
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

SOLVING SINGLE AND PARALLEL MACHINE

SCHEDULING PROBLEMS WITH SEQUENCE

DEPENDENT SETUP TIMES USING

DIFFERENTIAL EVOLUTION BASED

ALGORITHMS

by

Öğünç ÖZDEMĠR

August, 2010

ĠZMĠR

ii

SOLVING SINGLE AND PARALLEL MACHINE

SCHEDULING PROBLEMS WITH SEQUENCE

DEPENDENT SETUP TIMES USING

DIFFERENTIAL EVOLUTION BASED

ALGORITHMS

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of

Science in Industrial Engineering, Industrial Engineering Program

by

Öğünç ÖZDEMĠR

August, 2010

ĠZMĠR

iii

M.Sc THESIS EXAMINATION RESULT FORM

 We have read the thesis entitled “MATHEMATICAL MODELLING AND

HEURISTIC SEARCH FOR SCHEDULING PROBLEMS” completed by

ÖĞÜNÇ ÖZDEMĠR under supervision of ASSOCIATE PROF. DR. ġEYDA

TOPALOĞLU and we certify that in our opinion it is fully adequate, in scope and in

quality, as a thesis for the degree of Master of Science.

Associate Prof. Dr. ġeyda TOPALOĞLU

Supervisor

______________________________ ______________________________

(Jury Member) (Jury Member)

Prof.Dr. Mustafa SABUNCU

Director

Graduate School of Natural and Applied Sciences

iv

ACKNOWLEDGMENTS

 I would like thank to all people who helped me prepare this thesis.

 Initially, I would like to express my deep gratitude to my supervisor Associate

Professor Dr. ġeyda Topaloğlu for her guidance, patience, suggestions and

encouragement throughout the development of this thesis. Her wisdom,

encouragement and guidance always gave me the direction during the research.

 Most importantly, I would like to express my deep appreciation for my family

who always gave me encouragement and support at each stage of my studies. Their

undying patience has given me the peace of mind needed to dedicate my efforts

towards this thesis. Especially, I would like to send my great thanks to my little

brother Yiğit and my friend Berrin who gave me support at each stage of my study.

 Finally, I would like to thank everybody who was important to the successful

realization of this thesis, as well as expressing my apology that I could not mention

personally one by one.

 ÖĞÜNÇ ÖZDEMĠR

v

SOLVING SINGLE AND PARALLEL MACHINE SCHEDULING

PROBLEMS WITH SEQUENCE DEPENDENT SETUP TIMES USING

DIFFERENTIAL EVOLUTION BASED ALGORITHMS

ABSTRACT

 In this thesis, we present an application of the Differential Evolution (DE)

algorithm for the single and parallel machine scheduling problems with sequence

dependent setup times for the objective of minimizing makespan. To the best of our

knowledge, this is the first attempt to use the DE heuristic for the parallel machine

scheduling problem.

 To improve the solution quality and the computational efficiency of the DE

algorithm in single machine scheduling problem, two simple local search methods

which are insert-based neighborhood search and variable neighborhood search, are

respectively embedded in the algorithm for a hybrid solution technique. The pure DE

algorithm is compared with the hybrid DE algorithms by solving test problems taken

from TSPLIB. It is seen that hybridizing the DE algorithm improves the solution

quality.

 The DE algorithm is an evolutionary optimization method to solve continuous

optimization problems. For solving the parallel machine problem firstly, vector

group encoding technique is adopted from genetic algorithm to represent the

individuals in the DE algorithm. Secondly, to make the DE algorithm suitable for

solving scheduling problems, the largest order value and sub-range encoding rules

are used to convert the continuous values of individuals in the DE algorithm to job

and machine permutations. Thirdly, an efficient local search procedure is applied to

emphasize exploitation after the DE algorithm based exploration. In addition, the

performance of the DE algorithm is enhanced by employing a population

initialization scheme based on a constructive heuristic. Finally, a computational

vi

study is conducted to demonstrate that the proposed technique is capable of

producing encouraging solutions.

 For parallel machine scheduling problem variable neighborhood search method is

only embedded in the DE algorithm as a local search procedure. The proposed hybrid

DE algorithm is compared with genetic algorithm and variable neighborhood search

methods by solving randomly generated test problems. Finally it is seen that the

hybrid DE algorithm outperformed the other two methods.

Keywords: Differential Evolution Algorithm, Single Machine Scheduling Problem,

Parallel Machine Scheduling Problem, Makespan Minimization, Sequence

Dependent Setup Times, Local Search, Variable Neighborhood Search, Insert-Based

Neighborhood Search.

vii

SIRA BAĞIMLI HAZIRLIK SÜRELERĠ ĠÇEREN TEK VE PARALEL

MAKĠNELĠ ÇĠZELGELEME PROBLEMLERĠNĠ DĠFERANSĠYEL EVRĠM

ALGORĠTMSI TABANLI ALGORĠTMALAR KULLANARAK ÇÖZMEK

ÖZ

 Bu tezde, üretim süresinin en aza indirilmesi amacıyla sıra bağımlı hazırlık

süreleri olan tek ve paralel makine çizelgeleme problemleri için Diferansiyel Evrim

(DE) algoritmasının bir uygulamasını sunuyoruz. Mevcut bilgilerimiz ıĢığında

yapılan bu çalıĢma paralel makine çizelgeleme probleminde DE sezgiselinin

kullanımı için ilk giriĢimdir.

 Tek makine çizelgeleme probleminde DE algoritmasının sonuç kalitesi ve hesaba

dayalı etkinliğini geliĢtirmek için iliĢtirilen, ekleme tabanlı komĢuluk arama ve

değiĢken komĢuluk arama olarak bilinen iki basit yerel arama metodu, melez bir

çözüm tekniği oluĢturmak için kullanıldı. TSPLIB‟den alınan test problemleri

çözülerek, saf DE algoritması melez Diferansiyel Evrim algoritmaları ile kıyaslandı.

DE algoritmasının melezlenmesinin çözüm kalitesini geliĢtirdiği görüldü.

 DE algoritması, sürekli en iyileme problemlerini çözmek için evrimsel bir en

iyileme yöntemidir. Paralel makine problemini çözmek için ilk olarak, DE

algoritmasındaki bireyleri temsil etmek üzere Genetik Algoritmadan vektör grup

kodlama tekniği uyarlanır. Ġkinci olarak, DE algoritmasını çizelgeleme

problemlerinin çözümünde uygun kılmak için, iĢ ve makine permutasyonlarına

yönelik DE algoritmasındaki bireylerin sürekli değerlerini çevirmek üzere, en büyük

sıralama değeri ve alt aralık kodlama kuralları kullanılır. Üçüncü olarak, araĢtırma

tabanlı DE algoritmasından sonra baĢarımızı arttırmak için etkin bir yerel arama

prosedürü uygulanır. Ek olarak, DE algoritmasının performansı, yapıcı bir baĢlangıç

popülasyonu düzenlemesinin görevlendirilmesiyle geliĢtirilir. Son olarak, önerilen

viii

tekniklerin ümit verici sonuçlar verdiğini kanıtlamak için bir hesaplamaya dayalı

çalıĢma yapılmıĢtır

 Paralel makine çizelgeleme problemi için değiĢken komĢuluk arama metodu,

yerel bir arama prosedürü olarak yalnızca DE algoritmasının içine katılır. Önerilen

melez DE algoritması, rastgele üretilmiĢ test problemlerini çözerek Genetik

Algoritma ve değiĢken komĢuluk arama yöntemleri ile kıyaslanır. Son olarak, melez

DE algoritmasının diğer iki yöntemden üstün olduğu görülmüĢtür.

Anahtar Kelimeler: Diferansiyel Evrim, Tek Makineli Çizelgeleme Problemi,

Paralel Makineli Çizelgeleme Problemi, Üretim Süresinin En Küçüklenmesi, Sıra

Bağımlı Hazırlık Süresi, Yerel Arama, Ekleme Tabanlı KomĢuluk Arama, DeğiĢken

KomĢuluk Arama

ix

CONTENTS Page

M.Sc THESIS EXAMINATION RESULT FORM ... ii

ACKNOWLEDGMENTS .. iii

ABSTRACT ... v

ÖZ .. vii

CHAPTER ONE-INTRODUCTION ... 1

CHAPTER TWO-DIFFERENTIAL EVOLUTON ALGORITHM 5

2.1 Introduction .. 5

2.2 Literature Review ... 8

2.3 Basic Differential Evolution Algorithm ... 11

2.3.1 Individuals ... 11

2.3.2 Initialization ... 13

2.3.3 Mutation .. 13

2.3.4 Crossover ... 19

2.3.5 Selection .. 23

2.4 The Differential Evolution Agorithm‟s Variants and Notations 26

2.5 A Numerical Example of the Differential Evolution Algorithm 26

2.6 Handling Discrete Parameters in the Differential Evolution Algorithm 29

2.6.1 The Sub-Range Encoding Rule ... 30

2.6.2 The Largest Order Value Rule .. 32

CHAPTER THREE-SINGLE MACHINE SCHEDULING WITH SEQUENCE

DEPENDENT SETUP TIMES ... 34

3.1 Introduction .. 34

3.2 Literature Review ... 39

3.3 Problem Statement and Formulation .. 43

3.4 Application of the Differential Evolution Algorithm to Single Machine

Scheduling Problems .. 47

3.5 Local Search Methods .. 50

x

3.5.1 Insert-Based Neighborhood Search .. 51

3.5.2 Variable Neighborhood Search for Single Machine Scheduling Problems54

3.6 Hybrid Differential Evolution Algorithm .. 59

3.7 Setting Control Parameters ... 59

3.8 Computational Study .. 68

3.9 An Example of the Differential Evolution Algorithm for Single Machine

Scheduling Problem ... 85

CHAPTER FOUR-PARALLEL MACHINE SCHEDULING WITH

SEQUENCE DEPENDENT SETUP TIMES .. 91

4.1 Introduction .. 91

4.2 Literature Review ... 93

4.3 Problem Statement and Formulation .. 98

4.4 Application of the Differential Evolution Algorithm to Parallel Machine

Scheduling Problems .. 100

4.5 Variable Neighborhood Search Algorithm for Parallel Machine Scheduling

Problems ... 109

4.5.1 Random Solutions ... 110

4.5.2 Local Searches ... 111

4.6 Hybrid Differential Evolution Algorithm ... 116

4.7 A Genetic Algorithm Approach for Parallel Machine Scheduling Problem .. 118

4.8 Initial Population Generation Method .. 125

4.9 Test Problem Generation .. 128

4.10 Setting Control Parameters ... 131

4.11 Computational Study .. 137

4.12 An Example of the Differential Evolution Algorithm for the Parallel Machine

Scheduling Problem ... 153

CHAPTER FIVE-CONCLUSION AND FUTURE RESEARCH 161

REFERENCES ... 164

1

CHAPTER ONE

INTRODUCTION

 Production scheduling in general is a decision-making processes that is used on a

regular basis in many manufacturing industries. Developing efficient production

schedules is a difficult job. Despite its difficulty, generating efficient schedules

consistently can result in substantial improvements in productivity and time

reductions.

 Production scheduling process is concerned with the predefined tasks that need to

be performed and the predefined resources that can be used to process these tasks.

This process involves allocating the resources to the tasks in the best possible way

according to one or more predefined criteria. For example, depending on the machine

environment (e.g., single machine or parallel machines), the job characteristics (e.g.,

independent or precedence constrained), and the optimality criteria (e.g., makespan,

total tardiness), it is possible to define a wide variety of problem types in

manufacturing firms.

 Scheduling problems form an important class of combinatorial optimization

problems and the objectives of these problems may take many forms. One possible

and mainly used objective in this thesis, is the minimization of maximum completion

time; makespan (C max). The makespan objective can be defined as the time when the

last job leaves the system. However, the makespan objective is closely related with

another objective, throughput objective. Problems that tend to minimize the

makespan in a machine environment with a finite number of jobs also tend to

maximize the throughput rate when there is a constant flow of jobs over time

(Pinedo, 1995). For example, minimizing the makespan in a single machine

environment with sequence dependent setup times forces the scheduler to maximize

throughput.

2

 Setup time which is also an important character of this thesis, in general, can be

defined as the time required to prepare the necessary resource (e.g., machines,

people) to perform a task (e.g., job, operation). Setup activities may include, for

example, obtaining tools, returning tools, cleaning up, setting the required jigs and

fixtures, adjusting tools, and inspecting material in a manufacturing system. In many

practical environments, it is necessary to consider setup times as separate from

processing times, however to make the problem easier it is thought that setup times

are part of processing times.

 Setup times can be separated into two types. The first setup type is sequence

independent setup times; in this type, setup times depend only on the jobs to be

processed. The second setup type is sequence dependent setup time; in this type,

setup times depend on the job to be processed and immediately preceding job. The

applications of sequence dependent setup times can be found in various production

and manufacturing systems. For example in a printing industry, a setup time is

required to prepare the machine (e.g., cleaning), which depends on the color of the

current and immediately following jobs. In a textile industry, setup time for weaving

and dying operations also depends on the sequence of jobs. In a container/bottle

industry, setup time relies on the sizes and shapes of the container/bottle, whereas in

a plastic industry it relies on different types and colors of products. Similar situations

arise in chemical, pharmaceutical, food processing, metal processing, paper

industries, and many other industries/ areas.

 Many researchers have investigated single and parallel machine scheduling

problems but most of the researches on scheduling problems assume that the setup

time can be ignored or can be part of the processing times of the jobs. This

assumption is reasonable for some manufacturing systems if the required setup time

is independent of the sequence of jobs. However, for most production and

manufacturing operations setup time is essential and it should not be ignored

essentially when the setup is sequence dependent. The importance of sequence

dependent setups has been investigated in several studies. For example, Wilbrecht

3

and Prescott (1969) found that sequence dependent setup times are significant when

a job shop is operated at or near full capacity. Flynn (1987) indicated that

applications of both sequence dependent setup procedures and group technology

principles increase output capacity in a cellular manufacturing shop. Furthermore,

Krajewski et al. (1987) pointed out that simultaneous reduction of setup times and lot

sizes is the most effective way to reduce inventory levels and improve customer

service regardless of the production system in use.

 In this research, we design and implement Differential Evolution (DE) algorithm

and DE based heuristic procedures for solving single and parallel machine

scheduling problems with sequence dependent setup times with the objective of

minimizing makespan. In the previous scheduling related literature, these two

problems have not been solved before by the DE algorithm. Therefore, this study will

be the first attempt to solve these problems using DE and DE based heuristics.

 In chapter two, initially, a brief introduction to the DE algorithm is given and

related literature is discussed. Afterwards, an overview of the DE algorithm is

presented. Following, notations and variants of the algorithm are given and handling

discrete variables in DE algorithm is introduced. At the end of this chapter, an

example is given to show how the DE algorithm works.

 In chapter three, initially, a brief introduction to the single machine scheduling

problems is given. After this introduction, application of the DE algorithm to single

machine scheduling problem is discussed. Following, the local search procedures

that will be implemented in the DE algorithm are introduced. After that, the

integration of the local search procedures with the DE algorithm is discussed. For

getting quality results, an initial parameter setting study is done and this study is

explained in detail. Finally, computational results are discussed. At the end of this

chapter, an example about how DE algorithm works with single machine scheduling

problems is given.

4

 In chapter four, initially, an introduction to parallel machine scheduling problems

is given. Following, application of the DE algorithm to parallel machine scheduling

problems is given. To compare the effectiveness of the DE algorithm, application of

Variable Neighborhood Search (VNS) and Genetic Algorithm (GA) to parallel

machine scheduling problems is discussed. Afterwards, the integration of the VNS

search procedure to the DE algorithm is given. Finally, computational the results of

methods are discussed. At the end of this, chapter an example about how the DE

algorithm works with parallel machine scheduling problems is given.

 Finally, chapter five summarizes the research work and outlines directions for

future research.

5

CHAPTER TWO

DIFFERENTIAL EVOLUTION ALGORITHM

 The Differential Evolution (DE) algorithm is a newly generated heuristic method

to be used for continuous spaces. The DE algorithm has been previously applied to

continuous valued optimization problems and a list of these studies will be given in

the literature review section.

 The framework in this thesis is limited to the application of the DE algorithm to

combinatorial optimization problems (COPs). The applications of the DE algorithm

on COPs are very limited. But nowadays, the DE algorithm has gained widespread

interest as an alternative approach for solving COPs with the generalization of

efficient transformation techniques from continuous spaces to discrete spaces.

2.1 Introduction

 In many engineering disciplines, optimization problems have grown in size and

complexity. In some instances, the solution to complex multidimensional problems

by using classical optimization techniques is sometimes difficult and/or

computationally expensive. This realization has led to an increased interest in a

special class of searching algorithms: the evolutionary algorithms (EAs).

 EAs search for the solution, based on a population of individuals that evolve over

a number of generations motivated by the Darwinian principle of survival of the

fittest. Through cooperation and competition among the population, population based

optimization approaches often can find very good solutions efficiently and

effectively (Michalewicz, 1994). Several algorithms have been developed within the

field of EAs, these are: Genetic Algorithm (GA), Genetic Programming (GP),

Evolutionary Programming (EP) and Evolution Strategies (ES).

6

 Most of these methods have in common certain properties (Bäck, 1996). One of

these similarities is that they work with a population of solutions, instead of one

solution each of iteration. By starting with a randomly or initially generated set of

solutions, an EA modifies the current population to a different population at each

iteration. This feature provides the EA an ability to capture multiple optimal

solutions in one single run. Another common property is that they all simulate

evolution by one or more of these three processes: selection, mutation, and

recombination (also known as crossover). As you can see from Figure 2.1 that the

selection process is applied in order to determine which individuals will be kept for

the next generation according to their fitness. The mutation operator allows for some

attributes to be changed occasionally. The recombination or crossover process takes

the attributes of two or more individuals and then combines them in order to create a

new individual. On the other hand the type of genetic operator and the way these

operators are implemented can be different, depending on the evolutionary

computation technique which is used.

Evaluate objective

function of each

member

Are optimization

criteria met?

Optimum solution

Selection

Recombination

Mutation

Generate New Population

YES

NO

Results

Generate initial

population

Figure 2.1 Flowchart of Evolutionary Algorithms

7

 An important feature of the EA is that they do not use any gradient information

while performing the above operations. This property makes EA flexible enough to

be used in a wide variety of problems domains as: highly nonlinear, mixed-integer

and non continuous spaces. As their operators use stochastic principles, the EA does

not assume any particular structure of a problem to be solved.

 There are some advantages of using EA in optimization problems (Storn and Price

1997):

 As explained previously, the EA has the ability to handle non-differentiable,

nonlinear and multimodal functions because it does not use gradient

information in the optimization process.

 They are well adapted to distributed or parallel implementations. This is

important for computationally demanding optimizations where, for example,

one evaluation of the objective function might take from minutes to hours.

 Ease of use, i.e. there are only a few control parameters to steer optimization.

These variables should also be robust and easy to choose.

 Good convergence properties, i.e. consistent convergence to the global

minimum in consecutive independent trials.

 Recently, the success achieved by EAs in the solution of complex problems and

the improvements made in the computations, such as parallel computation, have

stimulated the development of new algorithms like the DE algorithm, Particle Sworm

Optimization (PSO), Ant Colony Search (ACS) and Scatter Search (SS) that present

great convergence characteristics and capability of determining global optima. A

simple classification schema of optimization methods are given in Figure 2.2. The

Figure 2.2 separates optimization problems to continuous and combinatorial

problems. There are three types of continuous problems: linear, quadratic and

nonlinear problems. For solving nonlinear problems we have two methods. One of

them is local methods and the other is global methods. The DE algorithm belongs to

the global methods section for nonlinear programs, whereas it also belongs to the

8

approximate methods section for COPs. As you can see in Figure 2.2, The DE

algorithm is also a population based metaheuristic method.

Figure 2.2 A simple classification scheme of optimization methods (Feoktistov 2006)

2.2 Literature Review

 The invention of the DE algorithm goes back to Genetic Annealing by Kenneth

Price (1994) and solving the Chebyshev polynomial fitting problem by Price and

Storn (1995). In order to solve Chebyshev problem in continuous space, they

modified the Genetic Annealing algorithm from bit-string to floating-point encoding

and consequently switched from logical operators to arithmetic ones. During

experiments, they discovered the differential mutation to perturb the population of

vectors. They also noticed that by using differential mutation, discrete

recombination, and pair-wise selection, there is no need to apply annealing

mechanism; at last it was permanently removed and the DE algorithm was born.

Following, the DE algorithm was published in the Dobb‟s Journal and then in the

Journal of Global Optimization by Storn and Price in 1997. By this way, the DE

9

algorithm‟s capacity and advantages were introduced to the optimization community.

Comprehensive history and development of the DE algorithm is presented in

literature and can be found in Feoktistov (2006).

 Due to its simple structure, easy implementation, quick convergence, and

robustness, the DE algorithm has been turned out to be one of the best evolutionary

algorithms for solving a wide range of continuous optimization problems such as

digital filter design (Storn, 1995), optimization of non-linear functions (Babu and

Angira, 2001), feed-forward neural networks (Ilonen et al., 2003), design of digital

PID controllers (Chang and Hwang, 2004), clustering (Paterlini and Krink, 2004),

unsupervised image classification (Omran et al., 2005) and planning of large-scale

passive harmonic filters (Chang and Wu, 2005).

 However, the continuous nature of the algorithm prohibits the DE algorithm to be

applied to COPs. To compensate this drawback, Onwubolu (2001) presented forward

and backward transformation techniques, Tasgetiren et al. (2004a, 2004b) presented

the smallest position value (SPV) rule, Nearchou and Omirou (2006) presented the

sub-range encoding rule and Qian et al. (2007) presented the largest order value

(LOV) rule. These four rules are all based on the random key representation of Bean

(1994) which was previously used for GA. After presentation of such transformation

rules, recently some researchers extended with success the application of the DE

algorithm to complex COPs with discrete decision parameters. Examples of such

problems are three mechanical engineering design related numerical examples,

design of a gear train, design of a pressure vessel and design of a coil spring

(Lampinen and Zelinka, 1999), the traveling salesman problem (Onwubolu, 2004),

the machine layout problem (Nearchou, 2006b), the flow shop scheduling problem

(Onwubolu and Davendra, 2006), three classic scheduling problems, flow shop

scheduling problem, total weighted tardiness problem, common due date scheduling

problem (Nearchou and Omirou, 2006), the common due date early/tardy job

scheduling problem (Nearchou, 2006a), single machine total weighted tardiness

problem (Tasgetiren et al., 2006a), the job shop scheduling problem (Tasgetiren et

al., 2006b), type 2 assembly line balancing problem (Nearchou, 2007), the two-stage

10

assembly flow shop scheduling problem (Al-Anzi and Allahverdi, 2007) and the

single machine total weighted tardiness problem (Tasgetiren et al., 2008).

 Onwubolu and Davendra (2006) applied the DE algorithm to the flow shop

scheduling problem in which makespan, mean flowtime, and total tardiness are taken

as the performance measures. It has been observed from the computational results

that the DE approach delivers competitive makespan, mean flow time, and total

tardiness when compared to GA. Especially for small sized problems, the DE

algorithm is found to perform better than GA, and competes appreciably with GA for

medium to large-sized problems.

 Nearchou and Omirou (2006) presented an application of the DE algorithm for the

solution of three classic scheduling problems. These problems are the multiple

machine flow shop scheduling problem, the single machine total weighted tardiness

scheduling problem, and the single machine common due date scheduling problem.

In their study, a new scheme of solution encoding for continuous optimization

algorithms is represented. The new encoding scheme is compared with a well-known

random keys representation technique.

 Tasgetiren et al. (2006a) presented a research about the single machine scheduling

problem with the objective of minimizing total weighted tardiness. The smallest

position value (SPV) rule, which was introduced by Tasgetiren et al. (2004), is used

for the representation of solutions in their study. Also, they compared the DE

algorithm with the Particle Sworm Optimization (PSO) algorithm and found that the

DE algorithm is faster than the PSO algorithm. In addition to this, an effective local

search, so-called variable neighborhood search (VNS), was then introduced, and it

was found that hybridizing DE with a local search makes it more efficient.

Tasgetiren et al. (2008) modified the single machine total weighted tardiness

problems with sequence dependent setup times. In their study, different population

initialization methods were used for the DE algorithm, which are respectively NEH,

GRASP, SPT, ATCS, EDD and EWDD. Then the DE algorithm was hybridized with

a referenced local search to make it more efficient. It has been found that 51 out of

11

120 overall aggregated best known solutions, most of them published very recently,

were further improved by the DE algorithm with substantial margins in solution

quality as well as with significantly less CPU times.

2.3 Basic Differential Evolution Algorithm

 The DE algorithm, introduced by Storn and Price (1995), is a novel parallel direct

search method for global optimization over continuous spaces and can be categorized

into a class of floating-point encoded evolutionary optimization algorithms. This

algorithm utilizes NP parameter vectors as a population for each generation G.

Currently, there are several variants of the DE algorithm (Storn and Price, 1997). The

particular variant used throughout this investigation is the classical version of the DE

algorithm (Storn and Price, 1995). Since the DE algorithm was originally designed to

work with continuous variables, the optimization of continuous problems is

discussed initially and the handlings of discrete parameters for COPs are

subsequently explained.

2.3.1 Individuals

 The DE algorithm maintains a population of NP number of D-dimensional vectors

of whose parameter values are real. The current population, symbolized by P GX , , is

composed of those vectors, X Gi , , that have already been found to be acceptable either

as initial points, or by comparison with other vectors:

P GX , = (X Gi ,) i=1, 2, …, NP, G=0, 1, …, G max . (2.1)

X Gi , = (x Gij ,,) i=1, 2, …, NP, j=1, 2,…, D, G=0, 1, …, G max . (2.2)

 The index, G = 0, 1, …, G max , indicates the generation to which a vector belongs.

In addition, each vector is assigned a population index, i, which runs from 1 to NP.

Parameters within vectors are indexed with j, which runs from 1 to D.

12

 Once initialized, the DE algorithm mutates randomly chosen vectors to produce

an intermediary population, P GV , , of NP mutant vectors V Gi , :

P GV , = (V Gi ,) i=1, 2,…, NP, G=0, 1,…, G max . (2.3)

V Gi , = (v Gij ,,) i=1, 2,…, NP, j=1, 2, …, NP, G=0, 1,…, G max . (2.4)

 Each vector in the current population is then recombined with a mutant to produce

a trial population, P GU , , of NP trial vectors, U Gi , :

P GU , = (U Gi ,) i=1, 2,…, NP, G=0, 1,…, G max . (2.5)

U Gi , = (u Gij ,,) i=1, 2,…, NP, j=1, 2, …, D, G=0, 1,…, G max . (2.6)

 The flowchart of the basic flow introduced above can be seen in Figure 2.3.

START

Population Initialization

G=0

Fitness Evaluation

Reproduction

Fitness Evaluation

Selection

G=G+1

G>Gmax

END

NO

YES

 Figure 2.3 Flowchart of the DE Algorithm

13

 The representation of the parameters in each vector can be seen in Figure 2.4.

x Gi ,,1 x Gi ,,2 ... … … x GiD ,,

Figure 2.4 Structure of an individual X Gi , including parameters

2.3.2 Initialization

 Before the population can be initialized, both upper (X UB) and lower (X LB) for all

parameter must be initialized. Once initialization bounds have been specified, a

random number generator assigns each parameter of every vector a value from the

prescribed range. Function for generating the initial value (G = 0) of the j th

parameter of i th vector is given below.

x 0,,ij = X LB
 + rand j (0, 1)*(X UB - X LB). (2.7)

 The random number generator, rand j (0, 1), returns a uniformly distributed

random number within range [0, 1), i.e., 0 rand j (0, 1) <1. The subscript, j,

indicates that a new random value is generated for each parameter of each vector.

Even, if a parameter is discrete or integral, it should be initialized with a real value

since the DE algorithm internally treats all parameters as floating-point value

regardless of their type.

2.3.3 Mutation

 Once initialized, the DE algorithm mutates and recombines the population to

produce a population of NP trial vectors. In particular, differential mutation adds a

scaled, randomly sampled, vector difference to a third vector. Equation (2.8) below

shows us how to combine three different randomly chosen vectors to create a mutant

vector, V Gi , .

14

V Gi , = X Gr ,1 + F * (X Gr ,2 -X Gr ,3). (2.8)

 The scale factor F  (0, 1+), is a positive real number that controls the rate at

which the population evolves. While there is no upper limit on F, effective values are

seldom greater than 1.

Figure 2.5 Mutation process (Feoktistov 2006)

 To understand mutation operation in detail, Figure 2.5 can be analyzed. As it is

seen, there are four vector indices in the classic DE algorithm‟s mutation operation.

The target index, i, specifies the vector with which the mutant is recombined and

against which the resulting trial vector competes. The remaining three indices, r1, r2

and r3 determine which vectors combine to create the mutant vector. Typically, both

the base index, r1, and the difference vector indices, r2 and r3 are chosen randomly

anew for each trial vector from the range (1, NP).

 The base index, r1, specifies the vector to which the scaled differential is added.

The classic version of the DE algorithm employs a uniform distribution to randomly

select r1 anew for each trial vector. This kind of vector selection scheme is called

roulette wheel selection and this selection process is borrowed from GA. The base

vector selection equation is given below.

