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DYNAMIC ANALYSIS OF COMPOSITE LAMINATED PLATES 

ABSTRACT 

 

This thesis reports the finite element analysis of dynamic responses of laminated 

composite plates, which are subjected to delamination. Parametric input files are 

developed by using ANSYS software in order to determine the natural frequencies 

and associated mode shapes with the harmonic responses of the laminated composite 

plates. Effects of delamination width and location on the natural frequency of both 

clamped-free and clamped-pinned laminated composite plates and harmonic 

response of a clamped-free laminated composite plate, which have a circular strip 

delamination around a circular hole delamination, are investigated. Comparisons 

with the results in literature verify the validity of the present study. As a result, it is 

seen that the natural frequency decreases in the existence of the delamination and the 

decreasing level depends on the width and location of the delamination. 

 

Keywords: Composite plate, delamination, natural frequency, dynamic response 
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TABAKALI KOMPOZĐT PLAKALARIN DĐNAMĐK ANALĐZĐ 

ÖZ 

 

Bu tez, delaminasyona uğramış tabakalı kompozit plakaların dinamik cevaplarının 

sonlu eleman analizlerini ortaya koymaktadır. Tabakalı kompozit plakaların 

harmonik yanıtları ile birlikte doğal frekanslarını ve ilgili mod şekillerini hesaplamak 

için ANSYS yazılımı kullanılarak parametrik girdi dosyaları geliştirilmiştir. 

Ankastre-serbest ve ankastre-kayar mesnetli tabakalı kompozit plakalarda 

delaminasyon genişliğinin ve konumunun doğal frekansa etkisi ve dairesel boşluk 

etrafında dairesel şerit delaminasyonuna sahip ankastre-serbest mesnetli tabakalı bir 

kompozit plakanın harmonik yanıtı incelenmiştir. Literatürdeki sonuçlarla yapılan 

karşılaştırmalar bu çalışmanın geçerliliğini doğrulamaktadır. Sonuç olarak, 

delaminasyon varlığında doğal frekansın azaldığı ve azalma derecesinin 

delaminasyon genişliğine ve konumuna bağlı olduğu görülmüştür. 

 

Anahtar sözcükler:  Kompozit plaka, delaminasyon, doğal frekans, dinamik cevap 
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CHAPTER ONE 

INTRODUCTION 

 

Along with the progress of industry, the quality of engineering of the structural 

materials has continued to improve while their harms have continued to decrease. 

Cause of their high stiffness and strength to low weight, the use of composite 

materials especially in automotive, construction and aerospace industries and various 

machine components has been increasing considerably in the last decades.  

 

However, the mechanical properties of composite materials may degrade severely 

in the presence of damage. It is well known that delamination is one of the most 

important failure modes of composite materials. Manufacturing defects such as air 

entrapment or insufficient resin during fabrication, external impacts, or compression 

loads may cause delamination in composite plates. These delaminations and their 

further extensions lead to loss of stiffness and strength of the composite materials. 

Decreasing of the stiffness also affects the vibration characteristics of the structure. 

This decreasing level depends on the size, location, and shape of the delamination in 

the composite materials. In the design stage, it is very important to determine the 

natural frequencies since the resonance phenomena occurs when the operating 

frequency is close to one of the natural frequencies of the structure.(Gören Kıral, 

2009) 

 

Dynamic behaviors of the laminated composite structures have been investigated 

by many researchers with analytical, numerical, and experimental methods according 

to the type of the problem. Most of the publications of dynamic behaviors of 

laminated composite structures are based on the classical laminated plate theory. In 

this theory, the transverse shear deformation effect is ignored. Qatu (1991) published 

results for the natural frequencies of laminated composite plates having rectangular 

shapes under different boundary conditions. Qatu (1994) published also results for 

the natural frequencies of laminated plates having triangular and trapezoidal shape. 
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However, it is difficult to obtain exact analytical solutions for the multilayered 

composites having arbitrary lamination sequence with different boundary conditions. 

This difficulty increases considerably in the presence of delamination. As a result, 

computational approaches, e.g. finite element method, are used to obtain the exact 

solutions for these problems. 

  

Sankar (1991) modeled a delaminated beam as two sublaminates by offset finite 

element method. Rikards (1993) developed a finite superelement model for 

composite beams and plates, each layer being considered as a simple Timoshenko 

beam. Gadelrab (1996) discussed the effect of the delamination length and location 

on the natural frequencies of composite laminated beam under different boundary 

conditions using the finite element method. Zak et al. (2000), Ousset and Roudolff 

(2000) developed finite element models for beams and plates with boundary 

delamination. Lee (2000) developed a finite element model using a layer wise theory 

to formulate the free vibration analysis of a delaminated composite beam and found 

that the layer wise approach is adequate for vibration analysis of delaminated 

composite beams. Hua et al. (2002) investigated the effects of delamination on the 

vibration characteristic of composite laminated plates using a high-order finite 

element, which satisfies the zero transverse shear strain condition on the top and 

bottom surfaces of laminated plates. Yam et al. (2004) established a three-

dimensional finite element model for multilayered composites with internal 

delamination, which virtual elements were adopted in the region of the delamination 

to prevent element penetration. Alnefaie (2009) calculated natural frequencies and 

modal displacements of rectangular delaminated composite plates and showed that 

the good agreement between the numerical results and available experimental data. 

 

In this thesis, dynamic responses of laminated composite plates, which are 

subjected to delamination, are investigated. Parametric input files are developed by 

using ANSYS software in order to determine the natural frequencies and associated 

mode shapes with the harmonic responses of the laminated composite plates. There-

dimensional finite element model of laminated composite plates are formed and the 

natural frequencies are determined. Good agreements are seen between the numerical 
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results and the available experimental data. In the light of this compatibility, the 

finite element models having different delamination width and location are formed 

and effects of delamination width and location on the natural frequency of both 

clamped-free and clamped-pinned laminated composite plates are determined. In 

addition to these, harmonic response of a clamped-free laminated composite plate, 

which has a circular strip delamination around a circular hole delamination, are 

investigated. 
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CHAPTER TWO 

LAMINATED COMPOSITE MATERIALS 
 

2.1 Introduction to Laminated Composite Materials 

  

Laminated composite materials consist of layers of at least two different materials 

that are bonded together. Lamination is used to combine best aspects of the 

constituent layers and bonding material in order to achieve a more useful material. 

