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CLASSIFICATION OF SPEECH AND MUSICAL SIGNALS USING
WAVELET DOMAIN FEATURES

ABSRACT

In this study, performance of wavelehsf@rm based features for the speech /
music discrimination task has been investigatedrtter to extract wavelet domain
features, discrete and complex wavelet transforave tbeen used. The performance
of the proposed feature set has been comparechvigthture set constructed from the
most common time/frequency and cepstral domainufeatused in speech/music
discrimination such as number of zero crossingsetsal centroid, spectral flux and
Mel cepstral coefficients. In order to measure peeformances of the feature sets
for the speech/music discrimination, artificial reunetworks have been used as
classification tool. The principal component aneyisas been applied to eliminate
the correlated features before classification stafensidering the number of
vanishing moments and orthogonality, the best perdmce is obtained with
Daubechies8 wavelet among the other members @alkbechies family. According
to the results the proposed feature set outperftimgraditional ones.

Keywords: speech/music discrimination, wavelet transform, tialies wavelet,

artificial neural networks



KONUSMA VE MUZ iK ISARETLER ININ DALGACIK ORTAMI
OZNITEL iKLER KULLANARAK SINIFLANDIRILMASI

Oz

Bu calgmada, muizik ve komma ayrimi icin dalgacik dogamu tabanh
Ozniteliklerin baarimi aratiriimistir ve zaman/frekans tabanh 6znitelikler gibi
literattrde sik¢a kullanilan 6znitelik cikartim yémleri ile kagilastirimi yapilmgtir.
Dalgacik tabanli 6znitelikleri ¢cikartmak icin, dyne karmaik dalgacik dongiimleri
kullaniimistir. Onerilen 6znitelik setinin Barimi; sifir gegilerinin sayisi, izgesel
merkez, izgesel aki ve mel kepstral katsayilari ¢gibnusma/muizik ayriminda
kullanilan en yaygin zaman/frekans ve kepstralrthkiznitelikler ile olgturulmus
Oznitelik seti ile kagilastirlmistir. Elde edilen 6zniteliklerin siniflandiriilmasend
yapay sinir glari kullaniimstir. Siniflandirma gamasindan once birbiri ile gkili
Ozniteliklerin elenmesi amaciyla temel B#a analizi uygulanmgtir. S6nimlenen
momentler ve birimdiklik dgerlendirilerek, db8 dalgaginin Daubechies ailesi
icindeki diger dalgaciklardan daha yukseks#@a gosterdii belirlenmgtir. Elde
edilen sonuclara gore, kogmma/muzik ayriminda Onerilen yontemin, o©nceki
yontemlere daha ustin okglwgorulmitar.

Anahtar kelimeler: konuwma/muizik ayrimi, dalgacik dogiimi, Daubechies

dalgacgl, yapay sinir glari
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CHAPTER ONE
INTRODUCTION

Today, discrimination of speech and musicghais has been an important field
due to the requirement of more efficient use of smmication tools and increase in
the media capabilites. The aim of a speech / ndisarimination (SMD) system is to
separate speech and music signals from each oghieritating the behaviour of the
human ear by using efficient code and algorithmdDSystems can be used a pre-
processing stage tool for automatic speech redogni(ASR) systems, audio
decoding, content based multimedia retrieval antbraatic channel selection in

radio broadcasts.

1.1 Speech / Music Discrimination

There have been several studies on SMD systemch use different feature
extraction and classification methods. In additidme classified material used in

these studies may vary among each other.

One of the preliminary works in this area waade by J. Saunders (Saunders,
1996). In the article, a real time system that dactriminate speech and audio
signals in FM radio broadcasts has been propo$ed.system has been designed to
change the channel when ads begin on radio braaddas author notes that he
could manage to reach 98% as classification pedoo®m. The distribution of zero
crossing rates and an algorithm based on lop-setedaf this distribution have been

used in the feature extraction stage of the study.

In another work on decomposition of relwegs, a discriminator for automatic
segmentation of radiophonic musical sounds has ldeseloped using combined
supervised and unsupervised methods (Richard, Ram&nEssid, 2007). The
extracted features are grouped under four titleemporal features (ZCR, temporal
statistical moments, modulation coefficients,Spectral features (spectral statistical
moments, spectral slope, spectral flux,...), Cepdatures (MFCC, Constant Q



transform cepstral coefficients) and Perceptualtufes (Relative loudness,
perceptive sharpness,...). These parameters aeetesklusing a simple feature
elimination program and then support vector machif{8VM) are used for
classification stage. Each time frame is labelléith wwne of music, speech or mixed
at the end of the classification. For longer segsjea smoothing procedure is

defined using unsupervised approach.

In automatic speech recognition systems (A8R3, an essential problem to de-
activate the system when there is no speech sgnidle input. For these types of
applications, SMD systems can be used as a pregsig tool. A system designed
for this purpose given in (Scheirer & Slaney, 198xiracts 13 features such as 4 Hz
modulationenergy, Percentage of low-energy frames, spedlabif point, spectral
centroid, spectral flux, zero crossing rate, cepstresynthesis residual magnitude
and pulse metric in the fetaure extraction stadie duthors note that they have also
used variances of spectral roll off point, speateaitroid, spectral flux, zero crossing
rate and cepstrum resynthesis residual magnitudéonm feature vector. The
performance is examined in two aspects such asfHaframe and long segments
(2.4 sec) using different classifier schemes. Ihaged in the paper that the error
could be decreased to 1.4% for long segment datalbhge the classification error
for frame-by-frame segments is 5.8%. The auth@s atld that several radio stations
have been used to collect samples. This collectiontains length of 20 min.
recordings and each one of these recordings cen8lirsamples with length of 15
sec. for each one. At classification stage, GMM\X-and k-d spatial classifiers

have been preferred by the authors.

A speech music discriminator system desigoedadio broadcasts that has been
proposed in (Pikrakis, Giannakopulos, & Theodir&)08) uses a multilayer
procedure with three—stage structure. Accordinthi® method, the aim in the first
stage is to define the speech and music segmesitsatd seperable at first glance
with high accuracy. In this stage, spectral entr@gmd region growing based
parameters are extracted. The segments which cwmilde classified in the first

stage are segmented with more complex methods mmegures such as Dynamic



Programming and Bayesian Networks. The last stage @ define exact boundaries
of segments. The classification is performed fdfedent music genres and the

overall performance is given as 96% in the study.

Another study given in (Matsunaga, Mizunoh€ki, & Hayashi, 2004) aims
automatically indexing of broadcast news by sudgagsa new method to define
audio source intervals. The process includes twgest as determination of audio
sources and post processing stage for undefinethesd#g. The three features
proposed by the authors are based on spectralcoosdation and given as spectral
stability, white noise similarity and sound spektfaape. To make comparison with
previous works, two different feature sets havenbesed by the authors. The first
feature set includes energy, pitch frequency, feegqy centroid and bandwitdh. In
the other set, the 3 features proposed by the eulte added to four features used in
first feature set. It is claimed in the paper tthet performance has increased about

6.6% after addition of 3 parameters to previoussone

One of the application fields of speech/muBscriminators is audio coding. It is
important to provide low bit rate — high qualityusml in applications such as
wireless communications, telephone, teleconferemternet communications and
digital music broadcast. However, coding of musia apeech utilizes different
techniques in general. An effective algorithm fousic coding may not be suitable
and cause problems for speech coding applicatlpse-processing stage including
SMD is needed to avoid these types of problemsiah @pplications. In a study, a
SMD system which minimizes the discrimination erfor coding system has been
proposed using a Genetic Fuzzy System (GFS) inedjréao decision stage
(Exposito, Galan, Reyes, & Candias, 2007). Theasthtate that they have avoided
many classification errors and reached 94.30% acguusing GFS and GMM
classifier. Speech samples with length of one lotwtal from different accents and
different genders have been collected for genagatpeech database. One hour for
recording including different genres of music sashrock, pop etc. has been used for
music database.



In another study on audio coding (Rong-Yu, )98@verage zero crossing rate has
been considered at feature extraction stage foroverlapped segments with length
of 480 samples. In a similar work on multimode vinded coding of speech and
musical signals (Tancerel, Ragot, Ruoppila, & Lefeb2000), a SMD system has
been used as pre-processing tool. In the studydigmimination is achieved by
using long term statistics in feature extractiaagstand GMM for classification.

SMD systems also play an important role in trméddia applications such as
content based multimedia retrieval, content congioes and automatic speaker

indexing.

In (EI-Maleh, Klein, Petrucci, & Kabal, 200d)ne spectral frequencies (LSFs)
and zero crossing based parameter are used fardeattraction over length of 20
msec segments. In classification stage, in ordenake comparison with previous
works, the labelling has been made for length gkd& (50 frames) using quadratic
Gaussian classifier. The feature extraction ovartsime segments makes study
convenient for real time multimedia applicationsaddition, a new feature named as
Linear Prediction Zero Crossing Ratio (LP-ZCR) mpgmsed which is calculated
using proportion of the number of zero crossingthatoutput of a linear prediction
filter to number of zero crossings at the inputr Etassification, two types of
classifiers are used: quadratic Gaussian classifidrnearest neighbour classifier. It
is noted by the authors that speech database watedrby taking samples from 5
men and 5 women speakers with 8 KHz sampling frequend for music database,
music recordings with different genres were us&l0@0 frames of speech samples

(9.3 min.) and 32 000 frames of music have beed asdraining data.

The audio content analysis plays an impontal® when content-based indexing
and audio retrieval are concerned. In (Lu, Zhangli&g, 2002), the audio content
analysis is implemented. The audio classificatien done using a two-stage
procedure: In the first stage, KNN Classifier anchew feature based on linear
spectral pairs vector quantization (LSP-VQ) is usedrder to discriminate speech

and non-speech segments. In second phase of @assii process, the segments



labelled as non-speech in first stage are decordpesbclasses such as music,
enviromental sounds and silence. A new methodapgsed using quasi-GMM and
LSP correlation analysis based unsupervised spesdgnentation algorithm. The

classification results are addressed in many asjpethe study.

Another study on this field is given in (Zhafduo, 2001), where audio content
analysis is performed for online audiovisual daggnsentation and classification.
The audio data taken from films and TV programsubjected to segmentation and
these segments are labelled with basic classes di&kespeech, music, song,
environmental sounds with music in the backrounokesh with music in the
backround and silence. The energy function, averagaber of zero crossings,
fundamental frequency and spectral peak tracksa@milated in feature extraction
stage to make the study applicable in real timeaimas. The authors note that they
have managed to exceed 90% as classification peafare.

