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ESTIMATION OF PARAMETER WITH KNOWN COEFFICIENT OF 

VARIATION 

 

ABSTRACT 

 

     Improved estimation is an interesting and also important concept in statistical 

inference. This concept is defined by explaining all the factors that have an effect on the 

improvement to be gained in this thesis. With the help of former studies such as Searls 

(1964), Bibby and Toutenburg (1972), Thompson (1968) and Hirano (1973), improved 

estimation techniques were clarified.  

 

     In this study, using coefficient of variation as prior information improved estimators 

for mean, variance and ratio parameters are obtained. These biased estimators were 

proposed as alternatives to the usual unbiased estimators. In order to make the 

comparisons between usual unbiased estimators and improved estimators mean square 

error (MSE) is used as the criterion function. Relative efficiency values are presented in 

tables to prove that the suggested improved estimators are more efficient than the 

unbiased estimators. 

 

Key words: improved estimation, mean square error, efficiency, coefficient of variation, 

bias. 
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DEĞİŞİM KATSAYISININ BİLİNMESİ DURUMUNDA PARAMETRE 

TAHMİNİ 

 

ÖZ 

 

     İyileştirilmiş tahminleme istatistiksel çıkarsamada ilginç ve bir o kadar da önemli bir 

kavramdır. Bu çalışmada, iyileştirme üzerinde etkisi bulunan tüm faktörlerin 

açıklanmasıyla iyileştirilmiş tahminleme tanıtılmıştır. Searls (1964), Bibby ve 

Toutenburg (1972), Thompson (1968) ve Hirano (1973) gibi daha önce yapılmış 

çalışmaların da yardımıyla iyileştirilmiş tahminleme teknikleri açıklanmıştır.  

 

     Önsel bilgi olarak değişim katsayısının kullanılmasıyla ortalama, varyans ve oran 

parametreleri için iyileştirilmiş tahmin ediciler elde edilmiştir.  Bu yanlı tahmin ediciler, 

söz konusu parametreler için bilinen yansız tahmin edicilere alternatif olarak 

önerilmiştir. Yansız tahmin ediciler ile alternatifi olan iyileştirilmiş tahmin ediciler 

arasında karşılaştırma yapmak için hata kareler ortalaması (MSE) ölçüt alınmıştır. 

Önerilen tahmin edicilerin yansız tahmin edicilerden daha etkin olduğunu gösteren 

göreli etkinlik değerleri tablolar halinde verilmiştir. 

 

Anahtar sözcükler: iyileştirilmiş tahminleme, hata kareler ortalaması, etkinlik, değişim 

katsayısı, yanlılık. 
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CHAPTER ONE 

INTRODUCTION 

 

     To know about future, the time to come has always been interesting and popular 

independently from time. The requirement of prediction or estimation of unknown 

entities could occur in several areas of science and daily life quite frequently in scientific 

and/or unscientific ways.  

 

     Although it is indispensable to predict the unknown, it is not exactly an easy task to 

do.  At this point statistical inference provides a scientific solution, which is not flawless 

but could be improved. An improved method is the main subject of this study. But 

before explaining what should be done to gain an improvement, statistical inference and 

especially one of its parts; estimation should be defined properly. 

 

     Statistical inference covers two main parts; estimation and tests of hypotheses. 

Estimation is to obtain a value or an interval for an unknown parameter , which 

belongs to the parameter space of population, utilizing the observed sample values. 

Casella & Berger (2002) define an estimator briefly as any function ),...,( 1 nXXf  of a 

sample. If it is desired to determine a statistic for the unknown parameter, then this 

statistic is called a point estimator. To determine two statistics as the lower and upper 

bounds for the unknown parameter is called interval estimation.  

 

     Point estimation deals with two matters. The first problem is to obtain a statistic that 

could be used as an estimator and the second problem is the selection of the criterion to 

compare estimators and determine best estimator among all possible choices. This thesis 

focuses on a special case of the point estimation, which is called improved estimation. 

The goal of this estimation will be given in the following chapter including its method. 

Throughout the whole study, mean square error (MSE) is held as the criterion function 



                                                                                                                                                                                          
2 

to make the comparisons. And the relative efficiency values are presented as the proof of 

that the improved estimators are more efficient alternatives to usual unbiased estimators. 

 

     A satisfactory definition of the improved estimation concept is given in the following 

section. This section also includes the method and the goal of gaining improved 

estimators.  

 

     Chapter 3 contains examples for improved estimators for mean, variance and ratio 

parameters for various distributions.  

 

     The last chapter is the conclusion of this thesis. A brief summary of the whole study 

and the obtained results are also given in this chapter.  
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CHAPTER TWO 

IMPROVED ESTIMATION 

 

     As noted in the previous section, a detailed definition for improved estimation will be 

given in this section divided in two parts. The method to obtain an improvement and the 

best improved estimator will be explained in these parts, respectively. 

