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SOLVING SINGLE AND PARALLEL MACHINE SCHEDULING 

PROBLEMS WITH SEQUENCE DEPENDENT SETUP TIMES USING 

DIFFERENTIAL EVOLUTION BASED ALGORITHMS 

 

 

ABSTRACT 

 

 

     In this thesis, we present an application of the Differential Evolution (DE) 

algorithm for the single and parallel machine scheduling problems with sequence 

dependent setup times for the objective of minimizing makespan. To the best of our 

knowledge, this is the first attempt to use the DE heuristic for the parallel machine 

scheduling problem. 

 

     To improve the solution quality and the computational efficiency of the DE 

algorithm in single machine scheduling problem, two simple local search methods 

which are insert-based neighborhood search and variable neighborhood search, are 

respectively embedded in the algorithm for a hybrid solution technique. The pure DE 

algorithm is compared with the hybrid DE algorithms by solving test problems taken 

from TSPLIB. It is seen that hybridizing the DE algorithm improves the solution 

quality. 

 

     The DE algorithm is an evolutionary optimization method to solve continuous 

optimization problems. For solving the parallel machine problem firstly, vector 

group encoding technique is adopted from genetic algorithm to represent the 

individuals in the DE algorithm. Secondly, to make the DE algorithm suitable for 

solving scheduling problems, the largest order value and sub-range encoding rules 

are used to convert the continuous values of individuals in the DE algorithm to job 

and machine permutations. Thirdly, an efficient local search procedure is applied to 

emphasize exploitation after the DE algorithm based exploration. In addition, the 

performance of the DE algorithm is enhanced by employing a population 

initialization scheme based on a constructive heuristic. Finally, a computational 
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study is conducted to demonstrate that the proposed technique is capable of 

producing encouraging solutions.  

 

     For parallel machine scheduling problem variable neighborhood search method is 

only embedded in the DE algorithm as a local search procedure. The proposed hybrid 

DE algorithm is compared with genetic algorithm and variable neighborhood search 

methods by solving randomly generated test problems. Finally it is seen that the 

hybrid DE algorithm outperformed the other two methods.  

 

Keywords: Differential Evolution Algorithm, Single Machine Scheduling Problem, 

Parallel Machine Scheduling Problem, Makespan Minimization, Sequence 

Dependent Setup Times, Local Search, Variable Neighborhood Search, Insert-Based 

Neighborhood Search. 
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SIRA BAĞIMLI HAZIRLIK SÜRELERĠ ĠÇEREN TEK VE PARALEL 

MAKĠNELĠ ÇĠZELGELEME PROBLEMLERĠNĠ DĠFERANSĠYEL EVRĠM 

ALGORĠTMSI TABANLI ALGORĠTMALAR KULLANARAK ÇÖZMEK 

 

 

ÖZ 

 

 

     Bu tezde, üretim süresinin en aza indirilmesi amacıyla sıra bağımlı hazırlık 

süreleri olan tek ve paralel makine çizelgeleme problemleri için Diferansiyel Evrim 

(DE) algoritmasının bir uygulamasını sunuyoruz. Mevcut bilgilerimiz ıĢığında 

yapılan bu çalıĢma paralel makine çizelgeleme probleminde DE sezgiselinin 

kullanımı için ilk giriĢimdir. 

 

     Tek makine çizelgeleme probleminde DE algoritmasının sonuç kalitesi ve hesaba 

dayalı etkinliğini geliĢtirmek için iliĢtirilen, ekleme tabanlı komĢuluk arama ve 

değiĢken komĢuluk arama olarak bilinen iki basit yerel arama metodu, melez bir 

çözüm tekniği oluĢturmak için kullanıldı. TSPLIB‟den alınan test problemleri 

çözülerek, saf DE algoritması melez Diferansiyel Evrim algoritmaları ile kıyaslandı. 

DE algoritmasının melezlenmesinin çözüm kalitesini geliĢtirdiği görüldü. 

 

     DE algoritması, sürekli en iyileme problemlerini çözmek için evrimsel bir en 

iyileme yöntemidir. Paralel makine problemini çözmek için ilk olarak, DE 

algoritmasındaki bireyleri temsil etmek üzere Genetik Algoritmadan vektör grup 

kodlama tekniği uyarlanır. Ġkinci olarak, DE algoritmasını çizelgeleme 

problemlerinin çözümünde uygun kılmak için, iĢ ve makine permutasyonlarına 

yönelik DE algoritmasındaki bireylerin sürekli değerlerini çevirmek üzere, en büyük 

sıralama değeri ve alt aralık kodlama kuralları kullanılır. Üçüncü olarak, araĢtırma 

tabanlı DE algoritmasından sonra baĢarımızı arttırmak için etkin bir yerel arama 

prosedürü uygulanır. Ek olarak, DE algoritmasının performansı, yapıcı bir baĢlangıç 

popülasyonu düzenlemesinin görevlendirilmesiyle geliĢtirilir. Son olarak, önerilen 
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tekniklerin ümit verici sonuçlar verdiğini kanıtlamak için bir hesaplamaya dayalı 

çalıĢma yapılmıĢtır 

 

     Paralel makine çizelgeleme problemi için değiĢken komĢuluk arama metodu, 

yerel bir arama prosedürü olarak yalnızca DE algoritmasının içine katılır. Önerilen 

melez DE algoritması, rastgele üretilmiĢ test problemlerini çözerek Genetik 

Algoritma ve değiĢken komĢuluk arama yöntemleri ile kıyaslanır. Son olarak, melez 

DE algoritmasının diğer iki yöntemden üstün olduğu görülmüĢtür. 

 

Anahtar Kelimeler: Diferansiyel Evrim, Tek Makineli Çizelgeleme Problemi, 

Paralel Makineli Çizelgeleme Problemi, Üretim Süresinin En Küçüklenmesi, Sıra 

Bağımlı Hazırlık Süresi, Yerel Arama, Ekleme Tabanlı KomĢuluk Arama, DeğiĢken 

KomĢuluk Arama 
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CHAPTER ONE 

INTRODUCTION 

 

     Production scheduling in general is a decision-making processes that is used on a 

regular basis in many manufacturing industries. Developing efficient production 

schedules is a difficult job. Despite its difficulty, generating efficient schedules 

consistently can result in substantial improvements in productivity and time 

reductions.  

 

     Production scheduling process is concerned with the predefined tasks that need to 

be performed and the predefined resources that can be used to process these tasks. 

This process involves allocating the resources to the tasks in the best possible way 

according to one or more predefined criteria. For example, depending on the machine 

environment (e.g., single machine or parallel machines), the job characteristics (e.g., 

independent or precedence constrained), and the optimality criteria (e.g., makespan, 

total tardiness), it is possible to define a wide variety of problem types in 

manufacturing firms. 

 

     Scheduling problems form an important class of combinatorial optimization 

problems and the objectives of these problems may take many forms. One possible 

and mainly used objective in this thesis, is the minimization of maximum completion 

time; makespan (C max ). The makespan objective can be defined as the time when the 

last job leaves the system. However, the makespan objective is closely related with 

another objective, throughput objective. Problems that tend to minimize the 

makespan in a machine environment with a finite number of jobs also tend to 

maximize the throughput rate when there is a constant flow of jobs over time 

(Pinedo, 1995). For example, minimizing the makespan in a single machine 

environment with sequence dependent setup times forces the scheduler to maximize 

throughput.  
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     Setup time which is also an important character of this thesis, in general, can be 

defined as the time required to prepare the necessary resource (e.g., machines, 

people) to perform a task (e.g., job, operation). Setup activities may include, for 

example, obtaining tools, returning tools, cleaning up, setting the required jigs and 

fixtures, adjusting tools, and inspecting material in a manufacturing system. In many 

practical environments, it is necessary to consider setup times as separate from 

processing times, however to make the problem easier it is thought that setup times 

are part of processing times.  

 

     Setup times can be separated into two types. The first setup type is sequence 

independent setup times; in this type, setup times depend only on the jobs to be 

processed. The second setup type is sequence dependent setup time; in this type, 

setup times depend on the job to be processed and immediately preceding job. The 

applications of sequence dependent setup times can be found in various production 

and manufacturing systems. For example in a printing industry, a setup time is 

required to prepare the machine (e.g., cleaning), which depends on the color of the 

current and immediately following jobs. In a textile industry, setup time for weaving 

and dying operations also depends on the sequence of jobs. In a container/bottle 

industry, setup time relies on the sizes and shapes of the container/bottle, whereas in 

a plastic industry it relies on different types and colors of products. Similar situations 

arise in chemical, pharmaceutical, food processing, metal processing, paper 

industries, and many other industries/ areas.  

      

     Many researchers have investigated single and parallel machine scheduling 

problems but most of the researches on scheduling problems assume that the setup 

time can be ignored or can be part of the processing times of the jobs. This 

assumption is reasonable for some manufacturing systems if the required setup time 

is independent of the sequence of jobs. However, for most production and 

manufacturing operations setup time is essential and it should not be ignored 

essentially when the setup is sequence dependent. The importance of sequence 

dependent setups has been investigated in several studies. For example, Wilbrecht 
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and Prescott (1969) found that sequence dependent setup times are significant when 

a job shop is operated at or near full capacity. Flynn (1987) indicated that 

applications of both sequence dependent setup procedures and group technology 

principles increase output capacity in a cellular manufacturing shop. Furthermore, 

Krajewski et al. (1987) pointed out that simultaneous reduction of setup times and lot 

sizes is the most effective way to reduce inventory levels and improve customer 

service regardless of the production system in use. 

     

     In this research, we design and implement Differential Evolution (DE) algorithm 

and DE based heuristic procedures for solving single and parallel machine 

scheduling problems with sequence dependent setup times with the objective of 

minimizing makespan. In the previous scheduling related literature, these two 

problems have not been solved before by the DE algorithm. Therefore, this study will 

be the first attempt to solve these problems using DE and DE based heuristics. 

 

     In chapter two, initially, a brief introduction to the DE algorithm is given and 

related literature is discussed. Afterwards, an overview of the DE algorithm is 

presented. Following, notations and variants of the algorithm are given and handling 

discrete variables in DE algorithm is introduced. At the end of this chapter, an 

example is given to show how the DE algorithm works. 

 

     In chapter three, initially, a brief introduction to the single machine scheduling 

problems is given. After this introduction, application of the DE algorithm to single 

machine scheduling problem is discussed. Following, the local search procedures 

that will be implemented in the DE algorithm are introduced. After that, the 

integration of the local search procedures with the DE algorithm is discussed. For 

getting quality results, an initial parameter setting study is done and this study is 

explained in detail. Finally, computational results are discussed. At the end of this 

chapter, an example about how DE algorithm works with single machine scheduling 

problems is given. 
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     In chapter four, initially, an introduction to parallel machine scheduling problems 

is given. Following, application of the DE algorithm to parallel machine scheduling 

problems is given. To compare the effectiveness of the DE algorithm, application of 

Variable Neighborhood Search (VNS) and Genetic Algorithm (GA) to parallel 

machine scheduling problems is discussed. Afterwards, the integration of the VNS 

search procedure to the DE algorithm is given. Finally, computational the results of 

methods are discussed. At the end of this, chapter an example about how the DE 

algorithm works with parallel machine scheduling problems is given. 

 

     Finally, chapter five summarizes the research work and outlines directions for 

future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

5 

 

CHAPTER TWO 

DIFFERENTIAL EVOLUTION ALGORITHM 

 

     The Differential Evolution (DE) algorithm is a newly generated heuristic method 

to be used for continuous spaces. The DE algorithm has been previously applied to 

continuous valued optimization problems and a list of these studies will be given in 

the literature review section.  

 

     The framework in this thesis is limited to the application of the DE algorithm to 

combinatorial optimization problems (COPs). The applications of the DE algorithm 

on COPs are very limited. But nowadays, the DE algorithm has gained widespread 

interest as an alternative approach for solving COPs with the generalization of 

efficient transformation techniques from continuous spaces to discrete spaces. 

 

2.1 Introduction 

 

     In many engineering disciplines, optimization problems have grown in size and 

complexity. In some instances, the solution to complex multidimensional problems 

by using classical optimization techniques is sometimes difficult and/or 

computationally expensive. This realization has led to an increased interest in a 

special class of searching algorithms: the evolutionary algorithms (EAs). 

 

     EAs search for the solution, based on a population of individuals that evolve over 

a number of generations motivated by the Darwinian principle of survival of the 

fittest. Through cooperation and competition among the population, population based 

optimization approaches often can find very good solutions efficiently and 

effectively (Michalewicz, 1994). Several algorithms have been developed within the 

field of EAs, these are: Genetic Algorithm (GA), Genetic Programming (GP), 

Evolutionary Programming (EP) and Evolution Strategies (ES).  
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     Most of these methods have in common certain properties (Bäck, 1996). One of 

these similarities is that they work with a population of solutions, instead of one 

solution each of iteration. By starting with a randomly or initially generated set of 

solutions, an EA modifies the current population to a different population at each 

iteration. This feature provides the EA an ability to capture multiple optimal 

solutions in one single run. Another common property is that they all simulate 

evolution by one or more of these three processes: selection, mutation, and 

recombination (also known as crossover). As you can see from Figure 2.1 that the 

selection process is applied in order to determine which individuals will be kept for 

the next generation according to their fitness. The mutation operator allows for some 

attributes to be changed occasionally. The recombination or crossover process takes 

the attributes of two or more individuals and then combines them in order to create a 

new individual. On the other hand the type of genetic operator and the way these 

operators are implemented can be different, depending on the evolutionary 

computation technique which is used. 

 

Evaluate objective 

function of each 

member

Are optimization 

criteria met? 

Optimum solution

Selection

Recombination

Mutation

Generate New Population

YES

NO

Results

Generate initial 

population

 

Figure 2.1 Flowchart of Evolutionary Algorithms 
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     An important feature of the EA is that they do not use any gradient information 

while performing the above operations. This property makes EA flexible enough to 

be used in a wide variety of problems domains as: highly nonlinear, mixed-integer 

and non continuous spaces. As their operators use stochastic principles, the EA does 

not assume any particular structure of a problem to be solved. 

 

     There are some advantages of using EA in optimization problems (Storn and Price 

1997): 

 

 As explained previously, the EA has the ability to handle non-differentiable, 

nonlinear and multimodal functions because it does not use gradient 

information in the optimization process. 

 They are well adapted to distributed or parallel implementations. This is 

important for computationally demanding optimizations where, for example, 

one evaluation of the objective function might take from minutes to hours. 

 Ease of use, i.e. there are only a few control parameters to steer optimization. 

These variables should also be robust and easy to choose. 

 Good convergence properties, i.e. consistent convergence to the global 

minimum in consecutive independent trials. 

 

     Recently, the success achieved by EAs in the solution of complex problems and 

the improvements made in the computations, such as parallel computation, have 

stimulated the development of new algorithms like the DE algorithm, Particle Sworm 

Optimization (PSO), Ant Colony Search (ACS) and Scatter Search (SS) that present 

great convergence characteristics and capability of determining global optima. A 

simple classification schema of optimization methods are given in Figure 2.2. The 

Figure 2.2 separates optimization problems to continuous and combinatorial 

problems. There are three types of continuous problems: linear, quadratic and 

nonlinear problems. For solving nonlinear problems we have two methods. One of 

them is local methods and the other is global methods. The DE algorithm belongs to 

the global methods section for nonlinear programs, whereas it also belongs to the 
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approximate methods section for COPs. As you can see in Figure 2.2, The DE 

algorithm is also a population based metaheuristic method. 

 

 

Figure 2.2 A simple classification scheme of optimization methods (Feoktistov 2006) 

  

2.2 Literature Review 

 

     The invention of the DE algorithm goes back to Genetic Annealing by Kenneth 

Price (1994) and solving the Chebyshev polynomial fitting problem by Price and 

Storn (1995). In order to solve Chebyshev problem in continuous space, they 

modified the Genetic Annealing algorithm from bit-string to floating-point encoding 

and consequently switched from logical operators to arithmetic ones. During 

experiments, they discovered the differential mutation to perturb the population of 

vectors. They also noticed that by using differential mutation, discrete 

recombination, and pair-wise selection, there is no need to apply annealing 

mechanism; at last it was permanently removed and the DE algorithm was born. 

Following, the DE algorithm was published in the Dobb‟s Journal and then in the 

Journal of Global Optimization by Storn and Price in 1997. By this way, the DE 
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algorithm‟s capacity and advantages were introduced to the optimization community. 

Comprehensive history and development of the DE algorithm is presented in 

literature and can be found in Feoktistov (2006). 

 

     Due to its simple structure, easy implementation, quick convergence, and 

robustness, the DE algorithm has been turned out to be one of the best evolutionary 

algorithms for solving a wide range of continuous optimization problems such as 

digital filter design (Storn, 1995), optimization of non-linear functions (Babu and 

Angira, 2001), feed-forward neural networks (Ilonen et al., 2003), design of digital 

PID controllers (Chang and Hwang, 2004), clustering (Paterlini and Krink, 2004), 

unsupervised image classification (Omran et al., 2005) and planning of large-scale 

passive harmonic filters (Chang and Wu, 2005). 

 

     However, the continuous nature of the algorithm prohibits the DE algorithm to be 

applied to COPs. To compensate this drawback, Onwubolu (2001) presented forward 

and backward transformation techniques, Tasgetiren et al. (2004a, 2004b) presented 

the smallest position value (SPV) rule, Nearchou and Omirou (2006) presented the 

sub-range encoding rule and Qian et al. (2007) presented the largest order value 

(LOV) rule. These four rules are all based on the random key representation of Bean 

(1994) which was previously used for GA. After presentation of such transformation 

rules, recently some researchers extended with success the application of the DE 

algorithm to complex COPs with discrete decision parameters. Examples of such 

problems are three mechanical engineering design related numerical examples, 

design of a gear train, design of a pressure vessel and design of a coil spring 

(Lampinen and Zelinka, 1999), the traveling salesman problem (Onwubolu, 2004), 

the machine layout problem (Nearchou, 2006b), the flow shop scheduling problem 

(Onwubolu and Davendra, 2006), three classic scheduling problems, flow shop 

scheduling problem, total weighted tardiness problem, common due date scheduling 

problem (Nearchou and Omirou, 2006), the common due date early/tardy job 

scheduling problem (Nearchou, 2006a), single machine total weighted tardiness 

problem (Tasgetiren et al., 2006a), the job shop scheduling problem (Tasgetiren et 

al., 2006b), type 2 assembly line balancing problem (Nearchou, 2007), the two-stage 
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assembly flow shop scheduling problem (Al-Anzi and Allahverdi, 2007) and the 

single machine total weighted tardiness problem (Tasgetiren et al., 2008). 

 

     Onwubolu and Davendra (2006) applied the DE algorithm to the flow shop 

scheduling problem in which makespan, mean flowtime, and total tardiness are taken 

as the performance measures. It has been observed from the computational results 

that the DE approach delivers competitive makespan, mean flow time, and total 

tardiness when compared to GA. Especially for small sized problems, the DE 

algorithm is found to perform better than GA, and competes appreciably with GA for 

medium to large-sized problems. 

 

     Nearchou and Omirou (2006) presented an application of the DE algorithm for the 

solution of three classic scheduling problems. These problems are the multiple 

machine flow shop scheduling problem, the single machine total weighted tardiness 

scheduling problem, and the single machine common due date scheduling problem. 

In their study, a new scheme of solution encoding for continuous optimization 

algorithms is represented. The new encoding scheme is compared with a well-known 

random keys representation technique. 

 

     Tasgetiren et al. (2006a) presented a research about the single machine scheduling 

problem with the objective of minimizing total weighted tardiness. The smallest 

position value (SPV) rule, which was introduced by Tasgetiren et al. (2004), is used 

for the representation of solutions in their study. Also, they compared the DE 

algorithm with the Particle Sworm Optimization (PSO) algorithm and found that the 

DE algorithm is faster than the PSO algorithm. In addition to this, an effective local 

search, so-called variable neighborhood search (VNS), was then introduced, and it 

was found that hybridizing DE with a local search makes it more efficient.  

Tasgetiren et al. (2008) modified the single machine total weighted tardiness 

problems with sequence dependent setup times. In their study, different population 

initialization methods were used for the DE algorithm, which are respectively NEH, 

GRASP, SPT, ATCS, EDD and EWDD. Then the DE algorithm was hybridized with 

a referenced local search to make it more efficient. It has been found that 51 out of 
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120 overall aggregated best known solutions, most of them published very recently, 

were further improved by the DE algorithm with substantial margins in solution 

quality as well as with significantly less CPU times. 

 

2.3 Basic Differential Evolution Algorithm 

 

     The DE algorithm, introduced by Storn and Price (1995), is a novel parallel direct 

search method for global optimization over continuous spaces and can be categorized 

into a class of floating-point encoded evolutionary optimization algorithms. This 

algorithm utilizes NP parameter vectors as a population for each generation G. 

Currently, there are several variants of the DE algorithm (Storn and Price, 1997). The 

particular variant used throughout this investigation is the classical version of the DE 

algorithm (Storn and Price, 1995). Since the DE algorithm was originally designed to 

work with continuous variables, the optimization of continuous problems is 

discussed initially and the handlings of discrete parameters for COPs are 

subsequently explained. 

 

2.3.1 Individuals 

 

     The DE algorithm maintains a population of NP number of D-dimensional vectors 

of whose parameter values are real. The current population, symbolized by P GX , , is 

composed of those vectors, X Gi , , that have already been found to be acceptable either 

as initial points, or by comparison with other vectors: 

 

P GX ,  = (X Gi ,  )   i=1, 2, …, NP, G=0, 1, …, G max .    (2.1) 

X Gi ,  = (x Gij ,,  )  i=1, 2, …, NP, j=1, 2,…, D, G=0, 1, …, G max . (2.2) 

 

     The index, G = 0, 1, …, G max , indicates the generation to which a vector belongs. 

In addition, each vector is assigned a population index, i, which runs from 1 to NP. 

Parameters within vectors are indexed with j, which runs from 1 to D.  
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     Once initialized, the DE algorithm mutates randomly chosen vectors to produce 

an intermediary population, P GV , , of NP mutant vectors V Gi , : 

P GV ,  = (V Gi ,  )  i=1, 2,…, NP, G=0, 1,…, G max .   (2.3) 

V Gi ,  = (v Gij ,,  )  i=1, 2,…, NP, j=1, 2, …, NP, G=0, 1,…, G max . (2.4) 

 

     Each vector in the current population is then recombined with a mutant to produce 

a trial population, P GU , , of NP trial vectors, U Gi , : 

 

P GU ,  = (U Gi ,  ) i=1, 2,…, NP, G=0, 1,…, G max .   (2.5) 

U Gi ,  = (u Gij ,,  )  i=1, 2,…, NP, j=1, 2, …, D, G=0, 1,…, G max . (2.6) 

 

     The flowchart of the basic flow introduced above can be seen in Figure 2.3.  

  

START

Population Initialization 

G=0

Fitness Evaluation

Reproduction

Fitness Evaluation

Selection

G=G+1

G>Gmax

END

NO

YES

 

        Figure 2.3 Flowchart of the DE Algorithm 
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     The representation of the parameters in each vector can be seen in Figure 2.4. 

 

x Gi ,,1  x Gi ,,2  ... … … x GiD ,,  

Figure 2.4 Structure of an individual X Gi ,  including parameters 

 

2.3.2 Initialization 

 

     Before the population can be initialized, both upper (X UB ) and lower (X LB ) for all 

parameter must be initialized. Once initialization bounds have been specified, a 

random number generator assigns each parameter of every vector a value from the 

prescribed range. Function for generating the initial value (G = 0) of the j th  

parameter of i th  vector is given below. 

 

x 0,,ij  = X LB
 + rand j (0, 1)*(X UB - X LB ).     (2.7) 

 

     The random number generator, rand j (0, 1), returns a uniformly distributed 

random number within range [0, 1), i.e., 0  rand j (0, 1) <1. The subscript, j, 

indicates that a new random value is generated for each parameter of each vector. 

Even, if a parameter is discrete or integral, it should be initialized with a real value 

since the DE algorithm internally treats all parameters as floating-point value 

regardless of their type. 

 

2.3.3 Mutation 

 

     Once initialized, the DE algorithm mutates and recombines the population to 

produce a population of NP trial vectors. In particular, differential mutation adds a 

scaled, randomly sampled, vector difference to a third vector. Equation (2.8) below 

shows us how to combine three different randomly chosen vectors to create a mutant 

vector, V Gi , . 
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V Gi ,  = X Gr ,1  + F * (X Gr ,2 -X Gr ,3 ).      (2.8) 

 

     The scale factor F   (0, 1+), is a positive real number that controls the rate at 

which the population evolves. While there is no upper limit on F, effective values are 

seldom greater than 1. 

 

 

Figure 2.5 Mutation process (Feoktistov 2006) 

 

     To understand mutation operation in detail, Figure 2.5 can be analyzed. As it is 

seen, there are four vector indices in the classic DE algorithm‟s mutation operation. 

The target index, i, specifies the vector with which the mutant is recombined and 

against which the resulting trial vector competes. The remaining three indices, r1, r2 

and r3 determine which vectors combine to create the mutant vector. Typically, both 

the base index, r1, and the difference vector indices, r2 and r3 are chosen randomly 

anew for each trial vector from the range (1, NP). 

 

     The base index, r1, specifies the vector to which the scaled differential is added. 

The classic version of the DE algorithm employs a uniform distribution to randomly 

select r1 anew for each trial vector. This kind of vector selection scheme is called 

roulette wheel selection and this selection process is borrowed from GA. The base 

vector selection equation is given below.  
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r1 = round (rand i (0, 1) * NP)          (2.9) 

 

    While selecting base vector index randomly and without restrictions and treating 

all vectors equally in statistical sense, we can automatically pick some vectors more 

than once per generation, causing others to be omitted. However, this type of base 

vector selection rule increases randomness of the algorithm and by the help of this 

rule we have a chance to escape from local optima. On the other hand, apart from 

base vector selection, roulette wheel selection can also be used for selecting 

difference vectors r2 and r3. In this study, we use roulette wheel selection scheme 

for determining three vectors r1, r2 and r3. But also, there are some other ways to 

pick vectors from the population. The other variants of vector selection strategies are 

given below. 