15

r1 = round (rand i (0, 1) * NP) (2.9)

 While selecting base vector index randomly and without restrictions and treating

all vectors equally in statistical sense, we can automatically pick some vectors more

than once per generation, causing others to be omitted. However, this type of base

vector selection rule increases randomness of the algorithm and by the help of this

rule we have a chance to escape from local optima. On the other hand, apart from

base vector selection, roulette wheel selection can also be used for selecting

difference vectors r2 and r3. In this study, we use roulette wheel selection scheme

for determining three vectors r1, r2 and r3. But also, there are some other ways to

pick vectors from the population. The other variants of vector selection strategies are

given below.

Stochastic Universal Sampling

 Randomly selecting the base vector without restrictions is known in EA parlance

as roulette wheel selection. Roulette wheel selection chooses NP vectors by

conducting NP separate random trials, much like NP passes at a roulette wheel

whose slots are proportional in size to the selection probability of the vector they

represent. In GA, selection probabilities are biased toward better solutions, meaning

that better vectors are assigned proportionally wider slots, but in the classic DE

algorithm, each vector has the same chance of being chosen as a base vector, so all

slots are of equal size, just like a real roulette wheel.

 Samples drawn by roulette wheel selection suffer from a large variance. The

preferred method for sampling a distribution is stochastic universal sampling because

it guarantees a minimum spread in the sample (Baker 1987; Eiben and Smith 2003).

The relation of stochastic universal sampling to roulette wheel selection is best

illustrated if the ball used in real roulette is replaced with a stationary pointer. Once

the roulette wheel stops, the vector corresponding to the slot pointed to is selected.

Instead of spinning a roulette wheel NP times to select NP vectors with a single

pointer, stochastic universal sampling uses NP equally spaced pointers and spins the

16

roulette wheel just once. In the GA, slot sizes are based on the vector‟s objective

function value, with better vectors being assigned more space. In the DE algorithm,

each candidate has the same probability of being accepted, so slots are of equal size.

Consequently, each of the NP pointers selects one and only one vector regardless of

how the roulette wheel is spun.

Figure 2.6 Stochastic universal sampling and roulette wheel selection compared(Feoktistov 2006)

Random Offset Selection

 The random offset method is another way to stochastically assign each target

vector a unique base vector. Simpler than the permutation method, the random offset

method computes r1 as the sum of the target index and a randomly generated offset,

r g .

r g = floor (rand g (0, 1) * NP) (2.10)

r1 = (i + r g) / NP (2.11)

17

 Another important point while choosing indices is, if the indices are chosen

randomly and without restrictions, there is no guarantee that vectors i, r1, r2 and r3

will be distinct. When these indices are not mutually exclusive, DE‟s novel trial

vector generation strategy reduces to uniform crossover only. Excluding all

degenerate target, base and difference vector combinations i.e. i r1 r2 r3,

enables the DE algorithm to achieve a good convergence speed. Imposing

restrictions eliminates the function-dependent effects of degenerate search strategies

and ensures that both crossover and differential mutation play a role in the creation

of each trial vector. In this study, the indices i, r1, r2 and r3 are all chosen distinct

from each other.

 First, we will begin with degenerate combinations of mutant indices and then

discuss about combinations involving the target index i.

r2 = r3 (No Mutation):

 If r2 = r3, then the differential formed by the corresponding vectors will be zero

and the base vector, x Gr ,1 , will not be mutated:

r2 = r3 (= r1): v Gi , = x Gr ,1 (2.12)

 When indices are chosen without restrictions, r2 will equal r3 on average once per

generation, i.e., with a probability of 1/NP. The probability that all three indices will

be equal is (1/NP) 2 , but either way, the result is the same: a randomly chosen base

vector that has not undergone mutation is recombined with the target vector by

means of conventional uniform crossover.

r2 = r1 or r3 = r1 (Arithmetic Recombination):

 Another special case occurs when either of the difference indices, r2 or r3, equals

the base index, r1. When indices are chosen without restrictions, each coincidence

occurs on average once per generation. Equation (2.13) and (2.14) below elaborate

18

the two possibilities that result when the DE algorithm‟s three-vector mutation

formula (2.8) reduces to a linear relation between the base vector and the single

difference vector:

r2 = r1 V Gi , = X Gr ,1 + F * (X Gr ,1 -X Gr ,3). (2.13)

r3 = r1 V Gi , = X Gr ,1 + F * (X Gr ,2 -X Gr ,1). (2.14)

r1 = i (Mutation Only):

 If the base index, r1, is not different from the target index, i, then the crossover

operation reduces to mutation of the target vector. In this scenario, CR plays the role

of a mutation probability. When base vector indices are randomly selected without

restrictions, these degenerate vector combinations occurs with a probability of 1/NP.

i = r2 or i = r3:

 Each of the coincidental events, i = r2 and i = r3, occurs with a probability of

1/NP when indices are chosen without restrictions. Neither coincidence reduces the

DE algorithm‟s generating process to a conventional one. Mutants are still three-

vector combinations and crossover recombines distinct base and target vectors

(assuming r1 ≠ i).

 Applying differential mutation operation to these vectors can take their

parameters to infeasible regions. This can be in two ways. One is, parameter‟s value

can be higher than our upper bound and the other is parameter‟s value can be lower

than our lower bound. To bring back these parameters inside the bound, a repairing

procedure should be done. The mechanism of the procedure is given below.

19

Step 1: If the parameter of the vector indices is lower than the lower bound, go to

step 2; otherwise, go to Step 3.

Step 2: Repaired mutation value v newGij ,,, = (2* X LB) - v Gij ,, . And go to step 4.

Step 3: Repaired mutation value v newGij ,,, = (2* X UB) - v Gij ,, . And go to step 4.

Step 4: v Gij ,, = v newGij ,,,

2.3.4 Crossover

 To complement the differential mutation search strategy, the DE algorithm also

employs uniform crossover. Sometimes referred as discrete recombination, crossover

builds trial vectors out of parameter values that have been copied from two different

vectors. In particular, the DE algorithm crosses each vector with a mutant vector.

U Gi , = (u Gij ,,) =


 

otherwisex

jjorCRrandifv

Gij

randjGij

,,

,,)1,0(
 (2.15)

 The crossover probability, CR  [0, 1], is a user defined value that controls the

fraction of parameter values that are copied from the mutant. To determine which

source contributes a given parameter, uniform crossover compares CR to the output

of a uniform random number generator, rand j (0,1). If the random number is less

than or equal to CR, the trial parameter is inherited from the mutant vector, V Gi , ;

otherwise, the parameter is copied from the parent vector, X Gi , . In addition, a trial

parameter with randomly chosen index j rand , is taken from mutant vector to ensure

that the trial vector does not duplicate first vector X Gi , . Because of this additional

demand, CR only approximates the true probability, p CR , that a trial parameter will

be inherited from mutant vector. An example for uniform crossover is given in

Figure 2.7.

20

Figure 2.7 Uniform (binomial) crossover processes

 In this study, we used uniform (binomial) crossover as our main crossover

process. Syswerda (1989) defined uniform crossover as a process in which

independent random trials determine the source for each trial parameter. Crossover is

uniform in the sense that each parameter, regardless of its location in the trial vector,

has the same probability, CR, of inheriting its value from a given vector. For this

reason, uniform crossover does not exhibit a representational bias. For example, both

CR = 0.4 and CR = 0.6 produce a vector that on average inherits 40% of its

parameters from one vector and 60% from another. In particular, when two vectors,

A and B, are crossed with a probability of CR = 0.4, trial vector will inherit, on

average, 40% of their parameters from vector A and 60% from vector B. It is equally

probable, however, that B will be drawn first and A second, in which case trial vector

inherit, on average, 40% of their parameters from vector B and 60% from vector A.

These trial vector could also have been generated by taking A first, B second and CR

= 0.6. Reversing the roles of the donor vectors has the same effect as using 1-CR

instead of CR. Since, the order in which vectors chosen is random, CR potentially

generates the same population as does 1- CR.

One-Point Crossover

 There are several ways to assign donors to trial parameters. As illustrated in

Figure 2.8, one-point crossover randomly selects a single crossover point such that

all parameters to the left of the crossover point are inherited from vector one, while

21

those to the right are copied from the vector two (Holland 1995). GAs often construct

a second trial vector by reversing the roles of the vectors, with vector two

contributing the parameters to the left of the crossover point and vector one

supplying all trial parameters to the right of the crossover point.

Figure 2.8 An example of one point crossover (Feoktistov 2006)

N-Point Crossover

 N-point crossover randomly subdivides the trial vector into n + 1 partitions such

that parameters in adjacent partitions are inherited from different vectors. If n is odd

(e.g., one-point crossover), parameters near opposite ends of a trial vector are less

likely to be taken from the same vector than when n is even (e.g., n = 2) (Eshelman et

al. 1989). This dependence on parameter separation is known as representational or

positional bias, since the particular way in which parameters are ordered within a

vector affects algorithm performance. Studies of n-point crossover have shown that

recombination with an even number of crossover points reduces the representational

bias at the expense of increasing the disruption of parameters that are closely

grouped (Spears and DeJong, 1991). To reduce the effect of their individual biases,

the DE algorithm‟s exponential crossover employs both one- and two-point

crossover.

22

Figure 2.9 An example of N-point crossover (Feoktistov 2006)

Exponential Crossover

 The DE algorithm‟s exponential crossover achieves a similar result to that of one-

and two-point crossover, albeit by a different mechanism. One parameter is initially

chosen at random and copied from the mutant vector to the corresponding trial

parameter so that the trial vector will be different from the vector with which it will

be compared (i.e., the target vector, X Gi ,). The source of subsequent trial parameters

is determined by comparing CR to a uniformly distributed random number between 0

and 1 that is generated anew for each parameter, i.e., rand j (0,1). As long as rand j

(0,1) ≤ CR, parameters continue to be taken from the mutant vector, but the first time

that rand j (0,1) > CR, the current and all remaining parameters are taken from the

target vector. The example in Figure 2.10 illustrates a case in which the exponential

crossover model produced two crossover points.

23

Figure 2.10 An example of exponential crossover process (Feoktistov 2006)

2.3.5 Selection

 If the trial vector, U Gi , , has an equal or lower objective function value in the case

of minimization than that of its target vector, X Gi , , it replaces the target vector in the

next generation; otherwise, the target retains its place in the population for at least

one more generation. By comparing each trial vector with the target vector from

which it inherits parameters, the DE algorithm more tightly integrates recombination

and selection than do other EAs:

X 1, Gi =


 

otherwiseX

XfUfifU

Gi

GiGiGi

,

,,,)()(
 (2.16)

 Once the new population is installed, the process of mutation, recombination and

selection is repeated until the optimum is located, or a prespecified termination

criterion is satisfied.

 Practically, there are two ways to implement the selection operation (Lampinen

and Storn, 2004).

1. The selection operation is implemented after all offspring individuals

have been produced. The offspring individuals do not participate in the

24

reproduction procedure. Each offspring individual is compared with his

corresponding father one by one.

2. Each time when a father individual produces his offspring individual,

these two competes with each other and survivor substitutes the old one in

the population immediately. These survivors will participate in the

reproduction operation for the following individuals in the population.

Thus the reproduction and selection process will interact with each other.

 The latter way is greedier than the former one since new individuals participate in

the evolution earlier. High greediness may help population converge faster; however,

it may lead the population to premature. The second selection rule is selected for this

study. Because, in this rule newly made offsprings participate the population before

iteration has been finished with their better objective function values. Furthermore in

the DE algorithm, individuals interact with each other in the mutation operation and

by the help of this interaction with better valued individuals the population can lead

to better places.

 The classical version of the DE algorithm illustration of one generate-and-test

cycle of the DE algorithm can be seen from Figure 2.11.

25

(a) Population initialization for DE (NP =9).

Contour lines for f(x1, x2) are shown by

ellipses

b) Generating difference vector X 2r − X 3r .

r2 and r3 are the randomly selected indices.

c) Generating X Gr ,1 + F*(X Gr ,2 − X Gr ,3). r1 is

the third randomly selected index F  (0, 1+)

d) After the crossover if the generated vector

has lower objective value; it will be replaced

with the vector 0.

Figure 2.11 Illustration of one generate-and-test cycle for the DE algorithm (Price et al., 2005)

26

2.4 The Differential Evolution Algorithm’s Variants and Notations

 The classical version of the DE algorithm (DE/rand/1/bin) was explained in the

previous sections in detail. In addition to classic version, Storn (1996) have

suggested four different working strategies of the DE algorithm and some guidelines

in applying these strategies for any given problem. Different strategies can be

adopted in the DE algorithm depending upon the type of problem for which it is

applied. Table 2.1 shows the five different working strategies proposed by Storn

(1997) for the DE algorithm. The general convention used in Table 2.1 is as follows:

DE/x/y/z. Here, DE stands for Differential Evolution algorithm, x represents a string

denoting the vector to be perturbed, it can be the best vector („best‟) of the current

population or a randomly selected one („rand‟), y is the number of difference vectors

considered for perturbation of x (1 or 2), and z is the type of crossover being used

(exp: exponential; bin: binomial; in this study binomial). As you can understand from

the notation used, the perturbation can be either in the best vector of the previous

generation or in any randomly chosen vector. Similarly for perturbation, either single

or two vector differences can be used.

Table 2.1 Variants of Differential Evolution algorithm

Strategy 1: DE/rand/1/bin V Gi , = X Gr ,1 +F*(X Gr ,2 -X Gr ,3)

Strategy 2: DE/rand/2/bin V Gi , = X Gr ,5 + F*(X Gr ,1 +X Gr ,2 -X Gr ,3 -X Gr ,4)

Strategy 3: DE/best/1/bin V Gi , =X Gbest, + F*(X Gr ,2 -X Gr ,3)

Strategy 4: DE/best/2/bin V Gi , =X Gbest, + F*(X Gr ,1 +X Gr ,2 -X Gr ,3 -X Gr ,4)

Strategy 5: DE/randtobest/bin V Gi , =X Gi , +F*(X Gbest, - X Gi ,) + F*(X Gr ,1 - X Gr ,2)

2.5 A Numerical Example of the Differential Evolution Algorithm

 In this section, a simple example is given to demonstrate the implementation of

the DE algorithm for a minimization problem in continuous spaces. In this example,

we will follow the DE/rand/1/bin (classical) scheme of the DE algorithm.

27

 1) Select the control parameters of the algorithm as in Table 2.2.

Table 2.2 Control Parameters of the DE algorithm

Decision Variables D 6

Population Size NP 7

Scaling Mutation Factor F 0.7

Crossover Rate Constant CR 0.7

Upper Bound XUB 4

Lower Bound X LB 0

 2) Initialize the population according to random population generation function in

Equation (2.7).

rand
1
(0,1) = 0.542

x 0,1,1 =0+0.542*(4-0) = 2.168

rand 2 (0,1) = 0.158

x 0,1,2 =0+0.158*(4-0) = 0.632

 All of the parameters in each vector are initialized in Figure 2.12.

 Figure 2.12 Initial population

28

 3) Chose target vector X Gi , , two difference vectors, r2 and r3 and one base vector,

r1. Vectors for this example are chosen as following, r1 = 3, r2 = 5, r3 = 6 and i = 1.

 4) Apply the mutation operation to generate the mutant vector according to

mutant population generation function in Equation (2.8) as seen in Figure 2.13.

Figure 2.13 Mutation operation of individual 1

 In our example, parameter five has a value of -1.6192 which is smaller than our

lower bound and parameter two has a value of 4.3192 which is bigger than our upper

bound and these two values should be taken in the bounds we have initially chosen.

Mutation values of both parameters are corrected with the repairing procedure given

in section 2.3.3.

v new,0,1,1 = (2* X UB) - v 0,1,1 = (2*4) - 4.3192 = 3.6808

v new,0,1,5 = (2* X LB) - v 0,1,5 = (2*0) – (-1.6192) = 1.6192

 5) Create the trial vector by means of the uniform crossover operation given in

section 2.3.4 in Figure 2.14.

 Figure 2.14 Crossover operation for individual 1

29

 6) Select the individual that will advance to the next generation according to the

rule given in section 2.3.5 as seen in Table 2.3.

Fitness value of target vector is 2.18.

Fitness value of trial vector is 2.04.

 In this example, fitness value of target vector has been reduced by the operations.

According to the selection rule given, trial vector will replace target vector in the

next iteration.

Table 2.3 Population at the end of iteration one of individual 1

 7) Return to step three and repeat the steps 4 to 6 for all individuals within the

current population.

 8) This procedure can be executed for several generations until a convergence

criterion is satisfied.

2.6 Handling Discrete Parameters in the Differential Evolution Algorithm

 Due to the DE algorithm‟s continuous nature, the standard encoding schema of

the DE algorithm cannot be directly adopted to discrete optimization problems. For

this reason, the applications of the DE algorithm on the COPs are very limited. In

this study, single and parallel machine scheduling problems are studied. The

important issue to apply the DE algorithm to scheduling problems is to find a

suitable mapping between job sequences and individuals in the DE algorithm. Most

of the scheduling problems require discrete parameters and ordered sequences, rather

30

than relative position indexing. To achieve this, there are some strategies known as

the random-keys encoding (Bean, 1994), the sub-range encoding (Nearchou, 2006a),

forward and backward transformation (Onwubolu, 2001) and LOV rule (Qian, 2007).

 In this study initially, we have tested all of these strategies according to their

speed and accuracy. At the end of this initial study, we have selected LOV rule and

the sub-range encoding rule as our main transformation rule to be used. The LOV

rule will be used in both single machine and parallel machine scheduling problem to

represent the solution vectors in the population and the sub-range encoding rule will

only be used in parallel machine scheduling problem to assign jobs to machines.

2.6.1 The Sub-Range Encoding Rule

 In this section, the main features of the sub-range encoding rule are described. In

the description of the encoding rule, we will use terms borrowed from the field of

Evolutionary Computation (EC) such as the genotype (i.e., the vector‟s structure

evolved by the DE algorithm), the phenotype (i.e., the actual solution to the physical

problem corresponding to a specific genotype) and a gene. Accordingly, every

component of a vector is called a gene.

 In a pre-processing phase, the range [1, D] (where D is the number of

problem‟s parameters) is divided into D equal sub-ranges and the upper

bound of each sub-range is saved in an array of floating-point numbers. Let‟s

call this array SR (stands for Sub-Range). Therefore, the content of the array

is SR = [1/D, 2/D, 3/D , . . . ,D/D] T .

 Each floating-point vector in the genotypic level is encoded as a D-

dimensional real-valued vector with each gene corresponding to a decision

parameter of the physical COP.

 Each genotype is mapped to a corresponding phenotype. The components of

a phenotype are integer numbers in [1, D]. These components are then sorted

according to the sub-range index to which the corresponding genes of the

genotype belong.

31

 Crossover and mutation operators are performed in the genotypic level, not

on the derived solutions (i.e., not on the phenotypes).

 Each phenotype then finally represents a valid solution to the COP.

 The mechanism of building the proto-phenotype of a given genotype ge works as

follows:

Procedure: Proto-Phenotype (SR, ge)

Step 1: Let j=1, 2, …, D // j denotes the position of the gene in the genotype ge//

Step 2: Determine the sub-range index corresponding to j th gene of the vector. Let q

be (q k=1, 2, …, D) the index of this sub-range.

Step 3: Put the integer q in the j th position of the proto-phenotype solution X ge .

Step 4: Let j=j+1.

Step 5: Repeat steps (2)-(4) until j>D.

Step 6: Return (X ge)

 As an example, let us assume that the genotype, ge = (0.985, 0.632, 0.340, 0.408,

0.128, 0.828, 0.436, 0.636) given as shown in Table 2.4. Since the related COP has 8

decision parameters (D = 8), then the array SR = [1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8,

8/8] T = [0.125, 0.250, 0.375, 0.500, 0.625, 0.750, 0.875, 1.0] T . Table 2.4 shows

analytically how the phenotype corresponding to ge is built using the above

procedure.

 As one can see from Table 2.4, the first gene (=0.985) lies in the last sub-range

(0.875<0.985 ≤ 1.0), the second gene (=0.632) lies in the sixth sub-range (0.625 <

0.632 ≤ 0.750), etc. It is clear that, the generated final phenotype is = [8, 6, 3, 4, 2, 7,

4, 6].

32

Table 2.4 Building phenotypes from real-coded genotypes

Gene Position Gene

Value

Gene Index Generated Proto-Phenotype

1 0.985 8 (8)

2 0.632 6 (8, 6)

3 0.340 3 (8, 6, 3)

4 0.408 4 (8, 6, 3, 4)

5 0.128 2 (8, 6, 3, 4, 2)

6 0.828 7 (8, 6, 3, 4, 2, 7)

7 0.436 4 (8, 6, 3, 4, 2, 7, 4)

8 0.636 6 (8, 6, 3, 4, 2, 7, 4, 6)

2.6.2 The Largest Order Value Rule

 In this section, the main features of the LOV rule are described. For a n-job

problem, each vector contains D number of dimensions corresponding to n

operations (D = n) and we will use a LOV rule based on random key representation

of Bean (1994) to convert the DE algorithm‟s individual containing n operations

(X Gi , =[x Gi ,,1 , x Gi ,,2 ,…, x Gin ,,]) to the job solution/permutation vectors (= [,

 Gi ,,2 ,…, Gin ,,]) (Qian et al., 2007).

 According to LOV rule, individuals X Gi , =[x Gi ,,1 , x Gi ,,2 ,…, x Gin ,,] are firstly

ranked by descending order to get a trial sequence Gi , =[Gi,,1 , Gi,,2 ,…, Gin ,,].

Then the job permutation Gi, is calculated by the following formula:

GiGij ,,,, =j. (2.17)

 In Figure 2.15, the LOV rule is illustrated with a simple instance (n=8), where

individual X Gi , = [0.985, 0.632, 0.340, 0.408, 0.128, 0.828, 0.436, 0.636] is given.

33

Because x Gi ,,1 is the largest value of X Gi , , x Gi ,,1 is selected firstly and assigned rank

value one in the trial vector, then x Gi ,,6 is selected secondly and assigned rank value

two in the trial vector. In the same way, x Gi ,,8 , x Gi ,,2 , x Gi ,,7 , x Gi ,,4 , x Gi ,,3 and x Gi ,,5 are

assigned rank values of three, four, five, six, seven and eight respectively. Thus, the

trial sequence is Gi , = [1, 4, 7, 6, 8, 2, 5, 3]. According to formula, if j =2, then

Gi,,2 = 4 and
GiGi ,,,,2

 = Gi,,4 =2; if j = 5, then Gi,,5 = 8 and
GiGi ,,,,5

 = Gi,,8 = 5; and

so on. Thus, we obtain the job permutation vector as Gi, = [1, 6, 8, 2, 7, 4, 3, 5].

Dimension j 1 2 3 4 5 6 7 8

x Gij ,, 0.985 0.632 0.340 0.408 0.128 0.828 0.436 0.636

Gij ,, 1 4 7 6 8 2 5 3

Gij ,, 1 6 8 2 7 4 3 5

Figure 2.15 Example of solution representation for individual X Gi ,

 Obviously, such a conversion process is very simple, and it makes the DE

algorithm suitable to solve permutation-based COPs. The advantage of this rule is

that this rule is not only concerned with the value of the parameter but it is also

concerned with the position of this value. The position considered in this encoding

rule is very important for scheduling problems. In scheduling problems, we want to

get the optimum sequence, however these continuous to discrete transformation rules

are only concerned with the value of the parameter in the individual rather than the

position of the parameter in that individual. Therefore, a more accurate continuous to

discrete value transformation occurs with the help of LOV rule. In this study, we will

use this rule to represent job permutation both in single and parallel machine

scheduling problems.

34

CHAPTER THREE

SINGLE MACHINE SCHEDULING WITH SEQUENCE DEPENDENT

SETUP TIMES

 In Chapter two, the Differential Evolution (DE) algorithm was introduced as an

alternative solution approach for solving combinatorial optimization problems

(COPs). It is obvious that the DE algorithm is a very efficient heuristic for solving

COPs. On the other hand, applications of the DE algorithm to COPs are very limited,

because the DE algorithm has been originally designed for continuous spaces,

whereas COPs are inside discrete spaces.

 This chapter will show application of the DE algorithm to single machine

makespan minimization problem with sequence dependent setup times. Initially, an

introduction for single machine scheduling problems is given. Then, application of

the DE algorithm to single machine makespan minimization problem with sequence

dependent setup times is explained. To improve the performance of the DE

algorithm, two local search methods are introduced. Finally, the results of the test

problems are given and an interpretation about the results is made.

3.1 Introduction

 Scheduling problems have been the subject of great research for over five

decades. One of the most popular problems in the scheduling problems is the single

machine scheduling (SMS) problem. The SMS problem does not necessarily involve

only one machine. A group of machines (e.g., a serial production line or a system)

can also be treated as a single unit. Hence, in industry, high-tech manufacturing

facilities, such as computer- controlled machining centers and robotic cells, are often

treated as an SMS problem for scheduling purposes (Pinedo, 1995).

 First of all, for understanding further explanations in this study, we need to

distinguish sequencing and scheduling. Sequencing refers to the organization of jobs

35

that will be processed on a given machine. On the other hand, scheduling refers to

the allocation of jobs to different machines. For the single machine models, only

sequencing is a problem to be solved. But for parallel machine models, both

sequencing and scheduling problems need to be solved. In a SMS problem, there is

only one machine and a group of jobs that should be sequenced in that machine

according to a prespecified performance criteria. But in a parallel machine

scheduling problem, we have a group of jobs and a group of machines and in this

case, we have to specify which job will be assigned to which machine (scheduling).

After scheduling section is completed, we sequence the jobs in each machine

individually.

 Most of the researches for scheduling problems have been conducted exclusively

for SMS problems that constitute the simplest case within scheduling environments

(Pinedo, 1995). Luckily, some of the results obtained for the single machine

scheduling provide the basis for good heuristics on parallel machines. However,

although parallel machine problems are a generalization of the single machine

problems, single machine models display some properties that do not hold for

parallel machines models.

The single machine models are important for the following reasons (Pinedo, 1995):

1. The environment of a single machine is considered to be a simple

environment and a special case of all other environments.

2. Single machine models provide properties that do not hold for either

machines in parallel or machines in series.

3. The results that can be obtained for single machine models not only provide

insights into the single machine environments but also they provide a basis

for heuristics for more complicated machine environments.

4. In a real life scheduling problem, machine environments are more

complicated and therefore they are often decomposed into subproblems that

deal with single machines.

36

 In this research, we used three field notation ( /  /) of Graham et al. (1979) to

describe scheduling problems. The  field describes the shop (machine)

environment. The  field describes the setup information, other shop conditions,

and details of the processing characteristics, which may contain multiple entries.

Finally, the  field contains the objective to be minimized. Table 3.1 shows some

examples of shop type to be used in  field of the three field notation. Table 3.2

below shows examples of shop characteristic and Table 3.3 below shows examples

of setup information to be used in  field of the three field notation. Table 3.4 below

shows examples of performance criteria to be used in  field of the three field

notation. For example, a three machine parallel scheduling problem to minimize the

makespan with a sequence dependent setup times is denoted by P3/ST sd /C max .

Table 3.1 Example of shop types

1 single machine

F flow shop

FF flexible (hybrid) flow shop

AF assembly flow shop

P, Q R parallel machines (P: related; Q: uniform; R: unrelated machines)

J job shop

O open shop

Table 3.2 Example of shop characteristic

prec precedence constraints

r j non-zero release date

pmtn preemption

Table 3.3 Example of setup information

ST si sequence-independent setup time

SC si sequence-independent setup cost

ST sd sequence-dependent setup time

SC sd sequence-dependent setup cost

ST bsi, sequence-independent batch or family setup time

SC bsi, sequence-independent batch or family setup cost

ST bsd , sequence-dependent batch or family setup time

SC bsd , sequence-dependent batch or family setup cost

37

Table 3.4 Examples of performance criteria

C max makespan

L max maximum lateness

T max maximum tardiness

D max maximum delivery time

TSC total setup/changeover cost

TST total setup/changeover time

 jf total flow time

 jC total completion time

 jE total earliness

 jT total tardiness

 jU number of tardy (late) jobs

 jj Cw * total weighted completion time

 jj Uw * weighted number of tardy jobs

 jj Ew * total weighted earliness

 jj Tw * total weighted tardiness

 jj fw * total weighted flow time

 SMS problems are COPs, and the most common performance measures in SMS

problems (objectives) are functions of the completion times of jobs. Examples of

such objectives to be minimized are makespan (i.e., the completion time of the last

job to leave the system), the total weighted (discounted) completion time, the

maximum lateness, the total weighted tardiness, and the weighted number of tardy

jobs (Pinedo, 2002). The first two objectives are focused on improving resource

utilization and productivity, while the others are mainly perceived as measures of

conformity with due dates.

38

 When the objective is to minimize makespan in a basic SMS model (without

setups), any permutation of jobs essentially gives the same makespan. However, the

addition of sequence dependent setup times considerably complicates the problem. It

is well-known that the single machine makespan problem with sequence dependent

setups 1/ ST sd /C max is proven to be strong NP-hard (Pinedo, 1995).

 Unlike the sequence independent setup time problem, in which makespan is the

same regardless of the selected sequence, when setup times are dependent on the

sequence, minimizing makespan becomes equivalent to minimizing the total setup

time which corresponds to what is usually called the traveling salesman problem

(TSP). In a TSP, each city corresponds to a job and the distance between cities

corresponds to the time required to change from one job to another.