 

     It is possible to improve distribution parameters, to gain better estimators, by 

utilization of biased estimators. An important point besides the method to obtain new 

estimators is the choice of the criterion in order to compare estimators. Mean square 

error (MSE), which provides to observe the bias and variance simultaneously, will be the 

criterion to decide which estimator is better. 

 

2.1 Improvement Region 

 

     Let 


  be an unbiased estimator of the distribution parameter   with zero bias and 

known variance. Using these known properties another estimator, say 


a , is an 

improvement on 


  if )()(


  MSEaMSE , where )1,0(a . Bibby & Toutenburg 

(1977) defined the ‘improvement region’, an interval, using the inequality 

1)(/)( 


 MSEaMSE .  The improvement region is dependent on the estimator 


 , the 

parameter  , the function adapting 


  to 


a  and lastly the criterion function to make a 

comparison. In this thesis, the estimator 


  is used as an unbiased estimator of the 

parameters mean, variance and ratio which are 


pSX ,, 2  respectively. 

 

     Suppose that 


  is unbiased for  , and thus its variance coincides with its MSE. 

)(


aMSE is calculated using these properties of 


  as follows  
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                             2222 )()]()([)()(  


aaEaEaVaraMSE .                   (1)                                 

If 


a  is an improvement over 


  in terms of MSE criterion, then the proportion of 

)(

)(








aMSE

MSE
 should be greater than 1.  

                                                       1
)1(

)(

)(
2222

2









aa
aMSE

MSE








.                                         (2)

                                                                   

Solving the inequality (2) and substituting  /v , the improvement region is obtained 

based on the coefficient of variation as follows    

2222222 )1(  avav         

                                                 
2222 )1(  avav  

                                                 
22 )1()1)(1(  aaav  

Case I:  01  a                  )1()1( 22 vva   

                                                 
2

2

1

1

v

v
a




 .                                                                      (3) 

Case II: 01  a                  1a .                                                                               (4) 

Inequality (4) is in contradiction with the assumption )1,0(a , this is why it is ignored. 

As a result inequality (3) provides a lower bound for a  based on the coefficient of 

variation v . Now, the improvement region is obtained as follows 

                                                        1
1

1
2

2





a

v

v
.                                                          (5) 

Inequality (5) means that, when the coefficient of variation of the population is known, 

any value between 
2

2

1

1

v

v




 and 1 provides an improvement; a better estimator with 

smaller MSE than the unbiased estimator, the case where a is equal to1.  

      

     Considering the length of the improvement region, a long interval would include 

more possible values to yield smaller MSE values compared with the original estimator. 
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On the other hand, a short interval is more beneficial to find the exact value, which 

provides the minimum MSE. (G. Trenkler, private correspondence, 16 March 2010) 

 

     Next, we will present a table that consists of the lower bound of a  for different 

values of the coefficient of variation v . 

 

Table 2.1 Lower bound of the improvement region for various values of v  

v  0 0.50 1.00 1.50 2.00 2.50 5.00 7.50 10.00 

2

2

1

1

v

v




 

 

1 

 

0.60 

 

0.00 

 

-0.38 

 

-0.60 

 

-0.72 

 

-0.92 

 

-0.96 

 

-0.98 

 

     Lower bound values decrease as the coefficient of variation gets larger. As v  

approaches to zero, which means that either the population variance approaches zero or 

the population mean approaches infinity the improvement region is expected to vanish.  

 

2.2 Best Improved Estimation 

 

     A point in the improvement region provides the minimum mean square error, so that 

it is also possible to find the value of a  which minimizes the mean square error of 


a . 

The estimator with minimum MSE was called by Bibby & Toutenburg (1977) as 

minimum mean square error estimator (MIMSEE). To determine this point, we will 

simply derive the mean square error function of the estimator 


a  and find the value of 

a for which the derivative vanishes. 

                                                       22 )1(22
)(










aa
a

aMSE
.                                               (6)

 

The value of a with the minimum MSE will be denoted by *a  throughout this study. 

Substitution of the coefficient of variation in equation (6) gives 

                                                         
2

*

1

1

v
a


 .                                                            (7)  
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Note that, *a is the midpoint of the improvement region (5).Using the value given in (7) 

)(


aMSE can be calculated. The variance of the improved estimator is 

                                222

22

* )1/()(
)1(

1
)( vVar

v
aVar 






 .                                  (8) 

The squared bias of the estimator 


*a  is given by 

          222222422

2

2* )1()1()
1

1
()]()([ 






 vvvv
v

EaE  .               (9) 

since 


  is unbiased for  , where  /v . The sum of variance and squared bias is 

given by equations (8) and (9) respectively gives the total MSE for the improved 

estimator. 

