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ENERGY EFFICIENT ALGORITHMS 

ABSTRACT 

                

Nowadays, a variety of systems are used which have power supply constraints. It 

is important that all design efforts are made to conserve power in those systems. 

Energy consumption in a system can be reduced with hardware changes but 

application software running on the system has a key role in energy consumption too. 

In this thesis, the impact of various software implementation techniques on 

performance and energy saving is studied. It looks for strategies and types to 

decrease the execution time and the energy consumed by a given processor core 

when executing a program especially written in the C# language running on given 

input.  

 

Keywords: Energy efficient algorithms, energy consumption of programs, code 

optimization. 

 

 

  

  

  

 

 

 



 
 

v 
 

ENERJĐ TASAARUFLU ALGORĐTMALAR 

ÖZ 

                

Günümüzde güç kısıtları olan çeşitli sistemler kullanılmaktadır. Bu sistemlerde 

gücü korumak için yapılabilecek çalışmalar önemlidir. Bir sistemdeki enerji tüketimi 

çeşitli donanım değişiklikleriyle azaltılabilir ancak sistemler üzerinde çalışan 

uygulama yazılımları da enerji tüketiminde önemli bir rol oynar. Bu çalışmada, 

performans ve enerji tasarrufu için uygulanabilecek çeşitli yazılım teknikleri üzerine 

çalışıldı. Çalışma içersinde özellikle C# dili kullanılarak yazılmış bir programın 

belirli bir girdiyle çalıştırılması sırasında işlemcinin çalışma zamanını ve enerji 

tüketimini azaltmak için kullanılabilecek strateji ve tipler araştırılır.  

 

Anahtar sözcükler: Enerji tasarruflu algoritmalar, programların enerji tüketimleri, 

kod optimizasyonu. 
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CHAPTER ONE 

INTRODUCTION 

 

Since most day to day operations are moving online (reservations, core banking, 

shopping) and popularity of power constrained computers is increasing (notebooks, 

digital cameras, mobile phones), software performance has become vital to their 

success in terms of response time in web sites; battery life and heat dissipation for 

portable devices. For example, so many times visits to a web site take long time to 

load which can result with frustration and the migration to a different site. For 

businesses this can be fatal as they lose customers. For another example, an 

application designed for mobile phones can be useless as it consumes much power 

and causes a shorter battery life. Energy consumption is very crucial especially in 

terms of battery lives of portable devices.  

Energy consumption in a system can be reduced with many technical 

improvements concerning the architecture of electronic systems. Most of them are 

from the area of hardware design. But beside changes in hardware design, software 

design issues are another promising approach (Steinke, Schwarz, Wehmeyer & 

Marwedel, 2001). Software can play an important role in reducing the power and 

extending the battery time. Furthermore, software changes are generally less 

expensive and can be delivered as an update (Steinke, Schwarz, Wehmeyer & 

Marwedel, 2001). 

 

Every activity carried out by applications can affect the power consumption of 

any computer which can be defined as the energy consumption of software running 

on them. Software developers frequently face the problem of estimating how much 

energy and time are spent in their software. This is crucial to determine how fast 

their software runs on a platform, how much energy it consumes, where 

optimizations are needed, or what hardware it requires to ensure a given speed. And 

this problem is not effectively solved by current approaches like instruction-level 

simulation, static timing analysis and source-level instrumentation.  
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In light of the above, there is a clear need for considering the power consumption 

on systems from the point of higher levels of software and optimizing the source 

code for less power consumption. As the trend of applications goes in “object 

oriented programming”, this thesis tries to find the best ways, strategies, and types 

that can be used during software development with C# language for less energy 

consumption. The details in this study are as follows: There will be the mention 

about other studies related to low power consumption of software from the point of 

different levels as instruction, data and application level in Section 2. Next, the tools 

that can be used in observations about resource usage of software in different 

environments are listed in Section 3. Then in Section 4, the major characteristics of 

OOP those can substitutes to one another are raised with the results of resource 

consumption comparisons. In Section 5; some of the characteristics, types and 

strategies suggested in Section 4 for lower energy are used in an application together 

and the results are analyzed for performance and energy gain. Finally, some 

concluding remarks have been given. 
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CHAPTER TWO 

BACKGROUND 
 

The design of system software, the actual application source code and the process 

of code translation to machine instructions – all of these determine the power cost of 

the software. So optimizations can be applied at three levels of abstraction: 

instruction-level, data-level and application level. Several researches about energy 

efficient codes and optimization of codes to make them more efficient have been 

studied in the past. In this section, previous works about instruction level and data 

level optimization are analyzed in Section 2.1 and Section 2.2 consecutively. Then 

algorithmic level optimization studies and some other techniques are given in Section 

2.3 and Section 2.4. 

  

2.1 Instruction Level Optimization 

 

In order to analyze and quantify power cost of the program, it is important to start 

from the most fundamental level. This is the level of individual instructions 

executing on the processor. Instruction level optimization is the optimization of 

software that translates a high-level language into machine code for the target 

microprocessor. It analyzes power consumption from the point of view of 

instructions. It provides too low-level information and it is too slow (Scarpazza, 

2006). 

 

2.1.1 Instruction Level Power Analysis 

 

“Instruction level power analysis”, which is first proposed by Tiwari, is the 

technique used to provide the fundamental information needed to evaluate the power 

cost of the program (Tiwari, Malik & Wolfe, 1996). This technique estimates the 

energy cost of a program by summing the energy consumption of each instruction. 

Instruction-by-instruction energy costs are determined for each target processor 

which is called “base cost”. The base cost of an instruction is defined as the average 

current drawn by the processor when it is executed and it is measured with a program 
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containing a loop of the individual instruction. Also there is another effect that 

impacts the overall power cost of programs. The “overhead cost” is the measure of 

circuit state change for a sequence of two different instructions. It is measured with 

the difference in the current of an infinite loop of a pair of different instructions with 

the average of the base costs of the instructions.  

 

 So the total energy consumed by a program P is given by Equation 1 (Tiwari, 

Malik & Wolfe, 1996). 

 

  (1) 

 

‘Bi’ is the base cost of each instruction ‘i’. 

‘Ni’ is used for the number of times the instruction ‘i’ is executed. 

‘Oi,j’ is the circuit state overhead when instruction ‘i’ and instruction ‘j’ are 

adjacent. 

‘Ek’ is the energy overhead of the other inter instruction effects (stalls and cache 

misses). 

 

2.1.2 Computation of Energy Cost 

 

Table 2.2 shows CPU base costs for some Intel 486Dx2 processor instructions 

(Tiwari, Malik & Wolfe, 1996). 

 

As an example consider a program containing a sequence of instructions like 

shown in Table 2.1.  

 

  Table 2.1 An example instruction sequence 
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The total cost of this sequence can be calculated using base costs like below: 

 

MOV CX,1  � MOV reg,imm   � 299.2 mA * 1 cycle 

ADD AX,BX  � ADD reg,reg   � 309.0 mA * 1 cycle 

ADD DX,8[BX]  � ADD reg,dis[base]  � 400.2 mA * 2 cycles 

MOV AX,BX  � MOV reg,reg   � 291.2 mA * 1 cycle 

SAL BX,CL  � SAL reg,CL   � 302.7 mA * 3 cycles 

 

Table 2.2 Subset of the base cost table for Intel 486Dx2 

 

 

To get a closer estimate we consider the circuit state overhead between each pair 

of consecutive instructions is known. The overhead values between the pairs 1&2, 

2&3, 3&4, 4&5 and 5&1 are found to be 17.9 mA, 5.25 mA, 16.8 mA, 17.4 mA, 

17.2 mA consecutively. So the total energy cost can be calculated by using Equation 

1:    

((299.2*1 + 309.0*1 + 400.2*2 + 291.2*1 + 302.7*3) + (17.9 + 5.25 + 16.8 + 

17.4 + 17.2)) / 8 = 335.3 mA current over 8 cycles 
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To make this calculation on a program code, the code is converted to its 

equivalent assembly code containing instructions divided into blocks. Then the 

instructions’ base costs and number of cycles of them are determined. For each 

block, base costs of the instructions are multiplied with the cycle number and the 

products are summed up to find the base energy cost of the block.    

 

Table 2.3 An example instruction sequence 

 

 

As you see in the code, Block-2 in Table 2.3 is executed according to a condition. 

So cost of the ‘jl L2’ statement is different according to whether the jump is taken or 

not. By multiplying the cost of the blocks with the number of times it is executed, 

adding the cost of the unconditional jump ‘jl L2’ statement to it, dividing the result 

by the number of cycles, and at the end by adding the average circuit state overhead 
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value to the result, the total energy cost can be calculated approximately. It can be 

summarized as: 

 

While (!exit) 

{ 

int i = 1; 

double energy = 0; 

begin 

    energy += BLOCK1; 

    while (i < 4){ 
         energy += BLOCK2; 

         i = 1 + 1; 

    if(jump is taken) 

    { 

       energy += cost_of_(jl L2); 

    }  

    } 

energy += BLOCK3; 

     end; 

} 

 

Modern compilers can make some optimizations automatically on the code that 

had been written by the programmers to make it run more efficiently. These 

compilers are called “optimizing compilers” (Aslan, 2006). The basic condition for 

the optimization is ‘not to upset the equivalence of the original code’, which means it 

should not change the meaning of the code. Figure 2.1 summarizes the compilation 

process of optimizing compilers.   

 

 

     Figure 2.1 Compilation process of optimizing compilers  
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Techniques of instruction level optimization driven by the compilers are: 

 

2.1.3 Instruction Packing 
 

The DSP has a special architectural feature called instruction packing. It is the 

feature of packing an ALU-type instruction and a data transfer instruction into a 

single instruction codeword for a simultaneous execution. When the instructions are 

packed, it executes in one cycle and the circuit-state overhead current between two 

adjacent unpacked instructions is eliminated (Lee, Tiwari, Malik & Fujitsu, 1995).  