 Baker (2002) states that there has been little progress with other performance

measures in models with sequence dependent setups because the makespan problem

has proved to be so challenging. In fact, in the presence of sequence dependent

setups, most of the research has focused on either minimizing the number of setups

or minimizing the sum of job completion times to improve the performance of single

machine models (Allahverdi et al., 1999). But in recent years, not only the attention

on sequence dependent setup time problems has increased but also the other

performance measures have grown in size (Allahverdi et al., 2006).

 In section three of this chapter, the mathematical formulation of the symmetric

and asymmetric TSP problem that is related with SMS problem will be given. After

that, the formulation of the single machine makespan minimization problem with

sequence dependent setup times will be given. Also in this section, differences of

symmetric and asymmetric matrix formulations will be explained. But before this,

literature review of the single machine scheduling problems with different

performance measures and different solution approaches will be discussed.

39

3.2 Literature Review

 In spite of the fact that, a majority of the literature deals with problems without

sequence dependent setups, some surveys and studies indicate that setups are

important in a majority of practical situations and must be accounted for in the

design of algorithms for scheduling problems. In a survey of industrial schedulers,

Panwalkar et al. (1973) report that about 70% of the schedulers stated that setup

times depended on processing sequence in at least 25% of the jobs they scheduled.

Kim and Bobrowski (1994) study the impact of setup times on the performance of

scheduling systems using simulation; they conclude that, to better model practical

situations, setup times should be considered explicitly whenever they are

significantly greater than the processing times. Excellent surveys of scheduling

problems with setups are presented in Allahverdi et al. (1999) and Allahverdi et al.

(2008) and these studies point out the importance of setup times.

Figure 3.1 Classification of separate setup time (cost) scheduling problems (Allahverdi et al., 1999)

 The benefits of reducing setup times include: reduced expenses, increased

production speed, increased output, reduced lead times, faster changeovers, increased

competitiveness, increased profitability and satisfaction, enabling lean

manufacturing, smoother flows, broader range of lot sizes, lower total cost curve,

fewer stock outs, lower inventory, lower minimum order sizes, higher margins on

orders, faster deliveries, and increased customer satisfaction. The importance and

40

benefits of incorporating setup times/costs in scheduling research has been

investigated by many researchers since mid 1960s. Flynn (1987) demonstrates that,

scheduling with setup times increases output capacity in cellular manufacturing

environments, while Wortman (1992) underlines importance of the problem in

effectively managing the manufacturing capacity. Kogan and Levner (1998) and

Stowers and Palekar (1997) discover that, treating setup times as separate can

significantly reduce makespan in an automated manufacturing line with robots. Liu

and Chang (2000) state that, setup time is a significant factor in production

scheduling and it may easily consume more than 20% of available resource capacity.

 In a SMS problem, each job has its own processing and setup times and each job

must be sequenced in such a way as to optimize performance measures. In order to

determine the best sequence, all possible sequences are generated along with the

objective function value and then the best one among them is selected. This is

defined as exhaustive enumeration. The maximum number of sequences that can be

explored is n! (n being the number of jobs) combinations. Therefore, the exhaustive

enumeration technique is restricted, especially when n is large (Sule, 1997). The

problem cannot be solved efficiently when the size of the problem increases. Since

there is no algorithm that exists to solve this problem in a polynomial time, these

problems are called NP-hard problems.

 As an initial step in solving problems with sequence dependent setups, single

machine problems are also solved by various other methods: dynamic programming

(Gascon and Leachman, 1998), branch-and-bound (Dietrich and Escudero, 1989) and

heuristics (Pinedo, 1995).

 Deeper observations about SMS problems including sequence dependent setup

times are also made. Uskup and Smith (1975) discussed a two-stage problem in

which facilities at both stages require a setup and they employed a branch-and-bound

(B&B) algorithm to the 1/ST sd /TST problem subject to the due date constraint.

Emmons (1969) successfully applied a dynamic programming algorithm to solve the

problem of 1/ ST sd /TSC. Bianco et al. (1988) proposed a mixed integer linear

41

programming (MILP) model for the 1/ ST sd /C max problem in the presence of release

times and developed a branch-and-bound method, which uses a Lagrangian lower

bound and dominance criteria to prune the enumeration tree. Glassey (1968) used a

dynamic programming algorithm for the same problem to minimize the number of

changeovers subject to due dates. For the 1/prec, ST sd /C max problem, He and Kusiak

(1992) proposed a simpler mixed integer formulation and a fast heuristic algorithm

of low computational time complexity.

 Since the 1960s, there has been an increasing interest in heuristic techniques, such

as Simulated Annealing (SA), Tabu Search (TS), and Genetic Algorithm (GA) in

finding optimal or near optimal solutions for big sized problems. The term used to

refer to such techniques is “evolutionary computation”. The best known algorithms

in this class include GAs (Holland, 1975), evolution strategies (ES) (Rechenberg,

1973), evolutionary programming (EP) (Fogel et al., 1966), and genetic

programming (GP) (Koza, 1992).

 Examples for sequence dependent setup time problems in real life are as follows;

Pinedo (1995) described a paper bag factory where setup is needed when the

machine switches between types of paper bags, and the setup duration depends on

the degree of similarity between consecutive batches; e.g. size and number of colors.

The printing industry provides numerous applications of sequence dependent setups

where the machine cleaning depends on the color of the current and immediately

following orders (Conway et al., 1967). In several textile industry applications, setup

for weaving and dying operations depends on the job sequence. In the container and

bottle industry, the settings change depending on the sizes and shapes of the

containers. Further, in the plastic industry, different types and colors of products

require sequence dependent setups (Das et al., 1995 and Franca et al., 1996).

 Lee and Asllani (2004) presented a MILP model and a GA model for the 1/ ST sd

problem with the minimization of  jU as the primary objective, and the

minimization of the C max as the secondary objective. They concluded that the model

42

becomes very complex and unmanageable when the number of jobs is more than ten.

They also found that proposed GA performs better when the ratio of setup times to

processing times is relatively large. Choobineh et al. (2005) developed TS heuristic

and a MILP model to obtain the optimal solution of the 1/ ST sd problem. Their first

objective is minimization of makespan (C max) and second objective is minimizing

the number of tardy jobs ( jU) and last objective is minimizing total tardiness

( jT). They found that the computational time increases as the setup ranges

decrease and problem size increases.

 So far, many efficient scheduling algorithms have been developed to solve

various ST sd problems with different performance criteria. Rabadi et al. (2007)

considered a single machine early/tardy problem with unrestricted common due date.

They proposed a heuristic algorithm symmetry-adapted perturbation theory (SAPT)

and a hybrid SA algorithm to obtain near-optimal solutions. Woodruff and Spearman

(1992) developed a branch-and-bound algorithm that finds the due date feasible

sequence with the minimum setup time. Farn and Muhlemann (1979) also considered

the ST sd problem in the presence of dynamic job arrivals and established that the

best heuristic for the static problem is not necessarily the best in a dynamic situation.

Stecco et al. (2008) considered a SMS problem with sequence dependent and time

dependent setup times. The objective of the study is to minimize total setup time with

quick and effective TS heuristic. Computational experiments show that the proposed

heuristic consistently finds better solutions in less computation time than a recent

branch-and-cut algorithm.

 As we look recent year‟s papers, Lin and Ying (2007) considered the 1/ ST sd /

 jj Tw * problem. They solved the problem with three well-known heuristics SA,

GA, TS, random swap and insertion search. After that, a mutation operation is

performed by a greedy local search and it is integrated inside GA, similarly, a swap

and an insertion tabu list are adopted in TS algorithm. Armentano and Araujo (2006)

developed variants of the greedy randomized adaptive search procedure (GRASP)

43

metaheuristic that incorporate memory based mechanisms for solving 1/ ST sd / jT

problem with respect to job due dates. Chou et al. (2008) considered the 1/ ST sd ,r j /

 jj Tw * . They developed two exact algorithms, including a constraint

programming model and a branch-and-bound method for small problems, and they

developed two heuristics including a best index dispatch and a modified weighted

shortest processing time based on non-delay concepts for large problems. Tasgetiren

et al. (2008) is concerned with solving the 1/ST sd / jj Tw * problem. They solved

the problem by a pure discrete DE algorithm and also hybridized the DE algorithm

with a referenced local search method. At the end of the study, they concluded that

the hybrid DE algorithm outperformed the pure DE algorithm in all comparative

fields This is the first known application of the DE algorithm to sequence dependent

setup time problems.

3.3 Problem Statement and Formulation

 This chapter of the thesis deals with SMS problem with sequence dependent setup

times with the objective of minimizing makespan (SMSDST). This problem is

referred to as 1/ST sd /C max with the three field notation. Also this problem can be

defined as follows, there are n jobs, indexed as 1, 2,..., n, which are all available for

processing at time zero on a continuously available machine. The machine can

process only one job at a time and preemption is not allowed. Associated with each

job j, there is a positive integer processing time p j on the machine, and a setup time

s ji , . Here, setup times (s ji ,) are necessarily incurred when job j follows job i in the

processing sequence. Generally, the setup time matrix is assumed as s ji , ≠ s ij , . If

setup time matrix is as s ji , ≠ s ij , , the matrix is said to be asymmetric, otherwise

symmetric.

 Let be a processing sequence of the jobs, = { ,..., }, where

is the index of the t th job in the sequence. The completion time of the job in t th

44

position of the sequence can be calculated as

and the objective in this study is to find a sequence that minimizes maximum

completion time of the given sequence which is denoted as C max = max(
).

 In the following, the notation used for the formulation of SMS problem is given

by Rardin (1992):

n = Number of jobs.

s ji , = Sequence dependent setups between job i and job j. i, j = 1, 2, …, n.

x ji , =




otherwise

sequenceainyimmediateljjobprecedesijobif

0

1

S = Subset of jobs forming a subsequence. (|S| is the size of S)

Problem: SMSDST problem with objective of minimizing makespan (symmetric

TSP formulation).

Minimize 
i ij

jiji xs ,, * (3.1)

Subject to the constraints:

 
 


ij ij

jiij xx ,,
=2 ∀ i=1, …,n. (3.2)

 
 


ijSj

ji

Si

n

Si

ji

ijSj

xx
,

,,

,

 2 ∀ i=1, …,n ∀ S, S 3 and j>i (3.3)

x ji , = 0, 1 i=1, …, n, j=1, …, n, i j (3.4)

 Equation (3.1) is the objective function that minimizes the sum of the sequence

dependent setup times. Constraint (3.2) in symmetric case requires that exactly two x

variables relating to any point i be equal to one in a feasible solution. One links i to

the job before it in the sequence, and other links job i to the job after j. According to

constraint (3.3) every sequence must cross a point in S and points outside at least

twice not to become infeasible. Constraint (3.4) is the zero and one constraint.

45

Problem: SMSDST problem with objective of minimizing makespan (asymmetric

TSP formulation).

Minimize 
i ij

jiji xs ,, * (3.5)

Subject to the constraints:




n

jij

jix
,1

,
=1 ∀ i=1, …,n. (3.6)




n

jii

ijx
,1

,
=1 ∀ i=1, …,n. (3.7)


 Sj

ji

Si

x ,  1 ∀ S and ≥2 (3.8)

x ji , =0 or 1 ∀ i=1, …, n and ∀ j=1,…, n. (3.9)

 Equation (3.5) is the objective function that minimizes the sum of the sequence

dependent setup times between each pair of jobs. Constraints 3.6 and 3.7 are

assignment constraints. Each job has a predecessor and a successor. Constraint (3.8)

requires that each sequence enter and leave every subset S of points. Thus, subtour

elimination is provided by requiring the sequence to leave every S at least once.

Equation (3.9) refers to the state which variables must be 0 or 1.

46

iteration=0.

Initialization, set NP (population size), F (mutation factor),

CR (crossover factor), lower bound, upper bound

Generate NP individuals randomly .

Apply the LOV rule to find the permutations of individials.

Evaluate each individual Xi,G in

the population.

Mutant population generation Vi,G,for each individual in the

population generate mutant individual.

Generate trial population Ui,G,for each mutant individual

generate a trial individual.

Find permutation, apply the LOV rule to find permutations

of all individuals.

Evaluate each individual in the population.

iteration=iteration+1.

Selection, f(Ui,G) f(Xi,G)

iteration>maxiteration

Output the fittest

individual.

Replace current individual with the

trial individual Xi,G = Ui,G

YES

NO

NO

YES

 Figure 3.2 Flowchart of the DE algorithm for single machine scheduling problems

47

3.4 Application of the Differential Evolution Algorithm to Single Machine

Scheduling Problems

 The application of the DE algorithm to SMS problems with sequence dependent

setup time problems will be represented in this section of this research. In Chapter

two, a detailed explanation of how to apply classic version of the DE algorithm

(DE/rand/1/bin) to continuous problems is explained. However in this chapter, the

problem that will be handled is a discrete problem. By the help of the handling

discrete variables technique, that was explained in previous chapter, we will convert

continuous parameters to discrete parameters and easily represent our processing

sequence. And at last, we will integrate local search procedures with the DE

algorithm to improve the DE algorithm‟s performance and effectiveness.

 First of all, we will begin with initialization section. After that, mutation section,

crossover section and selection section will be respectively explained. From Figure

3.2, you can see how the DE algorithm works for the SMS problem.

Initialization:

 Before starting the algorithm, we must first set control parameters that will be

used while operating the DE algorithm. These control parameters are population size

(NP), mutation factor (F), crossover factor (CR), lower bound (X LB) and upper

bound (X UB). To improve the performance of the DE algorithm, choosing the

appropriate settings for these control parameters is very important. Setting of

appropriate control parameters will be explained in detail later in this chapter.

 After setting appropriate control parameters, we will generate the initial

population, that is composed of NP individuals where P GX , = (X G,1 , X G,2 , …, X Gi ,)

(i = 1,…,NP). Each individual contains n number of parameters indexed by j, X Gi , =

(x Gi ,,1 , x Gi ,,2 ,…, x Gij ,,) (j = 1,…,n), and it is generated randomly according to

equation (2.7) that is given in section 2.3.2.

48

x 0,,ij = rand j (0,1)*(X UB - X LB)+ X LB . (2.7)

 Initial population is initially generated with continuous parameters but we have to

convert them to discrete parameters to compute their objective function values. The

LOV rule is used to convert these parameters to find the permutations  Gi , = [ Gi ,,1 ,


Gi ,,2 ,…,  Gin ,,] of all individuals in the population. After all of the individuals in

initial population are converted, the objective functions values are evaluated for each

individual i by using objective function f ( Gi ,) for i = 1, …, NP.

Mutation:

 In mutant population generation phase of the algorithm, continuous valued

individuals of population are used. For each individual in the population, X Gi , , at

generation G, a mutant individual V Gi , = [v Gi ,,1 , …, v Gin ,,] is determined by using the

equation (2.8) given in section 2.3.3.

V Gi , = X Gr ,1 + F * (X Gr ,2 -X Gr ,3). (2.8)

Crossover:

 In crossover section of the algorithm, we generate a trial population. To generate

a trial population, each individual in mutant population and initial population is used.

First of all, for each mutant individual, an integer random number between 1 and n is

chosen, i.e. j rand . Here the index j rand is a randomly chosen variable (j rand = 1, …,

n) and this randomly chosen variable‟s corresponding parameter is directly copied

from mutant population to trial population which is used to ensure that one parameter

in the trial individual U Gi , , differs from its counterpart in the previous iteration

X 1, Gi . Trial individual U Gi , =[u Gi ,,1 , …, u Gin ,,], is generated with equation (2.16)

below.

49

U Gi , = u Gij ,, =


 

otherwisex

jjorCRrandifv

Gij

randjGij

,,

,,)1,0(
 (2.16)

 Here, CR is a user defined parameter which is between 0 and 1 and rand j is a

uniform random number between 0 and 1 which is different for all individual

parameters. Random number, rand
j
, is chosen anew for each parameter in the

individual.

 Once trial population is generated, we again apply LOV rule to convert

continuous parameters of each individual of the generated population to job

permutations  0,i = [ 0,,1 i ,  0,,2 i ,…,  0,,in]. After job permutations are formed,

we again evaluate the objective function values of all of the individuals in the

population.

Selection:

 One of the advantages of the DE algorithm is that it uses greedy acceptance rule

which means algorithm only selects better valued individuals. To decide whether or

not the trial individual U Gi , will be a member of the population in the next iteration,

it is compared with its counterpart in the previous iteration X 1, Gi . The selection is

based on the survival of the fittest among the trial population (2.17).

X 1, Gi =


 

otherwiseX

XfUfifU

Gi

GiGiGi

,

,,,)()(
 (2.17)

 If the prespecified termination conditions are satisfied after selection operation is

completed then we stop, otherwise we will again restart from mutation operation. In

this study, reaching a specific iteration number is chosen as a stopping criterion and

this number is set to 500*n.

50

Pseudo code of the DE algorithm presented above is given below.

Initialize parameters

Initialize target population

Find permutation

Evaluate fitness of the target population

Do

 Obtain the mutant population

 Obtain the trial population

 Find permutation

 Evaluate fitness of the trial population

 Do selection

While (not termination)

3.5 Local Search Methods

 Many COPs of practical interest are computationally intractable. Therefore, a

practical approach for solving such problems is to employ heuristic (approximation)

algorithms that can find nearly optimal solutions within a reasonable amount of

computational time. The literature devoted to heuristic algorithms often distinguishes

between two broad classes: constructive algorithms and improvement algorithms. A

constructive algorithm builds a solution from scratch by assigning values to one or

more decision variables at a time. On the other hand, an improvement algorithm

generally starts with a feasible solution and iteratively tries to obtain a better

solution. Neighborhood search algorithms, (alternatively called local search

algorithms) are a wide class of improvement algorithms where at each of iteration an

improving solution is found by searching the “neighborhood” of the current solution.

For large problem instances, it is impractical to search these neighborhoods

explicitly, and one must either search a small portion of the neighborhood or else

develop efficient algorithms for searching the neighborhood implicitly.

 A critical issue in the design of a neighborhood search approach is the choice of

the neighborhood structure, that is, the manner in which the neighborhood is defined.

This choice largely determines whether the neighborhood search will develop

solutions that are highly accurate or whether it will develop solutions with very poor

local optima. As a rule of thumb, the larger the neighborhood, the better is the quality

51

of the locally optimal solutions, and the greater is the accuracy of the final solution

that is obtained. At the same time, the larger the neighborhood, the longer it takes to

search the neighborhood at each iteration. Since one generally performs many runs of

a neighborhood search algorithm with different starting points, longer execution

times per iteration lead to fewer runs per unit time. For this reason a larger

neighborhood does not necessarily produce a more effective heuristic unless one can

search the larger neighborhood in a very efficient manner.

 It is difficult for a solution to simultaneously reach the bottoms of all big-valleys

without utilizing the domain knowledge of problems. And not searching the bottoms

of big valleys is very unlikely for algorithms to obtain good enough solutions.

Fortunately, the DE algorithm, which has been proved to be a simple and efficient

heuristic for global optimization, may provide a way to find good solutions over the

solution space. Therefore, hybridizing the DE algorithm with an improvement

algorithm for the SMSDST problem with the objective of minimizing makespan can

be a good idea. The DE algorithm in this study is applied to find the promising

solutions or sub-regions over the solution space, after which insert-based

neighborhood search and variable neighborhood search (VNS) are used to exploit

the solution space from those sub-regions to guide the population to the bottom

regions of different big-valleys, where contains the Pareto solutions and good

solutions. Detailed explanations of the hybrid DE algorithm will be given in section

3.6.

3.5.1 Insert-Based Neighborhood Search

 Insert based neighborhood search is a smaller variant of VNS search and this

search procedure is directly applied to the job permutations. For permutation-based

optimization problems, insert based neighborhood search‟s diameter is n − 1. That is,

using insert based neighborhood search at most n − 1 times, one solution  Gi , can

transit to any other solution. Compared with several commonly used operators, the

diameter of insert based neighborhood search is one of the shortest ones. This means,

the solutions caused by insert based neighborhood search are closer to each other.

52

The distance defined by Schiavinotto and Stützle (2007) of the old solution and the

new one caused by insert based neighborhood search is only 1. That is to say, insert

based neighborhood search is suitable for performing a thorough search (Qian et al.,

2007). An example for insert based neighborhood search is given in the Figure 3.3.

Figure 3.3 An example of insert based neighborhood search.

Pseudo code of the algorithm is given below by Qian et al. (2007).

Step1: Convert a randomly chosen individual X Gi , to a job permutation Gi, by LOV

rule and s 0 = Gi, ;

Step2: Randomly select u and v where u  v; s = insert(s 0 , u, v);

Step3: Set loop = 1;

 Do {

 Randomly select u and v where u  v; s 1 = insert(s, u, v);

 If f(s
1
)  f(s) then s = s

1
;

 loop = loop+1;

 } while (loop < n * (n – 1))

Step4: If f (s) ≤ f (Gi,) then Gi, = s and repair Gi, ;

Step5: Convert Gi , back to X Gi , .

53

Convert a randomly choosen individual Xi,G to a

job permutation by LOV rule and s0 = Gi, Gi,

Randomly select u and v where u v;

s = insert(, u, v).outloop=0.



0s

Randomly select u and v where u v;

s1 = insert(s , u, v).



f(s1) f(s)

loop=loop+1

s=s1

f(s) f() Gi,

loop n*(n-1)

=sGi,

Outloop=outloop+1

YES

NO

NO

YES

YES

NO

Set outloop=1

Outloop

0.1*population size


Output the individuals

NO

YES

Figure 3.4 Flowchart of the insert-based neighborhood search

54

 This local search method is simple but efficient one because of the following two

reasons. First, in step two, u and v performing insert based neighborhood search are

randomly chosen and the new solution is always accepted, so the local search can

avoid cycling and overcome local optimum. Second, in step three, two positions u

and v performing insert based neighborhood search are randomly chosen, and the

new solution is accepted only if it dominates the old one. Such a local search can

guide the population to reach the regions nearby bottoms of different big-valleys in a

comparatively short time. So, insert based neighborhood search can spend more time

to perform a thorough search in these promising regions. Flowchart of the insert-

based neighborhood search is given in Figure 3.4. This search process is repeated

0.1*population size (NP) times.

3.5.2 Variable Neighborhood Search for Single Machine Scheduling Problems

 Variable Neighborhood Search (VNS) is a modern metaheuristic that proposes

systematic changes of the neighborhood structure within a search to solve

optimization problems. VNS that is proposed by Mladenovic and Hansen (1997), has

quickly gained a widespread success, and a large number of successful applications

have been reported such as for the „p-median‟ problem (Garcia-Lopez et al., 2002),

the multi-depot routing problem (Polacek et al., 2004), TSP problem (Hansen &

Mladenovic, 1997) and several other classical problems (Hansen & Mladenovic,

1999, 2003, 2002). This method differs from the most local search heuristics because

it uses two or more neighborhoods instead of one in its structure. In particular, it is

based on the principle of systematic change of neighborhood during the search.

 The VNS search inside the DE algorithm is directly applied to the permutations

 Gi , of the randomly chosen individuals in the population at each generation G. The

search in this study is based on the insert + interchange variant of the VNS method

presented in Mladenovic and Hansen (1997). For the SMSDST problem, the

following two neighborhood structures are employed:

55

 interchange two jobs between the u th and v th dimensions, n  v (interchange)

an example can be seen in Figure 3.5;

 remove the job at the u th dimension and insert it in the v th dimension u  v

(insert) an example can be seen in Figure 3.3.

Figure 3.5 An example of interchange neighborhood search.

 In this search method, u and v are random integer numbers between 1 and u. For

convenience, s = insert(s 0 , u, v) means removing the job from the u th dimension in

the permutation s 0 and inserting it in the v th dimension in the permutation s 0 , thus

resulting in permutation s. Insert based neighborhood structure is explained in

section 3.5.1 .

 Inside the VNS procedure, we first begin with choosing an individual randomly.

After individual is selected, then we apply insertion procedure to job permutation of

the related vector and accept this solution whether it improves the objective function

of the individual or not. If it improves the objective function value, this vector

replaces the old vector and again insertion procedure is applied, otherwise we apply

interchange procedure to the job permutation. This job permutation is again

compared with the objective function value of the randomly chosen individual and if

objective function is improved, it replaces the randomly chosen individual. If it is not

improved then the iteration end and a new iteration begins (Tasgetiren et. al. 2006a).

56

Pseudo code of the algorithm is given below which is proposed by Mladenovic and

Hansen (1997).

Do{

Step1: Convert a randomly chosen individual to a job permutation by LOV

rule;

Step2: outloop = 0 and = ;

Do {

Step3: Randomly select u and v where u ≠ v; s = insert(, u, v);

Step4: Set inloop = 0;

 count = 0, maxmethod = 2;

 Do {

 u = random (1, n) and v = random (1, n);

 If count = 0 then = insert(s, u, v)

 If count = 1 then = interchange(s, u, v)

Step5: If (f ()  f (s)) then count = 0 and s = else

count = count+1;

Step6: } while (count < maxmethod)

 inloop = inloop+1;

Step7: while} (inloop < n * (n – 1))

 outloop = outloop+1;

Step8: If (f (s) ≤ f ()) then = s, repair ();

Step9: while}(outloop < 0.1*popsize)

57

Convert a randomly choosen individual to

a job permutation by LOV rule =
GiX ,

Gi, 0s Gi,

Randomly select u and v where u v;

s = insert(s0, u, v). count=0, maxmethod=2,

inloop=0.



Set outloop=0.

u = random(1,n) and

v = random(1,n);

count=0?

count=1?

inloop=inloop+1

inloop<n*(n-1)

 =insert(s, u, v)1s

 =interchange(s, u, v)1s

f() f(s)1s 

count=count+1
count=0, s=s1

count=0

NO

NO

YES

YES

YES

NO

NO

f(s) f() Gi, =sGi,

outloop=outloop+1

YES

YES

NO

outloop<0.1*population

size

NO

Output the

individuals.

YES

Figure 3.6 Flowchart of the proposed VNS local search method

58

 After the whole local search procedure is completed, X Gi , should be repaired

because its corresponding job permutation should match the permutation resulted by

the local searches. Due to easy mechanism of LOV rule and insert-based

neighborhood search, the repair process is very simple and can be described as

follows:

Step 1: Calculate the sequence  i by the following formula:


iGij ,,, = j.

Step 2: Values in X Gi , are rearranged to keep consistent with i .

 An example of the repairing procedure is shown in Figures 3.7- 3.9. In Figure 3.7,

job permutations according to initial vectors are given. After search procedure is

completed, you can see in Figure 3.8 that the LOV rule is violated because the new

job permutation Gi , does not match the old individual X Gi , , where  Gi ,,2 = 5 and 

Gi ,,8 = 9 are interchanged. Thus, X Gi , and  i should be repaired. The trial vector is

repaired with interchanging the fifth and ninth parameter in trial vector and the initial

vector is repaired in the same way as the trial vector. The resulting vector can be seen

in Figure 3.9.

Figure 3.7 Solution before local search

Figure 3.8 Solution by local search (before repairing)

59

Figure 3.9 Solution by local search (after repairing)

3.6 Hybrid Differential Evolution Algorithm

 In this study, a pure DE algorithm is first applied to the SMSDST problem and

then tested with well-known test problems. The performance of the pure DE is not on

the level we wanted and we should improve its performance and the solution quality.

Here, two effective local search methods mentioned in the previous sections are

hybridized with the DE algorithm. This hybridization has been effective for the

SMSDST problem for different performance criteria such as makespan, tardiness,

due date, weighted tardiness, etc.

 Both of the two local search methods are integrated inside the DE algorithm just

after the selection procedure. After selection procedure is applied to the individuals,

the local search is applied to 10% of the randomly selected individuals of the

population. Figure 3.10 illustrates the developed hybrid DE algorithm for SMSDST

problem.

3.7 Setting Control Parameters

 The convergence of the DE algorithm is affected by a number of parameters.

These parameters include the population size, mutation factor, crossover factor and

variant schema used in the DE algorithm. Proper selection of these parameters is

required to get accurate results within fewer function evaluations. For hard global

optimization problems, improper values of these parameters may never give good

results. If the DE algorithm is not giving consistent results every time for any

objective function that means some of these parameter‟s values are not chosen

properly.

60

iteration=0.

Initialization, set NP (population size), F (mutation factor),

CR (crossover factor), lower bound and upper bound.

Generate NP individuals randomly .

Apply the LOV rule to find the permutations of individials.

Evaluate each individual in

the population.

Mutant population generation Vi,G, for each individual in

the population generate a mutant individual.

Generate trial population Ui,G, for each mutant individual

generate a trial individual.

Find permutation, apply the LOV rule to find

permutations of all individuals.

Evaluate each individual in the population.

iteration=iteration+1.

Selection, f() f()

GiX ,

GiU , GiX ,

iteration>maxiteration

Output the fittest individual.

Replace current individual with the

trial individual Xi,G = Ui,G

NO

YES

YES

NO

Apply selected local search method to randomly chosen

%10 of the population.

Figure 3.10 Flowchart of the hybrid DE algorithm for the SMSDST problem

61

Population Size (NP)

 The population size should not be very small or very large. If the population size

is small, it will converge to point other than global optimum design point because the

small population loses diversity very fast. If the population size is very large, it

requires more function evaluations for convergence.