The properties that can be emphasized by lamination are strength, stiffness, low 

weight, corrosion resistance, wear resistance, thermal insulation, acoustical 

insulation, etc. (Jones, 1975) 

 

Commonly accepted types of laminated composite materials are bimetals, clad 

metals, laminated glass, plastic-based laminates, and laminated fiber-reinforced 

composite materials. These types of laminated composite materials are described and 

discussed in the following subsections. 

 

2.2 Bimetals 

 

Bimetals are laminates of two different metals that usually have significantly 

different coefficients of thermal expansion. Under change in temperature, bimetals 

warp or deflect a predictable amount and are therefore well suited for use in 

temperature-measuring devices. For example, a simple thermostat can be made from 

a cantilever strip of two metals having different coefficients of thermal expansion 

bonded together. 

 

2.3 Clad Metals 

 

The cladding of one metal with another is done to obtain the best properties of 

both. For example, high-strength aluminum alloys do not resist corrosion; however, 

some aluminum alloys are very corrosion resistant. Thus, a high-strength aluminum 
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alloy covered with a corrosion-resistant aluminum alloy is a composite material with 

both high strength and the corrosion resistant. 

 

2.4 Laminated Glass 

 

The concept of protection of one layer of material by another as described in the 

previous subsection has been extended in a rather unique way to safety glass, which 

is a layer of polyvinyl butyral sandwiched between two layers of glass. The glass 

protects the plastic from scratching and gives it stiffness. The plastic provides the 

toughness to the glass. Thus, together, the glass and plastic protect each other in 

different ways and lead to a composite material with properties that are vastly 

improved over those of its constituents. In fact, the high-scretchability property of 

the plastic is eliminated because it is the inner layer. 

  

2.5 Plastic Based Laminates 

 

Many materials can be saturated with various plastics for a variety of purposes. 

Formica is a good example of compound composite materials. It is merely layers of 

heavy kraft paper impregnated with a phenolic resin overlaid by a plastic-saturated 

decorative sheet, which is overlaid with a plastic-saturated cellulose mat. Heat and 

pressure are used to bond the layers together. A useful variation on theme is obtained 

when an aluminum layer is placed between the decorative layer and kraft paper layer 

to dissipate quickly the heat of, for example, a burning cigarette or hot pan on a 

kitchen counter instead of leaving a burned spot.  

 

2.6 Laminated Fiber-Reinforced Composite Materials 

 

Layers of fiber-reinforced material are built up with the fiber directions of each 

layer typically oriented in different directions to give different strengths and stiffness 

in the various directions. Thus, the strength and stiffness of the laminated fiber-



 

 

6 

reinforced composite can be tailored to the specific design requirements of the 

structural element being built.  

 

The basic building block of a laminate is a lamina which is a flat (sometimes 

curved as in a shell) arrangement of unidirectional fibers or woven fibers in a matrix. 

Two typical flat laminas along with their principal material axes, which are parallel 

and perpendicular to the fiber directional, are shown in Figure 2.1. The fibers are the 

principal reinforcing or load-carrying agent and are typically strong and stiff. The 

matrix can be organic, metallic, ceramic, or carbon. The function of the matrix is to 

support and protect the fibers and provide a means of distributing load among, and 

transmitting load between, the fibers. 

 

                                   Figure 2.1 Two principal types of laminae (Jones, 1975) 

 

A laminate is a bonded stack of lamina with various orientations of principal 

material directions in the laminae. The layers of a laminate are usually bonded 

together by the same matrix material that is used in the individual lamina. Laminates 

can be composed of the plates of different materials or layers of fiber-reinforced 

laminae.  

 

A major purpose of lamination is to tailor the directional dependence of strength 

and stiffness of a composite material to match the loading environment of the 

structural element. Laminates are uniquely suited to this objective because the 

principal material directions of each layer can be oriented according to need. 
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CHAPTER THREE 

DELAMINATION IN COMPOSITE MATERIALS 
 

3.1 Introduction to Delamination in Composite Materials 

 

The use of composite materials, especially in the form of fiber reinforced 

laminated, has been increasing in the design of various structural applications. This is 

mostly caused these materials having a higher strength to weight ratio than the 

ordinary engineering of the structural materials. In spite of their advantages, the 

mechanical properties of composite materials may degrade severely in the presence 

of damage. It is well known that delamination is one of the most important failure 

modes of composite materials. 

  

Manufacturing defects such as air entrapment or insufficient resin during 

fabrication, external impacts, or compression loads may cause delamination in 

composite plates. These delaminations and their further extensions lead to loss of 

stiffness and the strength of the composite materials. Decreasing of the stiffness also 

affects the vibration characteristics of the structure. In addition, in the presence of the 

delamination, buckling load of the material decreases. Therefore, that composite 

material buckles at lower and delamination area growths when the composite 

material is subjected to a compressive load. 

 

3.2 Causes of Delamination in Composite Materials 

 

Commonly accepted causes of delamination in laminated composite materials are 

manufacturing defects, external impacts, and interlaminar stresses. These causes are 

described and discussed in the following paragraphs. 

 

Manufacturing defects such as air entrapments, impurities, improper techniques, 

and insufficient resin during the fabrication can result a separation between the layers 

of laminated composites. 
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High velocity impact causes a significant surface damage, so that it should be 

easily recognized. The area of surface damage increases linearly with the component 

thickness. In addition to the surface damage, it may cause a significant delamination 

around the impact location. 

 

Low velocity impact causes internal delamination. In presence of this damage, it 

is not possible to see a significant sign on the surfaces of the materials. Therefore, 

that internal delaminations and loss of the structural integrity may remain undetected.  

 

Laminated composite materials can exhibit high directional strength properties. 

This advantage enables to designers to align purposely the plies in the direction of 

load. However, when the direction of the load is out of the plies or the load is 

transferred to adjacent plies, interlaminar stresses may cause delamination in the 

laminated composite material. Interlaminar stresses can also be introduced by 

compressive loading. This causes buckling of the plies and subsequently 

delamination in the composite material. 

 

 



9 

CHAPTER FOUR 

THEORY OF ELASTICITY 

 

4.1 Constitutive Equations in Local Coordinates 

 

Assume that the individual lamina is orthotropic with fiber orientation along x1 

axis of the local material coordinate system x1, x2, x3 as shown. 

 

The strains in local material coordinates are define as 
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where u, v, w are displacements in the x1, x2, x3 directions, respectively. 

