
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

DESIGNING ADAPTIVE OPPONENT MODELS FOR

RTS GAMES

by

İsmail Aybars MORALI

October, 2010

İZMİR

DESIGNING ADAPTIVE OPPONENT MODELS

FOR RTS GAMES

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master Of Science

in Computer Engineering

by

İsmail Aybars MORALI

October, 2010

İZMİR

ii

M.Sc THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “DESIGNING ADAPTIVE OPPONENT

MODELS FOR RTS GAMES” completed by İSMAİL AYBARS MORALI under

supervision of YRD. DOÇ. DR. H. ŞEN ÇAKIR and we certify that in our opinion

it is fully adequate, in scope and in quality, as a thesis for the degree of Master of

Science.

 YRD. DOÇ. DR. H. ŞEN ÇAKIR

Supervisor

 (Jury Member) (Jury Member)

Prof.Dr. Mustafa SABUNCU

Director

Graduate School of Natural and Applied Sciences

iii

ACKNOWLEDGEMENTS

I have to thank my previous supervisors, Yrd. Doç. Dr. Emine Ekin and Öğr. Gör.

Dr. Özlem Öztürk. Without their inspiration and mentorship, probably I would not

able to progress so much and even never heard about the environments I studied for

thesis. My current supervisor, Yrd. Doç. Dr. H. Şen Çakır, it was a pleasure to study

with an quite experienced advisor, even for a short period. Besides academical

personnel, most of support was from my family, my girlfriend and my friends;

appreciation for their understanding.

One last word for open source community, they really deserve gratitude. Their

unique mentality produced the tools I have used for thesis like RoboCup Soccer

Server, Dainamite and Wright Eagle teams, Eclipse, RapidMiner, Dia etc.

İ. Aybars MORALI

iv

DESIGNING ADAPTIVE OPPONENT MODELS FOR RTS GAMES

ABSTRACT

Games, reality of nature, have a very important part in our life. Games are fed by

challenges and real challenges can only be created with help of AI. This thesis deals

with corner kicking in soccer game. In thesis, it is studied in RoboCup 2D simulation

league with Dainamite team against Wright Eagle team and focused on corner

kicking from a different aspect than other all RoboCup teams. While corner kick

situations are all the time treated by an ordinary short pass or kick in situation by

other teams, in this thesis it is treated as corner kick that allows carom positions or

running players which requires a long kick inside the penalty area. In corner kick, it

is only decided where to kick the ball, positioning of players in the field is excluded.

For the classification method, Support Vector Machine’s LibSVM implementation is

used and experiments are performed on parameters of SVM and MySVM

implementation.

Keywords: Games, challenge, AI, corner kick, RoboCup, Soccer Server, SVM,

classification

v

GERÇEK ZAMANLI STRATEJİ OYUNLARI İÇİN UYARLAMALI RAKİP

MODELİ TASARIMI

ÖZ

Oyunlar, doğanın gerçeği, hayatımızda çok önemli bir yer tutar. Oyunlar zorluklar

ile beslenir ve gerçekçi zorluk hissi sadece YZ yardımı ile yaratılabilir. Bu tez futbol

oyununda köşe vuruşu kullanmayı ele alır. Tezde, RoboCup 2B benzetim liginde

Wright Eagle takımına karşı Dainamite takımı ile çalışılmıştır ve köşe vuruşuna diğer

tüm RoboCup takımlarından daha farklı yaklaşılmıştır. Köşe vuruşu diğer takımlar

tarafından her zaman sıradan bir kısa pasmışçasına ya da taç atışı kullanırmışçasına

kullanılırken,bu tezde karambol pozisyonlar veya koşan oyuncular gibi ceza sahasına

uzun pas gerektirecek olaylara izin verecek şekilde köşe vuruşu olarak ele alınmıştır.

Köşe vuruşunda topun sadece nereye doğru vurulacağına karar verilmiştir,

oyuncuların saha içindeki yerleşimi konu dışında bırakılmıştır. Sınıflandırma

yöntemi olarak Support Vector Machine’in LibSVM gerçekleştirimi kullanılmış ve

SVM’nin parametreleri ve MySVM gerçekleştirimi deneyler yapılmıştır.

Anahtar sözcükler: Oyunlar, zorluk, YZ, köşe vuruşu, RoboCup, Soccer Server,

SVM, sınıflandırma

vi

CONTENTS

 Page

M.SC THESIS EXAMINATION RESULT FORM .. ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZ .. v

CHAPTER ONE – INTRODUCTION .. 1

1.1 Adaptive Opponent Model in RTS .. 1

1.1.1 Game Types ... 2

1.1.2 Corner Kick ... 2

1.2 Main Objective .. 3

1.3 Related Work ... 3

1.4 Guide to Thesis .. 4

CHAPTER TWO – SOFTWARE ENVIRONMENT ... 5

2.1 RoboCup .. 5

2.1.1 Leagues .. 5

2.1.1.1 2D Simulation League ... 6

2.1.2 Teams ... 8

2.2 Limitations and constraints ... 8

2.3 Classification Method .. 9

2.3.1 Support Vector Machine .. 9

2.3.1.1 Algorithm ... 9

2.3.1.2 Parameters .. 11

2.3.1.3 Implementations ... 12

vii

CHAPTER THREE – PROBLEM AND SOLUTION MODEL 13

3.1 Problem ... 13

3.2 Solution Model .. 13

3.3 Data Gathering .. 15

3.4 Data Preprocessing .. 19

3.4.1 Feature Set 1 .. 21

3.4.2 Feature Set 2 .. 22

3.4.3 Feature Set 3 .. 23

3.4.3.1 Feature explanations .. 24

3.5 Constructing Classifier .. 25

3.5.1 Data Characteristics, Statistics... 26

3.5.2 Experiments with Variables ... 28

3.5.2.1 SVM Type .. 28

3.5.2.2 Feature Set ... 31

3.5.2.3 Kernel Type ... 33

3.5.2.4 C ... 34

3.5.2.5 Epsilon ... 35

3.5.3 Summary .. 35

3.5.4 Applying Model ... 36

CHAPTER FOUR – CONCLUSION ... 38

4.1 Future Work .. 39

APPENDIX A – EXPERIMENT RESULTS ... 40

REFERENCES ... 43

1

CHAPTER ONE

INTRODUCTION

Games are reality of nature. Human being, especially kids, intuitively play games.