Mutation Factor (F)

 If we take the value of mutation factor very high (one or greater than one), it will

take more iterations to converge since the rate of contraction of the region becomes

too small. Also, due to high value of mutation factor, recombination generates

vectors that are distributed in the region of nearly the same size as the previous

generation. So, the probability of getting good solution by recombination becomes

low. Whatever convergence we get, it is generally due to crossover. So, for high

value of mutation factor, probability of getting good solution reduces. If we chose

value of mutation factor small then convergence is faster and the number of iterations

required less but in this case, there are more chances to converge to the local

minimum point. So, we have to choose the value of mutation factor according to

function. If the function has a number of local minima with the value near to the

global minimum then we have to choose the mutation factor near to one. But, if we

do not have any idea about the solution space then we have to make an initial study

for setting correct parameter combination in the algorithm.

Crossover Factor (CR)

 Crossover factor affects the number of variables to be changed in the design

vector compared to the previous generation member. As the value of CR gets high,

more variables are taken from the mutant vector. If we take the value of the

crossover factor “0” then new generation remains same as the previous generation

and there is no improvement in the result and no convergence. If we take the

crossover factor “1” then all variables in the trial vector are taken from the mutant

62

vector, this means there is no shuffling of components between the previous

generation member and the new parameter vector for producing next generation

member. This would decrease the population diversity. Therefore, a number between

“1” and “0” seems to be a good idea but by making a parameter optimization we can

be sure about this number.

Number of Design Variables (n)

 The number of design variables in the objective function affects the speed of the

convergence. Objective function with more design variables takes longer to

convergence because of the increase in the search region.

Bounds of Design Variables (X LB and X UB)

 Upper and lower bounds of design variables affect the convergence of the DE

algorithm. With increase in the difference between upper and lower bounds of the

design variable, search region for finding optimum solution increases. This will

increase the number of function evaluations for finding out the optimum solution.

The optimum solution is sometimes located near to boundary, so in this case if we

increase the upper bound or decrease the lower bound then it may be helpful in

finding the optimum solution with less number of iterations and function evaluations.

It is also sometimes possible to explore more topology by increasing the upper bound

or decreasing the lower bound we explore more topology of objective function. That

might be helpful in finding out the optimum solution with less number of function

evaluations.

 The parameters affecting the convergence of the DE algorithm in this study are

assumed to be dependent on the values of four control parameters: the population

size (NP), the crossover factor (CR [0, 1]), the mutation scale factor (F (0, 2))

and variants used (DE/rand/1/bin, DE/rand/2/bin etc.).

63

 In order to determine the correct settings of these parameters for the solution of

SMSDST problem, we set the mutation-scale factor F to a fixed value within the

range F  {0.3, 0.5, 0.7, 0.9,)*2/()2(NPCR (Zaharie, 2007)}, and

experimented with various crossover rates CR  {0.1, 0.3, 0.5, 0.7, 0.9}, different

population sizes NP  {5 +  n , 2* n, 200} (n = number of the jobs to be

scheduled) and different variants {DE/rand/1/bin, DE/rand/2/bin, DE/best/1/bin,

DE/best/2/bin and DE/randtobest/bin}. For selecting the best parameter combination,

the pure DE algorithm is run for mutation factor values (5), crossover factor values

(5), population size values (3), variants of the DE algorithm (5) times number of

problem sets used values (2) and the number of runs for each parameter values(10),

which is equal to (5x5x3x5x2x10=7500) 7500 times. All of the methods are coded

and run in MATLAB.

 The influence of the various combinations of settings of the control parameters on

the performance of the DE algorithm in regard to %offset are observed in this study.

Equation (3.10) below shows how the value of %offset is calculated.

%offset = ((Cost
DE

- Cost*) / Cost*) x 100 (3.10)

 Here, Cost
DE

 is the average of the costs of the schedule achieved by the DE

algorithm for each control parameter combination at the end of test runs. Cost* is the

corresponding cost of the existing best known solution for the specific test problem

obtained.

 The results displayed concern the application of the DE algorithm on the 29-job

and 70-job SMSDST test problems. Pure version (without local search procedure) of

DE was run 10 times per each test problem (starting each time from a different

random number seed) and the best results obtained after each run were averaged. So,

here we get average of ten runs for each control parameter combination on each test

problem. However, to compare each parameter combination, we should find a

general average %offset value for the two test problems.

64

 An example of computing average of two %offset values while NP is 200 and

DE/rand/1/bin variant is used, is given Table 3.5. On the left side of the table,

average and %offset values according to each parameter combination of 29-job test

problem are given. On the right side of the table, the same values according to 70

jobs test problem are given. The average value column for each test problem

corresponds to average value of the ten runs we get for that parameter combination.

The average of two %offset values is computed because we are not only concerned

with the best parameter combination for small sized problems but also for big sized

problems. If parameter combination for small sized problems is used for big sized

problems, then it is not guaranteed that this combination will give good results and

vice versa. But if parameter combination of average %offset value is taken into

account then we will get a combination for not only the small sizes but also for big

sized problems.

Table 3.5 Computation of average %offset values.

65

 Figures 3.11 to 3.15, demonstrate the influence of the various DE algorithm

combinations of F and CR control parameters for NP=200 and different schemas on

the performance of the DE algorithm in regard to average %offset.

 According to these figures, each curve corresponds to a different value of F and

demonstrates the variation of %offset in regard to the various crossover rates CR (X-

axis). The best objective function values obtained by the algorithm are traced as data

labels on the lowest curve of each chart.

Figure 3.11 Influence of the control parameters on the performance of the DE algorithm in

regard to %offset from optimum for the DE/rand/1/ bin schema

DE/rand/1/bin (NP=200)

14.08

27.42
26.46

4.71

6.65

0.00

10.00

20.00

30.00

40.00

50.00

60.00

CR=0,1 CR=0,3 CR=0,5 CR=0,7 CR=0,9

%
 O

ff
s
e
t

F=0.3 F=0.5 F=0.7 F=0.9 F by Rule

66

Figure 3.12 Influence of the control parameters on the performance of the DE algorithm in

regard to %offset from optimum for the DE/rand/bin/2/schema

Figure 3.13 Influence of the control parameters on the performance of the DE algorithm in

regard to %offset from optimum for the DE/best/1/bin schema

DE/rand/2/bin (NP=200)

29.41

38.68

21.46 19.53

2.49

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

CR=0,1 CR=0,3 CR=0,5 CR=0,7 CR=0,9

%
O

ff
s
e
t

F=0.3 F=0.5 F=0.7 F=0.9 F by Rule

DE/best/1/bin (NP=200)

24.69 24.88

15.41

31.91

11.74

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

CR=0,1 CR=0,3 CR=0,5 CR=0,7 CR=0,9

%
 O

ff
s
e
t

F=0.3 F=0.5 F=0.7 F=0.9 F by Rule

67

Figure 3.14 Influence of the control parameters on the performance of the DE algorithm in

regard to %offset from optimum for the DE/best/2/bin schema

Figure 3.15 Influence of the control parameters on the performance of the DE algorithm in

regard to %offset from optimum for the DE/randtobest/bin schema

DE/best/2/bin (NP=200)

9.00

61.58

58.87

39.43

28.25

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

CR=0,1 CR=0,3 CR=0,5 CR=0,7 CR=0,9

%
 O

ff
s
e
t

F=0.3 F=0.5 F=0.7 F=0.9 F by Rule

DE/randtobest/bin (NP=200)

25.39

32.80

23.58

11.37

17.75

0.00

10.00

20.00

30.00

40.00

50.00

60.00

CR=0,1 CR=0,3 CR=0,5 CR=0,7 CR=0,9

%
 O

ff
s
e
t

F=0.3 F=0.5 F=0.7 F=0.9 F by Rule

68

 As you can see from the figures above, the best objective function values obtained

by the algorithm in each variant does not have same values of F. For example, in

Figure 3.11, best objective function value is obtained by the algorithm while F is F

by rule with a %offset value of 4.71%. But on the other hand this is not the same for

other variants. For example, in Figure 3.13, the best objective function value is

obtained by the algorithm while F is 0.9 with a %offset value of 11.74%.

 As discussed above, choosing the best parameter combination is concerned with

obtaining the lowest %offset value. From the definition, the lowest value obtained

according to the figures above is 2.49%. Best parameter combination obtained with

this parameter optimization study is as follows: schema: DE/rand/2/bin, NP: 200, F:

0.3 and CR: 0.9 with a best %offset value 2.49%.

3.8 Computational Study

 A popular way to investigate the performance of mathematical formulations and

heuristics is through the computational study. In general terms, there are two

opinions on the kind of instances to be used in testing models: random generation,

and standard libraries. In our experimentation, only test problems (benchmark

problems) from the literature are used.

 If all the jobs have the same weight, zero release time and the objective is to

minimize the makespan, then the problem reduces to TSP. For this reason, the data

sets created for TSP problems can also be used for the SMSDST problem. The

well-known TSP benchmark library, TSPLIB, has the best test data sets for our

problem. These data sets both include symmetric and mostly asymmetric ones.

 For the selected 69 test problems, we do not have to compute lower bounds

because the optimum solutions of the test problems are all known. The size of the

problem varies from 10 jobs to 175 jobs. All of the problems are run 10 times (each

starting from different random number seed) and the average values of these ten runs

are represented in the results table next section.

69

 In previous sections of this chapter, we discussed how we applied the DE

algorithm to SMSDST problem and how we used local search methods to improve

the performance of the DE algorithm. In this section, results of the test problems

according to three different proposed solution approaches respectively, the pure DE

algorithm, the DE algorithm plus insertion and the DE algorithm plus VNS search

will be represented.

 The performance of the proposed three algorithms are quantified mainly by four

indices: (a) the average offset from optimal in %, (b) the average solution effort in %,

(c) the minimum of the ten test runs and (d) the standard deviation of the ten test

runs. To get the average performance of the algorithm, the results of the 10 runs

(starting each time from a different random number seed) on each problem instance

are averaged.

 According to %offset (3.10), Cost
DE

 is the average makespan value of the

schedule achieved by the DE algorithm for a specific test problem at the end of 10

test runs. Cost* is the corresponding cost of the existing best known solution for the

specific test problem. Since the optimum solutions for the test problems are known ,

the Cost* values correspond to known optimum solutions.

 Another performance measure in this study is %effort for which the formulation is

given below.

%effort = 100*










TI

Iopt
 (3.11)

 According to formulation (3.11) above, I opt
is the iteration number at which the

algorithm achieved its best solution for a specific test problem, and TI is the total

number of iterations the algorithm is run. For all the test problems in this study,

maximum number of iterations is set to 500 * n. This means, iteration number is 500

times the number of jobs and iteration number increases as the number of jobs

increases.

70

 Another performance measure used in this study is the minimum objective

function value among ten runs made for each test problem.

min = minimum (Cost 1,DE , Cost 2,DE , …, Cost RDE ,) (3.12)

 According to the formulation (3.12) above Cost kDE , is the cost of the schedule

achieved by the DE algorithm for a specific test problem at the end of each run k. R

(number of runs) is taken as 10 for this study since the DE algorithm is run for 10

times.

 Another performance measure is the standard deviation of the runs made for each

test problem.

 = 





R

k

kDE aCost
R 1

2

,)(
1

1
 (3.13)

 According to formulation (3.13), R is taken as 10, Cost kDE , has the same

description given above and is the average value of ten runs made for each test

problem.

 Last performance measure is the mean of runs made for each test problem.

mean =






 

R

CostCostCost RDEDEDE ,2,1, ...
 (3.14)

7
1

Table 3.6 Computation results of benchmark test instances.

 DE DE+VNS DE+insertion

Prob No Prob OPT* mean S.D. min offset effort mean S.D. min offset effort mean S.D. min offset effort

1 10a 21 21 0 21 0.00% 0.60% 21 0 21 0.00% 0.08% 21 0 21 0.00% 0.04%

2 10b 211 211 0 211 0.00% 1.04% 211 0 211 0.00% 0.08% 211 0 2111 0.00% 0.04%

3 atex1 1812 1812 0 1812 0.00% 1.44% 1812 0 1812 0.00% 0.10% 1812 0 1812 0.00% 0.04%

4 br17 39 39 0 39 0.00% 0.48% 39 0 39 0.00% 0.04% 39 0 39 0.00% 0.02%

5 gr17 2085 2085 0 2085 0.00% 1.54% 2085 0 2085 0.00% 0.04% 2085 0 2085 0.00% 0.05%

6 20a 34 53.3 5.75 43 56.76% 99.54% 34.9 0.5 34 2.65% 55.16% 34.7 0.5 34 2.06% 1.95%

7 20b 36 47.3 4.98 39 31.39% 26.20% 36.1 0.3 36 0.28% 28.58% 36.1 0.3 36 0.28% 2.81%

8 20c 58 92.2 8 76 58.97% 91.87% 59 1.73 58 1.72% 31.14% 58 0 58 0.00% 2.73%

9 gr21 2707 2707 0 2707 0.00% 1.71% 2707 0 2707 0.00% 0.03% 2707 0 2707 0.00% 0.04%

10 gr24 1272 1284.4 10.9 1272 0.97% 3.29% 1272 0 1272 0.00% 0.28% 1272 0 1272 0.00% 0.04%

11 25a 400 628.3 16.1 608 57.08% 74.66% 407.7 4.1 402 1.93% 69.26% 400.8 0.8 400 0.20% 11.40%

12 25b 402 686.7 28.9 647 70.82% 44.33% 413.9 6.4 404 2.96% 79.95% 402.3 0.7 402 0.07% 3.70%

13 fri26 937 946.5 10.4 937 1.01% 2.61% 937 0 937 0.00% 0.39% 937 0 937 0.00% 0.27%

14 bayg29 1610 1619.6 11.1 1610 0.60% 3.80% 1610 0 1610 0.00% 0.38% 1610 0 1610 0.00% 0.48%

15 bays29 2020 2024.8 2.4 2020 0.24% 4.11% 2020 0 2020 0.00% 1.11% 2020 0 2020 0.00% 0.26%

16 atex3 2952 3002 113 2956 1.69% 34.80% 2955 2 2952 0.10% 49.77% 2952 0 2952 0.00% 4.59%

17 ftv33 1286 1396.1 16.8 1373 8.56% 6.21% 1287.2 3.6 1286 0.09% 8.52% 1286 0 1286 0.00% 1.69%

18 ftv35 1473 1594.8 21.7 1560 8.27% 8.96% 1473.6 0.9 1473 0.04% 25.75% 1473.8 1.9 1473 0.05% 3.93%

19 ftv38 1530 1645.3 30.2 1609 7.54% 4.45% 1530.8 1.8 1530 0.05% 31.39% 1530.5 0.9 1530 0.03% 8.49%

20 Dant42 699 772.7 21.6 748 10.54% 9.04% 699 0 699 0.00% 10.45% 699 0 699 0.00% 2.00%

21 Swi42 1273 1361.8 37 1337 6.98% 7.51% 1273 0 1273 0.00% 2.69% 1273 0 1273 0.00% 2.69%

22 p43 2810 2816.2 4.3 2814 0.22% 4.42% 2812.5 1.96 2811 0.09% 19.54% 2812.4 0.8 2812 0.09% 1.12%

23 ftv44 1613 1753 29 1719 8.68% 6.88% 1617 3 1613 0.25% 68.85% 1630 15 1623 1.05% 7.70%

24 ftv47 1776 1928 57 1865 8.56% 9.06% 1783 5 1776 0.39% 65.49% 1778 1 1776 0.11% 32.50%

25 gr48 5046 5171.9 98.5 5078 2.50% 4.16% 5046.3 0.9 5046 0.01% 2.99% 5046 0 5046 0.00% 3.82%

26 atex4 3218 3734 163 3476 16.03% 12.37% 3354 32 3308 4.23% 33.76% 3355 39 3300 4.26% 35.85%

27 ry48p 14422 15829.5 226.7 15358 9.76% 8.06% 14543.3 35.5 14488 0.84% 57.59% 14571 37 14496 1.03% 11.38%

28 eil51 426 445 5 436 4.46% 11.78% 427 1 426 0.23% 21.88% 428 1 427 0.47% 0.72%

29 brln52 7542 8386 227 8115 11.19% 8.60% 7542 0 7542 0.00% 7.15% 7542 0 7542 0.00% 8.07%

30 ft53 6905 7954.8 171.5 7746 15.20% 11.72% 7101.1 50.3 6972 2.84% 35.10% 7195 45 6985 4.20% 23.36%

31 ftv55 1608 1867.5 47.9 1784 16.14% 11.08% 1656 21.1 1619 2.99% 78.00% 1649 19.8 1612 2.55% 17.27%

32 Bra58 25395 28365 1111 27281 11.70% 11.94% 25431 41.7 25395 0.14% 44.73% 25578 45.6 25410 0.72% 19.01%

33 ftv64 1839 2138.5 69.8 2041 16.29% 7.27% 1892 12.2 1878 2.88% 83.66% 1938 15 1896 5.38% 8.59%

34 ft70 38673 40504 197 40224 4.73% 47.36% 39374 23 39350 1.81% 56.88% 39938 42 39860 3.27% 28.33%

35 st70 675 736 32 701 9.04% 3.98% 683 4 678 1.19% 37.77% 686 3 681 1.63% 12.06%

*OPT = optimum solution values.

7
2

 Table 3.6 Computation results of benchmark test instances (cont).

 DE DE+VNS DE+insertion
Prob No Prob OPT* mean S.D. min offset effort mean S.D. min offset effort mean S.D. min offset effort

36 ftv70 1950 2245 47 2191 15.13% 10.32% 2072 15 2053 6.26% 30.69% 2109 85 1997 8.15% 18.49%

37 pr76 108159 119137 4788 111135 10.15% 7.50% 108722 244 1E+05 0.52% 15.66% 109817 919 1E+05 1.53% 20.82%

38 eil76 538 588 9 569 9.29% 6.59% 554 3 550 2.97% 12.43% 558 1 556 3.72% 4.41%

39 ftv90 1575 2035 99 1921 29.21% 8.16% 1879 17 1859 19.30% 32.23% 1924 29 1894 22.16% 9.45%

40 rat99 1211 1394 11 1373 15.11% 4.09% 1299 5 1288 7.27% 25.09% 1339 31 1302 10.57% 4.18%

41 rd100 7910 8552 258 8267 8.12% 12.27% 8157 39 8112 3.12% 20.01% 8254 57 8191 4.35% 10.12%

42 kro100 36230 40431 983 38568 11.60% 4.65% 38538 258 38259 6.37% 34.97% 39015 426 38614 7.69% 19.96%

43 krA100 21282 24711 770 23582 16.11% 4.65% 21880 273 21581 2.81% 17.36% 22619 50 22559 6.28% 5.76%

44 krB100 22141 25682 715 24717 15.99% 5.29% 23459 57 23394 5.95% 14.93% 24538 421 24099 10.83% 3.29%

45 krC100 20749 24900 488 24276 20.01% 5.76% 22015 51 21955 6.10% 8.25% 23191 270 22834 11.77% 1.63%

46 krD100 21294 24260 657 23473 13.93% 5.57% 22855 82 22711 7.33% 10.16% 23723 309 23334 11.41% 5.38%

47 krE100 22068 26144 986 24880 18.47% 3.88% 23719 56 23633 7.48% 4.86% 25153 994 24059 13.98% 3.25%

48 ftv100 1788 2283 75 2175 27.68% 6.03% 2051 13 2033 14.71% 7.07% 2179 8 2164 21.87% 2.39%

49 eil101 629 703 32 678 11.76% 7.40% 670 5 663 6.52% 7.52% 674 21 650 7.15% 0.83%

50 lin105 14375 17379 347 16855 20.90% 4.24% 15691 3 15684 9.15% 4.27% 16374 35 16329 13.91% 1.29%

51 pr107 44303 48264 2675 44728 8.94% 3.56% 44742 44 44657 0.99% 22.59% 47407 179 47214 7.01% 1.77%

52 ftv110 1558 2309 118 2181 48.20% 12.05% 2006 22 1976 28.75% 15.48% 2162 117 2135 38.77% 6.57%

53 dc112 11105 11389 44 11338 2.56% 7.91% 11171 5 11163 0.59% 4.14% 11189 24 11211 0.76% 0.19%

54 gr120 6942 7628 134 7409 9.88% 4.75% 7254 28 7215 4.49% 33.82% 7325 31 7271 5.52% 12.09%

55 ftv120 2166 2727 71 2624 25.90% 7.75% 2554 16 2531 17.91% 14.96% 2677 101 2560 23.59% 2.72%

56 pr124 59030 73121 4300 66455 23.87% 3.75% 63848 837 62946 8.16% 3.86% 67270 1204 65959 13.96% 1.81%

57 dc126 123235 125043 374 124369 1.47% 12.35% 124479 292 1E+05 1.01% 4.88% 124980 426 1E+05 1.42% 2.36%

58 bie127 118282 140077 4725 132322 18.43% 11.57% 131280 779 1E+05 10.99% 3.93% 132546 951 1E+05 12.06% 1.73%

59 ftv130 2307 3156 72 3080 36.80% 12.89% 2834 4 2827 22.84% 4.14% 3060 7 3049 32.64% 1.51%

60 pr136 96772 110880 5449 106420 14.58% 4.46% 105191 117 1E+05 8.70% 8.72% 107672 1662 1E+05 11.26% 1.46%

61 ftv140 2420 3435 74 3364 41.94% 6.36% 3185 7 3177 31.61% 6.14% 3347 28 3319 38.31% 2.36%

62 pr144 58537 75416 3049 73238 28.83% 6.80% 72380 917 71337 23.65% 5.45% 74699 1003 73506 27.61% 2.04%

63 krA150 26524 32981 1157 31948 24.34% 4.92% 30577 276 30276 15.28% 2.43% 32152 593 31529 21.22% 1.29%

64 krB150 26130 31854 1018 31087 21.91% 10.87% 29940 407 29533 14.58% 2.34% 30805 411 30340 17.89% 2.27%

65 ftv150 2611 3661 108 3521 40.21% 8.80% 3216 5 3211 23.17% 4.81% 3328 31 3290 27.46% 2.33%

66 pr152 73682 93414 6017 84929 26.78% 4.81% 79750 644 79106 8.24% 8.81% 86122 1287 84213 16.88% 2.40%

67 u159 42080 50763 1949 48009 20.63% 3.47% 46848 1052 45796 11.33% 6.07% 49061 214 48834 16.59% 1.81%

68 ftv160 2683 3779 209 3546 40.85% 10.29% 3570 76 3794 33.06% 7.19% 3652 17 3627 36.12% 3.03%

69 si170 21407 22830 426 22251 6.65% 7.86% 22018 156 21817 2.85% 30.74% 22315 124 22009 4.24% 19.91%

73

 Table 3.6 give the computational results according to the specified performance

criteria for the three proposed approaches which are respectively, the DE algorithm,

the DE algorithm with VNS search and the DE algorithm with insertion search.

 When we look at the %offset columns of Table 3.6, you can see that the pure DE

algorithm has always the highest %offset value. It is now proven that the pure DE

algorithm has the worst performance among the proposed approaches. Furthermore,

when %offset values of the proposed hybrid methods are compared with each other,

it is obvious from Table 3.6 that until problem no.26(atex4), the DE algorithm with

insertion local search has equal or better results than the DE algorithm with VNS

local search in 26 out of 69 test problems. For example, let us look at the problem

no.12. For this test problem, pure DE has 70.82% offset value, DE with VNS has

2.96% offset value and DE with insertion has 0.07% offset value. However, after

problem no.26, it is obvious that the DE algorithm with VNS local search method

has lowest %offset values among all proposed three approaches. For example, for

problem no.56, pure DE has 23.87% offset value, DE with VNS has 8.16% offset

value and DE with insertion has 13.96% offset value.

 From the examples above, for small sized problems, hybridizing the DE algorithm

with insert based local search procedure gives us the best %offset values. However,

for big sized problems hybridizing the DE algorithm with VNS local search gives us

the best %offset values. This consequence can also be confirmed from the figures

below. According to Figures 3.16 through 3.20, %offset values of the proposed

methods for each test problem are compared with each other. In these figures, each

column corresponds to %offset value of each method.

74

Figure 3.16 Comparison of three proposed methods for problem instances 1 to 15 with job numbers

between 10 and 30

Figure 3.17 Comparison of three proposed methods for problem instances 16 to 30 with job

numbers between 30 and 54

Figure 3.18 Comparison of three proposed methods for problem instances 31 to 45 with job

numbers between 56 and 100

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

10
a

10
b

at
ex

1

br
17

gr
17 20
a

20
b

20
c

gr
21

gr
24 25
a

25
b

fri
26

ba
yg

29

ba
ys

29

DE DE+VNS DE+insertion

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

at
ex

3

ftv
33

ftv
35

ftv
38

D
an

t4
2

S
w

i4
2

p4
3

ftv
44

ftv
47

gr
48

at
ex

4

ry
48

p

ei
l5

1

br
ln

52 ft5
3

DE DE+VNS DE+insertion

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

ftv
55

B
ra
58

ftv
64

ft7
0

st
70

ftv
70

pr
76

ei
l7
6

ftv
90

ra
t9
9

rd
10
0

kr
o1
00

kr
A
10
0

kr
B
10
0

kr
C
10
0

DE DE+VNS DE+insertion

75

Figure 3.19 Comparison of three proposed methods for problem instance 46 to 60 with job number

between 100 and 137

Figure 3.20 Comparison of three proposed methods for problem instance 60 to 69 with job number

between 140 and 170

 Figure 3.21, 3.22 and 3.23, show us that as the number of jobs increases,

deviation from optimum solution increases. But surprisingly in Figure 3.21, from

problem 20a to 25c, deviation from optimum is higher than all other test problems.

This is because the pure DE algorithm cannot tackle local optimum points and these

problems have local optimums that are far from global optimum. But as we look at

Figure 3.22 and Figure 3.23, hybrid methods easily overcome local optimum points

in each test problem and they outperform the pure DE algorithm.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

kr
D
10
0

kr
E
10
0

ft
v1
00

ei
l1
01

lin
10
5

pr
10
7

ft
v1
10

dc
11
2

gr
12
0

ft
v1
20

pr
12
4

dc
12
6

bi
e1
27

ft
v1
30

pr
13
6

DE DE+VNS DE+insertion

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

ft
v1
40

pr
14
4

kr
A
15
0

kr
B
15
0

ft
v1
50

pr
15
2

u1
59

ft
v1
60

si
17
0

DE DE+VNS DE+insertion

7
6

Figure 3.21 %offset values of each test problem for the pure DE algorithm

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%
1

0
a

a
te

x1

g
r1

7

2
0

b

g
r2

1

2
5

a

fr
i2

6

b
a

ys
2

9

ftv
3

3

ftv
3

8

S
w

i4
2

ftv
4

4

g
r4

8

ry
4

8
p

b
rl

n
5

2

ftv
5

5

ftv
6

4

st
7

0

p
r7

6

ftv
9

0

rd
1

0
0

kr
A

1
0

0

kr
C

1
0

0

kr
E

1
0

0

e
il1

0
1

p
r1

0
7

d
c1

1
2

ftv
1

2
0

d
c1

2
6

ftv
1

3
0

ftv
1

4
0

kr
A

1
5

0

ftv
1

5
0

u
1

5
9

si
1

7
0

7
7

Figure 3.22 %offset values of each test problem for the DE algorithm with VNS local search

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

1
0
a

a
te

x
1

g
r1

7

2
0
b

g
r2

1

2
5
a

fr
i2

6

b
a
y
s
2
9

ft
v
3
3

ft
v
3
8

S
w

i4
2

ft
v
4
4

g
r4

8

ry
4
8
p

b
rl
n
5
2

ft
v
5
5

ft
v
6
4

s
t7

0

p
r7

6

ft
v
9
0

rd
1
0
0

k
rA

1
0
0

k
rC

1
0
0

k
rE

1
0
0

e
il1

0
1

p
r1

0
7

d
c
1
1
2

ft
v
1
2
0

d
c
1
2
6

ft
v
1
3
0

ft
v
1
4
0

k
rA

1
5
0

ft
v
1
5
0

u
1
5
9

s
i1

7
0

7
8

Figure 3.23 %offset values of each test problem for the DE algorithm with insert based local search

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%
1
0
a

a
te

x
1

g
r1

7

2
0
b

g
r2

1

2
5
a

fr
i2

6

b
a
y
s
2
9

ft
v
3
3

ft
v
3
8

S
w

i4
2

ft
v
4
4

g
r4

8

ry
4
8
p

b
rl
n
5
2

ft
v
5
5

ft
v
6
4

s
t7

0

p
r7

6

ft
v
9
0

rd
1
0
0

k
rA

1
0
0

k
rC

1
0
0

k
rE

1
0
0

e
il1

0
1

p
r1

0
7

d
c
1
1
2

ft
v
1
2
0

d
c
1
2
6

ft
v
1
3
0

ft
v
1
4
0

k
rA

1
5
0

ft
v
1
5
0

u
1
5
9

s
i1

7
0

79

 Table 3.7 shows us the average %offset and %effort values for the three methods

obtained from 69 test problems. These are nearly the same results as in Table 3.6. In

most of the test problems solved, the DE algorithm with VNS local search

outperformed other two proposed methods.

Table 3.7 Corresponding average %offset, %effort value and standard deviation value

 However, from the average %effort point of view, the DE algorithm with VNS

local search has a 20.94% effort value, whereas the pure DE and the DE algorithm

with insertion have 12.01% and 6.35% effort values respectively. This means, for DE

with VNS local search, more iteration are made for the test problems than the other

methods. Furthermore, for average of these 69 test problems, the DE algorithm with

insert based local search outperformed other two proposed methods and have 6.35%

effort value and surprisingly the pure DE algorithm have less average %effort value

than DE with VNS search.

