DOKUZ EYLUL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

ENERGY EFFICIENT ALGORITHMS

by

Canan BESEL

February, 2011

iZMiR

ENERGY EFFICIENT ALGORITHMS

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of Dokuz Eyliil University
In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Computer Engineering, Computer Engineering Program

by

Canan BESEL

February, 2011

iZMiR

M.Sc THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “ENERGY EFFICIENT ALGORITHMS”
completed by CANAN BESEL under supervision of ASST. PROF. DR. GOKHAN
DALKILIC and we certify that in our opinion it is fully adequate, in scope and in

quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Gokhan DALKILIC

Supervisor

(Jury Member) (Jury Member)

Prof. Dr. Mustafa SABUNCU
Director

Graduate School of Natural and Applied Sciences

ii

ACKNOWLEDGMENTS

During this research my supervisor supported me in every phase and guided me
about the way of developing. Thanks to him for his support and for giving
constructive suggestions to improve the quality of this thesis. Also with the
encouragement of him I wrote an article on this subject and sent it to a conference
named ISC Turkey. It has been accepted and I have made a representation within the

concept of it.

Canan BESEL

iii

ENERGY EFFICIENT ALGORITHMS

ABSTRACT

Nowadays, a variety of systems are used which have power supply constraints. It
is important that all design efforts are made to conserve power in those systems.
Energy consumption in a system can be reduced with hardware changes but
application software running on the system has a key role in energy consumption too.
In this thesis, the impact of various software implementation techniques on
performance and energy saving is studied. It looks for strategies and types to
decrease the execution time and the energy consumed by a given processor core
when executing a program especially written in the C# language running on given

input.

Keywords: Energy efficient algorithms, energy consumption of programs, code

optimization.

v

ENERJi TASAARUFLU ALGORITMALAR

0z

Gilintimiizde gii¢ kisitlar1 olan cesitli sistemler kullanilmaktadir. Bu sistemlerde
giicii korumak i¢in yapilabilecek caligmalar 6nemlidir. Bir sistemdeki enerji tiiketimi
cesitli donanim degisiklikleriyle azaltilabilir ancak sistemler {izerinde c¢alisan
uygulama yazilimlar1 da enerji tiikketiminde Onemli bir rol oynar. Bu calismada,
performans ve enerji tasarrufu i¢in uygulanabilecek c¢esitli yazilim teknikleri lizerine
calisildi. Calisma icersinde ozellikle C# dili kullanilarak yazilmis bir programin
belirli bir girdiyle calistirilmasi sirasinda islemcinin ¢calisma zamanini ve enerji

tikketimini azaltmak i¢in kullanilabilecek strateji ve tipler aragtirilir.

Anahtar sozciikler: Enerji tasarruflu algoritmalar, programlarin enerji tiikketimleri,

kod optimizasyonu.

CONTENTS

Page

M.Sc THESIS EXAMINATION RESULT FORMccoooiiiimiiiiniiiiniieenieenieeee i1
ACKNOWLEDGMENTS. ...ttt 11
ABSTRACT ..ottt e e e e e e v
OZ oottt v
CHAPTER ONE - INTRODUCTIONcuuutiirreiiisnecssneccssneecsseesssescsssecssssecsssaes 1
CHAPTER TWO - BACKGROUND......ccccttiirunicisnnicssneissseesssseessseecssssscssssecsssaee 3
2.1 Instruction Level OptimizZationc.ccoceveririninenenenenenener e 3
2.1.1 Instruction Level Power Analysiscccccceeiiiniiiiiiiiiieiiniiiiiiiiceeeenn, 3
2.1.2 Computation of ENergy CosSt.......cooevuiiiiiiiiiiiiiiiiiiiiieeeeeeeeeiieeeeee e 4
2.1.3 Instruction Packingcc.eeeeiiiiiiiiiiiiiiiiiieeeee e 8
2.1.4 Instruction REOrderingccceeevviiiiiiiiiiiiiiiiiiiiiieeee e 8
2.1.5 Reduction of Memory Operandscccceeevrriiiiiiieeeeeennniiiiiiieeeeenn. 9
2.1.6 Operand Swapping in Booth Multiplier............ccccuviiiiiiiinnniiiiiiiieeennn. 9
2.1.7 Register PIPEIININGcccuvviiiiiiiiiiiiiiiiiiieeee e 10

2.2 Data OptMIZAtIONceeirrirririinrenieniesretenreeee e 11
2.3 Algorithmic Optimization (Application Layer Optimization)c..c.cc..... 12
2.3.1 Object Oriented Programming Strategiesceeeeeeeerriiiiireeeeeeennn. 12
232 AVOId POIING ...ooviiiiiiiiiieee e 14
2.3.3 Multithreadingcoovviiiiiiiiiiiiieeeee e 15
2.3.4 Reduce Usage of High-Resolution Periodic Timers...........ccccocveeeeenee 16
2.3.5 LOODS cetiiiiiei e e e e 17

2.4 Other Optimization TechniqUEscccceceviririininiic e 17
2.5 Optimization in Mobile AppLICAtiON.........cccceveririririenenenereeeeeeeeeeae 18
2.5.1 Reads & WIIES...ccoiuuiiiiiiiiieeeeiiiee et 20
2.5.2 HEAP USAZE ..uvvveiiiiieeeieiiieeteeee ettt e 20
2.5.3 /O OPEIAtIONS ...eeeeeeeeeiiiiiiiiiieeeeeeeaiiieteeeee e e e ettt eeeeeeessaiireeeeeeeeens 21

vi

CHAPTER THREE - PERFORMANCE TOOLSuuuvnienrueninensnnensnensnecsanees 22

3.1 PerfMON ..o 22
3.2 Intel® Vtune™ ANAlyZer.........ccccooviiiniiiniieeeeeee e 23
3.3 CLR Profiler..c..couiiiiiiieeeeee e 23
B4 SOS ettt et 24
3.5 VSTS Profiler...cccouioiiiieeeeee e 25
3.6 Windows Event Viewer/Event Log (Windows* XP & Windows Vista*)...25
3.7 Windows ETW (Windows* XP & Windows Vista™)ccccccevvveivenvennnnns 25
3.8 Powerlnformer (Windows* XP & Windows Vista®)........ccccceeeevceeecieennnnn. 25
3.9 POWEITOP (LINUX).cuieiieiieiiieiiesie sttt te et esae et e e snee e 26
3.10 Battery Life Toolkit (BLTK) (LinUX)ccceevirieiiiiiiieneeieneeieeeeee e 26
CHAPTER FOUR - C# CODE OPTIMIZATION....ccceceeveeecsneecssneecssseecssnecen 27
4.1 ClaSS VS. SEIIUCE ..ttt sttt sttt b et be e 29
4.2 Static vs. Dynamic Variablecccooiniininininincece 30
4.3 Recursion Vs. Tterationc.ceeciiieriiriinieieeieieseee et 31
4.4 Function USAZE.......ccceruiriiriinieieieieieieee ettt 32
4.5 Parameter Ordercooiiieiiiiiiiiiieiereeee e 34
4.6 ArrayLiSt VS. AITAYccoviiiiiiiiieieeeee e 35
4.7 Foreach vS. FOT ... 36
4.8 String.Format vs. String Builder vs. Concatenationc.ccoceeevvenvennenennes 37
4.9 BoXINE-UNDOXING....cciiiriiriirieieieieeeee et 38
4.10 Reading Values of ObJects ONCEccevereririnerineneneeeeeeeee e 39
411 SPecial OPEIALOTSc.ecvevverierieieeeeeeeeeee ettt 39
4.12 Parallel Programmingc.ccoceeerereninenenienenieeeeeeeeee e 40
4.13 Smart Try-Catch - Minimize EXCEPLIONS.........cccvceririreninineneneneeeee 42
CHAPTER FIVE - DEVELOPMENT & TEST RESULTScccevveiivneecrcnnecnns 46
5.1 Dual Core Machine — 2 threads..........ccoceveririninininnccceeceeeeeeees 50
S LT SO WOTAS ..o 51
512 100 WOIS ..o 52
513 150 WOIdS oo 52
5.4 300 WOIdS ...ooiuviiiiiiiiiiiiiiii 52

vii

5.1.5 OO0 WOTS ..ceveeiee ettt ettt e e et e et e e ea e eaaaas 53

5.1.6 1000 WOIS ...ttt 53
S.1.7 5000 WOIS ...t 54
S5.1.8 10000 WOIAS ...veeuirieeiiieeiiie ettt et 54

5.2 Two Quad Core MacChine..........cccecueeriieiieiieeieesee e 55
521 50 WOIAS .ceieiiiiiie ettt e 56
5.2.2 100 WOTAS .ttt 56
523 I50 WOIAS ..t 57
524 300 WOTAS .coniiiieieeiiiee et 57
5.2.5 000 WOTAS ..cnniiiiiieiiiiee et e 58
5.2.6 1000 WOISeieeeeiiiieeeiieee ettt e e 58
527 5000 WOISvvveeeeiiieeeeiee ettt 58
5.2.8 10000 WOIASeeeeuiieiaiiieeiiee ettt et 59

5.3 17 - 8 Threaded Machineg...........ccceeiiiiiiiininieeceee e e 59
531 50 WOIAS .eeieiiiiiieeeeee et e 60
5.3.2 100 WOTAS ccoiiiiiieeeiiiee ettt e 60
5.33 I50 WOIAS ..t 61
5.3.4 300 WOTAS .cniiiiiieiiiiee et 61
5.3.5 000 WOTAS ..cnniiiiiieeiiiee et 62
5.3.6 1000 WOISeevveeeeiiiieeeiieee et 62
537 5000 WOIS ...vveeeeiiiieeeieee et 62
5.3.8 10000 WOIASeeeeuiiiieiieieiiee ettt 63

5.4 RESUILS OF tESES..eeuiiiuiiiiiiieieet e 64
5.4.1 Performance reSultsccceeirmiiiiiiiiiiiieiiiieeeee e 64
5.4.2 Battery Status reSUILScuueveiiieiiiiiiiiiiiiieeeee e 66
543 ERErgy resultsccoiiiiiiiiiiiiiiieiieeeee e 68
5.4.4 Summary of TeSUIES ...cooiiiiiiiiiiiiiiie e 72
CHAPTER SIX ..oooovuiiirnricssnecssnecssneessssnessssnssssssecssssecssssesssssassssssssssssssssssssssssssssns 76
CONCLUSIONS ccuuiiiiitiicisnnecsssnecssseesssssessssessssssssssssecssssessssssssssssssssssssssssssssssssssss 76
REFERENCESccccoonnnnnnnnniieccsssssssnnsnssecccsssnns Hata! Yer isareti tanimlanmamius.
APPENDICEScoiiiiiniiiinniinsntinsnnissssticsssnecssssecsssseesssssssssssssssssssssssssssssssssssees 82

viii

CHAPTER ONE

INTRODUCTION

Since most day to day operations are moving online (reservations, core banking,
shopping) and popularity of power constrained computers is increasing (notebooks,
digital cameras, mobile phones), software performance has become vital to their
success in terms of response time in web sites; battery life and heat dissipation for
portable devices. For example, so many times visits to a web site take long time to
load which can result with frustration and the migration to a different site. For
businesses this can be fatal as they lose customers. For another example, an
application designed for mobile phones can be useless as it consumes much power
and causes a shorter battery life. Energy consumption is very crucial especially in

terms of battery lives of portable devices.