According to a research, Riley (2009) claims that 82% of children in USA between

2-17 describe themselves gamers. Playing games is encouraged by aware parents

because it is a powerful and entertaining way of improving several skills like

language, physical, thinking, creative and social skills. It is also essential for

psychological development of a person. Besides human being, intelligent animals

also need games in their life and they play various games. They are even observed

during cheating in games, as stated in Ross’s (2010) research. Games, seemingly

such a simple and natural term, evolved in parallel to human evolution and in

information age, a new branch is formed called video games. After high processing

power in computers and great visualizing combined with video games, new

generation games become very different from the games played before computers.

Result is fascinating, video game industry, interactive entertainment as the fancy

name, now has a market size of several billion dollars.

1. 1 Adaptive Opponent Model in RTS

Video games are being improved and getting more complicated. Due to the

improvement, expectations and satisfaction levels are greatly raised. Old games were

narrow scoped and user interaction was restricted. Current generation games have

gigantic content and users have much more freedom in their choices during game

plays. Thus each play of the game is nearly unique and the solution space of the

game is enormous. For this reason, opponent models should be specifically handled,

differently from old games. Moreover, game objects are increased in count as games

got complicated. For coordination of those objects, artificial intelligence is needed.

In old games, there were few objects and game play was straight; not free like today.

And adjusting the limited objects would adjust most parameters and difficulty of the

game. But now games contain much more independent objects and game play is not

only based on a few templates. Such a complexity cannot be handled with an if-then

2

command sequence. Another aspect, providing reality in simulation, sports and

strategy games is a very difficult task. Although companies develop their artificial

intelligence algorithms for their sport games in each version every year, players are

known to complain about the silliness of the intelligence of the game. So, artificial

intelligence is not sufficient enough and it is one of the most important subjects in

games. Because artificial intelligence provides the most crucial part in a realistic way

for gamer, “challenge”.

1.1.1 Game Types

Game types are conventionally described as sports, simulation, real time strategy,

action, adventure etc. But with the new generation games, it has become getting

impossible to classify games for last 10 years. No longer have games belonged to

only one type. A game contains several types in it. Dungeon Keeper, at first sight can

be classified as real time strategy, has fighting creatures and any creature can be

chosen and possessed, letting gamers play from creatures eye. Game type changes

from real time strategy to first person shooter. GTA series, may be called action

game, contains game parts of types real time strategy, flight simulator, car racing,

first person shooter, puzzle, adventure and many others. The game Spore consists of

5 stages, starting as a cell and after evolution finishing in space age. It is played as

platform game in cellular stage, role playing game and action game in creature stage,

role playing game and real time strategy game in tribal, civilization and space stages.

Pro Evolution Soccer 2010 can be played as soccer, managership or role playing

types. As a result it is not possible to describe games type generally. Instead, games

related contents type should be used.

1.1.2 Corner Kick

Corner kick resides in a special place in soccer. It is a great chance for scoring a

goal. Corner kicks has a unique property in soccer games in which it is possibly

repetitive. After having a shot a second one won't be available easily. Especially in

free kick, after a free kick a new one is almost impossible. But it is quite possible to

3

have three successive corner kicks. Another important point, corner kick set play

gathers almost all players to opponent penalty area. During positioning and on the

way back, a remarkable duration exists and makes corner kick owner team relaxed.

Corner kick is a great pressure element for goal chance and gathering players to

opponent field. Only disadvantage is, it is vulnerable to counter attacks.

Corner kicks occurred frequently (mean = 10.85) in the English Premier League

and provided many goal-scoring opportunities (1 in 3) although these opportunities

were only converted 1 in 11 times. These findings were similar to Hill and Hughes

(2001) and Olsen and Larsen (1997). Interestingly, the 1:11 ratio is the same as

Partridge and Franks (1989a, 1989b) found for crosses, suggesting communality

between the two aspects of play. (Taylor, James and Mellalieu, 2005, p. 228).

As mentioned by Taylor and friends, corner kick plays an important role in all

soccer matches without any exceptions. So improving this point is crucial for overall

performance.

1.2 Main Objective

This thesis focuses on one of the strategy parts of the soccer game, corner kick.

For this task a soccer game simulator used and “where to kick the ball in a corner

kick” question is answered, i.e. decided, with machine learning techniques.

1.3 Related Work

The lack of multi-agent soccer game environments for developing prevents

working on specialized subjects like corner kicking. There is not a very similar work

to this thesis. The closest works are RoboCup simulation leagues, but teams there are

not completely ready to deal with this kind of detailed tasks and corner kick is

always ignored. Corner kick is considered as a standard kick in or a standard passing

to teammates shortly. None of the teams care about corner kick as mentioned in

Chapter 1.1.2.

4

Shi (et. al., 2009) stated that they have used Markov Decision Process (MDP) in

their kicking ability, for their team Wright Eagle. Another team, HelliBASH, Zanjani

(et. al., 2009) explained their progress for decision making when ball is possessed

but there is not a special action for corner kicking.

1.4 Guide to Thesis

Second chapter explains RoboCup and related terms with it. Also machine

learning method is explained. Third chapter describes the problem, problems

solution, experiments and finally experiment’s results. Chapter four contains

conclusion and the last words.

5

CHAPTER TWO

SOFTWARE ENVIRONMENT

There is not unfortunately much soccer game simulator can be worked on. From

available softwares, RoboCup community seems to be the ideal solution.

2. 1 RoboCup

RoboCup is defined as “an attempt to foster AI and intelligent robotics research

by providing a standard problem where a wide range of technologies can be

integrated and examined” (Kitano et al., 1997, p73). RoboCup is alive since 1995

and every year official tournaments and side-events are organized. Officially and

bravely aim is described as “By mid-21st century, a team of fully autonomous

humanoid robot soccer players shall win a soccer game, complying with the official

rules of the FIFA, against the winner of the most recent world cup for human

players” (Kitano et al., 1997, p73). In RoboCup researches include a lot of topics

instead of one, that's how basically distinguished with traditional researches.

Softwares used for RoboCup are open source and mostly participants internalize

open source paradigm, so this field has remarkable accumulation of knowledge. This

mentality allows focusing on only desired problem and creates a positive feedback

loop by providing basis to researches, like this thesis.

2.1.1 Leagues

RoboCup consists of four branches. RoboRescue robots search and rescue in real

tough environments, @Home constructs robots that interact with human and help

them in daily life. RoboCup Junior encourages kids to science with entertaining

robots and dances. The last branch is the main branch, soccer. Soccer branch consists

of small sized, medium sized, humanoid, standard platform and simulation leagues.

Simulation leagues are created in form of standard platform leagues. They are

specially created in order to abstract from the hardware layer and allowing the

6

developer to work on algorithms more. Simulation league has two varieties, two

dimensional and three dimensional. This thesis is implemented on 2D simulation

environment but with necessary modification 3D simulation environment is also

possible to run the softwares on.