 Another performance measure given in Table 3.7 is the average standard

deviation value. This value can give us an opinion about how close our results will

be when we run the proposed methods. The results obtained from each run should be

close to each as much as possible because distinct results can be too far from global

optimum point and accuracy of the algorithm decreases as standard deviation value

increases. Here, a trade off should be made because DE with VNS local search gives

highest quality results, however it takes more iterations to reach through results than

the other methods. On the other hand, it is the most accurate method and has only

102.29 average standard deviation value while the other methods have 652.36 and

178.77 average standard deviation values respectively.

 Table 3.8 gives us a different point for comparison. Here, min. value is the

minimum result taken among all the runs for a proposed method. The %offset

80

performance measure this time assumes Cost
DE

 as the minimum value obtained

among ten runs instead of average value for each problem instance.

Table 3.8 Computational results according to computational times

81

Table 3.8 Computational results according to computational times (cont.)

 In Table 3.8, there are two new performance measures, time and ratio

respectively. Here, the time performance measure is the computational time in

seconds among the runs for which we get the minimum solution value. For example

in the Table 3.9, the first row corresponds to run number, the second row

corresponds to related makespan value in that run and the last row is the

computational time in seconds for that run. Furthermore, time performance measure

according to this example is 64 seconds with lowest makespan value 110.

Table 3.9 An example for ten test runs for a test problem.

Run 1 2 3 4 5 6 7 8 9 10

Makespan 124 118 121 136 112 122 128 142 110 138

Time 35 24 45 41 40 22 26 87 64 51

82

 The formulation of the ratio performance measure according to time constraint is

given below.

ratio =
),,min(insertionDEVNSDEDE

t

timetimetime

time



 (3.15)

 From the formulation given above, it is obvious that when ratio is “1” then this is

the smallest among all proposed methods, and it gets higher proportional to the other

methods.

 Figure 3.24 gives a comparison of the proposed methods according to %offset

percentages of minimum values. According to the figure, it can be seen that %offset

values of the pure DE algorithm is far higher than the other methods for small sized

problems. However, as the problem size increases, the pure DE algorithm also begins

to give nearly same performance as other methods do. On the other hand, the DE

algorithm with VNS local search gives the best (lowest) %offset values among all

methods.

 From the Figure 3.25, a comparison according to ratios of computational times is

given. According to this figure, it is very obvious that the pure DE algorithm always

has minimum computational time values among the proposed methods. Hence, a

trade-off or a choice should be done according to speed or accuracy of the chosen

method. If we choose the hybrid DE algorithm with VNS local search, we can get

more quality results but relatively in longer computation times. But if we choose the

pure DE algorithm, we cannot get very quality results although short computation

times. On the other hand, if we choose the hybrid DE algorithm with insert based

local search, we can get nearly accurate results with small S.D. value but it is again

very slow.

8
3

Figure 3.24 Comparison of %offset of minimum values.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

1
0
a

a
te

x
1

g
r1

7

2
0
b

g
r2

1

2
5
a

fr
i2

6

b
a
y
s
2
9

ft
v
3
3

ft
v
3
8

S
w

i4
2

ft
v
4
4

g
r4

8

ry
4
8
p

b
rl
n
5
2

ft
v
5
5

ft
v
6
4

s
t7

0

p
r7

6

ft
v
9
0

rd
1
0
0

k
rA

1
0
0

k
rC

1
0
0

k
rE

1
0
0

e
il1

0
1

p
r1

0
7

d
c
1
1
2

ft
v
1
2
0

d
c
1
2
6

ft
v
1
3
0

ft
v
1
4
0

k
rA

1
5
0

ft
v
1
5
0

u
1
5
9

s
i1

7
0

DE DE+VNS DE+insertion

8
4

Figure 3.25 Comparison of ratios of each test problem

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1
0
a

a
te

x
1

g
r1

7

2
0
b

g
r2

1

2
5
a

fr
i2

6

b
a
y
s
2
9

ft
v
3
3

ft
v
3
8

S
w

i4
2

ft
v
4
4

g
r4

8

ry
4
8
p

b
rl
n
5
2

ft
v
5
5

ft
v
6
4

s
t7

0

p
r7

6

ft
v
9
0

rd
1
0
0

k
rA

1
0
0

k
rC

1
0
0

k
rE

1
0
0

e
il1

0
1

p
r1

0
7

d
c
1
1
2

ft
v
1
2
0

d
c
1
2
6

ft
v
1
3
0

ft
v
1
4
0

k
rA

1
5
0

ft
v
1
5
0

u
1
5
9

s
i1

7
0

DE DE+VNS DE+insertion

85

3.9 An Example of the Differential Evolution Algorithm for the Single Machine

Scheduling Problem

 This section of the study gives an example of application of the DE algorithm to

SMSDST problem. Before beginning to solve the problem, we should set the control

parameters NP, F, CR, XUB and X LB . The parameters are given in Table 3.10. After

parameters are set, we should generate an initial population according to equation (2.7).

Table 3.10 Parameters setting

Control Parameters of DE

Decision Variables D 10

Population Size NP 5

Scaling Mutation Factor F 0.3

Crossover Rate Constant CR 0.9

Upper Bound XUB 0

Lower Bound X LB 4

Table 3.11 Randomly generated initial population

 After the initial population of the DE algorithm is generated, we should convert these

continuous values to discrete values. To accomplish this, we use LOV rule. An example

of this method on individual one is given in Table 3.12.

86

Table 3.12 Computation of job permutations according to LOV rule

 All of the individuals have now been converted to discrete permutations. The

permutation population can be seen in Table 3.13.

Table 3.13 Job permutations of initial population

 Now, we should compute the objective function value of individuals using the setup

time matrix given in Table 3.14.

Table 3.14 Setup time matrix

87

 For individual 1, objective function computation example is given in Figure 3.26

below.

 Figure 3.26 Computation of objective function of individual 1

 The objective function values of individuals are follows.

Table 3.15 Computed objective function values

 After all computations done, now we should apply mutation operation to all of the

individuals. To apply mutation operation, we begin by individual 1 and select three other

vectors. These three other vectors are base vector (r1) and difference vectors (r2 and r3).

In our example, these vectors are chosen as r1=3, r2=4 and r3=5. All of the selected

vectors are different from each other as discussed before. Table 3.16 below shows how

mutant vector is constructed. Herein, we assume that F is equal to 0.3. Mutant vector

constructed below is an infeasible one and therefore we have to repair it as it was done

in section 2.3.3. The repaired version of the mutant vector is also given in the Table

3.17.

88

Table 3.16 Generated mutant vector

Table 3.17 Repaired mutant vector

 After mutation operation is completed, we pass through the crossover operation. The

crossover operation is performed with two vectors and these vectors are initially

generated individual 1 and mutant vector generated from individual 1. By combining

these two vectors, a trial vector is constructed. An example of trial vector construction of

individual 1 is given in the Table 3.18 below.

89

Table 3.18 Generation of trial vector

 After trial vector is constructed, now we have to apply LOV rule to continuous

valued trial vector to encode them to job permutations. After job permutation of trial

vector is found, we compute the objective function value of this job permutation. From

Table 3.19, you can see how LOV rule is applied and how objective function value of

that vector is computed.

Table 3.19 Finding job permutation of generated trial vector

 Figure 3.27 Computation of objective function value of individual 1

 The objective function of the trial vector is computed as in Figure 3.27. After that, we

have to compare the objective function value of the trial vector and its counterpart in the

previous iteration. Since the objective function value of the trial vector is smaller than

objective function value of the vector in previous iteration, the trial vector replaces its

90

counterpart in the next iteration. These computations last until a prespecified termination

condition is satisfied.

Table 3.20 Individual 1 at the end of selection procedure

91

CHAPTER FOUR

PARALLEL MACHINE SCHEDULING WITH SEQUENCE DEPENDENT

SETUP TIMES

 Parallel machine scheduling models are important for the same reason that single

machine models are important: If one particular workcenter is a bottleneck, then the

schedule at that workcenter will determine the performance of the entire system. That

bottleneck can then be modeled as a bank of parallel machines and analyzed separately.

 In chapter three of this thesis, the application of the newly generated DE algorithm to

single machine scheduling (SMS) problem is discussed. Afterwards, the DE algorithm is

hybridized with two well-known local search procedures. In this chapter, an application

of the DE algorithm to parallel machine scheduling (PMS) problems will be first

discussed. Within this discussion, an encoding technique, borrowed from GA, will be

used for the first time for the DE algorithm. Also in this chapter, application of GA and

Variable Neighborhood Search (VNS) algorithm to parallel machine makespan

minimization problem with sequence dependent setup times will be discussed.

Afterwards, the DE algorithm will be hybridized with a different version of VNS

algorithm as a local search procedure as we have done in previous chapter. To the end of

the chapter, an initial solution generation method will be introduced and this will be the

first time that this initial population generation method is used with the DE algorithm.

Finally, computational results of three methods, GA, VNS and hybrid DE will be

compared with each other according to randomly generated test problems.

4.1 Introduction

 According to the industrial context, scheduling problems often arise on the

operational level, considering the production of a day, a week or a month. However

exact methods found on the literature fails to find optimal solutions for these real

92

instances in a reasonable time; therefore in this research we look for near optimal

solutions to solve these hard problems.

 A bank of machines in parallel is a setting that is important from both the theoretical

and practical point of view. From the theoretical viewpoint, it is a generalization of the

single machine and a special case of the flexible flow shop. From the practical point of

view, it is important because the occurrence of resources in parallel is common in the

real world. Also, techniques for machines in parallel are often used in decomposition

procedures for multistage systems (Pinedo, 1995).

 The problem handled in this chapter deals with scheduling jobs on related parallel

machines which have a fixed processing capacity. Each machine can handle at most one

job and each job can be processed by at most one machine. Pinedo (1995) considered

scheduling jobs on parallel machines as a two-step process:

1. Determine which jobs to allocate to which machines;

2. Determine the sequence of the jobs allocated to each machine.

 In general, PMS problems have two distinct decisions: allocation and sequencing.

Also, PMS problem can be classified according to: objective function type, machine

type (identical or non-identical machine) and job type (independent or dependent job).

Additional criteria for the problem classification are sequence dependent setup times and

ready times.

 Determining the sequence of the jobs allocated to each machine depends on the

objective function of problem. However, objectives may vary from one situation to

another. When all jobs are available at time zero, the natural objective is to minimize the

makespan. If in addition, individual jobs leave the system immediately after they are

proposed, another natural objective would be to minimize the average flow time, thus

minimizing the work in process inventory. When dealing with machines in parallel, the

93

makespan becomes an objective of significant interest. In practice, one often has to deal

with the problem of balancing the load on machines and by minimizing the makespan.

 The problem handled in this study is a real life one because most of the studies on

parallel machine scheduling problem do not take setup times into account in order to

minimize makespan and setup time has often been considered to be negligible or as a

part of the processing time but this does not reflect real life situation.

4.2 Literature Review

 Although the literature on PMS problems are still not as generous as in the case of

SMS problems, a growing research activity is definitely noted starting from the early

McNaughton‟s (1959) initial work. McNaughton (1959) provided an algorithm (as part

of a constructive proof) to minimize makespan on a number of identical parallel

machines (m) in the case of independent jobs (n) with preemption. If each job‟s

processing time is taken as p j , then the makespan values C max 
m

1



n

j

jp
1

 can be

achieved as long as p j  C max  j. In addition to this, Hu (1961) developed an

algorithm to minimize the makespan for jobs with a tree precedence constraint

relationship and equal processing times whereas he did not allow preemption. An

important result of Hu‟s work is a labeling algorithm that assists in partitioning the set of

jobs in many later algorithms. Muntz and Coffman (1969) generalized Hu‟s labeling

algorithm. Muntz and Coffman (1969) presented an unequal processing time version of

Hu‟s labeling algorithm and combined this with McNaughton‟s lower bound on the

makespan value for the case of two machines, and also this algorithm allows arbitrary

precedence constraints and preemption.

 Over the years, there has been a great deal of research to develop efficient approaches

for solving P//C max problem. As a member of a family of algorithms known as list

94

scheduling algorithms, the well-known longest processing time (LPT) rule of Graham

(1969) has received extensive attention in terms of performance guarantee it tends to

perform. Based on this rule, we start with an empty schedule and iteratively put a

nonscheduled job with longest processing time of all remaining jobs on to the machine

with currently having minimal workload. This method yields a schedule no worse than

max

max)(

C

LPTC


3

4
-

m3

1
, where C max (LPT) denotes the makespan received by the LPT

algorithm and m denotes the number of machines. This performance guarantee is proven

to be tight (Graham, 1969), and later the bounds for LPT rule is improved to better

places by Coffman and Sethi (1976).

 For the P//C max problem, where preemption is not allowed, Graham (1966) showed

that when jobs are assigned and processed by any of equal machines when becoming

idle, the total time of the schedule will not be more than twice that of the optimal

schedule. In addition to this, the non-preemptive version of PMS problem was shown to

be NP-complete (Karp, 1972) even for two equal machines. Sahni (1976) presented

more complicated heuristic for the P//C max problem, utilizing dynamic programming,

that can be used to obtain the results as close to optimum as desired. Unfortunately, the

time complexity of this method grows rapidly as the accuracy desired increases; hence,

it is not practical for more than two or three machines, except for small n. Garey and

Johnson (1979) also proposed an algorithm entitled MULTIFIT that affords the relation

between bin-packing and makespan problems. Although, the performance guarantee for

MULTIFIT algorithm is tighter than that of LPT algorithm, it does not follow that

MULTIFIT algorithm will produce better makespan than LPT algorithm for any given

problem. Coffman et al. (1978) also found bounds on the MULTIFIT solution which

were improved upon by Friesen (1984). Lee and Massey (1988) noted the strengths of

both the LPT and MULTIFIT heuristics and suggested combining them using LPT to

provide an initial solution and then MULTIFIT as an improvement method. Blocher and

Chaud (1991) also combined two approaches for this problem in order to realize a

solution within a desired deviation percentage from optimal and developed improved

95

bounds on the LPT heuristics. Punnen and Aneja (1995) developed lower bounds for the

general minmax combinatorial problem of which P//C max is an application. Fatemi and

Jolai (1998) proposed a pairwise interchange (PI) algorithm for the problem that is also

applicable for scheduling non identical parallel machines and also non-simultaneous job

arrivals, with the idea that the variance of completion times of the last job on each

machine in the presence of job preemption is zero. They tried to minimize sum of ranges

of machine finish times instead of the makespan. Gupta and Ruiz-Torres (2001)

proposed a heuristic named LISTFIT based on bin-packing problem and list scheduling

that its worst-case performance bound is no worse than that of MULTIFIT algorithm.

Their computational results showed that heuristic outperforms the LPT algorithm, the

MULTIFIT algorithm, and the COMBINE methods of Lee and Massey (1988) that

utilizes the result of LPT algorithm as an initial solution for the MULTIFIT algorithm.

Lee et al. (2006) proposed a simulated annealing (SA) algorithm for the same problem

and evaluated its performance in comparison with LISTFIT and PI algorithms.

 The problem in main interest in this thesis is the P/ST sd /C max problem. Ovacik and

Uzsoy (1993) also studied the P/ ST sd /C max and P/ ST sd /L max problems in

semiconductor testing facilities where setup times are bounded by processing times.

They provided an example showing that, list schedules are non-dominant, and developed

worst-case error bounds for list scheduling algorithms. Franca et al. (1996) considered

the same problem of Ovacik and Uzsoy (1995) under the makespan objective with no

restriction on setup time and developed a three-phase heuristic which uses a tabu search

method. Guinet and Dussauchoy (1993) used an extension of the Hungarian method to

solve the linear assignment problem as a heuristic to solve the P/ ST sd /C max problem.

Guinet (1993) showed that PMS problem can be reduced on vehicle routing problem

(VRP) and suggested first a two step heuristic. Then he compared mathematical model

based on the VRP and heuristic, concluding that for small sized problem, mathematical

model give quality results in a reasonable time; however for medium and big sized

problems heuristic algorithms give quality results in reasonable computational times.

96

Franca et al. (1996) use a tabu search methodology to minimize the makespan of a set of

jobs with sequence dependent setups on identical machines. They obtain an initial

solution by assigning each job to the machine which results in the smallest increase in

the current makespan. This solution is improved via a tabu search procedure where

moving a job from the busiest machine to another machine constitutes a neighborhood

move. The solution found by the tabu search procedure is further improved by post

processing the sequence on the busiest machine.

 Recently, Mendes et al. (2002) and Gendreau et al. (2001) addressed the P/ST sd /C max

problem. Mendes et al. (2002) proposed two heuristics, namely one is tabu search based

and the other is a memetic approach that is a combination of a population based method

with local search procedures. Gendreau et al. (2001) proposed lower bounds for the P/ST

sd /C max problem and presented a divide and merge heuristic. They compared their

heuristic with earlier heuristics of TS and showed that their heuristic is much faster

while producing similar quality results. Behnamian et al. (2008) also made a research

about P/ST sd /C max problem. They proposed three heuristics, ACO, VNS algorithm and

SA. After that, to improve the performance of the algorithms, they hybridized these

algorithms with a well-known local search method VNS. Also they proposed a new

hybrid algorithm that is combination of GA, SA and VNS. They concluded that VNS

local search method is effective for hybridizing the proposed algorithms and give better

results than lately published literature. Rocha et al. (2007) also presented VNS and NEH

algorithm for the P/ST sd /C max problem. They proposed an initial solution generation

method based on GRASP algorithm. After that they compared NEH and VNS algorithm

according to their fitness values and concluded that VNS search outperformed NEH

algorithm in all comparative fields.

 For having a look at other variants of PMS problem apart from one in this study;

Kurz and Askin (2001) presented an integer programming formulation for the problem

of P/ ST sd , r j /C max . They also developed several heuristics including GA and multi-fit

97

based approaches and empirically evaluated them. They used solution of the traveling

salesman problem (TSP) as part of their heuristics. That is, once the jobs have been

assigned to the machines, a TSP is formulated and solved to find an optimal job

sequence on each machine. Recent uses of LPT based heuristics for PMS problems

include Lin and Liao (2008) and Koulamas and Kyparsis (2008). Lin and Liao (2008)

proposed a heuristic based on LPT. They used this approach to solve multiple uniform

parallel machines and concluded that some additions to this proposed LPT based

algorithm can make it more efficient. Koulamas and Kyparsis (2008) developed a

modified LPT algorithm for solving two uniform PMS problem with sequence

dependent setup times and with objective of minimizing makespan.

 The GA has also been successfully applied to solve a variety of scheduling problems

and P/ST sd /C max problem (Hou et al. 1994, Correa et al. 1999) is one of those

problems. In studies of Hou et al. (1994) and Correa et al. (1999), a schedule is

represented by a set of strings such that each machine has a string. The string then

contains the jobs assigned to that machine in the order to be processed. Min and Cheng

(1998) combined GA and SA for the P//C max problem and found that combining these

methods balanced the better solutions of the GA with longer running times of the SA.

Fowler et al. (2003) also proposed a hybrid GA for the P/ ST sd , r j / jj Cw * , P/ ST sd ,

r j / jj Tw * , and P/ ST sd , r j /C max problems. In hybrid GA, a GA is used to assign

jobs to machines, and dispatching rules are used to schedule individuals in that machine.

Computational results indicated that the proposed hybrid approach performs better than

earlier algorithms with respect to the considered performance measures. Following this

study, Gupta et al. (2004), Gao (2005), and Liao et al. (2007) have applied the GA to

solve PMS problems to minimize the makespan. In addition, some other algorithms have

also been presented, such as the SA method (Lee et al., 2006) and the ILS algorithm

(Tang and Luo, 2006).

98

4.3 Problem Statement and Formulation

 In the following, the parameters used for the formulations are given:

n = number of jobs

m = number of machines

N = set of jobs. (1, 2, …, n)

M = set of machines. (1, 2, …, m)

The indices h, i , j correspond to jobs (h, i, j = 0, 1, 2, …, n), where 0 corresponds to

dummy job.

The index k corresponds to machines (k = 1, 2, …, m).

p j = processing time to realize job j.

s ji , = changeover time to process the job j directly after job i on the same machine.

s j,0 = changeover time to process the job j first on a machine.

x kji ,, = 1 if job j is processed directly after job i on machine k, 0 otherwise.

x kj ,,0 = 1 if job j is the first job to be processed on machine k, and 0 otherwise.

x ki ,0, = 1 if job i is the last job to be processed on machine k, and 0 otherwise.

C j = completion time of job j.

C max = maximum job completion time.

HV = scalar chosen to be larger than the workshop time horizon.

 The problem of scheduling jobs on identical parallel machines to minimize maximum

completion time with sequence dependent setup times (PMSDST) may be stated as

follows. Each job in set N (i = 1, 2, …, n) is to be processed on one of the related

machines (machines are same) from set of machines M (k = 1, 2, …,m). Jobs are

assumed to become available for processing at time zero. The processing time of job j,

denoted by p j , and sequence dependent setup time when jobs are switched from job i to

99

job j, denoted by s ji , , are all positive integers. Here, setup times (s ji ,) are necessarily

incurred when job j follows job i in the processing sequence of each machine and

sequence dependent setup times are assumed as s ji , ≠ s ij , according to triangular

inequality that will be explained later in this chapter. Preemption of jobs is not allowed

and the objective is to find a schedule which minimizes the makespan (C max). This

objective function also balances the loads on machines. Using the standard three field

notation, the problem is denoted as P / ST sd / C max problem.

 The SMS problem with sequence dependent setups is known to be NP hard (Pinedo,

1995). In addition to this, for the parallel machine case, it is proved that the problem of

minimizing the makespan with two identical machines is also proven to be NP hard

(Garey & Johnson, 1997; Lenstra et al., 1977). Thus, the more complex case of

minimizing the makespan on a scheduling problem with m identical parallel machines

and sequence dependent setup times (P/ ST sd /C max) is also strong NP-hard. After all,

mathematical formulation of PMSDST problem is given as follows (Guinet and

Dussauchoy, 1993).

Minimize(Z) = C max (4.1)

Subject to:



 


n

ji
i

m

k

kjix
0 1

,, 1 ∀j=1,…, n. (4.2)





n

hi
i

khix
0

,, -



n

hj
j

kjhx
0

,, = 0 ∀h=1,…, n; ∀k=1,…,m. (4.3)




n

j

kjx
1

,,0  1 ∀k= 1, …, m. (4.4)

C j C i + s ji , + p j +(



m

k

kjix
1

,, 1)*HV ∀i,j=1,…, n and i j . (4.5)

100

C i  C max ∀i=1,…, n. (4.6)

x kji ,, {0,1} ∀i,j=0,…, n, ∀k=1,…, m. (4.7)

C i  0 ∀i=1,…, n; (4.8)

C 0 = 0 (4.9)

 According to the criterion given above, equation (4.1) minimizes the maximum

completion time of the last job (makespan) in the sequence (objective function).

Equation (4.2) ensures that each job in the sequence is processed once and only once.

Equation (4.3) specifies that each job must have a job predecessor and a job successor.

Equation (4.4) ensures that each machine have at most one first job. Equation (4.5)

allows us to calculate the job completion times which depend on the processing time,

setup time and order of jobs assigned to the machine. Equation (4.6) defines the

maximum completion time. Equation (4.7) forbids a job to be predecessor and the

successor of the same job. Equation (4.8) ensures that for each job completion time

value cannot take minus values. Equation (4.9) ensures that at the beginning, each

machine have zero completion time value.

4.4 Application of the Differential Evolution Algorithm to Parallel Machine

Scheduling Problems

 In this section, application of the DE algorithm to related PMS problems with

sequence dependent setup time will be discussed. Herein, PMS case of the DE algorithm

will be also be discussed by the help of the classic version of the algorithm.

 Initially, a newly adopted individual representation (encoding) technique for the DE

algorithm will be introduced. Later, local search integration technique inside the DE

algorithm for improving its performance and effectiveness will be discussed.

101

 To explain the steps inside the DE algorithm for PMS problem, we begin with

initialization of the control parameters. Afterwards, mutation operation which is newly

adapted for the DE algorithm is introduced. Finally, crossover operation and selection of

individuals are discussed.

Initialization:

 In general, at the beginning of heuristic algorithms, control parameters must be set to

correct values. These control parameters for the PMS problem are NP (population size),

F (mutation factor), CR (crossover factor), lower bound for job vector (X LB

N), upper

bound for job vector (X UB

N), lower bound for machine vector (X LB

M) and upper bound for

machine vector (X UB

M) respectively. To improve the solution quality of the algorithm,

appropriate setting of the control parameters should be found. An initial study is done

for setting appropriate control parameters and this will be explained later in this chapter.

 After setting appropriate set of control parameters, initial population that is composed

of NP individuals is generated where population is denoted as P GX , =[X Gi , , …, X GNP,]

where each individual is represented by (i = 1,…, NP) and G = 0 denotes the initial

population. Assuming that the job at position j is denoted by ( N, j =1, 2, …, n) is

k j (k j  M, j=1, 2, …, n), j-th parameter of one individual x Gij ,, = 








j

j

k

e
 is defined. Here

 corresponds to job at position j in the job vector and k j corresponds to machine that

the job in position j should be processed in the machine vector. Then the individual is

referred to as X Gi , = 








n

n

kkk

eee

...,,,

...,,,

21

21
 where values are different from each other which

k j values are not restricted.

102

 Encoding technique used for PMS problem is called vector group encoding technique

(VGET) (Gao et al., 2008). This technique is previously used to solve unrelated PMS

problem (Gao et al., 2008) with sequence dependent setup times for GA and now it is

adopted for the DE algorithm for the first time. In this study, VGET is used because we

are not only interested on which machine the job is processed but, we are also interested

in processing sequence of jobs on each machine. By the help of VGET, we can represent

these two pieces of information correctly and easily. An example of this encoding

technique is given in Figure 4.1 below. Also, for the proposed DE algorithm, the

following method of generating the initial population is adopted in order to avoid

generating infeasible solutions while using VGET.

 According to VGET, at first one vector (e
1
, e

2
, …, e n) is generated at random

according to equation (4.10) given and it is assumed that e
r
 e t for 1 ≤ r, t ≤ n and r t.

Next, for each element of the job vector, a machine number, which is denoted as k j ,

is generated at random according to equation (4.11), and by this way e j and k j form a

gene x 0,,ij = 








j

j

k

e
 (j = 1, 2, …, n). An individual is made of n parameters and can be

expressed as 








n

n

kkk

eee

...,,,

...,,,

21

21
. Repeat the above procedure population size times

until the initial population of individuals is generated.

x 0,,ij (e j) = rand j (0,1)*(X UB

N - X LB

N)+ X LB

N . (4.10)

x 0,,ij (k j) = rand j (0,1)*(X UB

M - X LB

M)+ X LB

M . (4.11)

 An example for this newly adopted encoding technique is shown in Figure 4.1. In this

figure, the first row containing continuous values refers to a job vector and the second

row containing continuous values refers to a machine vector.

103

1 2 3 4 5 6 7 8 9 10

7.4856 5.5050 5.6878 3.6961 5.6615 3.9441 5.4379 1.3503 6.9364 4.6364

0.6092 1.5875 0.8427 0.4726 1.7679 1.7985 1.3999 1.9106 0.6149 1.8329

 Figure 4.1 An example for representation schema used

 After generating the initial population, which is composed of continuous valued

parameters, has to be converted to discrete parameters for computing the objective

function value of each individual. To generate a discrete valued population, take job

vector (e
1
, e 2 , …, e n) of each individual in the population and apply LOV rule, which

was previously explained in section 2.6.2, to this vector. After that, for finding machine

numbers for each job in each individual, take machine vector (k
1
, k 2 , …, k n) and apply

sub-range encoding rule, which was previously explained in section 2.6.1, to convert

continuous parameters to discrete ones. An example of discrete valued individual is

given in Figure 4.2 below. According to this figure, on the left hand side, an example of

individual and on the right hand side, scheduling sequence of each machine is given. It is

obvious from the figure that job sequence in each machine is taken from job vector. For

example, machine 1 has two jobs, job 2 and job 4. In job vector, job 4 comes before job

2, therefore machine 1 processes job 4 in first place and job 2 in second place.

 The decoding of the individual defined above is as follows:

Step 1: j = 1.

Step 2: For discrete valued individuals, take the parameter x Gij ,, = 








j

j

k

e

Step 3: Allocate job to machine k j .

Step 4: j= j + 1.

Step5: The procedure from step 2 to step 4 is repeated until j > n.

Figure 4.2 Decoding procedure a) individual b) scheduling scheme

104

Mutation

 In the mutant population generation phase of the algorithm, continuous valued

individuals of population are used. As it is explained above, in each individual we have

two vectors, one for job permutation and one for machine permutation. Mutation

operation for each individual in the population X Gi , , at generation G, is determined in

two steps for generating a mutant individual V Gi , = [v Gi ,,1 , …, v Gin ,,]. In the first step,

mutation operation is applied to continuous valued job vector according to equation

(4.12). In the second step, mutation operation is applied to continuous valued machine

vector according to equation (4.13). And at last, a continuous valued mutant individual

is formed as in Figure 4.1.