The system proposed in (Minami, Akutsu, Hamad& onomura, 1998) can be
given as an example of video indexing studies. éctpgram based analysis that
aims music detection is used for video indexingcading to authors’ approach,
spectrogram is taken as a gray level image andifitzgion is made using image

intensity values of this spectrogram.

The gray correlation based features are usednother publication on music
speech discrimination (Gong & Xiong-wei, 2006). Ildal the previous studies,
amplitude of RMS value statistics based gray cati@h analysis method is used for
content based indexing and retrieval of cognitivedra. It is stated by the authors
that this method based on geometric relation ofuseges with over 90% as
classification performance. In analysis sectior,dhata is divided into segments with

length of 1 sec. and gray correlation analysiei$gpmed over these segments.

In some studies, unlike their predecessory, @ame feature is preferred instead of
using many features (Karneback, 2001; Wang, Ga¥jng, 2003). It is claimed in

(Karnebeck, 2001) that, the main difference betwemmsic and speech is the



bandwidth. Low frequency modulation has been usedfeature in the study.
Waxholm database and different types of music sesnfsbm cd recordings have

been used for speech and music databases, reghectiv

The other method proposed in (Wang & othedQ3) uses only a new feature
based on low energy ratio and this new featuraled by the authors as modified
low energy ratio. It is stated in the paper thas possible to get higher performance
results than previous works using this new param@étgthors use news broadcasts
from radio and TV channels and dialogs from mowedefine speech database. For
music database, instrumental songs have been Uibedperformance results are

given as 98.4% for speech and 97% for music irpdper.

For some applications including real time apiens, the efficient and faster
algorithms are as important as the classificatiesults. To meet these needs; in
(Wang, Wu, Deng, & Yan, 2008), a SMD system havenb@roposed using
hierarchical oblique decision theory to providednale between low complexity and
high accuracy. In this way, they reach to 98% amcyiwith a delay of 10 msec. for
each frame. 228 512 frames for music and 237 &Gfthds for speech have been used
for extraction of parameters such as normalizedctsgle flux between frames,
normalized spectral flux between subbands, stardiriations of energy levels,
energy ratio and harmonic structure ability. Authdrave suggested hierarchical
oblique decision classifiers which they have trdinesing extracted features for
classification stage. It is mentioned in the papat this method is more flexible and
simpler in terms of DSP implementation and it issgble to get more accurate

results. Authors add they have achieved to geassigtation performance of 98.3%

A system working with high speed and high aacy proposed in (Panagiotakis
& Tziritas, 2005) can manage to reach 95% accuwatty 20 msec. frame delay and
it is using only two characteristics of signalslsas RMS based average density of
zero crossings and average frequency. In classdicatage, at first a decision is
given for if the present frame is silence and mtlext step, the classification is made

for nonsilent frames to define whether they areesper music. Any classifier is not



used for classification. Instead, the extractedufes are subjected to some tests and
the final decision is given by looking at the réswif these tests.

It is mentioned inRuiz-Reyes, Vera-Candeas, Mufioz, Garcia-Galan, BaQas
2009) that the timbral feautures used in most @vious studies are not very
effective for speech/music discrimination as camtreo common thought. In this
publication, different from previous studies, a usb system is proposed for
speech/music discrimination using fundamental feeqy estimation. For
classification stage, a classical statistical pattecognition classifier followed by a
fuzzy rule based system has been used. The aultlfawes obtained the highest
success rate as 97%. However, accuracy is meaasr8i% for the case where all

classifiers are taken into consideration.

In other published studies on speech / musuridhination, generally the feauture
extraction methods show differences and these rdiif®es are also valid for
classification schemes and datasets. There areestwchich make comparison
between other publications in terms of featureastion. In (Carey, Parris, & Lloyd-
Thomas, 1999), it is stated that 4 types of featsteeh as amplitudes, cepstra, pitch
and zero crossings are compared in the study apdtreé and delta cepstral

coefficients show higher classification performatitan other parameters.

Mel frequency cepstral coefficients (MFCCsg drequently used for feature
extraction stage of speech / music discriminatippliaations. As an example, the
first degree statistics of MFCCs are examined iarfH& Chen, 2003) to design a
SMD system. Authors of the paper have noted thal thave reached 96%
classification performance using only a part ofs@@. of a dataset with length of 20
000 sec. and using neural networks as classifigs hoted in the report that the

proposed method can be applied to any radio soagagdless from content of data.

When other studies that use MFQE @ncerned, we encounter with speech
recognition and musical genre classification agicns. A study on genre

classification uses features including timbral de@$ (zero crossings, centroid, roll



off, flux, MFCC), MPEG-7 features (Audio Spectrumf@weid, Audio Spectrum
Spread, Audio Spectrum Flatness, Harmonic Ratiodifm Harmonic Ratio ),
Rythm features ( Beat Strength, Rythmic Regularég)l other features as (RMS,
Time Envelope, Low Energy Rate, Loudness, Centraiignts, Predictivity Ratio)
(Burred & Lerch, 2003). A feature selection aldomit which compares these features
among themselves is used and a 3-component Gaudsiture Model is preferred
as classifier by the authors. The database con&tifidfiles with 30 sec. length for
each one and the classification results are giweodmparing the direct approach

with the hierarchical approach proposed by theasth

In (Ezzaidi & Rouat, 2007), the issue is adskedsfrom a comparison aspect
between statistical theory and information theorgasurements in this study on

musical genre classification.

Automatic speech recognition (ASR) systemgddaotics are another application
field of speech / music discriminators. The studyChoi, Song, & Kim, 2007) can
be given as one of the publications for these tygfespplications. In this paper, a
speech / music discriminator for speech recognisgstem of a robot has been
designed as pre-processing stage by the authorsn Mé minimum cepstral
distances (MMCD) are used in feature extractiongestaSpeech Information
Technology and Industry Promotion Center (SiTeat thontains 13 hours of
recordings created by 50 different male and ferapéakers is used for generation of
speech database. RWC Music Database Subworkingp gobuthe Real World
Computing Partnership (RWCP) of Japan has proviledmusic database as well.
The authors say that they have achieved to geteess of 99.64% and emphisize
that the used dataset contains speech closelydet@peech voices and original CD

tracks.

One of the popular methods used in SMD sysierbsscrete Wavelet Transform
(DWT) (Tzanetakis, Essl, & Cook, 2001; Didiot, ti#i, Fohr, & Mella, 2010; Khan
& Al-Khatib, 2006; Ntalampiras & Fakotakis, 2008yhen the literature is

concerned in general, it is possible to see thatTD¥/used commonly in many



application areas of speech and audio signal psougsThe study in (Tzanetakis &
other. , 2001) describes some applications of DWThe problem of extracting
information from non-speech audio. The authors nmakautomatic classification of
various types of audio using the DWT and comparh wiher traditional feature
extraction methods proposed in the literature.iStes over the set of the wavelet
coefficients are used in order to reduce the dimeasity of the extracted feature
vectors. In this way, the mean of the absoluteesaliuthe each subband, the standart
deviation of the coefficients in each subband aiwhs of the mean values between
adjacent subbands are used for feature extrachomindow of 65536 samples at
22050 Hz sampling rate with hop size of 512 secdodsesponds to approximately
3 seconds) is used as input to the feature extragirocess and twelve levels
(subbands) of coefficients are used resulting feadure vector with 45 dimensions.
Three classification experiments are evaluatedhénstudy as MusicSpeech, Voices
and Classical.

In (Khan & other. , 2006), DWT coefficientseaused in feature extraction stage
of a machine learning based speech / music distatmi. The mean and variance of
DWT coefficients are used as input to the classiion stage. The wavelet families
of Haar, Meyer and two types of Daubechies (DB2R2Bd5) are investigated in the
paper. It is stated by the authors tltracted features using Meyer or DB15
wavelets do not contribute much to the processladfsdication and the results for
the Haar wavelets, however, indicate that they hpgdormed more accurate
clustering than that of DB2 wavelets. The experitenere carried out using a
database of music, speech, and speech added on daigiin the study where all
speech and speech+music data were conversatichal@anded examples from both
genders. The audio samples were extracted fromndectaries and from different
movies as well.The authors evaluate the results for several ¢lessisuch as
Multilayer Perceptron (MLP) Neural Networks, RadiBhsis Functions (RBF)
Neural Networks ve Hidden Markov Model (HMM) clafgsis.

In (Didiot & other. , 2010), a wavelet bagsarameterization for a SMD sytem
has been proposed. The authors state that DWT ptesmmust be preferred rather
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than Fourier Transform based features for appboatiwhich use non-stationary
signals like music and speech sounds. The restdt®waluated for three wavelet
family and numerous vanishing moments. Static, dynand long term parameters

are investigated in the classification stage ofsiystem.

It has been presented an effective approaclthwhddresses the issue of
speech/music discrimination using DWT in (Ntalamapir& Fakotakis, 2008).
Multiresolution analysis is applied to the inpugrsl by the authors while the most
significant statistical features are calculated rosepredefined texture size. For
implementation, speech/music discrimination is Hasen six statistical
measurements including mean, variance, minimumeyvahaximum value, standard
deviation and the median taken from the low fregyeimformation of the signal.
Both male and female speech is obtained from thédITIdatabase and an EBU
music collection is used for music database. Thssdlication results are obtained
for 4 wavelet families given as Haar (DaubechiesDBubechies 4, Symlets 2 and
Biorthogonal 3.7. The authors note that Haar mestused in the task of speech /
music discrimination. They also add that it has destrated very good performance
achieving 91.8% recognition rate despite the faat the system is based solely on
wavelet signal processing.
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1.2 Aim of Thesis

In the literature, many successful methoddutling time domain, frequency
domain and time/frequency domain have been propaselie used at feature
extraction stages of speech / music discriminagistems. Since it provides compact
representation of signals in both time and frequedomains, discrete wavelet

trnasform (DWT) stands out among other methods.

The first aim of this study is to further examthe capabilities of DWT for SMD
by considering the feature extraction strategiles, groperties of different wavelets

and the length of the analysis window.

It is known that DWT suffers from the lack slift invariance and oscillatory
behavior. As complex wavelet transfor@WT) proposes an acceptable solution to
these problems, it also provides compact repreentfor nonstationary signals.
The second aim of this thesis is to obsern'@WT is a convenient method for SMD
systems by proposing a ne®WT based parameterization system at feature
extraction stage. The dual tree method which cootgtrapproximately analytical
wavelets will be used for the implementation of @&T in the thesis. In order to
make comparison, performance result<C@¥T and DWT based classification over
other two methods such as time/fequency basedrésamnd DWT based energy

features will be examined.