2.1.1.1 2D Simulation League

Figure 2.1 The soccer simulator. Dainamite vs WrightEagle.

In 2D simulation league there are two teams consist of eleven players and an

automatic referee exists. Simulation server and the viewer module “server monitor”

are independent softwares, there is a special message format for communication with

server. Players all are independent, they sense themselves and they decide

themselves. They are separate processes and the only communication method is the

very restricted in-game talking commands through server. In Figure 2.1, RoboCup

Soccer Server Monitor can be seen; two teams are connected and ready to start

match.

7

Figure 2.2 Flags on the field. (Chen et al. (2002))

Players understand their positions with the flags seen in Figure 2.2. They just see

flags, opponents and ball. They have to process these information with information

gathered before and calculate their position. Game rules are realistic, even the offside

rule is implemented. Another point for realism, most values is affected by artificial

noise.

Figure 2.3 Overview of soccer simulation server..

8

Figure 2.3 states the overview of the simulation server. Two teams connect to the

server and each player is a separate process. All processes run the same code which

acts differently according to the player numbers or roles. Interprocess

communication is forbidden, so all players have to communicate through server with

special commands, “hear” and “say”. Players can say a very short string and close

players hear the said string. Tactics, positioning and all organizations are

communicated in this way. In Figure 2.3 modular design can be seen explicitly. As a

result of the modular design, arbitrary number of monitors can connect to the

simulation server. Or a monitor can connect to a server on the network, which is the

official way in RoboCup tournaments to use the computing power efficiently.

2.1.2 Teams

Reusing a team instead of writing from beginning has great advantages. A lot of

basic and time consuming developments like communication with server,

centralizing the players’ eye views, passing are abstracted. In this thesis, it is studied

with Dainamite and Wright Eagle teams which are both open source and suitable

with the latest 2D simulation server. Wright Eagle is one of the best teams and

between 2005 and 2010 has two first place and four second place rankings.

Dainamite is much weaker then Wright Eagle and doesn't have remarkable success in

the last years. For development Dainamite team that has a good coding system is

used. For opponent Wright Eagle team is used. Improving weaker team against

stronger team is more meaningful and valid for performance testing.

2.2 Limitations and constraints

Teams have some limitations that affect the result. Dainamite team used to start

corner kicks with a short pass, not a specially handled situation. They can only pass

to a teammate close to the corner. When all teammates are positioned away, it is

stuck and player cannot kick ball. Besides this, instead of the perfect passing and

movement of Wright Eagle, Dainamite was not so fluent in moves. Wright Eagle

runs a lot and consumes players’ stamina in the last part of the match.

9

2D simulation is somewhat different from the real life corner kicks. In real corner

kick ball can pass over players but in 2D simulation naturally third dimension,

height, does not exist. This lack of ability prevents integrating the players near the far

post to the game. Another difference is 2D simulation does not allow curved kicks;

kicks can only be done on a straight line.

2.3 Classification Method

As the classification method, Support Vector Machines (SVM) is used. Proven

power and wide usage area makes SVM attractive. SVM is often compared to

Artificial Neural Network (ANN) which is definitely the most used classification

algorithm. But SVM has a big advantage over ANN about local optima, while ANN

suffers from it, SVM is not affected.

2.3.1 Support Vector Machine

Support Vector Machines, proposed by Vapnik et. al. (1995), is based on statistical

learning theory. SVM is a supervised learning algorithm and used for classification

and regression analysis. It is a very general technique, it can classify any kind of

data. Since SVM proposed, it has shown very good performance and now SVM is a

very powerful alternative to other classification algorithms.

2.3.1.1 Algorithm

SVM basically has two steps, mapping the data to feature space and separating

data into two classes.

10

Figure 2.4 Mapping in SVM. (Busuttil (2003))

First SVM maps data to high dimensional feature space, an example can be seen

in Figure 2.4. In the feature space, each coordinate represents a feature of data, points

represent data itself. In this very complex space, relations between data are found.

The mapping process is called “kernel trick”.

Figure 2.5 Separating planes in SVM. (Osuna et al. (1997))

After mapping data, SVM constructs hyperplanes in high dimensional space to

separate into two classes. Infinite number of hyperplanes exists and optimal one

11

should be chosen. Optimal hyperplane, which is unique, is the best separating one

and also called maximum margin hyperplane. Optimal hyperplane has the maximum

margin between lines. In Figure 2.5, two different hyperplanes are shown. The

hyperplane in (a) also divides the classes perfectly but is not the optimal one. In (b),

hyperplane has the maximum margin of all possible hyperplanes, therefore it is the

optimal solution. Actually, for this class separating issue, SVM is not a search

algorithm, it is considered as an optimization algorithm.

“Support Vector Machines were originally designed for binary classification”

(Hsu et al, 2002, p415). As mentioned in algorithm, feature space is divided into two

classes. Only two classes are not sufficient for most of real world problems. Hence,

various methods are developed to overcome this binary classification problem.

In order to classify more than two classes, binary classifier SVM is used several

times internally. Major methods are one-versus-one and one-versus-all algorithms. In

one-versus-one algorithm, all classes are run against each other, which is equal to

binary combination of all classes. Totally, k(k–1)/2 times SVM is run, where k

represents class count in the problem. The class which wins most is chosen as result.

In second method, one-versus-all, for each class SVM is run against remaining

classes as they are one class. Totally k times SVM is run for one-versus-all. The

winner is chosen as the result class. After performing experiments on large problems,

Hsu et al. (2002) states that one-versus-one method may be more suitable for

practical use. Already, major implementations of SVM use one-versus-one method

for multi-class classification.

2.3.1.2 Parameters

SVM has two very important parameters. One of them is kernel type, which is the

feature mapping. Kernel types maps the data as feature in a space. Most common

examples of kernel types are linear, polynomial, Gaussian (rbf) and spline kernels.

Kernel type strongly depends on training data. For choosing the right kernel type,

Howly et al. (2005) used a genetic algorithm.

12

Second parameter is C, the cost of misclassification. C controls the tradeoff

between complexity and accuracy. When cost is increased, misclassification is

punished and accuracy is forced to increase. But C should be set carefully because it

causes over fitting. Forcing the classifier too much produces a very complex model

and extremely complex models are not useful in real environment.

2.3.1.3 Implementations

SVM has different implementations. Most common used are MySVM and

LibSVM. MySVM is an implementation based on an optimization algorithm

described by Joachims (1999). It can work on classification, pattern recognition,

regression and distribution problems. LibSVM is implementation of Chang et al.