V Gi , () = X Gr ,1 () + F * (X Gr ,2 () -X Gr ,3 ()). (4.12)

V Gi , (k j) = X Gr ,1 (k j) + F * (X Gr ,2 (k j) -X Gr ,3 (k j)). (4.13)

 The effects of selecting base vector and difference vectors r1, r2 and r3 as distinct is

discussed before in chapter two. According to this discussion, parameters are chosen

randomly and assumed to be distinct (r1 r2 r3). Herein, base vector r1 and difference

vectors r2 and r3 are chosen once for each individual and then mutation operations on

both of two vectors for each individual are done with the same chosen base and

difference vectors.

 As we have discussed while explaining mutation operation of the DE algorithm, it is

likely that after mutation operation, some values of parameters can be higher than upper

bounds or can be lower than lower bounds. These values in individuals should be

repaired and taken inside the selected bounds. Repairing procedure is applied to each

vector for each individual separately. The mechanism for repairing job vector will be

given first and machine vector second.

105

Repairing procedure of job vector:

Step 1: If the parameter of the vector indices is lower than the lower bound for jobs, go

to step 2; higher than the upper bound for jobs, go to Step 3.

Step 2: Repaired mutation value v newGij ,,, = (2* X LB

N) - v Gij ,, . And go to step 4.

Step 3: Repaired mutation value v newGij ,,, = (2* X UB

N) - v Gij ,, . And go to step 4.

Step 4: v Gij ,, = v newGij ,,,

Repairing procedure of machine vector:

Step 1: If the parameter of the vector indices is lower than the lower bound for

machines, go to step 2; higher than the upper bound for machines, go to Step 3.

Step 2: Repaired mutation value v newGij ,,, = (2* X LB

M) - v Gij ,, . And go to step 4.

Step 3: Repaired mutation value v newGij ,,, = (2* X UB

M) - v Gij ,, . And go to step 4.

Step 4: v Gij ,, = v newGij ,,,

Crossover

 Crossover section of the DE algorithm generates a trial population. First of all, for

each mutant individual, an integer random number between 1 and n is chosen, i.e. j rand .

Here, the index j rand is a randomly chosen parameter (j rand = 1, …, n) and this randomly

chosen value‟s corresponding parameter v Gijrand ,, = 








rand

rand

j

j

k

e
 is directly copied from mutant

individual to trial individual which is used to ensure that one parameter in the trial

individual U Gi , , differs from its counterpart in the previous iteration X 1, Gi . Trial

individual U Gi , = [u Gi ,,1 , …, u Gin ,,] is generated according to equation (2.16) which has

been given in section 2.3.1. An example for crossover operation is given in Figure 4.3.

106

In this crossover operation, two values form a parameter and throughout crossover

operation these two values do not separate from each other.

U Gi , = u Gij ,, =


 

otherwisex

jjorCRrandifv

Gij

randjGij

,,

,,)1,0(
 (2.16)

 Figure 4.3 An example of crossover operation for PMSDST problem.

 Once trial population is generated, we apply LOV rule to convert continuous valued

job vector of each individual to job permutations  NGi ,, = [ NGi ,,,1 ,  NGi ,,,2 ,…,


NGin ,,,]. After that, we apply sub-range encoding rule to convert continuous valued

machine vector of each individual to machine permutations 
MGi ,, = [ MGi ,,,1 ,


MGi ,,,2 ,…,  MGin ,,,]. Once the job permutation and machine permutation of each

individual are constructed, we again evaluate the objective function values of all of the

individuals in the population.

107

Selection

 Selection operation of the DE algorithm in PMS problem is same as it was done in

SMS problem. To decide whether or not the trial individual U
Gi ,

 will be a member of the

population in the next iteration, its objective function value is compared with its

counterpart in the previous iteration X 1, Gi . The selection is based on the survival of the

fittest among the trial population according to (2.16) which was given in section 2.3.5.

X 1, Gi =


 

otherwiseX

XfUfifU

Gi

GiGiGi

,

,,,)()(
 (2.16)

 If the prespecified termination conditions are satisfied after selection operation is

completed then we stop, otherwise we will again restart from mutation operation. In this

study, termination condition is specified as reaching a prespecified iteration number

which is set to 50*n. The flowchart of the proposed DE algorithm can be seen in Figure

4.4.

108

iteration=0.

Initialization, set NP (population size), F (mutation factor),

CR (crossover factor), lower bound for jobs, upper bound

for jobs, upper bound for machines and lower bound for

machines.

Generate NP individuals randomly .

Apply the LOV rule to find the permutations of individials.

Apply sub-range encoding to find the machine related to

each job.

Evaluate each individual Xi,G in

the population.

Mutant population generation Vi,G,for each individual job

sequence and machine sequence in the population

generate mutant individuals.

Generate trial population Ui,G,for each mutant individual

generate a trial individual.

Find permutation, apply the LOV rule to find job

permutations of all individuals. And apply sub-range

encoding to find the machine related to each job.

Evaluate each individual in the population.

iteration=iteration+1.

Selection, f(Ui,G) f(Xi,G)

iteration>maxiteration

Output the fittest individual.

Replace current individual with the

trial individual Xi,G = Ui,G

NO

YES

YES

NO

 Figure 4.4 Flowchart of the DE algorithm proposed for PMSDST problem

109

4.5 Variable Neighborhood Search Algorithm for Parallel Machine Scheduling

Problems

 The aim of this section is to propose a VNS algorithm to solve randomly generated

test problems for an identical PMS problem with sequence dependent setup times with

the objective of minimizing makespan. Also, this VNS algorithm will be later used to

hybridize the DE algorithm to improve its performance.

 The neighborhood structures of VNS algorithm in this study are based on known

relevant local searches and follow those proposed in Hansen & Mladenovic (2003). The

VNS algorithm used in this study is somewhat different from other heuristic methods

used previously for the P/ST sd /C max problem since it uses two or more neighborhoods

while the other methods use one or two neighborhoods. In particular, it is based on the

principle of systematic change of neighborhood during the search. In addition, to avoid

costing too much computational time, the number of neighborhoods chosen is often

three (Rocha et al., 2007). The three neighborhoods employed in this algorithm are

defined below:

1. Job swaps on one machine: (N 1 (S)) one machine is chosen and all possible job

swaps are considered.

2. Job swaps between two different machines: (N 2 (S)) two machines are chosen

and all possible job swaps from these different machines are considered.

3. Job transfers from one machine to another: (N 3 (S)) one machine is chosen and

all possible job movements from this machine to any other are considered.

 The basic VNS structure is given below. According to this basic VNS structure, at

first there is a shake procedure and after that there is a local search procedure. Detailed

explanations of these procedures will be given in section 4.5.1 and 4.5.2.

110

Algorithm: Basic VNS Structure for the PMS Problem by Behnamian et al. (2008):

1: Find an initial solution S* (in the hybrid DE algorithm S* is chosen randomly from

population; otherwise we have already one solution);

2: l  1;

3: for iterations  1 to a maximum number of iterations do

4: S  S* ;

5: Random solution: find a random solution S‟  N l (S);

6: Perform a local search on N l (S‟) to find a solution S”;

7: if S” < S* then

8: S*  S”;

9: l  1;

10: end if

11: l  l+1;

12: end for

4.5.1 Random Solutions

 Every time a neighborhood is selected in step five of the VNS procedure given

above, a random procedure is called. This procedure selects a random solution from the

selected neighborhood structure. In other words, before starting a local search procedure,

shake procedure according to that local search procedure is applied. Therefore, three

procedures are created in the following manner, one for each l:

1. For N 1 (S):

Choose randomly a machine i

Choose randomly two jobs j 1 and j 2 in machine i.

Swap jobs j 1 and j 2 .

111

2. For N
2

(S):

Choose randomly two machines i
1
 and i

2
.

Choose randomly a job j
1
 in i

1
 and a job j

2
 in i

2
.

Swap jobs j
1
 and j

2
.

3. For N 3 (S):

Choose randomly one job j
1
 and one machine i 2 , where j

1
 does not belong to i 2 .

Choose randomly a valid position „pos‟ in i 2 .

Transfer job j
1
 to i 2 at the position pos.

4.5.2 Local Searches

 There are several variations of VNS structure according to the local search used in

the procedure. In this study, we use a specific local search for each neighborhood, which

is borrowed from Behnamian et al. (2008). The local searches that are integrated inside

VNS research are listed below.

Local Search 1 (Job swaps at one machine): This local search analyzes every possible

swap on each machine. Even, when chosen machine is not the one with the greatest

completion time, the objective function can be reduced by reducing the delay of some

jobs. An example of this search procedure is given in Figure 4.5 and mechanism inside

the VNS is explained below Behnamian et al. (2008).

112

1: for each i do

2: for each j
1
 in i do

3: for each j
2

 in i, j
1
 j

2
, do

4: if solution considering j
1
 and j

2
 swapped < current solution then

5: Swap j
1
 and j

2
.

6: end if

7: end for

8: end for

9: end for

Figure 4.5 An example for local search procedure 1

Local Search 2 (Job swaps on different machines): In this search procedure, all job

swaps between jobs belonging to different machines are evaluated. A larger amount of

solutions is searched. An example of search procedure is given in Figure 4.6 and

mechanism is explained below Behnamian et al. (2008).

113

1: for each  M do

2: for each j
1
 in i

1
 do

3: for each i
2

  M, i
1
  i

2
, do

4: for each j
2

  i
2

 do

5: if solution considering j
1
 and j

2
 swapped<current solution

6: Swap j
1
 and j

2

7: end if

8: end for

9: end for

10: end for

11: end for

Figure 4.6 An example for local search procedure 2

Local Search 3 (Job insertion): This search procedure searches for new solutions

transferring a randomly chosen job from the machine with the highest makespan to the

machine with the lowest makespan. An example of search procedure is given in Figure

4.7 and mechanism is explained below Behnamian et al. (2008).

114

1: Find the machine with the highest makespan i
1
;

2: Find the machine with the lowest makespan i
2

; i
1
 ≠ i

2
;

3: for each j in i
1
 do

4: for each valid position pos in i
2

 do

5: if solution considering j transferred from i
1
 to i

2
in position pos < current

solution then

6: Transfer j from to on position pos

7: end if

8: end for

9: end for

Figure 4.7 An example for local search procedure three.

 The VNS algorithm always tries to use the fastest local search available first. If after

an iteration no improvement is gained, then another neighborhood procedure is used (l is

incremented), and when every time objective function value is reduced, the first and

fastest local search is again used (l = 1). First of all, local search 1 tries to reduce

makespan value in each machine. If there is no reduction, then local search 2 swaps jobs

in each machine and tries to reduce makespan value in these two machines

simultaneously. After all, if still there is no reduction in makespan value, then local

search 3 tries to balance the loads of machines to reduce highest makespan value.

Flowchart of VNS algorithm is given in the Figure 4.8.

115

iteration=1

Find an initial solution S*

S=S* and l=1

iteration<maxiteration

l=1

l=2

l=3

Shake procedure 1: find a

random solution S‟ form

(S)1N

Shake procedure 2: find a

random solution S‟ form

(S)

Shake procedure 3: find a

random solution S‟ form

(S)

Perform a local search on

(S‟) to find a solution S”1N

Perform a local search on

(S‟) to find a solution S”

Perform a local search on

(S‟) to find a solution S”

2N 2N

3N
3N

S*=S”

if S”<S*

l=l+1

Output the

solution
NO

YES

YES

NO

YES

NO

YES

iteration=iteration+1

NO

YES

NO

 Figure 4.8 Flowchart of VNS algorithm

116

4.6 Hybrid Differential Evolution Algorithm

 So far, applications of the DE algorithm and VNS algorithm for the PMSDST

problem have been discussed. VNS algorithm further will be used separately to solve the

randomly generated test problems for the P/ST sd /C max problem. In this section, it is

described how to hybridize the DE algorithm with VNS local search method. VNS is a

strong search procedure for PMSDST problems (Behnamian et al, 2008) and this local

search procedure can effectively be used to hybridize the DE algorithm since it has been

used before by Behnamian et al (2008) to hybridize some other heuristic algorithms for

the P/ST sd /C max problem. In view of the past related literature, this will be the first

reported integration of VNS algorithm to the DE algorithm for a COP.

 Behnamian et al. (2008) used VNS local search procedure to solve the P/ST sd /C max

problem and also used VNS algorithm to hybridize SA algorithm and ACO algorithm to

solve the P/ST sd /C max problem. They concluded that hybridizing the population-based

evolutionary searching ability of ACO and SA with the local improvement ability of

VNS balances exploration and exploitation.

 The hybrid DE algorithm in this research is formed by integrating the VNS algorithm

just after selection procedure. In other words, first the DE algorithm is applied to

population of individuals, and after that VNS local search procedure is applied to

selected individuals in the population. This search progress cannot be applied to all of

the individuals in the population because this costs too much computational time. For

this reason the individuals are randomly selected from the population to apply VNS. In

this study, random selection procedure is applied since individuals that are different

from the best individual can have more chance to reach better places according to the

objective function value, and if we apply this local search only to the best individual, we

lose our chance to reach better objective function values.

117

iteration=0.

Initialization, set NP (population size), F (mutation factor),

CR (crossover factor), lower bound for jobs, upper bound

for jobs, lower bound for machines and upper bound for

machines.

Generate NP individuals randomly .

Apply the LOV rule to find the permutations of individials.

Apply sub-range encoding rule to find machines related to

jobs.

Evaluate each individual Xi,G in

the population.

Mutant population generation Vi,G, for each individual

job sequence and machine sequence in the population

generate mutant individuals.

Generate trial population Ui,G, for each mutant

individual generate a trial individual.

Find permutation, apply the LOV rule to find

permutations of all jobs and apply sub-range encoding

rule to find machines related to each job.

Evaluate each individual in the population.

iteration=iteration+1.

Selection, f(Ui,G) f(Xi,G)

iteration>maxiteration

Output the fittest individual.

Replace current individual with the

trial individual Xi,G = Ui,G

YES

NO

Apply VNS local search method to randomly chosen

individuals of the population.

NO

YES

Figure 4.9 Flowchart of the hybrid DE algorithm for the PMSDSTP

118

 At the end of this search, newly constructed individual replaces the old one if the new

one dominates the old one in the objective function value. The flowchart of the hybrid

DE algorithm is given in Figure 4.9.

4.7 A Genetic Algorithm Approach for Solving Parallel Machine Scheduling

Problems

 Holland (1975) and his associates developed GA in late sixties and De Jong (1975)

extended this approach. A comprehensive introduction to GAs and their basic properties

can be found in Goldberg (1989).

 At first, GAs are developed for the function optimization problem and were not

applied to scheduling problems until two decades ago. Whitley et al. (1989) and

Chatterjee et al. (1996) solve TSP using GAs, Morikawa et al. (1992) study jobshop

scheduling problems while Murata and Ishibuchi (1996) use GAs in solving flow shop

scheduling problems. Lee and Chen (1997) use a GA to assign weights to six important

decision factors that decide job sequences in semiconductor testing facilities.

 GA is a search technique based on the concept of evolution (Davis, 1991; Goldberg,

1989). Given a well defined search space, in which each point is represented by a bit

string called a chromosome and GA is applied with its three search operators selection,

crossover and mutation to transform a population of chromosomes with the objective of

improving their „„quality‟‟. Before the search starts, a set of chromosomes is chosen

from the search space to form the initial population. The genetic search operators are

then applied one after another to systematically obtain a new generation of

chromosomes with a better overall quality. The quality of each chromosome is measured

in some way called the fitness of the chromosome. In each generation, chromosomes can

change in random ways, analogous to mutations in the physical world. A new generation

is generated out of the old generation through a reproduction scheme that allows better

chromosomes to reproduce more often but which does not eliminate the chances that

119

`poor‟ chromosomes will reproduce as well. This process is repeated until the stopping

criterion is met and the best solution of the last generation is reported as the final

solution. For an efficient GA search, in addition to a proper solution structure, it is

necessary that the initial population of schedules be a diverse representative of the

search space.

 The distinctive feature of our algorithm which sets it apart from other contributions

using GA in scheduling problems lies in the structure of the chromosome representation.

This chromosome representation is same as the one we use on the DE algorithm section

of this study.

 Designing GAs requires consideration of five primary components according to

Davis and Streenstrup (1987):

1. A chromosomal representation of solutions to the problem;

2. Genetic operators that change the composition of the chromosomes;

3. A method to initialize a population;

4. An evaluation function that represents how well the individual solutions function

in the environment, called their fitness;

5. The parameters that are required in order to implement the above components,

including population size, number of generations that will be allowed, and

stopping criteria.

 In this section, a GA is proposed to solve the PMSDST problem with the objective of

minimizing the makespan. Flowchart of the proposed algorithm is shown in Figure 4.10.

The procedures are listed in detail step by step in the following:

Step 1: Set control parameters of GA, population size (NP), crossover probability

(p c), mutation probability (p m) and number of iterations.

120

t=0

Input the scale popsize, and randomly generate the

initial population

Evaluate each individual in the population

Crossover, only the fittest two individuals among

each pair of parent individuals and their offsprings

can survive

Mutate, any mutation combination is accepted.

Elite strategy, Chromosomes with lower makespans

are more desirable, so 4% of the chromosomes with

the lowest makespan values are automatically

copied to the next generation.

t=t+1

t>T
Output the fittest

individual

NO YES

 Figure 4.10 Flowchart of GA proposed for the PMSDST problem

121

Step 2: Generate the initial population randomly according to encoding scheme

explained in section 4 of this chapter.

Step 3: Evaluation: Evaluate the fitness of each individual in the population.

Chromosomes with lower makespan are more desirable, so p e % of the

chromosomes with having lowest makespan values are automatically copied to

the next generation. Here p e is elitism percentage that decides what percentage

of the best individuals in the initial population will be taken to next iteration.

This mechanism is called elite strategy. The rest of chromosomes (1−p e %) are

generated through operators called crossover, mutation and selection.

Step 4: Crossover: With the predefined p c , some pairs of individuals are

selected to apply the extended order crossover (EOX) that will be explained later

in this section. Before pairing two individuals, a roulette wheel selection is made

that every chromosome has a chance that is proportional to its objective function

value for being selected. Selected chromosomes are paired with each other and

crossover operation is then applied to these paired chromosomes. For each pair

of parent individuals, a pair of offsprings is generated. After crossover, only the

fittest two individuals among parent individuals and their offspring survive for

the next iteration. By the help of this crossover operation, we give chance only to

the fittest individuals to survive for the next generation.

Step 5: Mutation: With the predefined p m , some individuals are randomly

selected to apply mutation operation. Each mutated individual is accepted and

replaces its counterpart in the previous iteration if its fitness value is better or not

than chromosome mutated. This method improves poor individual‟s chances of

getting to better places in search space.

122

Step 6: If termination criteria is satisfied then stop, else go to Step2. In our

problem, termination criteria is specified as reaching a prespecified iteration

number.

Encoding and Decoding Technique

 Encoding technique used for GA to solve PMS problem is same as the one we used in

the DE algorithm. In this study, encoding technique is appropriate for our problem

because we are not only concerned with which job will be processed in which machine

but also we are concerned with in which sequence the jobs will be processed in that

machine. For this reason, other encoding techniques cannot be used effectively for this

study because most of the other encoding techniques are only concerned with which job

will be processed in which machine not the sequence of jobs in that machine. However,

for the P/ST sd /C max problem since we have to consider sequence dependent setup times

between jobs, we are also concerned with the sequence of jobs for each machine.

Initializing the population

 For GA approach, the following method of generating the initial population is

adopted in order to avoid generating infeasible solutions.

 Firstly, job vector (e 1 , e 2 , …, e n) is generated at random, where  N, j = 1, 2, …

,n, and e r
 e t for 1 ≤ r, t ≤ n and r t.. Next, for each element of the vector, a

machine number, which is denoted as , is randomly selected from the set of machine

numbers (,= 1, 2, …, m), and , form a gene x Gij ,, = 








j

j

k

e
(j = 1, 2, …, n). An

individual is made of n genes and can be expressed as 








n

n

kkk

eee

...,,,

...,,,

21

21
. Repeat this

procedure for population size times, and population size of individuals are generated.

123

 From the discussion above, it is obvious that the method of initializing the population

cannot guarantee diversity of the population. On the other hand, it makes all of the

individuals generated satisfy the constraint conditions.

Crossover

 The crossover procedure is rather important for GA because it enlarges chance of

finding the optimal individual. The traditional crossover technique used in other studies

will generate many infeasible solutions in the face of the constraint conditions, and

hence, the validity test of individuals generated or repairing procedure for individuals is

additionally needed, which decreases greatly the convergence speed and the possibility

of finding the optimal solution for GAs. In this study, based on the partially mapped

crossover (PMX) and the order crossover (OX), an EOX technique is borrowed from

Gao et al. (2008). EOX cannot only make the child individuals generated satisfy the

constraint conditions, but also keeps the advantages of PMX and OX. The crossover

procedure is as follows (Gao et al., 2008):

Step 1: Assume that two parent individuals are A and B, respectively, and one

offspring is C, a gene segment S =












p

p

sss

sss

kkk

eee

...,,,

...,,,

21

21

 is selected from a parent

individual A at random.

Step 2: Let  = {e
1s
,… , e

ps }, B = 








n

n

BBB

BBB

kkk

eee

...,,,

...,,,

21

21 and find e
iB such that

e
iB  , and e

jB  for 1 ≤ j ≤ i − 1. Let B’ = 












121

121

...,,,

...,,,

i

i

BBB

BBB

kkk

eee
,

B”= 








n

n

BBB

BBB

kkk

eee

...,,,

...,,,

21

21 . For B”, remove the genes whose jobs are in  and denote

by B” the remaining gene segment.

124

Step 3: The offspring C consists of three segments: C=S
1
S

2
S 3 , where S

1
=B‟, S

2

=S, and S 3 =B”.

 Through the procedure above, two new offspring are created. At the end of this

procedure, we have two parent offsprings and two new child offsprings. Among these

four offspring, fittest two individuals are selected for the next iteration. An example is

given in Figure 4.11. In this example, we have seven jobs and three machines.

Figure 4.11 An example for EOX operation

Mutation

 In mutation phase of GA, firstly a chromosome to be mutated among population

members is randomly selected with the prespecified mutation probability. After that, a

gene from the individual x Gij ,, = 








j

j

k

e
 (j = 1, …, n), which will be mutated, is randomly

selected. Afterwards, a new individual is generated by replacing machine number (k j)

in that gene with another machine number in set of M machines. Machine number k j in

the corresponding position is randomly selected however selection of machine as

k i  k j is prohibited. The randomly selected machine replaces the old machine if it

125

improves the fitness value of that chromosome or not. At the end, randomly selected

chromosome replaces the new one anyway. An example is given in Figure 4.12.

Figure 4.12 An example of mutation operation for GA

4.8 Initial Population Generation Method

 An initial population is a starting point for the multidirectional evolution search

processes. The simplest method of generating an initial population is random generating

and is used in most of the COPs. The only assumption that has to be held during the

random generation of the individuals is maintaining a proper form of individuals. In fact,

the job vector of individual is a permutation of n unique numbers. In the machine vector

of individual, every number from the range one to m is feasible in every position. In

particular, using a high-quality initial population helps reduce algorithms‟ run time. The

proposed DE algorithm uses a mixture of a combination of user-supplied initially

constructed sequence of individuals and randomly generated individuals to form an

initial population. Creating a user-supplied initial population requires a substantial

amount of computation while using a randomly generated initial population reduces

search efficiency. As a result, we propose a method that is a mixture of these two

methods. The %16.7 of the individuals in the initial population is generated using the

proposed method.

 In this study, selected number of individuals in initial population of the DE algorithm

is generated by taking advantage of a heuristic, the Slicing heuristic (SL) produced by

Kurz and Askin (2001). SL can be described as `Cutting up a single machine solution‟.

The goal is to use a quick method to find a sequence for a single machine problem and

quickly slice it up into m pieces. The general algorithm can be described as follows:

126

Step 1. Find a quick solution to the single machine problem with makespan

C max (single).

Step 2. Break the single machine sequence into m groups, one for each machine.

 A target makespan for each (parallel) machine is calculated as C max (single)/m from a

SMS problem. After that, jobs are taken from the single machine solution and added to

the current machine until the schedule length of that machine exceeds C max (single)/m.

At that time, the current machine is `closed‟ and the next machine is `opened‟. This

continues until all jobs have been assigned to a machine. The final job on a machine is

the last real job.

 Important considerations include ensuring that all m machines are used, and what to

do if less or more than m machines, m’ number of machines used (or if one machine is

used much less than another). At this time, if m‟ < m machines are used, the target is

reset to m‟/m times the original target. If not all jobs are assigned to machines then the

target is reset to the number of jobs to be scheduled/number of placed jobs times the

original target.

 The implemented heuristic is as follows.

Step 1: Use the Nearest-Neighbor Heuristic (NNH) to solve a TSP and find a

near optimum solution for SMS problem. Call the resultant makespan

C max (single). The solution gives the job order to be used through the algorithm.

Step 2: Set an approximate target t = C max (single)/m.

Step 3: Let j be the index of the current job examined. Let mc = 1 and j = 1.

Step 4: Schedule job j on machine mc. If all jobs are scheduled, go to step 7.

Step 5: If machine number mc has a schedule length < t, place job j on machine

number mc and let j = j + 1. Go to Step 4.

127

Step 6: If machine number mc has a schedule length  t, close machine number

mc. Let mc = mc + 1. Go to Step 5.

Step 7: If the number of machines used is less than that available (mc < m), let

t new = t old *(mc/m). Unschedule all the jobs and go to step 3.

Step 8: If more than m machines were used (mc > m), let k be the number of jobs

placed on the first m machines. Let t new = t old *(n/k,). Unschedule all the jobs and

go to step 3.

Step 9: If m machines were used, DONE.

 According to step one of the SL given above, we find an initial single machine

solution with the help of NNH heuristic. While computing makespan value in that

heuristic, we use setup times and processing times together. And slice computed

makespan value into m pieces. Here we should use m number of machines. The

procedure of the NNH heuristic is given.

Nearest-Neighbor Heuristic (Karg and Thompson, 1964)

Step 0: (Initialization) Let N = (1, 2,…, n) be the set of jobs we want to schedule.

Choose a starting point i 0  N; let V = N \ i 0 be the set of jobs we still have to

visit and let S = (i 0) the current partial sequence.

Step 1: Choose the next job. Let i 1 be the last job in the sequence S. Find the

closest job j in V according to setup time matrix. If there are alternative optima,

break ties arbitrary.

Step 2: Expand partial sequence. Append job j at the end of partial sequence

(S (S , j)) and cancel it from the set of jobs yet to be sequenced (VV \ j)).

Step 3: If V =  , i.e. there is no job left to be sequenced, close the route;

otherwise go to step 1.

128

4.9 Test Problem Generation

 In this section of study, some experiments were performed to evaluate the

performance of proposed methods for the P/ST sd /C max problem. These experimental

runs contain up to 140 jobs to be scheduled on up to 10 machines. However, for each

machine level, number of jobs is set to different values and this style of test problem

generation method is borrowed from Sivrikaya et al. (1999). While generating test

problems, processing times and sequence dependent setup times for each job are chosen

randomly from a uniform distribution and this procedure will be explained in detail. We

will first begin by describing the experimental design of setup times.

 In the triangle inequality theorem the length of any side of a triangle cannot be less

than or equal to the sum of the lengths of the other two sides. If we convert this

explanation to the P/ST sd /C max problem, according to setup time matrix point of view,

we can say that direct setup time between two jobs is always no longer than any non-

direct setup time between two jobs and this theorem will be used in sequence dependent

setup time generation section.

 In the randomly generated test problems, each value of sequence dependent setup

time between jobs (s ji , , i j) is drawn from a uniform distribution with a standard

deviation of s . And in these generated matrices, the setup time values of s ii , are set to a

large value because we do not want them to be taken into account. Setup times, that

satisfy the triangle inequality are desired for this study because we want direct path

between two jobs to be always no longer than any non-direct path between two jobs.

Moreover, the SL that is used for generating initial population also requires the triangle

inequality. That is because, if we do not use triangle inequality, we cannot construct a

near optimal solution in step one of the heuristic and this affects the rest of the SL.

129

 For satisfying triangle inequality, we should not generate a matrix with two values

lower than half the largest value in the matrix, if it is so than the triangle inequality may

not hold for that matrix. To prevent this, the restriction is that the lower bound must be

at least half the upper bound that has been introduced. Let a be the lower bound and b be

the upper bound. Then, for uniformly distributed setups, s =
2

ba 
 and 2

s =
12

)(2ab 
.

Solving these two equations yields a = s - 3 * s and b = s + 3 * s . If the triangle

inequality is to hold, then 2a  b and s 
3*3

1
* s =

9

*3 s . Thus, only the mean

value of sequence dependent setup times must be specified. We select s = 250 so that

s is rational. Now setup time matrices always satisfy the triangle inequality and also in

this study there may only be asymmetric matrices.

 According to processing times point of view, each value of processing time (p j) is

drawn from a uniform distribution with standard deviation s . However, the range of the

processing times must correspond to the setup times in some way. Following Morris and

Tersine (1990), the mean of the processing times can take on one of two values: p = s

or p =10* s . The range of processing times in this research is set at either [0.94* p ,

1.06* p] or [0.4* p , 1.6* p] which is borrowed from Kurz and Askin (2001).

 Problem data can now be characterized by three factors: range of processing times,

mean of processing times and variability of setup times. Each of these factors is tested at

two levels: low and high. The meanings of these levels are shown in Table 4.1.