1.3 Ouitline of thesis

The thesis is organised in to 5 chapters lkaAs:

Chapter 2 is a detailed review of features usethénthesis. In this chapter, four
different feature extraction methods are descriged the advantages of proposed
method is stated at the end of this section. Inp@&ha3, a brief information about
artificial neural networks (ANN) is given sincehias been used as classification tool

in the thesis. It is also mentioned about the gpadccomponent analysis (PCA) that
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used for pre-classification stage. Chapter 4 isniost important section of thesis
since it contains results of the experiments paréat in this study. At the beginning
of chapter, a detailed information on the mateuigdd in the thesis is presented and
the results are examined. In the last chapterefthbsis, a comparative discussion is
made about expected and encountered results. Tiaditseand advantages of thesis
is discussed as well in this chapter.



CHAPTER TWO
FEATURES FOR SPEECH / MUSIC DISCRIMINATION

In this chapter, the related theoretical bgobund of the features used in the

thesis will be given.
2.1 Time/Frequency Domain Features and Mel CepstraCoefficients

The time domain features such as number of @@ssings and frequency domain
features such as low energy ratio, spectral cahtspectral roll-off and spectral flux
are commonly used for music/speech discriminatideo, Mel frequency cepstrum
coefficients are shown to be successful in musegsp classification and
recognition applications. For comparison, a featusetor constructed from these
features has been used for classification as tsienfiethod of this thesis.

2.1.1 Number of Zero Crossings
It is a time-domain feature which represeihts hnumber of zero crossing in a
frame. It is a useful feature in music and speastrighination since it is a measure

of the dominant frequency in the signal (Saad, B&&y, Abu-El-Wafa, & Wahba,

2002; Scherier & other, 1997). The number of zeossings are calculated as
1 N
Z, =§Z[sgn(x (n))-sgni (O -1) (2.1)
n=2

wherex(n) is then™ component of the frame of length

13
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2.1.2 Low Energy Ratio

This feature gives the number of the framewloére the effective or root mean
square (RMS) energy is less than the average en&lgy RMS energy for each

frame is determined as

_ 1<y
XRMS_ _zxk (2-2)

where X, is the magnitude ok"™ frequency component in the frame. Since the

energy distribution is more left-skewed than forsmuthis measure will be higher
for speech (Scherier & other, 1997 ).

2.1.3 Spectral Centroid

This is the measure of the center of mass of teguincy spectrum and

calculated as

K
f X
sc:=—2k;l b (2.3)

2k=1xk

whereX, is the magnitude of the component in the frequdranydfy (Saad & other.,
2002; Scherier & other., 1997).

2.1.4 Spectral Roll-off
This feature is important in determining theyse of the frequency spectrum. The

spectral roll-off pointRy is the frequency where the 95% of the spectral pdiss

below as summarized in

D XZ=0.95)" X? (2.4)
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where X/ is the magnitude of the component of #i& frequency. Since the most of

the energy is in the lower frequencies for speeghass, R has lower values for
speech (Saad & other., 2002; Scherier & other.7199

2.1.5 Spectral Flux:

It represents the spectral changes betweearedj frames and calculated as

sE=Y(x-Xx) @)

1

where X is the k" frequency component of thé€ frame. Then the average of the

all frames are calculated. The music has a highier of changes than speech, thus
this value is higher for music (Saad & other., 208¢herier & other., 1997).

2.1.6 Md Freguency Cepstrum Coefficients (MFCC)

The Mel frequency spectrum is the linear cestransform of a log power
spectrum on a nonlinear mel scale of frequencyrigh&hang, & Song, 2001 ). The
Mel scale is inspired from the human auditory syste which the frequency bands
are not linearly spaced. Thus the sound is repteddretter. The calculation of the
MFCC includes the following steps:

1. The discrete Fourier transform (DFT) transforims windowed speech segment

into the frequency domain and the short-term papectrunP(f) is obtained.

2. The spectrunP(f) is warped along its frequency axigin hertz) into the mel-

frequency axis aB(M) whereM is the mel-frequency,

_ A
M(f)= 2595I0q0( B 700) (2.6)
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3. The resulted warped power spectrum is then deagowith the triangular band-
pass filterP(M) into (M) . The convolution with the relatively broad critidand

masking curvesd(M ) significantly reduces the spectral resolution &fM) in

comparison with the origin&(f), which allows for the down sampling &{M ) .

(M) => P(M-M(M), k=1,... K (2.7)

Then K outputsX(k) = In(8(M, )); k=(1..K) are obtained. In the implementation,

6(M,) is the average instead of the sum.

4. The MFCC are computed as
K
MFCC(d) =Y’ xkcoe{ d( k- 0.5)5 % k=1,...D. (2.8)
k=1

2.2 Wavelet Transform

Although it is not the most effective wafyrepresenting a signal, sometimes it
Is important to provide representation of a signalerms of its spectrum or Fourier
Transform. It is well known that speech and musgjonas contain a combination of
several frequencies and they show different charatics for different time
locations. However, Fourier Transform does not slubanges in the structure of
frequency domain, that is, it shows only globalgfrency content independently
from time information. In this way, if a stationasignal is in question, then Fourier
Transform can be useful. For non-stationary signéte transform must be
performed locally using analysis windows (Heil &alut, 1989). In Figure 2.1, the
representation schemes for different transformatiame given. As it can be seen in
(a), Fourier Transform does not perform any windayior transformation of signal.
On the other hand, in (b) and (c), STFT and Wavehaisforms use windows to
analyze the signal and this property makes themaypanopriate tool for processing of

non-stationary signals.
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Figure 2.1 Different time-frequency represewntadi for the three transforms: (a) Fourier Transform

(b) STFT and (c) wavelet transform (Chun-12010)

Short time Fourier transform (STFT) and wavatensform (WT) can be given as
examples for methods that use windows to analysesitjnals locally. STFT use
costant length windows for analysis and this somesi causes problems in terms of
representation. WT uses windows which can scale $iees adaptively to provide
good resolution in time and frequency domain. B&RWFT and WT use the
correlation between the signal and analysis func{i@hun-Lin, 2010). As it is
shown in Figure 2.2, continuous wavelet transfasmerformed using translated and
scaled versions of a mother wavelet. The transfbomas represented for two

different scaling values such as s=5 and s=20.

Figure 2.2 Continous wavelet transform for a natishary signal for different scaling parameters.

(Sumbera, 2001)
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To perform Contionuos Wavelet Transform, teewwolution between the signal
and analysis function is calculated as analogou&dorier transform. The only
difference between two methods is that waveletsusesl instead of sinusoids in
wavelet transform. Wavelets are functions whichillzge locally and they are
limited in time domain. Wavelet functions contaimrgmeters which allow to
shifting and scaling of windows and in this wayg\ttprovide a better resolution both

in time and frequency domain than STFT (Merry, 2005

Another implementation for wavelet transforisiperformed with filter banks and
is named as Discrete Wavelet Transform (DWT). DWibjects a signal to some
filtering process using filter banks and decompibde coefficients called as detail
and approximation. These coefficients provides @dgepresentation of signals with

giving frequency information and time location bét frequency component.
2.2.1 The Continous Wavelet Transform

A mother wavelet function limited in time domay(t) JL*(R) is defined where

limited in time domain refers to taking values ifirited region over time axis.

These wavelets are normalized and also have zesa preperty (Chun-Lin, 2010).

Mathematically, these properties are given as

Tt/l(t)dt =0
- (2.9)

el = [ et Od=1

The mother wavelet has the capability of forgiihe basis set denoted as

t-u

{ws,u(t)=%w(7)},um RSIR  (210)
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where u and s are translating and scaling paramatespectively. The translating

parameter in the equation shows the region thdieiag analyzed.{zpuls(t)} is

obtained orthonormally which is ensured by multtason property.

It is possible to map a one dimensional sigh@) to the two dimensional
coefficients Wf(s U that contain time and frequency information usitigs

transform. These two parameters are used to laxatertain frequency (scaling

parameter s) at a particular time instant (tramglgbarameter u).

Continous wavelet transform is given as

Wf(s g =< f().¢,,> 2(11)

00

= [ fOw @t

—00

=[ 10w

—00

The inverse continous wavelet transform iegias

=L O ARCAP
f(t)—cw££Wf(s u)\/gt//( S jolug (2.12)
whereC, is defined as
o 2
c,=| G (2.13)
0 W

This equation is also called the admissibdiiydition wherey/(w) is the Fourier

transform of the mother wavelet(t) (Chun-Lin, 2010).
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Continuous wavelet transform is calculatedtéking discrete samples for the
scaling parameters and translation parameten and the resulting wavelet

coefficients are called wavelet series (Merry, 2005

Wavelet series can be calculated as
Xwt, = [ X, (Ddt withg, =s™@(s"t-ny)  (2.14)

where integers m and n control the wavelet dilataéind translation.
2.2.2 The Discrete Wavelet Transform

The continous wavelet transform uses functibias contain parameters such as
translating and scaling to make multiresolutionlgsia. However, DWT performs
this analysis by using multiresolution filter bardesd specific wavelet filters (Merry,
2005).

2.2.2.1 Filter Banks

Filter banks refer to collection of filters igh decompose the signals into
different frequency bands. The discrete signalsapmied to analysis filter bank and
decomposed to their frequency components filtebopd (z) andH(z), low-pass and
high-pass filters, respectively. The outputs offthers represent the same frequency
content with input by coming together, but the antoof samples are doubled. So,
the outputs of filters in analysis filter bank axebjected to downsampling by a factor
2.

The signals are upsampled by a factor 2 agamgnto analysis filter bank and
passed through the synthesis filtdtgz) and Ho(z) in reconstruction process.