(2001). It is very comprehensive can be used on all asks. MySVM is simpler and

faster than LibSVM. Both implementations use one-versus-one method for multi-

class classification.

13

CHAPTER THREE

PROBLEM AND SOLUTION MODEL

3.1 Problem

In order to deal with a formal problem, the subject is defined as kicking corner

kicks in RoboCup 2D simulation soccer game. Corner kicking is related with

positioning but positioning is not covered in this thesis as it is another subject and

needed to be studied separately. So problem is deciding where to kick after players

positioned in a corner kick. In this chapter, problems solution under constraints

mentioned before is explained.

3.2 Solution Model

Target in a corner kick may be a player, an area or a direction.

Choosing a player as target means ignoring most specialties of corner kick. It

cannot fulfill that players can move, carom positions or directly shooting to goal, as a

result overall performance dramatically drops. Choosing an area instead of a player

makes more sense. But target area lacks in two points, size of the areas and exactly

which point to kick in area. Answering these questions is very difficult. Moreover

when corner kick is kicked ball may be intercepted by a teammate or an opponent.

Choosing directions is the most native answer, suitable to the nature of the kick and

the journey of the ball after kick. It overcomes disadvantages of its alternatives.

14

Figure 3.1 Scene 190, result is counter attack, ball is kicked to the red cross. One of the corner kicks

during training.

As seen in Figure 3.1, in Scene 190, the two players in the center of the penalty

area has a chance to run and possess the ball when ball is kicked close to the goal.

Only way to provide is using directions for kicking.

Classification in solution should run with successful samples. In this thesis

success of corner kick means one of the results of goal, kick in and timeout. It may

be claimed that only goal should be considered as it changes the scoreboard but in a

7 minutes game having the ball 30 seconds in the opponent field or forcing the

opponent to kick the ball out of field are remarkable successes. Having the ball in

opponent field spends time while team is winning; also it always contains a shooting

chance which has power to change the score.

Problems solution is quite simplified. There is a rectangle, there are 22 points in it

and one of possible six directions from corner should be chosen. Problem is now

ready to be applied any classification algorithms.

15

Figure 3.2 Directions to be kicked through.

Figure 3.2 shows the possible six directions. After classification, ball will be

kicked through the classified direction.

3.3 Data Gathering

All classification methods need sufficiently big training set to operate and data

should be gathered in natural ways. So, Dainamite's source code is modified and

simulation server's trainer coach which is designed for such purposes is used. In

normal games teams connect to server and they play the match. But with the help of

the trainer coach, server rules are modified and game is set to play only consecutive

corner kicks in desired conditions. From now on, the team uses corner kicks will be

named as “our” team and the defender team will be named as “other” team for the

sake of simplicity.

The mechanism started to run when teams connect is called “scenario”. A scenario

starts when teams connected and ends when the match time is over. Unfortunately

match duration can be adjusted but the time cannot be set, so a separate software is

programmed. This software, BatchMatch, starts simulation server and then connects

16

the teams. When match and inherently scenario are over software repeats the

scenario in desired counts. As a result, data set is gathered with running the software

BatchMatch during days and having played thousands of corner kicks. Flowchart of

BatchMatch is shown in Figure 3.3

Figure 3.3 Flowchart of BatchMatch.

During a scenario, i. e. match, 17 corner kicks are played in average. Each corner

kick and its settings are named as “scene”. In scene first players are positioned

according to specific conditions and afterwards corner kick is kicked randomly. After

kicking, game is played as a normal match. Scene ends in different ways. Scene ends

normally in situations like “out”, “goal”, “kick in own”, “offside”. If ball passes to

17

our field scene ends with “counter attack”. If scene does not end in 30 seconds a

“time out” condition occurs and scene ends. Except these conditions scene ends with

“other”.

Figure 3.4 Positioning areas in scene.

In Figure 3.4 positioning areas used in the beginning of the scene are shown. In

one of the points labeled with 1 ball is placed and behind the ball our kicker is

placed. Our attackers are placed in the rectangle labeled with 2. Our goalkeeper and

two defender players’ stays in our own field, the remaining are positioned inside the

huge rectangle 3. Other goalkeeper is placed somewhere in rectangle 4. Other

attackers are positioned in their own field and remaining players are placed in

rectangle 5. Attackers and defenders are especially positioned separately and

rectangles are intentionally intersected. So, all kind of combinations are allowed to

be set.

18

Figure 3.5 Flowchart of scenario.

Figure 3.5 shows the flowchart of scenario preparation. Scenario settings are

saved first, than in a loop scenes are set. When a scene ends, its data is saved.

As classification needs huge amount of data, data is stored in a database. For

database software SQLite is used. Serverless and simple architecture and its speed

make it ideal solution.

19

Figure 3.6 Database diagram

As stated in diagram, Figure 3.6, except explanatory data Scenario table stores our

team’s field which is necessary to interpret the coordinate system. In Scene table

corner kick's area, target position, kicker player's number, result, whether players are

tired and helper data are stored. Players are stored in a separate table with number,

team, role, starting and ending positions.

In total, 2095 scenarios are run and 98168 times corner kick is played. Gathering

training set took 280 hours and 47 scenes are played per scenario. Among played

corner kicks 8.8% is resulted as goal, 3.6% is kick in, 1.8% is timeout. Totally,

14,2% of corner kicks are successful. More detailed information is given at Chapter

3.5.1.

3.4 Data Preprocessing

Classification system needs data in a proper form to operate and data is not ready

to use as its raw form in database. Features are special abstract data representing the

data. In this thesis, three feature sets are experimented.

20

All feature sets has one common feature which is “isTired”. IsTired represent

whether the game is close to end. Game lasts for 3000 cycles and isTired feature uses

the value 2200 for threshold. If the scene's ending cycle is later then 2200, then that

scene's isTired value is true.

All feature sets are calculated with a separate software, FeatureProcess, and stored

in database. At the same time players and ball target are drawn on the soccer field

and scenes are saved as picture on disk. Scene figures shown in this thesis are

automatically created. Whole feature processing process took up approximately 60

hours. Flowchart of FeatureProcess is shown in Figure 3.7.

Figure 3.7 Flowchart of FeatureProcess

21

3.4.1 Feature Set 1

Feature set 1 (Fv1 from now on) is simply made up of coordinates of players. This

feature set minimizes the abstraction of the raw data and aims to prevent possible

information loss. Machine learning algorithm is expected to find patterns, relations

with coordinates. All members of Fv1 are shown at Table 3.1.