130

Table 4.1 Factor levels for test problems.

Factor Low High

Range of Processing Times p~Unif(0.94* p ,1.06* p) p~Unif(0.94* p ,1.06* p)

Mean of Processing Times
p = s p = 10* s

Setup Times Structure Asymmetric Asymmetric

Std. Dev. of Setup Times

S~Unif(s - 3 * s , s + 3 * s)

s =250

s =
9

*5.1
*

2

1 s s =
9

*5.1 s

 According to Table 4.1 given above, there are two types of factor levels, low and

high. According to low level, values in setup time and processing time matrices take

smaller values than high level and this provides us with the information of how our

proposed algorithms react for different types of problems. The test problems were

generated using the method of Sivrikaya and Ulusoy (1999), which was also adopted by

Bilge et al. (2004). According to this method, four levels of machine numbers have been

determined. For each machine level, five levels of job numbers have been used. The

number of jobs in each machine level is different from each other. The number of the

jobs in each machine level is different from each other. These machine and job levels

combinations are given in Table 4.2 below.

131

Table 4.2 Machine and related job levels.

Number of Machines Number of Jobs

m = 2 n = 10

n = 20

n = 40

n = 60

n = 80

m = 4 n = 20

n = 40

n = 60

n = 80

n = 100

m = 7 n = 40

n = 60

n = 80

n = 100

n = 120

m = 10 n = 60

n = 80

n = 100

n = 120

n = 140

4.10 Setting Control Parameters

 Setting correct control parameters is an important feature for heuristic algorithms. As

it is discussed before, proper selection of these parameters is required to get accurate

results within fewer function evaluations. Control parameters include NP, F, CR and

variant (schema) used. For experimental study, a problem instance with 60 jobs and 4

machines is selected among the randomly generated test problems and for each

combination of these control parameters the proposed algorithm is run to solve this

problem instance. The effects of these control parameters on heuristic algorithms were

discussed in section 3.7 and will not be again discussed.

 Determining the correct settings of control parameters is a hard work. In order to

determine the correct settings for these parameters for the solution of the PMSDST

132

problem, two different control schemes were studied: first, we set the mutation-scale

factor F to a fixed value within the set F  {0.3, 0.5, 0.7, 0.9,

)*2/()2(NPCR }, and

experimented with various crossover rates CR  {0.3, 0.5, 0.7, 0.9}, different

population sizes NP  {n, 2*n, 3*n} (n = number of the jobs to be scheduled) and

different variants (schemas) {DE/rand/1/bin, DE/rand/2/bin, DE/best/1/bin,

DE/best/2/bin and DE/randtobest/bin}. According to these combinations, the hybrid DE

algorithm is run for 2400 times. The hybrid DE algorithm is used while selecting the

correct set of control parameters because the pure DE algorithm is not as effective as

expected for the PMSDST problem.

 The influence of the various combinations of the settings of the control parameters on

the performance of the hybrid DE algorithm is demonstrated in regard to %offset value

of each parameter setting. Equation (3.10) shows how the value of %offset is calculated.

 This hybrid version includes the pure DE algorithm hybridized with the VNS local

search procedure. It is run for 10 times and each run starts from a different random

number seed. The average value of the best objective function values obtained over the

ten test runs are then used to calculate the %offset value for each parameter

combination.

 Table 4.3 gives the %offset values while NP is three times n (numbers of jobs) and

the schema is DE/rand/1/bin. The lower bound is first calculated, and this value is used

as the Cost* value to compute the %offset values. Also, in this table the column named

as Best shows the best value obtained at the end of the ten runs made and Std. Dev.

column shows the standard deviation of ten runs made. The cell inside %offset column

is marked and this cell shows us best % offset value obtained for DE/best/1/bin schema.

133

Table 4.3 Computation of average %offset values while NP=3xn

and variant=DE/best/1/bin

 Figures 4.13 to 4.17 demonstrate the influence of the various combinations of settings

of the control parameters on the performance of the hybrid DE algorithm in regard to

%offset values for different DE schemas and NP equal to 3xn. Here different variants of

DE schema are used.

 In these figures, each curve in the consecutively illustrated five charts corresponds to

a different value for F and demonstrates the variation of %offset in regard to the various

CR rates (X-axis). The best objective function values obtained by the algorithm are

traced as data labels on the lowest curve of each chart.

134

Figure 4.13 Influence of the control parameters on the performance of the DE algorithm in

regard to %offset from the lower bound for the DE/best/1/bin schema

Figure 4.14 Influence of the control parameters on the performance of the DE algorithm in

regard to %offset from the lower bound for the DE/best/2/bin schema

DE/best/1/bin (NP=3*n)

6.838 6.748

5.240

6.927

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

CR=0.3 CR=0.5 CR=0.7 CR=0.9

%
 o

ff
s

e
t

F=0.3 F=0.5 F=0.7 F=0.9 F by rule

DE/best/2/bin (NP=3*n)

6.718
6.196

4.763

7.136

0.000

2.000

4.000

6.000

8.000

10.000

12.000

CR=0.3 CR=0.5 CR=0.7 CR=0.9

%
 o

ff
s

e
t

F=0.3 F=0.5 F=0.7 F=0.9 F by rule

135

Figure 4.15 Influence of the control parameters on the performance of the DE algorithm in

regard to %offset from the lower bound for the DE/rand/1/bin schema

Figure 4.16 Influence of the control parameters on the performance of the DE algorithm in

regard to %offset from the lower bound for the DE/rand/2/bin schema

DE/rand/1/bin (NP=3*n)

5.793
5.225 4.987 5.181

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

CR=0.3 CR=0.5 CR=0.7 CR=0.9

%
 o

ff
s

e
t

F=0.3 F=0.5 F=0.7 F=0.9 F by rule

DE/rand/2/bin (NP=3*n)

6.883

4.479

7.599

6.868

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

CR=0.3 CR=0.5 CR=0.7 CR=0.9

%
 o

ff
s
e
t

F=0.3 F=0.5 F=0.7 F=0.9 F by rule

136

Figure 4.17 Influence of the control parameters on the performance of the DE algorithm in

regard to %offset from the lower bound for the DE/randtobest/bin schema

 The best % offset values are obtained while F is 0.3 or the rule of Zahari (2007) for F

value is used. For example, in Figure 4.13, the best objective function value is obtained

while F is 0.3 with a 5.24 %offset value. In Figure 4.15, the best objective function

value is obtained while F is F by rule with a 4.987 %offset value. It can be easily

noticed from the figures that % offset values for each parameter combination are not too

much distinct from each other. This tells us that different parameter combinations do not

give too distinct solutions from each other.

 From the discussion above, it is obvious that the parameter combination having

lowest %offset value will be selected as the best parameter combination for the hybrid

DE algorithm and this combination will be used to test the performance of the proposed

method using the test problems generated. From the definition, the lowest % offset value

obtained according to this study is 4.106%. Parameter combination used to find the best

value is as follows: NP is 3*n, F = F by rule, CR = 0.7 and variant = DE/randtobest/bin.

DErandtobest (NP=3*n)

6.838
6.405

4.106
4.688

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

CR=0.3 CR=0.5 CR=0.7 CR=0.9

%
 o

ff
s
e
t

F=0.3 F=0.5 F=0.7 F=0.9 F by rule

137

4.11 Computational Study

 In previous sections of this chapter, we have discussed the application of proposed

hybrid DE algorithm, GA and VNS algorithm to the PMSDST problem. Now we should

evaluate the effectiveness of these three methods with respect to each other. In this

section of this chapter, the results of the test problems according to these three different

solution approaches will be discussed.

 All of the methods are coded in MATLAB program and test problems are run on an

Intel Core 2 Duo 2.00 GHZ computer with 3 GB of Ram.

 Initially, computation of lower bounds is discussed. For the randomly created test

problems, optimum solutions cannot be known because exact algorithms cannot

compute optimum values for the PMSDST problem in a reasonable time. Therefore, we

should compute a lower bound for these test problems to compute the %offset values for

each method and compare them with each other.

 The easiest way to compute a lower bound for each test problem is adding the

processing times of each job in that problem to total processing time. Then, we find the

smallest unused setup time value in setup time matrix and add it to total setup time. This

procedure lasts for n (number of jobs) – m (number machines) times because this is the

number that how many times setup is done in a problem. Finally, we add this total setup

time to total processing time and find total time. At last we finish with dividing total

time number to m (number of machines). The computed value is the lower bound for

generated test problem.

 According to the given formulation (3.10), Cost DE is the average makespan value of

the schedule achieved by the DE algorithm for a specific test problem at the end of 10

test runs. Cost* is the corresponding cost of the existing best known solution for the

138

specific test problem. In this study, Cost* corresponds to the lower bound values

computed for each test problem.

 For all the test problems in this study, the maximum number of iterations is set to

50 * n. This means that the iteration number is 50 times the number of jobs and the

iteration number increases as the number of jobs increases. All other performance

measures used are described in section 3.8.

 Figures 4.18 to 4.25 give the computational results according to %offset performance

criteria for the three approaches. The first four figures are for Low type problem and the

other four are for High type problem. In Low type problem, each of the figures

corresponds to two, four, seven and ten machines respectively with predefined job

numbers.

1
3
9

Figure 4.18 %Offset values for two machines case Low type test problems.

Figure 4.19 %Offset values for four machines case Low type test problems

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0

)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0

)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0

)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0

)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0

)

10 Jobs 20 Jobs 40 Jobs 60 Jobs 80 Jobs

Hybrid DE G.A. VNS

0.00

5.00

10.00

15.00

20.00

25.00

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

20 Jobs 40 Jobs 60 Jobs 80 Jobs 100 Jobs

Hbyrid DE G.A. VNS

1
4
0

Figure 4.20 %Offset values for seven machines case Low type test problems

Figure 4.21 %Offset values for ten machines case Low type test problems

0.00

5.00

10.00

15.00

20.00

25.00

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

40 Jobs 60 Jobs 80 Jobs 100 Jobs 120 Jobs

Hybrid DE G.A. VNS

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

60 Jobs 80 Jobs 100 Jobs 120 Jobs 140 Jobs

Hybrid DE G.A. VNS

1
4
1

Figure 4.22 %Offset values for two machines case High type test problems

Figure 4.23 %Offset values for four machines case High type test problems

0.00

2.00

4.00

6.00

8.00

10.00

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0

)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0

)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0

)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0

)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0

)

10 Jobs 20 Jobs 40 Jobs 60 Jobs 80 Jobs

Hybrid DE G.A. VNS

0.00

5.00

10.00

15.00

20.00

25.00

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

20 Jobs 40 Jobs 60 Jobs 80 Jobs 100 Jobs

Hybid DE G.A. VNS

1
4
2

Figure 4.24 %Offset values for seven machines case High type test problems

Figure 4.25 %Offset values for ten machines case High type test problem

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

40 Jobs 60 Jobs 80 Jobs 100 Jobs 120 Jobs

Hybrid DE G.A. VNS

0.00

5.00

10.00

15.00

20.00

25.00

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

1
)

2
)

3
)

4
)

5
)

6
)

7
)

8
)

9
)

1
0
)

60 Jobs 80 Jobs 100 Jobs 120 Jobs 140 Jobs

Hybrid DE G.A. VNS

143

 From the figures, it is obvious that the hybrid DE algorithm outperformed GA and

VNS algorithm in most of the test problems. For a deeper observation, let us look at

Figure 4.18 for two machines and Low type test problem; the hybrid DE algorithm gives

us the best %offset values in this case. Here GA comes second and VNS algorithm

comes third. In these problem sets, it is obvious that the VNS algorithm does not give us

consistent results but it surpasses GA in some of the problems. In addition to this, when

we look at four machines case in Figure 4.19, the result is the same, however in this case

the VNS algorithm becomes more consistent and gives us better results, and it also here

surpasses hybrid DE and GA in a very few test problems. The hybrid DE still gives us

the best solutions. If we look at Figure 4.20 for seven machines case, still the hybrid DE

algorithm is the best but VNS surpasses it in some of the problems. In addition, VNS

here is more consistent and outperforms GA in most of the test problems. For 40 job

problems, VNS algorithm gives the best results. Also in some big sized problem sets,

VNS algorithm again surpasses the hybrid DE algorithm. When we look at Figure 4.21

for ten machines case, VNS algorithm outperforms the hybrid DE algorithm in some of

the 60 and 80 job problems, however the hybrid DE is then the best algorithm for 100,

120 and 140 job problems. We can easily say that as the number of jobs and number of

machines gets higher, in other words, the problem becomes more complex, the hybrid

DE algorithm begins to give better results. In Figure 4.20, the difference between the

hybrid DE algorithm and other algorithms is not very clear, however in Figure 4.21 it is

very obvious that for small sized problems with 60 and 80 jobs. VNS algorithm and the

hybrid DE algorithm give nearly the same quality results. But the hybrid DE algorithm is

better when problem size gets bigger.

 When we look at High type test problems, we can see from Figures 4.22 to 4.25 that

%offset values for all the test problems are reduced apparently for all the methods. The

reason of this reduction is the processing times for jobs is ten times higher than the mean

value of sequence dependent times in High type problem case. By this way, the

percentage of processing times in total machine time gets higher as processing times get

bigger. In addition to this, for High type test problems it is less important to get a

144

perfect schedule because the effect of getting a perfect schedule is reduced by the

reduction of the percentage of total setup time in the total machine time. Therefore, the

percentage offset values for High type test problems are relatively low values.

 When we look at Figure 4.22, we can say that the hybrid DE algorithm outperformed

the other two algorithms for two machines case. The VNS algorithm gives more

inconsistent results than the other two algorithms. For this problem type, the %offset

values nearly remain the same. For four machines case in Figure 4.23, the results are the

same as in two machines case. For seven machines case in Figure 4.24, it is clear that the

hybrid DE algorithm is again the best according to %offset values for each problem

type. In addition to this, here as the problems size gets bigger, the hybrid DE algorithm

begins to give more quality and consistent results than the other two algorithms. Also in

this figure, you can see that as the problem size gets bigger, the VNS algorithm and GA

begin to give slightly better quality and consistent results compared to small sized

problems. In Figure 4.25, it can be see that GA gives the worst results. The difference

between the VNS algorithm and the hybrid DE algorithm now gets closer. But still the

hybrid DE algorithm outperforms the other two algorithms.

145

Table 4.4 Comparison of the methods according to mean % offset values for ten problem instances in each

problem set

 LOW HIGH

Hybrid DE

%
GA
%

VNS
%

Hybrid DE
%

GA
%

VNS
%

2 Machines 10 Jobs 6.79 9.43 22.73 1.56 2.71 4.42

 20 Jobs 3.78 7.47 14.39 0.86 2.26 1.99

 40 Jobs 2.67 6.96 11.35 0.67 2.21 2.31

 60 Jobs 2.53 6.83 8.85 0.58 2.31 1.59

 80 Jobs 2.69 6.99 6.25 0.57 2.34 1.47

4 Machines 20 Jobs 5.53 9.08 17.37 1.35 6.85 6.47

 40 Jobs 6.23 8.15 10.72 1.14 3.83 5.36

 60 Jobs 5.62 8.16 9.22 1.17 3.54 2.73

 80 Jobs 4.90 7.82 8.54 1.39 3.28 3.29

 100 Jobs 4.64 7.96 9.18 1.46 3.24 3.01

7 Machines 40 Jobs 14.46 15.30 10.08 1.77 10.21 7.83

 60 Jobs 6.85 14.14 14.37 1.77 9.95 6.27

 80 Jobs 9.01 13.81 11.93 1.93 8.41 5.09

 100 Jobs 10.62 13.15 12.57 1.98 7.80 4.59

 120 Jobs 10.05 12.79 10.61 2.31 7.58 4.95

10 Machines 60 Jobs 18.94 26.53 20.46 3.14 18.27 6.86

 80 Jobs 14.59 22.12 14.45 3.18 15.28 6.70

 100 Jobs 5.40 19.46 13.26 3.73 13.77 5.98

 120 Jobs 2.10 18.58 11.98 3.45 12.95 5.57

 140 Jobs 2.11 17.25 10.34 2.26 20.21 5.40

 Table 4.4 gives us the results of average %offset values of generated test problems

for each machine and job number combination. From this table, it can be seen that the

hybrid DE algorithm always gives us the best %offset values for Low type test problems

except for the 7 machines 40 jobs, and 10 machines 80 jobs cases where the VNS

algorithm outperforms the hybrid DE algorithm by 10.08% offset value compared to

14.46% and 14.45% offset value compared to 14.59% respectively. When the VNS

algorithm and GA is compared, it can be observed that as the problem size gets bigger,

the VNS algorithm gives more quality and consistent results than GA. Finally, the

hybrid DE outperforms the other two algorithms in almost all problem types. It can be

concluded that for small sized problems GA and for big sized problems the VNS

algorithm can be an alternative approach.

1
4
6

Figure 4.26 Low type problem mean %offset values

Figure 4.27 High problem type mean %offset value

0.00

5.00

10.00

15.00

20.00

25.00

30.00

10

Jobs

20

Jobs

40

Jobs

60

Jobs

80

Jobs

20

Jobs

40

Jobs

60

Jobs

80

Jobs

100

Jobs

40

Jobs

60

Jobs

80

Jobs

100

Jobs

120

Jobs

60

Jobs

80

Jobs

100

Jobs

120

Jobs

140

Jobs

2 Machines 4 Machines 7 Machines 10 Machines

Hybrid DE G.A. VNS

0.00

5.00

10.00

15.00

20.00

25.00

10

Jobs

20

Jobs

40

Jobs

60

Jobs

80

Jobs

20

Jobs

40

Jobs

60

Jobs

80

Jobs

100

Jobs

40

Jobs

60

Jobs

80

Jobs

100

Jobs

120

Jobs

60

Jobs

80

Jobs

100

Jobs

120

Jobs

140

Jobs

2 Machines 4 Machines 7 Machines 10 Machines

Hybrid DE G.A. VNS

147

Table 4.5 Comparison of the methods according to mean % offset of minimum values obtained in each

problem set

 LOW HIGH

Hybrid DE

%
GA
%

VNS
%

Hybrid DE
%

GA
%

VNS
%

2 Machines 10 Jobs 6.65 8.73 13.99 0.68 2.37 2.06

 20 Jobs 3.70 6.95 8.79 0.80 2.09 1.28

 40 Jobs 2.60 6.66 6.49 0.63 2.07 1.19

 60 Jobs 2.35 6.53 3.97 0.53 2.19 1.14

 80 Jobs 2.59 6.87 3.46 0.52 2.30 1.13

4 Machines 20 Jobs 4.12 8.51 6.05 1.24 5.05 3.18

 40 Jobs 3.29 7.57 5.44 1.07 3.47 2.74

 60 Jobs 4.44 7.87 5.28 1.08 3.24 1.64

 80 Jobs 4.39 7.37 4.36 1.27 3.10 1.47

 100 Jobs 4.52 7.52 5.91 1.40 2.96 1.47

7 Machines 40 Jobs 11.33 14.03 9.66 1.67 8.10 5.94

 60 Jobs 6.74 13.47 9.66 1.51 8.29 4.55

 80 Jobs 7.72 13.36 9.19 1.74 7.17 3.29

 100 Jobs 9.43 12.50 9.74 1.85 6.16 2.48

 120 Jobs 9.23 12.24 8.51 2.21 6.05 2.84

10 Machines 60 Jobs 18.26 25.57 17.52 2.55 15.94 5.50

 80 Jobs 14.39 20.99 13.54 2.81 13.92 5.62

 100 Jobs 3.08 18.82 12.22 2.95 12.03 4.41

 120 Jobs 1.90 17.16 11.05 3.10 11.22 4.58

 140 Jobs 2.05 15.53 9.98 2.06 10.08 4.08

 Table 4.5, Figure 4.28 and 4.29 give us information about the mean %offset values of

minimum values taken in ten runs made in each problem set. As it is illustrated in Figure

4.28 for Low type test problems, the hybrid DE algorithm outperforms the other two

algorithms. Here VNS algorithm comes second and GA comes third. But it can be seen

from Figure 4.28 that the hybrid DE algorithm is not the best one all the time since the

VNS algorithm works better with some test problems. On the other hand if we look at

Figure 4.29, we can see that the same conclusion can be made for the High type test

problems. GA and the VNS algorithm have started to give bad results as the problem

size gets higher, as it is in most of the Low type test problems. In addition to this, apart

from the results in Low type problems, in High type problems the VNS algorithm could

not pass the hybrid DE algorithm not even in a single problem set. At the end, we can

148

say that the hybrid DE algorithm is the best approach according to finding the minimum

in all test runs made.

 Table 4.6 given below intensifies the things discussed in previous chapter. As it is

illustrated in the Table 4.6, the mean standard deviation value of VNS algorithm is 425

for Low case and 901 for High case; this means that there is a big difference between the

results found in ten test runs for each problem set. Likely, GA also has high a standard

deviation value of 166 for Low type and 493 for High type problems. On the other hand,

for the hybrid DE algorithm the standard deviation values are 75 and 92 for Low and

High type problems respectively. These values are smaller than the smallest values

found for the algorithms. Table 4.6 also gives us the mean %offset values for the entire

test problems solved. From this table, you can see that the hybrid DE algorithm

outperforms other two proposed algorithms. On the other hand, as we have discussed

before for Low type, mean %offset values are greater than the mean %offset values for

High type. One can also see that in Low type problems GA and VNS algorithm nearly

give the same mean %offset values but in High type problems VNS algorithm is better

than GA.

Table 4.6 Comparison of the methods according to mean %offset

and standard deviation values

1
4
9

Figure 4.28 The mean %offset values according to minimum values for Low type problems

Figure 4.29 The mean %offset values according to minimum values for High type problems

0.00

5.00

10.00

15.00

20.00

25.00

30.00

10

Jobs

20

Jobs

40

Jobs

60

Jobs

80

Jobs

20

Jobs

40

Jobs

60

Jobs

80

Jobs

100

Jobs

40

Jobs

60

Jobs

80

Jobs

100

Jobs

120

Jobs

60

Jobs

80

Jobs

100

Jobs

120

Jobs

140

Jobs

2 Machines 4 Machines 7 Machines 10 Machines

Hybrid DE G.A. VNS

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00

10

Jobs

20

Jobs

40

Jobs

60

Jobs

80

Jobs

20

Jobs

40

Jobs

60

Jobs

80

Jobs

100

Jobs

40

Jobs

60

Jobs

80

Jobs

100

Jobs

120

Jobs

60

Jobs

80

Jobs

100

Jobs

120

Jobs

140

Jobs

2 Machines 4 Machines 7 Machines 10 Machines

Hybrid DE G.A. VNS

150

Table 4.7 Comparison of proposed three methods according to mean % effort values

 LOW HIGH

Hybrid DE

%
GA
%

VNS
%

Hybrid DE
%

GA
%

VNS
%

2 Machines 10 Jobs 3.24 28.86 14.72 2.60 16.36 11.69

 20 Jobs 16.21 29.80 21.25 11.70 42.88 35.70

 40 Jobs 16.76 27.99 24.98 4.61 38.50 28.32

 60 Jobs 14.22 20.82 30.15 4.70 24.12 31.84

 80 Jobs 11.03 17.97 42.62 4.05 26.99 37.20

4 Machines 20 Jobs 15.55 50.41 26.90 5.56 57.34 19.56

 40 Jobs 14.93 33.96 35.38 6.08 35.95 30.30

 60 Jobs 8.57 28.84 26.98 5.11 28.00 29.20

 80 Jobs 7.28 22.75 30.59 3.26 24.31 37.04

 100 Jobs 6.85 31.33 31.63 1.69 22.65 37.86

7 Machines 40 Jobs 10.08 19.72 20.21 5.35 44.05 55.17

 60 Jobs 6.32 15.61 38.75 3.69 27.92 25.72

 80 Jobs 5.31 12.94 37.15 2.84 24.13 33.25

 100 Jobs 4.36 10.26 32.28 2.15 16.51 41.89

 120 Jobs 4.28 14.18 33.59 1.26 18.01 39.74

10 Machines 60 Jobs 6.21 13.57 34.07 2.72 14.91 29.86

 80 Jobs 5.92 11.35 31.67 2.12 9.14 32.81

 100 Jobs 5.97 10.46 28.40 2.00 11.93 35.65

 120 Jobs 6.49 9.01 22.92 2.11 11.55 41.55

 140 Jobs 5.32 8.48 26.58 2.66 11.31 36.77

 We should also talk about the mean %effort values for each problem set. Table 4.7,

Figure 4.30 and Figure 4.31 give us information about the mean %effort values for the

three methods according to the iterations made to reach the best value in each test

problem. With the help of these performance criteria, we can easily see how much time

it takes to reach the best value for an algorithm in each test problem.

 Figure 4.30 shows that the hybrid DE algorithm needs much less effort to reach its

best value than other two algorithms in Low type problems. Here from GA point of view

it takes GA much iterations for small sized problems, however it takes less effort for

large sized problems. But for seven and ten machine problems, GA and the hybrid DE

algorithm need nearly the same number of iterations. We can conclude that it takes the

hybrid DE algorithm much less iterations to reach its best value in both small sized and

151

big sized problems. On the other hand, GA and VNS algorithm need nearly the same

effort for small sized problems. However, it takes less effort for the VNS algorithm to

reach its best solution for big sized problem compared to GA.

 From Figure 4.31, the hybrid DE algorithm needs far much less effort than the other

two algorithms in High type test problems. Here it takes again nearly the same effort to

reach its best value for GA and the hybrid DE algorithm for ten machine problems.

However for two machines, four machines and seven machines cases, GA and VNS

algorithms need more efforts to reach their best values. These two algorithms reach their

best values in nearly the same number iterations.

 Consequently, it is obvious that the hybrid DE algorithm needs much less effort than

the other two methods in all test problems. And it can be seen from Table 4.7 that the

algorithms use %55 percentage of the effort at most, which is for the VNS algorithm.

1
5
2

Figure 4.30 The mean %effort values for the Low type test problems

Figure 4.31 The mean %effort values for the High type test problems

0.00

10.00

20.00

30.00

40.00

50.00

60.00

10

Jobs

20

Jobs

40

Jobs

60

Jobs

80

Jobs

20

Jobs

40

Jobs

60

Jobs

80

Jobs

100

Jobs

40

Jobs

60

Jobs

80

Jobs

100

Jobs

120

Jobs

60

Jobs

80

Jobs

100

Jobs

120

Jobs

140

Jobs

2 Machines 4 Machines 7 Machines 10 Machines

Hybrid DE GA VNS

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

10

Jobs

20

Jobs

40

Jobs

60

Jobs

80

Jobs

20

Jobs

40

Jobs

60

Jobs

80

Jobs

100

Jobs

40

Jobs

60

Jobs

80

Jobs

100

Jobs

120

Jobs

60

Jobs

80

Jobs

100

Jobs

120

Jobs

140

Jobs

2 Machines 4 Machines 7 Machines 10 Machines

Hybrid DE GA VNS

153

4.12 An Example for the Application of The Differential Evolution Algorithm for

the Parallel Machine Scheduling Problem

 For better understanding, an example of how a PMSDST problem is solved by the

DE algorithm is given below. Before starting the algorithm, we should first set the

control parameters NP, F, CR, X UB

M , XUB

M , X UB

N and X LB

N . These control parameters are

given in Table 4.8 below. Afterwards, we should generate an initial population

according to equations 4.10 and 4.11 given. The randomly generated initial population is

given in the Table 4.9 with five individuals.

Table 4.8 Control Parameters of Proposed Hybrid DE Algorithm

Decision Variables n 10

Number of Machines m 2

Population Size NP 3*n = 30

Scaling Mutation Factor F 0.21

Crossover Rate Constant CR 0.7

Upper Bound for Jobs XUB

M 8

Lower Bound for Jobs X LB

M 0

Upper Bound for Machines XUB

N 2

Lower Bound for Machines X LB

N 0

Table 4.9 Generated initial population

154

 Each of the individual in the population has one job vector and one machine vector.

Now, we will use job vector to form a job permutation with the help of LOV rule. After

that, we will use machine vector to find a machine sequence with the help of sub-range

encoding rule. Table 4.10 shows the computation of job permutation with the help of

LOV rule and Table 4.11 shows the computation of machine permutation with the help

of sub-range encoding rule.

Table 4.10 Computation of job permutation

Table 4.11 Computation of machine permutation

 Table 4.12 shows us the job permutations and machine permutations for each of the

five individuals in the population. This table now will be used to compute the objective

function values of each individual.

Table 4.12 Population of job and machine permutations

155

 To compute the objective function values of each individual, we use the setup time

and processing time matrices given in Tables 4.13 and 4.14 respectively.

Table 4.13 Setup time matrix

Table 4.14 Processing time matrix

 Figure 4.32 and 4.33 given below shows us how to compute the setup times for an

individual. Figure 4.32 gives the sequence on the first machine and computes the setup

time value on that machine and Figure 4.33 gives the sequence on second machine and

computes the setup time value on that machine.

Figure 4.32 Computation of total setup time for machine 1

 Figure 4.33 Computation of total setup time for

 machine 2

156

 After computing total setup times on each machine, we should now also compute the

total processing times on each machine. Again Figures 4.34 and 4.35 below give

computation of total processing time in machine one and machine two respectively.

 Figure 4.34 Computation of total processing time for machine 1

 Figure 4.35 Computation of total processing time for

 machine 2

 Table 4.15 gives us the total setup time and processing time values, in other words,

the makespan values for each machine in each individual. The machine having the

highest makespan value is said to be the makespan value of that individual.