                            )1/()1(
)1(

)( 222

22

2
* vv

v
aMSE 









 .                                  (10) 

Clearly, MSE of the improved estimator is 
2

*

1

1

v
a


 times smaller than the MSE of 

the original unbiased estimator


 . To prove the improvement gained with the proposed 

estimator, relative efficiency value is calculated as 

                                        11

)(

)( 2

*






v

aMSE

MSE
RE




.                                               (11) 

The suggested estimator dominates the unbiased one with respect to MSE, because 

relative efficiency is greater than1. It should be noted that this improvement is gained 

through a known coefficient of variation as prior information.  

 

     Although it could seem like running away from the main subject of this study, which 

is the utilization of known coefficient of variation in the estimation procedure, a few 

important points should be also mentioned for the case that there is no certain 

information of the coefficient of variation.  If v  is unknown, this improvement method 

becomes inapplicable. But there are some circumstances; under those still an 

improvement can be achieved 
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1. If the original estimator, 


  in this case, has a specific distribution. 

2. If there is a given interval including the coefficient of variation. 

3. If there is prior information on the coefficient of variation. 

Since this study is focused on the situation that the coefficient of variation is known, 

three circumstances are not investigated deeply (Bibby & Toutenburg, 1977, chap. 2.3, 

p. 26). 

 

2.2.1 Best Improved Estimator for Mean 

 

     It is well known that, the sample mean is the unbiased estimator of the population 

mean. Searls (1964) proved that a biased estimator with smaller MSE for the mean can 

be obtained when coefficient of variation is known. Determining the optimum weight for 

the sum of observations by minimizing MSE is the method used in this study. In other 

words, the approach is to find an alternative to n/1  for


n

i

ix
1

a factor with minimum 

MSE for a random sample of n observations nxxx ,...,, 21 . 

                                                          





n

i

ixax
1

'

.                                                         (12) 

The goal is to evaluate a  by minimizing the mean square error of estimator (12), which 

is 
2

'

)( 


xE  where   and 2 are population mean and variance, respectively.  

                                                
2222

'

)1()( 


annaxMSE  .                                  (13) 

Differentiating equation (13) with respect to a  and setting equal to zero will give us the 

minimal value of the MSE function. 

                                              )1(22
)( 22

'







annan
a

xMSE
 .                               (14) 

                                                 
222

2

'
2

22
)(

 nn
a

xMSE







.                                      (15) 
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The value of a  which puts equation (14) to zero is the minimum point of the MSE 

function since the second derivative given by equation (15) is always positive. 

Substitution of the coefficient of variation  /v  gives the optimum weight for the 

sum of observations by 

                                                            
2

* 1

vn
a


 .                                                       (16) 

 

     Note that, the statistic to be improved causes the differences between values of 

factors (7) and (16). Using the optimum weight, the alternative estimator and its MSE 

are obtained as 

                                                         







n

i

ix
vn

x
1

2

'
1

 ,                                                 (17) 

                                                    )/()( 22
'

vnxMSE 


 .                                            (18) 

 

     Clearly, the MSE of the unbiased estimator is equal to its variance since it is the sum 

of variance and squared bias. Although it is obvious that the expression for the MSE in 

(18) is always smaller than the MSE of the unbiased estimator, the relative efficiency is 

calculated to prove that the suggested biased estimator is more efficient than the 

unbiased one. 

                                       nv
n

vn

vn

n
RE /1

)/(

/ 2
2

22

2











.                                 (19) 

 

     Since improved estimator dominates


x , the relative efficiency with respect to MSE is 

greater than 1. Below, we present relative efficiencies for various sample size and 

coefficient of variation values. 
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Table 2.2 Relative efficiencies of improved estimator 

'

x  for various values of n  and v . 

RE Sample Size 

v  5 20 100 250 500 1000 

1 1.20 1.05 1.01 1.00 1.00 1.00 

2 1.80 1.20 1.04 1.02 1.00 1.00 

3 2.80 1.45 1.09 1.04 1.01 1.01 

4 4.20 1.80 1.16 1.06 1.03 1.02 

 

     Note that, relative efficiency increases as sample size decreases and coefficient of 

variation increases.  

 

     Another improved estimator by Thompson (1968) will be defined in Chapter 3. And 

we will analyze the relation between improved estimators proposed by Searls (1964) and 

Thompson (1968).  