 

Stochastic Universal Sampling 

 

     Randomly selecting the base vector without restrictions is known in EA parlance 

as roulette wheel selection. Roulette wheel selection chooses NP vectors by 

conducting NP separate random trials, much like NP passes at a roulette wheel 

whose slots are proportional in size to the selection probability of the vector they 

represent. In GA, selection probabilities are biased toward better solutions, meaning 

that better vectors are assigned proportionally wider slots, but in the classic DE 

algorithm, each vector has the same chance of being chosen as a base vector, so all 

slots are of equal size, just like a real roulette wheel. 

 

     Samples drawn by roulette wheel selection suffer from a large variance. The 

preferred method for sampling a distribution is stochastic universal sampling because 

it guarantees a minimum spread in the sample (Baker 1987; Eiben and Smith 2003). 

The relation of stochastic universal sampling to roulette wheel selection is best 

illustrated if the ball used in real roulette is replaced with a stationary pointer. Once 

the roulette wheel stops, the vector corresponding to the slot pointed to is selected. 

Instead of spinning a roulette wheel NP times to select NP vectors with a single 

pointer, stochastic universal sampling uses NP equally spaced pointers and spins the 
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roulette wheel just once. In the GA, slot sizes are based on the vector‟s objective 

function value, with better vectors being assigned more space. In the DE algorithm, 

each candidate has the same probability of being accepted, so slots are of equal size. 

Consequently, each of the NP pointers selects one and only one vector regardless of 

how the roulette wheel is spun. 

 

 

Figure 2.6 Stochastic universal sampling and roulette wheel selection compared(Feoktistov 2006) 

 

Random Offset Selection 

 

     The random offset method is another way to stochastically assign each target 

vector a unique base vector. Simpler than the permutation method, the random offset 

method computes r1 as the sum of the target index and a randomly generated offset, 

r g .  

 

r g = floor (rand g (0, 1) * NP)       (2.10) 

r1 = ( i +  r g ) / NP        (2.11) 
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     Another important point while choosing indices is, if the indices are chosen 

randomly and without restrictions, there is no guarantee that vectors i, r1, r2 and r3 

will be distinct. When these indices are not mutually exclusive, DE‟s novel trial 

vector generation strategy reduces to uniform crossover only. Excluding all 

degenerate target, base and difference vector combinations i.e. i r1 r2 r3, 

enables the DE algorithm to achieve a good convergence speed. Imposing 

restrictions eliminates the function-dependent effects of degenerate search strategies 

and ensures that both crossover and differential mutation play a role in the creation 

of each trial vector. In this study, the indices i, r1, r2 and r3 are all chosen distinct 

from each other. 

 

     First, we will begin with degenerate combinations of mutant indices and then 

discuss about combinations involving the target index i. 

 

r2 = r3 (No Mutation): 

 

     If r2 = r3, then the differential formed by the corresponding vectors will be zero 

and the base vector, x Gr ,1 , will not be mutated: 

 

r2 = r3 ( = r1):  v Gi ,  =  x Gr ,1        (2.12) 

 

     When indices are chosen without restrictions, r2 will equal r3 on average once per 

generation, i.e., with a probability of 1/NP. The probability that all three indices will 

be equal is (1/NP) 2 , but either way, the result is the same: a randomly chosen base 

vector that has not undergone mutation is recombined with the target vector by 

means of conventional uniform crossover. 

 

r2 = r1 or r3 = r1 (Arithmetic Recombination): 

 

     Another special case occurs when either of the difference indices, r2 or r3, equals 

the base index, r1. When indices are chosen without restrictions, each coincidence 

occurs on average once per generation. Equation (2.13) and (2.14) below elaborate 
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the two possibilities that result when the DE algorithm‟s three-vector mutation 

formula (2.8) reduces to a linear relation between the base vector and the single 

difference vector: 

 

r2 = r1  V Gi ,  = X Gr ,1  + F * (X Gr ,1 -X Gr ,3 ).    (2.13) 

r3 = r1  V Gi ,  = X Gr ,1  + F * (X Gr ,2 -X Gr ,1 ).    (2.14) 

 

r1 = i ( Mutation Only): 

 

     If the base index, r1, is not different from the target index, i, then the crossover 

operation reduces to mutation of the target vector. In this scenario, CR plays the role 

of a mutation probability. When base vector indices are randomly selected without 

restrictions, these degenerate vector combinations occurs with a probability of 1/NP. 

 

i = r2 or i = r3: 

 

     Each of the coincidental events, i = r2 and i = r3, occurs with a probability of 

1/NP when indices are chosen without restrictions. Neither coincidence reduces the 

DE algorithm‟s generating process to a conventional one. Mutants are still three-

vector combinations and crossover recombines distinct base and target vectors 

(assuming r1 ≠ i). 

 

     Applying differential mutation operation to these vectors can take their 

parameters to infeasible regions. This can be in two ways. One is, parameter‟s value 

can be higher than our upper bound and the other is parameter‟s value can be lower 

than our lower bound. To bring back these parameters inside the bound, a repairing 

procedure should be done. The mechanism of the procedure is given below.  
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Step 1: If the parameter of the vector indices is lower than the lower bound, go to 

step 2; otherwise, go to Step 3. 

Step 2: Repaired mutation value v newGij ,,, = (2* X LB ) - v Gij ,,  . And go to step 4. 

Step 3: Repaired mutation value v newGij ,,, = (2* X UB ) - v Gij ,,  . And go to step 4. 

Step 4: v Gij ,,  = v newGij ,,,   

 

2.3.4 Crossover 

 

     To complement the differential mutation search strategy, the DE algorithm also 

employs uniform crossover. Sometimes referred as discrete recombination, crossover 

builds trial vectors out of parameter values that have been copied from two different 

vectors. In particular, the DE algorithm crosses each vector with a mutant vector. 

 

U Gi ,  = (u Gij ,, ) =


 

otherwisex

jjorCRrandifv

Gij

randjGij

,,

,, )1,0(
   (2.15) 

 

     The crossover probability, CR   [0, 1], is a user defined value that controls the 

fraction of parameter values that are copied from the mutant. To determine which 

source contributes a given parameter, uniform crossover compares CR to the output 

of a uniform random number generator, rand j (0,1). If the random number is less 

than or equal to CR, the trial parameter is inherited from the mutant vector, V Gi , ; 

otherwise, the parameter is copied from the parent vector, X Gi , . In addition, a trial 

parameter with randomly chosen index j rand , is taken from mutant vector to ensure 

that the trial vector does not duplicate first vector X Gi , . Because of this additional 

demand, CR only approximates the true probability, p CR , that a trial parameter will 

be inherited from mutant vector. An example for uniform crossover is given in 

Figure 2.7.  
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Figure 2.7 Uniform (binomial) crossover processes 

 

     In this study, we used uniform (binomial) crossover as our main crossover 

process. Syswerda (1989) defined uniform crossover as a process in which 

independent random trials determine the source for each trial parameter. Crossover is 

uniform in the sense that each parameter, regardless of its location in the trial vector, 

has the same probability, CR, of inheriting its value from a given vector. For this 

reason, uniform crossover does not exhibit a representational bias. For example, both 

CR = 0.4 and      CR = 0.6 produce a vector that on average inherits 40% of its 

parameters from one vector and 60% from another. In particular, when two vectors, 

A and B, are crossed with a probability of CR = 0.4, trial vector will inherit, on 

average, 40% of their parameters from vector A and 60% from vector B. It is equally 

probable, however, that B will be drawn first and A second, in which case trial vector 

inherit, on average, 40% of their parameters from vector B and 60% from vector A. 

These trial vector could also have been generated by taking A first, B second and CR 

= 0.6. Reversing the roles of the donor vectors has the same effect as using 1-CR 

instead of CR. Since, the order in which vectors chosen is random, CR potentially 

generates the same population as does 1- CR. 

 

One-Point Crossover 

 

     There are several ways to assign donors to trial parameters. As illustrated in 

Figure 2.8, one-point crossover randomly selects a single crossover point such that 

all parameters to the left of the crossover point are inherited from vector one, while 
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those to the right are copied from the vector two (Holland 1995). GAs often construct 

a second trial vector by reversing the roles of the vectors, with vector two 

contributing the parameters to the left of the crossover point and vector one 

supplying all trial parameters to the right of the crossover point.   

 

 

Figure 2.8 An example of one point crossover (Feoktistov 2006) 

 

N-Point Crossover 

 

     N-point crossover randomly subdivides the trial vector into n + 1 partitions such 

that parameters in adjacent partitions are inherited from different vectors. If n is odd 

(e.g., one-point crossover), parameters near opposite ends of a trial vector are less 

likely to be taken from the same vector than when n is even (e.g., n = 2) (Eshelman et 

al. 1989). This dependence on parameter separation is known as representational or 

positional bias, since the particular way in which parameters are ordered within a 

vector affects algorithm performance. Studies of n-point crossover have shown that 

recombination with an even number of crossover points reduces the representational 

bias at the expense of increasing the disruption of parameters that are closely 

grouped (Spears and DeJong, 1991). To reduce the effect of their individual biases, 

the DE algorithm‟s exponential crossover employs both one- and two-point 

crossover. 
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Figure 2.9 An example of N-point crossover (Feoktistov 2006) 

 

Exponential Crossover 

 

     The DE algorithm‟s exponential crossover achieves a similar result to that of one- 

and two-point crossover, albeit by a different mechanism. One parameter is initially 

chosen at random and copied from the mutant vector to the corresponding trial 

parameter so that the trial vector will be different from the vector with which it will 

be compared (i.e., the target vector, X Gi , ). The source of subsequent trial parameters 

is determined by comparing CR to a uniformly distributed random number between 0 

and 1 that is generated anew for each parameter, i.e., rand j (0,1). As long as rand j

(0,1) ≤ CR, parameters continue to be taken from the mutant vector, but the first time 

that rand j (0,1) > CR, the current and all remaining parameters are taken from the 

target vector. The example in Figure 2.10 illustrates a case in which the exponential 

crossover model produced two crossover points. 
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Figure 2.10 An example of exponential crossover process (Feoktistov 2006) 

 

2.3.5 Selection  

 

     If the trial vector, U Gi , , has an equal or lower objective function value in the case 

of minimization than that of its target vector, X Gi , , it replaces the target vector in the 

next generation; otherwise, the target retains its place in the population for at least 

one more generation. By comparing each trial vector with the target vector from 

which it inherits parameters, the DE algorithm more tightly integrates recombination 

and selection than do other EAs: 

 

X 1, Gi  = 


 

otherwiseX

XfUfifU

Gi

GiGiGi

,

,,, )()(
      (2.16) 

 

     Once the new population is installed, the process of mutation, recombination and 

selection is repeated until the optimum is located, or a prespecified termination 

criterion is satisfied. 

 

     Practically, there are two ways to implement the selection operation (Lampinen 

and Storn, 2004).  

 

1. The selection operation is implemented after all offspring individuals 

have been produced. The offspring individuals do not participate in the 
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reproduction procedure. Each offspring individual is compared with his 

corresponding father one by one. 

2. Each time when a father individual produces his offspring individual, 

these two competes with each other and survivor substitutes the old one in 

the population immediately. These survivors will participate in the 

reproduction operation for the following individuals in the population. 

Thus the reproduction and selection process will interact with each other. 

 

     The latter way is greedier than the former one since new individuals participate in 

the evolution earlier. High greediness may help population converge faster; however, 

it may lead the population to premature.  The second selection rule is selected for this 

study. Because, in this rule newly made offsprings participate the population before 

iteration has been finished with their better objective function values. Furthermore in 

the DE algorithm, individuals interact with each other in the mutation operation and 

by the help of this interaction with better valued individuals the population can lead 

to better places.   

 

     The classical version of the DE algorithm illustration of one generate-and-test 

cycle of the DE algorithm can be seen from Figure 2.11.  
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(a) Population initialization for DE (NP =9). 

Contour lines for f(x1, x2) are shown by 

ellipses  

 

b) Generating difference vector X 2r  − X 3r . 

r2 and r3 are the randomly selected  indices. 

 

c) Generating X Gr ,1  + F*(X Gr ,2  − X Gr ,3 ). r1 is 

the third randomly selected index F   (0, 1+) 

 

d) After the crossover if the generated vector 

has  lower objective value; it will be replaced 

with the  vector 0. 

 

Figure 2.11 Illustration of one generate-and-test cycle for the DE algorithm (Price et al., 2005) 
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2.4 The Differential Evolution Algorithm’s Variants and Notations   

 

     The classical version of the DE algorithm (DE/rand/1/bin) was explained in the 

previous sections in detail. In addition to classic version, Storn (1996) have 

suggested four different working strategies of the DE algorithm and some guidelines 

in applying these strategies for any given problem. Different strategies can be 

adopted in the DE algorithm depending upon the type of problem for which it is 

applied. Table 2.1 shows the five different working strategies proposed by Storn 

(1997) for the DE algorithm. The general convention used in Table 2.1 is as follows: 

DE/x/y/z. Here, DE stands for Differential Evolution algorithm, x represents a string 

denoting the vector to be perturbed, it can be the best vector („best‟) of the current 

population or a randomly selected one („rand‟), y is the number of difference vectors 

considered for perturbation of x (1 or 2), and z is the type of crossover being used 

(exp: exponential; bin: binomial; in this study binomial). As you can understand from 

the notation used, the perturbation can be either in the best vector of the previous 

generation or in any randomly chosen vector. Similarly for perturbation, either single 

or two vector differences can be used.  

 

Table 2.1 Variants of Differential Evolution algorithm 

Strategy 1: DE/rand/1/bin  V Gi ,  = X Gr ,1 +F*(X Gr ,2 -X Gr ,3 ) 

Strategy 2: DE/rand/2/bin   V Gi ,  = X Gr ,5 + F*(X Gr ,1 +X Gr ,2 -X Gr ,3 -X Gr ,4 ) 

Strategy 3: DE/best/1/bin  V Gi ,  =X Gbest, + F*( X Gr ,2 -X Gr ,3 ) 

Strategy 4: DE/best/2/bin  V Gi ,  =X Gbest, + F*(X Gr ,1 +X Gr ,2 -X Gr ,3 -X Gr ,4 ) 

Strategy 5: DE/randtobest/bin  V Gi ,  =X Gi , +F*(X Gbest, - X Gi , ) + F*(X Gr ,1 - X Gr ,2 ) 

 

2.5 A Numerical Example of the Differential Evolution Algorithm 

 

     In this section, a simple example is given to demonstrate the implementation of 

the DE algorithm for a minimization problem in continuous spaces. In this example, 

we will follow the DE/rand/1/bin (classical) scheme of the DE algorithm.  

 



27 

 

 

     1) Select the control parameters of the algorithm as in Table 2.2. 

 

Table 2.2 Control Parameters of the DE algorithm 

Decision Variables D 6 

Population Size NP 7 

Scaling Mutation Factor F 0.7 

Crossover Rate Constant CR 0.7 

Upper Bound  XUB     4 

Lower Bound X LB  0 

 

     2) Initialize the population according to random population generation function in 

Equation (2.7). 

 

rand
1
(0,1) = 0.542 

x 0,1,1 =0+0.542*(4-0) = 2.168 

rand 2 (0,1) = 0.158 

x 0,1,2 =0+0.158*(4-0) = 0.632 

 

     All of the parameters in each vector are initialized in Figure 2.12. 

 

 

   Figure 2.12 Initial population 
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     3) Chose target vector X Gi , , two difference vectors, r2 and r3 and one base vector, 

r1. Vectors for this example are chosen as following, r1 = 3, r2 = 5, r3 = 6 and i = 1. 

 

     4) Apply the mutation operation to generate the mutant vector according to 

mutant population generation function in Equation (2.8) as seen in Figure 2.13. 

 

 

Figure 2.13 Mutation operation of individual 1 

 

     In our example, parameter five has a value of -1.6192 which is smaller than our 

lower bound and parameter two has a value of 4.3192 which is bigger than our upper 

bound and these two values should be taken in the bounds we have initially chosen. 

Mutation values of both parameters are corrected with the repairing procedure given 

in section 2.3.3. 

 

v new,0,1,1 = (2* X UB ) - v 0,1,1  = (2*4) - 4.3192 = 3.6808 

v new,0,1,5 = (2* X LB ) - v 0,1,5  = (2*0) – (-1.6192) = 1.6192 

 

     5) Create the trial vector by means of the uniform crossover operation given in 

section 2.3.4 in Figure 2.14. 

 

 

          Figure 2.14 Crossover operation for individual 1 
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     6) Select the individual that will advance to the next generation according to the 

rule given in section 2.3.5 as seen in Table 2.3. 

 

Fitness value of target vector is 2.18. 

Fitness value of trial vector is 2.04. 

 

     In this example, fitness value of target vector has been reduced by the operations. 

According to the selection rule given, trial vector will replace target vector in the 

next iteration.  

 

Table 2.3 Population at the end of iteration one of individual 1 

 

 

     7) Return to step three and repeat the steps 4 to 6 for all individuals within the 

current population. 

 

     8) This procedure can be executed for several generations until a convergence 

criterion is satisfied. 

 

2.6 Handling Discrete Parameters in the Differential Evolution Algorithm 

 

     Due to the DE algorithm‟s continuous nature, the standard encoding schema of 

the DE algorithm cannot be directly adopted to discrete optimization problems. For 

this reason, the applications of the DE algorithm on the COPs are very limited. In 

this study, single and parallel machine scheduling problems are studied. The 

important issue to apply the DE algorithm to scheduling problems is to find a 

suitable mapping between job sequences and individuals in the DE algorithm. Most 

of the scheduling problems require discrete parameters and ordered sequences, rather 
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than relative position indexing. To achieve this, there are some strategies known as 

the random-keys encoding (Bean, 1994), the sub-range encoding (Nearchou, 2006a), 

forward and backward transformation (Onwubolu, 2001) and LOV rule (Qian, 2007).  

 

     In this study initially, we have tested all of these strategies according to their 

speed and accuracy. At the end of this initial study, we have selected LOV rule and 

the sub-range encoding rule as our main transformation rule to be used. The LOV 

rule will be used in both single machine and parallel machine scheduling problem to 

represent the solution vectors in the population and the sub-range encoding rule will 

only be used in parallel machine scheduling problem to assign jobs to machines. 

 

2.6.1 The Sub-Range Encoding Rule 

 

     In this section, the main features of the sub-range encoding rule are described. In 

the description of the encoding rule, we will use terms borrowed from the field of 

Evolutionary Computation (EC) such as the genotype (i.e., the vector‟s structure 

evolved by the DE algorithm), the phenotype (i.e., the actual solution to the physical 

problem corresponding to a specific genotype) and a gene. Accordingly, every 

component of a vector is called a gene. 

 

 In a pre-processing phase, the range [1, D] (where D is the number of 

problem‟s parameters) is divided into D equal sub-ranges and the upper 

bound of each sub-range is saved in an array of floating-point numbers. Let‟s 

call this array SR (stands for Sub-Range). Therefore, the content of the array 

is SR = [1/D, 2/D, 3/D , . . . ,D/D] T . 

 Each floating-point vector in the genotypic level is encoded as a D-

dimensional real-valued vector with each gene corresponding to a decision 

parameter of the physical COP. 

 Each genotype is mapped to a corresponding phenotype. The components of 

a phenotype are integer numbers in [1, D]. These components are then sorted 

according to the sub-range index to which the corresponding genes of the 

genotype belong. 
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 Crossover and mutation operators are performed in the genotypic level, not 

on the derived solutions (i.e., not on the phenotypes). 

 Each phenotype then finally represents a valid solution to the COP. 

 

     The mechanism of building the proto-phenotype of a given genotype ge works as 

follows: 

 

Procedure: Proto-Phenotype (SR, ge) 

Step 1: Let j=1, 2, …, D  // j denotes the position of the gene in the genotype ge// 

Step 2: Determine the sub-range index corresponding to j th  gene of the vector. Let q 

be (q  k=1, 2, …, D) the index of this sub-range. 

Step 3: Put the integer q in the j th  position of the proto-phenotype solution X ge . 

Step 4: Let j=j+1. 

Step 5: Repeat steps (2)-(4) until j>D. 

Step 6: Return (X ge ) 

 

     As an example, let us assume that the genotype, ge = (0.985, 0.632, 0.340, 0.408, 

0.128, 0.828, 0.436, 0.636) given as shown in Table 2.4. Since the related COP has 8 

decision parameters (D = 8), then the array  SR =  [1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8, 

8/8] T  = [0.125, 0.250, 0.375, 0.500, 0.625, 0.750, 0.875, 1.0] T . Table 2.4 shows 

analytically how the phenotype corresponding to ge is built using the above 

procedure. 

 

     As one can see from Table 2.4, the first gene (=0.985) lies in the last sub-range 

(0.875<0.985 ≤ 1.0), the second gene (=0.632) lies in the sixth sub-range (0.625 < 

0.632 ≤ 0.750), etc. It is clear that, the generated final phenotype is = [8, 6, 3, 4, 2, 7, 

4, 6]. 

 

 

 

 

 



32 

 

 

Table 2.4 Building phenotypes from real-coded genotypes  

Gene Position Gene 

Value 

Gene Index Generated Proto-Phenotype 

1 0.985 8 (8) 

2 0.632 6 (8, 6) 

3 0.340 3 (8, 6, 3) 

4 0.408 4 (8, 6, 3, 4) 

5 0.128 2 (8, 6, 3, 4, 2) 

6 0.828 7 (8, 6, 3, 4, 2, 7) 

7 0.436 4 (8, 6, 3, 4, 2, 7, 4) 

8 0.636 6 (8, 6, 3, 4, 2, 7, 4, 6) 

 

2.6.2 The Largest Order Value Rule 

 

     In this section, the main features of the LOV rule are described. For a n-job 

problem, each vector contains D number of dimensions corresponding to n 

operations (D = n) and we will use a LOV rule based on random key representation 

of Bean (1994) to convert the DE algorithm‟s individual containing n operations     

(X Gi ,  =[x Gi ,,1 , x Gi ,,2 ,…, x Gin ,, ]) to the job solution/permutation vectors (    = [      , 

 Gi ,,2 ,…,  Gin ,, ]) (Qian et al., 2007). 

 

     According to LOV rule, individuals X Gi ,  =[x Gi ,,1 , x Gi ,,2 ,…, x Gin ,, ] are firstly 

ranked by descending order to get a trial sequence Gi ,  =[ Gi,,1 , Gi,,2 ,…, Gin ,, ].  

 

Then the job permutation Gi,  is calculated by the following formula:  

 

GiGij ,,,, =j.         (2.17) 

 

     In Figure 2.15, the LOV rule is illustrated with a simple instance (n=8), where 

individual X Gi ,  = [0.985, 0.632, 0.340, 0.408, 0.128, 0.828, 0.436, 0.636] is given. 
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Because x Gi ,,1   is the largest value of X Gi , , x Gi ,,1  is selected firstly and assigned rank 

value one in the trial vector, then x Gi ,,6  is selected secondly and assigned rank value 

two in the trial vector. In the same way, x Gi ,,8 , x Gi ,,2 , x Gi ,,7 , x Gi ,,4 , x Gi ,,3  and x Gi ,,5  are 

assigned rank values of three, four, five, six, seven and eight respectively. Thus, the 

trial sequence is Gi ,  = [1, 4, 7, 6, 8, 2, 5, 3]. According to formula, if j =2, then 

Gi,,2  = 4 and 
GiGi ,,,,2

  = Gi,,4  =2; if j = 5, then Gi,,5 = 8 and 
GiGi ,,,,5

 = Gi,,8 = 5; and 

so on. Thus, we obtain the job permutation vector as Gi,  = [1, 6, 8, 2, 7, 4, 3, 5].  

 

Dimension j 1 2 3 4 5 6 7 8 

x Gij ,,  0.985 0.632 0.340 0.408 0.128 0.828 0.436 0.636 

Gij ,,  1 4 7 6 8 2 5 3 

Gij ,,  1 6 8 2 7 4 3 5 

Figure 2.15 Example of solution representation for individual X Gi ,  

 

     Obviously, such a conversion process is very simple, and it makes the DE 

algorithm suitable to solve permutation-based COPs. The advantage of this rule is 

that this rule is not only concerned with the value of the parameter but it is also 

concerned with the position of this value. The position considered in this encoding 

rule is very important for scheduling problems. In scheduling problems, we want to 

get the optimum sequence, however these continuous to discrete transformation rules 

are only concerned with the value of the parameter in the individual rather than the 

position of the parameter in that individual. Therefore, a more accurate continuous to 

discrete value transformation occurs with the help of LOV rule. In this study, we will 

use this rule to represent job permutation both in single and parallel machine 

scheduling problems. 
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CHAPTER THREE 

SINGLE MACHINE SCHEDULING WITH SEQUENCE DEPENDENT 

SETUP TIMES 

 

     In Chapter two, the Differential Evolution (DE) algorithm was introduced as an 

alternative solution approach for solving combinatorial optimization problems 

(COPs). It is obvious that the DE algorithm is a very efficient heuristic for solving 

COPs. On the other hand, applications of the DE algorithm to COPs are very limited, 

because the DE algorithm has been originally designed for continuous spaces, 

whereas COPs are inside discrete spaces.   

 

     This chapter will show application of the DE algorithm to single machine 

makespan minimization problem with sequence dependent setup times. Initially, an 

introduction for single machine scheduling problems is given. Then, application of 

the DE algorithm to single machine makespan minimization problem with sequence 

dependent setup times is explained. To improve the performance of the DE 

algorithm, two local search methods are introduced. Finally, the results of the test 

problems are given and an interpretation about the results is made.  