 

Average current for the packed instructions is a bit more than unpacked 

instruction sequence but the unpacked instructions complete in twice the number of 

cycles as the packed instructions which results with a larger energy consumption as 

shown in Figure 2.2. 

 

Figure 2.2 Comparison of energy 

consumption of packed and  

unpacked instructions 

 

2.1.4 Instruction Reordering 

 

The energy consumed during execution of an instruction depends on the previous 

instruction because of the switching activity in the circuit. Thus, order of the 

instructions affects the energy consumption of our programs. This means reordering 

the instructions can reduce the circuit-state overhead and minimize the energy 

consumption. 

 

It has been observed that this technique lead to very little impact in the case of the 

486DX2 and the ‘934 processors. But in the case of DSP, this impact is more 
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significant (Tiwari, Malik & Wolfe, 1996). Effect of instruction reordering in the 

‘934 can be seen in Table 2.4. 

 

 Table 2.4 Effect of instruction reordering in the ‘934 

 

 

2.1.5 Reduction of Memory Operands 

 

Instructions with memory operands have very high energy costs compared to 

instructions with register operands. Because register operands lead to shorter running 

times due to elimination of potential stalls and cache misses. Thus reduction in the 

number of memory operands can supply large energy savings (Tiwari, Malik & 

Wolfe, 1994). Reducing memory operands can be done with optimal register 

allocation of temporaries and global register allocation of most frequently used 

variables.  

 

2.1.6 Operand Swapping in Booth Multiplier    

 

The Booth multiplier implemented in the MAC unit takes the data in registers A 

and B as operands for multiplication as shown in Figure 2.3. But it does not treat A 

and B in the same way. B is recorded by a so-called “skipping over 1s” technique 

and A is added or subtracted for the number of times determined by B while 

executing the production process (Lee, Tiwari, Malik & Fujitsu, 1995).  
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      Figure 2.3 Microarchitecture model for 

      the Booth multiplier 

 

So if the weight of A is smaller than that of B, the number of addition and 

subtraction operations decreases and it supplies a reduction in current. As a result 

with just swapping the operands in a product instruction, current and power 

consumption can be reduced as shown in Table 2.5. 

 

 Table 2.5 Effect of operand swapping in power reduction 

 

 

 

2.1.7 Register Pipelining 

 

Arrays are usually stored in memory and the elements of them are accessed with 

load and store instructions. Register pipelining is a known optimization technique in 

compilers which eliminates these accesses in loops by temporarily storing the data in 

unused processor registers whenever this is possible (Steinke, Schwarz, Wehmeyer 

& Marwedel, 2001). 

      

The main principle can be shown in C# code given below. 

 

Original Code: for (i = 1; i < 120; i++) { 

               a[i] = a[i-1] + 3; 

} 
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Optimized Code:    R = a[0]; 
        for (i = 1; i < 120; i++) { 

             R = R + 3; 

                              a[i] = R; 

      } 

 

2.2 Data Optimization  

 

Code can be optimized by changing the representation of data manipulated by the 

algorithms to match the characteristics of the target architecture with the processed 

data (Simunic, Benini, Micheli & Hans, 1999).  

 

Most processors execute faster if certain data values are aligned on word, double-

word or page boundaries. So if possible, structures must be designed to satisfy 

appropriate alignments to avoid exceptions. 

 

In an assembly language, the choice of a particular instruction or data type can 

have a large impact on execution efficiency. In general, instructions that process 

variables such as signed or unsigned 16-bit or 32-bit integers are faster than 

instructions that process floating point or packed decimal. Modern processors are 

even capable of executing multiple 'fixed point' instructions in parallel with the 

simultaneous execution of a floating point instruction. If the largest integer to be 

encountered can be accommodated by the 'faster' data type, defining the variables as 

that type will result in faster execution. Assembler programmers and optimizing 

compiler writers can then also benefit from the ability to perform certain common 

types of arithmetic (performing faster binary shift right operations instead of 

division). 

 

If the choice of input data type is not under the control of the programmer, 

although prior conversion (outside of a loop for instance) to a faster data type carries 

some overhead, it can often be worthwhile if the variable is then to be used as a loop 

counter, especially if the count could be quite a high value or there are many input 

values to process. As mentioned above, choice of individual assembler instructions 

(or even sometimes just their order of execution) on particular machines can affect 
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the efficiency of an algorithm. Sometimes microcode or hardware quirks can result in 

unexpected performance differences between processors that assembler programmers 

can actively code for something even the best optimizing compiler may not be 

designed to handle. 

 

2.3 Algorithmic Optimization (Application Layer Optimization) 
 

Highest layer in the optimization hierarchy targets algorithms. The choice of the 

algorithm and other high level decisions about the design of the software can affect 

the energy consumption. 

 

This layer has the most information on the actual user impact of performance and 

energy tradeoffs. Application-specific optimizations can be made at this layer such as 

changing the algorithm used, accuracy of computation (eg. changing from double 

precision to single), or quality of service provided. For a particular problem, a stack 

may be better than a queue and a B-tree may be better than a binary tree or a hash 

function. The best algorithm or data structure to use depends on many factors, which 

indicates that a study of the problem and a careful consideration of the architecture, 

design, algorithms, and data structures can lead to an application that performs better 

and consumes less energy. Also, energy usage at the application layer may be made 

dynamic. For instance, an application hosted in a data center may decide to turn off 

certain low utility features if the energy budget is being exceeded, and an application 

on a mobile device may reduce its display quality when battery is low.  

 

There are several ways and techniques that can be made in application layer. 

Previous works done in the concept of this layer are given shortly in this section.  

 
 

2.3.1 Object Oriented Programming Strategies 
 
 

Chatzigeorgiou (2002) emphasizes on that the object-oriented approach shows a 

significant performance penalty compared to classical procedural programming due 

to the increased instruction count, larger code size and increased number of accesses 

to the data memory. According to this study, energy consumption penalty of object 
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oriented programming compared to classical procedural programming (C vs. C++) 

can be seen in Figure 2.4 and Figure 2.5 (Chatzigeorgiou, 2002).     

 

 

Figure 2.4 Comparison of energy consumption   

 

 

Figure 2.5 Comparison of energy consumption   
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Though it is known that OOP has quite much more overhead than assembly and 

procedural languages, development trend still heads to this new world. There are 

optimized strategies in writing OOP software under energy concerned environment.  

 

According to the study done in 2006 by Chantarasathaporn and Srisa-an, there are 

some major characteristics and significant usages of OOP those can substitutes to 

one another. The results of resource consumption comparisons among the 

comparable commands are as follows:  

 

- Static variable consumes more power than the dynamic one because it takes 

around 40% longer time than dynamic. 

- Interface is more restrictive since the methods inside must not have method 

body while Abstract Class can have some attributes or method bodies, just at 

least only one class is abstract. There is no significant different between using 

Abstract Class and Interface in similar situation. 

- Dynamic variable works slower than the static around 40%. 

- Dynamic method runs faster than the static around 50%. Anonymous 

dynamic method is very CPU intensive and it takes around 80% longer time 

than regular dynamic method. 

- When using dynamic class attribute locally, users may just use it barely or use 

with "this" keyword.  There is no significant difference in term of CPU usage 

of this pair. 

- The most CPU consuming field is protected variable while private and public 

ones spend time quite close to each other.  Protected attribute is slower than 

the other two around 40%. 

 

2.3.2 Avoid Polling 

 

Polling refers to actively sampling the status of an external device by a client 

program as a synchronous activity. Some examples of how applications perform 

unnecessary polling include (LessWatts,n.d.): 

• Checking every second to see if the mouse moved 

• Check every second to see if it is time to show the next minute on the clock 
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• Check 10x/sec to see if the smartcard reader got inserted on USB 

• Check if new data is added to database that must be shown on the screen 

 

In applications, periodic polling seems to have become an easy, simple solution 

for many application problems. Every time an application polls for something, the 

CPU wakes from idle state and wastes power (LessWatts, n.d.). So it must be 

avoided polling at all costs. Instead of this, event and notification architecture can be 

used. But sometimes it is really needed to use them so at these situations, polling 

interval can be increased. Polling not more often than one per second may be a better 

solution.    

 

2.3.3 Multithreading 

 

Execution can be speed-up by taking advantage of multiple threads. With 

multithreaded applications, the job may be able to finish in shorter time than single-

threaded applications. Thanks to the increased idle time it supplies, it leads to energy 

savings as compared to a single-threaded version. But threads must be used correctly. 

If the threads are imbalanced it may lead to increased energy consumption 

(Steigerwald, Chabukswar, Krishnan & Vega, 2007).  

 

In imbalanced threading there is a significant difference in the amount of work 

done by each thread within an application and the results indicate that the imbalanced 

threading model/under-utilized CPU may cause degradation in performance, causing 

increased power consumption. 

 

In balanced threading each thread has an equal amount of work as other active 

threads of the application. Figure 2.6, Figure 2.7 and Figure 2.8 show performance, 

CPU power consumption and platform power consumption data for running single-

threaded (ST) and multi-threaded (MT) versions of several CPU-intensive 

applications (Steigerwald, Chabukswar, Krishnan & Vega, 2007). The multithreaded 

applications clearly show significant performance improvements over running 

single-threaded versions. For example, the ST version of cryptography takes ~50 

seconds to complete, while both the MT-1 and MT-2 versions take only ~25 seconds.  
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     Figure 2.6 Balanced threading performance 

 

Multithreading also saves power as shown in following figures. For example, the 

cryptography ST version running for ~50 seconds consumes ~150 mWHr of total 

power, while running the cryptography MT version for ~25 seconds and idling the 

system for the remaining 25 seconds consumes ~110 mWHr of total power.  

 

 

 Figure 2.7 Balanced threading CPU power                 Figure 2.8 Balanced threading platform power 

 

The results indicate that multithreading done correctly not only shows 

performance improvements but also saves power (Steigerwald, Chabukswar, 

Krishnan & Vega, 2007). 