Table 3.1 Feature set 1 (Fv1)

Our1_X Other1_X

Our1_Y Other1_Y

Our2_X Other2_X

Our2_Y Other2_Y

Our3_X Other3_X

Our3_Y Other3_Y

Our4_X Other4_X

Our4_Y Other4_Y

Our5_X Other5_X

Our5_X Other5_X

Our6_Y Other6_Y

Our6_X Other6_X

Our7_Y Other7_Y

Our7_X Other7_X

Our8_Y Other8_Y

Our8_X Other8_X

Our9_Y Other9_Y

Our9_X Other9_X

Our10_X Other10_X

Our10_Y Other10_Y

Our11_X Other11_X

Our11_Y Other11_Y

22

3.4.2 Feature Set 2

Feature set 2 (Fv2 from now on) is one level more abstract. Fv2 divides the

penalty area and it’s around into 18 areas and considers the player counts of two

teams in these regions. With Fv2 classification about player density is planned. All

members of Fv2 are shown at Table 3.2 and the areas on the field are shown in

Figure 3.8.

Table 3.2 Feature set 2 (Fv2)

Our_1 Other_1

Our_2 Other_2

Our_3 Other_3

Our_4 Other_4

Our_5 Other_5

Our_6 Other_6

Our_7 Other_7

Our_8 Other_8

Our_9 Other_9

Our_10 Other_10

Our_11 Other_11

Our_12 Other_12

Our_13 Other_13

Our_14 Other_14

Our_15 Other_15

Our_16 Other_16

Our_17 Other_17

Our_18 Other_18

23

Figure 3.8 18 areas in Fv2

3.4.3 Feature Set 3

Feature set 3 (Fv3 from now on) is completely abstracted feature set. Fv3 aims to

run the classification algorithm effectively by extracting key values from player's

coordinates. Some features in Fv3 uses secondary directions. These directions are in

the middle of the other direction pairs and used for reducing the overall feature

count. Secondary directions are between the directions 1 and 2, 3 and 4, 5 and 6. All

members of Fv3 are shown at Table 3.3.

Table 3.3 Feature set 3 (Fv3)

SD1_AnyMateToPass SD2_AnyMateToPass

SD3_AnyMateToPass SD1_FirstMatesPassableFriends

SD2_FirstMatesPassableFriends SD3_FirstMatesPassableFriends

SD1_FirstMatesPassableFriendsAvg SD2_FirstMatesPassableFriendsAvg

SD3_FirstMatesPassableFriendsAvg Our_PC_Inside

Our_PC_Outside_Near Our_PC_Outside_Far

Other_Goalie_Position SD1_CanOpponentIntercept

SD2_CanOpponentIntercept SD3_CanOpponentIntercept

SD1_IsShootingPossible SD2_IsShootingPossible

24

SD3_IsShootingPossible SD1_Our_PC_CloseToDirection

SD2_Our_PC_CloseToDirection SD3_Our_PC_CloseToDirection

SD1_Other_PC_CloseToDirection SD2_Other_PC_CloseToDirection

SD3_Other_PC_CloseToDirection -

Figure 3.9 Some distances on the soccer field.

Figure 3.9 shows various distances on the field. Shown distances are used in

calculation of Fv3.

3.4.3.1 Feature explanations

AnyMateToPass states whether a teammate exists that is close to the corner at

most 30 units and close to the direction 10 units.

FirstMatesPassableFriends is the count of teammates that is close to teammates in

15 units which are in range of corner in 50 units and has a distance to the direction at

most 10 units. When the value is divided by first mates count, then

FirstMatesPassableFriendsAverage is obtained.

25

Our_PC_Inside states our player count in opponent penalty area.

Our_PC_Outside_Near states our player count outside of the opponent penalty area

but at most 10 units away in X direction and in the near vertical half of outside area.

Similarly Our_PC_Outside_Far gives value of the far vertical half.

Other_Goalie_Position states whether the other goalkeeper is in center, in far part

or in closer part.

CanOpponentIntercept states whether our teammate which receives the pass has

any opponent not behind him and close to the direction less than 2 units.

IsShootingPossible states whether our teammate which receives the pass has any

shoot opportunity. Two different shoot routes is drawn to the goal and if there is not

any opponent close to the any route less then 2 units then shooting is considered as

possible.

PC_Close_To_Direction is the players count that close to the direction less than

10 units of the teams.

3.5 Constructing Classifier

Before constructing the classifier, to be able to assess the prepared classifier,

performance evaluation should be defined.

Figure 3.10 Division of data set.

As seen in Figure 3.10, 15% of data is separated for test set. Performance is

evaluated according to both training and test sets. When comparing the performances

of parameters, both performance values are considered.

26

Figure 3.11 Model construction.

Figure 3.11 shows the organization of model construction. Support Vector

Machine gets the data as the sole input. Data is the successful scenes mentioned

before. During the data preprocessing, all scenes are labeled with the direction of the

corner kicks kicked. SVM produces the model as the only output. Model is the

artificial intelligence of team. Model will be used during the application of model.

Experiments are conducted about both data and SVM. Detailed explanation about

parameters and experiments are found in Chapter 3.5.2.

3.5.1 Data Characteristics, Statistics

Table 3.4 and Table 3.5 shows training set and test set respectively. Sum of

training and test sets are shown at Table 3.6. At Table 3.7 whole data gathered is

shown.

Table 3.4 Training set

Direction Goal Kick In Own Time Out Total

1 2098 337 269 2704

2 2366 614 376 3356

27

3 1290 503 271 2064

4 569 302 155 1026

5 584 516 171 1271

6 497 694 224 1415

Total 7404 2966 1466 11836

Table 3.5 Test set

Direction Goal Kick In Own Time Out Total

1 386 67 55 508

2 393 114 86 593

3 233 78 53 364

4 83 62 25 170

5 84 103 27 214

6 85 113 41 239

Total 1264 537 287 2088

Table 3.6 Total data set

Direction Goal Kick In Own Time Out Total

1 2484 404 324 3212

2 2759 728 462 3949

3 1523 581 324 2428

4 652 364 180 1196

5 668 619 198 1485

6 582 807 265 1654

Total 8668 3503 1753 13924

Table 3.7 Overall data set

Direction Counter

Attack

Goal Kick

In

Own

Off

Side

Other Out Time

Out

Total

1 10645 2484 404 1325 753 1300 324 17235

2 16585 2759 728 2149 1242 1512 462 25437

3 12611 1523 581 1513 1023 914 324 18489

4 6031 652 364 737 641 356 180 8961

28

5 7907 668 619 1201 1114 466 198 12173

6 9856 582 807 1798 2007 558 265 15873

Total 63635 8668 3503 8723 6780 5106 1753 98168

Classifier is implemented with Support Vector Machine (SVM) algorithm in

RapidMiner tool. During experiments, observed parameters are SVM Type, Kernel

Type, C and Epsilon. The design screen of project is shown in Figure 3.12.