Energy consumption in a system can be reduced with many technical
improvements concerning the architecture of electronic systems. Most of them are
from the area of hardware design. But beside changes in hardware design, software
design issues are another promising approach (Steinke, Schwarz, Wehmeyer &
Marwedel, 2001). Software can play an important role in reducing the power and
extending the battery time. Furthermore, software changes are generally less
expensive and can be delivered as an update (Steinke, Schwarz, Wehmeyer &

Marwedel, 2001).

Every activity carried out by applications can affect the power consumption of
any computer which can be defined as the energy consumption of software running
on them. Software developers frequently face the problem of estimating how much
energy and time are spent in their software. This is crucial to determine how fast
their software runs on a platform, how much energy it consumes, where
optimizations are needed, or what hardware it requires to ensure a given speed. And
this problem is not effectively solved by current approaches like instruction-level

simulation, static timing analysis and source-level instrumentation.

In light of the above, there is a clear need for considering the power consumption
on systems from the point of higher levels of software and optimizing the source
code for less power consumption. As the trend of applications goes in “object
oriented programming”, this thesis tries to find the best ways, strategies, and types
that can be used during software development with C# language for less energy
consumption. The details in this study are as follows: There will be the mention
about other studies related to low power consumption of software from the point of
different levels as instruction, data and application level in Section 2. Next, the tools
that can be used in observations about resource usage of software in different
environments are listed in Section 3. Then in Section 4, the major characteristics of
OOP those can substitutes to one another are raised with the results of resource
consumption comparisons. In Section 5; some of the characteristics, types and
strategies suggested in Section 4 for lower energy are used in an application together
and the results are analyzed for performance and energy gain. Finally, some

concluding remarks have been given.

CHAPTER TWO

BACKGROUND

The design of system software, the actual application source code and the process
of code translation to machine instructions — all of these determine the power cost of
the software. So optimizations can be applied at three levels of abstraction:
instruction-level, data-level and application level. Several researches about energy
efficient codes and optimization of codes to make them more efficient have been
studied in the past. In this section, previous works about instruction level and data
level optimization are analyzed in Section 2.1 and Section 2.2 consecutively. Then
algorithmic level optimization studies and some other techniques are given in Section

2.3 and Section 2.4.

2.1 Instruction Level Optimization

In order to analyze and quantify power cost of the program, it is important to start
from the most fundamental level. This is the level of individual instructions
executing on the processor. Instruction level optimization is the optimization of
software that translates a high-level language into machine code for the target
microprocessor. It analyzes power consumption from the point of view of
instructions. It provides too low-level information and it is too slow (Scarpazza,

2006).

2.1.1 Instruction Level Power Analysis

“Instruction level power analysis”, which is first proposed by Tiwari, is the
technique used to provide the fundamental information needed to evaluate the power
cost of the program (Tiwari, Malik & Wolfe, 1996). This technique estimates the
energy cost of a program by summing the energy consumption of each instruction.
Instruction-by-instruction energy costs are determined for each target processor
which is called “base cost”. The base cost of an instruction is defined as the average

current drawn by the processor when it is executed and it is measured with a program

containing a loop of the individual instruction. Also there is another effect that
impacts the overall power cost of programs. The “overhead cost” is the measure of
circuit state change for a sequence of two different instructions. It is measured with
the difference in the current of an infinite loop of a pair of different instructions with

the average of the base costs of the instructions.

So the total energy consumed by a program P is given by Equation 1 (Tiwari,

Malik & Wolfe, 1996).

Ep =) (Bi XN‘-)—i_Ei,j(Oi:j x Nij)+ D Br 0

‘Bi’ is the base cost of each instruction ‘i’

‘Ni’ is used for the number of times the instruction ‘i’ is executed.

‘Oij is the circuit state overhead when instruction ‘/’ and instruction °j° are
adjacent.

‘Ex’ 1s the energy overhead of the other inter instruction effects (stalls and cache

misses).

2.1.2 Computation of Energy Cost

Table 2.2 shows CPU base costs for some Intel 486Dx2 processor instructions

(Tiwari, Malik & Wolfe, 1996).

As an example consider a program containing a sequence of instructions like

shown in Table 2.1.

Table 2.1 An example instruction sequence

Number Instruction
1 MOV CX,1
2 ADD AX,BX
3 ADD DX, 8[BX]
4 MOV AX,BX
5 SAL BX,CL

The total cost of this sequence can be calculated using base costs like below:

MOV CX,1 = MOV reg,imm = 299.2 mA * 1 cycle
ADD AX,BX => ADD reg,reg => 309.0 mA * 1 cycle
ADD DX,8[BX] = ADD reg,dis[base] => 400.2 mA * 2 cycles
MOV AX,BX => MOV reg,reg => 291.2 mA * 1 cycle
SAL BX,CL = SAL reg,CL => 302.7 mA * 3 cycles

Table 2.2 Subset of the base cost table for Intel 486Dx2

Instruction Current (mA) Cycles
MOV reg,imm 200.2 1
MOV reag,reg 201.2 1
MOV reg,disp[base] 434.7 1
MOV reg, [base] [index] 409.0 2
MOV disp[base],reg 560.1 1
MOV disp[base],imm 404.8 2
SAL reg,CL 302.7 3
CMP reg,imm 206.0 |
CMP reg,reg 288.0 1
JCC imm - taken 372.2 3
JCC imm - not taken 356.8 1
JMP imm 370.1 3
NOP Py) 1
ADD reg,imm 315.6 1
ADD reg,reg 309.0 |
ADD reg,dis[base] 400.2 2
ADD displbase], imm 382.4 4
IMUL reg 287.7 13
IMUL [base] 305.0 13
IDIV [base] 2789 20
IDIV [base] [index] 281.8 21

To get a closer estimate we consider the circuit state overhead between each pair
of consecutive instructions is known. The overhead values between the pairs 1&2,
2&3, 3&4, 4&5 and 5&I1 are found to be 17.9 mA, 5.25 mA, 16.8 mA, 17.4 mA,
17.2 mA consecutively. So the total energy cost can be calculated by using Equation
1:

((299.2*1 + 309.0*1 + 400.2*%2 + 291.2*1 + 302.7*3) + (17.9 + 525 + 16.8 +
17.4 + 17.2)) / 8 = 335.3 mA current over 8 cycles

To make this calculation on a program code, the code is converted to its
equivalent assembly code containing instructions divided into blocks. Then the
instructions’ base costs and number of cycles of them are determined. For each
block, base costs of the instructions are multiplied with the cycle number and the

products are summed up to find the base energy cost of the block.

Table 2.3 An example instruction sequence

Program Current(mA) Cycles
; Block E1

main:

mov bp,sp 285.0 1
sub sp,4 309.0 1
mov dx,0 309.8 1
mov word ptr —4[bpl,0 404.8 2
;Block B2

L2:

mov si,word ptr —-4[bp] 433.4 1
add si,si 309.0 1
add si,si 309.0 1
mov bx,dx 285.0 1
mov cx,word ptr _alsi] 433.4 1
add bx,cx 309.0 1
mov si,word ptr _bl[sil 433.4 1
add bx,si 309.0 1
mov dx,bx 285.0 1
mov di,word ptr -4[bp] 4334 1
inc di, 1 297.0 1
mov word ptr -4[bpl,di 560.1 1
cmp di,4 313.1 1
j1l L2 405.7(356.9) 3(1)
;Block B3

L1i:

mov word ptr _sum,dx 521.7 1
mov sp,bp 285.0 1
jmp main 403.8 3

As you see in the code, Block-2 in Table 2.3 is executed according to a condition.
So cost of the ‘jl L2’ statement is different according to whether the jump is taken or
not. By multiplying the cost of the blocks with the number of times it is executed,
adding the cost of the unconditional jump jl L2’ statement to it, dividing the result

by the number of cycles, and at the end by adding the average circuit state overhead

value to the result, the total energy cost can be calculated approximately. It can be

summarized as:

While (!exit)
{

int 1 = 1;
double energy = 0;
begin

energy += BLOCKI1;
while (1 < 4){
energy += BLOCK2;
i=14+1;
if(jump is taken)
{
enerqgy += cost_of_(jl L2);
}
}
energy += BLOCK3;
end;
}

Modern compilers can make some optimizations automatically on the code that
had been written by the programmers to make it run more efficiently. These
compilers are called “optimizing compilers” (Aslan, 2006). The basic condition for
the optimization is ‘not to upset the equivalence of the original code’, which means it
should not change the meaning of the code. Figure 2.1 summarizes the compilation

process of optimizing compilers.

source code

v

{Lexical Analysis) (Syntax Analysis) {Semantic Analysis)

r

Generation

(Intermediate Code —-| (Optimization) {Code Generation) | | machine code

Figure 2.1 Compilation process of optimizing compilers

Techniques of instruction level optimization driven by the compilers are:

2.1.3 Instruction Packing

The DSP has a special architectural feature called instruction packing. It is the
feature of packing an ALU-type instruction and a data transfer instruction into a
single instruction codeword for a simultaneous execution. When the instructions are
packed, it executes in one cycle and the circuit-state overhead current between two

adjacent unpacked instructions is eliminated (Lee, Tiwari, Malik & Fujitsu, 1995).

Average current for the packed instructions is a bit more than unpacked
instruction sequence but the unpacked instructions complete in twice the number of
cycles as the packed instructions which results with a larger energy consumption as

shown in Figure 2.2.

E; unpacked

: T
" 2n

Figure 2.2 Comparison of energy
consumption of packed and

unpacked instructions

2.1.4 Instruction Reordering

The energy consumed during execution of an instruction depends on the previous
instruction because of the switching activity in the circuit. Thus, order of the
instructions affects the energy consumption of our programs. This means reordering
the instructions can reduce the circuit-state overhead and minimize the energy

consumption.