Summing of outputs of these synthesis filters Wdlte reconstructed signgfk] as

given in Figure 2.3.
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Analysis bank Synthesis bank

Figure 2.3 Two ohal filter bank (Merry, 2005)

2.2.2.2 Perfect reconstruction

The filter banks should be biorthogonal todgtperfect reconstruction property
(Merry, 2005). To ensure satisfying of this propggbasing and distortion must be
prevented by some design criteria (Strang & Nguy®&9,7). In the two channel filter
bank given in Figure 2.3, the signal is decompasém two frequency bands using

low-passL(z) and high-pasHll (2) filters. There will not be loss of information He

filters have sharp-edge structure, however, ibispossible to implement these types
of filters in practice since always a transitiom@axists. This case causes amplitude
and phase distortion in each of the channels (Sdbérss 2001). For a two channel
filter bank, aliasing can be avoided by designihg filters of the synthesis filter
bank as (Strang & other., 1997)

L'(2)=H(-2

H'(2)=-L(-2 (2.15)

A product filterP(2) = L(2 L 2 is defined to prevent distortion. This distortion
can be tackled if (Schneiders, 2001)

R(2-R(-2=22"  (2.16)

In the equation, N is given as the overalbgieh filter banks.
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The perfect reconstruction filter bank can be desiign two steps:

1. A low-pass filterP, satisfying the equation given above is designed.

2.P(2) is factored intoL(z2)L(2 and H'(zZ)and H(z) are calculated using

equations given above.
2.2.2.3 Multiresolution Filter Banks
In previous section, a two channel decompmsihias been presented which uses

low-pass and high-pass filters that give approxiomaand detail coefficients at their

outputs, respectively. A three-level filter baskshown in Figure 2.4.

el k)

E‘|'|-_I:k:l

(1) (k)

=~ Cm(k)
L

Figure 2.4 Tree level filtemia(a) analysis bankb) synthesis bank (Merry, 2005)

As it can be seen, the filter bank can be giexi depending on the desired

resolution. g (k) are the coefficients that represent the lowest dfalhe frequency

content of the frequencies ¥jk] and c, (k) coefficients are vice versa. It should not
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be forgotten that the downsampling operation byoia@ is performed after each

filter.

After each level, highest and lowest frequecasponents are represented by the
outputs of high-pass and low-pass filter outputs.mentioned before, the level of
filtering can be increased or decreased arbitradgpending on the desired

resolution. For a special set of filtek§z) and H(z), this structure is called as DWT

and the filters are named as wavelet filters (Me2605).
2.2.2.4 Vanishing moments

The vanishing moment represents how a funadegays toward infinity (Chun-

Lin, 2010). For example, the functiooost /t* decays at a rate ofl/t*> as t
approaches to infinity. The estimation of rate ofcale is performed by the

integration,

T t*f (t)dt (2.17)

The parameter k in the integration shows the ratieody. It is said that the wavelet

function ¢(t) has p vanishing moments if

j t“w(t)dt =0 for 0O<k< p (2.18)

2.2.2.5 The Fundamental Wavelet Families

Wavelet transforms contain an infinite setseferal wavelet types. Selection of
different wavelets exists different characterissteh as how smooth they are and
whether they provide a good representation in tinfeequency domain (Graps,
1995).
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Daubechies Wavelets are the wavelets whicle men designed for a given
vanishing moment p and minimum size discrete filtethese types of wavelets, if it
is asked to use a wavelet function with p vanismmments, the minimum filter size
will be length of 2p (Chun-Lin, 2010).

Within each family of wavelets (such as theubechies family), wavelet
subclasses are defined by the number of coeffieiantd by the level of iteration.
Number of vanishing moments are also essentialermd of classification of
wavelets within a familyFor example, the wavelets within the Daubechieselav
family are divided into subclasses according to bemof vanishing moments
(Graps, 1995). Some examples of the wavelet faméynbers are shown in Fig. 2.5.
The number of next to the wavelet name represerdgsntimber of vanishing

moments in the figure.
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0 500
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Figure 2.5 Several different families of waveleEsgps, 1995).
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2.3 Wavelet Transform Based Energy Features

In study of Didiot & other. (2010), it has Ibetalked about the energy based
features which are calculated using wavelet transfoAccording to study, the
energy distribution in each frequency band is aywelevant acoustic cue and
energy, calculated from DWT, can be used as a spraslt discrimination feature.
In our study, these energy based parameters hawebakn used in order to make

comparison among different feature extraction masho
2.3.1 Instantaneous Energy

This is a feature which gives the energy distion in each band and given as:

£ = logy, (Niz (W, (r»ZJ (2.19)

jor=l

wherew, (r) is the wavelet coefficient at time position r drefjuency band j and N

is the length of the analysis window

2.3.2 Teager Energy
Teager Energy has been recently applied forcépexognition and given as:

T
E _
fi = Ioglo{

Nj-1 2
TEACRCIERTLD) (2.20)

It is said that the discrete Teager Energy Qper@EO), allows modulation
energy tracking and gives a better representatidheoformant information in the
feature vector compared to MFCC in (Didiot & oth&010). It is also pointed out
that the Teager energy is a noise robust paranmtepéech recognition because the

effect of additive noise is attenuated.
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2.4 Complex Wavelet Transform

2.4.1 Introduction

In previous section, a detail explanation bagn presented about DWT and
important points of DWT based feature extraction lb@sn mentioned. One of the
properties which makes DWT so essential is gettiigrmation which cannot be
provided by Fourier Transform. DWT allows to expreasof signals without losing
information about location in time domain and ibyides an optimal representation
for signals including sudden transitions like jungysl spikes. In this way, DWT is
often used in applications such as image processipgech processing, statistical
signal processing for noise removing, signal madeknd compression. However,
although all these advantages of DWT, it has sonwtsimings which makes
complex wavelet transform superior than DWT. Instheection, the shortcomings of

DWT based analysis and h@WT overcomes these problems will be examined.

2.4.1.1 Oscillations

As previously mentioned, since wavelets arenxdgaass and time-limited
functions, they exhibit oscillatory behaviour ardusingularities. This behaviour
makes difficult to extract singularities and anaywith wavelet based modeling.

Wavelet coefficients take high values in parts aonhg singularities.

2.4.1.2 Shift Variance

One of the disadvantages of DWT is its sensiata small shift of the signal in
time domain. This situation leads to problems in DW&Bed analysis. The designed
algorithm must be capable of coping with high vdllBWT coefficients caused by

shifted singularities.
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2.4.1.3 Aliasing

DWT coefficients are obtained with dowsamplgerations between non-ideal
low pass and high pass filters and this processecaliasing problems. Although the
inverse DWT can eliminate this problem, wavelet acaling coefficients should not
be changed in order to do this elimination andddi@on, artifacts in reconstructed

signal cause loss of balance between forward aretse DWT transforms.
2.5.1.4 Lack of Directionality

This problem emerges particularly in image pesing applications. It makes

difficult to process edges and corners in 2 or @iglimensional signals.

In (Selesnick & other. , 2005), it is saidttRaurier transform can overcome these
problems and it can be given as a solution. It éssfpble to see a smooth
representation has been provided and there areritiye and negative oscillations
in frequency domain when the amplitude of Fourr@nsform is concerned. The
amplitude of FT is not affected from any shiftghe signal as well and also, FT does
not experienced with aliasing and lack of directiity problems. The biggest
difference between FT and DWT can be seen by lockirdecomposition methods
of these two transforms. FT decompose the signétsdomplex valued sinusoids

differently from DWT's real valued wavelets.
e =cog(Qt) + j.si(Qt) (2.21)

Since there is a phase difference of 90° betweos and sin, these two elements
form a Hilbert Transform pair by coming together.eTémalytical signal formed by

this pair provides a one-sided spectrum in frequelmenain.

Complex Wavelet TransfornCWT) has been proposed inspiring by the
Fourier Transform which does not suffer from thégees of problemsCWT is
defined with a complex-valued scaling function andhplex-valued wavelet
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P (O =% ([O+]¥ ) (2.22)

where W (t)and W, (t) are real and imaginary parts of the complex wavélgt) .
If these functions ar@80° out of phase with each other, that is, if theyrfa Hilbert
Transform pair, thenW _(t) becomes analytic signal and it has a one-sidectrsje.
Projecting the signal ont®'y_(2't—n), the complex wavelet coefficients are

obtained as

d.(j,m=d (j,n)+ jd (j,n) (2.23)

Complex Wavelet Transform can be performedwo class. In first one, a
complex waveletW (t) that forms an orthonormal or biorthogonal bastseiarched.
The second method seeks a redundant representatwrit searchesW, (t) and
W.(t) that provide orthonormal and biorthogonal bases/iddally. ResultingCWT

has 2x redundancy in 1-D and has power to overdbmeshortcomings of DWT. In
this thesis, the dual-tree approach for perforndamplex wavelet transform which

is a natural approach to second, redundant typédes preferred.
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Figure 2.7 Sensitivity of DWT an@WT coefficients to shiftings in time domain (Selek & other.
, 2005)

In Figure 2.7, it is possible to see that D\W6Efficients are very sensitive to any
shift in time domain while CWT coefficients are nbbr two impulse signabs(n) =
o(n — 60) andx(n) = d(n — 64), the real coefficients of conventional real discrete
wavelet transform (with Daubechies length-14 fg)esind magnitude of the complex

coefficients of the dual-tree complex wavelet tfans are shown in the figure.
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2.4.2 Dual-Tree Complex Wavelet Transform (DT-CWT)

Dual-Tree Complex Wavelet Transform was firgroduced by Kingsbury in
1998 (Kingsbury, 1998). The dual tree implementaaalytic wavelet transform by
using two real discrete wavelet transform with titerbank trees; the first DWT
gives the real and the second one gives the thgimawy part of theCWT. Analysis
and synthesis filter banks can be illustrated abénFigure 2.8 wheray(n) andh;(n)
denote the lowpass/ high-pass filter pair for tipger filterbank which implements
WT for real part. In the same wags(n) andgi(n) denote the low-pass / high-pass
filter pair for the lower filterbank for imaginarpart. In this approach, the key
challenge is joint design of two filterbanks to getmplex wavelet and scaling

function as close as possible to analytic (Seléskiother. , 2005
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Figure 2. 8 Analysis filter bank for the dti@e CWT (Selesnick & other. , 2005)

The filters used for real and imaginary partghe transform must satisfy the

perfect reconstruction condition given as

> h(Mh(n+2K=3(K
h(n)=(-1)"h(M-n)

(2.24)
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Two low pass filters of dual trég(n) andgo(n) satisfying a very simple property
makes corresponding wavelets to form an approxidteert Transform pair: One

of them must be approximately a half- sample siithe other (Selesnick, 2001)
go(M = h(n-0.5)=y, ()=H{y, (t} (2.25)

Sinceh,(n) and g,(n) are defined only on integers, it will be usefutéavrite the

half-sample delay condition in terms of magnitudd @hase functions separately in

frequency domain to make the statement rigorous:

G, (€] =| Ho(€")

_ . (2.26)
0G,(e") =0 H,(e" -0.5w)

There are two popular methods for design of filferdDT-CWT (Selesnick & other.,
2005):

2.4.2.1 Q-Shift Solution

According to g-Shift solutiorgy(n) must be selected as
9o(M=h(N-1-n (2.27)

whereN is the length of filtehg(n) and is even. In this case the magnitude condition

in 2.25is satisfied but not the phase condition.