 

2.2.2 Best Improved Estimator for Variance 

 

     Using the value of kurtosis as prior information provides a better estimator, a biased 

but more efficient estimator for variance. Although we focus on utilizing coefficient of 

variation as prior information in the estimation procedure, in this section coefficient of 

kurtosis will be used. Additionally, in the next chapter a more efficient estimator for 

variance will be given using the coefficient of variation following another way.   

Using the same approach described in the previous subsection, a more efficient estimator 

for variance is defined as an alternative to the usual unbiased estimator 2s (Singh, Pandey 

& Hirano, 1973). For a random sample size of n , the estimator to be improved is 

defined as 

                                                  





n

i

i XXar
1

22 )( ,                                                   (20) 

where


X is the sample mean. Population mean and variance are   and 2 , respectively. 
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The goal is to obtain the optimum value for a  by minimizing MSE of the proposed 

estimator 2r . Before that, in order to calculate MSE, variance and bias-square of 
2r are 

calculated and given respectively. 

                       ]
)1(

)3(
[

)1(
)()1()(

4

4

22
2222









n

n

n

na
sVarnarVar


 ,                 (21) 

                           
2422222 ]1)1([])1([)(  nanaBiasr  ,                          (22) 

since 22 )( sE . The sum of variance (21) and bias-square (22) gives the MSE of the 

suggested estimator 2r . 

                      
24

4

4

22
2 ]1)1([]

)1(

)3(
[

)1(
)( 







 na

n

n

n

na
rMSE 


 .                   (23) 

The value of a  that makes MSE minimal is given by 

                                            
)1(32 2

2

*




nnn

n
a


 .                                            (24) 

2  is the coefficient of kurtosis and equals to 
4

4




. Finally the improved estimator by 

Singh et al (1973) is 

                                     








n

i

i XX
nnn

n
r

1

2

2

2

2 )(
)1(32 

.                              (25) 

 

     Next, it will be proved that the new estimator is more efficient than the unbiased 

estimator by computing relative efficiency.  Since 2s is unbiased, its variance and MSE 

are equal. 

                                           )
1

3
(/1)( 4

4

2 





n

n
nsMSE .                                         (26) 

Inserting the factor (24) in equation (23) yields the relative efficiency with respect to 

MSE. 

                                            
nnn

nn
rRE 2

2
2

)1(

32
)(







 .                                              (27) 

 

      In the subsequent table, we present relative efficiencies for various values of sample 

size and coefficient of kurtosis.  
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Table 2.3 Relative efficiencies of improved estimator 
2r for various values of n  and 2 . 

RE Sample Size 

2  5 20 100 250 500 1000 

1 1.10 1.01 1.00 1.00 1.00 1.00 

2 1.30 1.06 1.01 1.00 1.00 1.00 

3 1.50 1.11 1.02 1.01 1.00 1.00 

4 1.70 1.16 1.03 1.01 1.01 1.00 

 

      The same situation in connection with the best improved estimator for mean arises 

also for variance. It is observed that the relative efficiency increases as sample size 

decreases and the coefficient of kurtosis increases.  

 

     Let nXXX ...,, ,21  be a random sample of size n from a population having a normal 

distribution with unknown mean   and variance 2 . We get the best improved 

estimator for variance of the normal distribution by substitution of normal distributions 

kurtosis in estimator (25). 

                                                   








n

i XX
n

r
1,

22 )(
1

1
.                                            (28) 

The estimator (28) can also be defined in terms of 2s . 

                                                         22

1

1
s

n

n
r




 .                                                        (29) 

Since variance and expected value of 2s  are )1/(2 4 n  and 2 respectively, 

)( 2rMSE of a normal distribution is 

                                

2

224

2

2

1

1
2

)1(

1
)( 


















 

n

n

n

n
rMSE .                                (30) 

The relative efficiency of 2r with respect to unbiased estimator is obtained as 

                                
1

1

)1/(2

)1/(2

)(

)(
)(

4

4

2

2
2











n

n

n

n

rMSE

sMSE
rRE




.                                  (31) 
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     The improvement is demonstrated by relative efficiency values for various values of 

sample size and tabulated. 

 

Table 2.4 Relative efficiencies of improved estimator 
2r for a normal distribution.    

 Sample Size 

5 20 100 250 500 1000 

RE 1.50 1.11 1.02 1.01 1.00 1.00 

 

     As n increases, relative efficiency of 2r is reduced. Again the suggested estimator is 

more efficient than 2s when the sample sizes are small. 

 

     In Chapter 3, we will describe another way to derive the best improved estimator for 

variance of gamma family distributions such as exponential, laplace, etc.  

 

2.2.3 Best Improved Estimator for Proportion 

 

     The proportion of a characteristic is defined as the number of individuals with this 

property divided by the total number of individuals.  