 

3.1 Introduction 

 

     Scheduling problems have been the subject of great research for over five 

decades. One of the most popular problems in the scheduling problems is the single 

machine scheduling (SMS) problem. The SMS problem does not necessarily involve 

only one machine. A group of machines (e.g., a serial production line or a system) 

can also be treated as a single unit. Hence, in industry, high-tech manufacturing 

facilities, such as computer- controlled machining centers and robotic cells, are often 

treated as an SMS problem for scheduling purposes (Pinedo, 1995).  

 

     First of all, for understanding further explanations in this study, we need to 

distinguish sequencing and scheduling. Sequencing refers to the organization of jobs 
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that will be processed on a given machine. On the other hand, scheduling refers to 

the allocation of jobs to different machines. For the single machine models, only 

sequencing is a problem to be solved. But for parallel machine models, both 

sequencing and scheduling problems need to be solved. In a SMS problem, there is 

only one machine and a group of jobs that should be sequenced in that machine 

according to a prespecified performance criteria. But in a parallel machine 

scheduling problem, we have a group of jobs and a group of machines and in this 

case, we have to specify which job will be assigned to which machine (scheduling). 

After scheduling section is completed, we sequence the jobs in each machine 

individually.  

 

     Most of the researches for scheduling problems have been conducted exclusively 

for SMS problems that constitute the simplest case within scheduling environments 

(Pinedo, 1995). Luckily, some of the results obtained for the single machine 

scheduling provide the basis for good heuristics on parallel machines. However, 

although parallel machine problems are a generalization of the single machine 

problems, single machine models display some properties that do not hold for 

parallel machines models.  

 

The single machine models are important for the following reasons (Pinedo, 1995): 

 

1. The environment of a single machine is considered to be a simple 

environment and a special case of all other environments. 

2. Single machine models provide properties that do not hold for either 

machines in parallel or machines in series. 

3. The results that can be obtained for single machine models not only provide 

insights into the single machine environments but also they provide a basis 

for heuristics for more complicated machine environments. 

4. In a real life scheduling problem, machine environments are more 

complicated and therefore they are often decomposed into subproblems that 

deal with single machines.  
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     In this research, we used three field notation ( /  / ) of Graham et al. (1979) to 

describe scheduling problems. The   field describes the shop (machine) 

environment. The   field describes the setup information, other shop conditions, 

and details of the processing characteristics, which may contain multiple entries. 

Finally, the   field contains the objective to be minimized. Table 3.1 shows some 

examples of shop type to be used in   field of the three field notation. Table 3.2 

below shows examples of shop characteristic and Table 3.3 below shows examples 

of setup information to be used in   field of the three field notation. Table 3.4 below 

shows examples of performance criteria to be used in   field of the three field 

notation. For example, a three machine parallel scheduling problem to minimize the 

makespan with a sequence dependent setup times is denoted by P3/ST sd  /C max . 

Table 3.1 Example of shop types 

1 single machine 

F flow shop 

FF flexible (hybrid) flow shop 

AF assembly flow shop 

P, Q R parallel machines (P: related; Q: uniform; R: unrelated machines) 

J job shop 

O open shop 

 

Table 3.2 Example of shop characteristic 

prec precedence constraints 

r j  non-zero release date 

pmtn preemption 

 

Table 3.3 Example of setup information 

ST si  sequence-independent setup time 

SC si  sequence-independent setup cost 

ST sd  sequence-dependent setup time 

SC sd  sequence-dependent setup cost 

ST bsi,  sequence-independent batch or family setup time 

SC bsi,  sequence-independent batch or family setup cost 

ST bsd ,  sequence-dependent batch or family setup time 

SC bsd ,  sequence-dependent batch or family setup cost 
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Table 3.4 Examples of performance criteria 

C max  makespan 

L max  maximum lateness 

T max  maximum tardiness 

D max  maximum delivery time 

TSC  total setup/changeover cost 

TST  total setup/changeover time 

 jf   total flow time 

 jC   total completion time 

 jE   total earliness 

 jT   total tardiness 

 jU   number of tardy (late) jobs 

 jj Cw *   total weighted completion time 

 jj Uw *   weighted number of tardy jobs 

 jj Ew *   total weighted earliness 

 jj Tw *   total weighted tardiness 

 jj fw *   total weighted flow time 

 

     SMS problems are COPs, and the most common performance measures in SMS 

problems (objectives) are functions of the completion times of jobs. Examples of 

such objectives to be minimized are makespan (i.e., the completion time of the last 

job to leave the system), the total weighted (discounted) completion time, the 

maximum lateness, the total weighted tardiness, and the weighted number of tardy 

jobs (Pinedo, 2002). The first two objectives are focused on improving resource 

utilization and productivity, while the others are mainly perceived as measures of 

conformity with due dates.  
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     When the objective is to minimize makespan in a basic SMS model (without 

setups), any permutation of jobs essentially gives the same makespan. However, the 

addition of sequence dependent setup times considerably complicates the problem. It 

is well-known that the single machine makespan problem with sequence dependent 

setups 1/ ST sd /C max  is proven to be strong NP-hard (Pinedo, 1995). 

 

     Unlike the sequence independent setup time problem, in which makespan is the 

same regardless of the selected sequence, when setup times are dependent on the 

sequence, minimizing makespan becomes equivalent to minimizing the total setup 

time which corresponds to what is usually called the traveling salesman problem 

(TSP). In a TSP, each city corresponds to a job and the distance between cities 

corresponds to the time required to change from one job to another.  

 

    Baker (2002) states that there has been little progress with other performance 

measures in models with sequence dependent setups because the makespan problem 

has proved to be so challenging. In fact, in the presence of sequence dependent 

setups, most of the research has focused on either minimizing the number of setups 

or minimizing the sum of job completion times to improve the performance of single 

machine models (Allahverdi et al., 1999). But in recent years, not only the attention 

on sequence dependent setup time problems has increased but also the other 

performance measures have grown in size (Allahverdi et al., 2006).  

 

     In section three of this chapter, the mathematical formulation of the symmetric 

and asymmetric TSP problem that is related with SMS problem will be given. After 

that, the formulation of the single machine makespan minimization problem with 

sequence dependent setup times will be given. Also in this section, differences of 

symmetric and asymmetric matrix formulations will be explained. But before this, 

literature review of the single machine scheduling problems with different 

performance measures and different solution approaches will be discussed.    
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3.2 Literature Review 

 

     In spite of the fact that, a majority of the literature deals with problems without 

sequence dependent setups, some surveys and studies indicate that setups are 

important in a majority of practical situations and must be accounted for in the 

design of algorithms for scheduling problems. In a survey of industrial schedulers, 

Panwalkar et al. (1973) report that about 70% of the schedulers stated that setup 

times depended on processing sequence in at least 25% of the jobs they scheduled. 

Kim and Bobrowski (1994) study the impact of setup times on the performance of 

scheduling systems using simulation; they conclude that, to better model practical 

situations, setup times should be considered explicitly whenever they are 

significantly greater than the processing times. Excellent surveys of scheduling 

problems with setups are presented in Allahverdi et al. (1999) and Allahverdi et al. 

(2008) and these studies point out the importance of setup times. 

 

 

Figure 3.1 Classification of separate setup time (cost) scheduling problems (Allahverdi et al., 1999) 

 

     The benefits of reducing setup times include: reduced expenses, increased 

production speed, increased output, reduced lead times, faster changeovers, increased 

competitiveness, increased profitability and satisfaction, enabling lean 

manufacturing, smoother flows, broader range of lot sizes, lower total cost curve, 

fewer stock outs, lower inventory, lower minimum order sizes, higher margins on 

orders, faster deliveries, and increased customer satisfaction. The importance and 
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benefits of incorporating setup times/costs in scheduling research has been 

investigated by many researchers since mid 1960s. Flynn (1987) demonstrates that, 

scheduling with setup times increases output capacity in cellular manufacturing 

environments, while Wortman (1992) underlines importance of the problem in 

effectively managing the manufacturing capacity. Kogan and Levner (1998) and 

Stowers and Palekar (1997) discover that, treating setup times as separate can 

significantly reduce makespan in an automated manufacturing line with robots. Liu 

and Chang (2000) state that, setup time is a significant factor in production 

scheduling and it may easily consume more than 20% of available resource capacity. 

 

     In a SMS problem, each job has its own processing and setup times and each job 

must be sequenced in such a way as to optimize performance measures. In order to 

determine the best sequence, all possible sequences are generated along with the 

objective function value and then the best one among them is selected. This is 

defined as exhaustive enumeration. The maximum number of sequences that can be 

explored is n! (n being the number of jobs) combinations. Therefore, the exhaustive 

enumeration technique is restricted, especially when n is large (Sule, 1997). The 

problem cannot be solved efficiently when the size of the problem increases. Since 

there is no algorithm that exists to solve this problem in a polynomial time, these 

problems are called NP-hard problems.  

 

     As an initial step in solving problems with sequence dependent setups, single 

machine problems are also solved by various other methods: dynamic programming 

(Gascon and Leachman, 1998), branch-and-bound (Dietrich and Escudero, 1989) and 

heuristics (Pinedo, 1995). 

 

     Deeper observations about SMS problems including sequence dependent setup 

times are also made. Uskup and Smith (1975) discussed a two-stage problem in 

which facilities at both stages require a setup and they employed a branch-and-bound 

(B&B) algorithm to the 1/ST sd /TST problem subject to the due date constraint. 

Emmons (1969) successfully applied a dynamic programming algorithm to solve the 

problem of 1/ ST sd /TSC. Bianco et al. (1988) proposed a mixed integer linear 
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programming (MILP) model for the 1/ ST sd /C max  problem in the presence of release 

times and developed a branch-and-bound method, which uses a Lagrangian lower 

bound and dominance criteria to prune the enumeration tree.  Glassey (1968) used a 

dynamic programming algorithm for the same problem to minimize the number of 

changeovers subject to due dates. For the 1/prec, ST sd /C max  problem, He and Kusiak 

(1992) proposed a simpler mixed integer formulation and a fast heuristic algorithm 

of low computational time complexity. 

 

     Since the 1960s, there has been an increasing interest in heuristic techniques, such 

as Simulated Annealing (SA), Tabu Search (TS), and Genetic Algorithm (GA) in 

finding optimal or near optimal solutions for big sized problems. The term used to 

refer to such techniques is “evolutionary computation”. The best known algorithms 

in this class include GAs (Holland, 1975), evolution strategies (ES) (Rechenberg, 

1973), evolutionary programming (EP) (Fogel et al., 1966), and genetic 

programming (GP) (Koza, 1992).  

 

     Examples for sequence dependent setup time problems in  real life are as follows; 

Pinedo (1995) described a paper bag factory where setup is needed when the 

machine switches between types of paper bags, and the setup duration depends on 

the degree of similarity between consecutive batches; e.g. size and number of colors. 

The printing industry provides numerous applications of sequence dependent setups 

where the machine cleaning depends on the color of the current and immediately 

following orders (Conway et al., 1967). In several textile industry applications, setup 

for weaving and dying operations depends on the job sequence. In the container and 

bottle industry, the settings change depending on the sizes and shapes of the 

containers. Further, in the plastic industry, different types and colors of products 

require sequence dependent setups (Das et al., 1995 and Franca et al., 1996).  

 

     Lee and Asllani (2004) presented a MILP model and a GA model for the 1/ ST sd  

problem with the minimization of  jU as the primary objective, and the 

minimization of the C max  as the secondary objective. They concluded that the model 
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becomes very complex and unmanageable when the number of jobs is more than ten. 

They also found that proposed GA performs better when the ratio of setup times to 

processing times is relatively large. Choobineh et al. (2005) developed TS heuristic 

and a MILP model to obtain the optimal solution of the 1/ ST sd problem. Their first 

objective is minimization of makespan (C max ) and second objective is minimizing 

the number of tardy jobs ( jU ) and last objective is minimizing total tardiness       

( jT ). They found that the computational time increases as the setup ranges 

decrease and problem size increases. 

 

     So far, many efficient scheduling algorithms have been developed to solve 

various ST sd  problems with different performance criteria. Rabadi et al. (2007) 

considered a single machine early/tardy problem with unrestricted common due date. 

They proposed a heuristic algorithm symmetry-adapted perturbation theory (SAPT) 

and a hybrid SA algorithm to obtain near-optimal solutions. Woodruff and Spearman 

(1992) developed a branch-and-bound algorithm that finds the due date feasible 

sequence with the minimum setup time. Farn and Muhlemann (1979) also considered 

the ST sd  problem in the presence of dynamic job arrivals and established that the 

best heuristic for the static problem is not necessarily the best in a dynamic situation. 

Stecco et al. (2008) considered a SMS problem with sequence dependent and time 

dependent setup times. The objective of the study is to minimize total setup time with 

quick and effective TS heuristic. Computational experiments show that the proposed 

heuristic consistently finds better solutions in less computation time than a recent 

branch-and-cut algorithm.  

 

     As we look recent year‟s papers, Lin and Ying (2007) considered the 1/ ST sd /

 jj Tw * problem. They solved the problem with three well-known heuristics SA, 

GA, TS, random swap and insertion search. After that, a mutation operation is 

performed by a greedy local search and it is integrated inside GA, similarly, a swap 

and an insertion tabu list are adopted in TS algorithm. Armentano and Araujo (2006) 

developed variants of the greedy randomized adaptive search procedure (GRASP) 
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metaheuristic that incorporate memory based mechanisms for solving 1/ ST sd / jT

problem with respect to job due dates. Chou et al. (2008) considered the 1/ ST sd ,r j /

 jj Tw * . They developed two exact algorithms, including a constraint 

programming model and a branch-and-bound method for small problems, and they 

developed two heuristics including a best index dispatch and a modified weighted 

shortest processing time based on non-delay concepts for large problems. Tasgetiren 

et al. (2008) is concerned with solving the 1/ST sd / jj Tw *  problem. They solved 

the problem by a pure discrete DE algorithm and also hybridized the DE algorithm 

with a referenced local search method. At the end of the study, they concluded that 

the hybrid DE algorithm outperformed the pure DE algorithm in all comparative 

fields This is the first known application of the DE algorithm to sequence dependent 

setup time problems.  

 

3.3 Problem Statement and Formulation 

 

     This chapter of the thesis deals with SMS problem with sequence dependent setup 

times with the objective of minimizing makespan (SMSDST). This problem is 

referred to as 1/ST sd  /C max  with the three field notation. Also this problem can be 

defined as follows, there are n jobs, indexed as 1, 2,..., n, which are all available for 

processing at time zero on a continuously available machine. The machine can 

process only one job at a time and preemption is not allowed. Associated with each 

job j, there is a positive integer processing time p j  on the machine, and a setup time 

s ji , . Here, setup times (s ji , ) are necessarily incurred when job j follows job i in the 

processing sequence. Generally, the setup time matrix is assumed as s ji ,  ≠ s ij , . If 

setup time matrix is as s ji ,  ≠ s ij , , the matrix is said to be asymmetric, otherwise 

symmetric. 

 

     Let      be a processing sequence of the jobs,      = {      ,...,       }, where        

is the index of the t th  job in the sequence. The completion time of the job in t th  
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position of the sequence can be calculated as        
                   

 

   
        

 

and the objective in this study is to find a sequence that minimizes maximum 

completion time of the given sequence which is denoted as C max = max(       
). 

 

     In the following, the notation used for the formulation of SMS problem is given 

by Rardin (1992): 

 

n = Number of jobs. 

s ji , = Sequence dependent setups between job i and job j. i, j = 1, 2, …, n. 

x ji , =




otherwise

sequenceainyimmediateljjobprecedesijobif

0

1
 

S = Subset of jobs forming a subsequence. (|S| is the size of S) 

 

Problem: SMSDST problem with objective of minimizing makespan (symmetric 

TSP formulation). 

 

Minimize  
i ij

jiji xs ,, *        (3.1) 

Subject to the constraints: 

 
 


ij ij

jiij xx ,,
=2    ∀ i=1, …,n.    (3.2) 

 
 


ijSj

ji

Si

n

Si

ji

ijSj

xx
,

,,

,

 2  ∀ i=1, …,n ∀ S, S 3 and j>i (3.3) 

x ji , = 0, 1      i=1, …, n, j=1, …, n, i j  (3.4) 

 

     Equation (3.1) is the objective function that minimizes the sum of the sequence 

dependent setup times. Constraint (3.2) in symmetric case requires that exactly two x 

variables relating to any point i be equal to one in a feasible solution. One links i to 

the job before it in the sequence, and other links job i to the job after j. According to 

constraint (3.3) every sequence must cross a point in S and points outside at least 

twice not to become infeasible. Constraint (3.4) is the zero and one constraint. 
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Problem: SMSDST problem with objective of minimizing makespan (asymmetric 

TSP formulation). 

 

Minimize  
i ij

jiji xs ,, *        (3.5) 

Subject to the constraints: 




n

jij

jix
,1

,
=1     ∀ i=1, …,n.    (3.6) 




n

jii

ijx
,1

,
=1     ∀ i=1, …,n.    (3.7) 


 Sj

ji

Si

x ,  1    ∀ S and     ≥2    (3.8) 

x ji , =0 or 1    ∀ i=1, …, n and ∀ j=1,…, n.  (3.9) 

 

     Equation (3.5) is the objective function that minimizes the sum of the sequence 

dependent setup times between each pair of jobs. Constraints 3.6 and 3.7 are 

assignment constraints. Each job has a predecessor and a successor. Constraint (3.8) 

requires that each sequence enter and leave every subset S of points. Thus, subtour 

elimination is provided by requiring the sequence to leave every S at least once. 

Equation (3.9) refers to the state which variables must be 0 or 1.   
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iteration=0.

Initialization, set NP (population size), F (mutation factor), 

CR (crossover factor), lower bound, upper bound 

Generate NP individuals randomly .

Apply the LOV rule to find the permutations of individials.

Evaluate each individual Xi,G in

the population.

Mutant population generation Vi,G,for each individual in the 

population generate mutant individual.

Generate trial population Ui,G,for each mutant individual 

generate a trial individual.

Find permutation, apply the LOV rule to find permutations 

of  all individuals. 

Evaluate each individual in the population.

iteration=iteration+1.

Selection, f(Ui,G)    f(Xi,G)

iteration>maxiteration

Output the fittest 

individual.

Replace current individual with the 

trial individual Xi,G = Ui,G

YES

NO

NO

YES

 

                  Figure 3.2 Flowchart of the DE algorithm for single machine scheduling problems 
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3.4 Application of the Differential Evolution Algorithm to Single Machine 

Scheduling Problems 

 

     The application of the DE algorithm to SMS problems with sequence dependent 

setup time problems will be represented in this section of this research. In Chapter 

two, a detailed explanation of how to apply classic version of the DE algorithm 

(DE/rand/1/bin) to continuous problems is explained. However in this chapter, the 

problem that will be handled is a discrete problem. By the help of the handling 

discrete variables technique, that was explained in previous chapter, we will convert 

continuous parameters to discrete parameters and easily represent our processing 

sequence. And at last, we will integrate local search procedures with the DE 

algorithm to improve the DE algorithm‟s performance and effectiveness. 

 

     First of all, we will begin with initialization section. After that, mutation section, 

crossover section and selection section will be respectively explained. From Figure 

3.2, you can see how the DE algorithm works for the SMS problem. 

 

Initialization: 

 

     Before starting the algorithm, we must first set control parameters that will be 

used while operating the DE algorithm. These control parameters are population size 

(NP), mutation factor (F), crossover factor (CR), lower bound (X LB ) and upper 

bound (X UB ). To improve the performance of the DE algorithm, choosing the 

appropriate settings for these control parameters is very important. Setting of 

appropriate control parameters will be explained in detail later in this chapter.  

 

     After setting appropriate control parameters, we will generate the initial 

population, that is composed of NP individuals where P GX , = (X G,1 , X G,2 , …, X Gi , )   

(i = 1,…,NP). Each individual contains n number of parameters indexed by j,  X Gi , = 

(x Gi ,,1 , x Gi ,,2 ,…, x Gij ,, ) (j = 1,…,n), and it is generated randomly according to 

equation (2.7) that is given in section 2.3.2. 
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x 0,,ij  = rand j (0,1)*( X UB - X LB )+ X LB .     (2.7) 

 

     Initial population is initially generated with continuous parameters but we have to 

convert them to discrete parameters to compute their objective function values. The 

LOV rule is used to convert these parameters to find the permutations  Gi , = [ Gi ,,1 , 


Gi ,,2  ,…,  Gin ,, ] of all individuals in the population. After all of the individuals in 

initial population are converted, the objective functions values are evaluated for each 

individual i by using objective function f ( Gi , ) for i = 1, …, NP. 

 

Mutation: 

 

     In mutant population generation phase of the algorithm, continuous valued 

individuals of population are used. For each individual in the population, X Gi , , at 

generation G, a mutant individual V Gi , = [v Gi ,,1 , …, v Gin ,, ] is determined by using the 

equation (2.8) given in section 2.3.3. 

 

V Gi ,  = X Gr ,1  + F * (X Gr ,2  -X Gr ,3 ).      (2.8) 

 

Crossover: 

 

     In crossover section of the algorithm, we generate a trial population. To generate 

a trial population, each individual in mutant population and initial population is used. 

First of all, for each mutant individual, an integer random number between 1 and n is 

chosen, i.e. j rand . Here the index j rand   is a randomly chosen variable (j rand  = 1, …, 

n) and this randomly chosen variable‟s corresponding parameter is directly copied 

from mutant population to trial population which is used to ensure that one parameter 

in the trial individual U Gi , , differs from its counterpart in the previous iteration         

X 1, Gi . Trial individual U Gi , =[u Gi ,,1 , …, u Gin ,, ], is generated with equation (2.16) 

below. 
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U Gi ,  =  u Gij ,,  =


 

otherwisex

jjorCRrandifv

Gij

randjGij

,,

,, )1,0(
   (2.16) 

 

     Here, CR is a user defined parameter which is between 0 and 1 and rand j  is a 

uniform random number between 0 and 1 which is different for all individual 

parameters. Random number, rand
j
, is chosen anew for each parameter in the 

individual.  

 

     Once trial population is generated, we again apply LOV rule to convert 

continuous parameters of each individual of the generated population to job 

permutations  0,i = [ 0,,1 i ,  0,,2 i  ,…,  0,,in ]. After job permutations are formed, 

we again evaluate the objective function values of all of the individuals in the 

population.  

 

Selection: 

 

     One of the advantages of the DE algorithm is that it uses greedy acceptance rule 

which means algorithm only selects better valued individuals. To decide whether or 

not the trial individual U Gi ,  will be a member of the population in the next iteration, 

it is compared with its counterpart in the previous iteration X 1, Gi . The selection is 

based on the survival of the fittest among the trial population (2.17). 

 

X 1, Gi  = 


 

otherwiseX

XfUfifU

Gi

GiGiGi

,

,,, )()(
      (2.17) 

 

     If the prespecified termination conditions are satisfied after selection operation is 

completed then we stop, otherwise we will again restart from mutation operation. In 

this study, reaching a specific iteration number is chosen as a stopping criterion and 

this number is set to 500*n. 
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Pseudo code of the DE algorithm presented above is given below. 

 

Initialize parameters 

Initialize target population 

Find permutation 

Evaluate fitness of the target population 

Do 

 Obtain the mutant population 

 Obtain the trial population 

 Find permutation 

 Evaluate fitness of the trial population 

 Do selection 

While (not termination) 

 

3.5 Local Search Methods 

 

     Many COPs of practical interest are computationally intractable. Therefore, a 

practical approach for solving such problems is to employ heuristic (approximation) 

algorithms that can find nearly optimal solutions within a reasonable amount of 

computational time. The literature devoted to heuristic algorithms often distinguishes 

between two broad classes: constructive algorithms and improvement algorithms. A 

constructive algorithm builds a solution from scratch by assigning values to one or 

more decision variables at a time. On the other hand, an improvement algorithm 

generally starts with a feasible solution and iteratively tries to obtain a better 

solution. Neighborhood search algorithms, (alternatively called local search 

algorithms) are a wide class of improvement algorithms where at each of iteration an 

improving solution is found by searching the “neighborhood” of the current solution. 

For large problem instances, it is impractical to search these neighborhoods 

explicitly, and one must either search a small portion of the neighborhood or else 

develop efficient algorithms for searching the neighborhood implicitly. 

 

     A critical issue in the design of a neighborhood search approach is the choice of 

the neighborhood structure, that is, the manner in which the neighborhood is defined. 

This choice largely determines whether the neighborhood search will develop 

solutions that are highly accurate or whether it will develop solutions with very poor 

local optima. As a rule of thumb, the larger the neighborhood, the better is the quality 
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of the locally optimal solutions, and the greater is the accuracy of the final solution 

that is obtained. At the same time, the larger the neighborhood, the longer it takes to 

search the neighborhood at each iteration. Since one generally performs many runs of 

a neighborhood search algorithm with different starting points, longer execution 

times per iteration lead to fewer runs per unit time. For this reason a larger 

neighborhood does not necessarily produce a more effective heuristic unless one can 

search the larger neighborhood in a very efficient manner. 

 

     It is difficult for a solution to simultaneously reach the bottoms of all big-valleys 

without utilizing the domain knowledge of problems. And not searching the bottoms 

of big valleys is very unlikely for algorithms to obtain good enough solutions. 

Fortunately, the DE algorithm, which has been proved to be a simple and efficient 

heuristic for global optimization, may provide a way to find good solutions over the 

solution space. Therefore, hybridizing the DE algorithm with an improvement 

algorithm for the SMSDST problem with the objective of minimizing makespan can 

be a good idea. The DE algorithm in this study is applied to find the promising 

solutions or sub-regions over the solution space, after which insert-based 

neighborhood search and  variable neighborhood search (VNS) are used to exploit 

the solution space from those sub-regions to guide the population to the bottom 

regions of different big-valleys, where contains the Pareto solutions and good 

solutions. Detailed explanations of the hybrid DE algorithm will be given in section 

3.6. 