 

                                               Figure 4.1 Composite plate (Alnefai, 2009) 

 

The generalized Hooke’s law as referred to the local coordinate system can be 

written as 
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where E1, E2, and E3 are the elasticity modules along the principal material axes; ν12 

is the poisson ratio that characterizes the decrease in the x2 direction during the 
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tension applied in the x1 direction; ν21 is the poisson ratio that characterizes the 

decrease in the x1 direction during the tension applied in the x2 direction, and so on; 

and G23, G31, and G12 are the shear modules that characterize the changes of angles 

between the principal direction x2, x3, x1 and x3, x1 , x2, respectively. Due to the 

symmetry, the following relations obtain: 

122211 νν EE =    233322 νν EE =    311133 νν EE =             (4.6) 

 

The strain-stress relations in local material coordinates for an orthotropic lamina 

are 

 

 

 

                   

 

                              (4.7)       

where, the terms S11, S22, and S33 each represent extensional response to an individual 

applied stress σ1, σ2, and σ3, respectively in the same direction. The terms S44, S55, 

and S66 represent shear strain response to an applied shear stress in the same plane. 

The terms S12, S13, and S23 represent coupling between dissimilar normal stresses and 

normal strains (extension-extension coupling more commonly known as the poisson 

effect). Note that there is no interaction between normal stresses and shear strains. 

Similarly, there is no interaction between shear stresses and shear strains in different 

planes. The terms of the compliance matrix are  
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The stress-strain relations in local material coordinates for an orthotropic lamina 

are 

 

 

 

 

 

                                            (4.8) 

 

Note that stiffness matrix is inverse of the compliance matrix. The terms of the 

stiffness matrix are 
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In summary, the constitutive equation in the local coordinate system for the 

lamina is 
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of stress and strain along the main directions in local coordinate system, respectively. 

[ ]C  is the stiffness matrix. 
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4.2 Constitutive Equations in Global Coordinates 

 

The constitutive equation in the global coordinate system can be expressed as 

{ } [ ]{ } [ ][ ][ ] { }εσσ 1* .. −== ACAA                 (4.10)  

where { } ( )T
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respectively. [ ]A  is transform matrix between the local and global coordinate system. 
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The stress-strain relations in global coordinate system for an orthotropic lamina 

are 
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The strain-stress relations in global coordinate system for an orthotropic lamina 

are 
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The terms of the transformed compliance matrix are 

 

( ) θθθθ 4
22

22
6612

4
1111 sinsincos2cos SSSSS +++=  

 
 

( ) ( ) θθθθ 22
661211

44
1212 sincossincos SSSSS −+++=  
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2
1313 sincos SSS +=   

 

θθθθ 3
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3
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2
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3
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 CHAPTER FIVE 

FINITE ELEMENT MODEL  
  

5.1 Element Model Description 

 

The finite element model used for studying the dynamic behavior of multi-layered 

composite plates (Figure 4.1) is an eight-noded rectangular solid thin plate element. 

For each node, there are three degrees of freedom, i.e., translations along the global 

coordinate axes of x, y, and z. The local element coordinate system (x1, x2, and x3) is 

arranged with the first axis being coincident with the fiber direction.  

 

5.2 Expressions for Displacement and Strain 

 

For an eight-node finite element with three degrees of freedom per node, the 

displacement field over an element is given by 

{ } [ ]{ }∑
=

=
8

1i

ii

e N δδ                    (5.1) 

where { }iδ  is the displacement vector at node i and [ ]iN  is the shape matrix. 

 

Therefore, for an eight-node finite element with three degrees of freedom per 

node, the strain field over an element can be expressed as 

{ } [ ]{ }ee B δε =                     (5.2) 

where [ ]B  is the strain-displacement relation matrix. (Bathe, 1982) 

 

5.3 Stress Strain Relationship and Equation of Motion 

 

 According to the equations (4.10) and (5.2), the stresses of an element in the 

global coordinate system can be expressed by the nodal displacements as 

{ } [ ][ ][ ] [ ]{ }ee BACA δσ 1.. −=                   (5.3) 
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 The strain energy of the kth element is 

{ } { } { } [ ]{ }e

k

e

k

Te

k

e
T

Vk

ee

k KdVU δδσε
2

1

2

1
== ∫                 (5.4) 

where { }e

kδ  and [ ]e

kK  represents the displacement vector and the stiffness matrix of 

the kth element, respectively. The total strain energy for a composite plate consisting 

of N elements can be expressed as 

{ } [ ]{ }e

k

e

k

TN

k

e

k

N

k

e

k KUU δδ∑∑
==

==
11 2

1
                 (5.5) 

 

 Therefore, after assembly of nodal displacement of all elements, the total strain of 

a multi-layer composite plate can be expressed as 

{ } [ ]{ }δδ KU
T

2

1
=                    (5.6) 

where{ }δ  and [ ]K  are the global nodal displacement vector and stiffness matrix, 

respectively. 

 

 The kinetic energy of the kth element is 

[ ]
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

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
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T

Vk

e

k

e

k MdVT
...

2

1

2

1
δδδρ                 (5.7) 

where }{
.
e

kδ and ][ e

kM  represent the velocity vector and the mass matrix of the kth 

element, respectively. The total kinetic energy for a composite plate consisting of N 

elements can be expressed as 

[ ]
















== ∑∑
==

.

1

.

1 2

1 e

k

e

k

N

k

T

e

k

N

k

e

k MTT δδ                             (5.8)  

 

Therefore, after assembly of nodal velocities of all elements, the total kinetic 

energy of multi-layer composite plate can be represented as 

[ ]














=

..

2

1
δδ MT

T

                   (5.9) 

where 
.

}{δ and [ ]M  are the global nodal velocity vector and mass matrix, 

respectively.  
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 If the composite plate experiences a harmonic motion with angular frequencyω , 

the kinetic energy of the composite plate will be  

{ } [ ]{ }δδω MT
T2

2

1
=                  (5.10) 

 

 Then, using the Lagrange’s principle the equation of motion free vibration of the 

composite plate is reduced to the eigenvalue problem of  

[ ] [ ]( ){ } 02 =− δω MK                        (5.11)
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CHAPTER SIX 

PROBLEM DEFINITION 

  

6.1 Finite Element Models of Laminated Composite Plates 

 
This section describes the three-dimensional finite element models of laminated 

composite plates are used in this study. These are intact model (Plate 0) and 

delaminated models having different delamination types such as circular strip 

delamination (Plate A), circular hole delamination (Plate B) and the circular strip 

delamination around a circular hole delamination (Plate C). 

 

Three-dimensional finite element Plate 0 and Plate B are designed as sixteen 

volumes. Eight volumes of them are at the top region and other eight volumes are at 

the bottom region. The areas of A1, A2, A3, A4, A5, A6, A7, A8 were the common 

areas of the top and bottom volumes.  