                                                              
n

x
p 


 .                                                            (32) 

Individuals with the characteristic are denoted by x  and the total number of individuals 

is denoted by n . Suppose that a variable is created which is equal to 1 if the subject has 

the characteristic and 0 if not. The proportion of individuals with the characteristic is the 

mean of this variable because the sum of these 0’s and 1’s is the number of individuals 

with the characteristic. 

 

     MIMSEE for proportion which means to determine another scalar for x  alternatively 

to n/1  is obtained proceeding in the same way as the former parameters mean and 

variance. 
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The improving estimator of proportion is defined as 

                                                                axp 


' ,                                                          (33) 

for a random sample size of n  from a population with unknown mean and variance 

 and 2 respectively. 

 

     Next, to find the optimum weight for x  in other words the value of a  that minimizes 

MSE of estimator (33) variance and bias-square is calculated and given as follows 

                                                         22)'( apVar 


,                                                   (34) 

                                        2222 )1()()'( 


aapBias  .                                    (35) 

Clearly, summarizing equations (34) and (35) we get MSE of estimator '


p . 

                                            2222 )1()'( 


aapMSE  .                                          (36) 

The value of a  which makes )'(


pMSE minimal is derived by differentiating the MSE 

function dependent on a  and equalizing the derivative to zero. As a result, the optimum 

weight for individuals with the characteristic in the sample and MIMSEE using this 

weight is 

                                                          
2

*

1

1

v
a


 ,                                                         (37) 

                                                          x
v

p
21

1
'






,                                                        (38) 

respectively, where  /v . 

 

     Let the distribution of the population be binomial. In this case, the estimator (32) is 

unbiased and has MSE equal to its variance, say 2 . The MSE of the suggested biased 

estimator is obtained substituting equation (38) in equation (36). To make a comparison 

between the estimators 


p and '


p , the relative efficiency is calculated. 
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                                             2

22

2

1
)1/(

)'( v
v

pRE 








.                                         (39) 

Clearly, the estimator given in (38) is more efficient than the unbiased estimator for a 

binomial distribution since the relative efficiency (39) always exceeds 1.  

 

     In the following chapter, we will give some examples for the usage of best improved 

estimator for proportion in geometric and negative binomial distributions.  
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CHAPTER THREE 

ALTERNATIVE IMPROVED ESTIMATORS  

 

     In this chapter, we give some examples about improved estimator for parameters of 

mean, variance and proportion. 

 

     Firstly, the alternative improved estimator by Thompson is explained and the 

relationship between improved estimators by Thompson (1968) and Searls (1964) is 

constructed. Thus a different way to improve estimators for parameters of mean is 

presented.  

 

     Next, a biased but more efficient estimator for the variance of gamma family 

distributions, gamma, exponential, laplace and chi-square distributions, is obtained.  

 

     Finally, efficient estimators of proportion are investigated for geometric and negative 

binomial distributions.  

 

3.1 Alternative Improved Estimator for Mean 

 

     An improved estimator is suggested by Thompson (1968) by determining a factor for 

mean in order to gain shrinkage towards a natural origin, say 0  and reduce mean 

square error. Unlikely former studies, Thompson defined the estimator to be improved 

as 

                                                   00 )(  


xc .                                                     (40) 

It is clear that the estimator (40) is equal to the mean, the usual estimator of the location 

parameter, where .1c  But to yield a reduction in MSE the shrinkage factor c is given 

as 
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nsx

x
c

/)(

)(

22
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2
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
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






.                                                  (41) 

The statistics 


x  and 2s are unbiased estimators of mean and variance, respectively. 

Substitution of the shrinkage factor (41) in the proposed estimator 


  yields a general 

form for the shrunken estimator.  

                                        00
22

0

2

0 )(

/)(

)(





 




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






x

nsx

x
.                                       (42) 

Rewriting the proposed estimator (17) defined in Chapter 2 in dependence of the sample 

mean, it is clear to see that improved estimators are identical where the natural origin 0  

of estimator (42) is equal to zero. Estimator (17) could also be written as 

                                                         



 x

vn

n
x

2
'                                                           (43) 

or equivalently  

                                                        



 x

nv
x

/1

1
'

2
.                                                     (44) 

Thompson uses observed values to obtain coefficient of variation and forms the 

shrinkage factor for mean. 

 

     In this part, we will show that the same shrunken (improved) estimator (42) can be 

obtained by using a suitable pivotal quantity.  