Table 4.15 Computed makespan values for each individual

 As the next step, we should apply mutation operation to all of the individuals in the

population. But in this example, only the mutation operation application to the first

individual will be explained. To apply mutation operation to job vectors, we randomly

select a base vector (r1) and two difference vectors (r2 and r3) among population

members. In our example, these vectors are chosen as r1=5, r2=2 and r3=3, and all

selected vectors are distinct from each other as required. While applying mutation

operation to machine vectors of each individual, base vector and difference vectors are

assumed to be the same with the ones used in mutation operation for job vector. Table

157

shows the mutation operation of job vectors and Table 4.16 shows the mutation

operation of machine vectors.

Table 4.16 Mutation operation

Table 4.16 Mutation operation (cont.)

 After applying the mutation operation to the first individual of initial population, we

now apply crossover operation to this individual. Table 4.17 gives an example for the

application of crossover operation to the job vector and Table 4.18 gives an example for

the application of crossover operation to the machine vector for the first individual.

158

Table 4.17 Crossover operation for job vector

Table 4.18 Crossover operation for machine vector

 Now it is time for the selection operation. To apply selection operation, the objective

function value of the trial individual should be computed. For this reason, we should

convert continuous valued vectors to discrete valued vectors. Tables 4.19 and 4.20 show

us how to convert continuous values to discrete vectors in each vector.

Table 4.19 Converting continuous values in job vector to discrete values by LOV rule

159

Table 4.20 Converting continuous values in machine vector to discrete values by sub-range encoding rule

 The computation of the objective function values, setup times and processing times,

for each machine is computed and shown in Figures 4.36, 4.37,4.38 and 4.39.

 Figure 4.36 Computation of total setup time for machine 1

 Figure 4.37 Computation of total setup time for machine 2

 Figure 4.38 Computation of total processing time for machine 1

 Figure 4.39 Computation of total processing time for machine 2

 While applying the selection operation, we need to compare the makespan values of

the old vector and the new vector. The makespan value of the newly generated vector is

167, while the makespan value of the old vector is 142. It is obvious that newly formed

individual cannot replace its counterpart in the previous iteration.

160

Table 4.21 Computed makespan value of newly generated vector

Table 4.22 Population at the end of iteration one for individual 1

 The newly generated individual in the end does not replace the old one. Now, we

should start from the beginning and apply all of the explained operations to the second

individual.

161

CHAPTER FIVE

CONCLUSION AND FUTURE RESEARCH

 The setup operation has for long been ignored or considered as a part of the

processing time for the case of setup time. While this assumption simplifies the analysis

and/or reflects certain applications, it adversely affects the solution quality for many

applications which require explicit treatment of setup. Also, the presence of setup times

makes us approximate our problems to real life problems. The importance of setup times

has been investigated and it was found that sequence dependent setup times were

significant for the effective management of manufacturing capacity and to reduce

inventory levels and improve customer service.

 This study presents solution methods for the specific manufacturing problems for

single machine and parallel machine scheduling problems. These problems all include

setup times when a machine is switched from one job to another job. Also for these

problems, our major goal or in other words objective is to minimize makespan. This

objective leads us in parallel machine scheduling problem to balance the loads between

the machines.

 For most manufacturing environments, mathematical programming models are too

complex and time consuming to implement, because even the simplest planning or

scheduling problem may include over 100 constraints. Since these problems are NP-hard

problems, exact techniques found in the literature fail to find optimum solutions or take

too much computation time to solve. Instead of exact methods, in this study we have

decided to take heuristic methods to find near optimum solutions for these hard

problems in a reasonable time.

162

 In this thesis, we have made an application of a newly generated algorithm, the

Differential Evolution (DE) algorithm, to single machine and parallel machine

scheduling problems with sequence dependent setup times. Our study can be seen as a

two step approach. At first, we have applied this new method to the single machine

scheduling problem. We think that the application of this method for this problem can

give us guidance while applying it to the parallel machine case. To the best of our

knowledge, this is the first known application of the DE algorithm to the parallel

machine scheduling problem.

 The application was not very difficult in the single machine case because the

representation schema of the DE algorithm fits for single machine problems. However,

the DE algorithm works with continuous parameters and we have to change these

continuous parameters to discrete ones because we have to find job permutations to

compute the objective function value of each individual. For this reason, we have used a

rule called Largest Order Value (LOV) rule to convert continuous values to discrete

values.

 We have found the best parameter combination and tested the proposed DE algorithm

on the 69 test problems taken from TSPLIB. However, the results of the computational

study have not been effective. Afterwards, we have decided to hybridize this algorithm

with two local search procedures, namely Variable Neighborhood Search (VNS) and

insert-based neighborhood search. After integration of these search procedures, it is

obviously seen that hybridizing the DE algorithm with VNS search makes it more

efficient.

 Considering the results of the single machine case, we have hybridized the DE

algorithm with VNS search procedure for the parallel machine case. To improve the

effectiveness and solution quality of the algorithm, we have constructed an initial

population generation procedure and made an initial study to find the best parameter

combination for the parallel machine scheduling problem.

163

 We have compared the hybrid DE algorithm with Genetic Algorithm and Variable

Neighborhood search methods on randomly generated test problems with job numbers

up to 140 and machine numbers up to 10. It has been seen that the hybrid DE algorithm

outperforms Genetic Algorithm and Variable Neighborhood Search.

 This study only deals with the makespan objective. As a future study, we can focus

on other objectives, such as minimizing earliness-tardiness, number of tardy jobs,

lateness etc. The parallel machine problem can be enhanced by adding the resources and

machine eligibility restrictions. On the other hand the performance of the DE algorithm

can be analyzed for multi-objective cases.

 Besides this, we can focus on improving effectiveness of the DE algorithm with other

metaheuristic or search techniques. We can also apply the DE algorithm to other

scheduling problems because this is the first known application of the DE algorithm to

parallel machine scheduling problems.

164

REFERENCES

Al-Anzi, F.S., & Allahverdi, A. (2007). A self-adaptive differential evolution heuristic

for two-stage assembly scheduling problem to minimize maximum lateness with

setup times. European Journal of Operational Research, 182, 80-94.

Allahverdi, A., Gupta, J.N., & Aldowaisan, T. (1999). A review of scheduling research

involving setup considerations. Omega, 27, 219–239.

Allahverdi, A., NG, C.T., Cheng, T.C.E, & Kovalyov, M.Y. (2006). A survey of

scheduling problems with setup times or costs. European Journal of Operational

Research, 187, 985–1032

Allahverdi, A., & Soroush, H.M. (2008). The significance of reducing setup times/setup

costs. European Journal of Operational Research, 187, 978–984.

Armentano, V.A., & Araujo, O.C.B. (2006) Grasp with memory-based mechanisms for

minimizing total tardiness in single machine scheduling with setup times. Journal of

Heuristics, 12, 427–446.

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice. New York: Oxford

 University Press.

Babu, B., & Angira, R. (2001). Optimization of non-linear functions using evolutionary

computation. Proceedings of the 12th ISME International Conference on Mechanical

Engineering, India, 153–157.

Baker, K.R. (2002). Elements of sequencing and scheduling. Tuck School of Business,

Dartmouth College, Hanover.

165

Baker, J.E. (1987). Reducing bias and inefficiency in the selection algorithm.

Grenfenstette JJ (ed) Proceedings of the first international conference on genetic

algorithms and their applications. Lawrence Erlbaum, Hillsdale, NJ, 14–21.

Bean, J. (1994). Genetics and Random Keys for Sequencing and Optimization. ORSA

Journal on Computing, 6(2), 154–160.

Behnamian, J., Zandieh, M., & Ghomi, S.M.T. (2008). Parallel-machine scheduling

problems with sequence-dependent setup times using an ACO, SA and VNS hybrid

algorithm. Expert Systems with Applications, 36 (6), 9637-9644.

Bianco L., Ricciardelli S., Rinaldi G., &Sassano A. (1988). Scheduling tasks with

sequence-dependent processing time. Naval Research Logistic Quality, 35, 971–984.

Bilge, U., Kıraç, F., Kurtulan, M., & Pekgun, P. (2004). A tabu search algorithm for

parallel machine total tardiness problem. Computers and Operations Research, 31,

397–414

Blocher, J. D., & Chand, S. (1991), Scheduling of parallel processors: a posterior bound

on LPT sequencing and a two-step algorithm. Naval Research Logistics, 38, 273-

287.

Chang, F.P., & Hwang, C. (2004). Design of digital PID controllers for continuous-time

plants with integral performance criteria. Journal of the Chinese Institute of

Chemical Engineers, 35(6), 683–96.

Chang, Y.P., & Wu, C.J. (2005). Optimal multiobjective planning of large-scale passive

harmonic filters using hybrid differential evolution method considering parameter

and loading uncertainty. IEEE Transactions on Power Delivery, 20(1), 408–16.

166

Chatterjee, S., Carrera, C., & Lynch, L.A. (1996). Genetic algorithms and traveling

salesman problems. European Journal of Operational Research, 93(3), 490-510.

Choobineh, F.F., Mohebbi, E., & Khoo, E. (2006) A multi-objective tabu search for a

single machine scheduling problem with sequence-dependent setup times. European

Journal of Operational Research, 175, 318–337.

Chou, F.D., Wang, H.M., & Chang, T.Y. (2008) Algorithms for the single machine total

weighted completion time scheduling problem with release times and sequence-

dependent setups. International Journal of Advanced Manufacturing Technology,

doi 10.1007/s00170-008-1762-4.

Coffman, JR. E. G., & Sethi, R. (1976). A generalized bound on LPT sequencing.

RAIRO Informatique, 10, 17-25.

Coffman, E.G., Garey, M.R., & Johnson, D.S. (1978). An application of bin packing to

multiprocessor scheduling. SIAM Journal of Computing, 7(1), 1-17.

Conway, R.W., Maxwell, W.L., & Miller, L.W. (1967). Theory of Scheduling. Addison

Wesley, MA.

Correa, R. C., Ferreira, A., & Rebreyend, P. (1999). Scheduling multiprocessor tasks

with genetic algorithms. IEEE Transactions on Parallel and Distributed Systems, 10,

825-837.

Das, S.R., Gupta, J.N.D., & Khumawala, B.M. (1995). A saving index heuristic

algorithm for flowshop scheduling with sequence dependent set-up times. Journal of

Operations Research Society, 46 1365-73.

167

Davis, L., & Streenstrup, M. (1987). Genetic algorithms and simulated annealing: an

overview. Genetic Algorithms and Simulated Annealing, edited by L. Davis

(London: Pitman), 1-11.

De Jong, K.A. (1975). An analysis of behavior of a class of genetic adaptive systems.

Unpublished doctoral dissertation. University of Michigan.

Dietrich, B. L., & Escudero, L. F. (1989). On solving a 0-1 model for workload

allocation on parallel unrelated machines with setups. Proceedings 3rd ORSA/TIMS

Conference on Flexible Manufacturing Systems: Operations Research Models and

Applications, 181 186.

Eiben, A.E., & Smith, J.E. (2003). Introduction to evolutionary computing. Springer,

Berlin Heidelberg New York.

Emmons, H. (1969). One-machine sequencing to minimize certain functions of jobs

tardiness. Operetions Research, 17, 701–705.

Eshelman, L.J., Caruana, R.A., & Schaffer, J.D. (1989). Biases in the crossover

landscape. Schaffer JD (ed) Proceedings of the third international conference on

genetic algorithms. Morgan Kaufmann, San Francisco, 10–19.

Farn, C.D., & Muhlemann, A.P. (1979). The dynamic aspects of a production scheduling

problem. International Journal of Production Research, 17, 15±21.

Fatemi Ghomi, S. M. T., & Jolai Ghazvini, F. (1998). A pairwise interchange algorithm

for parallel machine scheduling. Production Planning and Control, 9, 685–689.

Feoktistov, V. (2006). Differential Evolution: In Search of Solutions. Springer, USA.

168

Flynn, B.B. (1987). The effects of setup time on output capacity in cellular

manufacturing. International Journal of Production Research, 25, 1761-1762.

Fogel, L., Owens, A., & Walsh, M. (1966). ArtiAcial intelligence through simulated

evolution. New York, NY, Wiley.

Fowler, J.W., Horng, S.M., & Cochran, J.K. (2003). A hybridized genetic algorithm to

solve parallel machine scheduling problems with sequence dependent setups.

International Journal of Industrial Engineering: Theory Applications and Practice,

10, 232–243.

Franca, P.M., Gendreau, M., Laporte, G., & Muller, F.M. (1996). A tabu search heuristic

for the multiprocessor scheduling problem with sequence dependent setup times.

International Journal of Production Economics, 43, 79-89.

Friesen, D.K. (1984). Tighter bounds for the MULTIFIT processor scheduling

algorithm. SIAM Journal on Computing, 12, 170-181.

Gao, J.Q. (2005). A parallel hybrid genetic algorithm for solving a kind of non-identical

parallel machine scheduling problems. In: Proceedings of the eighth conference on

high performance computing in Asia-Pacific Region, Beijing. IEEE Computer

Society, Los Alamitos, 469–472

Gao, J., Zhao, D., & He, G. (2008). Research on Bi-Objective Scheduling Problems

Subjected to Special Process Constraint on Parallel Machines. Proceedings of the

IEEE International Conference on Information and Automation, Zhangjiajie, China.

Garcia-L´opez, F., Meli ´an-batista, B., Moreno-P ´erez, J. & Moreno-Vega, J. M.

(2002). The parallel variable neighborhood search for the p-median problem.

Journal of Heuristics, 8, 275–388.

169

Garey, M., & Johnson, D. (1997). Computers and intractability: A guide to the theory of

NP-completeness. New York: W.H. Freeman.

Gascon, A., & Leachman, R. C. (1998). A dynamic programming solution to the

dynamic, multiitem, single-machine scheduling problem. Operations Research, 36

(1), 50-56.

Gendreau, M., Laporte, G., & Guimara˜es, E.M. (2001). A divide and merge heuristic

for the multiprocessor scheduling problem with sequence dependent setup times.

European Journal of Operational Research, 133, 183–189.

Glassy, C.R. (1968). Minimum changeover scheduling of several products on one

machine. Operetions Research, 16, 342–352.

Goldberg, D.E. (1989). Genetic algorithms in search. Optimization and machine

learning. Reading, MA: Addison-Wesley.

Graham, R.L. (1969). Bounds on multiprocessing timing anomalies. SIAM Journal on

Applied Mathematics, 17, 416-429.

Graham, R.L., Lawler, E.L., Lenstra, J.K., & Rinnooy Kan, A.H.G. (1979).

Optimization and approximation in deterministic sequencing and scheduling: A

survey. Annals of Discrete Mathematics, 5, 287–326.

Guinet, A., & Dussauchoy, A. (1993). Scheduling sequence dependent jobs on identical

parallel machines to minimizecompletion time criteria. International Journal of

Production Research, 31, 1579- 94.

170

Gupta, J. N. D., & Ruiz-Torres, A. J. (2001). A LISTFIT heuristic for minimizing

makespan on identical parallel machines. Production Planning and Control, 12, 28–

36.

Gupta, J.N.D., Ho, J.C., & Ruiz-Torres, A.J. (2004). Makespan minimization on

identical parallel machines subject to minimum total flow-time. Journal of Chinese

Institute of Industrial Engineering, 21, 220–229.

Hansen, P., & Mladenovic, N. (1999). Variable neighborhood search: principles and

applications. European Journal Operational Research, 130, 449–467.

Hansen, P., & Mladenovic, N. (2002). Variable neighborhood search. Handbook of

Applied Optimization (P.M. Pardalos & M. G. C. Resende eds). New York: Oxford

University Press, 221–235.

Hansen, P., & Mladenovic, N. (2003). A tutorial on variable neighborhood search. Le

cahiers du GERAD, 46.

He, W., & Kusiak, A. (1992). Scheduling manufacturing systems. Computational

Index,20, 163-75.

Holland, J. (1975). Adaptation in natural and artiAcial systems. Cambridge. MA:

University of Michigan Press, Ann Arbor.

Hou, E., Ansari, N., & Ren, H. (1994). A genetic algorithm for multiprocessor

scheduling. IEEE Transactions on Parallel and Distributed Systems, 5, 113-120.

Hu, T.C.. Parallel sequencing and assembly line problems. Operations Research, 9(6),

841-848.

171

Ilonen, J., Kamarainen, J.K., & Lampinen, J. (2003). Differential evolution training

algorithm for feed-forward neural networks. Neural Processing Letters, 17(1), 93–

105.

Karg, L.L., & Thompson, G.L. (1964). A heuristic approach to traveling salesman

problems. Management Science, 10, 225–248.

Karp, R.M. (1972). Reducibilty among combinatorial problems. Complexity of computer

computation (58-103). Plenum press, New York.

Kim, S., & Bobrowski, P. (1994). Impact of sequence dependent setup time on job shop

scheduling performance. International Journal of Production Research, 32

(7),1503–1520.

Kogan, K., & Levner, E. (1998). A polynomial algorithm for scheduling small-scale

manufacturing cells served by multiple robots. Computers and Operations Research,

25, 53–62.

Koulamas, C., & Kyparsis, G. (2008). A modified LPT algorithm for the two uniform

parallel machine makespan minimization problem. European Journal of Operational

Research, 196(1), 61-68.

Krajewski, L.J., King, B.E., Ritzman, L.P., & Wong, D.S. (1987). Kanban, MRP and

shaping the manufacturing environment. Management Science, 33, 39-57.

Koza, J.R. (1992). Genetic programming. Cambridge, MA: MIT Press.

Kurz, M.E., & Askin, R.G. (2001). Heuristic scheduling of parallel machines with

sequence-dependent set-up times. International Journal of Production Research, 39,

3747–3769.

172

Lampinen, J., & Zelinka. I. (1999). Mechanical engineering design optimization by

differential evolution. New ideas in optimization. London (UK): McGraw-Hill, 127–

46.

Lampinen, J., & Storn, R. (2004). New Optimization Techniques in Engineering, chapter

Differential Evolution. Springer-Verlag, ISBN: 3-540-20167, 123-166.

Lee, C. Y., & Massey, J. D. (1988). Multiprocessor scheduling: Combining LPT and

MULTIFIT. Discrete Applied Mathematics, 20, 233–242.

Lee, C.E., & Chen, C.W. (1997). A dispatching scheme involving move control and

weighted due date for wafer foundries. IEEE Transactions on Components

Packacing and Manufacturing-Part C, 20(4), 268-277.

Lee, S.M, & Asllani, A.A. (2004) Job scheduling with dual criteria and sequence-

dependent setups: mathematical versus genetic programming. Omega, 32 (2), 145–

153.

Lee, W.C., Wu, C.C., & Chen, P. (2006). A simulated annealing approach to makespan

minimization on identical parallel machines. International Journal of Advanced

Manufacturing Technology, 31, 328–334.

Lenstra, J.K., Rinooy Khan, A.H.G, & Brucker, P. (1977). Complexity of machine

scheduling problems. Annals of Discrete Mathematics, 1, 343-363.

Liao, C.J., Chen, C.M., & Lin, C.H. (2007). Minimizing makespan for two parallel

machines with job limit on each availability interval. Journal of Operational

Research Society, 58, 938–947.

173

Lin, C. H., & Liao, C. J. (2008). Makespan minimization for multiple uniform machines.

Computers and Industrial Engineering, 54, 983–992.

Liu, C.Y., & Chang, S.C. (2000). Scheduling flexible flow shops with sequence-

dependent setup effects. IEEE Transactions on Robotics and Automation, 16, 408–

419.

McNaughton, R. (1959). Scheduling with deadlines and loss functions. Management

Science, 6, 1-12.

Mendes, A.S., Muller, F.M., Franc¸a, P.M., & Moscato, P. (2002). Comparing meta-

heuristic approaches for parallel machine scheduling problems. Production Planning

and Control, 13, 143–154.

Michalewicz, Z. (1994). A Perspective on Evolutionary Computation. Proceedings of the

Workshop on Evolutionary Computation, New England, Australia, 77-93.

Min, L., & Cheng, W. (1998) Identical parallel machine scheduling problem for

minimizing the makespan using genetic algorithm combined by simulated annealing.

Chinese Journal of Electronics, 7, 317-321.

Mladenovic, N., & Hansen, P. (1997). Variable neighborhood search. Computional

Operations Research, 24, 1097–1100.

Morikawa, K., Furuhashi, T., & Uchikawa, Y. (1992). Single populated genetic

algorithm ans its application to jobshop scheduling. Proceeding of International

Conference on Industrial Electronics. Control Instrumentation and Automation, 2,

1014-1019.

174

Muntz, R. R., & Coffman, E. G. (1969). Optimal preemptive scheduling on two

processor systems. IEEE Transactions on Computers, 18, 1014-1020.

Murata, T. & Ishibuchi, H. (1996). Positive and negative combination effects of

crossover and mutation operators in sequencing problems. Proceeding of

International Conference on Evolutionary Combination, 170-175.

Nearchou, A.C. (2006a). A differential evolution approach for the common due date

early/tardy job scheduling problem. Computers and Operations Research, 35(4),

1329-1343.

Nearchou, A.C. (2006b). Meta-heuristics from nature for the loop layout design

problem. International Journal of Production Economics, 101(2), 312–28.

Nearchou, A.C., & Omirou, S.L. (2006). Differential evolution for sequencing and

scheduling optimization. Journal of Heuristics, 12, 395–411.

Nearchou, A.C. (2007). Balancing large assembly lines by a new heuristic based on

differential evolution method. International Journal of Advanced Manufacturing

Technology, 34, 1016–1029

Omran, M., Engelbrecht, A., & Salman, A. (2005). Differential evolution methods for

unsupervised image classification. Proceedings of the IEEE Congress on

Evolutionary Computation, 2, 966–973.

Onwubolu, G.C. (2001). Optimization using differential evolution. Institute of Applied

Science Technical Report, TR-2001/05.

175

Onwubolu, G.C. (2004). Optimizing CNC drilling machine operations: traveling

salesman problem-differential evolution approach. New optimization techniques in

engineering. Heidelberg, Germany: Springer, 537–65.

Onwubolu, G., & Davendra, D. (2006). Scheduling flow shops using differential

evolution algorithm. European Journal of Operational Research, 171(2), 674–92.

Ovacik, I.M., Uzsoy, R. (1993). Worst-case error bounds for parallel machine

scheduling problems with bounded sequence-dependent setup times. Operations

Research Letters, 14, 251-6.

Ovacik, I.M., Uzsoy, R. (1995). Rolling horizon procedures for dynamic parallel

machine scheduling with sequence-dependent setup times. International Journal of

Production Research, ,33, 3173-92.

Panwalkar, S., Dudek, R., & Smith, M. (1973). Sequencing research and the industrial

scheduling problem, in: M. Beckmann, P. Goos, H. Zurich (Eds.). Symposium on the

Theory of Scheduling and Its Applications, Springer-Verlag, New York, 29–38.

Paterlini, S., & Krink, T. (2004). High performance clustering with differential

evolution. Proceedings of the IEEE Congress on Evolutionary Computation, 2,

2004–2011.

Pinedo, M. (1995). Scheduling: Theory, Algorithms and systems. Springer Series in

Operations Research and Financial Engineering.

Pinedo, M., (2002). Scheduling Theory, Algorithms and Systems. Prentice-Hall, NJ.

176

Polacek, M., Hartl, R. F., Doerner, K. & Reimann, M. (2004). A variable neighborhood

search for the multi depot vehicle routing problem with time windows. Journal of

Heuristics, 10, 613–627.

Price, K. (1994). Genetic annealing. Dr. Dobb‟s Journal, 220, 127–132.

Price, K. (1999). An Introduction to Differential Evolution. McGraw-Hill, London.

Price, K., Storn, R., & Lampinen, J. (2005). Differential Evolution : A Practical

Approach to Global Optimization, 1st ed. Springer-Verlag,

Berlin/Heidelberg/Germany.

Punnen, A. P., & Aneja, Y. P. (1995). Minmax combinatorial optimization. European

Journal of Operational Research, 81, 634-643.

Qian, B., Wang, L., Huang, D., Wang, W., & Wang, X. (2007). An effective hybrid DE-

based algorithm for multi-objective flow shop scheduling with limited buffers.

Computers and Operations Research, 36, 209-233.

Rabadi, G., Anagnostopoulos, G.C., & Mollaghasemi, M. (2007). A heuristic algorithm

for the just-in-time single machine scheduling problem with setups: a comparison

with simulated annealing. International Journal of Advanced Manufacturing

Technology, 32, 326–335.

Rardin, R. L. (1992). Optimization in Operations Research. Purdue University Press.

Rechenberg, I. (1973). Evolution strategie: optimieriung technischer systems nach

prinzipien der bilologischen evolution. Stuttgart, Germany: Formmann-Holzboog.

177

Rocha, M., Gómez Ravetti, M., Mateus, G. R., & Pardalos, P. M. (2007). Solving

parallel machines scheduling problems with sequence-dependent setup times using

variable neighborhood search. IMA Journal of Management Mathematics, 18, 101–

115.

Sahni, S. (1976). Algorithm for scheduling independent tasks. Journal of ACM, 23, 116-

127.

Schiavinotto, T., & Stützle, T. (2007). A review of metrics on permutations for search

landscape analysis. Computers Operations & Research, 34(10), 3143–53.

Sivrikaya, F.S., & Ulusoy, G. (1999). Parallel machine scheduling with earliness and

tardiness penalties. Computers & Operations Research, 26, 773-787.

Spears, W.M., DeJong, K.A. (1991). An analysis of multi-point crossover. Rawlins G

(ed) Foundations of genetic algorithms. Morgan Kaufmann, San Francisco, 301–

315.

Stecco, C., Cordeau, C.F., & Moretti, E. (2008) A tabu search heuristic for a sequence

dependent and time-dependent scheduling problem on a single machine. Journal of

Scheduling, 12(1), 3-16.

Storn, R. (1995). Differential evolution design for an IIR-filter with requirements for

magnitude and group delay. International Computer Science Institute, Berkeley,

Technical Report TR-95- 026.

Storn, R., & Price, K. (1996). Minimizing the real functions of the ICEC'96 contest by

Differential Evolution. IEEE Conference on Evolutionary Computation, 842 – 844.

178

Storn, R., & Price, K. (1997). Differential Evolution - A Simple and Efficient Heuristic

for Global Optimization over Continuous Spaces. Journal of Global Optimization,

11, 341-359.

Sule, D.R. (1997). Industrial Scheduling. PWS Publishing Company.

Stowers, C. L., & Palekar, U. S. (1997). Lot sizing problems with strong setup

interaction. IIE transaction, 29(1), 167-169.

Syswerda. G. (1989). Uniform crossover in genetic algorithm. Schaffer JD (ed)

Proceedings of the third international conference on genetic algorithm. Morgan

Kaufmann, San Francisco, 2-9.

Tang, L.X., Luo, J.X. (2006). A new ILS algorithm for parallel machine scheduling

problems. Journal of Intelligent Manufacturing, 17, 609–619.

Tasgetiren, M.F., Sevkli, M., Liang, Y.C., & Gencyilmaz, G. (2004a). Particle swarm

optimization algorithm for single machine total weighted tardiness problem. In

Proceedings of the Congress on Evolutionary Computation, 1412–1419.

Tasgetiren, M.F., Sevkli, M., Liang, Y.C., & Gencyilmaz, G. (2004b). Particle swarm

optimization algorithm for permutation flowshop sequencing problem, In

Proceedings of the 4
th

 International Workshop on Ant Colony Optimization and

Swarm Intelligence, 382–390.

Tasgetiren, M.F., Sevkli, M., Liang, Y.C., & Gencyilmaz, G. (2006a). Particle swarm

optimization and differential evolution for the single machine total weighted

tardiness problem. International Journal of Production Research, 44(22), 4737-

4754.

179

Tasgetiren, M.F., Sevkli, M., Liang, Y.C., & Yenisey M. M. (2006b). Particle swarm

optimization and Differential evolution algorithms for job shop scheduling problems,

International Journal of Operational Research, 3(2), 120-135.

Tasgetiren, M.F., Pan, Q.K., & Liang, Y.C. (2008). A discrete differential evolution

algorithm for the single machine total weighted tardiness problem with sequence

dependent setup times. Computers and Operations Research, 36(6), 1900-1915.

Uskup E, & Smith S.B. (1975). A branch-and-bound algorithm for two-stage

production-sequencing problem. Operations Research, 23, 118–136.

Ying, K.C., & Liu, S.W. (2007). Solving single-machine total weighted tardiness

problems with sequence-dependent setup times by meta-heuristics. International

Journal of Advanced Manufacturing Technology, 34, 1183–1190.

Whitley, D., Starkweather, T., & Fuquay, D. (1989). Scheduling problems and traveling

salesman: The genetic recombination operator. Proceedings of the international

conference on Genetic Algorithms, 133-140.

Wilbrecht, J.K., & Prescott, W.B. (1969). The influence of setup time on job

performance. Management Science, 16, 274-280.

Woodruff, D.L., & Spearman, M.L. (1992). Sequencing and batching for two classes of

job with deadlines and setup times. Production Operations Management, 1, 87±102.

Zaharie, D. (2007). A Comparative Analysis of Crossover Variants in Differential

Evolution. in: Markowska-Kaczmar U. and Kwasnicka. H. eds, Proc. IMCSIT (PTI,

Wisla), 171-181.