 

2.3.4 Reduce Usage of High-Resolution Periodic Timers 

 

A good way of reducing energy is to let it idle as often as possible. Make sure the 

application is optimized to use the longest timer rate possible while fulfilling the 

requirements. Using timer intervals shorter than 15ms has small benefit for most 
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applications. Always make sure to disable periodic timers in case they are not in use, 

letting the OS adjust the minimum timer resolution accordingly (Larsson, 2008). 

 

2.3.5 Loops 

 

Minimize the use of tight loops. To reduce the overhead implied with small loops, 

performance/power can be improved by performing loop unrolling. To achieve this, 

the instructions that are called in multiple iterations of the loop are combined into a 

single iteration. This will speed up the program if the overhead instructions of the 

loop impair performance significantly. Side effects may include increased register 

usage and expanded code size (Larsson, 2008). 

 

2.4 Other Optimization Techniques 

 

There are some other potential sources of energy reduction that can be applied 

during compilation whose effectiveness may be smaller as the methods described 

earlier. But any sources of energy reduction should not be ignored. 

 

- Identify the kernel, drivers and libraries utilized by the application. Determine 

if there are alternative implementations of used components that are more 

power friendly. For instance, a more recent Linux kernel may feature 

scheduling optimizations making the application run more efficient. Another 

example would be to update to a more recent and energy efficient Bluetooth 

device driver (Larsson, 2008). 

- If possible consider using a programming language implementation and 

libraries that are idle power friendly. Some high level run-time languages may 

cause more frequent wakeups compared to low(er) level system programming 

languages such as C (Larsson, 2008). 

- Scheduling can be done to reduce pipeline stalls which takes up cycles and 

consume energy (Tiwari, Malik & Wolfe, 1994). 

- Code transformations can be done to improve cache hit rates (Tiwari, Malik 

& Wolfe, 1994). 

- Reducing switching in address lines (Tiwari, Malik & Wolfe, 1994). 
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- Improving page hit ratio. Because page misses in page-mode DRAM chips 

consume more energy (Tiwari, Malik & Wolfe, 1994). 

- Don’t use too many Reflection API’s: Reflection API’s depend on the 

metadata embedded in assemblies. Thus parsing and searching this information is 

very expensive (Rodriguez & Dutta, 2008). 

- Don’t make functions unnecessarily virtual or synchronized: JIT might 

disable some optimizations and so the generated code might not be optimal 

(Rodriguez & Dutta, 2008). 

- Don’t write big functions: JIT might disable optimizations for faster compile 

(JIT) time (Rodriguez & Dutta, 2008). 

- Choose the right framework for the scenario, including energy efficiency 

goals (Stemen, 2008). 

- Try to use less complex (and more energy efficient) algorithms. For instance, 

select a lower quality video encoder/decoder when running on batteries  (Stemen, 

2008). 

- Animations always increase system power consumption with extra CPU and 

memory utilization. So it must be avoided as possible (Stemen, 2008). 

 

2.5 Optimization in Mobile Application 

 

Usage of mobile applications and mobile computing has a growing popularity and 

energy is a vital resource for these systems as battery life and heat dissipation.  

 

Everybody wants ‘all-day mobile pc battery life’. Users complain about short 

battery lives of their portable devices. So, extending battery life as long as possible is 

important, but how? You can see people saying ‘I have a notebook whose battery life 

is 8 hours’. But doing what; with playing DVD, with playing game or doing nothing? 

At this point impact of software comes out. There are studies in battery technology 

and low-power circuit design but studies in hardware scope cannot meet all the 

energy needs of future-mobile computers, improvements must be done in the higher 

levels of the system too. In other words software and energy consumption of them 

becomes more important in mobile systems. 
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Nowadays there are hundreds of different mobile models in mobile market which 

have all different characteristics including different systems. So at this point it 

becomes important to supply an application supported by much more devices. On the 

web there are two browsers and two or three operating systems that you have to 

support, if your application has been tested on them, you know that over 90 percent 

of your target audience will be able see and access your work. But in the mobile 

market, you deal with thousands of mobile devices with varying screen sizes and 

capabilities, operating systems and browsers. Content that looks great on one device 

may look odd or even unreadable on another. 

 

How do you today ensure that your mobile content works consistently on the 

different devices? And how do you know what is "good" performance for your 

application? Performance in general means some characteristics that may be 

somehow measured. You can look at RAM usage, execution time, booting time, 

CPU usage and so forth. But in case of mobile applications, you have very limited 

resources available and there are strict requirements related to device characteristics 

and features. Therefore, mobile applications should be designed carefully and 

employ every possibility to improve their performance. While developing a mobile 

application, these can be done (Stemen, 2008): 

 

- Firstly understand the impact of the software on platform power consumption. 

- Focus on idle: how much energy it consumes in idle state, how can it be 

decreased, how can we get the system idle as long as possible. 

- Reduce resource utilization: disk time, CPU time, memory alignment, sleep 

and resume transitions… 

- Adapt to the system environment: what is the right tool for the job, what kind 

of application you should make and what kind of functionality it should have. 

- Correctly handle sleep and resume transitions. 

 

A good user experience and longer battery life are critical factors for the future 

growth of mobile systems. Software of applications running on these mobile systems 

has a key role to play in improving user experience as well as in extending battery 
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life. Most of the optimization techniques listed in Section 2.3.1 can be applied in 

mobile applications too but there are subjects that are specific to mobile applications. 

Some of the points that mobile developers must care during development are listed 

next.  

 

2.5.1 Reads & Writes 

 

If a mobile application is moved to an upper version of the environment or if you 

work with some kind of flash card instead of the internal device's memory, 

operations with files can became dramatically slower. These are all because of 

read/write operations depend on the flash block size, regardless of how much data is 

read from or saved to the flash card. So, knowing this block size and adjusting 

buffers while developing applications accordingly can increase throughput of I/O 

operations (Gusev, 2006). 

 

2.5.2 Heap Usage 

 

On mobile devices, the stack size is often limited, so a heap should be used 

instead. But this also may cause performance to decrease when used unnecessarily 

(Gusev, 2006). Consider the following code: 

 

while (expression) 

{ 

   XXX *pObj = new XXX; 

   DoSomething(pObj); 

   delete pObj; 

} 

 

If this is a tight loop, many heap calls will cause heap fragmentation. In this case 

temporary variables must be used like the code below to increase performance: 
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XXX *pObj = new XXX; 

while (expr) 

{ 

   DoSomething(pObj); 
   pObj->Reset(); 

} 

  delete pObj; 

 

2.5.3 I/O Operations 

 

I/O operations have an important effect on performance in mobile applications. 

For desktop systems it is simple: read by blocks instead of bytes. But for mobile 

applications it is not as straightforward. If data is stored on a flash card then access 

time may be very long. Suppose that data is kept in a flat file as binary or text. It is a 

good thing if you can read it all in one time to memory and then process as needed. 

But in case of huge amounts of data, this is impossible. In those cases, you have to 

allocate chunks here and there. It is a really bad thing that memory allocation 

strategies may vary from one version of an OS to next one. On Pocket PC 2002 big 

allocations are good for performance, but on later versions smaller chunks are 

allocated faster. It is really hard to choose the best method to reach the best I/O 

performance (Gusev, 2006). 
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CHAPTER THREE 

PERFORMANCE TOOLS 

 

There are various tools that can be used in various systems for observing resource 

usage and performance of applications. 

 

3.1 Perfmon 

 

 Perfmon is a system level tool that allows user-level code to access several 

ASP.NET related performance counters (Larsson, 2008). It can be used in analyzing 

any .Net, monitoring results of tuning and configuration scenarios, and the 

understanding of a workload and its effect on resource usage to identify bottlenecks. 

Some of example screenshots are shown in Figure 3.1 and Figure 3.2.  

 

 

  Figure 3.1 Screenshot of Perfmon 
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    Figure 3.2 Screenshot of Perfmon 

 

3.2 Intel® Vtune™ Analyzer 

 

It is a profiling tool from Intel which supports .NET including ASP.Net 

applications (Larsson, 2008). It evaluates applications on all sizes of systems based 

on Intel processors to help improving application performance and makes application 

performance tuning easier. 

 

3.3 CLR Profiler 

 

It is a profiler tool from Microsoft which is used to profile memory allocation of 

applications and allows the user to investigate the contents of the manage heap as 

well as the behavior of the garbage collector, to identify portions of code which use 

too much memory. Some example screenshots are shown in Figure 3.3 and Figure 

3.4 (Rodriguez & Dutta, 2008). 
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 Figure 3.3 Screenshot of CLR Profiler 

 

 

Figure 3.4 Screenshot of CLR Profiler 

 

3.4 SOS 

 

It is the tool that exposes many CLR internal data structures such as GC, 

Exceptions, Objects, Locking etc. It can be used to identify functionality bugs (such 

as OutOfMemoryException) and performance related bugs as well (locking etc) 

(Rodriguez & Dutta, 2008). 
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3.5 VSTS Profiler 

 

It is a built in profiler from Microsoft Visual Studio Team system 2008. It can be 

used in sampling application and identifying hotspots and hot call chains etc. It has 

ability to look at perfmon counters of all the machines from a client system, etc 

(Rodriguez & Dutta, 2008). 

 

3.6 Windows Event Viewer/Event Log (Windows* XP & Windows Vista*) 

 

It provides a centralized log service to report events that have taken place, such as 

a failure to start a component or to complete an action. For instance the tool can be 

used to capture “timer tick” change events which have an indirect effect on platform 

energy efficiency (Larsson, 2008). 

 

3.7 Windows ETW (Windows* XP & Windows Vista*) 

 

It provides application programmers the ability to start and stop event tracing 

sessions, instrumenting an application to provide trace events, and consume trace 

events. Events can be used to debug an application and perform capacity and 

performance analysis (Larsson, 2008). 