 

Figure 6.1 shows the common areas of intact model, Plate 0, and Figure 6.2 shows 

the common areas of the circular hole delaminated model, Plate B. 

 

 

                     Figure 6.1 The common areas of Plate 0 
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                    Figure 6.2 The common areas of Plate B 

 

Three-dimensional finite element model of Plate A and Plate C are designed as 

thirty-two volumes. Sixteen volumes of them are at the top region and other sixteen 

volumes are at the bottom region. In this design, some areas in the interfaces of this 

top and bottom volumes are not same although these areas has the same dimensions 

and coordinates. In such a manner that, while the areas of A9, A10, A11, A12, A13, 

A14, A15, A16 belong to the bottom volumes , the areas of A17, A18, A19, A20, 

A21, A22, A23, A24 which have the same dimensions and coordinates with above 

areas belong to the upper volumes.  

 

 

                     Figure 6.3 The interfacial areas of Plate A 
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                     Figure 6.4 The interfacial areas of Plate C 

 

Nevertheless, the areas of A1, A2, A3, A4, A5, A6, A7, A8 were the common 

areas of the top and bottom volumes of the Plate A and Plate C. Due to the top and 

bottom volumes do not glue in the interfacial areas, when the volumes mesh, double 

nodes occur at the same coordinates of the interfacial areas.  

 

Figure 6.3 shows the interfacial and common areas of circular strip delaminated 

model, Plate A, and Figure 6.4 shows the interfacial and common areas of the 

circular strip delaminated around a circular delamination model, Plate C. 

 

6.2 Statement of the Problem 

 

In this thesis, it is purposed to investigate the dynamic responses of laminated 

composite plates, which are subjected to delamination. Especially, effects of 

delamination width and location on the natural frequency of both clamped-free and 

clamped-pinned laminated composite plates and in addition to these, harmonic 

response of a clamped-free laminated composite plate, which have a circular strip 

delamination around a circular hole delamination, are investigated. For this purpose, 

parametric input files are developed by using ANSYS software in order to determine 

the natural frequencies and associated mode shapes with the harmonic responses of 

the laminated composite plates. 
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            Figure 6.5  Boundary conditions of the clamped-free plates 

 

           Figure 6.6 Boundary conditions of the clamped-pinned plates 
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CHAPTER SEVEN 

MODEL REFINEMENT AND VERIFICATION 
  

7.1 Model Refinement 

 
The element size has a major significance on the accuracy of the finite element 

results. In case of the element size decreases, accuracy of the finite element analysis 

results increases, but at the same time, the solution time increases with that. Herein, 

selecting of the element size, which gives high accuracy with the minimum solution 

time is important.  

 

A six layer laminated square composite plate with a side length of 178mm and a 

total thickness of 1.58mm is considered. All the ply orientations are equal to 00 and 

the elasticity modules are E1=72.7GPa, E2=E3=7.2GPa, shear modules are 

G12=G13=3.76GPa, G23=2.71GPa, poisson’s ratios are υ12=υ13=0.3, υ23=0.33 and 

density is ρ=1566kgm-3, Lin et al. (1984), Yam et al. (2004), and Alnefaie (2009).  

 

Table 7.1 Natural frequencies (Hz) of the intact [00/00/00/00]s free plate with a side length of 178mm 

and a total thickness of 1.58mm using different meshes. 

Mode Number of elements for each lamina 

  25 100 200 2000 8000 

1 82.75 81.88 81.65 81.52 81.46 

2 111.62 110.43 110.03 109.92 109.90 

3 217.79 202.42 200.12 199.57 199.38 

4 320.93 308.34 304.18 303.01 302.85 

5 465.17 403.69 394.00 392.06 391.65 

 

Table 7.1 shows the natural frequencies of the first five modes for different 

generated mesh sizes. A remarkable change in results is obtained when increasing the 

total number of elements from 25 to 200 elements per layer. Meanwhile, the change 

in natural frequency obtained with 8000 elements in comparison with 2000 is 

negligible. This leads to applying the 2000 elements per layer for each lamina model 

in the subsequent computations to achieve high accuracy and minimum computations 

time.  
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7.2 Model Verification with Results in Literature 

 

To verify the results of the developed model in Section 7.1, the results obtained 

here are compared with experimental work of Lin et al. (1984) and the numerical 

results of Yam et al. (2004), and Alnefaie (2009). Table 7.2 shows the natural 

frequencies for the first five modes of the present analysis and the reported results. 

The present analysis shows close results to the reported results. 

 

Table 7.2 Natural frequencies (Hz) of the intact [00/00/00/00]s free plate 

Mode Present Alnefaie (2009) Yam et al. (2004) Lin et al. (1984) 

   Numerical Numerical Experimental 

1 81.52   81.48   82.26 81.50 

2 109.92 109.20 113.10 107.40 

3 199.57 199.50 207.29 196.60 

4 303.01 300.46 325.28 285.50 

5 392.06 391.40 408.51 382.50 

 

In addition to this verification, another laminated composite plate, which has a 

sixteen-layer with an area of 240x180mm2 and a thickness of 2.08mm, is considered. 

The ply orientations are [00/00/900/900/00/00/900/900]s, elasticity modules are 

E1=125GPa, E2=E3=8.5GPa, shear modules are G12=G13=4.5GPa, G23=3.27GPa, 

poisson’s ratios are υ12=υ13= υ23=0.3 and density is ρ=1550kgm-3, Wei et al. (2004) 

and Alnefaie (2009). The first five natural frequencies of this plate are compared 

with the numerical results and the reported results. Table 7.3 shows the natural 

frequencies for the first five modes of the present analysis and the reported results. 

Again, the present model demonstrates better agreement with the reported results. 

 

Table 7.3 Natural frequencies (Hz) of the intact [00/00/900/900/00/00/900/900]s free plate 

Mode Present Alnefaie (2009) Wei et al. (2004) 
  

   Numerical Numerical Experimental 

1 88.43 89.16 90.53 90 

2 280.89 278.97 279.18 289 

3 332.87 330.35 333.60 318 

4 356.16 354.92 354.23 354 

5 397.61 393.26 397.63 386 
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7.3 Model Verification with Results of Experimental Study 

 

In this section, free vibration response of the clamped-free laminated woven 

composite beams, which have an area of 270x22mm2 and a thickness of 2.5mm, are 

measured by a laser displacement meter and these results are compared with the 

numerical results, which are obtained with the finite element analysis. Four 

laminated composite beams are considered. One of that is intact, and the other beams 

have a circular delamination around a circular hole delamination located at different 

positions. Delamination center locations from the clamped edge are 20mm, 40mm 

and 80mm in the delaminated composite beams. In finite element analysis, diameters 

of the circular hole delamination and the circular strip delamination of these 

delaminated beams are assumed equal and 5mm and 10mm, respectively.  