It has been observed that this technique lead to very little impact in the case of the

486DX?2 and the ‘934 processors. But in the case of DSP, this impact is more

significant (Tiwari, Malik & Wolfe, 1996). Effect of instruction reordering in the
‘034 can be seen in Table 2.4.

Table 2.4 Effect of instruction reordering in the ‘934

No. Instruction Register contents
1 fomuls %£8,%f4,%f0 #£8=0, %Ufa=0)
2 andcc %gl,Oxaaa,%10 (%g1=0x555)
3 faddd %f£f10,%f12,%f14 (A£f10=0x123456, }fl2=0xaaaaaa)
4 14 [0x555]1,%05
5 s11 %o04,0x7,%06 (%o4=0x707)
6 sub %i3,%ia,%is5 (hi3=0x7f, fid=0x44)
7 or %g0,0xff,%10
Sequence Current (mA)
a 1,2,3,4,5,6,7 227.5
b 1,3,5,7,2,4,6 224
c 1,4,7,2,5,3,6 226
d 2,3,7,6,1,5,4 228
e 5,3,1,4,6,7,2 223.5

2.1.5 Reduction of Memory Operands

Instructions with memory operands have very high energy costs compared to
instructions with register operands. Because register operands lead to shorter running
times due to elimination of potential stalls and cache misses. Thus reduction in the
number of memory operands can supply large energy savings (Tiwari, Malik &
Wolfe, 1994). Reducing memory operands can be done with optimal register
allocation of temporaries and global register allocation of most frequently used

variables.

2.1.6 Operand Swapping in Booth Multiplier

The Booth multiplier implemented in the MAC unit takes the data in registers A
and B as operands for multiplication as shown in Figure 2.3. But it does not treat A
and B in the same way. B is recorded by a so-called “skipping over 1s” technique
and A is added or subtracted for the number of times determined by B while

executing the production process (Lee, Tiwari, Malik & Fujitsu, 1995).

10

register B

| product reqister |

Figure 2.3 Microarchitecture model for

the Booth multiplier

So if the weight of A is smaller than that of B, the number of addition and
subtraction operations decreases and it supplies a reduction in current. As a result
with just swapping the operands in a product instruction, current and power

consumption can be reduced as shown in Table 2.5.

Table 2.5 Effect of operand swapping in power reduction

operands measured current
opl op2 |opl * op2|op2 * opl|%saving
TFFFFF|AAAAAA| 58.9 46.9 20.4%
000001 |AAAAAA
TFFFFF|666666 68.5 47.9 30.1%
000001 [AAAAAA
TFFFFF(AAAAAA[65.7 49.1 25.3%
000001000001

2.1.7 Register Pipelining

Arrays are usually stored in memory and the elements of them are accessed with
load and store instructions. Register pipelining is a known optimization technique in
compilers which eliminates these accesses in loops by temporarily storing the data in
unused processor registers whenever this is possible (Steinke, Schwarz, Wehmeyer

& Marwedel, 2001).

The main principle can be shown in C# code given below.

Original Code: for (1 = 1; i < 120; i++) |
ali] = al[i-1] + 3;

11

Optimized Code: R = a[0];
(1

a
for

Il
POl

R

2.2 Data Optimization

Code can be optimized by changing the representation of data manipulated by the
algorithms to match the characteristics of the target architecture with the processed

data (Simunic, Benini, Micheli & Hans, 1999).

Most processors execute faster if certain data values are aligned on word, double-
word or page boundaries. So if possible, structures must be designed to satisfy

appropriate alignments to avoid exceptions.

In an assembly language, the choice of a particular instruction or data type can
have a large impact on execution efficiency. In general, instructions that process
variables such as signed or unsigned 16-bit or 32-bit integers are faster than
instructions that process floating point or packed decimal. Modern processors are
even capable of executing multiple 'fixed point' instructions in parallel with the
simultaneous execution of a floating point instruction. If the largest integer to be
encountered can be accommodated by the 'faster’ data type, defining the variables as
that type will result in faster execution. Assembler programmers and optimizing
compiler writers can then also benefit from the ability to perform certain common
types of arithmetic (performing faster binary shift right operations instead of

division).

If the choice of input data type is not under the control of the programmer,
although prior conversion (outside of a loop for instance) to a faster data type carries
some overhead, it can often be worthwhile if the variable is then to be used as a loop
counter, especially if the count could be quite a high value or there are many input
values to process. As mentioned above, choice of individual assembler instructions

(or even sometimes just their order of execution) on particular machines can affect

12

the efficiency of an algorithm. Sometimes microcode or hardware quirks can result in
unexpected performance differences between processors that assembler programmers
can actively code for something even the best optimizing compiler may not be

designed to handle.

2.3 Algorithmic Optimization (Application Layer Optimization)

Highest layer in the optimization hierarchy targets algorithms. The choice of the
algorithm and other high level decisions about the design of the software can affect

the energy consumption.

This layer has the most information on the actual user impact of performance and
energy tradeoffs. Application-specific optimizations can be made at this layer such as
changing the algorithm used, accuracy of computation (eg. changing from double
precision to single), or quality of service provided. For a particular problem, a stack
may be better than a queue and a B-tree may be better than a binary tree or a hash
function. The best algorithm or data structure to use depends on many factors, which
indicates that a study of the problem and a careful consideration of the architecture,
design, algorithms, and data structures can lead to an application that performs better
and consumes less energy. Also, energy usage at the application layer may be made
dynamic. For instance, an application hosted in a data center may decide to turn off
certain low utility features if the energy budget is being exceeded, and an application

on a mobile device may reduce its display quality when battery is low.

There are several ways and techniques that can be made in application layer.

Previous works done in the concept of this layer are given shortly in this section.

2.3.1 Object Oriented Programming Strategies

Chatzigeorgiou (2002) emphasizes on that the object-oriented approach shows a
significant performance penalty compared to classical procedural programming due
to the increased instruction count, larger code size and increased number of accesses

to the data memory. According to this study, energy consumption penalty of object

13

oriented programming compared to classical procedural programming (C vs. C++)

can be seen in Figure 2.4 and Figure 2.5 (Chatzigeorgiou, 2002).

Comparison of energy consumption for all system components (in ml)

Benchmark Processor Instr. memory Data memory System
Max_c 0.220 0.0181 0.0287 0.267
Max_oop 0.253 0.0206 0.0573 0.331
Matrix_c 18.148 2.234 6.886 27.264
Matrix_oop 19.534 2.406 8.736 30.666
Iterator_c 1.272 0.176 ().388 1.836
lterator_oop 1.382 0.189 0.467 2.037
Complex_c 3.353 0.472 1.725 5.549
Complex_oop 3.632 0.517 2.047 6.195
Avg. OOP penalty 9.90% 9.61% 41.39% 14.76%

Figure 2.4 Comparison of energy consumption

Energv comparison of Gauss—Jordan, integral calculation and QuickSort
algorithms

Benchmark Processor Instruction mem. Total system
energy (mlJ) energy (mlJ) energy (mlJ)
GaussJ_c 0.00802 0.001892 0.009912
GaussJ_oop 0.01154 0.002487 0.014027
OOP penalty 43.80% 31.45% 41.52%
Integral _c 0.01504 0.003789 0.018829
Integral _oop 0.04034 0.008734 0.049074
OOP penalty 168.22% 130.51% 160.63%
QuickSort_c 0.01706 0.003287 0.020347
QuickSort_oop 0.03200 0.005415 0.037415
OOP penalty 87.57% 64.74% 83.88%

Figure 2.5 Comparison of energy consumption

14

Though it is known that OOP has quite much more overhead than assembly and

procedural languages, development trend still heads to this new world. There are

optimized strategies in writing OOP software under energy concerned environment.

According to the study done in 2006 by Chantarasathaporn and Srisa-an, there are

some major characteristics and significant usages of OOP those can substitutes to

one another. The results of resource consumption comparisons among the

comparable commands are as follows:

Static variable consumes more power than the dynamic one because it takes
around 40% longer time than dynamic.

Interface is more restrictive since the methods inside must not have method
body while Abstract Class can have some attributes or method bodies, just at
least only one class is abstract. There is no significant different between using
Abstract Class and Interface in similar situation.

Dynamic variable works slower than the static around 40%.

Dynamic method runs faster than the static around 50%. Anonymous
dynamic method is very CPU intensive and it takes around 80% longer time
than regular dynamic method.

When using dynamic class attribute locally, users may just use it barely or use
with "this" keyword. There is no significant difference in term of CPU usage
of this pair.

The most CPU consuming field is protected variable while private and public
ones spend time quite close to each other. Protected attribute is slower than

the other two around 40%.

2.3.2 Avoid Polling

Polling refers to actively sampling the status of an external device by a client

program as a synchronous activity. Some examples of how applications perform

unnecessary polling include (LessWatts,n.d.):

Checking every second to see if the mouse moved

Check every second to see if it is time to show the next minute on the clock

15

e Check 10x/sec to see if the smartcard reader got inserted on USB

e Check if new data is added to database that must be shown on the screen

In applications, periodic polling seems to have become an easy, simple solution
for many application problems. Every time an application polls for something, the
CPU wakes from idle state and wastes power (LessWatts, n.d.). So it must be
avoided polling at all costs. Instead of this, event and notification architecture can be
used. But sometimes it is really needed to use them so at these situations, polling
interval can be increased. Polling not more often than one per second may be a better

solution.

2.3.3 Multithreading

Execution can be speed-up by taking advantage of multiple threads. With
multithreaded applications, the job may be able to finish in shorter time than single-
threaded applications. Thanks to the increased idle time it supplies, it leads to energy
savings as compared to a single-threaded version. But threads must be used correctly.
If the threads are imbalanced it may lead to increased energy consumption

(Steigerwald, Chabukswar, Krishnan & Vega, 2007).

In imbalanced threading there is a significant difference in the amount of work
done by each thread within an application and the results indicate that the imbalanced
threading model/under-utilized CPU may cause degradation in performance, causing

increased power consumption.

In balanced threading each thread has an equal amount of work as other active
threads of the application. Figure 2.6, Figure 2.7 and Figure 2.8 show performance,
CPU power consumption and platform power consumption data for running single-
threaded (ST) and multi-threaded (MT) versions of several CPU-intensive
applications (Steigerwald, Chabukswar, Krishnan & Vega, 2007). The multithreaded
applications clearly show significant performance improvements over running
single-threaded versions. For example, the ST version of cryptography takes ~50
seconds to complete, while both the MT-1 and MT-2 versions take only ~25 seconds.