 

3.8 PowerInformer (Windows* XP & Windows Vista*) 

 

It provides relevant and condensed platform power information to the developer, 

including for instance battery status, interrupt rate and disk/file IO rates (Larsson, 

2008). 
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3.9 PowerTOP (Linux) 

 

It is a tool that can be used to point out the power inefficiencies of platforms. The 

tool shows how well the platform is using the various hardware power-saving 

features and culprit software components that are preventing optimal usage. It also 

provides tuning suggestions on how to achieve low power consumption (Larsson, 

2008). 

 

3.10 Battery Life Toolkit (BLTK) (Linux) 

 

It provides infrastructure to measure laptop battery life, by launching typical 

single-user workloads for power performance measurement (Larsson, 2008). 
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CHAPTER FOUR 

C# CODE OPTIMIZATION 

 

Software optimization is generally done with speed and source usage aims. In 

other words, we work for faster applications or applications that need smaller 

memory. Of course it is willing to realize both of them but usually these two goals 

are coincided to each other. To speed up the code it is inevitable to enlarge it. Or 

shrinking the code can cause it to work slower. At this point, which one is more 

important? To speed up or to shrink the code? Speed of the code is dominant here. 

Generally, we have enough memory and speeding up helps our program more. For 

example imagine that you have to write a program aimed at the system and a 

function will be called for thousands time during the program. In this case a delay of 

0.01 milliseconds will have very important effect on speed. Of course this situation 

can change in embedded systems where memory limited small microprocessors are 

used. So, the goal is to complete a task more quickly.  

 

It is generally accepted that if the CPU can accomplish the task in fewer 

instructions or by doing work in parallel in multiple cores, and then drop the CPU to 

a low-power state, then the overall energy required to complete the task will be 

lower. Especially, current processors are quite good about saving power when idle, 

so making it to be idle longer will help to consume less energy. This behavior is 

called race-to-idle and can be explained with a simplified example:  

 

    Take a typical commercially available processor that consumes 34 Watts when 

running at full speed, and 24 Watts when running at half speed and 1 Watts when 

idle. On this processor, decoding one second of a MP3 file or some HDTV media 

every second takes 0.5 seconds at half speed, and, consequently, 0.25 seconds at full 

speed. The energy consumption for one second is:  

 

Half speed: 0.5s * 24W + 0.5s * 1W = 12.5 Joules  

Full speed: 0.25s * 34W + 0.75s * 1W = 9.25 Joules  
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As a result, it's generally better to run as fast as possible so that it can be idle 

longer which means less energy consumption. 

 

In the past, both specific optimized equipments and codes were designed to relief 

this concern. This way worked in the past however, in this era, there is another 

significant restraint now, the time to market. To be able to prepare products in 

shorter period, object-oriented programming (OOP) has stepped in to this field. This 

new style heads to development methodologies, although it is known that it has quite 

much more overhead than assembly and procedural languages. It has been reported 

that OOP consume much resource (Chantarasathaporn & Srisa-an, 2006) which 

contradicts with the target of low power consumption, but it is accepted due to 

business reasons. Because of this, the language chosen for studying in this research is 

C#, based on .NET Framework 4.0 which is one of the trendy OOP development 

environments.  

 

By the time your program is working, you might already know which functions 

and modules are the most critical for overall code efficiency. We can focus to those 

routines in which the program spends most (or too much) of its time. Once you've 

identified the routines that require greater code efficiency, you can use the following 

techniques to reduce their execution time. 

 

The strategies and types that are compared in this research are tested with loops 

containing different code that's being tested for performance, with a time reading 

before and after. When the test has finished, the start time is subtracted from the end 

time to find the time cost. Usually the code run slower at the first execution, so 

several tests are done and the first 10 results are shown in x axis of graphs in this 

research. Also, the vertical axis points the total execution times (in milliseconds) of 

the tested code in different times of loops in each case. After strategies and their 

results, a list of words are encrypted and decrypted with AES in a tight loop and the 

results of the first 10 tests will be given for this data. Lastly, the test is done for 

different sizes of data. Then, near performance, energy consumptions of the original 

and optimized code are compared by using an example tight loop with battery status 
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check before and after the test. It’s checked if one of the type or strategy being 

compared cause the battery to decrease more, especially to see if the energy 

consumption is related to execution time or not. As you will see in the test results 

too, at the end we can generally reach to the result that ‘the more timespan the 

process takes the more power the process spends’. The strategy used during this 

work can be seen in appendix. 

 

 Note that the techniques described here are very compiler-dependent. In most 

cases, there aren't general rules that can be applied in all situations. These options 

and strategies that had been compared here can be listed as: 

 

• Class vs. Struct  

• Static vs. Dynamic Variable 

• Recursion vs. Iteration 

• Function Usage 

• Parameter Order 

• ArrayList vs. Array 

• Foreach vs. For 

• String.Format vs. String Builder vs. Concatenation 

• Boxing-Unboxing 

• Reading Values of Objects Once 

• Special Operators 

• Parallel Programming 

• Smart Try-Catch - Minimize Exceptions 

 

4.1 Class vs. Struct  
 

Firstly, the data-member-only classes and structs are compared.  Both of them can 

contain group of variables or data members, but, as you see in Figure 4.1, it is easy to 

distinguish the difference of time spent. 
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   Figure 4.1 Class vs. Struct 

 

In a tight loop the effect of this choice on the energy consumption can be seen. 

One of the test results are given below: 

 

Using class: 13 minutes 12 seconds (%98 - %82) 

Using struct: 10 minutes 34 seconds (%98 - %85) 

 

4.2 Static vs. Dynamic Variable 

 

Static variables are stored into RAM before the execution of code and they are 

hold in RAM during the program. So, these variables are not affected from the load 

and remove operations in the program. Thanks to the easiness of their address 

calculation, they are faster than dynamic variables as shown in Figure 4.2. 

 

 

    Figure 4.2 Static vs. Dynamic variable 
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Near its performance gain, using static variable instead of dynamic variable also 

saves power as can be seen from the test results given below: 

 

Using dynamic variable: 22 minutes 28 seconds (%93 - %64) 

Using static variable: 21 minutes (%93 - %67) 

 

4.3 Recursion vs. Iteration 

 

Recursion is a function that calls itself iteratively until it reaches a deadline. For 

some problems, designers can both use recursion or iteration. Recursive style is 

compact but sometimes it is more important to write faster code than writing more 

comprehensible code. This is why iteration is chosen most of the time. Due to the 

necessity of a stack to manage the recursion, it takes more time as shown in Figure 

4.3. The results also show the differences on speed of two strategies. 

 

Original source code: 

private int TestRecursive(int p1) 

    { 

      if (p1 <= 1) return p1; 

          int result = p1 + TestRecursive(p1 - 1); 

          return result; 

    } 

 

Optimized source code: 

 private int TestNonRecursive(int p1) 
    { 

          int result = 0; 

          while (p1 > 0) 

          { 

             result = result + p1; 

             p1--; 

          } 

          return result; 

    } 
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Figure 4.3 Recursion vs. Iteration 

 

Using recursion instead of iteration increases memory usage of the code while 

causing it to run slower. Near these, energy consumption of the code increases too 

and it can be seen from the test results shown below:        

 

Using recursion: 5 minutes 2 seconds (%99 - %94) 

Using iteration: 2 minutes 34 seconds (%99 - %97) 

 

4.4 Function Usage 

 

Functions are basic building stones of structural programming. Functions have 

important impact on the size and speed of our code. When a compiler comes across 

with a function, it stores the parameters (if exist), output variables and the local 

variables that are used during the function in a stack. When the function is called, all 

these stored information is taken back from the stack (Yağmur, 2004). These 

operations take time, sometimes more than we imagine as can be seen in Figure 4.4. 

As a result, sometimes we should use local variables instead of these operations. But 

when? When the speed and time is important for our application. For example; if we 

have an application that does heavy mathematical operations. But of course while 

doing this, we should not to forget that, this will cause our application to enlarge. 
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Original source code: 

  for (int x = 1; x < 10000000; ++x) 
   { 

     double y = hesapla(x); 

   } 

    return;  

    static double hesapla(int x) 

    { 

          return Math.Sin(x) / 100 / 3.1416; 

    } 
 

Optimized source code: 

for (int x = 1; x < 10000000; ++x) 

{ 

     double y = Math.Sin(x) / 100 / 3.1416; 

 } 

    return true; 

 

 

 Figure 4.4 Function usage 

 

When the loop counter is big enough, the energy counterpart of this style can be 

seen. In an example code, the total execution time and battery status change while 

using this style is as follows:  

 

Using function: 54 minutes 7 seconds (%92 - %30) 

Not using function: 46 minutes 42 seconds (%92 - %41) 
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4.5 Parameter Order 

 

Parameter order in method calls in C# influences the speed. In a method, if some 

parameters are used more than others or in a tight loop, they should be put firstly. 

Because when you compile a method in C# language, the parameters are pushed into 

the stack and then that method uses the parameters from that stack. However, 

Microsoft compilers have an advanced optimization called ‘fastcall’, where the first 

two parameters in x86 are passed as registers (Allen, 2010). The speed of the code 

with the order of parameters changes as shown in Figure 4.5.     

 

Original source code :  

public int Method(int a,int b,int c,int d) { 

  for (i = 1; i < 1000; i++) { 

      d++; } 

     return a+d; 

} 

 

Optimized code :     

public int Method(int d,int b,int c,int a){ 

     for (i = 1; i < 1000; i++) { 

       d++;  } 

     return a+d; 

} 

 

 

 

    Figure 4.5 Parameter order 

 

In fact this style’s effect on the energy consumption cannot be seen clearly. 

Although using this style in a tight loop, the execution time and energy consumption 



35 
 

 
 

of the source code do not change too much. As an example, in a tight loop the effect 

of this style is as follows:         

 

Putting the mostly used parameter in the last order: 12 minutes 16 seconds  (%99 

–%84) 

Putting the mostly used parameter in the first order: 11 minutes 21 seconds  (%99 

–%84) 

 

4.6 ArrayList vs. Array 

 

Depending on the workload and the usage in the application a wrong choice for 

the type could cost till 1000 times more energy.  