 

3.5.1 Insert-Based Neighborhood Search 

 

     Insert based neighborhood search is a smaller variant of VNS search and this 

search procedure is directly applied to the job permutations. For permutation-based 

optimization problems, insert based neighborhood search‟s diameter is n − 1. That is, 

using insert based neighborhood search at most n − 1 times, one solution  Gi ,  can 

transit to any other solution. Compared with several commonly used operators, the 

diameter of insert based neighborhood search is one of the shortest ones. This means, 

the solutions caused by insert based neighborhood search are closer to each other. 
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The distance defined by Schiavinotto and Stützle (2007) of the old solution and the 

new one caused by insert based neighborhood search is only 1. That is to say, insert 

based neighborhood search is suitable for performing a thorough search (Qian et al., 

2007). An example for insert based neighborhood search is given in the Figure 3.3. 

 

 

Figure 3.3 An example of insert based neighborhood search. 

 

Pseudo code of the algorithm is given below by Qian et al. (2007). 

Step1: Convert a randomly chosen individual X Gi ,  to a job permutation Gi,  by LOV 

rule and s 0 = Gi, ;  

Step2: Randomly select u and v where u   v; s = insert(s 0 , u, v); 

Step3: Set loop = 1; 

 Do { 

  Randomly select u and v where u   v; s 1  = insert(s, u, v); 

  If f(s
1
)   f(s) then s = s

1
; 

  loop = loop+1; 

 } while (loop < n * (n – 1)) 

Step4: If f (s) ≤ f ( Gi, ) then Gi,  = s and repair Gi, ; 

Step5: Convert Gi ,  back to X Gi , . 
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Convert a randomly choosen individual Xi,G to a 

job permutation       by LOV rule and s0 =  Gi, Gi,

Randomly select u and v where u   v; 

s = insert(   , u, v).outloop=0.



0s

Randomly select u and v where u   v;   

s1 = insert(s , u, v).



f(s1)   f(s)

loop=loop+1

s=s1  

f(s)   f(    ) Gi,

loop   n*(n-1)

=sGi,

Outloop=outloop+1

YES

NO

NO

YES

YES

NO

Set outloop=1

Outloop    

0.1*population size


Output the individuals

NO

YES

 

Figure 3.4 Flowchart of the insert-based neighborhood search 
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     This local search method is simple but efficient one because of the following two 

reasons. First, in step two, u and v performing insert based neighborhood search are 

randomly chosen and the new solution is always accepted, so the local search can 

avoid cycling and overcome local optimum. Second, in step three, two positions u 

and v performing insert based neighborhood search are randomly chosen, and the 

new solution is accepted only if it dominates the old one. Such a local search can 

guide the population to reach the regions nearby bottoms of different big-valleys in a 

comparatively short time. So, insert based neighborhood search can spend more time 

to perform a thorough search in these promising regions. Flowchart of the insert-

based neighborhood search is given in Figure 3.4. This search process is repeated 

0.1*population size (NP) times. 

 

3.5.2 Variable Neighborhood Search for Single Machine Scheduling Problems 

 

     Variable Neighborhood Search (VNS) is a modern metaheuristic that proposes 

systematic changes of the neighborhood structure within a search to solve 

optimization problems. VNS that is proposed by Mladenovic and Hansen (1997), has 

quickly gained a widespread success, and a large number of successful applications 

have been reported such as for the „p-median‟ problem (Garcia-Lopez et al., 2002), 

the multi-depot routing problem (Polacek et al., 2004), TSP problem (Hansen & 

Mladenovic, 1997) and several other classical problems (Hansen & Mladenovic, 

1999, 2003, 2002). This method differs from the most local search heuristics because 

it uses two or more neighborhoods instead of one in its structure. In particular, it is 

based on the principle of systematic change of neighborhood during the search. 

 

     The VNS search inside the DE algorithm is directly applied to the permutations 

 Gi ,  of the randomly chosen individuals in the population at each generation G. The 

search in this study is based on the insert + interchange variant of the VNS method 

presented in Mladenovic and Hansen (1997). For the SMSDST problem, the 

following two neighborhood structures are employed: 
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 interchange two jobs between the u th  and v th  dimensions, n   v (interchange) 

an example can be seen in Figure 3.5; 

 remove the job at the u th  dimension and insert it in the v th  dimension u   v 

(insert) an example can be seen in Figure 3.3. 

 

 

Figure 3.5 An example of interchange neighborhood search. 

 

     In this search method, u and v are random integer numbers between 1 and u. For 

convenience, s = insert(s 0 , u, v) means removing the job from the u th  dimension in 

the permutation s 0  and inserting it in the v th dimension in the permutation s 0 , thus 

resulting in permutation s. Insert based neighborhood structure is explained in 

section 3.5.1 .  

 

     Inside the VNS procedure, we first begin with choosing an individual randomly. 

After individual is selected, then we apply insertion procedure to job permutation of 

the related vector and accept this solution whether it improves the objective function 

of the individual or not. If it improves the objective function value, this vector 

replaces the old vector and again insertion procedure is applied, otherwise we apply 

interchange procedure to the job permutation. This job permutation is again 

compared with the objective function value of the randomly chosen individual and if 

objective function is improved, it replaces the randomly chosen individual. If it is not 

improved then the iteration end and a new iteration begins (Tasgetiren et. al. 2006a). 
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Pseudo code of the algorithm is given below which is proposed by Mladenovic and 

Hansen (1997). 

 

Do{ 

Step1: Convert a randomly chosen individual      to a job permutation      by LOV 

rule; 

Step2: outloop = 0 and    =     ; 

Do { 

Step3:    Randomly select u and v where u ≠ v; s = insert(  , u, v); 

Step4:    Set inloop = 0;  

   count = 0, maxmethod = 2; 

   Do { 

        u = random (1, n) and v = random (1, n);  

        If count = 0 then   = insert(s, u, v) 

        If count = 1 then   = interchange(s, u, v) 

Step5: If (f (  )   f (s)) then count = 0 and s =    else                                   

count = count+1; 

Step6:   } while (count < maxmethod) 

  inloop = inloop+1; 

Step7:  while} (inloop < n * (n – 1 )) 

 outloop = outloop+1; 

Step8: If (f (s) ≤ f (    )) then     = s, repair (    ); 

Step9: while}( outloop < 0.1*popsize) 
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Convert a randomly choosen individual       to 

a job permutation       by LOV rule      =     
GiX ,

Gi, 0s Gi,

Randomly select u and v where u   v; 

s = insert(s0, u, v). count=0, maxmethod=2, 

inloop=0.



Set outloop=0.

u = random(1,n) and 

v = random(1,n); 

count=0?

count=1?

inloop=inloop+1

inloop<n*(n-1)

  =insert(s, u, v)1s

  =interchange(s, u, v)1s

f(  )   f(s)1s 

count=count+1
count=0, s=s1 

count=0

NO

NO

YES

YES

YES

NO

NO

f(s)   f(    ) Gi, =sGi,

outloop=outloop+1

YES

YES

NO

outloop<0.1*population 

size

NO

Output the 

individuals.

YES

Figure 3.6 Flowchart of the proposed VNS local search method 
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     After the whole local search procedure is completed, X Gi ,  should be repaired 

because its corresponding job permutation should match the permutation resulted by 

the local searches. Due to easy mechanism of LOV rule and insert-based 

neighborhood search, the repair process is very simple and can be described as 

follows: 

 

Step 1: Calculate the sequence  i  by the following formula: 


iGij ,,,  = j. 

Step 2: Values in X Gi ,   are rearranged to keep consistent with i . 

 

     An example of the repairing procedure is shown in Figures 3.7- 3.9. In Figure 3.7, 

job permutations according to initial vectors are given. After search procedure is 

completed, you can see in Figure 3.8 that the LOV rule is violated because the new 

job permutation Gi ,  does not match the old individual X Gi , , where  Gi ,,2  = 5 and 

Gi ,,8  = 9 are interchanged. Thus, X Gi ,  and  i  should be repaired. The trial vector is 

repaired with interchanging the fifth and ninth parameter in trial vector and the initial 

vector is repaired in the same way as the trial vector. The resulting vector can be seen 

in Figure 3.9.  

 

 

Figure 3.7 Solution before local search 

 

 

Figure 3.8 Solution by local search (before repairing) 
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Figure 3.9 Solution by local search (after repairing) 

 

3.6 Hybrid Differential Evolution Algorithm  

 

     In this study, a pure DE algorithm is first applied to the SMSDST problem and 

then tested with well-known test problems. The performance of the pure DE is not on 

the level we wanted and we should improve its performance and the solution quality. 

Here, two effective local search methods mentioned in the previous sections are 

hybridized with the DE algorithm. This hybridization has been effective for the 

SMSDST problem for different performance criteria such as makespan, tardiness, 

due date, weighted tardiness, etc. 

 

     Both of the two local search methods are integrated inside the DE algorithm just 

after the selection procedure. After selection procedure is applied to the individuals, 

the local search is applied to 10% of the randomly selected individuals of the 

population. Figure 3.10 illustrates the developed hybrid DE algorithm for SMSDST 

problem. 

 

3.7 Setting Control Parameters 

 

     The convergence of the DE algorithm is affected by a number of parameters. 

These parameters include the population size, mutation factor, crossover factor and 

variant schema used in the DE algorithm. Proper selection of these parameters is 

required to get accurate results within fewer function evaluations. For hard global 

optimization problems, improper values of these parameters may never give good 

results. If the DE algorithm is not giving consistent results every time for any 

objective function that means some of these parameter‟s values are not chosen 

properly.  
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iteration=0.

Initialization, set NP (population size), F (mutation factor), 

CR (crossover factor), lower bound and upper bound.

Generate NP individuals randomly .

Apply the LOV rule to find the permutations of individials.

Evaluate each individual       in

the population.

Mutant population generation Vi,G, for each individual in 

the population generate a mutant individual.

Generate trial population Ui,G, for each mutant individual 

generate a trial individual.

Find permutation, apply the LOV rule to find 

permutations of all individuals. 

Evaluate each individual in the population.

iteration=iteration+1.

Selection, f(      )    f(      )

GiX ,

GiU , GiX ,

iteration>maxiteration

Output the fittest individual.

Replace current individual with the 

trial individual Xi,G = Ui,G 

NO

YES

YES

NO

Apply selected local search method to randomly chosen 

%10 of the population.

 

Figure 3.10 Flowchart of the hybrid DE algorithm for the SMSDST problem 
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Population Size (NP) 

 

     The population size should not be very small or very large. If the population size 

is small, it will converge to point other than global optimum design point because the 

small population loses diversity very fast. If the population size is very large, it 

requires more function evaluations for convergence.  

 

Mutation Factor (F) 

 

     If we take the value of mutation factor very high (one or greater than one), it will 

take more iterations to converge since the rate of contraction of the region becomes 

too small. Also, due to high value of mutation factor, recombination generates 

vectors that are distributed in the region of nearly the same size as the previous 

generation. So, the probability of getting good solution by recombination becomes 

low. Whatever convergence we get, it is generally due to crossover. So, for high 

value of mutation factor, probability of getting good solution reduces. If we chose 

value of mutation factor small then convergence is faster and the number of iterations 

required less but in this case, there are more chances to converge to the local 

minimum point. So, we have to choose the value of mutation factor according to 

function. If the function has a number of local minima with the value near to the 

global minimum then we have to choose the mutation factor near to one. But, if we 

do not have any idea about the solution space then we have to make an initial study 

for setting correct parameter combination in the algorithm.  

 

Crossover Factor (CR) 

 

     Crossover factor affects the number of variables to be changed in the design 

vector compared to the previous generation member. As the value of CR gets high, 

more variables are taken from the mutant vector. If we take the value of the 

crossover factor “0” then new generation remains same as the previous generation 

and there is no improvement in the result and no convergence. If we take the 

crossover factor “1” then all variables in the trial vector are taken from the mutant 



62 

 

 

vector, this means there is no shuffling of components between the previous 

generation member and the new parameter vector for producing next generation 

member. This would decrease the population diversity. Therefore, a number between 

“1” and “0” seems to be a good idea but by making a parameter optimization we can 

be sure about this number. 

 

Number of Design Variables (n) 

 

     The number of design variables in the objective function affects the speed of the 

convergence. Objective function with more design variables takes longer to 

convergence because of the increase in the search region.  

 

Bounds of Design Variables (X LB  and X UB )  

 

     Upper and lower bounds of design variables affect the convergence of the DE 

algorithm. With increase in the difference between upper and lower bounds of the 

design variable, search region for finding optimum solution increases. This will 

increase the number of function evaluations for finding out the optimum solution. 

The optimum solution is sometimes located near to boundary, so in this case if we 

increase the upper bound or decrease the lower bound then it may be helpful in 

finding the optimum solution with less number of iterations and function evaluations. 

It is also sometimes possible to explore more topology by increasing the upper bound 

or decreasing the lower bound we explore more topology of objective function. That 

might be helpful in finding out the optimum solution with less number of function 

evaluations.  

 

     The parameters affecting the convergence of the DE algorithm in this study are 

assumed to be dependent on the values of four control parameters: the population 

size (NP), the crossover factor (CR [0, 1]), the mutation scale factor (F (0, 2)) 

and variants used (DE/rand/1/bin, DE/rand/2/bin etc.).  
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     In order to determine the correct settings of these parameters for the solution of 

SMSDST problem, we set the mutation-scale factor F to a fixed value within the 

range F   {0.3, 0.5, 0.7, 0.9, )*2/()2( NPCR (Zaharie, 2007)}, and 

experimented with various crossover rates CR   {0.1, 0.3, 0.5, 0.7, 0.9}, different 

population sizes NP   {5 +  n , 2* n, 200} (n = number of the jobs to be 

scheduled) and different variants {DE/rand/1/bin, DE/rand/2/bin, DE/best/1/bin, 

DE/best/2/bin and DE/randtobest/bin}. For selecting the best parameter combination, 

the pure DE algorithm is run for mutation factor values (5), crossover factor values 

(5), population size values (3), variants of the DE algorithm (5) times number of 

problem sets used values (2) and the number of runs for each parameter values(10), 

which is equal to (5x5x3x5x2x10=7500) 7500 times. All of the methods are coded 

and run in MATLAB. 

 

     The influence of the various combinations of settings of the control parameters on 

the performance of the DE algorithm in regard to %offset are observed in this study. 

Equation (3.10) below shows how the value of %offset is calculated. 

 

%offset = ((Cost
DE

- Cost*) / Cost*) x 100     (3.10) 

 

     Here, Cost
DE

 is the average of the costs of the schedule achieved by the DE 

algorithm for each control parameter combination at the end of test runs. Cost* is the 

corresponding cost of the existing best known solution for the specific test problem 

obtained. 

 

     The results displayed concern the application of the DE algorithm on the 29-job 

and 70-job SMSDST test problems. Pure version (without local search procedure) of 

DE was run 10 times per each test problem (starting each time from a different 

random number seed) and the best results obtained after each run were averaged. So, 

here we get average of ten runs for each control parameter combination on each test 

problem. However, to compare each parameter combination, we should find a 

general average %offset value for the two test problems. 
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     An example of computing average of two %offset values while NP is 200 and 

DE/rand/1/bin variant is used, is given Table 3.5. On the left side of the table, 

average and %offset values according to each parameter combination of 29-job test 

problem are given. On the right side of the table, the same values according to 70 

jobs test problem are given. The average value column for each test problem 

corresponds to average value of the ten runs we get for that parameter combination. 

The average of two %offset values is computed because we are not only concerned 

with the best parameter combination for small sized problems but also for big sized 

problems. If parameter combination for small sized problems is used for big sized 

problems, then it is not guaranteed that this combination will give good results and 

vice versa. But if parameter combination of average %offset value is taken into 

account then we will get a combination for not only the small sizes but also for big 

sized problems.  

     

Table 3.5 Computation of average %offset values. 
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     Figures 3.11 to 3.15, demonstrate the influence of the various DE algorithm 

combinations of F and CR control parameters for NP=200 and different schemas on 

the performance of the DE algorithm in regard to average %offset.  

 

     According to these figures, each curve corresponds to a different value of F and 

demonstrates the variation of %offset in regard to the various crossover rates CR (X-

axis). The best objective function values obtained by the algorithm are traced as data 

labels on the lowest curve of each chart. 

 

 

Figure 3.11 Influence of the control parameters on the performance of the DE algorithm in   

regard to %offset from optimum for the DE/rand/1/ bin schema 
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Figure 3.12 Influence of the control parameters on the performance of the DE algorithm in 

regard to %offset from optimum for the DE/rand/bin/2/schema 

 

 

Figure 3.13 Influence of the control parameters on the performance of the DE algorithm in 

regard to %offset from optimum for the DE/best/1/bin schema 
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Figure 3.14 Influence of the control parameters on the performance of the DE algorithm in 

regard to %offset from optimum for the DE/best/2/bin schema 

 

 

Figure 3.15 Influence of the control parameters on the performance of the DE algorithm in 

regard to %offset from optimum for the DE/randtobest/bin schema 
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     As you can see from the figures above, the best objective function values obtained 

by the algorithm in each variant does not have same values of F. For example, in 

Figure 3.11, best objective function value is obtained by the algorithm while F is F 

by rule with a %offset value of 4.71%. But on the other hand this is not the same for 

other variants.  For example, in Figure 3.13, the best objective function value is 

obtained by the algorithm while F is 0.9 with a %offset value of 11.74%. 

 

     As discussed above, choosing the best parameter combination is concerned with 

obtaining the lowest %offset value. From the definition, the lowest value obtained 

according to the figures above is 2.49%. Best parameter combination obtained with 

this parameter optimization study is as follows: schema: DE/rand/2/bin, NP: 200, F: 

0.3 and CR: 0.9 with a best %offset value 2.49%.  

 

3.8 Computational Study 

 

     A popular way to investigate the performance of mathematical formulations and 

heuristics is through the computational study. In general terms, there are two 

opinions on the kind of instances to be used in testing models: random generation, 

and standard libraries. In our experimentation, only test problems (benchmark 

problems) from the literature are used. 

 

     If all the jobs have the same weight, zero release time and the objective is to 

minimize the makespan, then the problem reduces to TSP. For this reason, the data 

sets created for TSP problems can also be used for the SMSDST problem. The     

well-known TSP benchmark library, TSPLIB, has the best test data sets for our 

problem. These data sets both include symmetric and mostly asymmetric ones. 

 

     For the selected 69 test problems, we do not have to compute lower bounds 

because the optimum solutions of the test problems are all known. The size of the 

problem varies from 10 jobs to 175 jobs. All of the problems are run 10 times (each 

starting from different random number seed) and the average values of these ten runs 

are represented in the results table next section.  
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     In previous sections of this chapter, we discussed how we applied the DE 

algorithm to SMSDST problem and how we used local search methods to improve 

the performance of the DE algorithm. In this section, results of the test problems 

according to three different proposed solution approaches respectively, the pure DE 

algorithm, the DE algorithm plus insertion and the DE algorithm plus VNS search 

will be represented.  

 

     The performance of the proposed three algorithms are quantified mainly by four 

indices: (a) the average offset from optimal in %, (b) the average solution effort in %, 

(c) the minimum of the ten test runs and (d) the standard deviation of the ten test 

runs. To get the average performance of the algorithm, the results of the 10 runs 

(starting each time from a different random number seed) on each problem instance 

are averaged. 

 

     According to %offset (3.10), Cost
DE

 is the average makespan value of the 

schedule achieved by the DE algorithm for a specific test problem at the end of 10 

test runs. Cost* is the corresponding cost of the existing best known solution for the 

specific test problem. Since the optimum solutions for the test problems are known , 

the Cost* values correspond to known optimum solutions.   

 

     Another performance measure in this study is %effort for which the formulation is 

given below. 

 

%effort = 100*










TI

Iopt
                              (3.11) 

 

     According to formulation (3.11) above, I opt  
is the iteration number at which the 

algorithm achieved its best solution for a specific test problem, and TI is the total 

number of iterations the algorithm is run. For all the test problems in this study, 

maximum number of iterations is set to 500 * n. This means, iteration number is 500 

times the number of jobs and iteration number increases as the number of jobs 

increases.  
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     Another performance measure used in this study is the minimum objective 

function value among ten runs made for each test problem. 

 

min = minimum (Cost 1,DE , Cost 2,DE , …, Cost RDE , )    (3.12) 

 

     According to the formulation (3.12) above Cost kDE ,  is the cost of the schedule 

achieved by the DE algorithm for a specific test problem at the end of each run k. R 

(number of runs) is taken as 10 for this study since the DE algorithm is run for 10 

times.  

 

     Another performance measure is the standard deviation of the runs made for each 

test problem.  

 

  = 





R

k

kDE aCost
R 1

2

, )(
1

1
      (3.13) 

 

     According to formulation (3.13), R is taken as 10, Cost kDE ,  has the same 

description given above and is the average value of ten runs made for each test 

problem.  

 

     Last performance measure is the mean of runs made for each test problem. 
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

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

 

R

CostCostCost RDEDEDE ,2,1, ...
    (3.14) 
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Table 3.6 Computation results of benchmark test instances. 

         DE         DE+VNS       DE+insertion 

Prob No Prob OPT* mean S.D. min offset effort mean S.D. min offset effort mean S.D. min offset effort 

1 10a 21 21 0 21 0.00% 0.60% 21 0 21 0.00% 0.08% 21 0 21 0.00% 0.04% 

2 10b 211 211 0 211 0.00% 1.04% 211 0 211 0.00% 0.08% 211 0 2111 0.00% 0.04% 

3 atex1 1812 1812 0 1812 0.00% 1.44% 1812 0 1812 0.00% 0.10% 1812 0 1812 0.00% 0.04% 

4 br17 39 39 0 39 0.00% 0.48% 39 0 39 0.00% 0.04% 39 0 39 0.00% 0.02% 

5 gr17 2085 2085 0 2085 0.00% 1.54% 2085 0 2085 0.00% 0.04% 2085 0 2085 0.00% 0.05% 

6 20a 34 53.3 5.75 43 56.76% 99.54% 34.9 0.5 34 2.65% 55.16% 34.7 0.5 34 2.06% 1.95% 

7 20b 36 47.3 4.98 39 31.39% 26.20% 36.1 0.3 36 0.28% 28.58% 36.1 0.3 36 0.28% 2.81% 

8 20c 58 92.2 8 76 58.97% 91.87% 59 1.73 58 1.72% 31.14% 58 0 58 0.00% 2.73% 

9 gr21 2707 2707 0 2707 0.00% 1.71% 2707 0 2707 0.00% 0.03% 2707 0 2707 0.00% 0.04% 

10 gr24 1272 1284.4 10.9 1272 0.97% 3.29% 1272 0 1272 0.00% 0.28% 1272 0 1272 0.00% 0.04% 

11 25a 400 628.3 16.1 608 57.08% 74.66% 407.7 4.1 402 1.93% 69.26% 400.8 0.8 400 0.20% 11.40% 

12 25b 402 686.7 28.9 647 70.82% 44.33% 413.9 6.4 404 2.96% 79.95% 402.3 0.7 402 0.07% 3.70% 

13 fri26 937 946.5 10.4 937 1.01% 2.61% 937 0 937 0.00% 0.39% 937 0 937 0.00% 0.27% 

14 bayg29 1610 1619.6 11.1 1610 0.60% 3.80% 1610 0 1610 0.00% 0.38% 1610 0 1610 0.00% 0.48% 

15 bays29 2020 2024.8 2.4 2020 0.24% 4.11% 2020 0 2020 0.00% 1.11% 2020 0 2020 0.00% 0.26% 

16 atex3 2952 3002 113 2956 1.69% 34.80% 2955 2 2952 0.10% 49.77% 2952 0 2952 0.00% 4.59% 

17 ftv33 1286 1396.1 16.8 1373 8.56% 6.21% 1287.2 3.6 1286 0.09% 8.52% 1286 0 1286 0.00% 1.69% 

18 ftv35 1473 1594.8 21.7 1560 8.27% 8.96% 1473.6 0.9 1473 0.04% 25.75% 1473.8 1.9 1473 0.05% 3.93% 

19 ftv38 1530 1645.3 30.2 1609 7.54% 4.45% 1530.8 1.8 1530 0.05% 31.39% 1530.5 0.9 1530 0.03% 8.49% 

20 Dant42 699 772.7 21.6 748 10.54% 9.04% 699 0 699 0.00% 10.45% 699 0 699 0.00% 2.00% 

21 Swi42 1273 1361.8 37 1337 6.98% 7.51% 1273 0 1273 0.00% 2.69% 1273 0 1273 0.00% 2.69% 

22 p43 2810 2816.2 4.3 2814 0.22% 4.42% 2812.5 1.96 2811 0.09% 19.54% 2812.4 0.8 2812 0.09% 1.12% 

23 ftv44 1613 1753 29 1719 8.68% 6.88% 1617 3 1613 0.25% 68.85% 1630 15 1623 1.05% 7.70% 

24 ftv47 1776 1928 57 1865 8.56% 9.06% 1783 5 1776 0.39% 65.49% 1778 1 1776 0.11% 32.50% 

25 gr48 5046 5171.9 98.5 5078 2.50% 4.16% 5046.3 0.9 5046 0.01% 2.99% 5046 0 5046 0.00% 3.82% 

26 atex4 3218 3734 163 3476 16.03% 12.37% 3354 32 3308 4.23% 33.76% 3355 39 3300 4.26% 35.85% 

27 ry48p 14422 15829.5 226.7 15358 9.76% 8.06% 14543.3 35.5 14488 0.84% 57.59% 14571 37 14496 1.03% 11.38% 

28 eil51 426 445 5 436 4.46% 11.78% 427 1 426 0.23% 21.88% 428 1 427 0.47% 0.72% 

29 brln52 7542 8386 227 8115 11.19% 8.60% 7542 0 7542 0.00% 7.15% 7542 0 7542 0.00% 8.07% 

30 ft53 6905 7954.8 171.5 7746 15.20% 11.72% 7101.1 50.3 6972 2.84% 35.10% 7195 45 6985 4.20% 23.36% 

31 ftv55 1608 1867.5 47.9 1784 16.14% 11.08% 1656 21.1 1619 2.99% 78.00% 1649 19.8 1612 2.55% 17.27% 

32 Bra58 25395 28365 1111 27281 11.70% 11.94% 25431 41.7 25395 0.14% 44.73% 25578 45.6 25410 0.72% 19.01% 

33 ftv64 1839 2138.5 69.8 2041 16.29% 7.27% 1892 12.2 1878 2.88% 83.66% 1938 15 1896 5.38% 8.59% 

34 ft70 38673 40504 197 40224 4.73% 47.36% 39374 23 39350 1.81% 56.88% 39938 42 39860 3.27% 28.33% 

35 st70 675 736 32 701 9.04% 3.98% 683 4 678 1.19% 37.77% 686 3 681 1.63% 12.06% 

*OPT = optimum solution values. 
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 Table 3.6 Computation results of benchmark test instances (cont).