 

All the ply orientations are equal to 00 and elasticity modules are 

E1=E2=22.32GPa, E3=13.392GPa, shear modules are G12=3.08GPa, G13=G23=1GPa, 

poisson’s ratios are υ12=0.16, υ13=υ23= 0.15 and density is ρ=1830kgm-3. 

 

                           Figure 7.1 Schematic view of experimental setup 
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Schematic view of the experimental setup is shown in Figure 7.1. The Keyence 

LKG150 laser displacement sensor and its controller are used to measure the free 

vibration response of the beam. Free vibration response of the beam is initiated by 

giving 20mm initial displacement at the tip. The free displacement response of the 

beam is measured by the laser sensor for the point 50mm away from the root 

clamped end.  

 

 The free vibration responses of intact and delaminated beams are given in figures, 

which are from Figure 7.2 to Figure 7.5. The fast Fourier transform of the free 

displacement response gives the natural frequency of the beam. Figure 7.2 shows the 

free displacement response and its frequency content of the intact beam. The first 

natural frequency of the intact composite beam is obtained as 16.24Hz. Figure 7.3 

shows the free displacement response of the beam with a delamination located 20mm 

from the root. The natural frequency for this case is obtained as 15.99Hz. A small 

decrease is observed in the first natural frequency due to the delamination. The free 

displacement responses for the beams having delaminations located at 40mm and 

80mm are given in Figure 7.4 and Figure 7.5. As seen from these figures that the first 

natural frequencies are the same with the intact composite beam. The experimental 

results show that the delamination has an influence on the natural frequency of the 

beam when the delamination closes to the clamped end of the beam. 

 

Table 7.4 Comparisons of the numerical and experimental results for the first natural frequencies (Hz) 

of clamped-free beams 

  Numerical Experimental 

Intact Model  19.359 16.24 

λ  10mm Circular Strip Delamination around 5mm Circular Hole Delamination  

20mm  18.735 15.99 

40mm  18.859 16.24 

80mm  19.075 16.24 

 

Table 7.4 lists the first natural frequencies of the clamped-free laminated 

composite beams for the different location of delamination. Again, the present model 

demonstrates better agreement with the experimental results. 

 



 

 

26 

0 0.5 1 1.5 2 2.5 3 3.5 4
-2

-1

0

1

2

3

Time (s)

M
a
g
n
it
u
d
e
 (
m
m
)

0 10 20 30 40 50 60
0

2

4

6

8

Frequency (Hz)

M
a
g
n
it
u
d
e

16.24 Hz

 
            Figure 7.2 Free vibration response of the intact composite beam. 
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            Figure 7.3 Free vibration response of the composite beam, delamination at 20mm.  
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            Figure 7.4 Free vibration response of the composite beam, delamination at 40mm.  
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            Figure 7.5 Free vibration response of the composite beam, delamination at 80mm. 
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CHAPTER EIGHT 

RESULTS AND DISCUSSIONS 
  

8.1 Samples  

 

In this thesis, parametric input files are developed by using ANSYS software in 

order to determine the natural frequencies and associated mode shapes with the 

harmonic responses of the laminated composite plates. There-dimensional finite 

element models of laminated composite plates are formed and effects of 

delamination width and location on the natural frequency of both clamped-free and 

clamped-pinned laminated composite plates are determined. In addition to these, 

harmonic response of a clamped-free laminated composite plate, which have a 

circular strip delamination around a circular hole delamination, is investigated. 

 

An eight-laminated composite plate with an area of 200x200mm2 and the total 

thickness of 2.4mm is considered. All the ply orientations are equal to 00 and 

elasticity modules are E1=E2=22.32GPa, E3=13.392GPa, shear modules are 

G12=3.08GPa, G13=G23=1GPa, poisson’s ratios are υ12=0.16, υ13=υ23= 0.15 and 

density is ρ=1830kgm-3 

 

Three-dimensional finite element models of various laminated composite plates 

are used in this study. These are intact model (Plate 0) and delaminated models 

having different delamination types such as circular strip delamination (Plate A), 

circular hole delamination (Plate B) and the circular strip delamination around a 

circular hole delamination (Plate C). 

 

8.2 Bending Mode Shapes of the Intact Model 

 

In this section, the first eight mode shapes of both clamped-free and clamped-

pinned of the intact composite plate model are investigated, but only the first three 

bending mode shapes are presented. Figure 8.1, Figure 8.2, and Figure 8.3 show the 
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first three bending mode shapes of the clamped-free intact composite plate model, 

respectively, and Figure 8.4, Figure 8.5, and Figure 8.6 show the first three bending 

mode shapes of the clamped-pinned intact composite plate model, respectively. 

 

 

  

Figure 8.1 The 1st bending mode shape of CF  Figure 8.4 The 1st bending mode shape of CP  

 

 

  

Figure 8.2 The 2nd bending mode shape of CF  Figure 8.5 The 2nd bending mode shape of CP 

 

 

  

Figure 8.3 The 3rd bending mode shape of CF  Figure 8.6 The 3rd bending mode shape of CP 
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8.3 Effect of Delamination on Natural Frequency 

 

In this section, the effect of the delamination on the natural frequency of the 

laminated composite plate is examined. Three laminated composite plates are 

considered. One of the plates is intact and named 0, the other plates are named A, B, 

respectively, are damaged with delamination of different types. Plate A has a circular 

strip delamination located at the center of the plate between the fourth and fifth 

layers counting from the bottom of the plate. Plate B has a circular hole delamination 

located at the center of the plate. Plate A has a 20mm circular strip delamination, 

Plate B has a 20mm circular hole delamination. The first eight natural frequencies of 

both clamped-free and clamped-pinned laminated composite plates are determined.   