Figure 3.12 Implemented SVM classifier in RapidMiner

3.5.2 Experiments with Variables

3.5.2.1 SVM Type

SVM type is determined by kernel type, C and feature set experiments.

Table 3.8 SVM type versus kernel type and feature set

svm

type

file kernel type C max

iterations

epsilon training

perf.

test perf.

MySVM Fv1 Dot 0,00 100.000 0,000 0,32 0,31

MySVM Fv3 Dot 0,00 100.000 0,000 0,32 0,33

29

MySVM Fv2 Dot 0,00 100.000 0,000 0,31 0,34

LibSVM Fv1 Rbf 0,00 0,001 0,45 0,31

LibSVM Fv3 Rbf 0,00 0,001 0,51 0,50

LibSVM Fv2 Rbf 0,00 0,001 0,31 0,34

MySVM Fv1 radial 0,00 100.000 0,000 0,54 0,17

MySVM Fv3 radial 0,00 100.000 0,000 0,65 0,33

MySVM Fv2 radial 0,00 100.000 0,000 0,54 0,16

LibSVM Fv1 linear 0,00 0,001 0,28 0,29

LibSVM Fv3 linear 0,00 0,001 0,56 0,57

LibSVM Fv2 linear 0,00 0,001 0,28 0,28

MySVM Fv1 polynomial 0,00 100.000 0,000 0,45 0,22

MySVM Fv3 polynomial 0,00 100.000 0,000 0,38 0,35

MySVM Fv2 polynomial 0,00 100.000 0,000 0,37 0,21

LibSVM Fv1 Poly 0,00 0,001 0,28 0,29

LibSVM Fv3 Poly 0,00 0,001 0,57 0,57

LibSVM Fv2 Poly 0,00 0,001 0,39 0,27

MySVM Fv1 epachnenikov 0,00 100.000 0,000 0,54 0,17

MySVM Fv3 epachnenikov 0,00 100.000 0,000 0,56 0,19

MySVM Fv2 epachnenikov 0,00 100.000 0,000 0,54 0,16

LibSVM Fv1 sigmoid 0,00 0,001 0,22 0,22

LibSVM Fv3 sigmoid 0,00 0,001 0,56 0,57

LibSVM Fv2 sigmoid 0,00 0,001 0,28 0,28

Table 3.9 SVM type versus C and feature set

svm

type

file kernel

type

C max

iterations

epsilon training

perf.

test perf.

MySVM Fv1 Dot 0,00 100.000 0,000 0,26 0,26

MySVM Fv3 Dot 0,00 100.000 0,000 0,30 0,29

MySVM Fv2 Dot 0,00 100.000 0,000 0,26 0,26

LibSVM Fv1 Rbf 0,00 0,001 0,31 0,29

LibSVM Fv3 Rbf 0,00 0,001 0,51 0,52

30

LibSVM Fv2 Rbf 0,00 0,001 0,28 0,28

MySVM Fv1 Dot 10,00 100.000 0,000 0,22 0,23

MySVM Fv3 Dot 10,00 100.000 0,000 0,27 0,26

MySVM Fv2 Dot 10,00 100.000 0,000 0,21 0,2

LibSVM Fv1 Rbf 10,00 0,001 0,66 0,26

LibSVM Fv3 Rbf 10,00 0,001 0,56 0,56

LibSVM Fv2 Rbf 10,00 0,001 0,28 0,28

MySVM Fv1 Dot 20,00 100.000 0,000 0,21 0,2

MySVM Fv3 Dot 20,00 100.000 0,000 0,26 0,27

MySVM Fv2 Dot 20,00 100.000 0,000 0,18 0,18

LibSVM Fv1 Rbf 20,00 0,001 0,83 0,25

LibSVM Fv3 Rbf 20,00 0,001 0,56 0,57

LibSVM Fv2 Rbf 20,00 0,001 0,28 0,28

MySVM Fv1 Dot 100,00 100.000 0,000 0,20 0,2

MySVM Fv3 Dot 100,00 100.000 0,000 0,21 0,2

MySVM Fv2 Dot 100,00 100.000 0,000 0,16 0,16

LibSVM Fv1 Rbf 100,00 0,001 1,00 0,22

LibSVM Fv3 Rbf 100,00 0,001 0,57 0,57

LibSVM Fv2 Rbf 100,00 0,001 0,28 0,28

MySVM Fv1 Dot 300,00 100.000 0,000 0,20 0,2

MySVM Fv3 Dot 300,00 100.000 0,000 0,18 0,17

MySVM Fv2 Dot 300,00 100.000 0,000 0,15 0,14

LibSVM Fv1 Rbf 300,00 0,001 1,00 0,22

LibSVM Fv3 Rbf 300,00 0,001 0,58 0,58

LibSVM Fv2 Rbf 300,00 0,001 0,28 0,28

As obviously seen in Table 3.8, MySVM very easily overfits except “dot” kernel

type. Also MySVM's performance is generally lower then LibSVM. From Table 3.9

it is understood that performance of MySVM is not good. Though LibSVM overfits

31

sometimes, it exceeds 50% but MySVM even cannot increase its performance to

50%. As a result, LibSVM is better for this thesis.

3.5.2.2 Feature Set

Feature set is decided by kernel type and C experiments.

Figure 3.13 Performance chart according to kernel type and feature set.

32

Figure 3.14 Performance chart according to C and feature set.

In Figure 3.13 Fv1 and Fv2 are equal, Fv3 is by far the best. In Figure 3.14 even

Fv1 seems better then Fv2, it loses because of over fitting. Fv3 is chosen obviously.

Whole detailed tables of charts are under Appendix.

33

3.5.2.3 Kernel Type

Kernel type is determined by C experiment.

Figure 3.15 Performance chart according to C and kernel type.

In Figure 3.15 “poly“ is definitely bad. “linear” needs 7 times more time than

others but no extra performance in return. When “sigmoid” compared to “rbf” it has

slightly low performance but “rbf” chosen because it is a more general solution.

Whole detailed tables of charts are under Appendix.

34

3.5.2.4 C

After determining SVM type, kernel type and feature set, C is experimented.

Figure 3.16 Performance chart according to C.

From Figure 3.16, performance and C seems to have direct proportion. But after a

point, performance increment is not sufficient. So it is a good choice to set C equal

5000, not to let it increase more, as it is the most important reason of over fitting.