         DE         DE+VNS       DE+insertion 
Prob No Prob OPT* mean S.D. min offset effort mean S.D. min offset effort mean S.D. min offset effort 

36 ftv70 1950 2245 47 2191 15.13% 10.32% 2072 15 2053 6.26% 30.69% 2109 85 1997 8.15% 18.49% 

37 pr76 108159 119137 4788 111135 10.15% 7.50% 108722 244 1E+05 0.52% 15.66% 109817 919 1E+05 1.53% 20.82% 

38 eil76 538 588 9 569 9.29% 6.59% 554 3 550 2.97% 12.43% 558 1 556 3.72% 4.41% 

39 ftv90 1575 2035 99 1921 29.21% 8.16% 1879 17 1859 19.30% 32.23% 1924 29 1894 22.16% 9.45% 

40 rat99 1211 1394 11 1373 15.11% 4.09% 1299 5 1288 7.27% 25.09% 1339 31 1302 10.57% 4.18% 

41 rd100 7910 8552 258 8267 8.12% 12.27% 8157 39 8112 3.12% 20.01% 8254 57 8191 4.35% 10.12% 

42 kro100 36230 40431 983 38568 11.60% 4.65% 38538 258 38259 6.37% 34.97% 39015 426 38614 7.69% 19.96% 

43 krA100 21282 24711 770 23582 16.11% 4.65% 21880 273 21581 2.81% 17.36% 22619 50 22559 6.28% 5.76% 

44 krB100 22141 25682 715 24717 15.99% 5.29% 23459 57 23394 5.95% 14.93% 24538 421 24099 10.83% 3.29% 

45 krC100 20749 24900 488 24276 20.01% 5.76% 22015 51 21955 6.10% 8.25% 23191 270 22834 11.77% 1.63% 

46 krD100 21294 24260 657 23473 13.93% 5.57% 22855 82 22711 7.33% 10.16% 23723 309 23334 11.41% 5.38% 

47 krE100 22068 26144 986 24880 18.47% 3.88% 23719 56 23633 7.48% 4.86% 25153 994 24059 13.98% 3.25% 

48 ftv100 1788 2283 75 2175 27.68% 6.03% 2051 13 2033 14.71% 7.07% 2179 8 2164 21.87% 2.39% 

49 eil101 629 703 32 678 11.76% 7.40% 670 5 663 6.52% 7.52% 674 21 650 7.15% 0.83% 

50 lin105 14375 17379 347 16855 20.90% 4.24% 15691 3 15684 9.15% 4.27% 16374 35 16329 13.91% 1.29% 

51 pr107 44303 48264 2675 44728 8.94% 3.56% 44742 44 44657 0.99% 22.59% 47407 179 47214 7.01% 1.77% 

52 ftv110 1558 2309 118 2181 48.20% 12.05% 2006 22 1976 28.75% 15.48% 2162 117 2135 38.77% 6.57% 

53 dc112 11105 11389 44 11338 2.56% 7.91% 11171 5 11163 0.59% 4.14% 11189 24 11211 0.76% 0.19% 

54 gr120 6942 7628 134 7409 9.88% 4.75% 7254 28 7215 4.49% 33.82% 7325 31 7271 5.52% 12.09% 

55 ftv120 2166 2727 71 2624 25.90% 7.75% 2554 16 2531 17.91% 14.96% 2677 101 2560 23.59% 2.72% 

56 pr124 59030 73121 4300 66455 23.87% 3.75% 63848 837 62946 8.16% 3.86% 67270 1204 65959 13.96% 1.81% 

57 dc126 123235 125043 374 124369 1.47% 12.35% 124479 292 1E+05 1.01% 4.88% 124980 426 1E+05 1.42% 2.36% 

58 bie127 118282 140077 4725 132322 18.43% 11.57% 131280 779 1E+05 10.99% 3.93% 132546 951 1E+05 12.06% 1.73% 

59 ftv130 2307 3156 72 3080 36.80% 12.89% 2834 4 2827 22.84% 4.14% 3060 7 3049 32.64% 1.51% 

60 pr136 96772 110880 5449 106420 14.58% 4.46% 105191 117 1E+05 8.70% 8.72% 107672 1662 1E+05 11.26% 1.46% 

61 ftv140 2420 3435 74 3364 41.94% 6.36% 3185 7 3177 31.61% 6.14% 3347 28 3319 38.31% 2.36% 

62 pr144 58537 75416 3049 73238 28.83% 6.80% 72380 917 71337 23.65% 5.45% 74699 1003 73506 27.61% 2.04% 

63 krA150 26524 32981 1157 31948 24.34% 4.92% 30577 276 30276 15.28% 2.43% 32152 593 31529 21.22% 1.29% 

64 krB150 26130 31854 1018 31087 21.91% 10.87% 29940 407 29533 14.58% 2.34% 30805 411 30340 17.89% 2.27% 

65 ftv150 2611 3661 108 3521 40.21% 8.80% 3216 5 3211 23.17% 4.81% 3328 31 3290 27.46% 2.33% 

66 pr152 73682 93414 6017 84929 26.78% 4.81% 79750 644 79106 8.24% 8.81% 86122 1287 84213 16.88% 2.40% 

67 u159 42080 50763 1949 48009 20.63% 3.47% 46848 1052 45796 11.33% 6.07% 49061 214 48834 16.59% 1.81% 

68 ftv160 2683 3779 209 3546 40.85% 10.29% 3570 76 3794 33.06% 7.19% 3652 17 3627 36.12% 3.03% 

69 si170 21407 22830 426 22251 6.65% 7.86% 22018 156 21817 2.85% 30.74% 22315 124 22009 4.24% 19.91% 
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     Table 3.6 give the computational results according to the specified performance 

criteria for the three proposed approaches which are respectively, the DE algorithm, 

the DE algorithm with VNS search and the DE algorithm with insertion search. 

     

      When we look at the %offset columns of Table 3.6, you can see that the pure DE 

algorithm has always the highest %offset value. It is now proven that the pure DE 

algorithm has the worst performance among the proposed approaches. Furthermore, 

when %offset values of the proposed hybrid methods are compared with each other, 

it is obvious from Table 3.6 that until problem no.26(atex4), the DE algorithm with 

insertion local search has equal or better results than the DE algorithm with VNS 

local search in 26 out of 69 test problems. For example, let us look at the problem 

no.12. For this test problem, pure DE has 70.82% offset value, DE with VNS has 

2.96% offset value and DE with insertion has 0.07% offset value. However, after 

problem no.26, it is obvious that the DE algorithm with VNS local search method 

has lowest %offset values among all proposed three approaches. For example, for 

problem no.56, pure DE has 23.87% offset value, DE with VNS has 8.16% offset 

value and DE with insertion has 13.96% offset value.  

 

     From the examples above, for small sized problems, hybridizing the DE algorithm 

with insert based local search procedure gives us the best %offset values. However, 

for big sized problems hybridizing the DE algorithm with VNS local search gives us 

the best %offset values. This consequence can also be confirmed from the figures 

below. According to Figures 3.16 through 3.20, %offset values of the proposed 

methods for each test problem are compared with each other. In these figures, each 

column corresponds to %offset value of each method.  

 



74 

 

 

 

Figure 3.16 Comparison of three proposed methods for problem instances 1 to 15 with job numbers 

between 10 and 30 

 

Figure 3.17 Comparison of three proposed methods for problem instances 16 to 30 with job 

numbers between 30 and 54 

 

Figure 3.18 Comparison of three proposed methods for problem instances 31 to 45 with job 

numbers between 56 and 100 
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Figure 3.19 Comparison of three proposed methods for problem instance 46 to 60 with job number 

between 100 and 137 

 

Figure 3.20 Comparison of three proposed methods for problem instance 60 to 69 with job number 

between 140 and 170 

 

     Figure 3.21, 3.22 and 3.23, show us that as the number of jobs increases, 

deviation from optimum solution increases. But surprisingly in Figure 3.21, from 

problem 20a to 25c, deviation from optimum is higher than all other test problems. 

This is because the pure DE algorithm cannot tackle local optimum points and these 

problems have local optimums that are far from global optimum. But as we look at 

Figure 3.22 and Figure 3.23, hybrid methods easily overcome local optimum points 

in each test problem and they outperform the pure DE algorithm.  
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Figure 3.21 %offset values of each test problem for the pure DE algorithm 
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Figure 3.22 %offset values of each test problem for the DE algorithm with VNS local search 
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Figure 3.23 %offset values of each test problem for the DE algorithm with insert based local search 
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     Table 3.7 shows us the average %offset and %effort values for the three methods 

obtained from 69 test problems. These are nearly the same results as in Table 3.6. In 

most of the test problems solved, the DE algorithm with VNS local search 

outperformed other two proposed methods. 

 

Table 3.7 Corresponding average %offset, %effort value and standard deviation value 

 

 

     However, from the average %effort point of view, the DE algorithm with VNS 

local search has a 20.94% effort value, whereas the pure DE and the DE algorithm 

with insertion have 12.01% and 6.35% effort values respectively. This means, for DE 

with VNS local search, more iteration are made for the test problems than the other 

methods. Furthermore, for average of these 69 test problems, the DE algorithm with 

insert based local search outperformed other two proposed methods and have 6.35% 

effort value and surprisingly the pure DE algorithm have less average %effort value 

than DE with VNS search. 

 

     Another performance measure given in Table 3.7 is the average standard 

deviation value. This value can give us an opinion about how close our results will 

be when we run the proposed methods. The results obtained from each run should be 

close to each as much as possible because distinct results can be too far from global 

optimum point and accuracy of the algorithm decreases as standard deviation value 

increases. Here, a trade off should be made because DE with VNS local search gives 

highest quality results, however it takes more iterations to reach through results than 

the other methods. On the other hand, it is the most accurate method and has only 

102.29 average standard deviation value while the other methods have 652.36 and 

178.77 average standard deviation values respectively.   

 

     Table 3.8 gives us a different point for comparison. Here, min. value is the 

minimum result taken among all the runs for a proposed method. The %offset 
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performance measure this time assumes Cost
DE

  as the minimum value obtained 

among ten runs instead of average value for each problem instance.  

 

Table 3.8 Computational results according to computational times 
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Table 3.8 Computational results according to computational times (cont.) 

 

 

     In Table 3.8, there are two new performance measures, time and ratio 

respectively. Here, the time performance measure is the computational time in 

seconds among the runs for which we get the minimum solution value. For example 

in the Table 3.9, the first row corresponds to run number, the second row 

corresponds to related makespan value in that run and the last row is the 

computational time in seconds for that run. Furthermore, time performance measure 

according to this example is 64 seconds with lowest makespan value 110.  

 

Table 3.9 An example for ten test runs for a test problem. 

Run 1 2 3 4 5 6 7 8 9 10 

Makespan 124 118 121 136 112 122 128 142 110 138 

Time 35 24 45 41 40 22 26 87 64 51 
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     The formulation of the ratio performance measure according to time constraint is 

given below. 

 

ratio = 
),,min( insertionDEVNSDEDE

t

timetimetime

time



    (3.15) 

 

     From the formulation given above, it is obvious that when ratio is “1” then this is 

the smallest among all proposed methods, and it gets higher proportional to the other 

methods. 

 

     Figure 3.24 gives a comparison of the proposed methods according to %offset 

percentages of minimum values. According to the figure, it can be seen that %offset 

values of the pure DE algorithm is far higher than the other methods for small sized 

problems. However, as the problem size increases, the pure DE algorithm also begins 

to give nearly same performance as other methods do. On the other hand, the DE 

algorithm with VNS local search gives the best (lowest) %offset values among all 

methods.  

 

     From the Figure 3.25, a comparison according to ratios of computational times is 

given. According to this figure, it is very obvious that the pure DE algorithm always 

has minimum computational time values among the proposed methods. Hence, a 

trade-off or a choice should be done according to speed or accuracy of the chosen 

method. If we choose the hybrid DE algorithm with VNS local search, we can get 

more quality results but relatively in longer computation times. But if we choose the 

pure DE algorithm, we cannot get very quality results although short computation 

times. On the other hand, if we choose the hybrid DE algorithm with insert based 

local search, we can get nearly accurate results with small S.D. value but it is again 

very slow. 
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Figure 3.24 Comparison of %offset of minimum values.  

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

1
0
a

a
te

x
1

g
r1

7

2
0
b

g
r2

1

2
5
a

fr
i2

6

b
a
y
s
2
9

ft
v
3
3

ft
v
3
8

S
w

i4
2

ft
v
4
4

g
r4

8

ry
4
8
p

b
rl
n
5
2

ft
v
5
5

ft
v
6
4

s
t7

0

p
r7

6

ft
v
9
0

rd
1
0
0

k
rA

1
0
0

k
rC

1
0
0

k
rE

1
0
0

e
il1

0
1

p
r1

0
7

d
c
1
1
2

ft
v
1
2
0

d
c
1
2
6

ft
v
1
3
0

ft
v
1
4
0

k
rA

1
5
0

ft
v
1
5
0

u
1
5
9

s
i1

7
0

DE DE+VNS DE+insertion



 

 

8
4
 

 

 

Figure 3.25 Comparison of ratios of each test problem
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3.9 An Example of the Differential Evolution Algorithm for the Single Machine 

Scheduling Problem 

 

     This section of the study gives an example of application of the DE algorithm to 

SMSDST problem. Before beginning to solve the problem, we should set the control 

parameters NP, F, CR, XUB and X LB . The parameters are given in Table 3.10. After 

parameters are set, we should generate an initial population according to equation (2.7). 

 

Table 3.10 Parameters setting 

Control Parameters of DE 

Decision Variables D 10 

Population Size NP 5 

Scaling Mutation Factor F 0.3 

Crossover Rate Constant CR 0.9 

Upper Bound  XUB  0 

Lower Bound X LB  4 

        

Table 3.11 Randomly generated initial population 

 

 

     After the initial population of the DE algorithm is generated, we should convert these 

continuous values to discrete values. To accomplish this, we use LOV rule. An example 

of this method on individual one is given in Table 3.12.   
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Table 3.12 Computation of job permutations according to LOV rule 

 

 

     All of the individuals have now been converted to discrete permutations. The 

permutation population can be seen in Table 3.13.  

 

Table 3.13 Job permutations of initial population 

 

 

     Now, we should compute the objective function value of individuals using the setup 

time matrix given in Table 3.14. 

 

Table 3.14 Setup time matrix 
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     For individual 1, objective function computation example is given in Figure 3.26 

below. 

 

 

 Figure 3.26 Computation of objective function of individual 1  

 

     The objective function values of individuals are follows. 

 

Table 3.15 Computed objective function values 

 

 

     After all computations done, now we should apply mutation operation to all of the 

individuals. To apply mutation operation, we begin by individual 1 and select three other 

vectors. These three other vectors are base vector (r1) and difference vectors (r2 and r3). 

In our example, these vectors are chosen as r1=3, r2=4 and r3=5. All of the selected 

vectors are different from each other as discussed before. Table 3.16 below shows how 

mutant vector is constructed. Herein, we assume that F is equal to 0.3. Mutant vector 

constructed below is an infeasible one and therefore we have to repair it as it was done 

in section 2.3.3. The repaired version of the mutant vector is also given in the Table 

3.17. 
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Table 3.16 Generated mutant vector 

 

 

Table 3.17 Repaired mutant vector 

 

 

     After mutation operation is completed, we pass through the crossover operation. The 

crossover operation is performed with two vectors and these vectors are initially 

generated individual 1 and mutant vector generated from individual 1. By combining 

these two vectors, a trial vector is constructed. An example of trial vector construction of 

individual 1 is given in the Table 3.18 below.  
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Table 3.18 Generation of trial vector 

 

 

     After trial vector is constructed, now we have to apply LOV rule to continuous 

valued trial vector to encode them to job permutations. After job permutation of trial 

vector is found, we compute the objective function value of this job permutation. From 

Table 3.19, you can see how LOV rule is applied and how objective function value of 

that vector is computed.  

 

Table 3.19 Finding job permutation of generated trial vector 

 

 

 

     Figure 3.27 Computation of objective function value of individual 1 

 

     The objective function of the trial vector is computed as in Figure 3.27. After that, we 

have to compare the objective function value of the trial vector and its counterpart in the 

previous iteration. Since the objective function value of the trial vector is smaller than 

objective function value of the vector in previous iteration, the trial vector replaces its 
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counterpart in the next iteration. These computations last until a prespecified termination 

condition is satisfied.   

 

Table 3.20 Individual 1 at the end of selection procedure 
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CHAPTER FOUR 

PARALLEL MACHINE SCHEDULING WITH SEQUENCE DEPENDENT 

SETUP TIMES 

 

     Parallel machine scheduling models are important for the same reason that single 

machine models are important: If one particular workcenter is a bottleneck, then the 

schedule at that workcenter will determine the performance of the entire system. That 

bottleneck can then be modeled as a bank of parallel machines and analyzed separately.  

 

     In chapter three of this thesis, the application of the newly generated DE algorithm to 

single machine scheduling (SMS) problem is discussed. Afterwards, the DE algorithm is 

hybridized with two well-known local search procedures. In this chapter, an application 

of the DE algorithm to parallel machine scheduling (PMS) problems will be first 

discussed. Within this discussion, an encoding technique, borrowed from GA, will be 

used for the first time for the DE algorithm. Also in this chapter, application of GA and 

Variable Neighborhood Search (VNS) algorithm to parallel machine makespan 

minimization problem with sequence dependent setup times will be discussed. 

Afterwards, the DE algorithm will be hybridized with a different version of VNS 

algorithm as a local search procedure as we have done in previous chapter. To the end of 

the chapter, an initial solution generation method will be introduced and this will be the 

first time that this initial population generation method is used with the DE algorithm. 

Finally, computational results of three methods, GA, VNS and hybrid DE will be 

compared with each other according to randomly generated test problems. 

 

4.1 Introduction 

 

     According to the industrial context, scheduling problems often arise on the 

operational level, considering the production of a day, a week or a month. However 

exact methods found on the literature fails to find optimal solutions for these real 
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instances in a reasonable time; therefore in this research we look for near optimal 

solutions to solve these hard problems. 

 

     A bank of machines in parallel is a setting that is important from both the theoretical 

and practical point of view. From the theoretical viewpoint, it is a generalization of the 

single machine and a special case of the flexible flow shop. From the practical point of 

view, it is important because the occurrence of resources in parallel is common in the 

real world. Also, techniques for machines in parallel are often used in decomposition 

procedures for multistage systems (Pinedo, 1995). 

 

     The problem handled in this chapter deals with scheduling jobs on related parallel 

machines which have a fixed processing capacity. Each machine can handle at most one 

job and each job can be processed by at most one machine. Pinedo (1995) considered 

scheduling jobs on parallel machines as a two-step process: 

 

1. Determine which jobs to allocate to which machines; 

2. Determine the sequence of the jobs allocated to each machine. 

 

     In general, PMS problems have two distinct decisions: allocation and sequencing. 

Also, PMS problem can be classified according to: objective function type, machine 

type (identical or non-identical machine) and job type (independent or dependent job). 

Additional criteria for the problem classification are sequence dependent setup times and 

ready times. 

 

     Determining the sequence of the jobs allocated to each machine depends on the 

objective function of problem. However, objectives may vary from one situation to 

another. When all jobs are available at time zero, the natural objective is to minimize the 

makespan. If in addition, individual jobs leave the system immediately after they are 

proposed, another natural objective would be to minimize the average flow time, thus 

minimizing the work in process inventory. When dealing with machines in parallel, the 
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makespan becomes an objective of significant interest. In practice, one often has to deal 

with the problem of balancing the load on machines and by minimizing the makespan. 

 

     The problem handled in this study is a real life one because most of the studies on 

parallel machine scheduling problem do not take setup times into account in order to 

minimize makespan and setup time has often been considered to be negligible or as a 

part of the processing time but this does not reflect real life situation.  

 

4.2 Literature Review 

 

     Although the literature on PMS problems are still not as generous as in the case of 

SMS problems, a growing research activity is definitely noted starting from the early 

McNaughton‟s (1959) initial work. McNaughton (1959) provided an algorithm (as part 

of a constructive proof) to minimize makespan on a number of identical parallel 

machines (m) in the case of independent jobs (n) with preemption. If each job‟s 

processing time is taken as p j , then the makespan values C max 
m

1



n

j

jp
1

 can be 

achieved as long as p j   C max   j.  In addition to this, Hu (1961) developed an 

algorithm to minimize the makespan for jobs with a tree precedence constraint 

relationship and equal processing times whereas he did not allow preemption. An 

important result of Hu‟s work is a labeling algorithm that assists in partitioning the set of 

jobs in many later algorithms. Muntz and Coffman (1969) generalized Hu‟s labeling 

algorithm. Muntz and Coffman (1969) presented an unequal processing time version of 

Hu‟s labeling algorithm and combined this with McNaughton‟s lower bound on the 

makespan value for the case of two machines, and also this algorithm allows arbitrary 

precedence constraints and preemption. 

 

     Over the years, there has been a great deal of research to develop efficient approaches 

for solving P//C max  problem. As a member of a family of algorithms known as list 



94 

 

 

scheduling algorithms, the well-known longest processing time (LPT) rule of Graham 

(1969) has received extensive attention in terms of performance guarantee it tends to 

perform. Based on this rule, we start with an empty schedule and iteratively put a 

nonscheduled job with longest processing time of all remaining jobs on to the machine 

with currently having minimal workload. This method yields a schedule no worse than 

max

max )(

C

LPTC


3

4
-

m3

1
, where C max  (LPT) denotes the makespan received by the LPT 

algorithm and m denotes the number of machines. This performance guarantee is proven 

to be tight (Graham, 1969), and later the bounds for LPT rule is improved to better 

places by Coffman and Sethi (1976). 

 

     For the P//C max  problem, where preemption is not allowed, Graham (1966) showed 

that when jobs are assigned and processed by any of equal machines when becoming 

idle, the total time of the schedule will not be more than twice that of the optimal 

schedule. In addition to this, the non-preemptive version of PMS problem was shown to 

be NP-complete (Karp, 1972) even for two equal machines. Sahni (1976) presented 

more complicated heuristic for the P//C max  problem, utilizing dynamic programming, 

that can be used to obtain the results as close to optimum as desired. Unfortunately, the 

time complexity of this method grows rapidly as the accuracy desired increases; hence, 

it is not practical for more than two or three machines, except for small n. Garey and 

Johnson (1979) also proposed an algorithm entitled MULTIFIT that affords the relation 

between bin-packing and makespan problems. Although, the performance guarantee for 

MULTIFIT algorithm is tighter than that of LPT algorithm, it does not follow that 

MULTIFIT algorithm will produce better makespan than LPT algorithm for any given 

problem. Coffman et al. (1978) also found bounds on the MULTIFIT solution which 

were improved upon by Friesen (1984). Lee and Massey (1988) noted the strengths of 

both the LPT and MULTIFIT heuristics and suggested combining them using LPT to 

provide an initial solution and then MULTIFIT as an improvement method. Blocher and 

Chaud (1991) also combined two approaches for this problem in order to realize a 

solution within a desired deviation percentage from optimal and developed improved 
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bounds on the LPT heuristics. Punnen and Aneja (1995) developed lower bounds for the 

general minmax combinatorial problem of which P//C max  is an application. Fatemi and 

Jolai (1998) proposed a pairwise interchange (PI) algorithm for the problem that is also 

applicable for scheduling non identical parallel machines and also non-simultaneous job 

arrivals, with the idea that the variance of completion times of the last job on each 

machine in the presence of job preemption is zero. They tried to minimize sum of ranges 

of machine finish times instead of the makespan. Gupta and Ruiz-Torres (2001) 

proposed a heuristic named LISTFIT based on bin-packing problem and list scheduling 

that its worst-case performance bound is no worse than that of MULTIFIT algorithm. 

Their computational results showed that heuristic outperforms the LPT algorithm, the 

MULTIFIT algorithm, and the COMBINE methods of Lee and Massey (1988) that 

utilizes the result of LPT algorithm as an initial solution for the MULTIFIT algorithm. 

Lee et al. (2006) proposed a simulated annealing (SA) algorithm for the same problem 

and evaluated its performance in comparison with LISTFIT and PI algorithms. 

 

     The problem in main interest in this thesis is the P/ST sd /C max  problem. Ovacik and 

Uzsoy (1993) also studied the P/ ST sd /C max  and P/ ST sd /L max  problems in 

semiconductor testing facilities where setup times are bounded by processing times. 