 

Table 8.1 Numerical results of the natural frequencies (Hz) for the clamped-free plate 

 Intact Model Circular Strip Delamination  Circular Hole Delamination 

  Diameter 20 mm Diameter 20 mm 

Mode Plate 0 Plate A Plate B 

1 34.293 34.277 34.162 

2 111.33 111.13 110.68 

3 215.30 214.51 211.53 

4 274.98 274.05 272.64 

5 397.43 395.10 389.96 

6 523.62 519.40 508.73 

7 605.86 599.37 592.68 

8 654.76 651.04 641.39 

 

Table 8.2 Numerical results of the natural frequencies (Hz) for the clamped-pinned plate 

 Intact Model Circular Strip Delamination  Circular Hole Delamination 

  Diameter 20 mm Diameter 20 mm 

Mode Plate 0 Plate A Plate B 

1 150.65 150.15 149.05 

2 202.82 202.15 201.38 

3 457.16 452.45 443.49 

4 490.57 485.54 480.55 

5 533.12 530.03 523.01 

6 726.46 718.58 710.39 

7 935.96 912.72 903.02 

8 1031.9 1010.4 988.61 
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Table 8.1 lists the natural frequencies for the clamped-free plates with different 

types of delamination and Table 8.2 lists the natural frequencies for the clamped-

pinned plates with different types of delamination.  

 

It can be seen that in the existence of delamination, the natural frequency 

decreases. It is also seen that decrease of the natural frequencies is not the same for 

different modes. 

 

8.4 Effect of Delamination Width on Natural Frequency 

 

In this section, the effect of the delamination width on the natural frequency of the 

laminated composite plate is examined. Ten laminated composite plates are 

considered. One of the plates is intact and named 0. The other plates have a circular 

strip delamination located at the center of the plate between the fourth and fifth 

layers counting from the bottom of the plate. In this study, dw indicates ratio of the 

delamination diameter to the plate length. The diameter of the circular strip 

delamination is changed to 20mm, 30mm, 40mm, 50mm, 60mm, 70mm, 80mm, 

90mm, and 100mm, respectively.  

 

Table 8.3 Numerical results of the first eight natural frequencies (Hz) for different delamination width 

for the clamped-free plate 

  Intact Model Circular Strip Delamination 

  dw 

Mode Plate 0 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 

1 34.293 34.277 34.270 34.261 34.243 34.214 34.163 34.089 33.982 33.836 

2 111.33 111.13 111.02 110.96 110.88 110.74 110.52 110.21 109.74 109.11 

3 215.30 214.51 214.19 214.28 213.98 213.86 213.61 213.19 212.46 211.28 

4 274.98 274.05 273.47 273.11 272.59 271.81 270.64 269.04 266.96 264.43 

5 397.43 395.10 393.68 393.21 392.82 392.32 391.49 390.02 387.50 383.40 

6 523.62 519.40 518.29 517.79 517.06 515.70 512.81 507.54 498.53 484.97 

7 605.86 599.37 595.79 592.11 585.85 575.94 561.92 544.92 527.09 510.88 

8 654.76 651.04 646.91 645.62 644.61 643.38 641.28 637.61 631.55 622.29 
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Table 8.4 Numerical results of the first eight natural frequencies (Hz) for different delamination width 

for the clamped-pinned plate 

  Intact Model Circular Strip Delamination 

  dw 

Mode Plate 0 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 

1 150.65 150.15 149.95 149.84 149.71 149.50 149.14 148.60 147.81 146.68 

2 202.82 202.15 201.85 201.58 201.15 200.46 199.39 197.88 195.86 193.34 

3 457.16 452.45 452.18 451.95 451.42 450.26 447.70 442.90 434.46 422.47 

4 490.57 485.54 483.20 481.08 477.58 472.03 463.95 453.64 441.94 429.03 

5 533.12 530.03 527.15 526.23 525.50 524.62 523.17 520.73 516.79 510.86 

6 726.46 718.58 715.07 710.91 704.06 694.43 682.74 670.90 660.05 650.43 

7 935.96 912.72 906.52 893.87 871.65 840.60 804.39 768.98 737.64 692.58 

8 1031.9 1010.4 1003.3 999.51 994.12 984.72 966.91 936.79 849.47 711.94 

 

The natural frequencies are computed for the first eight modes of both clamped-

free and clamped-pinned laminated composite plates. Table 8.3 and Table 8.4 list the 

natural frequencies for the clamped-free and clamped-pinned laminated composite 

plates with different width of central strip delamination, respectively. It can be seen 

that the natural frequencies decrease with the increase of delamination width. 

 

The relationship between the frequency and delamination width is investigated. 

Figures, which are from Figure 8.7 to Figure 8.12, show the percentage changes in 

the first eight natural frequencies as a function of the delamination width, where the 

height of the column represents the absolute value of the percentage change of 

natural frequency, i.e. 

100
intact

intactddelaminate ×
−

=
ω

ωω
κ  

 

Figure 8.7 and Figure 8.9 show the percentage changes in natural frequencies for 

the first five modes as a function of delamination width for the clamped-free and 

clamped-pinned plate, respectively, and Figure 8.8 and Figure 8.10 show the 

percentage changes in natural frequencies for the higher other modes as a function of 

delamination width for the clamped-free and clamped-pinned plate, respectively. 
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Figure 8.7 Percentage changes of the natural frequencies for clamped-free plates with delamination 

of different widths for modes 1–5. 

 

 

 

Figure 8.8 Percentage changes of the natural frequencies for clamped-free plates with delamination 

of different widths for modes 6–8 
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Figure 8.9 Percentage changes of the natural frequencies for clamped-pinned plates with 

delamination of different widths for modes 1–5. 

 

 

 

Figure 8.10 Percentage changes of the natural frequencies for clamped-pinned plates with 

delamination of different widths for modes 6–8 
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Figure 8.11 Percentage changes of the first three bending natural frequencies for clamped-free 

plates with delamination of different widths 

 

 

 

Figure 8.12 Percentage changes of the first three bending natural frequencies for clamped-pinned 

plates with delamination of different widths 
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It is noticed that the percentage changes in the natural frequencies increase with 

the increase of delamination width. It is seen that the decrease of the natural 

frequencies is not the same for different modes. From Figure 8.7, Figure 8.8 and 

Figure 8.9, Figure 8.10 for the clamped-free and clamped-pinned plates, respectively, 

it is also seen that effect of delamination width on the natural frequencies is very 

small for the five fist modes and high for the other modes.  

 

Figure 8.11 and Figure 8.12 show the percentage changes in the first three 

bending natural frequencies as a function of the delamination width. From Figure 

8.11, it is seen that decrease of the natural frequencies is relatively large for mode 7, 

which is the third bending mode of the clamped-free plate, and the change of the 

natural frequencies is almost negligible in mode 1 and mode 3, which are the first 

and second bending modes of the clamped-free plate, respectively. From Figure 8.12, 

it seen that decrease of the natural frequencies is relatively large for mode 4 and 

mode 8, which are the second and third bending modes of the clamped-pinned plate, 

respectively, and the change of the natural frequencies is almost negligible in mode 

1, which is the first bending mode of the clamped-pinned plate. 