Whole detailed tables of charts are under Appendix.

35

3.5.2.4 Epsilon

Epsilon is experimented with C.

Table 3.10 Epsilon versus C

svm

type

file kernel

type

C max

iterations

epsilon training

perf.

test perf.

LibSVM Fv3 Rbf 0,00 0,010 0,51 0,52

LibSVM Fv3 Rbf 0,00 0,100 0,51 0,52

LibSVM Fv3 Rbf 0,00 0,500 0,52 0,52

LibSVM Fv3 Rbf 300,00 0,010 0,58 0,58

LibSVM Fv3 Rbf 1000,00 0,010 0,58 0,58

LibSVM Fv3 Rbf 5000,00 0,010 0,60 0,6

LibSVM Fv3 Rbf 300,00 0,100 0,57 0,58

LibSVM Fv3 Rbf 1000,00 0,100 0,58 0,58

LibSVM Fv3 Rbf 5000,00 0,100 0,60 0,6

LibSVM Fv3 Rbf 300,00 0,500 0,57 0,58

LibSVM Fv3 Rbf 1000,00 0,500 0,58 0,58

LibSVM Fv3 Rbf 5000,00 0,500 0,60 0,6

LibSVM Fv3 Rbf 1000,00 1,000 0,58 0,58

LibSVM Fv3 Rbf 1000,00 2,000 0,58 0,57

LibSVM Fv3 Rbf 1000,00 5,000 0,12 0,12

There is almost no difference for several values of epsilon, seen from Table 3.10.

So default value 0.001 is leaved as it is.

3.5.3 Summary

Classifier is constructed with the parameters LibSVM, Fv3, rbf, C = 5000 and

epsilon = 0.001 and achieved training and test performances of 60%. Performance is

enough for such kind of classifications. Increasing the performance carries a huge

36

risk of over fitting and probably when it is applied to real environment, performance

drops dramatically, just like in the experiments.

3.5.4 Applying Model

Figure 3.17 Model application.

Figure 3.17 shows the organization of model application. When a player, kicker,

needs to decide where to kick the corner kick, player uses the decision process

described in Figure 3.17. SVM needs two parameters to apply the model, the model

and data. Model is produced before, in model construction phase. Kicker player

prepares scene data and same preprocessing step is applied to the scene data. SVM is

run with model and processed scene data and produces the direction as output which

is the classification result. Using the classification result, kicker players kicks the ball

into the classified direction.

Constructed model is integrated into Dainamite's source code, as it will use

RapidMiner. After 9000 corner kicks, the result is being shown in Table 3.11.

37

Table 3.11 Applying the model

Direction Counter

Attack

Goal Kick

In

Own

Off

Side

Other Out Time

Out

Total

1 792 305 59 140 65 149 62 1572

2 1199 323 91 229 104 191 82 2219

3 932 215 83 205 125 108 63 1731

4 483 92 40 64 51 57 6 793

5 576 74 49 157 117 54 29 1056

6 743 81 94 188 214 79 38 1437

Total 4725 1090 416 983 676 638 280 8808

Successful results to be calculated, Dainamite's performance in corner kicks

increased from 14.2% to 20.2%, i.e. there is a performance increment like 40%.

When constraints of Dainamite team are considered with Wright Eagle's

perfection, it can be said that Dainmite's passing is really bad and Wright Eagle

mostly counter attacks. With this improvement, simple passing errors are decreased

and inherently there is chance to use the ball more wisely.

38

CHAPTER FOUR

CONCLUSION

In this thesis, it is aimed to decide where to kick the ball in a corner kick.

RoboCup soccer simulation server and RoboCup teams are used. Decision making is

performed with Support Vector Machine classification which implemented in Rapid

Miner software.

Raw data is converted into meaningful values called features. Three different

feature sets are proposed and experimented. A very big data set about a size of

98.168 corner kicks is gathered. During data gathering, a secondary software is used

to play matches consecutively. 15% of the data set is separated as test set and

remaining is used as training set. Performance is evaluated on both training and test

sets.

Support Vector Machine is constructed and the model is produced. Classification

performance on training and test sets are 60%. Experiments about SVM type, feature

set and SVM parameters are performed. LibSVM as SVM type, feature version 3 as

feature set are preferred. For SVM parameters, rbf for kernel type, 5000 for C, 0.001

for epsilon is preferred. After model's production, new corner kicks are generated

and model is applied in decision process. Eventually, performance is increased.

Dainamite team cannot play well, cannot react to ball and opponents, testing could

not be done in real environment. Testing in real environment instead of randomly

positioned laboratory conditions would give a more solid result, and probably a

better success rate. When players positioned randomly, such positions are set that

Dainamite team cannot achieve that positions against Wright Eagle in normal game

and these positions exists in data sets. This kind of scenes may not occur in normal

games but due to poor passing and reacting skills of Dainamite testing could be only

done in random positioning. There is no more teams which has open source available

and compatible to latest simulation server version so another team could not be used

instead of Dainamite.

39

4. 1 Future Work

As new teams emerged in RoboCup or existing teams opened their code to public

research, new teams may be included in data set in the future. Each summer

RoboCup tournaments are held. After the tournament, all teams are supposed to be

compatible to the latest soccer server version. New teams may be used to extend the

dataset.

Corner kick in soccer can be improved by set plays. As mentioned before,

positioning of players excluded but in future it may also be implemented although it

is definitely a separate subject to study on. To implement positioning, more teams

and obviously more corner kicks will be needed. In that case a more compressive

modeling shall be designed.

40

APPENDIX A

EXPERIMENT RESULTS

Table A.1 Kernel type and feature set

svm

type

file kernel

type

C max

iterations

epsilon training

perf.

test perf.

LibSVM Fv1 Rbf 0,00 0,001 0,45 0,31

LibSVM Fv3 Rbf 0,00 0,001 0,51 0,50

LibSVM Fv2 Rbf 0,00 0,001 0,31 0,34

LibSVM Fv1 linear 0,00 0,001 0,28 0,29

LibSVM Fv3 linear 0,00 0,001 0,56 0,57

LibSVM Fv2 linear 0,00 0,001 0,28 0,28

LibSVM Fv1 poly 0,00 0,001 0,28 0,29

LibSVM Fv3 poly 0,00 0,001 0,57 0,57

LibSVM Fv2 poly 0,00 0,001 0,39 0,27

LibSVM Fv1 sigmoid 0,00 0,001 0,22 0,22

LibSVM Fv3 sigmoid 0,00 0,001 0,56 0,57

LibSVM Fv2 sigmoid 0,00 0,001 0,28 0,28

Table A.2 Feature set and C

svm

type

file kernel

type

C max

iterations

epsilon training

perf.

test perf.