16

Performance Data (sec)

120 -

100]
g @ asT
% 60 |MT-1
E o+l 7 amMT-2

20

0

Tl B

Cryptography VideoEncoding CorterdCreation ContentCreation
1 2

Applications

Figure 2.6 Balanced threading performance

Multithreading also saves power as shown in following figures. For example, the
cryptography ST version running for ~50 seconds consumes ~150 mWHr of total
power, while running the cryptography MT version for ~25 seconds and idling the

system for the remaining 25 seconds consumes ~110 mWHr of total power.

CPU Power Consumption - Adaptive Platform Power Consumption - Adaptive
200 4 400
- £ 30
£ S 300
E 600 @sT E 260 @sT
5 500 g
mMT-1 3 20 a1
400 H
< a0 oMT2 a 150 anT-2
= T 100 4 —
2 200 — 5 g -
100 4 — = 5
o —— Iv. — : L — Cryptogrsphy VideoEncoding CorterfCrestion CantentCrestion
1 5 1 2
Applications Application
Figure 2.7 Balanced threading CPU power Figure 2.8 Balanced threading platform power

The results indicate that multithreading done correctly not only shows
performance improvements but also saves power (Steigerwald, Chabukswar,

Krishnan & Vega, 2007).

2.3.4 Reduce Usage of High-Resolution Periodic Timers

A good way of reducing energy is to let it idle as often as possible. Make sure the
application is optimized to use the longest timer rate possible while fulfilling the

requirements. Using timer intervals shorter than 15ms has small benefit for most

17

applications. Always make sure to disable periodic timers in case they are not in use,

letting the OS adjust the minimum timer resolution accordingly (Larsson, 2008).

2.3.5 Loops

Minimize the use of tight loops. To reduce the overhead implied with small loops,
performance/power can be improved by performing loop unrolling. To achieve this,
the instructions that are called in multiple iterations of the loop are combined into a
single iteration. This will speed up the program if the overhead instructions of the
loop impair performance significantly. Side effects may include increased register

usage and expanded code size (Larsson, 2008).

2.4 Other Optimization Techniques

There are some other potential sources of energy reduction that can be applied
during compilation whose effectiveness may be smaller as the methods described

earlier. But any sources of energy reduction should not be ignored.

- Identify the kernel, drivers and libraries utilized by the application. Determine
if there are alternative implementations of used components that are more
power friendly. For instance, a more recent Linux kernel may feature
scheduling optimizations making the application run more efficient. Another
example would be to update to a more recent and energy efficient Bluetooth
device driver (Larsson, 2008).
- If possible consider using a programming language implementation and
libraries that are idle power friendly. Some high level run-time languages may
cause more frequent wakeups compared to low(er) level system programming
languages such as C (Larsson, 2008).
- Scheduling can be done to reduce pipeline stalls which takes up cycles and
consume energy (Tiwari, Malik & Wolfe, 1994).

- Code transformations can be done to improve cache hit rates (Tiwari, Malik
& Wolfe, 1994).

- Reducing switching in address lines (Tiwari, Malik & Wolfe, 1994).

18

- Improving page hit ratio. Because page misses in page-mode DRAM chips
consume more energy (Tiwari, Malik & Wolfe, 1994).

- Don’t use too many Reflection API’s: Reflection API’s depend on the
metadata embedded in assemblies. Thus parsing and searching this information is
very expensive (Rodriguez & Dutta, 2008).

- Don’t make functions unnecessarily virtual or synchronized: JIT might
disable some optimizations and so the generated code might not be optimal
(Rodriguez & Dutta, 2008).

- Don’t write big functions: JIT might disable optimizations for faster compile
(JIT) time (Rodriguez & Dutta, 2008).

- Choose the right framework for the scenario, including energy efficiency
goals (Stemen, 2008).

- Try to use less complex (and more energy efficient) algorithms. For instance,
select a lower quality video encoder/decoder when running on batteries (Stemen,
2008).

- Animations always increase system power consumption with extra CPU and

memory utilization. So it must be avoided as possible (Stemen, 2008).

2.5 Optimization in Mobile Application

Usage of mobile applications and mobile computing has a growing popularity and

energy is a vital resource for these systems as battery life and heat dissipation.

Everybody wants ‘all-day mobile pc battery life’. Users complain about short
battery lives of their portable devices. So, extending battery life as long as possible is
important, but how? You can see people saying ‘I have a notebook whose battery life
is 8 hours’. But doing what; with playing DVD, with playing game or doing nothing?
At this point impact of software comes out. There are studies in battery technology
and low-power circuit design but studies in hardware scope cannot meet all the
energy needs of future-mobile computers, improvements must be done in the higher
levels of the system too. In other words software and energy consumption of them

becomes more important in mobile systems.

19

Nowadays there are hundreds of different mobile models in mobile market which
have all different characteristics including different systems. So at this point it
becomes important to supply an application supported by much more devices. On the
web there are two browsers and two or three operating systems that you have to
support, if your application has been tested on them, you know that over 90 percent
of your target audience will be able see and access your work. But in the mobile
market, you deal with thousands of mobile devices with varying screen sizes and
capabilities, operating systems and browsers. Content that looks great on one device

may look odd or even unreadable on another.

How do you today ensure that your mobile content works consistently on the
different devices? And how do you know what is "good" performance for your
application? Performance in general means some characteristics that may be
somehow measured. You can look at RAM usage, execution time, booting time,
CPU usage and so forth. But in case of mobile applications, you have very limited
resources available and there are strict requirements related to device characteristics
and features. Therefore, mobile applications should be designed carefully and
employ every possibility to improve their performance. While developing a mobile

application, these can be done (Stemen, 2008):

- Firstly understand the impact of the software on platform power consumption.

- Focus on idle: how much energy it consumes in idle state, how can it be
decreased, how can we get the system idle as long as possible.

- Reduce resource utilization: disk time, CPU time, memory alignment, sleep
and resume transitions. ..

- Adapt to the system environment: what is the right tool for the job, what kind
of application you should make and what kind of functionality it should have.

- Correctly handle sleep and resume transitions.

A good user experience and longer battery life are critical factors for the future
growth of mobile systems. Software of applications running on these mobile systems

has a key role to play in improving user experience as well as in extending battery

20

life. Most of the optimization techniques listed in Section 2.3.1 can be applied in
mobile applications too but there are subjects that are specific to mobile applications.
Some of the points that mobile developers must care during development are listed

next.

2.5.1 Reads & Writes

If a mobile application is moved to an upper version of the environment or if you
work with some kind of flash card instead of the internal device's memory,
operations with files can became dramatically slower. These are all because of
read/write operations depend on the flash block size, regardless of how much data is
read from or saved to the flash card. So, knowing this block size and adjusting
buffers while developing applications accordingly can increase throughput of I/O

operations (Gusev, 2006).

2.5.2 Heap Usage

On mobile devices, the stack size is often limited, so a heap should be used
instead. But this also may cause performance to decrease when used unnecessarily

(Gusev, 2006). Consider the following code:

while (expression)

{
XXX *pObj = new XXX;
DoSomething (pObj) ;
delete pObj;

If this is a tight loop, many heap calls will cause heap fragmentation. In this case

temporary variables must be used like the code below to increase performance:

21

XXX *pObj = new XXX;
while (expr)
{
DoSomething (pObj) ;
pObj->Reset () ;
}

delete pObj;

2.5.3 1/O Operations

I/O operations have an important effect on performance in mobile applications.
For desktop systems it is simple: read by blocks instead of bytes. But for mobile
applications it is not as straightforward. If data is stored on a flash card then access
time may be very long. Suppose that data is kept in a flat file as binary or text. It is a
good thing if you can read it all in one time to memory and then process as needed.
But in case of huge amounts of data, this is impossible. In those cases, you have to
allocate chunks here and there. It is a really bad thing that memory allocation
strategies may vary from one version of an OS to next one. On Pocket PC 2002 big
allocations are good for performance, but on later versions smaller chunks are
allocated faster. It is really hard to choose the best method to reach the best 1/O
performance (Gusev, 2006).

CHAPTER THREE

PERFORMANCE TOOLS

There are various tools that can be used in various systems for observing resource

usage and performance of applications.

3.1 Perfmon

Perfmon is a system level tool that allows user-level code to access several
ASP.NET related performance counters (Larsson, 2008). It can be used in analyzing
any .Net, monitoring results of tuning and configuration scenarios, and the
understanding of a workload and its effect on resource usage to identify bottlenecks.

Some of example screenshots are shown in Figure 3.1 and Figure 3.2.

_iaix]
| o ek vem ravortss Ik b =
__#_Mv-o-@'gﬁ DAsewch [GiFavorres (Bstory | Y- Sp BN -] . .
|| Aeddress [@1 http:iiperfmon. sourceforge.netiperfranzy x| e | ks |

Group overview

[This page shows all groups configured in Perfddon. Jelect the group from which you want the view the elements or click here to show all
elements of all groups

Backbone network
Madl servers
Dhal-m systems
Webservers

Game servers

& [|4 Internet

o

Figure 3.1 Screenshot of Perfmon

22

23

= F

| Bl Edt Yew Fgortes Took Help -

| ook » = - @[] | Disesrch [(GlFmverbes Arimtory | e O B - (5]

| Agddress |E] et e frernae, omurcafion e, rest [per Fenon b alarranl piT ot egpgl er 1 -frnd im0l ll 6o | |Links
Show: Day Week Month Year

CPU usage crl-nyc

CPU wsage crl-aye (8 Februari 2003)

pRFCERE (X)
E

0" Teo 20100 2200 0000 0200 OM0 0600 0Bi00 10:00 1E00 00
W Cre Toad (average 39,03 X

2] Done

| B

Figure 3.2 Screenshot of Perfmon

3.2 Intel® Vtune™ Analyzer

It is a profiling tool from Intel which supports .NET including ASP.Net
applications (Larsson, 2008). It evaluates applications on all sizes of systems based

on Intel processors to help improving application performance and makes application

performance tuning easier.

3.3 CLR Profiler

It is a profiler tool from Microsoft which is used to profile memory allocation of
applications and allows the user to investigate the contents of the manage heap as
well as the behavior of the garbage collector, to identify portions of code which use

too much memory. Some example screenshots are shown in Figure 3.3 and Figure

3.4 (Rodriguez & Dutta, 2008).