 

     The utilization of a proper pivotal quantity as a shrinkage factor instead of the 

coefficient of variation leads to an improvement. The method is explained for normal 

and binomial distributions in the following. 
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3.1.1 Improved Estimation of Mean for Normal Distribution 

 

    Let sX i '  be normally distributed with mean 0  and variance 2 . Rewriting estimator 

(42) in another form shows that it is possible to obtain an improved estimator using a 

suitable pivotal quantity instead of the coefficient of variation. We have                                

                          00
22

0

2

0
00 )(

/)(

)(
)( 




 
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xc     
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








x

x
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                                               (45) 

                                           0021
)(

)(1

1
 







x

t
, 

where sxnt /)( 0  is the pivotal quantity. Substituting the inverse of the pivotal 

quantity in the shrinking factor instead of cv in equation (44), improved estimator of 

mean suggested by Searls (1964), yields the shrunken estimator suggested by Thompson 

(1968). 

If the natural origin 0  equals zero, then the pivotal quantity is given by 

                                                   
s

xn

ns

x
t







/

)0(
.                                                      (46) 

The shrunken estimator (42) becomes 

                                    






















 x
t

x

ns
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x
21

2

2
2

2

2

)(1

1

/
1

1

/

 .                               (47) 

 

     Clearly, shrunken estimators can be derived using the inverse of the pivotal quantity 

instead of the coefficient of variation in the shrinkage factor for mean. 
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3.1.2 Improved Estimation of Proportion for Binomial Distribution 

 

    Let 'iX s have a binomial distribution with parameters n  and p . An unbiased 

estimator of p is denoted by .


p  The mean and standard deviation of sampling 

distribution of 


p is op p  and 
n

pp
p

)1( 00 
 , respectively. Proceeding in the 

same way with mean, the estimator of proportion is defined as 

                                                     00 )( ppxcp 


.                                                   (48) 

The suggested estimator is constructed by shrinking the mean towards 0p . Clearly the 

estimator (48) equals to sample mean when 1c . In order to achieve that the shrinkage 

factor c  is given by 

                                               

npppx
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c

/)1()(
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
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

.                                        (49) 

Consequently, the shrunken estimator 


p  is defined as follows 
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.                            (50) 

The same estimator can also be constructed by using the pivotal quantity for proportion, 

that is 
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where c, the shrinking factor, equals 
21)(1

1
 t

. 

     As a result, it is also easy here to see that using the inverse of the pivot instead of the 

cv in the shrinking factor gives a shrunken estimator. 

 

    A relation between the shrunken estimators suggested by Searls (1964) and Thompson 

(1968) is constructed using a suitable pivotal quantity. We observe that any pivotal 

quantity for location parameter can be used instead of the coefficient of variation to gain 

an improvement, a reduction of MSE. 

 

3.2 Efficient Estimator for Variance of Gamma Family Distributions 

 

    Let nXXX ...,, ,21  be a random sample of size n  from a population having a gamma 

distribution with unknown parameters  and  .  

                                                ),(~ GammaX i .                                                      (52) 

Since 2S is unbiased for variance, its expected value equals to variance of the gamma 

distribution. 

                                                  22 )( SE .                                                               (53) 

In order to calculate the variance of the unbiased estimator, the relationship between the 

fourth central moment and kurtosis is used. The general form of the variance for 2S is 

                                        )
1

3
(/1)( 4

4

2 





n

n
nSVar ,                                             (54) 

where 4  is the fourth central moment and 4 is the square of the variance (Mood, 

Graybill & Boes 1974). Substituting the values 4  and 4  in equation (54) yields 

                                       













1

662
)(

4
2

n

nn

n
SVar


.                                            (55) 

Since 2S is unbiased for 2 , formula (55) gives also the variance of 2S . To find the 

MIMSEE for the gamma distribution the coefficient of variation v  is needed. 
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)(

)(
2

2

SE

SVar
v  .                                                             (56) 

The coefficient of variation is obtained in a form of the shape parameter   and sample 

size n by substituting )( 2SE and )( 2SVar in equation (56), i.e.     

                                               
nn

v
6

1

2



 .                                                            (57) 

Using equation (57), we obtain *a , which will lead us to MIMSEE, an alternative to the 

unbiased estimator of the variance of the gamma distribution. The alternative estimator 

to 2S is  
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



                (58) 

This estimator does not only depend on the observations and sample size but also on the 

shape parameter  .  

 

    The estimator 2*Sa  is a special case of the minimum variance biased estimator of 

variance derived by J. Singh et al (1972) which was noted in Chapter 2 as the best 

improved estimator for variance. The authors found the optimum weight for the total 

sum of squares about the mean as a function of the coefficient of kurtosis 2  and sample 

size n . Substituting the coefficient of kurtosis of the gamma distribution in equation 

(25) provides the estimator 2*Sa , just because both estimators were aimed at the 

minimum mean square error. 