 

The variation manner of the values is not the same for each plate. The changes of 

the natural frequencies are nearly zero for all the considered cases while the 

delamination width ratio dw is smaller than a certain value. However, the changes of 

the natural frequencies are high for all the considered cases while the delamination 

width ratio dw is higher than a certain value. These indicate that the frequency 

change is insignificant for small delamination while significant for large 

delamination.  

 

Therefore, it is indispensable to analyze the changes of other parameters such 

mode shapes, modal strains, etc., for effective detection of frequency changes in 

delaminated composite plates.  
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8.5 Effect of Delamination Location on Natural Frequency 

  

In this section, the effect of the delamination location on the first and second 

bending natural frequency of the laminated composite palate is examined. Eighteen 

laminated composite plates are considered. One of that is intact, and the other plates 

have a circular hole delamination located at different positions. In this study, λ/l 

indicates ratio of the delamination center location to the plate length. The diameter of 

hole delamination are selected 20mm (dw 0.10) and 30mm (dw 0.15).  

 

The natural frequencies are computed for the first two bending modes of both 

clamped-free and clamped-pinned laminated composite plates. Table 8.5 and Table 

8.6 list the natural frequencies for the clamped-free and clamped-pinned laminated 

composite plates with different location of delamination, respectively.  

 

Table 8.5 Numerical results of  the first two bending natural frequencies (Hz) for clamped-free plate 

  Bending Mode 

  1 2  1 2 

Plate 0  34.293 215.30  34.293 215.30 

λ/l  dw 0.10  dw 0.15 

0.10  33.398 211.58  32.547 209.65 

0.15  33.459 212.83  32.650 211.36 

0.20  33.567 213.67  32.807 212.95 

0.25  33.682 213.94  33.019 213.69 

0.30  33.794 213.74  33.242 213.57 

0.35  33.899 213.23  33.459 212.82 

0.40  33.995 212.60  33.662 211.76 

0.45  34.082 212.00  33.852 210.66 

0.50  34.162 211.53  34.026 209.74 

0.55  34.235 211.27  34.189 209.13 

0.60  34.303 211.24  34.340 208.90 

0.65  34.366 211.43  34.485 209.06 

0.70  34.428 211.79  34.626 209.60 

0.75  34.486 212.27  34.762 210.46 

0.80  34.547 212.89  34.903 211.70 

0.85  34.609 213.63  35.049 213.36 

0.90  34.674 214.55  35.203 215.49 
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Table 8.6 Numerical results of the first two bending natural frequencies (Hz) for clamped-pinned plate 

  Bending Mode 

  1 2  1 2 

Plate 0  150.65 490.57  150.65 490.57 

λ/l  dw 0.10  dw 0.15 

0.10  147.78 479.14  146.18 475.85 

0.15  148.64 481.28  147.34 478.74 

0.20  149.35 481.75  148.65 480.82 

0.25  149.78 480.97  149.57 481.06 

0.30  149.94 479.87  149.99 480.19 

0.35  149.87 479.22  149.98 479.14 

0.40  149.65 479.30  149.66 478.49 

0.45  149.35 479.90  149.17 478.32 

0.50  149.05 480.55  148.63 478.34 

0.55  148.80 480.80  148.16 478.20 

0.60  148.64 480.40  147.84 477.69 

0.65  148.59 479.47  147.70 476.85 

0.70  148.64 478.40  147.74 475.96 

0.75  148.78 477.63  147.93 475.23 

0.80  148.99 477.54  148.23 475.05 

0.85  149.21 478.15  148.59 475.42 

0.90  149.41 479.18  148.95 476.32 

 

Figures, which are from Figure 8.13 to Figure 8.16, show the normalized natural 

frequencies as a function of the delamination location, where the height of the 

column represents the normalized natural frequency, i.e. 

intact

ddelaminate

ω
ω

ξ =    

 

It is seen that the decrease of the natural frequencies is not the same for different 

location of delamination. Comparison of the natural frequencies of the different 

delamination location with its width can be seen in figures, which are from Figure 

8.13 to Figure 8.16. Continuous and dotted lines indicate the boundary condition of 

clamped-free and clamped-pinned, respectively. From the results presented in these 

figures, it can be seen delamination location has significant effect with its width on 

the free vibration. Changing level of the natural frequencies with the delamination 

location increases with the increase of the delamination width. 
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Figure 8.13 Effect of the delamination location on the normalized first natural bending frequency of 

clamped-free plate 

 

The first bending natural frequency of the clamped-free plate is close to that of 

intact plate when the delamination is in the close vicinity of the free end of the plate. 

The second bending natural frequency of the clamped-free plate is minimum where 

the delamination is at λ/l=0.60, which is the most elastic location of the second 

bending mode shape.  

 

Figure 8.14 Effect of the delamination location on the normalized second natural bending 

frequency of clamped-free plate 
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Figure 8.15 Effect of the delamination location on the normalized first natural bending frequency 

for clamped-pinned plate 

 

The first bending natural frequency of the clamped-pinned plate is minimum 

where the delamination is at λ/l=0.65 and the second bending natural frequency of 

the clamped-pinned plate is minimum where the delamination is at λ/l=0.80. 

 

Figure 8.16 Effect of the delamination location on the normalized second natural bending 

frequency for clamped-pinned plate 
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From the results presented in these figures, it can be seen that natural frequency is 

significantly influenced by the location and width of delamination. Also seen from 

the figures is that natural frequency increases as the delamination moves away along 

the axial direction from the clamped edge, and decreases as the delamination closes 

to twist point, and then increases again as the delamination moves away along the 

axial direction from the twist point of the plate. Also seen that the natural frequencies 

are minimum at different certain points for each bending mode and boundary 

conditions. This condition occurs due to the shape of the bending mode. 

 

8.6 Harmonic Analysis 

 

Harmonic analysis is still used widely in vibration simulation and testing. 

Harmonic response reveals dynamic parameters of the structures such as natural 

frequency, damping, etc. Harmonic analysis is used to calculate the peak steady state 

response due to harmonic loads. Peak harmonic response occurs at forcing 

frequencies that match the natural frequencies of the structure. 

 

In this section, harmonic response of a composite plate is investigated. A 

composite plate is considered, which have a circular strip delamination around a 

circular hole delamination. Diameters of the circular hole delamination and the 

circular strip delamination are taken 20mm and 30mm, respectively.  