LibSVM Fv1 Rbf 0,00 0,001 0,31 0,29

LibSVM Fv3 Rbf 0,00 0,001 0,51 0,52

LibSVM Fv2 Rbf 0,00 0,001 0,28 0,28

LibSVM Fv1 Rbf 10,00 0,001 0,66 0,26

LibSVM Fv3 Rbf 10,00 0,001 0,56 0,56

LibSVM Fv2 Rbf 10,00 0,001 0,28 0,28

41

LibSVM Fv1 Rbf 20,00 0,001 0,83 0,25

LibSVM Fv3 Rbf 20,00 0,001 0,56 0,57

LibSVM Fv2 Rbf 20,00 0,001 0,28 0,28

LibSVM Fv1 Rbf 100,00 0,001 1,00 0,22

LibSVM Fv3 Rbf 100,00 0,001 0,57 0,57

LibSVM Fv2 Rbf 100,00 0,001 0,28 0,28

LibSVM Fv1 Rbf 300,00 0,001 1,00 0,22

LibSVM Fv3 Rbf 300,00 0,001 0,58 0,58

LibSVM Fv2 Rbf 300,00 0,001 0,28 0,28

Table A.3 Kernel type and C

svm

type

file kernel

type

C max

iterations

epsilon training

perf.

test perf.

LibSVM Fv3 Rbf 10,00 0,001 0,56 0,56

LibSVM Fv3 Linear 10,00 0,001 0,57 0,57

LibSVM Fv3 Poly 10,00 0,001 0,28 0,28

LibSVM Fv3 sigmoid 10,00 0,001 0,55 0,56

LibSVM Fv3 Rbf 20,00 0,001 0,56 0,57

LibSVM Fv3 Linear 20,00 0,001 0,57 0,57

LibSVM Fv3 Poly 20,00 0,001 0,28 0,28

LibSVM Fv3 sigmoid 20,00 0,001 0,55 0,56

LibSVM Fv3 Rbf 100,00 0,001 0,57 0,57

LibSVM Fv3 Linear 100,00 0,001 0,57 0,57

LibSVM Fv3 Poly 100,00 0,001 0,28 0,28

LibSVM Fv3 sigmoid 100,00 0,001 0,56 0,57

LibSVM Fv3 Rbf 300,00 0,001 0,58 0,58

LibSVM Fv3 Linear 300,00 0,001 0,57 0,57

LibSVM Fv3 Poly 300,00 0,001 0,28 0,28

LibSVM Fv3 sigmoid 300,00 0,001 0,56 0,57

42

Table A.4 C

svm

type

file kernel

type

C max

iterations

epsilon training

perf.

test perf.

LibSVM Fv3 Rbf 10,00 0,001 0,56 0,56

LibSVM Fv3 Rbf 20,00 0,001 0,56 0,57

LibSVM Fv3 Rbf 100,00 0,001 0,57 0,57

LibSVM Fv3 Rbf 300,00 0,001 0,58 0,58

LibSVM Fv3 Rbf 1000,00 0,001 0,58 0,58

LibSVM Fv3 Rbf 5000,00 0,001 0,60 0,6

LibSVM Fv3 Rbf 10000,00 0,001 0,61 0,6

LibSVM Fv3 Rbf 20000,00 0,001 0,61 0,61

43

REFERENCES

Busuttil S. (2003). Support vector machines. Retrieved September 10, 2010, from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.7930.

Chang, C. C., Lin, C. J. (2001). LIBSVM: a Library for Support Vector Machines.

Retrieved Jun 18, 2010, from http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf.

Chen M., Foroughi E., Heintz F., Huang Z. X., Kapetanakis S., Kostiadis K., Kummeneje

J., Noda I., Obst O., Riley P., Steffens T., Wang Y., & Yin X.. (July 26, 2002).

RoboCup Soccer Server User Manual: for Soccer Server version 7.08. Retrieved May 2,

2010, from http://sourceforge.net/projects/sserver.

Cortes, C., & Vapnik, V. (1995). Support-vector network. Machine Learning, 20, 273-

297.

Joachims, T. (1999). Advances in kernel methods: Support vector learning. Making large-

Scale SVM Learning Practical. In Advances in Kernel Methods - Support Vector

Learning. 169-183

Howley, T., & Madden, M. G. (2005). The genetic kernel support vector machine:

Description and evaluation. Artificial Intelligence Review, 24 (3), 379-395.

Hsu, C. W., & Lin, C. J. (2002). A comparison of methods for multiclass support vector

machines. IEEE Transactions on Neural Networks, 20, 415-425.

Kitano H., & Asada M. (1998). RoboCup Humanoid Challenge: That’s One Small Step for

A Robot, One Giant Leap for Mankind. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS-98)

Osuna, E. E., Freund R., & Girosi F. (March 1997). Support vector machines: Training

and applications. Retrieved September 10, 2010, from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.418.

44

Riley, D. (2009). Among American Kids Ages 2-17, 82 Percent Report They Are Gamers,

retrieved Sep. 5, 2010, http://www.npd.com/press/releases/press_091202.html.

Ross, D. (2010). Great apes ‘play’ tag to keep competitive advantage, retrieved Sep. 7,

2010,

http://www.port.ac.uk/aboutus/newsandevents/frontpagenews/title,115359,en.html.

Shi, K., Bai, A., Tai, Y., & Chen, X. (Mar., 2009). WrightEagle2009 2D Soccer Simulation

Team Description Paper. Retrieved Feb., 10, 2010, from

http://www.wrighteagle.org/en/robocup/2D/tdps/WrightEagle2009_2D_Soccer_Simulat

ion_Team_Description_Paper.pdf.

Taylor, J. B., James, N., & Mellalieu, S. D. (2003). 33 - Notational Analysis of Corner

Kicks in English Premier League Soccer. Science and football,2003. (5), 225-228

Vapnik, V. (1998). Statistical Learning Theory. USA:Wiley.

Zanjani, M. A., Saharkhiz, S., Nosrati, M., Ghanizadeh, E., Bakhtiarnia, A., Maleki, M. R.,

Montazeri, M. R., Bakhtiari, M., Kaviani, P. (Mar., 2009). HelliBASH 2D Soccer

Simulation Team Description Paper. Retrieved Feb., 10, 2010, from

http://romeo.ist.tugraz.at/robocup2009/tdps/hellibash-rc09-tdp.pdf.

	Parça1
	Parça2
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Parça3