 

     Although a comparison between MIMSEE for variance and its unbiased estimator 

was made in the previous chapter, we will also compare estimator 2*Sa  and 2S to 

interpret the results not based on the kurtosis 2  but on the shape parameter of the 

gamma distribution. This will also provide a perspective for the other distributions 

related to gamma.  
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     Again, the biased and unbiased estimators will be compared by using their MSE’s. 

The equation (55) is also MSE of 2S . The mean square error for 2*Sa  is given by 

             
)1(6)1(

)662(
)()()()(

42
222*2*2*
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Accordingly, the relative efficiency based on MSE is 
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 .                                    (60) 

 

    If the suggested estimator 2*Sa dominates the usual unbiased estimator of the 

variance respect to the MSE, then clearly the relative efficiency should exceed 1. 

Solving the inequality, we received an interesting result. The expression of relative 

efficiency (60) exceeds 1, if only the shape parameter   is greater than 3/3 n , which 

means that the suggested improved estimator 2*Sa  is always a better estimator than the 

unbiased estimator of the variance.  

 

    We present the relative efficiencies in the table 1 for various sample sizes and shape 

parameter in order to observe the changes in RE. 

 

Table 3.1 Relative efficiencies )( 2*SaRE for different values of   and n  

RE Sample size n 

  5 10 20 50 100 

1/2 3.90 2.42 1.71 1.28 1.14 

1 2.70 1.82 1.41 1.16 1.08 

2 2.10 1.52 1.25 1.10 1.05 

3 1.90 1.42 1.20 1.08 1.04 

10 1.62 1.28 1.14 1.05 1.03 

20 1.56 1.25 1.12 1.04 1.02 
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    The largest RE values are obtained with small sample sizes. As a second result related 

to parameter ; we can say that as   increases, RE decreases. High relative efficiency 

values are observed with small sample sizes and small values of shape parameter for a 

gamma distribution. 

 

3.2.1 Efficient Estimator for Variance of  Exponential Distribution 

 

    Let nXXX ...,, ,21  be a random sample of size n  from a population having exponential 

distribution with unknown parameter  . 

                                                        )(~ ExpX i .                                                        (61) 

Proceeding in the same way as described for the gamma distribution using the variance 

and the coefficient of kurtosis for exponential distribution, leads to the improved 

estimator for the variance of an exponential distribution. The same estimator can also be 

obtained by substituting  1  in the equation of 2*Sa  provided by the relationship 

between gamma and exponential distributions. MIMSEE for the variance of an 

exponential distribution is given by 
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.                                          (62) 

 

     Since the relative efficiency for the gamma distribution is calculated and given in the 

previous subsection, it is not needed to calculate it all over again for exponential 

distribution. The gamma distribution becomes an exponential distribution when the 

shape parameter equals1. Hence second row of Table 3.2.1( 1 ) shows the relative 

efficiency values of estimator (62) with respect to unbiased estimator of variance. The 

largest values of )( 2*SaRE  are obtained with small sample sizes.  
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3.2.2 Efficient Estimator for Variance of Laplace Distribution (Double exponential 

distribution) 

 

     Let nXXX ...,, ,21  be a random sample of size n  from a population has Laplace 

distribution with unknown parameter . The alternative estimator to 2S  for Laplace 

distribution is defined as 
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.                                           (63) 

     Due to the relationship between gamma and laplace distributions the third column of 

Table 3.2.1 (where )2 yields the relative efficiencies for the improved estimator of 

the Laplace distribution for the variance with respect to the usual unbiased estimator. 

Clearly, the suggested estimator (63) is more efficient than the unbiased alternative.  

 

3.2.3 Efficient Estimator for Variance of Chi-square Distribution 

 

     MIMSEE for variance of chi-square distribution can be found either by substituting 

2/  in equation of 2*Sa , which is the best improved estimator for the gamma 

distribution, or by proceeding in the same way described in section 3.2. It should be 

noted that this time kurtosis of chi-square distribution will be used. 

 

     The improved estimator of the variance for a sample size of n  from a population 

with chi-square distribution and its relative efficiency with respect to unbiased estimator 

are given, respectively, as 
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 In Table 3.2.3.1, we present the relative efficiency of the estimator 2*Sa with respect to 

2S  for different values of n  and  . 
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Table 3.2. Relative efficiencies )( 2*SaRE for various values of n and   

RE Sample size n 

  5 10 20 50 100 

1 3.90 2.42 1.71 1.28 1.14 

2 2.70 1.82 1.41 1.16 1.08 

10 1.74 1.28 1.17 1.06 1.03 

20 1.62 1.25 1.14 1.05 1.02 

 

      The suggested estimator (64) is more efficient than the unbiased estimator for the 

variance of a chi-square distribution like the former three distributions. Clearly, the 

largest values are gained for small sample sizes and high values of . The same RE 

values are obtained when the shape parameter of the gamma distribution is one half of 

the  values from the chi-square distribution. 