¥ view Time Line - selected: 4.214 seconds - 4.593 seconds

“ertical Scale: Kilobytes/Pixel

1 268 A0 20 B 100 200 500

24

=lolx]

Horizontal Scale: Miliseconds/Pikel

1 28 0 20 ¢80 & qo0 20

Types - estimated sizes allocate
Swstem, String - 643,072 byl
B Swsktem,Drawing, SolidBrush
B System.Byte []- 0 bytes (0.
System, Object [] - 0 bytes ¢
B System, Security, Security St
B Swskem, Security, SecurityEle
System, Reflection.Cache, T
B System. Collections. ArrayLis

B System. Collections.Hashtab
Syskenn, Security, Util, Tokenk

W Swskem, Security, Policy, Polic
B Swskem, IO, StreamiWriter - €
B Sysktem. Security . Permission’
B Swskem, IO, Stream. MullStre:
I System, Security, Lk URLSE: -

Figure 3.3 Screenshot of CLR Profiler

agmlucatiun Graph for: C\¥SNETSamples'profilersamplel.exe
Edit:

3

=181 x]

Scale
 100tny] ™ 20 50 ¢ 100 ¢ 200 ¢ 500 ¢ 1000 [(huge)

(

Detail
’7("' Ojeventhing) ¢ 01 € 0.2 € 05 &

<root= ProfilerSample1::Main
1.6GE (100.00%) skatic void (String[1)
1.6GE (99,97%)

Skring: iConcat
stakic String (Object
6FIME (40.07%:)

1

| 3

1 Skrimg: i Concat

Swskem, Skring
static String (String 1.6 GE (99.85%)

1LBGE (99.57%)

M 4

Figure 3.4 Screenshot of CLR Profiler

3.4 SOS

It is the tool that exposes many CLR internal data structures such as GC,

Exceptions, Objects, Locking etc. It can be used to identify functionality bugs (such

as OutOfMemoryException) and performance related bugs as well (locking etc)

(Rodriguez & Dutta, 2008).

25

3.5 VSTS Profiler

It is a built in profiler from Microsoft Visual Studio Team system 2008. It can be
used in sampling application and identifying hotspots and hot call chains etc. It has
ability to look at perfmon counters of all the machines from a client system, etc

(Rodriguez & Dutta, 2008).

3.6 Windows Event Viewer/Event Log (Windows* XP & Windows Vista®*)

It provides a centralized log service to report events that have taken place, such as
a failure to start a component or to complete an action. For instance the tool can be
used to capture “timer tick” change events which have an indirect effect on platform

energy efficiency (Larsson, 2008).

3.7 Windows ETW (Windows* XP & Windows Vista*)

It provides application programmers the ability to start and stop event tracing
sessions, instrumenting an application to provide trace events, and consume trace
events. Events can be used to debug an application and perform capacity and

performance analysis (Larsson, 2008).

3.8 PowerInformer (Windows* XP & Windows Vista*)

It provides relevant and condensed platform power information to the developer,
including for instance battery status, interrupt rate and disk/file IO rates (Larsson,

2008).

26

3.9 PowerTOP (Linux)

It is a tool that can be used to point out the power inefficiencies of platforms. The
tool shows how well the platform is using the various hardware power-saving
features and culprit software components that are preventing optimal usage. It also
provides tuning suggestions on how to achieve low power consumption (Larsson,

2008).

3.10 Battery Life Toolkit (BLTK) (Linux)

It provides infrastructure to measure laptop battery life, by launching typical

single-user workloads for power performance measurement (Larsson, 2008).

CHAPTER FOUR

C# CODE OPTIMIZATION

Software optimization is generally done with speed and source usage aims. In
other words, we work for faster applications or applications that need smaller
memory. Of course it is willing to realize both of them but usually these two goals
are coincided to each other. To speed up the code it is inevitable to enlarge it. Or
shrinking the code can cause it to work slower. At this point, which one is more
important? To speed up or to shrink the code? Speed of the code is dominant here.
Generally, we have enough memory and speeding up helps our program more. For
example imagine that you have to write a program aimed at the system and a
function will be called for thousands time during the program. In this case a delay of
0.01 milliseconds will have very important effect on speed. Of course this situation
can change in embedded systems where memory limited small microprocessors are

used. So, the goal is to complete a task more quickly.

It is generally accepted that if the CPU can accomplish the task in fewer
instructions or by doing work in parallel in multiple cores, and then drop the CPU to
a low-power state, then the overall energy required to complete the task will be
lower. Especially, current processors are quite good about saving power when idle,
so making it to be idle longer will help to consume less energy. This behavior is

called race-to-idle and can be explained with a simplified example:

Take a typical commercially available processor that consumes 34 Watts when
running at full speed, and 24 Watts when running at half speed and 1 Watts when
idle. On this processor, decoding one second of a MP3 file or some HDTV media
every second takes 0.5 seconds at half speed, and, consequently, 0.25 seconds at full

speed. The energy consumption for one second is:

Half speed: 0.5s * 24W + 0.5s * 1W = 12.5 Joules
Full speed: 0.25s * 34W + 0.75s * 1W = 9.25 Joules

27

28

As a result, it's generally better to run as fast as possible so that it can be idle

longer which means less energy consumption.

In the past, both specific optimized equipments and codes were designed to relief
this concern. This way worked in the past however, in this era, there is another
significant restraint now, the time to market. To be able to prepare products in
shorter period, object-oriented programming (OOP) has stepped in to this field. This
new style heads to development methodologies, although it is known that it has quite
much more overhead than assembly and procedural languages. It has been reported
that OOP consume much resource (Chantarasathaporn & Srisa-an, 2006) which
contradicts with the target of low power consumption, but it is accepted due to
business reasons. Because of this, the language chosen for studying in this research is
C#, based on .NET Framework 4.0 which is one of the trendy OOP development

environments.

By the time your program is working, you might already know which functions
and modules are the most critical for overall code efficiency. We can focus to those
routines in which the program spends most (or too much) of its time. Once you've
identified the routines that require greater code efficiency, you can use the following

techniques to reduce their execution time.

The strategies and types that are compared in this research are tested with loops
containing different code that's being tested for performance, with a time reading
before and after. When the test has finished, the start time is subtracted from the end
time to find the time cost. Usually the code run slower at the first execution, so
several tests are done and the first 10 results are shown in x axis of graphs in this
research. Also, the vertical axis points the total execution times (in milliseconds) of
the tested code in different times of loops in each case. After strategies and their
results, a list of words are encrypted and decrypted with AES in a tight loop and the
results of the first 10 tests will be given for this data. Lastly, the test is done for
different sizes of data. Then, near performance, energy consumptions of the original

and optimized code are compared by using an example tight loop with battery status

29

check before and after the test. It’s checked if one of the type or strategy being
compared cause the battery to decrease more, especially to see if the energy
consumption is related to execution time or not. As you will see in the test results
too, at the end we can generally reach to the result that ‘the more timespan the
process takes the more power the process spends’. The strategy used during this

work can be seen in appendix.

Note that the techniques described here are very compiler-dependent. In most
cases, there aren't general rules that can be applied in all situations. These options

and strategies that had been compared here can be listed as:

e (lass vs. Struct

e Static vs. Dynamic Variable

e Recursion vs. Iteration

e Function Usage

e Parameter Order

e ArrayList vs. Array

e Foreach vs. For

e String.Format vs. String Builder vs. Concatenation
¢ Boxing-Unboxing

e Reading Values of Objects Once
e Special Operators

e Parallel Programming

e Smart Try-Catch - Minimize Exceptions

4.1 Class vs. Struct

Firstly, the data-member-only classes and structs are compared. Both of them can
contain group of variables or data members, but, as you see in Figure 4.1, it is easy to

distinguish the difference of time spent.

30

600

500 1 1

400

300 +

M Struct
200 -+

milliseconds

M Class
100 -

execution

Figure 4.1 Class vs. Struct

In a tight loop the effect of this choice on the energy consumption can be seen.

One of the test results are given below:

Using class: 13 minutes 12 seconds (%98 - %82)
Using struct: 10 minutes 34 seconds (%98 - %385)

4.2 Static vs. Dynamic Variable

Static variables are stored into RAM before the execution of code and they are
hold in RAM during the program. So, these variables are not affected from the load
and remove operations in the program. Thanks to the easiness of their address

calculation, they are faster than dynamic variables as shown in Figure 4.2.

4000
3800 +
3600 +
3400 +
3200 +
3000 +
2800 ~
2600 -

M Static

milliseconds

i Dynamic

execution

Figure 4.2 Static vs. Dynamic variable

31

Near its performance gain, using static variable instead of dynamic variable also

saves power as can be seen from the test results given below:

Using dynamic variable: 22 minutes 28 seconds (%93 - %64)
Using static variable: 21 minutes (%93 - %67)

4.3 Recursion vs. Iteration

Recursion is a function that calls itself iteratively until it reaches a deadline. For
some problems, designers can both use recursion or iteration. Recursive style is
compact but sometimes it is more important to write faster code than writing more
comprehensible code. This is why iteration is chosen most of the time. Due to the
necessity of a stack to manage the recursion, it takes more time as shown in Figure

4.3. The results also show the differences on speed of two strategies.

Original source code:

private int TestRecursive(int pl)
{
if (pl <= 1) return pl;
int result = pl + TestRecursive(pl - 1);
return result;

Optimized source code:

private int TestNonRecursive (int pl)
{

int result = 0;

while (pl > 0)

{
result = result + pl;
pl-—;

}

return result;

32

1800
1600
1400 -
1200 -
1000 -
800 -
600 -
400 -
200 ~

M lteration

milliseconds

d Recursion

execution

Figure 4.3 Recursion vs. Iteration

Using recursion instead of iteration increases memory usage of the code while
causing it to run slower. Near these, energy consumption of the code increases too

and it can be seen from the test results shown below:

Using recursion: 5 minutes 2 seconds (%99 - %94)

Using iteration: 2 minutes 34 seconds (%99 - %97)

4.4 Function Usage

Functions are basic building stones of structural programming. Functions have
important impact on the size and speed of our code. When a compiler comes across
with a function, it stores the parameters (if exist), output variables and the local
variables that are used during the function in a stack. When the function is called, all
these stored information is taken back from the stack (Yagmur, 2004). These
operations take time, sometimes more than we imagine as can be seen in Figure 4.4.
As a result, sometimes we should use local variables instead of these operations. But
when? When the speed and time is important for our application. For example; if we
have an application that does heavy mathematical operations. But of course while

doing this, we should not to forget that, this will cause our application to enlarge.