G, (e") = H,(e"

Gy )\ | Hq( )\ 2.28)
O0G,(e")# 0 H,(e"-0.5wW

The quarter-shift (g-shift) solution has atenesting property that causes to take

its name: When you ask thgé(n) andhg(n) be related agy,(n) = h,(N-1-n) and



33

also that they approximately satisfyG,(e') =0 H,(€" -0.5w), then it turns out

that the frequency responsehg{n) has approximately linear phase. This is verified

by writing g,(n) = h,(N-1- n) in terms of Fourier transforms

G, (") = Hy(e") el (2.29)

where the * represents complex conjugation. Tingglies that the phases satisfy

0G,(€")=-0H,(")-( N-1) w (2.30)

If the two filters satisfy the phase condition appmately, it can be written that
OH,(eM)-0.5w=-0H, (")~ (N-1w (2.31)
And we have the equation,
OH,(e") = -0.5(N - 1)w+ 0.25n (2.32)

As it can be seerh,(n) is an approximately linear-phase filter. This metret
h,(n) is approximately symmetric around the pat 0.5 (N — 1) - 0.25. This is

one quarter away from the natural point of symmatrg solutions of this kind were

introduced as g-shift dual-tree filters for thiasen (Selesnick & other., 2005).
2.4.2.2 Common Factor Solution
Another method for filter design stage hamedammon Factor Solution (CFS)
can be used to design both orthonormal and bioahaigsolutions for the Dual Tree

CWT (Selesnick, 2001).

In this approach, the filterk, and g, are set as,
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h(n) = f(* d'n (2.33)
go(n) = f(N* d L= (2.34)

whered(n) is supported on 8n< L and * represents the discrete time convolution.

In terms of Z-transform, we have
Ho(2)=F(2 X 2 (2.35)
G,(2=F(2z" 01/ 3 (2.36)

In this kind of solution, the magnitude parbhalf - sample delay condition is
satisfied; however, the phase part is not exaetig®ed as in g-shift solution
(Selesnick & other., 2005).

Go(e™)] = Ho(e)]  (2:37)
0G,(e") # 0 H,(")-0.5% (2.38)

So, we must design the filters so that thesplandition is approximately

satisfied. Using the equations,
Ho(2) = F(2 O 2 (2.39)

G,(29=F(2z" 01/ 3 (2.40)

we Ccan say,

Go(29=H(2 A 2 (2.41)

where
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z'D(1/ 2)

A2="5

(2.42)

A(2)is an all-pass transfer function; the magnitude\ff) is ‘A(e"w)‘ =1. Then,

from the equation

Go(29)=H(2 A 2 (2.43)

we have
Go(")| =] Hy(€") (2.44)
and
0G,(€")=0H,(e")+0 A &) (2.45)

As it can be seen easily, for satisfactiopludise property, théd(z) must be

chosen so that
OA(e™) = -0,5w (2.46)

With this result, it can be said th#&{z should be a fractional delay all-pass

system (Selesnick, 2001).

D(z) can be defined by adapting Thiran's formula forxmelly flat delay

allpole filter (Thiran, 1971) to maximally flat e all pass filter.

D(2) :1+ZL: d(n z" (2.47)

with



36

d(n) = (-1 (5)% (2.48)

where (x),, represents the rising factorial

(X),, = (Q(X+D)(x+ 2)....(x+ n+ 1) (2.49)

With this D(z), we have the approximation
A(2= zZ" aroundz=1 (2.50)
or equivalently,
AW = €™ aroundw=0 (2.51)

The coefficients of d(n) can be computed easily using the ratio (Selesnick,

2001)

d(n+1) _ () (1-L)py (T+1), _(L-n)(L-n-7)
dm  (5) @=L, G+D,, (nDn+lrr)

(2.52)

Using this ratio, the filted(n) can be generated as follows:

d(0)=1
(L-n)(L-n-7) ,0sn<L-1  (2.53)

d(n+1)=d(n (n+D)(n+157)

The second step, finding(z) so thath,(n) and g,(n) satisfy the PR conditions,

requires only a solution to a linear systems ofa¢igns and a spectral factorization.
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To obtain wavelet bases with K vanishing motsewe let

F(2) = 3@+ Z')" (2.54)

So,
Ho(2) = A1+ 2')" O 2 (2.55)
Gy(9= Q3+ 2) z M/ ¥ (2.56)

Q(2) of minimal degree is obtained using a spectraloféation approach. The

procedure consists of two steps (Selesnick, 2001).
1) r(n) is found with minimal length such that
a)r(n)=r(-n)
b) R(2(z+2+ Z")“ O 3 M/ }is halfband.
2) Q(2) is set to be a spectral factor B 2)
R(2=Q 2@/ 2 (2.57)

The first step can be carried out by solvinty@ system of linear equations. By

defining

S(:=(z2+ ) Dy O/ ) (2.58)

the half band condition can be written as

om=[12](s* (N =3 42n B (R (2:59)
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The second step assumiz) permits spectral factorization.

With Q(2) obtained in this way, the filterdH,(z) and G,(2) satisfy the PR

conditions and have desired half-sample delay.

Using this design procedure, the filtelg(n) and g,(n)of (minimal length)
2(L+K)are defined. K and L are the number of zeroszat-1 and degree of

fractional delay, respectively. (Selesnick, 2001)

As it can be seen, the design procedure allwsan arbitrary number of
vanishing wavelet moments to be specified. In Fedu®, filter coefficients obtained
by common factor solution is shown . It can be deem the figure that the complex
wavelet defined by real and imaginer componentsdmapproximately one-sided
spectrum as referring to it is an approximatelylyical signal.
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Figure 2. 9 Aproximate Hilbert TransformiRa orthonormal wavelet bases with N = 20,
K =5, L =5 (Selesnick, 2001).



CHAPTER THREE
ARTIFICIAL NEURAL NETWORKS AND PRINCIPAL COMPONENT
ANALYSIS

3.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is a toolhtat aims to solve problems by
imitating the mental calculations which are spedii human brains. A human brain
contains small computing units named as “neurohat tan perform very simple
calculations. Neurons have the ability of buildmggworks that can operate in paralel
to solve more difficult problems (Roy, 2000). Thesetworks allow to paralel
implementations for nonlinear static or dynamicteyss. Also they have a very
important feature such that their adaptive nataptaced programming with learning
by example to solve complex problems. This featmakes these networks very
attractive in application domains where one hdle ldr incomplete understanding of
the problem to be solved but where training dataesdily available. The most
widely used learning algorithm in ANNSs is the Bagipagation Algorithm (Jha,
2003). There are various types of ANNs which use thlgorithm such as
Multilayered Perceptron, Radial Basis Function Kotionen Networks.

ANNs have been used for a wide variety of eaibns where statistical methods
such as discriminant analysis, logistic regresdiRayes analysis, multiple regression
and ARIMA time-series model are traiditionally emoyed (Jha, 2003). It has been
mentioned by Haykin (1999) that there are sevemlelits of ANNs including
nonlinearity, input-output mapping, adaptivity, @ental response, fault tolerance
and so on. In this regard, ANNs are consideredveepgal tool for data analysis and

classification.

39
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3.1.1 Architecture of an artificial neuron

The most simple procedure performed by a meagem be expressed in the form
of yi=f(z)) in general. Herey,, z andf represent the output df heuron, input of the
i neuron and a non-linear function, respectivelye Tonlinear functiorf, also
called a node function, takes different forms iffedent models of the neuron; a
typical choice for the node function is a step tiorc or a sigmoid function (Roy,
2000). The neurons get their input signals fromeotheurons or from external
sources such as various organs of the body likeyks, the ears and the nose. The

output signal from a neuron may be sent to otharores.

Zj = LXjwij+9;

ith neuron

Figure 3.1 Architecture of anfaial neuron (Roy, 2000)

In Figure 3.1, an artificial neuron structusegiven with its inputs, weights and
output. It is possible to see in the figure thatvhan artifical neuron defines its
output.

3.1.2 Multilayered Artificial Neural Networks

The neurons can form large scale ANN architest by coming together and
connecting among themselves. The basic architectohedes three types of neuron
layers: input, hidden, and output layers. In feedvird networks, the signal flow is

from input to output units, strictly in a feed-faavd direction (Abraham, 2005). In
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Figure 3.2, a feed-forward multilayered networksiown with three basic layers
such as input, hidden and output. The weights emesented as connections

between each layer in the figure.

¢ Hidden layer

Figure 3.2 Multilayered Aitial Neural Network (Abraham, 2005)

3.1.3 Learning Algorithms for Neural Networks

Before classification process, an ANN mustcbefigured in order to produce
desired outputs for a given set of inputs. Theeesamveral methods to strength the
connections of the weights such as setting the tegpticitly or training the neural
network by feeding it with training patterns andacing its weights according to
some learning rule. The learning methods in nenetvorks can be classified as
three types. These are given as supervised learnmgupervised learning, and
reinforcement learning. In supervised learning,irgsut vector is presented at the
inputs together with a set of desired responsesfamneach node, at the output layer.
A forward pass is performed, and the errors betwkerdesired and actual response
for each node in the output layer are found. Thigtechanges are determined using
these errors according to learning rule in use. démred outputs of distinct output
nodes are provided by an external teacher in sigsetviearning method. The
backpropagation algorithm, the delta rule, and pleeceptron rule are the best-
known examples of this technique (Abraham, 2005).
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A perceptron is a single layer neural netwankl its weights and biases could be
trained to produce a correct target vector whersgreed with the corresponding
input vector. The training technique used is nam&dheperceptron learning rule
Perceptrons are especially suited for simple problan pattern classification.
Training procedure of a perceptron contains fosersal points. According to this
learning rule, initially random weights are used donnections and training samples
have been applied to perceptron. The output ofnetevork is obtained with these
existing weights and if the output of the netwoesd not match with the desired

output, the weights are updated according to riviergas
w, (t) = w (t=1)+Avy (1) (3.1)
where
Aw; (1) =n7(d — %) % 3.2)

n is the learning rategl, is desired outputy, is output of the perceptron and is

the input of the network in the equation.