 

Arrays are data structures to hold collections whose boundaries are static in which 

unused array elements cause unnecessary memory usage. ArrayLists can be defined 

as arrays whose size grow and shrink dynamically. Besides unnecessarily memory 

usage, it is inefficient in terms of time. Using arraylist in a tight loop instead of using 

array causes the code to execute slower as shown in Figure 4.6. 

 

 

Figure 4.6 Array vs. Arraylist 

 

Using arraylist instead of array also causes battery to decrease faster. The results 

of the test done to see this effect can be seen below: 
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Using arraylist: 6 minutes 23 seconds (%99 - % 91) 

Using array: 2 minutes 58 seconds (%99 - %96) 

 

4.7 Foreach vs. For 

 

‘Foreach’ is used in C# instead of a for loop to simplify the code, but it is slower 

than a loop written using ‘For’. In fact foreach involves no performance penalty 

when used against arrays. However, when used against lists it involves the same 

overhead because in the background an enumerator is created and the loop is 

controlled within a try-catch block. Its effect can be seen in Figure 4.7. 

 

 

  Figure 4.7 Foreach vs. For 

 

Energy consumption counterpart of this style when using in a tight loop as an 

example are as follows: 

 

Using “foreach”: 6 minutes 30 seconds (%85 - %76) 

Using “for”: 6 minutes 1 seconds (%85 - %78)     
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4.8 String.Format vs. String Builder vs. Concatenation 

 

Concatenating large strings in a loop is a performance drain and the 

StringBuilder’s Append method is much more efficient. But the StringBuilder object 

requires a lot more memory than a String and it is not efficient for concatenating a 

small number of times. So it must be used if more than four concatenations are 

required.  

 

Many .NET developers use the StringBuilder class whenever possible. However, 

it's not the fastest approach for concatenating small numbers of strings. Actually, any 

number can be combined in a single statement, although the performance benefit 

decreases above five or six substrings. This is due to instantiation and destruction 

overhead for the StringBuilder instance, as well as method-call overhead involved in 

calling Append() once for every added substring and ToString() once the string is 

built. The difference in terms of speed of the code can be seen in Figure 4.8. And 

battery usage test results are shown below. 

 

 

Figure 4.8 Concatenation vs. StringBuilder vs. StringFormat 

 

Using StringFormat: 15 minutes 33 seconds (%99 - %82) 

Using StringBuilder: 13 minutes 34 seconds (%99 - %84) 

Using Concatenation: 13 minutes 2 seconds (%99 - %84) 
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4.9 Boxing-Unboxing 

 

While working with object types boxing and unboxing are used. Boxing is the 

creation of a reference wrapper for a value type and unboxing is the extraction of the 

value type from the reference type. Boxing/unboxing enables value types to be 

treated as objects which are stored on the garbage collected heap. Whenever boxing 

is used, a new object is created on the managed heap and the value is copied in it. If 

it is done frequently, then lots of objects will be created and also the extra code will 

be executed for boxing and unboxing. Where possible this should be avoided as it is 

a major drain on performance especially, the overhead of both is most heavily felt in 

collection classes. The difference can be seen in Figure 4.9. 

 

int i = 999; 

object oObj = (object)i; // boxing 

… 

oObj= 999; 

i = (int)oObj; // unboxing 

 

 

Figure 4.9 Boxing-unboxing 

 

Near performance drain, using boxing and unboxing has an energy consumption 

penalty too. Its effect can be seen clearly from the result of the example execution of 

the test loop: 
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Using boxing/unboxing: 43 minutes 47 seconds (%99 - %44) 

Using a specific type: 24 minutes 34 seconds (%99 - %68) 

   

4.10 Reading Values of Objects Once 

 

Reading values from objects is not as fast as assessing the value of a simple 

variable. So if a value of an object will be used multiple times especially in loops, its 

value must be read for once at the beginning and then that variable should be 

accessed when needed. Figure 4.10 shows the effect of this strategy. 

 

 

   Figure 4.10 Reading values of objects once vs. n-times 

 

Reading values of objects is expensive in terms of energy and battery usage as its 

effect can be seen in very big loops. One of the results is as follows: 

 

Reading value of an object for n-times: 48 minutes 16 seconds (%92 - %30) 

Reading value of an object for once: 46 minutes 2 seconds (%92 - %31) 

 

4.11 Special Operators 

 

There are special operators that enable to do math operations in a more compact 

way. Using these special operators efficiently may help compilers to produce code 

more efficient.  
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Original source code:  a = a + b; 
      b = b + 1; 

Optimized code :         a = a + b++; 
 

As you see, in the first way, b variable will be stored in register twice (one for 

addition and one for increment). But in the second way, it will be stored for once. 

This supplies smaller and faster program as shown in Figure 4.11.  

 

 

   Figure 4.11 Special operators 

 

If you increase the counter of the test loop, this style’s effect on energy 

consumption appears. For example in a tight loop, execution time of the code and 

change amount in battery status becomes as follows: 

 

Without special operators: 33 minutes 59 seconds (%94 - %50) 

With special operators: 32 minutes 42 seconds (%94 - %52) 

 

4.12 Parallel Programming 

 

Multi-core machines are now becoming standard with the need of programs which 

run faster and consume less energy. The key to performance improvements is 

therefore to run a program on multiple processors in parallel. But it is still very hard 

to write algorithms that actually take advantage of those multiple processors. Despite 

running on a multi-core machine, most applications use a single core and see no 
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speed improvement. So programs must be written in a new way named ‘parallel 

programming’. Figure 4.12 shows the effect of this new way on the speed of our 

programs.  

 

Original source code:   

for (int i = 0; i < 100; i++) {  

   a[i] = a[i]*a[i];  

} 

 

Optimized source code (With parallel programming):  

Parallel.For(0, 100, delegate(int i) {  

     a[i] = a[i]*a[i];  

  }); 

 

 

   Figure 4.12 Parallel vs. Serial programming 

 

Energy consumption counterpart of this style when using in a tight loop as an 

example are as follows: 

 

With serial programming: 52 minutes 11 seconds (%99 - %32) 

With parallel programming: 43 minutes 2 seconds (%99 - %44) 

 

Here, it must be noted that using more thread increases cpu utilization for 

finishing the job faster but it does not cause more energy consumption as results 

show.    
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4.13 Smart Try-Catch - Minimize Exceptions 

 

Catching and throwing exceptions is very expensive and should be avoided where 

possible. For example exception blocks should never be used to catch an error caused 

by attempting to access a null object, instead a statement should be used to test if the 

object is null before accessing it. Figure 4.13 shows the effect of this choice on the 

performance of our programs: 

 

Original source code: 

 try { 

     //perform operation 

} 

Catch { 

     //catch error 

} 

 

Optimized code : 

if (myObj != null){ 

     //perform operation 

} 

else { 

     //catch error 

} 

 

 

Figure 4.13 Using Try-Catch vs. Control 
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Using try-catch blocks instead of using statements to prevent an error has a very 

important effect in terms of energy near performance. This effect can be seen from 

the example test results below (the difference gets bigger as exception cases 

increase):    

 

Using try-catch: 54 minutes 3 seconds (%99 - %39) 

Using control statements: 7 minutes 21 seconds (%99 - %89) 

 

The techniques analyzed in this section can be summarized as shown in Table 4.1 

and Table 4.2. 

 

Table 4.1 Summary of optimization techniques 

Strategy 1 Strategy 2 Strategy 3 Recommendation Environment 

Use Class Use Struct * Use Struct OOP (C#) 

Use Static 

Variable 

Use Dynamic 

Variable 

* Use Static Variable OOP (C#) 

Use Recursion Use Iteration * Use Iteration OOP (C#) 

Use function Not use 

function 

* Not use function 

for sometimes 

OOP (C#) 

Use mostly used 

parameters in 

the first order  

Use mostly 

used 

parameters in 

the last order 

* Use mostly used 

parameters in the 

first order 

OOP (C#) 

Use Arraylist Use Array * Use Array OOP (C#) 

Use Foreach Use For * Use For OOP (C#) 

Use 

StringFormat 

Use 

StringBuilder 

Use 

Concatena

tion 

Use StringFormat OOP (C#) 

Use boxing Not use 

boxing 

* Not use boxing OOP (C#) 
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Strategy 1 Strategy 2 Strategy 3 Recommendation Environment 

Read values of 

objects once 

Read values 

of objects 

more 

* Read values of 

objects once 

OOP (C#) 

Use special 

operators 

Use basic 

operators 

* Use special 

operators 

efficiently 

OOP (C#) 

Parallel 

programming  

Serial 

programming 

* Parallel 

programming 

OOP (C#) 

Use try-catch Not use try-

catch 

* Not use try-catch OOP (C#) 

Use 

events/notificati

on 

Use polling * Use 

events/notification 

General 

Use Balanced 

multithreading 

Use 

Unbalanced 

multithreadin

g 

Use Single 

threading 

Use Balanced 

multithreading 

General 

Use shorter 

timer intervals 

Use longer 

timer 

intervals 

* Use shorter timer 

intervals 

General 

Use loops Use loop 

unrolling if 

possible 

* Use loop unrolling 

if possible 

General 

 

Use Big 

functions 

Use Short 

functions 

* Use Short functions General 

Use Complex 

algorithms 

Use Simple 

algorithms 

* Use Simple 

algorithms 

General 

Use animations Not use 

animations 

* Not use animations General 

* :  Does not have third strategy in the same concept 
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Table 4.2 Test results of optimization techniques 

Strategy 1 Battery 

status 

change 

Execution 

time 

Strategy 2 Battery 

status 

change 

Execution 

time 

Using Class %98-%82 792 sec. Using Struct %98-%85 634 sec. 

Using 

Dynamic 

variable 

%93-%64 1348 sec. Using Static 

variable 

%93-%67 1260 sec. 

Using 

Recursion 

%99-%94 302 sec. Using Iteration %99-%97 154 sec. 