They provided an example showing that, list schedules are non-dominant, and developed 

worst-case error bounds for list scheduling algorithms. Franca et al. (1996) considered 

the same problem of Ovacik and Uzsoy (1995) under the makespan objective with no 

restriction on setup time and developed a three-phase heuristic which uses a tabu search 

method. Guinet and Dussauchoy (1993) used an extension of the Hungarian method to 

solve the linear assignment problem as a heuristic to solve the P/ ST sd /C max   problem. 

Guinet (1993) showed that PMS problem can be reduced on vehicle routing problem 

(VRP) and suggested first a two step heuristic. Then he compared mathematical model 

based on the VRP and heuristic, concluding that for small sized problem, mathematical 

model give quality results in a reasonable time; however for medium and big sized 

problems heuristic algorithms give quality results in reasonable computational times. 
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Franca et al. (1996) use a tabu search methodology to minimize the makespan of a set of 

jobs with sequence dependent setups on identical machines. They obtain an initial 

solution by assigning each job to the machine which results in the smallest increase in 

the current makespan. This solution is improved via a tabu search procedure where 

moving a job from the busiest machine to another machine constitutes a neighborhood 

move. The solution found by the tabu search procedure is further improved by post 

processing the sequence on the busiest machine.  

 

     Recently, Mendes et al. (2002) and Gendreau et al. (2001) addressed the P/ST sd /C max  

problem. Mendes et al. (2002) proposed two heuristics, namely one is tabu search based 

and the other is a memetic approach that is a combination of a population based method 

with local search procedures. Gendreau et al. (2001) proposed lower bounds for the P/ST

sd /C max  problem and presented a divide and merge heuristic. They compared their 

heuristic with earlier heuristics of TS and showed that their heuristic is much faster 

while producing similar quality results. Behnamian et al. (2008) also made a research 

about P/ST sd /C max  problem. They proposed three heuristics, ACO, VNS algorithm and 

SA. After that, to improve the performance of the algorithms, they hybridized these 

algorithms with a well-known local search method VNS. Also they proposed a new 

hybrid algorithm that is combination of GA, SA and VNS. They concluded that VNS 

local search method is effective for hybridizing the proposed algorithms and give better 

results than lately published literature. Rocha et al. (2007) also presented VNS and NEH 

algorithm for the P/ST sd /C max  problem. They proposed an initial solution generation 

method based on GRASP algorithm. After that they compared NEH and VNS algorithm 

according to their fitness values and concluded that VNS search outperformed NEH 

algorithm in all comparative fields.  

  

     For having a look at other variants of PMS problem apart from one in this study; 

Kurz and Askin (2001) presented an integer programming formulation for the problem 

of P/ ST sd , r j /C max . They also developed several heuristics including GA and multi-fit 
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based approaches and empirically evaluated them. They used solution of the traveling 

salesman problem (TSP) as part of their heuristics. That is, once the jobs have been 

assigned to the machines, a TSP is formulated and solved to find an optimal job 

sequence on each machine. Recent uses of LPT based heuristics for PMS problems 

include Lin and Liao (2008) and Koulamas and Kyparsis (2008). Lin and Liao (2008) 

proposed a heuristic based on LPT. They used this approach to solve multiple uniform 

parallel machines and concluded that some additions to this proposed LPT based 

algorithm can make it more efficient. Koulamas and Kyparsis (2008) developed a 

modified LPT algorithm for solving two uniform PMS problem with sequence 

dependent setup times and with objective of minimizing makespan.  

 

     The GA has also been successfully applied to solve a variety of scheduling problems 

and P/ST sd /C max   problem (Hou et al. 1994, Correa et al. 1999) is one of those 

problems. In studies of Hou et al. (1994) and Correa et al. (1999), a schedule is 

represented by a set of strings such that each machine has a string. The string then 

contains the jobs assigned to that machine in the order to be processed. Min and Cheng 

(1998) combined GA and SA for the P//C max  problem and found that combining these 

methods balanced the better solutions of the GA with longer running times of the SA. 

Fowler et al. (2003) also proposed a hybrid GA for the P/ ST sd , r j / jj Cw * , P/ ST sd , 

r j / jj Tw * , and P/ ST sd , r j /C max  problems. In hybrid GA, a GA is used to assign 

jobs to machines, and dispatching rules are used to schedule individuals in that machine. 

Computational results indicated that the proposed hybrid approach performs better than 

earlier algorithms with respect to the considered performance measures. Following this 

study, Gupta et al. (2004), Gao (2005), and Liao et al. (2007) have applied the GA to 

solve PMS problems to minimize the makespan. In addition, some other algorithms have 

also been presented, such as the SA method (Lee et al., 2006) and the ILS algorithm 

(Tang and Luo, 2006). 
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4.3 Problem Statement and Formulation 

 

     In the following, the parameters used for the formulations are given: 

 

n = number of jobs 

m = number of machines 

N = set of jobs. (1, 2, …, n) 

M = set of machines. (1, 2, …, m) 

The indices h, i , j correspond to jobs (h, i, j = 0, 1, 2, …, n), where 0 corresponds to 

dummy job. 

The index k corresponds to machines (k = 1, 2, …, m). 

p j = processing time to realize job j. 

s ji , = changeover time to process the job j directly after job i on the same machine. 

s j,0 = changeover time to process the job j first on a machine. 

x kji ,, = 1 if job j is processed directly after job i on machine k, 0 otherwise. 

x kj ,,0 = 1 if job j is the first job to be processed on machine k, and 0 otherwise. 

x ki ,0, = 1 if job i is the last job to be processed on machine k, and 0 otherwise. 

C j = completion time of job j. 

C max = maximum job completion time. 

HV = scalar chosen to be larger than the workshop time horizon. 

 

     The problem of scheduling jobs on identical parallel machines to minimize maximum 

completion time with sequence dependent setup times (PMSDST) may be stated as 

follows. Each job in set N (i = 1, 2, …, n ) is to be processed on one of the related 

machines (machines are same) from set of machines M (k = 1, 2, …,m). Jobs are 

assumed to become available for processing at time zero. The processing time of job j, 

denoted by p j , and sequence dependent setup time when jobs are switched from job i to 
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job j, denoted by s ji , , are all positive integers. Here, setup times (s ji , ) are necessarily 

incurred when job j follows job i in the processing sequence of each machine and 

sequence dependent setup times are assumed as  s ji ,  ≠ s ij ,  according to triangular 

inequality that will be explained later in this chapter. Preemption of jobs is not allowed 

and the objective is to find a schedule which minimizes the makespan (C max ). This 

objective function also balances the loads on machines. Using the standard three field 

notation, the problem is denoted as P / ST sd  / C max  problem.  

 

     The SMS problem with sequence dependent setups is known to be NP hard (Pinedo, 

1995). In addition to this, for the parallel machine case, it is proved that the problem of 

minimizing the makespan with two identical machines is also proven to be NP hard 

(Garey & Johnson, 1997; Lenstra et al., 1977). Thus, the more complex case of 

minimizing the makespan on a scheduling problem with m identical parallel machines 

and sequence dependent setup times (P/ ST sd /C max  ) is also strong NP-hard. After all, 

mathematical formulation of PMSDST problem is given as follows (Guinet and 

Dussauchoy, 1993).  

 

Minimize(Z) = C max          (4.1) 

 

Subject to: 



 


n

ji
i

m

k

kjix
0 1

,, 1       ∀j=1,…, n.   (4.2) 





n

hi
i

khix
0

,, -



n

hj
j

kjhx
0

,,  = 0     ∀h=1,…, n; ∀k=1,…,m. (4.3) 




n

j

kjx
1

,,0  1      ∀k= 1, …, m.   (4.4) 

C j C i + s ji , + p j +(



m

k

kjix
1

,, 1)*HV  ∀i,j=1,…, n and i j . (4.5) 
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C i   C max       ∀i=1,…, n.   (4.6) 

x kji ,, {0,1}      ∀i,j=0,…, n, ∀k=1,…, m. (4.7) 

C i  0       ∀i=1,…, n;    (4.8) 

C 0 = 0           (4.9)

   

     According to the criterion given above, equation (4.1) minimizes the maximum 

completion time of the last job (makespan) in the sequence (objective function). 

Equation (4.2) ensures that each job in the sequence is processed once and only once. 

Equation (4.3) specifies that each job must have a job predecessor and a job successor. 

Equation (4.4) ensures that each machine have at most one first job. Equation (4.5) 

allows us to calculate the job completion times which depend on the processing time, 

setup time and order of jobs assigned to the machine. Equation (4.6) defines the 

maximum completion time. Equation (4.7) forbids a job to be predecessor and the 

successor of the same job. Equation (4.8) ensures that for each job completion time 

value cannot take minus values. Equation (4.9) ensures that at the beginning, each 

machine have zero completion time value.  

 

4.4 Application of the Differential Evolution Algorithm to Parallel Machine 

Scheduling Problems 

 

     In this section, application of the DE algorithm to related PMS problems with 

sequence dependent setup time will be discussed. Herein, PMS case of the DE algorithm 

will be also be discussed by the help of the classic version of the algorithm.  

 

     Initially, a newly adopted individual representation (encoding) technique for the DE 

algorithm will be introduced. Later, local search integration technique inside the DE 

algorithm for improving its performance and effectiveness will be discussed. 
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     To explain the steps inside the DE algorithm for PMS problem, we begin with 

initialization of the control parameters. Afterwards, mutation operation which is newly 

adapted for the DE algorithm is introduced. Finally, crossover operation and selection of 

individuals are discussed.  

 

Initialization: 

 

     In general, at the beginning of heuristic algorithms, control parameters must be set to 

correct values. These control parameters for the PMS problem are NP (population size), 

F (mutation factor), CR (crossover factor), lower bound for job vector (X LB

N ), upper 

bound for job vector (X UB

N ), lower bound for machine vector (X LB

M ) and upper bound for 

machine vector (X UB

M ) respectively. To improve the solution quality of the algorithm, 

appropriate setting of the control parameters should be found. An initial study is done 

for setting appropriate control parameters and this will be explained later in this chapter.  

 

     After setting appropriate set of control parameters, initial population that is composed 

of NP individuals is generated where population is denoted as P GX , =[X Gi , , …, X GNP, ] 

where each individual is represented by      (i = 1,…, NP)  and G = 0 denotes the initial 

population. Assuming that the job at position j is denoted by    (    N, j =1, 2, …, n) is 

k j (k j   M, j=1, 2, …, n), j-th parameter of one individual x Gij ,, = 








j

j

k

e
 is defined. Here 

   corresponds to job at position j in the job vector and k j  corresponds to machine that 

the job in position j should be processed in the machine vector. Then the individual is 

referred to as X Gi , = 








n

n

kkk

eee

...,,,

...,,,

21

21
 where    values are different from each other which    

k j  values are not restricted.  
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     Encoding technique used for PMS problem is called vector group encoding technique 

(VGET) (Gao et al., 2008). This technique is previously used to solve unrelated PMS 

problem (Gao et al., 2008) with sequence dependent setup times for GA and now it is 

adopted for the DE algorithm for the first time. In this study, VGET is used because we 

are not only interested on which machine the job is processed but, we are also interested 

in processing sequence of jobs on each machine. By the help of VGET, we can represent 

these two pieces of information correctly and easily. An example of this encoding 

technique is given in Figure 4.1 below. Also, for the proposed DE algorithm, the 

following method of generating the initial population is adopted in order to avoid 

generating infeasible solutions while using VGET. 

 

     According to VGET, at first one vector (e
1
, e

2
, …, e n ) is generated at random 

according to equation (4.10) given and it is assumed that e
r
 e t for 1 ≤ r, t ≤ n and r t. 

Next, for each element    of the job vector, a machine number, which is denoted as k j , 

is generated at random according to equation (4.11), and by this way e j  and k j  form a 

gene x 0,,ij = 








j

j

k

e
 (j = 1, 2, …, n). An individual is made of n parameters and can be 

expressed as       








n

n

kkk

eee

...,,,

...,,,

21

21
. Repeat the above procedure population size times 

until the initial population of individuals is generated. 

 

x 0,,ij ( e j ) = rand j (0,1)*( X UB

N - X LB

N )+ X LB

N .      (4.10) 

x 0,,ij ( k j ) = rand j (0,1)*( X UB

M - X LB

M )+ X LB

M .      (4.11) 

 

     An example for this newly adopted encoding technique is shown in Figure 4.1. In this 

figure, the first row containing continuous values refers to a job vector and the second 

row containing continuous values refers to a machine vector.  
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1 2 3 4 5 6 7 8 9 10 

7.4856 5.5050 5.6878 3.6961 5.6615 3.9441 5.4379 1.3503 6.9364 4.6364 

0.6092 1.5875 0.8427 0.4726 1.7679 1.7985 1.3999 1.9106 0.6149 1.8329 

     Figure 4.1 An example for representation schema used 

 

     After generating the initial population, which is composed of continuous valued 

parameters, has to be converted to discrete parameters for computing the objective 

function value of each individual. To generate a discrete valued population, take job 

vector (e
1
, e 2 , …, e n ) of each individual in the population and apply LOV rule, which 

was previously explained in section 2.6.2, to this vector. After that, for finding machine 

numbers for each job in each individual, take machine vector (k
1
, k 2 , …, k n ) and apply 

sub-range encoding rule, which was previously explained in section 2.6.1,  to convert 

continuous parameters to discrete ones. An example of discrete valued individual is 

given in Figure 4.2 below. According to this figure, on the left hand side, an example of 

individual and on the right hand side, scheduling sequence of each machine is given. It is 

obvious from the figure that job sequence in each machine is taken from job vector. For 

example, machine 1 has two jobs, job 2 and job 4. In job vector, job 4 comes before job 

2, therefore machine 1 processes job 4 in first place and job 2 in second place.  

 

     The decoding of the individual defined above is as follows: 

Step 1: j = 1. 

Step 2: For discrete valued individuals, take the parameter x Gij ,, = 








j

j

k

e
 

Step 3: Allocate job    to machine k j . 

Step 4: j= j + 1. 

Step5: The procedure from step 2 to step 4 is repeated until j > n. 

 

 

Figure 4.2 Decoding procedure a) individual b) scheduling scheme  
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Mutation 

 

     In the mutant population generation phase of the algorithm, continuous valued 

individuals of population are used. As it is explained above, in each individual we have 

two vectors, one for job permutation and one for machine permutation. Mutation 

operation for each individual in the population X Gi , , at generation G, is determined in 

two steps for generating a mutant individual V Gi , = [v Gi ,,1 , …, v Gin ,, ]. In the first step, 

mutation operation is applied to continuous valued job vector according to equation 

(4.12). In the second step, mutation operation is applied to continuous valued machine 

vector according to equation (4.13). And at last, a continuous valued mutant individual 

is formed as in Figure 4.1. 

 

V Gi , (  ) = X Gr ,1 (  )  + F * (X Gr ,2 (  )  -X Gr ,3 (  )).     (4.12) 

 

V Gi , ( k j ) = X Gr ,1 ( k j )  + F * (X Gr ,2 ( k j )  -X Gr ,3 ( k j )).    (4.13) 

 

     The effects of selecting base vector and difference vectors r1, r2 and r3 as distinct is 

discussed before in chapter two. According to this discussion, parameters are chosen 

randomly and assumed to be distinct (r1 r2 r3). Herein, base vector r1 and difference 

vectors r2 and r3 are chosen once for each individual and then mutation operations on 

both of two vectors for each individual are done with the same chosen base and 

difference vectors. 

 

     As we have discussed while explaining mutation operation of the DE algorithm, it is 

likely that after mutation operation, some values of parameters can be higher than upper 

bounds or can be lower than lower bounds. These values in individuals should be 

repaired and taken inside the selected bounds. Repairing procedure is applied to each 

vector for each individual separately. The mechanism for repairing job vector will be 

given first and machine vector second.  



105 

 

 

Repairing procedure of job vector: 

 

Step 1: If the parameter of the vector indices is lower than the lower bound for jobs, go 

to step 2; higher than the upper bound for jobs, go to Step 3. 

Step 2: Repaired mutation value v newGij ,,, = (2* X LB

N ) - v Gij ,,  . And go to step 4. 

Step 3: Repaired mutation value v newGij ,,, = (2* X UB

N ) - v Gij ,,  . And go to step 4. 

Step 4: v Gij ,,  = v newGij ,,,   

 

Repairing procedure of machine vector: 

 

Step 1: If the parameter of the vector indices is lower than the lower bound for 

machines, go to step 2; higher than the upper bound for machines, go to Step 3. 

Step 2: Repaired mutation value v newGij ,,, = (2* X LB

M ) - v Gij ,,  . And go to step 4. 

Step 3: Repaired mutation value v newGij ,,, = (2* X UB

M ) - v Gij ,,  . And go to step 4. 

Step 4: v Gij ,,  = v newGij ,,,   

 

Crossover 

 

     Crossover section of the DE algorithm generates a trial population. First of all, for 

each mutant individual, an integer random number between 1 and n is chosen, i.e. j rand . 

Here, the index j rand  is a randomly chosen parameter (j rand  = 1, …, n) and this randomly 

chosen value‟s corresponding parameter v Gijrand ,, = 








rand

rand

j

j

k

e
 is directly copied from mutant 

individual to trial individual which is used to ensure that one parameter in the trial 

individual U Gi , , differs from its counterpart in the previous iteration X 1, Gi . Trial 

individual U Gi , = [u Gi ,,1 , …, u Gin ,, ] is generated according to equation (2.16) which has 

been given in section 2.3.1. An example for crossover operation is given in Figure 4.3. 
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In this crossover operation, two values form a parameter and throughout crossover 

operation these two values do not separate from each other.  

 

U Gi ,  =  u Gij ,,  =


 

otherwisex

jjorCRrandifv

Gij

randjGij

,,

,, )1,0(
    (2.16) 

 

 

  Figure 4.3 An example of crossover operation for PMSDST problem.  

 

     Once trial population is generated, we apply LOV rule to convert continuous valued 

job vector of each individual to job permutations  NGi ,, = [ NGi ,,,1 ,  NGi ,,,2  ,…,          


NGin ,,, ]. After that, we apply sub-range encoding rule to convert continuous valued 

machine vector of each individual to machine permutations 
MGi ,, = [ MGi ,,,1 ,             


MGi ,,,2 ,…,  MGin ,,, ]. Once the job permutation and machine permutation of each 

individual are constructed, we again evaluate the objective function values of all of the 

individuals in the population. 
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Selection 

 

     Selection operation of the DE algorithm in PMS problem is same as it was done in 

SMS problem. To decide whether or not the trial individual U
Gi ,

 will be a member of the  

population in the next iteration, its objective function value is compared with its 

counterpart in the previous iteration X 1, Gi . The selection is based on the survival of the 

fittest among the trial population according to (2.16) which was given in section 2.3.5. 

 

X 1, Gi  = 


 

otherwiseX

XfUfifU

Gi

GiGiGi

,

,,, )()(
      (2.16) 

 

     If the prespecified termination conditions are satisfied after selection operation is 

completed then we stop, otherwise we will again restart from mutation operation. In this 

study, termination condition is specified as reaching a prespecified iteration number 

which is set to 50*n. The flowchart of the proposed DE algorithm can be seen in Figure 

4.4. 
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iteration=0.

Initialization, set NP (population size), F (mutation factor), 

CR (crossover factor), lower bound for jobs, upper bound 

for jobs, upper bound for machines and lower bound for 

machines.

Generate NP individuals randomly .

Apply the LOV rule to find the permutations of individials.  

Apply sub-range encoding to find the machine related to 

each job.

Evaluate each individual Xi,G in

the population.

Mutant population generation Vi,G,for each individual job 

sequence and machine sequence in the population 

generate mutant individuals.

Generate trial population Ui,G,for each mutant individual 

generate a trial individual.

Find permutation, apply the LOV rule to find job 

permutations of all individuals. And apply sub-range 

encoding to find the machine related to each job.

Evaluate each individual in the population.

iteration=iteration+1.

Selection, f(Ui,G)    f(Xi,G)

iteration>maxiteration

Output the fittest individual.

Replace current individual with the 

trial individual Xi,G = Ui,G

NO

YES

YES

NO

 

    Figure 4.4 Flowchart of the DE algorithm proposed for PMSDST problem 
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4.5 Variable Neighborhood Search Algorithm for Parallel Machine Scheduling 

Problems 

 

     The aim of this section is to propose a VNS algorithm to solve randomly generated 

test problems for an identical PMS problem with sequence dependent setup times with 

the objective of minimizing makespan. Also, this VNS algorithm will be later used to 

hybridize the DE algorithm to improve its performance.  

 

     The neighborhood structures of VNS algorithm in this study are based on known 

relevant local searches and follow those proposed in Hansen & Mladenovic (2003). The 

VNS algorithm used in this study is somewhat different from other heuristic methods 

used previously for the P/ST sd /C max  problem since it uses two or more neighborhoods 

while the other methods use one or two neighborhoods. In particular, it is based on the 

principle of systematic change of neighborhood during the search. In addition, to avoid 

costing too much computational time, the number of neighborhoods chosen is often 

three (Rocha et al., 2007). The three neighborhoods employed in this algorithm are 

defined below:  

 

1. Job swaps on one machine: (N 1 (S)) one machine is chosen and all possible job 

swaps are considered. 

2. Job swaps between two different machines: (N 2 (S)) two machines are chosen 

and all possible job swaps from these different machines are considered. 

3. Job transfers from one machine to another: (N 3 (S)) one machine is chosen and 

all possible job movements from this machine to any other are considered. 

 

     The basic VNS structure is given below. According to this basic VNS structure, at 

first there is a shake procedure and after that there is a local search procedure. Detailed 

explanations of these procedures will be given in section 4.5.1 and 4.5.2.   
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Algorithm: Basic VNS Structure for the PMS Problem by Behnamian et al. (2008): 

 

1: Find an initial solution S* (in the hybrid DE algorithm S* is chosen randomly from 

population; otherwise we have already one solution); 

2: l   1; 

3: for iterations   1 to a maximum number of iterations do 

4: S   S* ; 

5: Random solution: find a random solution S‟   N l (S); 

6: Perform a local search on  N l (S‟) to find a solution S”; 

7: if S” < S* then 

8:  S*   S”; 

9:  l   1; 

10: end if 

11:  l   l+1; 

12: end for 

 

4.5.1 Random Solutions 

 

     Every time a neighborhood is selected in step five of the VNS procedure given 

above, a random procedure is called. This procedure selects a random solution from the 

selected neighborhood structure. In other words, before starting a local search procedure, 

shake procedure according to that local search procedure is applied. Therefore, three 

procedures are created in the following manner, one for each l: 

 

1. For N 1 (S): 

Choose randomly a machine i 

Choose randomly two jobs j 1  and j 2  in machine i. 

Swap jobs j 1  and j 2 . 

 



111 

 

 

2. For N
2

(S): 

Choose randomly two machines i
1
 and i

2
. 

Choose randomly a job j
1
 in i

1
 and a job j

2
 in i

2
. 

Swap jobs j
1
 and j

2
. 

 

3. For N 3 (S): 

Choose randomly one job j
1
 and one machine i 2 , where j

1
 does not belong to i 2 . 

Choose randomly a valid position „pos‟ in i 2 . 

Transfer job j
1
 to i 2  at the position pos. 

 

4.5.2 Local Searches 

 

     There are several variations of VNS structure according to the local search used in 

the procedure. In this study, we use a specific local search for each neighborhood, which 

is borrowed from Behnamian et al. (2008). The local searches that are integrated inside 

VNS research are listed below. 

 

Local Search 1 (Job swaps at one machine): This local search analyzes every possible 

swap on each machine. Even, when chosen machine is not the one with the greatest 

completion time, the objective function can be reduced by reducing the delay of some 

jobs. An example of this search procedure is given in Figure 4.5 and mechanism inside 

the VNS is explained below Behnamian et al. (2008). 
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1: for each i  do 

2:  for each j
1
 in i do 

3:   for each j
2

 in i, j
1
 j

2
, do 

4:   if solution considering j
1
 and j

2
 swapped < current solution then 

5:    Swap j
1
 and j

2
. 

6:   end if 

7:  end for 

8: end for 

9: end for 

 

 

Figure 4.5 An example for local search procedure 1  

 

Local Search 2 (Job swaps on different machines): In this search procedure, all job 

swaps between jobs belonging to different machines are evaluated. A larger amount of 

solutions is searched. An example of search procedure is given in Figure 4.6 and 

mechanism is explained below Behnamian et al. (2008). 
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1: for each     M do 

2:  for each j
1
 in i

1
 do 

3:  for each i
2

   M, i
1
   i

2
, do 

4:   for each j
2

   i
2

 do 

5:    if solution considering j
1
 and j

2
 swapped<current solution 

6:     Swap j
1
 and j

2
 

7:    end if 

8:   end for 

9:  end for 

10: end for 

11: end for 

 

 

Figure 4.6 An example for local search procedure 2 

 

Local Search 3 (Job insertion): This search procedure searches for new solutions 

transferring a randomly chosen job from the machine with the highest makespan to the 

machine with the lowest makespan. An example of search procedure is given in Figure 

4.7 and mechanism is explained below Behnamian et al. (2008). 

 

 

 

 



114 

 

 

1: Find the machine with the highest makespan i
1
; 

2: Find the machine with the lowest makespan i
2

; i
1
 ≠ i

2
; 

3: for each j in i
1
 do 

4: for each valid position pos in i
2

 do 

5:  if solution considering j transferred from i
1
 to i

2
in position pos < current 

solution then 

6:  Transfer j from    to    on position pos 

7:   end if 

8:  end for 

9: end for 

 

 

Figure 4.7 An example for local search procedure three. 