Perceptron learning rule is similar to Hebdearning. The only difference is that
when the network responds correctly, no connectieights are modified. On the
other hand, Hebbian learning continually strengshés weights without bound
(Abraham, 2005).

In backpropagation algorithm, the weights apmated by taking the partial

derivative of the error of the network with respecieach weight. The learning rule

for backpropagation algorithm is given as

Aw; (t) =77

o (O +alw (t-1) (3.3)

whereyn anda are the learning rate and momentum respectively.
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The momentum term determines the effect of wasght changes on the current
direction of movement in the weight space. A gotice of bothy and a are

required for the training success and the speddeafieural network learning.

The simple perceptron is usable only for Imeaseparable or linearly
independent problems. However, backpropagatiomilegrwith sufficient hidden
layers can approximate any nonlinear function toiteary accuracy. This makes
backpropagation learning neural network a good icatel for signal processing and

modeling.

Backpropagation (BP) may stuck at a local mum mainly because of the
random initialized weights. For some initial weigggttings, BP may not be able to
reach a global minimum of weight space, while ftineo initializations the same
network is able to reach an optimal minimum. A leegognized bane of analysis of
the error surface and the performance of trainilgpridhms is the presence of
multiple stationary points, including multiple mmna. Empirical experience with
training algorithms show that different initialimat of weights yield different
resulting networks. Hence, multiple minima not oelist, but there may be huge
numbers of them. In practice, there are four tygfesptimization algorithms that are
used to optimize the weights (Abraham, 2005). Tin& three methods, gradient
descent, conjugate gradients, and quasi-Newtomusenization of a quadratic error
function to perform optimization. The fourth methofiLevenberg and Marquardt
uses minimization of an error function that is lshe®m squared error criterion. A
common feature for these training algorithms isegias the requirement of efficient

calculation of gradients.
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3.2 Principal Component Analysis

Principal component analysis (PCA) has beefopeed in order to reduce the
dimension of feature vectors and to provide mormmact representation of the
speech and music samples. PCA is a way of idemgifpatterns in data and
expressing the data in such a way as to highligéit tsimilarities and differences.
Since patterns in data can be hard to find in adskigh dimension, PCA is a

powerful tool for analysing data. (Lindsay & Smif#f02)

Subract the mean

1

Calculate the covariance matrix

Il

Calculate the eigenvectors atd
eigenvalues of the covariance
matrix

Il

Choosing components and
forming the reduced feature
wector

Figure 3.3 PCA process

PCA with variance maximization contains fossential steps as given in Figure
3.3. For PCA to work properly, you have to subtthet mean from each of the data
sets. This produces a data set whose mean is Adter calculation of covariance

matrix, eigenvectors and eigenvalues of this matrexobtained. Eigenvectors show
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the direction of the axes with maximum variance amgenvalues represent the
significance of the corresponding axis.

Variance maximization method uses a linearldoation (Hyvarinen, Karhunen,
& Oja, 2001)

% =i_wm>& = x (3.4)

of the elements, ..., X, of the vector x to perform PCAw,, are scalar coefficients or
weights and they are elements of an n-dimensioealov w,, and w; denotes the

transpose ofy, .

In the equation, the factoy, is named as first principal component of x where
variance ofy, is maximally large. To perform PCA process, a \neigector w,

maximizing the PCA criterion is searched.
IAw)=E v} = B wif = wE ¥ w= we ) (3.5)
so thajw =1.

The matrixC, is the covariance matrix of x with size atmand given for the

zero-mean vector x by the correlation matrix
C, = E[ xX} (3.6)

Solution to the PCA problem is given in terofsthe unit-length eigenvectors

g,....60f the the matriC, . Eigenvectors are ordered in a way such that the

corresponding eigenvalues,...,d, satisfyd, >2d,>...2 d,.
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The solution maximizin{B.5)is given by

w=9 3.7

Thus the first principal component of x s =€ x

It is possible to generalize the criterialf* in eq. (3.5) to m principal
components with m is any number between 1 and a.nritth (I m< n) principal

component is denoted ag, = W_x where w_is the corresponding unit norm weight
vector. The variance ofy is now maximized under the constraint thay, is

uncorrelated with all the previously found prindipamponents:

E{y,y 0, k< (3.8)

This condition yields:

E{yn vt = B WX Wk = | G w® (3.9)

We already know thaty, = ¢ and for the second principal component, we have
the condition thatCw = dw e=0. It must be searched that maximal variance

E{y} = B W)X} in the subspace orthogonal to the first eigenveatd, .

The solution is given as

W, =€, (3.10)

In general representatiom, is given as
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W, =€ (3.11)

In this way, thek™ principal component is given ag = € x.

As an example, the pca process for a two-dsmo@al vector is given in Figure
3.4. In the figure, the first principal componeatis the combination of variables
that explains the greatest amount of variation. $&eond principal component z
defines the next largest amount of variation anithdependent to the first principal

component.

Figure 3.4 The principal component analysis repregion for a two dimensional feature vector.

(Jolliffe, 2002).



CHAPTER FOUR
RESULTS

In this chapter of the thesis, the resultsSMD using time/frequency domain

based and wavelet based features will be given.

4.1 Dataset and Preprocessing

The two different data sets have been utilirethe thesis and the features have
been extracted separately for these two differatdagskts. In the first dataset, TIMIT
database has been used for speech and severalcGidings with various musical
genres have been used for music database. To a@eteamd dataset, radio broadcasts
were recorded containing music and speech. The Isanftequency was set as
44100 Hz in every stage of thesis. However, sifee data taken from TIMIT
database is sampled with 16000 Hz, they have betarpolated in the pre-
processing stage in order to set sampling frequémed100 Hz. The segmentation
has been performed for a frame of 4196 samples @ith samples overlapping
which corresponds to a frame length of 95 ms sus of shorter window lengths
may limit the discriminative characteristics of wow.

Both datasets used in the thesis contain sswith length of 0.5 sec. While the
first dataset includes 4290 music and 4620 speeohples, the second dataset
contains 2190 music and 2624 speech samples grdeelved from radio broadcasts
in contrary to first dataset. In rest of the comtdixst and second data sets will be
named as Datasetl and Dataset2, respectively.hEgpdrformance evaluation, the
data sets have been divided into two groups aminigaiand test sets. A detailed
representation for datasetl and dataset? is givéalble 4.1.

48
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Table 4.1 Content of datasets used in the thesis.

Overall Database Train Set Test Set

Speech | Music | Speech| Music| Speech Music
Datasetl 4620 4290 3080 2860 1540 1430
Dataset2 2624 2190 1749 1460 875 730

Before classification stage, the features #rat highly correlated with the other
features have been eliminated using principal carappanalysis (PCA) to reduce
length of feature vectors. The principal componéhé contribute less than 0.05%
to the total variation in the data set have beaniehted. Table 4.2 shows the length
of the feature vectors before and after PCA. Acowyrdo figure, it can be said that

there is a reduction rate about 50% in terms afuie vector lengths after PCA
process.

Table 4.2 Lengths of the feature vectors beéme after PCA

Dimension TIF DWT
based based
feature DWT based feature vector energy CWT based features
vector feature
vector
CFS Q_Shift
= N o) L© Qlwo | &€ | v | © T | ©
8|8 |8 |8|8 |85 |55 5
o) ~ To) ~
Original 21 38| 38| 38 38 38 10 10 2b 35 25 35
PCA 20 19| 19| 22 21 21 5 3] 11 15 11 14

The used methods show different complexityabvedrs in feature space. As an

example, the PCA analyses for methods with highedtlowest accuracy are given
in the Figure 4.1 and Figure 4.2.
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Figure 4.1 Principahgmonent analysis of DWT (Daubechies8) based feature

vector extracted fpesch and music samples.
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Figure 4.2 Principahgmonent analysis of DWT based energy feature vector

extracted for speect anusic samples.
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As it can be seen from the figures, Db8 baB¥IT features have higher
discrimination capability than DWT based energytdess. In Figure 4.1, the first
and second principal components provide a goodegtion and representation,
however, the samples are interwined in the feasypace for DWT based energy

features as given in Figure 4.2.

In classification stage of thesis, the feedBnd artificial neural networks with the
scaled conjugate gradient (SCG) backpropagatioorighgn in MATLAB’s Neural
Networks Toolbox which belongs to class of the ngaje gradient algorithms have
been used. SCG algorithm uses step size scalitgath®f line-search per learning
iteration and this makes it faster than other sédamader algorithms (Charalambous,
1992). This algorithm performs well for networksthvia large nhumber of weights
where it is as fast as the Levenberg-Marquardt eexilient backpropagation
algorithms, its performance does not degrade guidkiso, the conjugate gradient
algorithms have relatively modest memory requireiseiithe number of hidden
neurons has been preferred as 40 and the target sneare error has been defined

as 0.001, heuristically.

All codes and programs in the thesis weretaniin MATLAB. The codes for
time/frequency based features, DWT based statistind energy features were
written by the author of thesis. For DWT based wsia] Wavelet Toolbox of
MATLAB has been used. For CWT based analysis, tdes are taken from the
study of I. Selesnick (Selesnick, I.W., 2001) formanon factor solution based filter
design and the programs written by two studentsusdpervision of I.Selesnick
(Cai, S. & Li, K, 2002) have been used for Q-Shifer based analysis.

In the following section, the classificatiossults will be given for four types of
feature vectors. The performance has been givéimeasccuracy of the classification

which can be formulated as
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Accuracy= TP+ TN 4.1)
TP+ FP+ TN+ FN

whereTP, TN, FP and FN represent number of speech samples labeled ashspee
number of music samples labeled as music, numbenusic samples labeled as

speech and number of speech samples labeled &s negpectively.

4.2 Classification Performance

4.2.1 Performance for Time/ Frequency Based Features

The feature vector of this method includesamand variances of the parameters
obtained with time/frequency domain features and| Neequency Cepstral
Coefficients. For this method, the length of thatiee vector is 21. The parameters
such as mean of spectral centroid, variance oftsglexentroid, mean of spectral roll
off, variance of spectral roll off, mean of spettilax, variance of spectral flux,
mean of zero crossings, variance of zero crossilays, energy ratio and Mel
frequency cepstral coefficients are representethenTable 1 as Cm, Cvar, RLfm,
RLfvar, FLUXm, FLUXvar, zerocrosm, zerocrosv, lomeegy and melcepst,

respectively.