Using function %92-%30 3247 sec. Not using 

function 

%92-%41 2802 sec. 

Parameter in 

last order 

%99-%84 736 sec. Parameter in 

first order 

%99-%84 681 sec. 

Using 

Arraylist 

%99-%91 383 sec. Using Array %99-%96 178 sec. 

Using Foreach %85-%76 390 sec. Using For %85-%78 361 sec. 

Using 

StringFormat 

%99-%82 933 sec. Using 

Concatenation 

%99-%84 782 sec. 

Using 

boxing/unboxi

ng 

%99-%44 2627 sec. Using specific 

type 

%99-%68 1474 sec. 

Reading value 

of an object 

for n-times 

%92-%30 2896 sec. Reading value 

of an object for 

once 

%92-%31 2762 sec. 

Using regular 

operators 

%94-%50 2039 sec. Using special 

operators 

%94-%52 1962 sec. 

Using Serial 

programming 

%99-%32 3131 sec. Using Parallel 

programming 

%99-%44 2582 sec. 

Using try-

catch 

%99-%39 3243 sec. Using control 

statements 

%99-%89 441 sec. 
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CHAPTER FIVE 

DEVELOPMENT & TEST RESULTS 
 

 

As an example an application has been developed to see the effect of the strategies 

above. In this application there is a form in which a file containing the list of words 

can be chosen and there are two different buttons to start to encrypt and decrypt them 

in a loop. Figure 5.1 shows a screenshot of the form. First button triggers a class 

implementation which uses the worst ways and types versus the second one uses the 

best choices for source code optimization.  

 

 

 Figure 5.1 Choosing data to work on. 
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The differences can be summarized as: 

 

- A type formed for holding the words and their encrypted and decrypted states. 

In the first class these object types are hold in an object list and in the second one 

they are hold in a list which will not require any boxing-unboxing operation. 

Original :  

private List<object> _listData; 

 

Optimized: 

 private List<InputData> _listDataOptimized; 

 

- Word count is needed in different steps of the program. In the first class, this 

value is calculated by the length property of the word-list collection and in the 

second one the collection’s length property is read into a variable and that variable is 

used where needed.   

Original: 

if (counter == (_listData.Count % 2 == 0 ? 

_listData.Count / 2 : (_listData.Count - 1) / 2)) {  …  } 
 

Optimized:  

_wordCount = _listData.Count; 

if (counter == (_wordCount % 2 == 0 ? _wordCount / 2 : 

(_wordCount - 1) / 2))  {  

 …   

 } 
 

- In the optimized one, the words are encrypted and decrypted in parallel while 

the first one does the same operations in serial.  

Original: 

 foreach (object dataObj in _listData)  { 

  … 

encryptedStr = EncryptStr(data.Ad,               

key.ToString(), 0); 

} 
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Optimized: 

Parallel.ForEach<InputData>(_listData, s => 

EncryptParallel(s, ref counter, ref tempToplam, key)); 
 

- In the first one, encryption and decryption methods are recursive where it is 

optimized by using iteration in the second one. 

 

Original:  

private static string EncryptStr(string str, string 

key, int counter) { 

if (counter < 20) { 

   counter = counter + 1;  

str = _aes.Encrypt(EncryptStr(str, key, counter), key, 

"", "MD5", 3, "16CHARSLONG12345", 128);             

  } 

  return str; 

 }    

 

Optimized: 

private static string EncryptStr(int counter, string 

str, string key)  { 

for (int i = 0; i < 20; i++) { 

str = _aes.Encrypt(str, key, "", "MD5", 3, 

"16CHARSLONG12345", 128); 

} 

return str; 

} 

 

- In the original one for mathematical operations normal operators are used, but 

in the optimized one special operators are used in an efficient way. 

Original: 

  tempToplam = tempToplam + counter; 

  counter = counter + 1;  
 

Optimized: 

tempToplam = tempToplam + counter++; 

 

The results that can be seen in Figure 5.2 show that, they are giving the same 

outputs which mean they do the same job but their execution times are very different 

as seen in the figure below so as the energy they consume. After finding total time 
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results, the efficiency and speed up values are calculated by using Equation 2 and 

Equation 3 (Şenyurt, 2010). Ts is the time taken to run the code serial and Tp is the 

time taken to run parallel algorithm on N processors. 

 

SpeedUp = SN = Ts / Tp (2)  

Efficiency = EN = SN / N (3) 

 

This shows us that, by choosing convenient ways, appropriate strategies and using 

true types we can write faster and more efficient programs without doing any 

hardware changes.  

 

 

 Figure 5.2 One of the results of the test 
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Figure 5.3 shows the results of ten consecutive executions of the program and the 

difference between the original and optimized code.  

 

 

    Figure 5.3 Results of comparing the original and optimized code 

 

The input data makes this difference bigger as its size becomes larger. Besides the 

changes on input size, changes in hardware design effect the speed and CPU usage of 

code too. These effects have been observed in different machines and with inputs 

with different sizes, and the results can be seen in the following figures tested on 

different machines. 

 

5.1  Dual Core Machine – 2 threads 
 

This hardware design can be summarized as: 

“Processor : Intel Core 2 Duo CPU – T6600  2.20 GHz”  

“Memory:    3 GB RAM” 

“System type: 32 bit Operating System” 

The snapshot of the processors can be seen in Figure 5.4. 
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    Figure 5.4 Snapshot of processors in dual core machine  

 

On this hardware design, the effect of the input size on the execution time and 

CPU usage of the code can be seen in figures below.  

 

5.1.1 50 words 
 

When the input file contains 50 words, the original code runs for about 20 seconds 

(0-20) with 60 percent of the CPU and the optimized code runs for about 13 seconds 

(20-33) with about 100 percent of the CPU as can be seen in Figure 5.5. 

Figure 5.5 CPU usage of original and optimized code with 50 words in dual core machine 
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5.1.2 100 words 
 

When the input file contains 100 words, the original code runs for about 40 

seconds (0-40) with 60 percent of the CPU and the optimized code runs for about 23 

seconds (40-63) with about 100 percent of the CPU as shown in Figure 5.6. 

 

    Figure 5.6 CPU usage of original and optimized code with 100 words in dual core machine 

 

5.1.3 150 words 
 

When working with 150 words, the original code runs for about 54 seconds (0-54) 

with 60 percent of the CPU and the optimized code runs for about 38 seconds (54-

92) with about 100 percent of the CPU as shown in Figure 5.7. 

 

 

   Figure 5.7 CPU usage of original and optimized code with 150 words in dual core machine 

 

5.1.4  300 words 
 

When working with 300 words, the original code runs for about 112 seconds (0-

112) with 60 percent of the CPU and the optimized code runs for about 70 seconds 

(112-182) with about 100 percent of the CPU as shown in Figure 5.8. 



53 
 

 
 

 

    Figure 5.8 CPU usage of original and optimized code with 300 words in dual core machine 

 

5.1.5 600 words 
 

When 600 words are used during the program, the original code runs for about 

220 seconds (0-220) with 60 percent of the CPU and the optimized code runs for 

about 140 seconds (220-360) with about 100 percent of the CPU as shown in Figure 

5.9. 

 

 

    Figure 5.9 CPU usage of original and optimized code with 600 words in dual core machine 

 

5.1.6 1000 words 
 

When the input size is increased to 1000 words, the original code runs for about 

356 seconds (0-356) with 60 percent of the CPU and the optimized code runs for 

about 224 seconds (356-580) with about 100 percent of the CPU. These results can 

be seen in Figure 5.10. 

 



54 
 

 
 

 

   Figure 5.10 CPU usage of original and optimized code with 1000 words in dual core machine 

 

5.1.7 5000 words 
 

When the input size is increased to 5000 words, the original code runs for about 

1770 seconds (0-1770) with 60 percent of the CPU and the optimized code runs for 

about 1180 seconds (1770-2950) with about 100 percent of the CPU as shown in 

Figure 5.11. 

 

 

    Figure 5.11 CPU usage of original and optimized code with 5000 words in dual core machine 

 

5.1.8 10000 words 
 

Lastly when the input size is increased to 10000 words, the original code runs for 

about 3670 seconds (0-3670) with 60 percent of the CPU and the optimized code 

runs for about 2450 seconds (3670-6120) with about 100 percent of the CPU as can 

be seen in Figure 5.12. 
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    Figure 5.12 CPU usage of original and optimized code with 10000 words in dual core machine 

 

5.2 Two Quad Core Machine 
 

This hardware design can be summarized as: 

  “Processor : Intel Core 2 Quad CPU – Q6600  2.40 GHz” 

  “Memory:    4 GB RAM” 

  “System type: 64 bit Operating System” 

The design of the processors can be seen in Figure 5.13. 

 

 

        Figure 5.13 Snapshot of processors in 2 quad core machine 
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The effect of the input size on CPU usage with this design can be seen in the 

following figures: 

 

5.2.1 50 words 
 

When working with 50 words, the original code runs for about 16 seconds (0-16) 

with 30 percent of the CPU and the optimized code runs for about 6 seconds (18-24) 

with about 90 percent of the CPU as shown in Figure 5.14. 

 

 

    Figure 5.14 CPU usage of original and optimized code with 50 words in 2 quad core machine 

 

5.2.2 100 words 
 

When working with 100 words, the original code runs for about 32 seconds (0-32) 

with 30 percent of the CPU and the optimized code runs for about 12 seconds (32-

44) with about 90 percent of the CPU as shown in Figure 5.15. 

 

 

    Figure 5.15 CPU usage of original and optimized code with 100 words in 2 quad core machine 
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5.2.3 150 words 
 

When working with 150 words, the original code runs for about 48 seconds (0-48) 

with 30 percent of the CPU and the optimized code runs for about 18 seconds (48-

66) with about 90 percent of the CPU as shown in Figure 5.16. 