Original source code:

for (int x = 1; x < 10000000; ++x)
{
double y = hesapla(x);
}
return;

static double hesapla(int x)

{

return Math.Sin (x)

Optimized source code:

for

{

(int x = 1; x < 10000000; ++x)

double y = Math.Sin(x)

return true;

/ 100 / 3.1416;

/ 100 / 3.1416;

33

10000

9500

9000 -
8500 -
8000 -~
7500 ~
7000 -
6500 -
6000 -
5500 -
5000 -

milliseconds

execution

H Without function

i With function

Figure 4.4 Function usage

When the loop counter is big enough, the energy counterpart of this style can be

seen. In an example code, the total execution time and battery status change while

using this style is as follows:

Using function: 54 minutes 7 seconds (%92 - %30)
Not using function: 46 minutes 42 seconds (%92 - %41)

34

4.5 Parameter Order

Parameter order in method calls in C# influences the speed. In a method, if some
parameters are used more than others or in a tight loop, they should be put firstly.
Because when you compile a method in C# language, the parameters are pushed into
the stack and then that method uses the parameters from that stack. However,
Microsoft compilers have an advanced optimization called ‘fastcall’, where the first
two parameters in x86 are passed as registers (Allen, 2010). The speed of the code

with the order of parameters changes as shown in Figure 4.5.

Original source code :

public int Method(int a,int b,int c,int d) {
for (i = 1; 1 < 1000; i++4) {
d++; }
return a+d;

Optimized code :

public int Method(int d,int b,int c,int a) {
for (i = 1; 1 < 1000; i++4) {
d++; }
return a+d;

280

270

260 -

250 M First parameter

milliseconds

240 - i Last parameter

230 -

execution

Figure 4.5 Parameter order

In fact this style’s effect on the energy consumption cannot be seen clearly.

Although using this style in a tight loop, the execution time and energy consumption

35

of the source code do not change too much. As an example, in a tight loop the effect

of this style is as follows:

Putting the mostly used parameter in the last order: 12 minutes 16 seconds (%99
—%84)
Putting the mostly used parameter in the first order: 11 minutes 21 seconds (%99

—%84)

4.6 ArrayList vs. Array

Depending on the workload and the usage in the application a wrong choice for

the type could cost till 1000 times more energy.

Arrays are data structures to hold collections whose boundaries are static in which
unused array elements cause unnecessary memory usage. ArrayLists can be defined
as arrays whose size grow and shrink dynamically. Besides unnecessarily memory
usage, it is inefficient in terms of time. Using arraylist in a tight loop instead of using

array causes the code to execute slower as shown in Figure 4.6.

160
140
120
100 -

80 -
60 - M Array

milliseconds

40 - i ArrayList
20 A

execution

Figure 4.6 Array vs. Arraylist

Using arraylist instead of array also causes battery to decrease faster. The results

of the test done to see this effect can be seen below:

36

Using arraylist: 6 minutes 23 seconds (%99 - % 91)
Using array: 2 minutes 58 seconds (%99 - %96)

4.7 Foreach vs. For

‘Foreach’ is used in C# instead of a for loop to simplify the code, but it is slower
than a loop written using ‘For’. In fact foreach involves no performance penalty
when used against arrays. However, when used against lists it involves the same
overhead because in the background an enumerator is created and the loop is

controlled within a try-catch block. Its effect can be seen in Figure 4.7.

800
700 {
600 - | I
500 -

400
300 H For

milliseconds

200 - i Foreach
100 -

execution

Figure 4.7 Foreach vs. For

Energy consumption counterpart of this style when using in a tight loop as an

example are as follows:

Using “foreach”: 6 minutes 30 seconds (%85 - %76)
Using “for”: 6 minutes 1 seconds (%85 - %78)

37

4.8 String.Format vs. String Builder vs. Concatenation

Concatenating large strings in a loop is a performance drain and the
StringBuilder’s Append method is much more efficient. But the StringBuilder object
requires a lot more memory than a String and it is not efficient for concatenating a
small number of times. So it must be used if more than four concatenations are

required.

Many .NET developers use the StringBuilder class whenever possible. However,
it's not the fastest approach for concatenating small numbers of strings. Actually, any
number can be combined in a single statement, although the performance benefit
decreases above five or six substrings. This is due to instantiation and destruction
overhead for the StringBuilder instance, as well as method-call overhead involved in
calling Append() once for every added substring and ToString() once the string is
built. The difference in terms of speed of the code can be seen in Figure 4.8. And

battery usage test results are shown below.

600

550 +

500 +

M Concatenation

milliseconds
In
[¥y]
(=]
|

400 - b StringBuilder
350 - M StringFormat
300 -

execution

Figure 4.8 Concatenation vs. StringBuilder vs. StringFormat

Using StringFormat: 15 minutes 33 seconds (%99 - %82)
Using StringBuilder: 13 minutes 34 seconds (%99 - %84)
Using Concatenation: 13 minutes 2 seconds (%99 - %84)

38

4.9 Boxing-Unboxing

While working with object types boxing and unboxing are used. Boxing is the
creation of a reference wrapper for a value type and unboxing is the extraction of the
value type from the reference type. Boxing/unboxing enables value types to be
treated as objects which are stored on the garbage collected heap. Whenever boxing
is used, a new object is created on the managed heap and the value is copied in it. If
it is done frequently, then lots of objects will be created and also the extra code will
be executed for boxing and unboxing. Where possible this should be avoided as it is
a major drain on performance especially, the overhead of both is most heavily felt in

collection classes. The difference can be seen in Figure 4.9.
int 1 = 999;
object o0Obj = (object)i; // boxing

0Obj= 999;
i = (int)oObj; // unboxing

300
280 ~
260
240 ~
220

200
180 - M Without boxing

milliseconds

160 - M With boxing
140 -

120 -
100 -

execution

Figure 4.9 Boxing-unboxing

Near performance drain, using boxing and unboxing has an energy consumption
penalty too. Its effect can be seen clearly from the result of the example execution of

the test loop:

Using boxing/unboxing: 43 minutes 47 seconds (%99 - %44)

Using a specific type: 24 minutes 34 seconds (%99 - %68)

4.10 Reading Values of Objects Once

39

Reading values from objects is not as fast as assessing the value of a simple

variable. So if a value of an object will be used multiple times especially in loops, its

value must be read for once at the beginning and then that variable should be

accessed when needed. Figure 4.10 shows the effect of this strategy.

320
310
300
290
280
270
260
250
240

milliseconds

M Access once

ld Access n times

execution

Figure 4.10 Reading values of objects once vs. n-times

Reading values of objects is expensive in terms of energy and battery usage as its

effect can be seen in very big loops. One of the results is as follows:

Reading value of an object for n-times: 48 minutes 16 seconds (%92 - %30)

Reading value of an object for once: 46 minutes 2 seconds (%92 - %31)

4.11 Special Operators

There are special operators that enable to do math operations in a more compact

way. Using these special operators efficiently may help compilers to produce code

more efficient.

40

Original source code: a = a + b;
b=Db+ 1;
Optimized code : a = a + b++;

As you see, in the first way, b variable will be stored in register twice (one for
addition and one for increment). But in the second way, it will be stored for once.

This supplies smaller and faster program as shown in Figure 4.11.

2740
2720 M M
2700 ~
2680 +
2660
2640 ~
2620 +
2600 ~
2580 -

H With special operators

milliseconds

kM Without special operators

execution

Figure 4.11 Special operators

If you increase the counter of the test loop, this style’s effect on energy
consumption appears. For example in a tight loop, execution time of the code and

change amount in battery status becomes as follows:

Without special operators: 33 minutes 59 seconds (%94 - %50)
With special operators: 32 minutes 42 seconds (%94 - %52)

4.12 Parallel Programming

Multi-core machines are now becoming standard with the need of programs which
run faster and consume less energy. The key to performance improvements is
therefore to run a program on multiple processors in parallel. But it is still very hard
to write algorithms that actually take advantage of those multiple processors. Despite

running on a multi-core machine, most applications use a single core and see no

41

speed improvement. So programs must be written in a new way named ‘parallel
programming’. Figure 4.12 shows the effect of this new way on the speed of our

programs.

Original source code:

for (int 1 = 0; 1 < 100; i++4) {
ali] = alil*ali];

Optimized source code (With parallel programming):
Parallel.For (0, 100, delegate(int i) {
alil = al[il*ali]l;

P

2800
2600
2400
2200
2000 ~
1800 -
1600 -
1400 -
1200 -
1000 -

M Parallel

milliseconds

i Serial

execution

Figure 4.12 Parallel vs. Serial programming

Energy consumption counterpart of this style when using in a tight loop as an

example are as follows:

With serial programming: 52 minutes 11 seconds (%99 - %32)
With parallel programming: 43 minutes 2 seconds (%99 - %44)

Here, it must be noted that using more thread increases cpu utilization for
finishing the job faster but it does not cause more energy consumption as results

show.

42

4.13 Smart Try-Catch - Minimize Exceptions

Catching and throwing exceptions is very expensive and should be avoided where
possible. For example exception blocks should never be used to catch an error caused
by attempting to access a null object, instead a statement should be used to test if the
object is null before accessing it. Figure 4.13 shows the effect of this choice on the

performance of our programs:

Original source code:

try |
//perform operation

}
Catch {

//catch error

Optimized code :

if (myObj !'= null) {
//perform operation

}
else {
//catch error

40000

35000

30000

25000

20000

milliseconds

M Try - Catch
15000
i Null control

10000

5000

execution

Figure 4.13 Using Try-Catch vs. Control

43

Using try-catch blocks instead of using statements to prevent an error has a very

important effect in terms of energy near performance. This effect can be seen from

the example test results below (the difference gets bigger as exception cases

increase):

Using try-catch: 54 minutes 3 seconds (%99 - %39)

Using control statements: 7 minutes 21 seconds (%99 - %89)

The techniques analyzed in this section can be summarized as shown in Table 4.1

and Table 4.2.