Table 4.3 The content of feature vector for timegffrency based features

c = = 7 S |3
— = o o
Features | E | 8 | £ g X < S 3} g |3

O o = ' = o = > )

LL L Q 8 ) £

Length of
feature
vector 1 1 1 1 1 1 1 1 1 12
(21)
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Table 4.4 Classification results for for time/fremey based features.

Performance (%) Datasetl Dataset2
TFPa 99.72 94.27

101

100
99 -

98 -

97 -
96 -

95 -+

94 -
93 -

92 -
91 -+

Databasel Database2

Figure 4.3 Performance of time/frequebaged features for datasetl and dataset2

4.2.2 Performance for DWT Based Features

In the second method, feature extraction lees performed for several wavelets
such as Haar (dbl), db2, db8, dbl5 and db20. Thker fiength is 2N for a
Daubechies wavelet which has N vanishing momerf2devel decomposition has
been considered in feature set which covers thiyaath frequency range in detail,
therefore 1 approximation and 12 detail signalsolteained for each frame.

In Figure 4.4 and Figure 4.5, 12-level discrete elatvdecomposition using
db8 wavelet for music and speech signals are piedeThe speech and music
signals show different characteristics particulddy different frequency bands as it

can be seen from the figures.
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Figure 4.4 The 12-band decomposition with dia&elet for a music signal used in the thesis
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The length of feature vector which is comstied from the statistical measures
including mean, standard deviation and ratios efdacomposed signals is 38 as it is
shown in Table 4.5.

Table 4.5 The length of feature vector for DWT lubfsmatures is 38.

Mean of detail and | Std. of detail and | Ratios of detail and
Features | approx. coefs (12- | approx. coefs (12-| approx. coefs. (12-
band) band) band)
Length of
feature 13 13 12
vector (38)
The classification results are given in Table 4.6.
Table 4.6Classification results for DWT based features.
Performance (%) Datasetl Dataset?2
Haar 99.9 96.51
db2 99.93 97.69
db8 99.97 99.19
db15 99.83 98.63
db20 99.9 98.69
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Figure 4.6 Accuracy results of DWT bafestures for datasetl and dataset2 with different

wavelets

Table 4.6 shows that the DWT has the abilitydiscrimination of speech and
music signals with high accuracy. As in the firstthbd mentioned in section 4.2.1,
the performance of the Database 1 is also highrehi® method since the signals are
more separable. The accuracy changes slightly dépgeon the used wavelet. It can
be said that db8 is the most successful wavelé&trims of classification of speech

and music with the accuracy rates of 99.97% foaBettl and 99.19% for Dataset2.

When the DWT based feature extraction is peréal for shorter samples such as
with length of lower than 0.5 sec., it has beeneoled that the classification
performance tends to decrease, since the wavelet®trepresent the segments that
have such a short length.

In order to see the contribution of ratio paeters to the discrimination
performance, a classification has been also peddrusing the feature vectors with
length of 26 where the feature set does not contios of frequency sub-band
coefficients. The PCA process is also applied &iuees which do not contain ratio
parameters and results are given in Table 4.7héteind of this experiment, it has

been observed that ratio parameters provide aibation to overall performance



about 1-1.5% for DWT based parameters.
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Table 4.7 The length of feature vector of DWT bapatameters with and without ratio parameters

after PCA process.

Length of feature DWT based feature vector
vector

Haar Db2 Db8 Db15 Db20

o o o o o

2 | B S |8 |2 |8 |8 |® S | B

o = s = g = g = g o=

= 3 < 3 | < 3 | < | 3 < 3

= c = c = c = c = c

= |2 |3 g |35 |2 5|8 |5 g
Original 38 | 26 38 | 26| 38| 26| 38 26 3§ 26
After PCA 19 | 13 19 | 13| 22| 16| 21 16 21 16

Table 4.8 Comparison of the classification results between TDWased feature sets with ratio

parameters and without ratio parameters.

Wavelets Performance with ratio Performance without
parameters ratio parameters
Haar 96.51 94.58
db2 97.69 95.95
db8 99.19 97.69
db15 98.63 97.88
db20 98.69 98.32

In Table 4.8, it can be seen that db8 showsb#st result if the feature vector

contains ratio parameters. In absence of ratio npeters, db20 shows higher

performance among other wavelet families. The nunabevanishing moments is

related with the smoothness of the wavelet althotigére is not a proved
Since Haar and db2 mother wavekie a few vanishing

correspondence.

moments, they have sharp transitions. Thereforey ttannot represent smooth

signals such as music samples. For db8 and waweilsisnore vanishing moments,
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an acceptable accuracy has been obtained. Db8eleaschosen since using a higher
order will result in a more complex computation dae¢he increasing number of the

filter coefficients.

4.2.3 Performance for DWT based energy features

In this method, only detail coefficients haween used at the feature extraction
stage. The decomposition has been performed favéld of subbands and two
energy parameters such as instantaneous and eagey have been obtained for
each band. In this way, length of the feature aefdr each sample is 10 according

to this method as shown in Table 4.9.

Table 4.9 The length of feature vector for DWaSed energy features is 10.

Features Instantaneous Energy (5-band) Teager Engy (5-band)

Length of feature
vector (10)

According to classification results given irable 4.10, this method has not

provided high performances comparing to other netho

Table 4.1Classification results for DWT based energy feature

Performance (%) Datasetl Dataset2
Db8 89.02 91.21

Coifl 82.93 77.45
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Figure 4.7 Accuracy results for DWT basedrgndeatures datasetl and dataset? with different

wavelets.

4.2 4 Performance for CWT Based Features

The complex wavelet transfor@WT) has been accomplished by using two filter
design methods introduced in Chapter 3. The decsitipo has been made for 5 and
7 levels in order to avoid increasing length of tbature vector. The feature vectors
have been constructed from mean, variance and mesfiathe magnitudes of
complex wavelet coefficients at each band instdagasmg all coefficients to avoid
increasing in length of feature vector. In this wtye length of feature vectors are
defined for each sample is given as 25 or 35 ftavet and 7-level decomposition,

respectively. The content of feature vector is giveTable 4.11.

Table 4.11 The length of feature vector @NT based features is 25 for 5-level decompositiot a
35 for 7-level decomposition.

Standard
3.moment| 4.moment| Mean o
deviation .
Features | for each | for each | of each Median of each band
of each
band band band
band

Length
(25 or 35) 5o0r7 5o0r7 50r7 5o0r7 50r7
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Table 4.12 Classification results f@WT based features with different filter design noeth and

different numbers of subbands.

Performance (%) Datasetl Dataset2
CFS (5 Levels) 99.12 98.13
Q_Shift (5 Levels) 99.93 97.95
CFS (7 Levels) 99.87 97.82
Q_Shift (7 Levels) 99.93 97.57

In Table 4.12, it can be seen that Datasatillbe easily discriminated with the

proposed features with slightly more accurate teswlith Q-shift parameters.

According to these results, an increment in the memof frequency bands does not

contribute to the classification. CFS solution la€B8NVT coefficients have higher

accuracy rate than Q-Shift solution for Dataset2?isl possible to say that any

remarkable enhancement in classification results hat been observed since

complexity in feature spadecrease when high-level decomposition is perfarme

100.5

100

B Catabasel

99.5

99

98.5

98

97.5 A

97 ~

96.5 -

96 . .

Catabase2

CFS 5 Bands

Q-Shift 5 Bands

CFS7 Bands

C-5Shift 7 Bands

Figure 4.8 Accuracy results of CWT based featuoesiatasetl and dataset2

Classification performance of samples shotib@n 0.5 sec. stated in previous

section is also valid for CWT based features. & haen observed for CWT based

parameterization that it is not very effective @nnis of classification of signals with
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such a short length as in DWT.

It was mentioned that ratio parameters of @aja subbands provided a
contribution about 1-1.5% to classification perfame for DWT based parameters.
As in other methodshe PCA process has been appliedCWT based features
which do not contain ratio parameters before di@ssion stage and dimensions of
new feature vectors are given in Table 4.13d$ been also investigated fowWT

based parameters if there is an increase in tefrakassification performance. The

results are given in Table 4.14

Table 4.13 The length of feature vector@NT based parameters with and without ratio pararsete

after PCA process

Length of feature vector CWT based feature vector
Q_Shift CFS
5-Level 7-Level 5-Level 7-Level
o o o o
o b= Q b= ! b= o b=
8 |2 |8 |= |8 |2 |8 |2
< 3 < 3 < 3 < 3
= c = c = c = c
= |2 |3 |2 |3 |g |3 |8
Original 29 25 | 41 | 35 29| 25| 41| 35
PCA 13 11 18 14 13 11 18 15

Table 4.14Comparison of classification performances betwE8T based parameters with ratio
parameters and without ratio parameters.

Filter Design Method & Performance with Performance without
Number of subbands ratio parameters (%) ratio parameters (%)

CFS & 5-Level 97.88 98.13

CFS & 7-Level 98.50 97.82

Q_SHIFT & 5-Level 97.76 97.95

Q_SHIFT & 7-Level 98.50 97.95
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According to results in Table 4.14, additiohratio parameters t€WT based
feature vector does not make a remarkable contoibtid classification performance.
However, it should be noted that in this methotbad and 7-band decompositions
have been made differently from DWT based featuteaetion method. Hence, it
can be thought as the effect of ratio paramete@WA is less than in DWT because

of the difference between decomposition levelsvaf methods.

4.2.5 General Performance

General performance is given as in the Talle.4

Table 4.15 General classification results

Performance (%) Datasetl Dataset?2
Haar 99.9 96.51
db2 99.93 97.69
db8 99.97 99.19
db15 99.83 98.63
db20 99.9 98.69
TFPa 99.72 94.27
CFS (5 Levels) 99.12 98.13
Q_Shift (5 Levels) 99.93 97.95
CFS (7 Levels) 99.87 97.82
Q_Shift (7 Levels) 99.93 97.57
DWT_Energy (db8) 89.02 91.21
DWT_Energy (coifl) 82.93 77.45

When Table 4.15 is taken into consideratibrcan be seen that wavelet based
parameters have higher classification results thedhtional time / frequency based
methods. In general, all methods are successfutlassification of samples in
Datasetl, which indicates that the TIMIT speechadahd CD recordings are
separable. However, it is not possible to say s#mmg for Dataset2 since the

samples in Database 2 reflects a more realistie whgre samples are recorded from
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radio broadcast. The best performance has beexnebtwith db8 wavelet. The
complex wavelet based features performs bettertiha/ frequency based methods
and wavelets with fewer vanishing moments. Howetrery are not as successful as
the db8. The similarity of the mother wavelet witte analyzed waveforms is an
important criterion for the wavelet analysis whichay be the cause of this

performance difference. Therefore, the accuracyditberent databases may differ
drastically.
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Figure 4.9 General Acmy

When these feature extraction methods areideresl in terms of their calculation
times, DWT based energy features emerge as thestadgorithm in terms of feature
extraction since it contains only ten parametereature vector. On the other hand,
DWT based energy features have the lowest claagdit performance among the
considered methods according to results. In Tallé,4he computation times for

feature extraction stage for all methods usedértlilesis are given.
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Table 4.16. Average computation times for feaguxteaction methods used in the thesis

Speech (msn.) Music (msn.)