 

     The VNS algorithm always tries to use the fastest local search available first. If after 

an iteration no improvement is gained, then another neighborhood procedure is used (l is 

incremented), and when every time objective function value is reduced, the first and 

fastest local search is again used (l = 1). First of all, local search 1 tries to reduce 

makespan value in each machine. If there is no reduction, then local search 2 swaps jobs 

in each machine and tries to reduce makespan value in these two machines 

simultaneously. After all, if still there is no reduction in makespan value, then local 

search 3 tries to balance the loads of machines to reduce highest makespan value. 

Flowchart of VNS algorithm is given in the Figure 4.8.  
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iteration=1

Find an initial solution S*

S=S* and l=1

iteration<maxiteration

l=1

l=2

l=3

Shake procedure 1: find a 

random solution S‟ form      

(S)1N

Shake procedure 2: find a 

random solution S‟ form      

(S)

Shake procedure 3: find a 

random solution S‟ form      

(S)

Perform a local search on       

(S‟) to find a solution S”1N

Perform a local search on       

(S‟) to find a solution S”

Perform a local search on       

(S‟) to find a solution S”

2N 2N

3N
3N

S*=S” 

if S”<S*

l=l+1

Output the 

solution
NO

YES

YES

NO

YES

NO

YES

iteration=iteration+1

NO

YES

NO

         Figure 4.8 Flowchart of VNS algorithm 
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4.6 Hybrid Differential Evolution Algorithm 

 

     So far, applications of the DE algorithm and VNS algorithm for the PMSDST 

problem have been discussed. VNS algorithm further will be used separately to solve the 

randomly generated test problems for the P/ST sd /C max  problem. In this section, it is 

described how to hybridize the DE algorithm with VNS local search method. VNS is a 

strong search procedure for PMSDST problems (Behnamian et al, 2008) and this local 

search procedure can effectively be used to hybridize the DE algorithm since it has been 

used before by Behnamian et al (2008) to hybridize some other heuristic algorithms for 

the P/ST sd /C max  problem. In view of the past related literature, this will be the first 

reported integration of VNS algorithm to the DE algorithm for a COP.  

 

     Behnamian et al. (2008) used VNS local search procedure to solve the P/ST sd /C max   

problem and also used VNS algorithm to hybridize SA algorithm and ACO algorithm to 

solve the P/ST sd /C max    problem. They concluded that hybridizing the population-based 

evolutionary searching ability of ACO and SA with the local improvement ability of 

VNS balances exploration and exploitation. 

 

     The hybrid DE algorithm in this research is formed by integrating the VNS algorithm 

just after selection procedure. In other words, first the DE algorithm is applied to 

population of individuals, and after that VNS local search procedure is applied to 

selected individuals in the population. This search progress cannot be applied to all of 

the individuals in the population because this costs too much computational time. For 

this reason the individuals are randomly selected from the population to apply VNS. In 

this study, random selection procedure is applied since individuals that are different 

from the best individual can have more chance to reach better places according to the 

objective function value, and if we apply this local search only to the best individual, we 

lose our chance to reach better objective function values. 
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iteration=0.

Initialization, set NP (population size), F (mutation factor), 

CR (crossover factor), lower bound for jobs, upper bound 

for jobs, lower bound for machines and upper bound for 

machines.

Generate NP individuals randomly .

Apply the LOV rule to find the permutations of individials.

Apply sub-range encoding rule to find machines related to 

jobs.

Evaluate each individual Xi,G in

the population.

Mutant population generation Vi,G, for each individual 

job sequence and machine sequence in the population 

generate mutant individuals.

Generate trial population Ui,G, for each mutant 

individual generate a trial individual.

Find permutation, apply the LOV rule to find 

permutations of all jobs and apply sub-range encoding 

rule to find machines related to each job. 

Evaluate each individual in the population.

iteration=iteration+1.

Selection, f(Ui,G)    f(Xi,G)

iteration>maxiteration

Output the fittest individual.

Replace current individual with the 

trial individual Xi,G = Ui,G

YES

NO

Apply VNS local search method to randomly chosen 

individuals of the population.

NO

YES

 

Figure 4.9 Flowchart of the hybrid DE algorithm for the PMSDSTP 
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     At the end of this search, newly constructed individual replaces the old one if the new 

one dominates the old one in the objective function value. The flowchart of the hybrid 

DE algorithm is given in Figure 4.9.     

 

4.7 A Genetic Algorithm Approach for Solving Parallel Machine Scheduling 

Problems 

 

     Holland (1975) and his associates developed GA in late sixties and De Jong (1975) 

extended this approach. A comprehensive introduction to GAs and their basic properties 

can be found in Goldberg (1989). 

 

     At first, GAs are developed for the function optimization problem and were not 

applied to scheduling problems until two decades ago. Whitley et al. (1989) and 

Chatterjee et al. (1996) solve TSP using GAs, Morikawa et al. (1992) study jobshop 

scheduling problems while Murata and Ishibuchi (1996) use GAs in solving flow shop 

scheduling problems. Lee and Chen (1997) use a GA to assign weights to six important 

decision factors that decide job sequences in semiconductor testing facilities. 

 

     GA is a search technique based on the concept of evolution (Davis, 1991; Goldberg, 

1989). Given a well defined search space, in which each point is represented by a bit 

string called a chromosome and GA is applied with its three search operators selection, 

crossover and mutation to transform a population of chromosomes with the objective of 

improving their „„quality‟‟. Before the search starts, a set of chromosomes is chosen 

from the search space to form the initial population. The genetic search operators are 

then applied one after another to systematically obtain a new generation of 

chromosomes with a better overall quality. The quality of each chromosome is measured 

in some way called the fitness of the chromosome. In each generation, chromosomes can 

change in random ways, analogous to mutations in the physical world. A new generation 

is generated out of the old generation through a reproduction scheme that allows better 

chromosomes to reproduce more often but which does not eliminate the chances that 
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`poor‟ chromosomes will reproduce as well. This process is repeated until the stopping 

criterion is met and the best solution of the last generation is reported as the final 

solution. For an efficient GA search, in addition to a proper solution structure, it is 

necessary that the initial population of schedules be a diverse representative of the 

search space. 

 

     The distinctive feature of our algorithm which sets it apart from other contributions 

using GA in scheduling problems lies in the structure of the chromosome representation. 

This chromosome representation is same as the one we use on the DE algorithm section 

of this study. 

 

     Designing GAs requires consideration of five primary components according to 

Davis and Streenstrup (1987): 

 

1. A chromosomal representation of solutions to the problem; 

2. Genetic operators that change the composition of the chromosomes; 

3. A method to initialize a population; 

4. An evaluation function that represents how well the individual solutions function 

in the environment, called their fitness; 

5. The parameters that are required in order to implement the above components, 

including population size, number of generations that will be allowed, and 

stopping criteria. 

 

     In this section, a GA is proposed to solve the PMSDST problem with the objective of 

minimizing the makespan. Flowchart of the proposed algorithm is shown in Figure 4.10. 

The procedures are listed in detail step by step in the following: 

 

Step 1: Set control parameters of GA, population size (NP), crossover probability 

(p c ), mutation probability (p m ) and number of iterations. 
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t=0

Input the scale popsize, and randomly generate the 

initial population

Evaluate each individual in the population

Crossover, only the fittest two individuals among 

each pair of parent individuals and their offsprings 

can survive

Mutate, any mutation combination is accepted.

Elite strategy, Chromosomes with lower makespans 

are more desirable, so 4% of the chromosomes with 

the lowest makespan values are automatically 

copied to the next generation.

t=t+1

t>T
Output the fittest 

individual

NO YES

 
                   Figure 4.10 Flowchart of GA proposed for the PMSDST problem 
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Step 2: Generate the initial population randomly according to encoding scheme 

explained in section 4 of this chapter. 

 

Step 3: Evaluation: Evaluate the fitness of each individual in the population. 

Chromosomes with lower makespan are more desirable, so p e % of the 

chromosomes with having lowest makespan values are automatically copied to 

the next generation. Here p e  is elitism percentage that decides what percentage 

of the best individuals in the initial population will be taken to next iteration. 

This mechanism is called elite strategy. The rest of chromosomes (1−p e %)  are 

generated through operators called crossover, mutation and selection. 

 

Step 4: Crossover:  With the predefined p c , some pairs of individuals are 

selected to apply the extended order crossover (EOX) that will be explained later 

in this section. Before pairing two individuals, a roulette wheel selection is made 

that every chromosome has a chance that is proportional to its objective function 

value for being selected. Selected chromosomes are paired with each other and 

crossover operation is then applied to these paired chromosomes. For each pair 

of parent individuals, a pair of offsprings is generated. After crossover, only the 

fittest two individuals among parent individuals and their offspring survive for 

the next iteration. By the help of this crossover operation, we give chance only to 

the fittest individuals to survive for the next generation. 

 

Step 5: Mutation: With the predefined p m , some individuals are randomly 

selected to apply mutation operation. Each mutated individual is accepted and 

replaces its counterpart in the previous iteration if its fitness value is better or not 

than chromosome mutated. This method improves poor individual‟s chances of 

getting to better places in search space. 
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Step 6: If termination criteria is satisfied then stop, else go to Step2. In our 

problem, termination criteria is specified as reaching a prespecified iteration 

number. 

 

Encoding and Decoding Technique 

 

     Encoding technique used for GA to solve PMS problem is same as the one we used in 

the DE algorithm. In this study, encoding technique is appropriate for our problem 

because we are not only concerned with which job will be processed in which machine 

but also we are concerned with in which sequence the jobs will be processed in that 

machine. For this reason, other encoding techniques cannot be used effectively for this 

study because most of the other encoding techniques are only concerned with which job 

will be processed in which machine not the sequence of jobs in that machine. However, 

for the P/ST sd /C max  problem since we have to consider sequence dependent setup times 

between jobs, we are also concerned with the sequence of jobs for each machine. 

 

Initializing the population 

 

     For GA approach, the following method of generating the initial population is 

adopted in order to avoid generating infeasible solutions. 

 

     Firstly, job vector (e 1 , e 2 , …, e n ) is generated at random, where      N, j = 1, 2, … 

,n, and e r
 e t  for 1 ≤ r, t ≤ n and r t.. Next, for each element    of the vector, a 

machine number, which is denoted as   , is randomly selected from the set of machine 

numbers (  ,= 1, 2, …, m),    and   , form a gene x Gij ,, = 








j

j

k

e
(j = 1, 2, …, n).  An 

individual is made of n genes and can be expressed as 








n

n

kkk

eee

...,,,

...,,,

21

21
. Repeat this 

procedure for population size times, and population size of individuals are generated. 
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     From the discussion above, it is obvious that the method of initializing the population 

cannot guarantee diversity of the population. On the other hand, it makes all of the 

individuals generated satisfy the constraint conditions. 

 

Crossover 

 

     The crossover procedure is rather important for GA because it enlarges chance of 

finding the optimal individual. The traditional crossover technique used in other studies 

will generate many infeasible solutions in the face of the constraint conditions, and 

hence, the validity test of individuals generated or repairing procedure for individuals is 

additionally needed, which decreases greatly the convergence speed and the possibility 

of finding the optimal solution for GAs. In this study, based on the partially mapped 

crossover (PMX) and the order crossover (OX), an EOX technique is borrowed from 

Gao et al. (2008). EOX cannot only make the child individuals generated satisfy the 

constraint conditions, but also keeps the advantages of PMX and OX. The crossover 

procedure is as follows (Gao et al., 2008): 

 

Step 1: Assume that two parent individuals are A and B, respectively, and one 

offspring is C, a gene segment S = 












p

p

sss

sss

kkk

eee

...,,,

...,,,

21

21

 is selected from a parent 

individual A at random. 

 

Step 2: Let  = {e
1s
,… , e

ps }, B = 








n

n

BBB

BBB

kkk

eee

...,,,

...,,,

21

21 and find e
iB  such that            

e
iB  , and e

jB   for 1 ≤ j ≤ i − 1. Let B’ = 












121

121

...,,,

...,,,

i

i

BBB

BBB

kkk

eee
,                       

B”= 








n

n

BBB

BBB

kkk

eee

...,,,

...,,,

21

21 . For B”, remove the genes whose jobs are in   and denote 

by B” the remaining gene segment. 
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Step 3: The offspring C consists of three segments: C=S
1
S

2
S 3 , where S

1
=B‟, S

2

=S, and S 3 =B”. 

 

     Through the procedure above, two new offspring are created. At the end of this 

procedure, we have two parent offsprings and two new child offsprings. Among these 

four offspring, fittest two individuals are selected for the next iteration. An example is 

given in Figure 4.11. In this example, we have seven jobs and three machines. 

 

 

Figure 4.11 An example for EOX operation 

 

Mutation 

 

     In mutation phase of GA, firstly a chromosome to be mutated among population 

members is randomly selected with the prespecified mutation probability. After that, a 

gene from the individual x Gij ,, = 








j

j

k

e
 (j = 1, …, n), which will be mutated, is randomly 

selected.  Afterwards, a new individual is generated by replacing machine number (k j ) 

in that gene with another machine number in set of M machines. Machine number k j  in 

the corresponding position is randomly selected however selection of machine as            

k i   k j  is prohibited. The randomly selected machine replaces the old machine if it 
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improves the fitness value of that chromosome or not. At the end, randomly selected 

chromosome replaces the new one anyway. An example is given in Figure 4.12. 

 

 

Figure 4.12 An example of mutation operation for GA 

 

4.8 Initial Population Generation Method 

 

     An initial population is a starting point for the multidirectional evolution search 

processes. The simplest method of generating an initial population is random generating 

and is used in most of the COPs. The only assumption that has to be held during the 

random generation of the individuals is maintaining a proper form of individuals. In fact, 

the job vector of individual is a permutation of n unique numbers. In the machine vector 

of individual, every number from the range one to m is feasible in every position. In 

particular, using a high-quality initial population helps reduce algorithms‟ run time. The 

proposed DE algorithm uses a mixture of a combination of user-supplied initially 

constructed sequence of individuals and randomly generated individuals to form an 

initial population. Creating a user-supplied initial population requires a substantial 

amount of computation while using a randomly generated initial population reduces 

search efficiency. As a result, we propose a method that is a mixture of these two 

methods. The %16.7 of the individuals in the initial population is generated using the 

proposed method.  

 

     In this study, selected number of individuals in initial population of the DE algorithm 

is generated by taking advantage of a heuristic, the Slicing heuristic (SL) produced by 

Kurz and Askin (2001). SL can be described as `Cutting up a single machine solution‟. 

The goal is to use a quick method to find a sequence for a single machine problem and 

quickly slice it up into m pieces. The general algorithm can be described as follows: 
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Step 1. Find a quick solution to the single machine problem with makespan                    

C max (single). 

Step 2. Break the single machine sequence into m groups, one for each machine. 

 

     A target makespan for each (parallel) machine is calculated as C max (single)/m from a 

SMS problem. After that, jobs are taken from the single machine solution and added to 

the current machine until the schedule length of that machine exceeds C max (single)/m. 

At that time, the current machine is `closed‟ and the next machine is `opened‟. This 

continues until all jobs have been assigned to a machine. The final job on a machine is 

the last real job.  

 

     Important considerations include ensuring that all m machines are used, and what to 

do if less or more than m machines, m’ number of machines used (or if one machine is 

used much less than another). At this time, if m‟ < m machines are used, the target is 

reset to m‟/m times the original target. If not all jobs are assigned to machines then the 

target is reset to the number of jobs to be scheduled/number of placed jobs times the 

original target.  

 

     The implemented heuristic is as follows. 

 

Step 1: Use the Nearest-Neighbor Heuristic (NNH) to solve a TSP and find a 

near optimum solution for SMS problem. Call the resultant makespan                 

C max (single). The solution gives the job order to be used through the algorithm. 

Step 2: Set an approximate target t = C max (single)/m. 

Step 3: Let j be the index of the current job examined. Let mc = 1 and j = 1. 

Step 4: Schedule job j on machine mc. If all jobs are scheduled, go to step 7. 

Step 5: If machine number mc has a schedule length < t, place job j on machine 

number mc and let j = j  + 1. Go to Step 4. 
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Step 6: If machine number mc has a schedule length   t, close machine number 

mc. Let mc = mc + 1. Go to Step 5. 

Step 7: If the number of machines used is less than that available (mc < m), let            

t new  = t old *(mc/m). Unschedule all the jobs and go to step 3. 

Step 8: If more than m machines were used (mc > m), let k be the number of jobs 

placed on the first m machines. Let t new  = t old *(n/k,). Unschedule all the jobs and 

go to step 3. 

Step 9: If m machines were used, DONE. 

 

     According to step one of the SL given above, we find an initial single machine 

solution with the help of NNH heuristic. While computing makespan value in that 

heuristic, we use setup times and processing times together. And slice computed 

makespan value into m pieces. Here we should use m number of machines. The 

procedure of the NNH heuristic is given. 

 

Nearest-Neighbor Heuristic (Karg and Thompson, 1964) 

 

Step 0: (Initialization) Let N = (1, 2,…, n) be the set of jobs we want to schedule.       

Choose a starting point i 0   N; let V = N \ i 0  be the set of jobs we still have to 

visit and let S = (i 0 ) the current partial sequence.  

Step 1: Choose the next job. Let i 1  be the last job in the sequence S. Find the 

closest job j in V according to setup time matrix. If there are alternative optima, 

break ties arbitrary. 

Step 2: Expand partial sequence. Append job j at the end of partial sequence      

(S (S , j)) and cancel it from the set of jobs yet to be sequenced (VV \ j)). 

Step 3: If V =   , i.e. there is no job left to be sequenced, close the route; 

otherwise go to step 1. 
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4.9 Test Problem Generation 

 

     In this section of study, some experiments were performed to evaluate the 

performance of proposed methods for the P/ST sd /C max  problem. These experimental 

runs contain up to 140 jobs to be scheduled on up to 10 machines. However, for each 

machine level, number of jobs is set to different values and this style of test problem 

generation method is borrowed from Sivrikaya et al. (1999). While generating test 

problems, processing times and sequence dependent setup times for each job are chosen 

randomly from a uniform distribution and this procedure will be explained in detail. We 

will first begin by describing the experimental design of setup times. 

 

     In the triangle inequality theorem the length of any side of a triangle cannot be less 

than or equal to the sum of the lengths of the other two sides. If we convert this 

explanation to the P/ST sd /C max  problem, according to setup time matrix point of view, 

we can say that direct setup time between two jobs is always no longer than any non-

direct setup time between two jobs and this theorem will be used in sequence dependent 

setup time generation section. 

 

     In the randomly generated test problems, each value of sequence dependent setup 

time between jobs (s ji , , i j) is drawn from a uniform distribution with a standard 

deviation of s . And in these generated matrices, the setup time values of s ii ,  are set to a 

large value because we do not want them to be taken into account. Setup times, that 

satisfy the triangle inequality are desired for this study because we want direct path 

between two jobs to be always no longer than any non-direct path between two jobs. 

Moreover, the SL that is used for generating initial population also requires the triangle 

inequality. That is because, if we do not use triangle inequality, we cannot construct a 

near optimal solution in step one of the heuristic and this affects the rest of the SL.  
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     For satisfying triangle inequality, we should not generate a matrix with two values 

lower than half the largest value in the matrix, if it is so than the triangle inequality may 

not hold for that matrix. To prevent this, the restriction is that the lower bound must be 

at least half the upper bound that has been introduced. Let a be the lower bound and b be 

the upper bound. Then, for uniformly distributed setups, s =
2

ba 
 and 2

s =
12

)( 2ab 
. 

Solving these two equations yields a = s - 3 * s and b = s + 3 * s . If the triangle 

inequality is to hold, then 2a   b and s 
3*3

1
* s =

9

*3 s . Thus, only the mean 

value of sequence dependent setup times must be specified. We select s = 250 so that 

s  is rational. Now setup time matrices always satisfy the triangle inequality and also in 

this study there may only be asymmetric matrices.  

 

     According to processing times point of view, each value of processing time (p j ) is 

drawn from a uniform distribution with standard deviation s . However, the range of the 

processing times must correspond to the setup times in some way. Following Morris and 

Tersine (1990), the mean of the processing times can take on one of two values: p = s  

or p =10* s . The range of processing times in this research is set at either [0.94* p , 

1.06* p ] or [0.4* p , 1.6* p ] which is borrowed from Kurz and Askin (2001). 

 

     Problem data can now be characterized by three factors: range of processing times, 

mean of processing times and variability of setup times. Each of these factors is tested at 

two levels: low and high. The meanings of these levels are shown in Table 4.1. 
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Table 4.1 Factor levels for test problems. 

Factor Low High 

Range of Processing Times p~Unif(0.94* p ,1.06* p ) p~Unif(0.94* p ,1.06* p ) 

Mean of Processing Times 
p = s  p =  10* s  

Setup Times Structure Asymmetric Asymmetric 

Std. Dev. of Setup Times 

S~Unif( s - 3 * s , s + 3 * s ) 

s =250 

s =
9

*5.1
*

2

1 s  s =
9

*5.1 s  

 

     According to Table 4.1 given above, there are two types of factor levels, low and 

high. According to low level, values in setup time and processing time matrices take 

smaller values than high level and this provides us with the information of how our 

proposed algorithms react for different types of problems. The test problems were 

generated using the method of Sivrikaya and Ulusoy (1999), which was also adopted by 

Bilge et al. (2004). According to this method, four levels of machine numbers have been 

determined. For each machine level, five levels of job numbers have been used. The 

number of jobs in each machine level is different from each other. The number of the 

jobs in each machine level is different from each other. These machine and job levels 

combinations are given in Table 4.2 below.  
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Table 4.2 Machine and related job levels. 

Number of Machines Number of Jobs 

m = 2 n = 10 

n = 20 

n = 40 

n = 60 

n = 80 

m = 4 n = 20 

n = 40 

n = 60 

n = 80 

n = 100 

m = 7 n = 40 

n = 60 

n = 80 

n = 100 

n = 120 

m = 10 n = 60 

n = 80 

n = 100 

n = 120 

n = 140 

 

4.10 Setting Control Parameters 

 

     Setting correct control parameters is an important feature for heuristic algorithms. As 

it is discussed before, proper selection of these parameters is required to get accurate 

results within fewer function evaluations. Control parameters include NP, F, CR and 

variant (schema) used. For experimental study, a problem instance with 60 jobs and 4 

machines is selected among the randomly generated test problems and for each 

combination of these control parameters the proposed algorithm is run to solve this 

problem instance. The effects of these control parameters on heuristic algorithms were 

discussed in section 3.7 and will not be again discussed.  

 

     Determining the correct settings of control parameters is a hard work. In order to 

determine the correct settings for these parameters for the solution of the PMSDST 
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problem, two different control schemes were studied: first, we set the mutation-scale 

factor F to a fixed value within the set F   {0.3, 0.5, 0.7, 0.9,
 

)*2/()2( NPCR }, and 

experimented with various crossover rates CR   {0.3, 0.5, 0.7, 0.9}, different 

population sizes NP   {n, 2*n, 3*n} (n = number of the jobs to be scheduled) and 

different variants (schemas) {DE/rand/1/bin, DE/rand/2/bin, DE/best/1/bin, 

DE/best/2/bin and DE/randtobest/bin}. According to these combinations, the hybrid DE 

algorithm is run for 2400 times. The hybrid DE algorithm is used while selecting the 

correct set of control parameters because the pure DE algorithm is not as effective as 

expected for the PMSDST problem.   

 

     The influence of the various combinations of the settings of the control parameters on 

the performance of the hybrid DE algorithm is demonstrated in regard to %offset value 

of each parameter setting. Equation (3.10) shows how the value of %offset is calculated. 

 

     This hybrid version includes the pure DE algorithm hybridized with the VNS local 

search procedure. It is run for 10 times and each run starts from a different random 

number seed. The average value of the best objective function values obtained over the 

ten test runs are then used to calculate the %offset value for each parameter 

combination.  

 

     Table 4.3 gives the %offset values while NP is three times n (numbers of jobs) and 

the schema is DE/rand/1/bin. The lower bound is first calculated, and this value is used 

as the Cost* value to compute the %offset values. Also, in this table the column named 

as Best shows the best value obtained at the end of the ten runs made and Std. Dev. 

column shows the standard deviation of ten runs made.  The cell inside %offset column 

is marked and this cell shows us best % offset value obtained for DE/best/1/bin schema.  
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Table 4.3 Computation of average %offset values while NP=3xn 

and variant=DE/best/1/bin 

 

 

     Figures 4.13 to 4.17 demonstrate the influence of the various combinations of settings 

of the control parameters on the performance of the hybrid DE algorithm in regard to 

%offset values for different DE schemas and NP equal to 3xn. Here different variants of 

DE schema are used.  

 

     In these figures, each curve in the consecutively illustrated five charts corresponds to 

a different value for F and demonstrates the variation of %offset in regard to the various 

CR rates (X-axis). The best objective function values obtained by the algorithm are 

traced as data labels on the lowest curve of each chart. 
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Figure 4.13 Influence of the control parameters on the performance of the DE algorithm in 

regard to %offset from the lower bound for the DE/best/1/bin schema 

 

 

Figure 4.14 Influence of the control parameters on the performance of the DE algorithm in 

regard to %offset from the lower bound for the DE/best/2/bin schema 
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Figure 4.15 Influence of the control parameters on the performance of the DE algorithm in 

regard to %offset from the lower bound for the DE/rand/1/bin schema 

 

Figure 4.16 Influence of the control parameters on the performance of the DE algorithm in 

regard to %offset from the lower bound for the DE/rand/2/bin schema 
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Figure 4.17 Influence of the control parameters on the performance of the DE algorithm in 

regard to %offset from the lower bound for the DE/randtobest/bin schema 

 

     The best % offset values are obtained while F is 0.3 or the rule of Zahari (2007) for F 

value is used. For example, in Figure 4.13, the best objective function value is obtained 

while F is 0.3 with a 5.24 %offset value. In Figure 4.15, the best objective function 

value is obtained while F is F by rule with a 4.987 %offset value. It can be easily 

noticed from the figures that % offset values for each parameter combination are not too 

much distinct from each other. This tells us that different parameter combinations do not 

give too distinct solutions from each other. 

