definitions we have:

Vn1m1,n2m2,n3m3,n4m4
=
e2
√
k

ǫ∗
1

π2

[

4
∏

i=1

ni!

(ni +mi!)

]1/2

×
n
∑

(4)j=0

=
(−1)j1+j2+j3+j4

j1!j2!j3!j4!

4
∏

i=1





nl + |ml|
nl − jl





∫

dx1

∫

dy1

∫

dx2

∫

dy2

× e−(ρ21+ρ
2
2)

√

(x21 − x22)
1/2 + (y21 − y22)

1/2
(ρ1e

iϕ1)γ1(ρ2e
iϕ2)γ2(ρ2e

−iϕ2)γ3(ρ1e
−iϕ1)γ4

(A.2.7)

Separating integral integral I:

I =

∫

dx1

∫

dy1

∫

dx2

∫

dy2
e−(ρ21+ρ

2
2)

√

(x21 − x22)
1/2 + (y21 − y22)

1/2

× (ρ1e
iϕ1)γ1(ρ2e

iϕ2)γ2(ρ2e
−iϕ2)γ3(ρ1e

−iϕ1)γ4

(A.2.8)

We now separate integration variables into center of R and ρ relative motion

coordinates:

R = (r1 + r2)/2, ρ = (r1 − r2) (A.2.9)
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and making transformation to complex plane, namely:

(x1, y1) = ρ1e
iϕ1 = z1 = Z + z/2 (x2, y2) = ρ1e

iϕ2 = z2 = Z − z/2

Z = (z1 + z2)/2 z = z1 − z2
∫

dx1

∫

dy1

∫

dx2

∫

dy2 =

∫

dz1

∫

dz2

J =

∣

∣

∣

∣

∣

∣

∂z1
∂z

∂z1
∂Z

∂z2
∂z

∂z2
∂Z

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1/2 1

−1/2 1

∣

∣

∣

∣

∣

∣

= 1

∫

dz1

∫

dz2 =

∫

dz

∫

dZ

Equation A.2.8 transforms into:

I =

∫

dZe−2Z2

∫

dz|z|−1e−|z|2/2(Z + z/2)γ1

× (Z − z/2)γ2(Z∗ − z∗/2)γ3(Z∗ + z∗/2)γ4
(A.2.10)

Making use of the binomial theorem

(a+ b)n =

n
∑

i=0





n

i



 aibn−i (A.2.11)

Equation (A.2.10) turns into:

I =
∑

(4)ℓ=0





γ1

ℓ1









γ2

ℓ2









γ3

ℓ3









γ4

ℓ4





∫

dZe−2Z2

∫

dz|z|−1e−|z|2/2

× Zℓ1+ℓ2(Z∗)l3+l4(z/2)γ1−ℓ1(−z∗/2)γ3−ℓ3(z∗/2)γ4−ℓ4
(A.2.12)

If we write equation (A.2.12) using following definitions:

G = γ1 + γ2 + γ3 + γ4 Λ = ℓ1 + ℓ2 + ℓ3 + ℓ4 (A.2.13)
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I =

γ
∑

(4)ℓ=0

4
∏

i=1





γi

ℓi



 (−1)γ2+γ3−ℓ2−ℓ32Λ−G
∫

dZe−2Z2

∫

dz|z|−1e−|z|2/2

× |z|(G−Λ)expiϕrm(γ1 + γ2 − γ3 − γ4 − ℓ1 − ℓ2 + ℓ3 + ℓ4)

× |Z|Λexp(ℓ1 + ℓ2 − ℓ3 − ℓ4)

(A.2.14)

dz = d|z||z|dϕ
∫

dz =

∫

d|z||z|
∫

dϕ

∫

dϕrm expϕrm(γ1 + γ2 − γ3 − γ4 − ℓ1 − ℓ2 + ℓ3 + ℓ4) = 2πδm1+m2,m3+m4

∫

dϕcm expϕcm(ℓ1 + ℓ2 − ℓ3 − ℓ4) = 2πδℓ1+ℓ2,ℓ3+ℓℓ4

I = δm1+m2,m3+m4
4π2

γ
∑

(4)ℓ=0

δℓ1 + ℓ2, ℓ3 + ℓ4

4
∏

i=1





γi

ℓi



 (−1)γ2+γ3−ℓ2−ℓ32Λ−G

×
∫

d|Z||Z|Λ+1e−2|Z|2
∫

d|z||z|G−Λe|z|
2/2

(A.2.15)

Making use of gamma functions:

Γ(z) =

∫ ∞

0

= tz−1e−tdt

∫

d|Z|Z|Z|Λe−2|Z2| =
1

42Λ/2

∫

duuk/2e−u =
1

2Λ/2
Γ(Λ/2 + 1)

(2|Z|2 = u)
∫

d|z||z|G−Λe−|z|2/2 =

∫

duuG−Λ−1/2e−u = Γ

(

G− Λ + 1

2

)

(|z2|/2 = u)

I = δm1+m2,m3+m4
π22−G/2−1/2

γ
∑

(4)ℓ=0

δℓ1+ℓ2,ℓ3+ℓ4

4
∏

i=1





γi

ℓi



 (−1)γ2+γ3−ℓ2−ℓ3

× Γ(Λ/2 + 1)Γ([G− Λ+ 1]/2)

(A.2.16)
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Finally we find Coulomb matrix element:

V n1m1, n2m2, n3m3, n4m4 = δm1+m2,m3+m4

e2
√
k

ǫ∗
1

π2

[

4
∏

i=1

ni!

(ni +mi!)

]1/2

×
n
∑

(4)j=0

(−1)j1+j2+j3+j4

j1!j2!j3!j4!

4
∏

i=1





nl + |ml|
nl − jl





× 2−G/2−1/2
∑γ

(4)ℓ=0 δℓ1+ℓ2,ℓ3+ℓ4
∏4

i=1





γi

ℓi



 (−1)γ2+γ3−ℓ2−ℓ3

× Γ(Λ/2 + 1)Γ([G− Λ + 1]/2)

(A.2.17)