 

 

   Figure 5.16 CPU usage of original and optimized code with 150 words in 2 quad core machine 

 

5.2.4 300 words 
 

Figure 5.17 shows that when the input file contains 300 words, the original code 

runs for about 94 seconds (0-94) and the optimized code runs for about 36 seconds 

(94-130). 

 

 

   Figure 5.17 CPU usage of original and optimized code with 300 words in 2 quad core machine 
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5.2.5 600 words 
 

As shown in Figure 5.18, when the input file contains 600 words, the original 

code runs for about 185 seconds (0-185) and the optimized code runs for about 65 

seconds (185-250). 

 

    Figure 5.18 CPU usage of original and optimized code with 600 words in 2 quad core machine 

 

5.2.6 1000 words 
 

When the input file contains 1000 words, the original code runs for about 305 

seconds (0-305) and the optimized code runs for about 100 seconds (305-405) like 

shown in Figure 5.19. 

 

 

    Figure 5.19 CPU usage of original and optimized code with 1000 words in 2 quad core machine 

 

5.2.7 5000 words 
 

When 5000 words are used as input, the original code runs for about 1480 seconds 

(0-1480) and the optimized code runs for about 570 seconds (1480-2050) as shown 

in Figure 5.20. 
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    Figure 5.20 CPU usage of original and optimized code with 5000 words in 2 quad core machine 

 

5.2.8 10000 words 
 

As can be seen in Figure 5.21 when 10000 words are used as input, the original 

code runs for about 2990 seconds (0-2990) and the optimized code runs for about 

1280 seconds (2990-4270). 

 

 

   Figure 5.21 CPU usage of original and optimized code with 10000 words in 2 quad core machine 

 

5.3 i7 - 8 Threaded Machine 
 

This hardware design which can be seen in Figure 5.22 can be summarized as:   

   “Processor : Intel Core i7 CPU – 2.67 GHz” 

  “Memory:    4 GB RAM” 

  “System type: 64 bit Operating System” 
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 Figure 5.22 Snapshot of processors in i7 8 threaded processor machine 

 

5.3.1 50 words 
 

When the input contains 50 words, the original code is runs for about 14 seconds 

(0-14) with 20 percent of the CPU and the optimized code runs for about 5 seconds 

(14-19) with about 80 percent of the CPU like shown in Figure 5.23.  

 

Figure 5.23 CPU usage of original and optimized code with 50 words in i7 8 threaded machine 

 

5.3.2 100 words 
 

As shown in Figure 5.24, when the input contains 100 words, the original code 

runs for about 26 seconds (0-26) with 20 percent of the CPU and the optimized code 

runs for about 8 seconds (26-34) with about 80 percent of the CPU. 
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   Figure 5.24 CPU usage of original and optimized code with 100 words in i7 8 threaded machine 

 

5.3.3 150 words 
 

As can be seen in Figure 5.25, when the input contains 150 words total execution 

time of the original code is about 37 seconds (0-36) with 20 percent usage of CPU. 

This is optimized to 13 seconds (36-49) with 80 percent usage of CPU. 

 

 Figure 5.25 CPU usage of original and optimized code with 150 words in i7 8 threaded machine 

 

5.3.4 300 words 
 

With 300 words original code works for 72 seconds (0-72) and the optimized code 

works for 27 seconds (72-99). Figure 5.26 shows the graph of these results. 

 

  Figure 5.26 CPU usage of original and optimized code with 300 words in i7 8 threaded machine 
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5.3.5 600 words 
 

With 600 words original code works for about 144 seconds (0-144) and the 

optimized code works for 45 seconds (144-189) as can be seen in Figure 5.27.  

 

   Figure 5.27 CPU usage of original and optimized code with 600 words in i7 8 threaded machine 

 

5.3.6 1000 words 
 

As shown in Figure 5.28, while working with 1000 words execution time is about 

248 seconds (0-248) and execution time of the optimized code is about 62 seconds 

(248-310). 

Figure 5.28 CPU usage of original and optimized code with 1000 words in i7 8 threaded machine 

 

5.3.7 5000 words 
 

It can be seen in Figure 5.29 that when the input size is increased to 5000 words 

the total execution time of the original code increases to 1224 seconds (0-1224) 

while the total execution time of the optimized code increases to only 306 seconds 

(1224-1530). 
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   Figure 5.29 CPU usage of original and optimized code with 5000 words in i7 8 threaded machine 

 

 

5.3.8 10000 words 
 

When the input size is increased to 10000 words the difference between the total 

execution times of the original and the optimized code increases too. The original 

code works for about 2400 seconds (0-2400) (about 40 minutes) while the optimized 

code works for about 700 seconds (2400-3100) (about 10 minutes) as shown in 

Figure 5.30. 

 

 

Figure 5.30 CPU usage of original and optimized code with 10000 words in i7 8 threaded machine 
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5.4 Results of tests 
 

5.4.1 Performance results 
 

As summary, the difference which occurs with the input size changes and 

hardware design difference can be seen in Figure 5.31, Figure 5.32 and Figure 5.33.  

 

As you see in Figure 5.31, when the input contains 50 words on dual core 

machine, the difference between the total execution time of the original code and the 

optimized code is about 11 seconds and when the input data contains 10000 words, 

the difference increases to about 1220 seconds. 

 

 

Figure 5.31 Summary of results of original and optimized code with different input sizes 

in dual core machine 

 

As you see in Figure 5.32, when the input contains 50 words on quad core 

machine, the difference between the total execution time of the original code and the 

optimized code is about 10 seconds and when the input data contains 10000 words, 

the difference increases to about 1710 seconds. 
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Figure 5.32 Summary of results of original and optimized code with different input sizes 

in 2 quad core machine 

 

As you see in Figure 5.33, when the input contains 50 words on i7 8 threaded 

machine, the difference between the total execution time of the original code and the 

optimized code is about 9 seconds which can be ignored. But when the input data 

contains 10000 words, the difference increases to about 30 minutes which cannot be 

ignored. 

 

 

Figure 5.33 Summary of results of original and optimized code with different input sizes 

in i7 8 threaded machine 
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Figure 5.34 shows these results together where the effect of optimization can be 

seen clearly.  

 

 

Figure 5.34 Summary of results of original and optimized code with different input sizes 

on different machine designs 

 

5.4.2 Battery status results 

 

To see the difference and effects in terms of battery usage, an application has been 

developed. In this application, the windows application analyzed in the previous 

section is executed between the battery power status checks of the machine. At first 

the notebook is fully charged. It is unplugged, and the application is started. It starts 

with checking the battery status of the machine. When it reaches to a starting point, 

the windows application is started with original source codes. When the application 

stops, the battery status is measured again and the result is saved. Then the machine 

is recharged fully and the same work is done for the application with optimized code.  
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Battery status change results according to different input sizes are given in Table 

5.1 with their time costs in a dual core machine where bigger battery status change 

differences are expected in more threaded machines. 

 

Table 5.1 Performance and battery usage comparison of original and optimized code with different 

input sizes in a dual core machine 

 Original code Optimized code 

 Execution time Battery 

Status change  

Execution time Battery Status 

change  

50 words 18 seconds %99 - %99 11 seconds %99 - %99 

100 words 36 seconds %99 - %99 24 seconds %99 - %99 

150 words 54 seconds %99 - %99 30 seconds %99 - %99 

300 words 102 seconds %99 - %98 63 seconds %99 - %99 

600 words 208 seconds %99 - %95 169 seconds %99 - %97 

1000 words 343 seconds %99 - %93 278 seconds %99 - %95 

5000 words 1723 seconds %99 - %63 1057 seconds %99 - %74 

10000 words 3440 seconds %99 - %30 2355 seconds %99 - %43 

 

By using the results shown in Table 5.1, curve fitting can be done to find an 

equation for a curve that fits this data. The data set can be defined as shown below: 

  X – independent variable (execution time difference of original and optimized 

code) 

  Y – dependent variable (battery status change difference of original and 

optimized code) 

 

After performing curve fitting, an equation will be formed like “y = mx + C” 

where;  

y = dependent variable, x = independent variable, m and C = constants    

 

Here, curve fitting is applied on performance gain data (execution time difference 

of original and optimized code) and energy gain data (battery usage difference of 

original and optimized code) and result is shown in Figure 5.35. 
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Figure 5.35 Curve fitting resuits for performance gain with battery life gain 

 

5.4.3 Energy results 
 

To see the difference and effects in terms of energy consumption, extra add-on 

has been used with the same application and with different input files. The device is 

a wattmeter that can measure the energy consumption quantity and calculate energy 

cost and it is shown in Figure 5.36.  

 

           Figure 5.36 Wattmeter 
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5.4.3.1 10000 words 
 

The results of the energy consumption tests for 10000 words on different 

machines are given in Table 5.2. 

 

Table 5.2 Energy consumption test results for 10000 words 

  # of 
Threads 

wh wh-
Idle 
wh 

Average 
watt 

Real 
Time 
(min) 

Real 
Time 

Test
1 

Optimized 
(Core i7) 

8 40 17,06 209,26 11,47 0:11:28 

Regular 
(Core i7) 

8 100 20,64 151,21 39,68 0:39:41 

Test
2 

Optimized 
(Core i7) 

8 40 17,35 211,89 11,33 0:11:20 

Regular 
(Core i7) 

8 100 20,66 151,25 39,67 0:39:40 

Test
3 

Optimized 
(Q6600) 

4 40 17,15 127,78 18,78 0:18:47 

Regular 
(Q6600) 

4 87 26,23 104,69 49,67 0:49:40 

Test
4 

Optimized 
(D525) 

2 10 1,28 9,18 65,37 1:05:22 

Regular 
(D525) 

2 23 2,99 9,18 152,57 2:32:34 

Test
5 

Optimized 
(Core2Duo) 

2 20 5,41 32,89 36,48 0:36:29 

Regular 
(Core2Duo) 

2 30 7,37 31,82 56,56 0:56:34 

Test
6 

Optimized 
(Core2Duo) 

2 20 6,09 34,50 34,78 0:34:47 

Regular 
(Core2Duo) 

2 30 7,34 31,77 56,65 0:56:39 

Test
7 

Optimized 
(Core2Duo) 

2 20 5,12 32,25 37,21 0:37:13 

Regular 
(Core2Duo) 

2 30 7,36 31,80 56,61 0:56:37 

Test
8 

Optimized 
(Core2Duo) 

2 20 4,53 31,02 38,68 0:38:41 

Regular 
(Core2Duo) 

2 30 7,42 31,88 56,46 0:56:28 

Test
9 

Optimized 
(Core2Duo) 

2 20 5,92 34,08 35,21 0:35:13 

Regular 
(Core2Duo) 

2 30 7,40 31,86 56,49 0:56:29 
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5.4.3.2 50000 words 

 

The results of the energy consumption tests for 50000 words on different 

machines are given in Table 5.3. 