 

3.3 Efficient Estimator of Proportion for Geometric and Negative Binomial 

Distributions 

      An alternative estimator to the unbiased estimator of proportion is obtained for the 

binomial distribution with minimum mean square error using coefficient of variation as 

prior information in previous chapter. The original unbiased estimator of binomial 

distribution is 

                                                     
n

x
p 


.                                                                (66) 

The improving estimator is defined as 

                                                      
axp 



' .                                                              (67) 

Minimizing its MSE function based on a , the best improved estimator of proportion 

(MIMSEE) for the binomial distribution is obtained for 
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The alternative efficient estimator of proportion is defined as 
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But the estimator (69) does not provide the minimum point of MSE for geometric or 

negative binomial distributions since 


p  is biased for these distributions. Thus, minimum 

mean square error estimator for geometric and negative binomial distributions is 

investigated individually.  

 

     The MSE of '


p  is calculated as follows by using the properties of expected value and 

variance of a geometric distribution. 
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where pxE /1)(   and 
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 . The value of a , which makes )(axMSE minimal, 

is found by equalizing first derivative to zero.  
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Since the second derivative is positive for any value of )1,0(p , first derivative 

provides the minimum mean square error estimator and this value is given by 
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where pq 1 . Hence the MIMSEE of proportion for a geometric distribution is given 

by 
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Clearly this form of estimator is not applicable, thus substitution of the coefficient of 

variation v  is needed. The coefficient of variation for geometric distribution and 

suggested estimator (73) in a form of coefficient of variation are given, respectively as 
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The MSE of '


p  is calculated this time for the negative binomial distribution where the 

degrees of freedom k  are held fixed.  

                                                      ),(~ pkNBX .                                                         (76) 

It is known that the expected value and variance of a negative binomial distribution with 

parameters k and p  are pkXE /)(   , 
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The constant a  is determined to minimize MSE of '


p . We have 
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The factor (79) can also be written in a form of coefficient of variation and parameter k  

since kqv /2  . 

 

     In contrast to the improved estimators for parameters of mean and variance, a general 

solution, a more efficient alternative to usual estimator of proportion, cannot be provided 

independently from distributions. Considering both examples for proportion, improved 

estimation techniques does not seem to provide practicable solutions for proportion just 

because the original unbiased estimator for proportion differs from one distribution to 

another.  
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CHAPTER FOUR 

CONCLUSIONS 

 

     Utilization of prior information in the estimation procedure, which is the distinctive 

feature of Bayesian approach in statistical inference, allows the scientists to incorporate 

knowledge from former studies into current researches. As mentioned, there are a lot of 

studies in those coefficient of variation or kurtosis are used as prior information, such as 

Khan (1968), Hirano (1973), Arnholt and Hebert (1995). 

 

     A simple prior information such as the coefficient of variation or kurtosis is 

important in many biological and industrial studies since it is accessible in designing 

experiments, estimating sample size, etc. Usage of a known coefficient of variation in 

estimation procedure is investigated throughout this thesis. Following results gained in 

this study, are given as a brief summary to contribute studies in application of estimation 

theory.  

 

     Best improved estimators for mean and variance (MIMSEE’s) are introduced. In both 

cases we observed the relative efficiencies between usual unbiased estimators and 

proposed improved estimators to make a comparison. The improved estimators are more 

efficient than the usual minimum variance unbiased estimators when sample sizes are 

small. It is observed that relative efficiencies decrease as sample size increases. 

 

     As an alternative to the improved estimator of mean, another estimator is given by 

shrinking a natural origin towards usual minimum variance unbiased estimator. We have 

analyzed the relationship between MIMSEE and alternative shrunken estimator using 

pivotal quantities. We came to the conclusion that improved estimators for mean can be 

developed using a suitable pivotal quantity. 

 

     Proceeding in another way, a general estimator for the variance of gamma family 

distributions is obtained, which was a special case of MIMSEE for variance dependent 
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to shape parameter and sample size. Relative efficiency values are presented for gamma, 

exponential, laplace and chi-square distributions. And it is observed that, the largest 

gains are obtained with both small sample sizes and shape parameters.  

 

     Improved estimation is investigated also for the parameter of proportion. Unlike to 

the improved estimators of mean and variance, no general form of minimum mean 

square error estimator for proportion is obtained, since the unbiased estimator of 

proportion depends on the distribution. This is why three different estimators are 

obtained for each of binomial, geometric and negative binomial distributions.  

 

     In this study, different approaches to estimation procedure are applied to estimate 

some parameters. The results may contribute to studies in statistical inference and turn 

out to be helpful for anybody working in this field. 
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