Table 4.1 Summary of optimization techniques

Strategy 1 Strategy 2 Strategy 3 | Recommendation | Environment
Use Class Use Struct * Use Struct OQP (C#)
Use Static Use Dynamic | * Use Static Variable | OOP (C#)
Variable Variable
Use Recursion | Use Iteration | * Use Iteration OQP (C#)
Use function Not use * Not use function OQP (C#)
function for sometimes
Use mostly used | Use mostly * Use mostly used OOP (C#)
parameters in used parameters in the
the first order parameters in first order
the last order
Use Arraylist Use Array * Use Array OOP (C#)
Use Foreach Use For * Use For OQP (C#)
Use Use Use Use StringFormat | OOP (C#)
StringFormat StringBuilder | Concatena
tion
Use boxing Not use * Not use boxing OOP (C#)
boxing

44

Strategy 1 Strategy 2 Strategy 3 | Recommendation | Environment
Read values of | Read values * Read values of OOP (C#)
objects once of objects objects once
more
Use special Use basic * Use special OOP (C#)
operators operators operators
efficiently
Parallel Serial * Parallel OQP (C#)
programming programming programming
Use try-catch Not use try- * Not use try-catch OOP (C#)
catch
Use Use polling * Use General
events/notificati events/notification
on
Use Balanced Use Use Single | Use Balanced General
multithreading | Unbalanced | threading | multithreading
multithreadin
g
Use shorter Use longer * Use shorter timer General
timer intervals timer intervals
intervals
Use loops Use loop * Use loop unrolling | General
unrolling if if possible
possible
Use Big Use Short * Use Short functions | General
functions functions
Use Complex Use Simple * Use Simple General
algorithms algorithms algorithms
Use animations | Not use * Not use animations | General
animations

* 1 Does not have third strategy in the same concept

Table 4.2 Test results of optimization techniques

45

Strategy 1 Battery Execution | Strategy 2 Battery Execution
status time status time
change change

Using Class %98-%82 | 792 sec. Using Struct %98-%85 | 634 sec.

Using %93-%64 | 1348 sec. | Using Static %93-%67 | 1260 sec.

Dynamic variable

variable

Using %99-%94 | 302 sec. Using Iteration | %99-%97 | 154 sec.

Recursion

Using function | %92-%30 | 3247 sec. | Not using %92-%41 | 2802 sec.

function

Parameter in %99-%84 | 736 sec. Parameter in %99-%84 | 681 sec.

last order first order

Using 9%99-%91 | 383 sec. Using Array 9%99-%96 | 178 sec.

Arraylist

Using Foreach | %85-%76 | 390 sec. Using For %85-%78 | 361 sec.

Using %99-%82 | 933 sec. Using %99-%84 | 782 sec.

StringFormat Concatenation

Using 9%99-%44 | 2627 sec. | Using specific | %99-%68 | 1474 sec.

boxing/unboxi type

ng

Reading value | %92-%30 | 2896 sec. | Reading value | %92-%31 | 2762 sec.

of an object of an object for

for n-times once

Using regular | %94-%50 | 2039 sec. | Using special | %94-%52 | 1962 sec.

operators operators

Using Serial %99-%32 | 3131 sec. | Using Parallel | %99-%44 | 2582 sec.

programming programming

Using try- %99-%39 | 3243 sec. | Using control | %99-%89 | 441 sec.

catch

statements

CHAPTER FIVE

DEVELOPMENT & TEST RESULTS

As an example an application has been developed to see the effect of the strategies

above. In this application there is a form in which a file containing the list of words

can be chosen and there are two different buttons to start to encrypt and decrypt them

in a loop. Figure 5.1 shows a screenshot of the form. First button triggers a class

implementation which uses the worst ways and types versus the second one uses the

best choices for source code optimization.

ol AES Encryption- tic
Fle CAD\I506¢] Key [N
GREEN - GREEN -
COMPUTING |: COMPUTING |:
OR 1 OR 3
GREEN GREEN
T T
REFERS REFERS
TO TO
ENVIRONME ENVIRONME
SUSTAINAB SUSTAINAB
COMPUTING COMPUTING
OR OR
T T
T T
IS IS
THE THE
STUDY STUDY
AND il AND i
T‘ p— m T‘ |* — 1 | »
[Encrypt - Decrypt | Encrypt - Decrypt {Optimized)]

Figure 5.1 Choosing data to work on.

46

47

The differences can be summarized as:

- A type formed for holding the words and their encrypted and decrypted states.
In the first class these object types are hold in an object list and in the second one
they are hold in a list which will not require any boxing-unboxing operation.

Original :

private List<object> _listData;

Optimized:
private List<InputData> _listDataOptimized;

- Word count is needed in different steps of the program. In the first class, this
value is calculated by the length property of the word-list collection and in the

second one the collection’s length property is read into a variable and that variable is

used where needed.

Original:

if (counter == (_listData.Count % 2 == 0 ?
_listDhata.Count / 2 : (_listData.Count - 1) / 2)) { .. }

Optimized:

_wordCount = _listData.Count;

if (counter (_wordCount % 2 == 0 ? _wordCount / 2

(_wordCount - 1) / 2)) {

- In the optimized one, the words are encrypted and decrypted in parallel while
the first one does the same operations in serial.
Original:
foreach (object dataObj in _listData) {
encryptedStr = EncryptStr (data.Ad,

key.ToString(), 0);
}

48

Optimized:

Parallel .ForEach<InputData>(_listData, S =>
EncryptParallel (s, ref counter, ref tempToplam, key));

- In the first one, encryption and decryption methods are recursive where it is

optimized by using iteration in the second one.

Original:

private static string EncryptStr(string str, string
key, int counter) {
if (counter < 20) {
counter = counter + 1;
str = _aes.Encrypt (EncryptStr(str, key, counter), key,
ww, "MD5", 3, "16CHARSLONG12345", 128);
}

return str;

}

Optimized:

private static string EncryptStr(int counter, string
str, string key) {

for (int i = 0; 1 < 20; 1i++) {

str = _aes.Encrypt(str, key, ", "MD5", 3,
"16CHARSLONG12345", 128);

}

return str;

}

- In the original one for mathematical operations normal operators are used, but

in the optimized one special operators are used in an efficient way.

Original:
tempToplam = tempToplam + counter;
counter = counter + 1;

Optimized:

tempToplam = tempToplam + counter++;

The results that can be seen in Figure 5.2 show that, they are giving the same
outputs which mean they do the same job but their execution times are very different

as seen in the figure below so as the energy they consume. After finding total time

49

results, the efficiency and speed up values are calculated by using Equation 2 and
Equation 3 (Senyurt, 2010). Ts is the time taken to run the code serial and Tp is the

time taken to run parallel algorithm on N processors.

SpeedUp =SN =Ts/Tp (2)
Efficiency = EN = SN/ N (3)

This shows us that, by choosing convenient ways, appropriate strategies and using
true types we can write faster and more efficient programs without doing any

hardware changes.

Fle C:\D\1000bd [.. J[LoadFile | Key 12345

GREEN 1Q2K4xGA/G GREEN - GREEN Q2K4xGOIG GREEN -
COMPUTING slizdypShVE CDMF'LITINIIZI COMPUTING slizdypShVE CDMF'LITINIIZI
OR KHOIn1fZ7lg OR OR KHOIn1fZ7lg OR
GREEN 1Q2K4xGAIG GREEN GREEN 1Q2K4xGEIG GREEN
IT hZwleTod3JQ 1T IT hZwleTod3)Q 1T
REFERS kQAodoplS REFERS REFERS kQAodoplBS REFERS
TO vMxP3Rr3+ TO TO vMixP3RG+ TO
ENVIRONME IWEHrCHlypG ENVIRCNMI ENVIRCONME PWEHrCHlypG ENVIRCNMI
SUSTAINAE sKewudMxBD SUSTAINAB SUSTAINAE sKewudMxBD SUSTAINAB
COMPUTING slizdypBhWE COMPUTIMI COMPUTING slizdypBhVE COMPUTIM
OR KHOIn1fZ7lg OR OR KHOIn1fZ7lg OR
IT hZwleTod8JQ 1T IT hZwieTodSJQ 1T
IT hZwleTodSQ 1T IT hZwleTodSdQ 1T
15 cOUNDERIM IS 15 cOUNOERIM IS
THE +2oddZTCR THE THE +3oddZTCR THE
STUDY NpRfkEVET STUDY STUDY HNpRfkEVET STUDY
AND z02GWITAEr AND il AND z02GWITAEr AND il
Pl T —— Pl —
[Encrypt - Decrypt | Encrypt - Decrypt (Optimized)]
7147 millizeconds 4687 milizeconds

SpeedlUp 1,52

Efficiency 0,76 (% 76,24)

Figure 5.2 One of the results of the test

50

Figure 5.3 shows the results of ten consecutive executions of the program and the

difference between the original and optimized code.

1800

1600

1400 -

1200 -
1000 -
800
600
400
200

milliseconds

execution

M AES optimized code

d AES original code

Figure 5.3 Results of comparing the original and optimized code

The input data makes this difference bigger as its size becomes larger. Besides the

changes on input size, changes in hardware design effect the speed and CPU usage of

code too. These effects have been observed in different machines and with inputs

with different sizes, and the results can be seen in the following figures tested on

different machines.

5.1 Dual Core Machine — 2 threads

This hardware design can be summarized as:
“Processor : Intel Core 2 Duo CPU —T6600 2.20 GHz”
“Memory: 3 GB RAM”

“System type: 32 bit Operating System”

The snapshot of the processors can be seen in Figure 5.4.

51

= Windows Task Manager

N e

| Applications | Processes | Services | Performance |Networking | Users |

File Options View Help

CPU Usage CPU Usage History

Memory Physical Memory Usage History

Physical Memory (ME) System

Total 3071 Handles 21675

Cached 1434 Threads a31

Available 1463 Processes 55

Free 4 Up Time 0:04:29:06

Commit {ME) 1980 / 5140

Kernel Memory (ME)

Paged 309

Nonpaged 39 | Resource Monitor... |
Processes: 55 CPU Usage: 6% Physical Memory: 52%

Figure 5.4 Snapshot of processors in dual core machine

On this hardware design, the effect of the input size on the execution time and

CPU usage of the code can be seen in figures below.

5.1.1 50 words

When the input file contains 50 words, the original code runs for about 20 seconds
(0-20) with 60 percent of the CPU and the optimized code runs for about 13 seconds
(20-33) with about 100 percent of the CPU as can be seen in Figure 5.5.

W~y e — CPU (% Usage)
80— | - | .
0 | VA AAAA

an— | | }

D_|_,|||||||||||

0 3 f q 12 15 18 {1 24 27 30 33

Yifall Clock Time (Seconds)
Figure 5.5 CPU usage of original and optimized code with 50 words in dual core machine

52

5.1.2 100 words

When the input file contains 100 words, the original code runs for about 40
seconds (0-40) with 60 percent of the CPU and the optimized code runs for about 23
seconds (40-63) with about 100 percent of the CPU as shown in Figure 5.6.