 

Table 5.3 Energy consumption test results for 50000 words 

  # of 
Threads 

wh wh-
Idle 
wh 

Average 
watt 

Real Time 
(min) 

Real 
Time 

Test
1 

Optimized 
(Core i7) 

8 223 85,42 194,32 68,96 1:08:57 

Regular 
(Core i7) 

8 520 118,09 155,26 200,96 3:20:57 

Test
2 

Optimized 
(Core i7) 

8 220 77,43 185,17 71,29 1:11:17 

Regular 
(Core i7) 

8 520 117,09 154,87 201,46 3:21:27 

Test
3 

Optimized 
(Core i7) 

8 230 91,98 199,97 69,01 1:09:01 

Regular 
(Core i7) 

8 520 118,48 155,41 200,76 3:20:46 

Test
4 

Optimized 
(Q6600) 

4 233 107,75 135,63 103,22 1:43:13 

Regular 
(Q6600) 

4 460 151,50 108,85 253,56 4:13:34 

Test
5 

Optimized 
(Q6600) 

4 230 105,82 135,20 102,07 1:42:04 

Regular 
(Q6600) 

4 460 150,95 108,65 254,02 4:14:01 

Test
6 

Optimized 
(Core2Duo) 

2 140 140,00 43,55 192,90 3:12:54 

Regular 
(Core2Duo) 

2 180 180,00 37,25 289,95 4:49:57 

 

As can be seen from the tables, tests have been done in different machines with 

different designs and by using different input files. The watt-hour (wh) is a unit of 

energy commonly used to measure electricity. One watt-hour is the amount of 

electrical energy equivalent to a one-watt load drawing power for one hour and here, 

“wh” column shows this quantity while executing the code. Also, the “wh-idle” 

column shows the amount of electrical energy for that machine uses when it is idle 

and does nothing. Watt is the unit of power and defined as one joule per second. 
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During the tests done at this step, the device shows the watt value and its average 

value for the executed code are given in “Average watt” column in the tables. It can 

also be calculated from the watt-hour values with the execution time given in the 

remaining columns of the table. For example; from the results of Test-1 in Table 5.2 

by using the Equation 4 and Equation 5, it can be calculated: 

 

W = 1 Joule/Second (4) 

1 wh = 3600 Joule (5)   

� 209,26 = (40*3600) / (11,47*60) 

 

By using the test results energy consumption of the original and optimized code 

can be calculated and compared. For example by using the test results of Test-1 

shown in Table 5.2, cost of the original and optimized code can be calculated: 

 

∑ Coptimized =  Toptimized * Eoptimized  

  = ( 68,96 min. / 60 ) * 223 wh  

  = 1,15 hours * 223 wh  

  =  256,45 wh  

=  0,25 kwh  

 

∑ Coriginal =  Toriginal * Eoriginal  

  = ( 200,96 min. / 60 ) * 520 wh  

  = 3,35 hours * 520 wh  

  = 1742 wh  

= 1,742 kwh  

 

Test results show that saving energy is possible by coding efficiently. Here, the 

effect of design of the machine and amount of the job done on energy consumption 

can be seen. Especially thread count is very effective on energy consumption that can 

be seen clearly from the results. As thread count increases the difference between 

original and optimized code gets bigger in terms of execution time and watt-hour 
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value (energy). So, optimization done for less energy consumption results with 

bigger benefits.  

 

5.4.4 Summary of results 

 

As shown in previous sections, by using appropriate types, strategies and ways, 

execution time, battery usage and energy consumption can be decreased. During this 

decrement, memory and cpu usage of the applications can be worried. Figure 5.37 

and Figure 5.38 show memory and cpu usage of the applications with original code 

and optimized code consecutively. As can be seen from these figures CPU usage 

increases in optimized code (because of parallel programming) and memory usage is 

almost same.   

 

 

Figure 5.37 Memory and cpu usage during execution of original code 
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   Figure 5.38 Memory and cpu usage during execution of optimized code 

 

Also, it must be noted that all graphs that show cpu usage are not like a straight 

line and it is increasing and decreasing around average value. It can be because of a 

waiting of cpu for the disk or IO. Also different works done during the code cause 

different cpu utilization as shown in part of the report in Figure 5.39. As can be seen 

from the report, cpu usage of optimized code is about %99.8 but in details of code, 

cpu usage during decryption (%56.6) and encryption (%43.2) methods are also 

different, where there are differences in their details too.  

 

Different tools have been used to see and compare the results on different 

environments. For example there is a functionality within the PowerCfg utility for 

evaluating system energy efficiency for the Windows family of operating systems 

which also enables system manufacturers to inspect a Windows platform for 

common energy efficiency problems. In Windows 7, the Windows PowerCfg utility 

is enhanced to detect many common energy efficiency problems, such as ineffective 

use of suspend by USB devices, excessive processor utilization, increased timer 

resolution, inefficient power policy settings, and battery capacity degradation. 
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 Figure 5.39 CPU usage details of optimized code 

 

It also generates an HTML-formatted report that contains details about each 

problem that it detected. Here, this analysis has been done for original and optimized 

code separately and two reports have been generated. After getting these reports the 

results reached in previous sections are supported. All environmental parameters are 

same which shows that the tests are done under the same conditions for original and 

optimized code. Also cpu utilization of applications are same with the previous 

results as shown in Figure 5.40 and Figure 5.41. 

 

As a result, two different applications which do the same work and give the same 

output did their work in different times with different battery usage and this 

difference gets bigger as the job being done gets bigger. Think that you are out where 

you cannot charge your notebook having low battery power on which you have to do 

a job. In this case, if you use optimized code you can see the work results before it 

becomes empty where maybe the battery power will be insufficient for the original 

one.  
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  Figure 5.40 A part of report generated with PowerCfg utility while executing optimized code 

   

 

 

 

  Figure 5.41 A part of report generated with PowerCfg utility while executing original code 
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CHAPTER SIX 

CONCLUSIONS 

 

With the increasing role of power-conscious systems in our lives, energy 

consumption gained more importance and by the way, as battery systems cannot long 

last, power usage is still a major concern studied from the perspective of software.  

 

In this thesis, the aim is finding various ways, types and techniques at the software 

implementation level (especially within OOP development) that use lower energy 

while providing same output.  

 

Results show that, the time CPU spends is parallel with the battery usage and 

energy consumption, so it is the basic approach in this research that ‘if the 

application works faster it consumes less energy with the help of increased idle 

time’. In addition to previous works done before, contributions of this thesis are;  

 

� High performance can be supplied by optimizing the source code. 

� Battery usage of the code is generally parallel with the execution time of it 

and long battery life can be supplied by using appropriate strategy or type 

in the source code. 

� Energy consumption can generally be estimated and writing energy 

efficient code is possible. 

� Execution time of the programs gives clues about energy consumption 

because longer execution time generally means less idle time and more 

energy consumption. 

� Optimizing software from the higher levels possible, it is cheaper and 

easier. 

� Design of the hardware (also the number of threads) and amount of the job 

done affect the performance and energy consumption of the software. 
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It would be very useful if there is a tool or algorithm that converts an existing 

code to its lower-power counterpart. So finally, this study can be used in developing 

automatic techniques for determining the energy consumption of applications and 

decreasing the energy consumption with software optimization techniques.  
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APPENDICES 

 

A sample code used in comparing styles and types in the specified language is 

below. It is the example of comparing recursion and iteration. 

 

        private int TestRecursive(int p1) 

        { 

            if (p1 <= 1) return p1; 

            int result = p1 + TestRecursive(p1 - 1); 

            return result; 

        } 

         

        private int TestNonRecursive(int p1) 

        { 

            int result = 0; 

            while (p1 > 0)  { 

                result = result + p1; 

                p1--; 

            } 

            return result; 

        } 

        

        private void Compare() 

        { 

            Stopwatch s1 = Stopwatch.StartNew(); 

            int res = 0; 

            for (int i = 1; i < 10000; i++) 

            { 

                res += TestRecursive(i); 

            } 

            s1.Stop();   

 

            res = 0; 

            Stopwatch s2 = Stopwatch.StartNew(); 

            for (int i = 1; i < 10000; i++) 

            { 

                res += TestNonRecursive(i); 

            } 

            s2.Stop();         

       }  
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The sample code used in comparing battery usage is shown below (A timer is 

used and in every tick it checks the battery status for reaching a starting point, if it 

reaches, the test code is started and when it stops the battery status is measured again 

to see the energy consumption of the code): 

 
 

private void timer1_Tick(object sender, EventArgs e) 

{ 

  if (!_hasStarted) 

  { 

  if (GetBatteryStatus() == "99") 

  { 

                     

lblStart.Text += DateTime.Now.ToString() + "(" 

+ GetBatteryStatus() + ")"; 

        _hasStarted = true; 

_p = 

Process.Start(@"EnergyResultsWindowsApp.exe");                    

     } 

  } 

  else { 

    if (!IsProcessOpen("EnergyResultsWindowsApp")) {  

         timer1.Enabled = false; 

 lblEnd.Text += DateTime.Now.ToString() + "(" +    

GetBatteryStatus() + ")"; 

    } 

  } 

          

} 