Timel/freq. based features 0.2768 0.2745
Haar 0.0357 0.0382
Daubechies?2 0.0401 0.04

Daubechies8 0.0485 0.0462
Daubechies15 0.1035 0.1034
Daubechies20 0.155 0.1547
Daubechies8 based energy features 0.0216 0.0217
Coifletl based energy features 0.0176 0.0176
Q-shift based CWT features 0.0298 0.0296
CFS based CWT features 0.0301 0.03

According to average computation times in €abl16, a sorting among the
feature extraction methods can be made as:
>t

>t >t

tTF DWT CWT DWTE

wheret,., ty,r, tewr @nd ty,e Show the computation time for the methods based

on time/frequency, DWT, CWT and DWT based energyuees.

The calculation time for DWT based statistidalature extraction shows
differences according to used wavelet in the amaly&/avelet families including
high number of vanishing moments such as db15 d#d ¢dpend more time for
computation comparing to other wavelet familiescsirthey have longer filter
lengths. It is encountered that the db8 familiedh&s optimum wavelet for DWT
based analysis since it shows highest performamadaissification of speech and

music and it has acceptable calcularion time.

CWT based method is faster than DWT based analysistashows performance
results close to DWT. In this perspecti@VT based features can be used for online
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implementation as well.

Time/frequency based analysis is the slowesthad since it performs many
computations in time and frequency domain and & &dong feature vector with
length of 38. It should be noted that the silenaggof samples could be determined
more quickly than the feature extraction methodsnduonline implementation since
only a threshold value is considered to give denisi the segment is silence or not.

4.3 Graphical User Interface (GUI) Design for Spedt/ Music Discrimination

A graphical user interface has been desigsedal in order to perform speech
music discrimination visually. An online labellimgodule has been also embedded
to the interface and observation of performance réal time classification has

become possible with this tool.

4.3.1 Main Module

Main module can be used to see classificatsnlts obtained by methods used in
the thesis.In Figure 4.8, the GUI designed for nmaodule is shown. Using “Load
File” button, the file to be analyzed is selectad #he “play” button plots and plays
the signal at the same time. Since time/ frequdrased features are also used at
classification stage, it is important to see thaegal structure of spectrogram. For
this aim, there is a button named as “Spectrograsigmal” in the module to plot
time/frequency properties. In the DWT based featupart of module, 12-level
decomposition is performed using selected wavetanfpop-up menu. It is also
possible to see shape of wavelet and wavelet cgaits using “Show Wavelet” and
“Plot Wavelet Coefficients” buttons, respectiveRor CWT based features there is
also a pop-up menu which you can select the filesmign method for analysis. It can
be seen the existing complex wavelet with its @&l imaginer parts using “Plot
Filter Corfficients” button in CWT based featuretraction part of the module. For
time/frequency based feature extraction, therelse a button and the values of
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parameters such as spectral centroid, spectraiffiofipectral flux, number of zero
crossings and low energy ratio of loaded file existhe blanks when this button is
pushed. It is possible to get the classificatiosults of four feature extraction
methods simultaneously using “Classification Resubiutton. If “Online Labelling

Module” button is pushed, the online labelling miedwill appear in a new window.

This module will be introduced in the next section.
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Figure 4.8. Graphical user interface for main medul

4.3.2 Online Labelling Module

This module has been designed to observe lspéemusic classification
performance for online implementations. In theegivmodule in Figure 4.9, a pre-
recorded sample is fetching using “Open” button #raonline labelling process is
started using “Start” button. “Pause” button makepossible to stop the process

temporarily and using “Continue” button the labgliprocess can be continued from
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where it is stopped. The “Stop” button interrugte fprogram and ends the label
assignment process.
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Figure 4.9 Graphical user interface for online Ihbg module

In the module, the red letters under the digreph shows the pre-assigned labels
for data and “S”, “M” and “_” are used to indicatpeech, music and silence parts of
data, respectively. Online classification resutes shown with blue color under pre-
assigned labels as it can be seen from Figure ¥h8se labels are assigned for
segments which have the length of 0.5 sec. In erlabel assigning, features are
extracted using 12- level DWT with db8 wavelet &ach sample since it has given
the most accurate results in experiments and aiqugly trained artificial neural

network is used to determine the labels.
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CHAPTER FIVE
CONCLUSION

5.1 Summary

The discrimination of music and speech havenban important task in
multimedia signal processing with the increasinig @f the multimedia sources in
our life. The music/speech discrimination syste@ns lse used in several applications
as a preproecssing stage such as in the developofethie efficient coding
algorithms for audio decoders, in automatic spaechbgnition when the recordings
include music such as radio broadcasts, in coftased multimedia retrieval and in
automatic channel selector design problem for sadio addition, there are other

emerging applications with a growing interest farsie/speech discriminators.

In this thesis, classification of speech angbim signals has been investigated in
many aspects. The feature extraction has beenrpertbwith four different methods
and artificial neural networks have been used elassification tool. Two different
databases have been used and feature extractidie@asnade individually for these
databases. The first method has a parameter vetich contains time/frequency
based features and mel-cepstrum coefficients weitlyth of 21. Second and third
method use DWT based features. In second methaty ssveral types of mother
wavelets, 12-level decomposition has been perfotmedver the analysis frequency
range in detail. The length of feature vector carcded from the statistical measures
of the coefficients and ratios between the adjasabbands is 38. The third method
contains DWT based energy parameters named as Taagénstantaneous energy
differently from second method. The length of featuector for third method is 10.
The last method is based on Complex Wavelet Trams{€WT) and two different
filter design strategies including Common Factoluon and Q_Shift solution have
been used at feature extraction stag@/T has been performed for 5-level and 7-
level to avoid further increase in the length o fleature vector which results in
feature vectors with length of 25 and 35 for 5 @nolands, respectively. It has been

observed that time / frequency based featuresatreemy effective in discrimination
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of speech / music samples when they are used akbmwever, if they are used
together, the accuracy tends to increase consptuou

The methods except the energy based ones,nstogher performance for
Database 1 than the results for Database 2. Becthessecond database consists of
the recordings from radio broadcasts which reflaatsore realistic case.

The selection of the analysis window lengthichhspecifies the content of the
nonstationary signal and the speed of implememtaisoan important choice for
SMD. The selection of a short window order of natiends as in literature will not
give the necessary information on time varying dietgy content, since the signal
can be assumed as stationary in this interval. l@@nother hand, the usage of long
windows order of seconds which is reported as ssfgk limits the online
application of the algorithms. In this study, itshbeen observed that the 0.5 sec

analysis window length is effective in terms offpemance.

CWT and DWT based features have shown a high suamseparing to time /
frequency based features according to classificatsults. Different accuracy rates
have been encountered for different mother wavetettonging to Daubechies
wavelet family. Daubechies8 demonstrated the highksssification performance
among the others. ThREWT based classification has shown results as 99.88%
Databasel and 98.13% for Database2. When all é&=aare concerned, we see that
Daubechies8 based parameters have superior disation features in terms of

classification of speech and music.

In the thesis, the contribution of the ratiargmeters to the discrimination
performance have also been examined for DWTGWI based features. It has been
observed that ratio parameters provide a contobutibout 1-1.5% to the overall
performance for DWT based parameters. Howevergblts were inconclusive for
CWT.
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Classification performance of DWT based featueetor in method 2 varies
depending on mother wavelet used in feature extrastage. When the number of
vanishing moments is increased, the wavelet becosnesother. These smooth
wavelets produce large coefficients for slowly ajiag signals like music, while it
produces relatively small coefficients for speedaynals. This can be used as a
discriminative property for SMD. The Haar and db@velets have a few vanishing
moment, this may cause to prevent the good repiasam of signal in frequency
domain. In contrary, db15 and db20 have much nilteg €oefficients and vanishing
moments, but this increases the complexity in #egture space and also requires
longer computations. In this way, db8 has emergetth@ most ideal wavelet type of

wavelets used in the thesis.

In classification stage, artificial neural wetks have been used as classification
tool. The number of hidden neurons has been pesfeas 40 and the target mean
square error has been defined as 0.001, heurigti€dnjugate gradient algorithms
have been selected as learning algorithm since hlasg advantages according to
other methods. Also, principal component analys#s Ibeen performed before
classification stage to represent signals moreciefftly and to decrease the

dimension of feature vector.

5.2 Advantages

In this thesis, the speech and music sampits length of 0.5 sec. have been
used at feature extraction and classification stagéthough longer segments are
used in the literature generally, it has been shimathe thesis that 0.5 sec. length is
enough to get high performance in classificatiosméech and music. The proposed
algorithm used in the thesis is computationallycefht (average running time for
proposed method is <50 msn) and this allows the afsenethod for online
implementation. As mentioned before, a fast rugrspeech / music discrimination
system with high accuracy can be designed by usinggested method as a
preprocessing stage for several applications.
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5.3 Disadvantages

The observed SMD performance@NT based features were less than the DWT
based ones. A feature set which reflects the poserful properties o€EWT must
be constructed. The filter structure usedOWT based parameterization has the
possibility of presence of unsuitable charactesticsterms of speech/music
discrimination and as a result, the accuracy i®ofesl as lower than performance of
DWT based features. In this manner, adaptive filesign is required to get more

succesful results.

5.4 Future Studies

Since the SMD is an hot topic for multimedigpkcations, the studies can be
extended in several directions. One of them mighthe research on adaptive filter
design methods to reveal more advantages of CWDW in speech / music
discrimination. Therefore, the parameters fort WDStasks can be determined

automatically according to the problem at hand.

The dataset can be expanded to include mipedch-music samples. In this way,
a multiclass classification can be performed indiabinary classification for future

studies.

The performance of CWT based features carhdurexamined to construct a

more discriminated feature space

An hardware implementation can be done usigdadi signal processors to have a

faster SMD system.
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