 

     From the discussion above, it is obvious that the parameter combination having 

lowest %offset value will be selected as the best parameter combination for the hybrid 

DE algorithm and this combination will be used to test the performance of the proposed 

method using the test problems generated. From the definition, the lowest % offset value 

obtained according to this study is 4.106%. Parameter combination used to find the best 

value is as follows: NP is 3*n, F = F by rule, CR = 0.7 and variant = DE/randtobest/bin. 
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4.11 Computational Study 

 

     In previous sections of this chapter, we have discussed the application of proposed 

hybrid DE algorithm, GA and VNS algorithm to the PMSDST problem. Now we should 

evaluate the effectiveness of these three methods with respect to each other. In this 

section of this chapter, the results of the test problems according to these three different 

solution approaches will be discussed. 

 

     All of the methods are coded in MATLAB program and test problems are run on an 

Intel Core 2 Duo 2.00 GHZ computer with 3 GB of Ram.  

    

     Initially, computation of lower bounds is discussed. For the randomly created test 

problems, optimum solutions cannot be known because exact algorithms cannot 

compute optimum values for the PMSDST problem in a reasonable time. Therefore, we 

should compute a lower bound for these test problems to compute the %offset values for 

each method and compare them with each other. 

 

     The easiest way to compute a lower bound for each test problem is adding the 

processing times of each job in that problem to total processing time. Then, we find the 

smallest unused setup time value in setup time matrix and add it to total setup time. This 

procedure lasts for n (number of jobs) – m (number machines) times because this is the 

number that how many times setup is done in a problem. Finally, we add this total setup 

time to total processing time and find total time. At last we finish with dividing total 

time number to m (number of machines). The computed value is the lower bound for 

generated test problem.  

 

     According to the given formulation (3.10), Cost DE  is the average makespan value of 

the schedule achieved by the DE algorithm for a specific test problem at the end of 10 

test runs. Cost* is the corresponding cost of the existing best known solution for the 
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specific test problem. In this study, Cost* corresponds to the lower bound values 

computed for each test problem.   

 

     For all the test problems in this study, the maximum number of iterations is set to    

50 * n. This means that the iteration number is 50 times the number of jobs and the 

iteration number increases as the number of jobs increases. All other performance 

measures used are described in section 3.8. 

 

     Figures 4.18 to 4.25 give the computational results according to %offset performance 

criteria for the three approaches. The first four figures are for Low type problem and the 

other four are for High type problem. In Low type problem, each of the figures 

corresponds to two, four, seven and ten machines respectively with predefined job 

numbers.



 

 

1
3
9
 

 

Figure 4.18 %Offset values for two machines case Low type test problems. 

 

 

Figure 4.19 %Offset values for four machines case Low type test problems 
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Figure 4.20 %Offset values for seven machines case Low type test problems 

 

 

Figure 4.21 %Offset values for ten machines case Low type test problems 
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Figure 4.22 %Offset values for two machines case High type test problems 

 

 

Figure 4.23 %Offset values for four machines case High type test problems 
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Figure 4.24 %Offset values for seven machines case High type test problems 

 

 

Figure 4.25 %Offset values for ten machines case High type test problem
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     From the figures, it is obvious that the hybrid DE algorithm outperformed GA and 

VNS algorithm in most of the test problems. For a deeper observation, let us look at 

Figure 4.18 for two machines and Low type test problem; the hybrid DE algorithm gives 

us the best %offset values in this case. Here GA comes second and VNS algorithm 

comes third. In these problem sets, it is obvious that the VNS algorithm does not give us 

consistent results but it surpasses GA in some of the problems. In addition to this, when 

we look at four machines case in Figure 4.19, the result is the same, however in this case 

the VNS algorithm becomes more consistent and gives us better results, and it also here 

surpasses hybrid DE and GA in a very few test problems. The hybrid DE still gives us 

the best solutions. If we look at Figure 4.20 for seven machines case, still the hybrid DE 

algorithm is the best but VNS surpasses it in some of the problems. In addition, VNS 

here is more consistent and outperforms GA in most of the test problems. For 40 job 

problems, VNS algorithm gives the best results. Also in some big sized problem sets, 

VNS algorithm again surpasses the hybrid DE algorithm. When we look at Figure 4.21 

for ten machines case, VNS algorithm outperforms the hybrid DE algorithm in some of 

the 60 and 80 job problems, however the hybrid DE is then the best algorithm for 100, 

120 and 140 job problems. We can easily say that as the number of jobs and number of 

machines gets higher, in other words, the problem becomes more complex, the hybrid 

DE algorithm begins to give better results. In Figure 4.20, the difference between the 

hybrid DE algorithm and other algorithms is not very clear, however in Figure 4.21 it is 

very obvious that for small sized problems with 60 and 80 jobs. VNS algorithm and the 

hybrid DE algorithm give nearly the same quality results. But the hybrid DE algorithm is 

better when problem size gets bigger. 

 

     When we look at High type test problems, we can see from Figures 4.22 to 4.25 that 

%offset values for all the test problems are reduced apparently for all the methods. The 

reason of this reduction is the processing times for jobs is ten times higher than the mean 

value of sequence dependent times in High type problem case. By this way, the 

percentage of processing times in total machine time gets higher as processing times get 

bigger.  In addition to this, for High type test problems it is less important to get a 
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perfect schedule because the effect of getting a perfect schedule is reduced by the 

reduction of the percentage of total setup time in the total machine time. Therefore, the 

percentage offset values for High type test problems are relatively low values. 

 

     When we look at Figure 4.22, we can say that the hybrid DE algorithm outperformed 

the other two algorithms for two machines case. The VNS algorithm gives more 

inconsistent results than the other two algorithms. For this problem type, the %offset 

values nearly remain the same. For four machines case in Figure 4.23, the results are the 

same as in two machines case. For seven machines case in Figure 4.24, it is clear that the 

hybrid DE algorithm is again the best according to %offset values for each problem 

type. In addition to this, here as the problems size gets bigger, the hybrid DE algorithm 

begins to give more quality and consistent results than the other two algorithms. Also in 

this figure, you can see that as the problem size gets bigger, the VNS algorithm and GA 

begin to give slightly better quality and consistent results compared to small sized 

problems. In Figure 4.25, it can be see that GA gives the worst results. The difference 

between the VNS algorithm and the hybrid DE algorithm now gets closer. But still the 

hybrid DE algorithm outperforms the other two algorithms. 
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Table 4.4 Comparison of the methods according to mean % offset values for ten problem instances in each 

problem set 

     LOW   HIGH  

    
Hybrid DE 

% 
GA 
% 

VNS 
% 

Hybrid DE 
% 

GA 
% 

VNS 
% 

2 Machines 10 Jobs 6.79 9.43 22.73 1.56 2.71 4.42 

  20 Jobs 3.78 7.47 14.39 0.86 2.26 1.99 

  40 Jobs 2.67 6.96 11.35 0.67 2.21 2.31 

  60 Jobs 2.53 6.83 8.85 0.58 2.31 1.59 

  80 Jobs 2.69 6.99 6.25 0.57 2.34 1.47 

4 Machines 20 Jobs 5.53 9.08 17.37 1.35 6.85 6.47 

  40 Jobs 6.23 8.15 10.72 1.14 3.83 5.36 

  60 Jobs 5.62 8.16 9.22 1.17 3.54 2.73 

  80 Jobs 4.90 7.82 8.54 1.39 3.28 3.29 

  100 Jobs 4.64 7.96 9.18 1.46 3.24 3.01 

7 Machines 40 Jobs 14.46 15.30 10.08 1.77 10.21 7.83 

  60 Jobs 6.85 14.14 14.37 1.77 9.95 6.27 

  80 Jobs 9.01 13.81 11.93 1.93 8.41 5.09 

  100 Jobs 10.62 13.15 12.57 1.98 7.80 4.59 

  120 Jobs 10.05 12.79 10.61 2.31 7.58 4.95 

10 Machines 60 Jobs 18.94 26.53 20.46 3.14 18.27 6.86 

  80 Jobs 14.59 22.12 14.45 3.18 15.28 6.70 

  100 Jobs 5.40 19.46 13.26 3.73 13.77 5.98 

  120 Jobs 2.10 18.58 11.98 3.45 12.95 5.57 

  140 Jobs 2.11 17.25 10.34 2.26 20.21 5.40 

 

     Table 4.4 gives us the results of average %offset values of generated test problems 

for each machine and job number combination. From this table, it can be seen that the 

hybrid DE algorithm always gives us the best %offset values for Low type test problems 

except for the 7 machines 40 jobs, and 10 machines 80 jobs cases where the VNS 

algorithm outperforms the hybrid DE algorithm by 10.08% offset value compared to 

14.46% and 14.45% offset value compared to 14.59% respectively. When the VNS 

algorithm and GA is compared, it can be observed that as the problem size gets bigger, 

the VNS algorithm gives more quality and consistent results than GA. Finally, the 

hybrid DE outperforms the other two algorithms in almost all problem types. It can be 

concluded that for small sized problems GA and for big sized problems the VNS 

algorithm can be an alternative approach.  
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Figure 4.26 Low type problem mean %offset values 

 

 

Figure 4.27 High problem type mean %offset value
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Table 4.5 Comparison of the methods according to mean % offset of minimum values obtained in each 

problem set 

     LOW   HIGH  

    
Hybrid DE 

% 
GA  
% 

VNS 
% 

Hybrid DE 
% 

GA   
% 

VNS 
% 

2 Machines 10 Jobs 6.65 8.73 13.99 0.68 2.37 2.06 

  20 Jobs 3.70 6.95 8.79 0.80 2.09 1.28 

  40 Jobs 2.60 6.66 6.49 0.63 2.07 1.19 

  60 Jobs 2.35 6.53 3.97 0.53 2.19 1.14 

  80 Jobs 2.59 6.87 3.46 0.52 2.30 1.13 

4 Machines 20 Jobs 4.12 8.51 6.05 1.24 5.05 3.18 

  40 Jobs 3.29 7.57 5.44 1.07 3.47 2.74 

  60 Jobs 4.44 7.87 5.28 1.08 3.24 1.64 

  80 Jobs 4.39 7.37 4.36 1.27 3.10 1.47 

  100 Jobs 4.52 7.52 5.91 1.40 2.96 1.47 

7 Machines 40 Jobs 11.33 14.03 9.66 1.67 8.10 5.94 

  60 Jobs 6.74 13.47 9.66 1.51 8.29 4.55 

  80 Jobs 7.72 13.36 9.19 1.74 7.17 3.29 

  100 Jobs 9.43 12.50 9.74 1.85 6.16 2.48 

  120 Jobs 9.23 12.24 8.51 2.21 6.05 2.84 

10 Machines 60 Jobs 18.26 25.57 17.52 2.55 15.94 5.50 

  80 Jobs 14.39 20.99 13.54 2.81 13.92 5.62 

  100 Jobs 3.08 18.82 12.22 2.95 12.03 4.41 

  120 Jobs 1.90 17.16 11.05 3.10 11.22 4.58 

  140 Jobs 2.05 15.53 9.98 2.06 10.08 4.08 

 

     Table 4.5, Figure 4.28 and 4.29 give us information about the mean %offset values of 

minimum values taken in ten runs made in each problem set. As it is illustrated in Figure 

4.28 for Low type test problems, the hybrid DE algorithm outperforms the other two 

algorithms. Here VNS algorithm comes second and GA comes third. But it can be seen 

from Figure 4.28 that the hybrid DE algorithm is not the best one all the time since the 

VNS algorithm works better with some test problems. On the other hand if we look at 

Figure 4.29, we can see that the same conclusion can be made for the High type test 

problems. GA and the VNS algorithm have started to give bad results as the problem 

size gets higher, as it is in most of the Low type test problems. In addition to this, apart 

from the results in Low type problems, in High type problems the VNS algorithm could 

not pass the hybrid DE algorithm not even in a single problem set. At the end, we can 
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say that the hybrid DE algorithm is the best approach according to finding the minimum 

in all test runs made. 

 

     Table 4.6 given below intensifies the things discussed in previous chapter. As it is 

illustrated in the Table 4.6, the mean standard deviation value of VNS algorithm is 425 

for Low case and 901 for High case; this means that there is a big difference between the 

results found in ten test runs for each problem set. Likely, GA also has high a standard 

deviation value of 166 for Low type and 493 for High type problems. On the other hand, 

for the hybrid DE algorithm the standard deviation values are 75 and 92 for Low and 

High type problems respectively. These values are smaller than the smallest values 

found for the algorithms. Table 4.6 also gives us the mean %offset values for the entire 

test problems solved. From this table, you can see that the hybrid DE algorithm 

outperforms other two proposed algorithms. On the other hand, as we have discussed 

before for Low type, mean %offset values are greater than the mean %offset values for 

High type. One can also see that in Low type problems GA and VNS algorithm nearly 

give the same mean %offset values but in High type problems VNS algorithm is better 

than GA. 

 

Table 4.6 Comparison of the methods according to mean %offset  

and standard deviation values 

 

 

 



 

 

1
4
9
 

 

Figure 4.28 The mean %offset values according to minimum values for Low type problems 

 

 

Figure 4.29 The mean %offset values according to minimum values for High type problems
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Table 4.7 Comparison of proposed three methods according to mean % effort values 

      LOW     HIGH   

    
Hybrid DE 

% 
GA 
% 

VNS 
% 

Hybrid DE 
% 

GA 
% 

VNS 
% 

2 Machines 10 Jobs 3.24 28.86 14.72 2.60 16.36 11.69 

  20 Jobs 16.21 29.80 21.25 11.70 42.88 35.70 

  40 Jobs 16.76 27.99 24.98 4.61 38.50 28.32 

  60 Jobs 14.22 20.82 30.15 4.70 24.12 31.84 

  80 Jobs 11.03 17.97 42.62 4.05 26.99 37.20 

4 Machines 20 Jobs 15.55 50.41 26.90 5.56 57.34 19.56 

  40 Jobs 14.93 33.96 35.38 6.08 35.95 30.30 

  60 Jobs 8.57 28.84 26.98 5.11 28.00 29.20 

  80 Jobs 7.28 22.75 30.59 3.26 24.31 37.04 

  100 Jobs 6.85 31.33 31.63 1.69 22.65 37.86 

7 Machines 40 Jobs 10.08 19.72 20.21 5.35 44.05 55.17 

  60 Jobs 6.32 15.61 38.75 3.69 27.92 25.72 

  80 Jobs 5.31 12.94 37.15 2.84 24.13 33.25 

  100 Jobs 4.36 10.26 32.28 2.15 16.51 41.89 

  120 Jobs 4.28 14.18 33.59 1.26 18.01 39.74 

10 Machines 60 Jobs 6.21 13.57 34.07 2.72 14.91 29.86 

  80 Jobs 5.92 11.35 31.67 2.12 9.14 32.81 

  100 Jobs 5.97 10.46 28.40 2.00 11.93 35.65 

  120 Jobs 6.49 9.01 22.92 2.11 11.55 41.55 

  140 Jobs 5.32 8.48 26.58 2.66 11.31 36.77 

 

     We should also talk about the mean %effort values for each problem set. Table 4.7, 

Figure 4.30 and Figure 4.31 give us information about the mean %effort values for the 

three methods according to the iterations made to reach the best value in each test 

problem. With the help of these performance criteria, we can easily see how much time 

it takes to reach the best value for an algorithm in each test problem. 

 

     Figure 4.30 shows that the hybrid DE algorithm needs much less effort to reach its 

best value than other two algorithms in Low type problems. Here from GA point of view 

it takes GA much iterations for small sized problems, however it takes less effort for 

large sized problems. But for seven and ten machine problems, GA and the hybrid DE 

algorithm need nearly the same number of iterations. We can conclude that it takes the 

hybrid DE algorithm much less iterations to reach its best value in both small sized and 
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big sized problems. On the other hand, GA and VNS algorithm need nearly the same 

effort for small sized problems. However, it takes less effort for the VNS algorithm to 

reach its best solution for big sized problem compared to GA. 

 

     From Figure 4.31, the hybrid DE algorithm needs far much less effort than the other 

two algorithms in High type test problems. Here it takes again nearly the same effort to 

reach its best value for GA and the hybrid DE algorithm for ten machine problems. 

However for two machines, four machines and seven machines cases, GA and VNS 

algorithms need more efforts to reach their best values. These two algorithms reach their 

best values in nearly the same number iterations.  

 

     Consequently, it is obvious that the hybrid DE algorithm needs much less effort than 

the other two methods in all test problems. And it can be seen from Table 4.7 that the 

algorithms use %55 percentage of the effort at most, which is for the VNS algorithm. 
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Figure 4.30 The mean %effort values for the Low type test problems 

 

 

Figure 4.31 The mean %effort values for the High type test problems 
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4.12 An Example for the Application of The Differential Evolution Algorithm for 

the Parallel Machine Scheduling Problem 

 

     For better understanding, an example of how a PMSDST problem is solved by the 

DE algorithm is given below. Before starting the algorithm, we should first set the 

control parameters NP, F, CR, X UB

M , XUB

M , X UB

N  and X LB

N . These control parameters are 

given in Table 4.8 below. Afterwards, we should generate an initial population 

according to equations 4.10 and 4.11 given. The randomly generated initial population is 

given in the Table 4.9 with five individuals.  

 

Table 4.8 Control Parameters of Proposed Hybrid DE Algorithm 

Decision Variables n 10 

Number of Machines m 2 

Population Size NP 3*n = 30 

Scaling Mutation Factor F 0.21 

Crossover Rate Constant CR 0.7 

Upper Bound for Jobs XUB

M  8 

Lower Bound for Jobs X LB

M  0 

Upper Bound for Machines XUB

N  2 

Lower Bound for Machines X LB

N  0 

 

Table 4.9 Generated initial population 
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     Each of the individual in the population has one job vector and one machine vector. 

Now, we will use job vector to form a job permutation with the help of LOV rule. After 

that, we will use machine vector to find a machine sequence with the help of sub-range 

encoding rule. Table 4.10 shows the computation of job permutation with the help of 

LOV rule and Table 4.11 shows the computation of machine permutation with the help 

of sub-range encoding rule. 

 

Table 4.10 Computation of job permutation 

 

 

Table 4.11 Computation of machine permutation 

 

 

     Table 4.12 shows us the job permutations and machine permutations for each of the 

five individuals in the population. This table now will be used to compute the objective 

function values of each individual.  

  

 

Table 4.12 Population of job and machine permutations 

 

 



155 

 

 

     To compute the objective function values of each individual, we use the setup time 

and processing time matrices given in Tables 4.13 and 4.14 respectively.  

 

Table 4.13 Setup time matrix 

 

 

Table 4.14 Processing time matrix 

 

 

     Figure 4.32 and 4.33 given below shows us how to compute the setup times for an 

individual. Figure 4.32 gives the sequence on the first machine and computes the setup 

time value on that machine and Figure 4.33 gives the sequence on second machine and 

computes the setup time value on that machine.  

 

 

Figure 4.32 Computation of total setup time for machine 1 

 

 

   Figure 4.33 Computation of total setup time for  

    machine 2 
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     After computing total setup times on each machine, we should now also compute the 

total processing times on each machine. Again Figures 4.34 and 4.35 below give 

computation of total processing time in machine one and machine two respectively. 

 

 

         Figure 4.34 Computation of total processing time for machine 1 

 

 

              Figure 4.35 Computation of total processing time for  

           machine 2 

 

     Table 4.15 gives us the total setup time and processing time values, in other words, 

the makespan values for each machine in each individual. The machine having the 

highest makespan value is said to be the makespan value of that individual.  

 

Table 4.15 Computed makespan values for each individual 

 

 

     As the next step, we should apply mutation operation to all of the individuals in the 

population. But in this example, only the mutation operation application to the first 

individual will be explained. To apply mutation operation to job vectors, we randomly 

select a base vector (r1) and two difference vectors (r2 and r3) among population 

members. In our example, these vectors are chosen as r1=5, r2=2 and r3=3, and all 

selected vectors are distinct from each other as required. While applying mutation 

operation to machine vectors of each individual, base vector and difference vectors are 

assumed to be the same with the ones used in mutation operation for job vector. Table 
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shows the mutation operation of job vectors and Table 4.16 shows the mutation 

operation of machine vectors.   

 

Table 4.16 Mutation operation 

 

 

Table 4.16 Mutation operation (cont.) 

 

 

     After applying the mutation operation to the first individual of initial population, we 

now apply crossover operation to this individual. Table 4.17 gives an example for the 

application of crossover operation to the job vector and Table 4.18 gives an example for 

the application of crossover operation to the machine vector for the first individual.  
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Table 4.17 Crossover operation for job vector 

 

 

Table 4.18 Crossover operation for machine vector 

 

 

     Now it is time for the selection operation. To apply selection operation, the objective 

function value of the trial individual should be computed. For this reason, we should 

convert continuous valued vectors to discrete valued vectors. Tables 4.19 and 4.20 show 

us how to convert continuous values to discrete vectors in each vector.   

 

Table 4.19 Converting continuous values in job vector to discrete values by LOV rule 
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Table 4.20 Converting continuous values in machine vector to discrete values by sub-range encoding rule 

 

 

     The computation of the objective function values, setup times and processing times, 

for each machine is computed and shown in Figures 4.36, 4.37,4.38 and 4.39. 

  

 

   Figure 4.36 Computation of total setup time for machine 1 

 

 

    Figure 4.37 Computation of total setup time for machine 2 

 

 

    Figure 4.38 Computation of total processing time for machine 1 

 

 

    Figure 4.39 Computation of total processing time for machine 2 

 

     While applying the selection operation, we need to compare the makespan values of 

the old vector and the new vector. The makespan value of the newly generated vector is 

167, while the makespan value of the old vector is 142. It is obvious that newly formed 

individual cannot replace its counterpart in the previous iteration. 
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Table 4.21 Computed makespan value of newly generated vector 

 

 

Table 4.22 Population at the end of iteration one for individual 1 

 

 

     The newly generated individual in the end does not replace the old one. Now, we 

should start from the beginning and apply all of the explained operations to the second 

individual.  
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CHAPTER FIVE 

CONCLUSION AND FUTURE RESEARCH 

 

     The setup operation has for long been ignored or considered as a part of the 

processing time for the case of setup time. While this assumption simplifies the analysis 

and/or reflects certain applications, it adversely affects the solution quality for many 

applications which require explicit treatment of setup. Also, the presence of setup times 

makes us approximate our problems to real life problems. The importance of setup times 

has been investigated and it was found that sequence dependent setup times were 

significant for the effective management of manufacturing capacity and to reduce 

inventory levels and improve customer service.  

 

     This study presents solution methods for the specific manufacturing problems for 

single machine and parallel machine scheduling problems. These problems all include 

setup times when a machine is switched from one job to another job. Also for these 

problems, our major goal or in other words objective is to minimize makespan. This 

objective leads us in parallel machine scheduling problem to balance the loads between 

the machines.  

 

     For most manufacturing environments, mathematical programming models are too 

complex and time consuming to implement, because even the simplest planning or 

scheduling problem may include over 100 constraints. Since these problems are NP-hard 

problems, exact techniques found in the literature fail to find optimum solutions or take 

too much computation time to solve. Instead of exact methods, in this study we have 

decided to take heuristic methods to find near optimum solutions for these hard 

problems in a reasonable time.  
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     In this thesis, we have made an application of a newly generated algorithm, the 

Differential Evolution (DE) algorithm, to single machine and parallel machine 

scheduling problems with sequence dependent setup times. Our study can be seen as a 

two step approach. At first, we have applied this new method to the single machine 

scheduling problem. We think that the application of this method for this problem can 

give us guidance while applying it to the parallel machine case. To the best of our 

knowledge, this is the first known application of the DE algorithm to the parallel 

machine scheduling problem. 

 

     The application was not very difficult in the single machine case because the 

representation schema of the DE algorithm fits for single machine problems. However, 

the DE algorithm works with continuous parameters and we have to change these 

continuous parameters to discrete ones because we have to find job permutations to 

compute the objective function value of each individual. For this reason, we have used a 

rule called Largest Order Value (LOV) rule to convert continuous values to discrete 

values.  

 

     We have found the best parameter combination and tested the proposed DE algorithm 

on the 69 test problems taken from TSPLIB. However, the results of the computational 

study have not been effective. Afterwards, we have decided to hybridize this algorithm 

with two local search procedures, namely Variable Neighborhood Search (VNS) and 

insert-based neighborhood search. After integration of these search procedures, it is 

obviously seen that hybridizing the DE algorithm with VNS search makes it more 

efficient.  

 

     Considering the results of the single machine case, we have hybridized the DE 

algorithm with VNS search procedure for the parallel machine case. To improve the 

effectiveness and solution quality of the algorithm, we have constructed an initial 

population generation procedure and made an initial study to find the best parameter 

combination for the parallel machine scheduling problem.  
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     We have compared the hybrid DE algorithm with Genetic Algorithm and Variable 

Neighborhood search methods on randomly generated test problems with job numbers 

up to 140 and machine numbers up to 10. It has been seen that the hybrid DE algorithm 

outperforms Genetic Algorithm and Variable Neighborhood Search.   

 

     This study only deals with the makespan objective. As a future study, we can focus 

on other objectives, such as minimizing earliness-tardiness, number of tardy jobs, 

lateness etc. The parallel machine problem can be enhanced by adding the resources and 

machine eligibility restrictions. On the other hand the performance of the DE algorithm 

can be analyzed for multi-objective cases. 

 

     Besides this, we can focus on improving effectiveness of the DE algorithm with other 

metaheuristic or search techniques. We can also apply the DE algorithm to other 

scheduling problems because this is the first known application of the DE algorithm to 

parallel machine scheduling problems.     
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