 

A harmonic force is applied at the end of the cantilever-free composite plate and 

the frequency of the load is varying from 1Hz to 250Hz. Magnitude of the load is 1N 

and its phase angle is zero. Firstly, the natural frequencies are computed for the first 

there modes of the plate C with the modal analysis. Note that the first mode of the 

plate is the first bending mode and the third mode of that is the second bending 

mode. Table 8.7 lists the natural frequencies for the intact and delaminated clamped-

free plates. 
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Table 8.7 Numerical results of the natural frequencies (Hz) for the clamped-free plates 

  Intact Model Circular Strip Delamination around Circular Hole Delamination 

  Strip Delamination Dia. 30mm  Hole Delamination Dia. 20mm 

Mode Plate 0 Plate C 

1 34.293 34.152 

2 111.33 110.65 

3 215.30 211.39 

 

Harmonic response of the node, which is the middle point of the free edge of the 

plate, is plotted in Figure 8.17. To get a better view of the harmonic response, scale 

of the vertical axis of the graph is selected logarithmic.  From the results presented in 

this figure, it can be seen that the frequencies peaks approximately at 34 and 212Hz.  

 

 

    Figure 8.17 Harmonic response of the selected node  

 

These correspond with the predicted frequencies of 34.152 and 211.39Hz. Also 

note that the natural frequency of the second mode of the plate does not seen in the 

Figure 8.17, cause of that mode is not a bending mode and the displacement of the 

selected node is insignificant at the load direction. 
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CHAPTER NINE 

CONCLUSIONS 

 

The delamination problem for laminated composite plates is analyzed in terms of 

some parameters such as the width and location of the delamination and types of 

boundary conditions using finite elements method and modal analysis. To achieve 

accurate results for delamination detection of laminated composite plate, a relatively 

fine mesh is considered for the finite element computation. The following 

conclusions may be drawn from the results of numerical simulation in this study. 

 

� The natural frequency decreases in the existence of the delamination. The 

decreasing level depends on the size, location, and shape of the delamination. The 

decreasing level of the natural frequencies is also not the same for different 

modes. 

 

� The natural frequency is significantly influenced by the delamination width. The 

natural frequency decreases with the increase of the delamination width due to the 

decrease in the stiffness.  

 

� The natural frequency is significantly influenced by the delamination location 

with its width. The  natural frequency increases as the delamination moves away 

along the axial direction from the clamped edge, and decreases as the 

delamination closes to twist point, and then increases again as the delamination 

moves away along the axial direction from the twist point of the plate. Changing 

level of the natural frequencies with the delamination location increases with the 

increase of the delamination width. 

. 

� Boundary conditions greatly affect the vibration characteristics of the plate. The 

natural frequency increases with the decrease of the degree of the freedom of the 

plate. 
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� The bending natural frequencies are minimum at different certain points for each 

bending mode and boundary conditions. This condition occurs due to the shape of 

the bending mode. These points are the elastic points of the plates. 

 

� The first bending natural frequency of the clamped-free delaminated plate is close 

to that of intact one when the delamination is in the close vicinity of the free end 

of the clamped-free plate. 

 

� The first bending natural frequency of the clamped-pinned delaminated plate is 

minimum where the delamination is at λ/l=0.65. 

 

� The second bending natural frequency of the clamped-free delaminated plate is 

minimum where the delamination is at λ/l=0.60.  

 

� The second bending natural frequency of the clamped-pinned delaminated plate is 

minimum where the delamination is at λ/l=0.80. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

45 

REFERENCES 

 

Alnefaie, K. (2009). Finite element modeling of composite plates with internal 

delamination. Composite Structures, 90, 21-27.  

 

Bathe, K. J. (1982) Finite element procedures in engineering analysis. New Jersey: 

Prentice-Hall. 

 

Gadelrab, R. M. (1996). The effect of delamination on the natural frequencies of a 

laminated composite beam. Journal of Sound and Vibration, 197(3), 283-92. 

 

Gören Kıral, B. (2009). Free Vibration Analysis of Delaminated Composite 

Beams, Science and Engineering of Composite Materials, 16 (3), 209-224. 

 

Hua, N., Fukunagab, H., Kameyamab, M., Aramakib, Y., & Chang, F.K. (2002). 

Vibration analysis of delaminated composite beams and plates using a higher-

order finite element. International Journal of Mechanical Sciences, 44, 1479-1503 

 

Jones, R.M. (1975). Mechanics of composite materials. New York: McGraw-Hill 

Book Company. 

 

Lee, J. (2000). Free vibration analysis of delaminated composite beams. Composite 

Structures, 74(2), 121-9. 

 

Lin, D.X., Ni, R.G., &Adams, R.D. (1984) Prediction and measurement of the 

vibrational damping parameters of carbon glass fiber-reinforced plastics plates. 

Journal of Computer Aided Materials Design, 18, 132-52. 

 

Ousset, Y., & Roudolff, F. (2000). Numerical analysis of delamination in multi-

layered composite plates. Journal of Computational Mechanics, 20, 122-6 

   



 

 

46 

Qatu, M.S. (1991). Free vibration of laminated composite rectangular plates. 

International Journal of Solids and Structures, 941-54. 

 

Qatu, M.S. (1994). Natural frequencies for cantilevered laminated composite 

triangular and trapezoidal plates. Composites Science and Technology, 441–9. 

 

Qatu, M.S., & Leissa, A.W. (1991). Vibration studies for laminated composite 

cantilever plates. International Journal of Mechanical Sciences, 927-40. 

 

Rikards, R. (1993). Finite element analysis of vibration and damping of laminated 

composites. Composite Structures, 24, 193-204. 

  

Sankar, B.V. (1991). A finite element for modeling delaminations in composite 

beams. Composite Structures, 38(2), 239-46. 

 

Wei, Z., Yam, L.H., & Cheng, L. (2004). Detection of internal delamination in multi-

layer composites using wavelet packets combined with modal parameter analysis. 

Composite Structures, 64, 239-46. 

 

Yam, L.H., Wei, Z., Cheng, L., & Wong, W.O. (2004). Numerical analysis of multi-

layer composite plates with internal delamination. Composite Structures, 82, 627-

37. 

 

Zak, A., Krawczuk, M., & Ostachowicz, W. (2000). Numerical and experimental 

investigation of free vibration of multi-layer delaminated composite beams and 

plates. Journal of Computational Mechanics, 26, 309-15.  

 