100 ——p= — . — CPU (%% Usage)

B0 j
a0— | AV, P F) ._ ~d = Y
40—

20—

- A

0 fi 12 18 24 a0 El 42 48 54 fill
Wifall Clock Time (Seconds)

Figure 5.6 CPU usage of original and optimized code with 100 words in dual core machine

5.1.3 150 words

When working with 150 words, the original code runs for about 54 seconds (0-54)
with 60 percent of the CPU and the optimized code runs for about 38 seconds (54-
92) with about 100 percent of the CPU as shown in Figure 5.7.

100 ——» S M . — CPU (%2 Usage)

80—
50— MY AVEY, ._..". TAFAY VA {'._;_,'.. .'...- TAY . A ‘.'._.-'.__..._.'.. i
40—

20

1 e S S—

1 q 18 27 36 45 54 fi3 12 a1 a0
Wirall Clock Time (Seconds)

Figure 5.7 CPU usage of original and optimized code with 150 words in dual core machine

5.1.4 300 words

When working with 300 words, the original code runs for about 112 seconds (0-
112) with 60 percent of the CPU and the optimized code runs for about 70 seconds
(112-182) with about 100 percent of the CPU as shown in Figure 5.8.

53

100 — —— CPU (% Usage)
80 —
bl —
40 —

20—

0 13 30 a4 72 an 104 126 144 162 130
Wall Clack Time (Secands)

Figure 5.8 CPU usage of original and optimized code with 300 words in dual core machine

5.1.5 600 words

When 600 words are used during the program, the original code runs for about
220 seconds (0-220) with 60 percent of the CPU and the optimized code runs for
about 140 seconds (220-360) with about 100 percent of the CPU as shown in Figure
5.9.

100 — —— CPU (% Usage)
80 —

fill

40—

20—

I 36 72 108 144 130 216 252 288 324 360
Wiall Clack Time (Secands)

Figure 5.9 CPU usage of original and optimized code with 600 words in dual core machine

5.1.6 1000 words

When the input size is increased to 1000 words, the original code runs for about
356 seconds (0-356) with 60 percent of the CPU and the optimized code runs for
about 224 seconds (356-580) with about 100 percent of the CPU. These results can

be seen in Figure 5.10.

54

100 — —— CPU (% Usage)

i e v\

80 —

g0 _L'MWMMMMﬁNMN.

40

20—

0

I 58 116 174 232 290 348 406 154 522 580
Wikall Clock Tirme (Seconds)

Figure 5.10 CPU usage of original and optimized code with 1000 words in dual core machine

5.1.7 5000 words

When the input size is increased to 5000 words, the original code runs for about
1770 seconds (0-1770) with 60 percent of the CPU and the optimized code runs for
about 1180 seconds (1770-2950) with about 100 percent of the CPU as shown in
Figure 5.11.

100 —— CPU (%2 Usage)
80 —
il —
40—

20—

I 295 590 885 1180 1475 1770 2065 2360 2655 2950
Wirall Clock Time (Seconds)

Figure 5.11 CPU usage of original and optimized code with 5000 words in dual core machine

5.1.8 10000 words

Lastly when the input size is increased to 10000 words, the original code runs for
about 3670 seconds (0-3670) with 60 percent of the CPU and the optimized code
runs for about 2450 seconds (3670-6120) with about 100 percent of the CPU as can

be seen in Figure 5.12.

10—

80—

40 —

20—

1]

612

1224 1836 2448

3060

Wi'all Clack Tirme (Seconds)

3672 4234 4896

55

CPU (%% Usage)

5508

Figure 5.12 CPU usage of original and optimized code with 10000 words in dual core machine

5.2 Two Quad Core Machine

This hardware design can be summarized as:
“Processor : Intel Core 2 Quad CPU - Q6600 2.40 GHz”
“Memory: 4 GB RAM”

“System type: 64 bit Operating System”

The design of the processors can be seen in Figure 5.13.

‘& Windows Task Manager

File Options View

Help

oo =]

Applications | Processes | Services Performance Metworking | Users

ZPU Usage

Memory

ZPU Usage History

il

Phivsical Memaory Usage History

Physical Mermary (MB)
Tatal

Cached

Aveailable

Free

Kernel Memory (ME)
Paged
MNonpaged

Processes: 76

4026
1313
1420

255

326
i)

CPU Usage: 31%

System

Handles 23196
Threads Q00
Processes 76
Up Tirne 13:09:35:42
Carnniit (B 2167 | 4024

[¥y Resource Monitar...

Physical Memorny: 64%

Figure 5.13 Snapshot of processors in 2 quad core machine

56

The effect of the input size on CPU usage with this design can be seen in the

following figures:

5.2.1 50 words

When working with 50 words, the original code runs for about 16 seconds (0-16)
with 30 percent of the CPU and the optimized code runs for about 6 seconds (18-24)

with about 90 percent of the CPU as shown in Figure 5.14.

100 — — CPU (% Usage;
80—
60—
40—

20+

Wall Clock Time {Seconds)

Figure 5.14 CPU usage of original and optimized code with 50 words in 2 quad core machine

5.2.2 100 words

When working with 100 words, the original code runs for about 32 seconds (0-32)
with 30 percent of the CPU and the optimized code runs for about 12 seconds (32-
44) with about 90 percent of the CPU as shown in Figure 5.15.

100 — — CPU (% Usage;
80—
60—
40—

20+

o+ . e ————)

Wall Clock Time {Seconds)

Figure 5.15 CPU usage of original and optimized code with 100 words in 2 quad core machine

57

5.2.3 150 words

When working with 150 words, the original code runs for about 48 seconds (0-48)
with 30 percent of the CPU and the optimized code runs for about 18 seconds (48-
66) with about 90 percent of the CPU as shown in Figure 5.16.

100 — —— CPU (% Usage)
80—
60—
40—

20—

0 5 12 18 24 30 36 42 48 54 60 66
Wall Clock Time {(Seconds)

Figure 5.16 CPU usage of original and optimized code with 150 words in 2 quad core machine

5.2.4 300 words

Figure 5.17 shows that when the input file contains 300 words, the original code
runs for about 94 seconds (0-94) and the optimized code runs for about 36 seconds

(94-130).
S — i
;‘jI«»WUN%M\M,\WM.W.WW \/ |

. v

—— CPU (% Usage)

0 12 24 36 48 60 72 84 95 108 120
Wall Clock Time {Seconds)

Figure 5.17 CPU usage of original and optimized code with 300 words in 2 quad core machine

58

5.2.5 600 words

As shown in Figure 5.18, when the input file contains 600 words, the original
code runs for about 185 seconds (0-185) and the optimized code runs for about 65

seconds (185-250).

N — CPU (% Usage)
A M
Yo AW AT
80— irf i LV \«-.#ﬁ]r ﬂ"u’m
60—]" |
oA f“ |
w i / | S - i‘
a0 | A { \'l | I 1 : ,-I\ Mj- S | \ i |
~ Ev\n;\,xxﬂ! V W l""'\mf'\v”"m’x-f "jlb‘\I F\'J\“”‘VI‘ L‘*’J v V“ﬂl %
20— | |

0

0 25 50 75 100 125 150 175 200 225 250
Wall Clock Time {Seconds)

Figure 5.18 CPU usage of original and optimized code with 600 words in 2 quad core machine

5.2.6 1000 words

When the input file contains 1000 words, the original code runs for about 305
seconds (0-305) and the optimized code runs for about 100 seconds (305-405) like

shown in Figure 5.19.

100 — —— CPU (% Usage)

20—

1 40 a0 120 160 200 240 280 320 360 400
Weall Clock Tirme (Seconds)

Figure 5.19 CPU usage of original and optimized code with 1000 words in 2 quad core machine

5.2.7 5000 words

When 5000 words are used as input, the original code runs for about 1480 seconds
(0-1480) and the optimized code runs for about 570 seconds (1480-2050) as shown
in Figure 5.20.

59

100 —— CPU % Lsage)
i —
il —
40—

20—

i 205 410 615 420 1025 1230 1435 1640 1845 2050
Weall Clock Time (Seconds)

Figure 5.20 CPU usage of original and optimized code with 5000 words in 2 quad core machine

5.2.8 10000 words

As can be seen in Figure 5.21 when 10000 words are used as input, the original
code runs for about 2990 seconds (0-2990) and the optimized code runs for about

1280 seconds (2990-4270).

100 —— CPU {3 Usage)
80 —
60 —
40 —

20

I 427 454 1281 1708 2135 2562 2989 3416 3843
Wi¥all Clock Time (Seconds)

Figure 5.21 CPU usage of original and optimized code with 10000 words in 2 quad core machine

5.3 i7 - 8 Threaded Machine

This hardware design which can be seen in Figure 5.22 can be summarized as:
“Processor : Intel Core 17 CPU - 2.67 GHz”
“Memory: 4 GB RAM”
“System type: 64 bit Operating System”

60

Figure 5.22 Snapshot of processors in 17 8 threaded processor machine

5.3.1 50 words

When the input contains 50 words, the original code is runs for about 14 seconds
(0-14) with 20 percent of the CPU and the optimized code runs for about 5 seconds
(14-19) with about 80 percent of the CPU like shown in Figure 5.23.
100 — CPU (% Usage)
30
60—
40—

20—

I 1 2 3 4 a] 7 g @ 1w 11 1@ 13 14 15 18 17 18 19
Wirall Clock Time (Seconds)

Figure 5.23 CPU usage of original and optimized code with 50 words in i7 8 threaded machine

5.3.2 100 words

As shown in Figure 5.24, when the input contains 100 words, the original code
runs for about 26 seconds (0-26) with 20 percent of the CPU and the optimized code
runs for about 8 seconds (26-34) with about 80 percent of the CPU.

61

100 — : : : : : : : : : : : —— CPU (% Usage)
80—
il —
40 —

20 —

i 3 [q 12 15 15 21 24 27 30 33
Wall Clock Time (Seconds)

Figure 5.24 CPU usage of original and optimized code with 100 words in i7 8 threaded machine

5.3.3 150 words

As can be seen in Figure 5.25, when the input contains 150 words total execution
time of the original code is about 37 seconds (0-36) with 20 percent usage of CPU.
This is optimized to 13 seconds (36-49) with 80 percent usage of CPU.

100 . . —— CPU (3% Usage)

20—

6l —

a0
o /\/\/\MVM\/—M/V\A/\/\MAA/\M
0 T T 1 T T T 1 T
5 10 15 20 25 ELll 35

il 40 45 a0
Wall Clock Time (Seconds)

Figure 5.25 CPU usage of original and optimized code with 150 words in i7 8 threaded machine

5.3.4 300 words

With 300 words original code works for 72 seconds (0-72) and the optimized code
works for 27 seconds (72-99). Figure 5.26 shows the graph of these results.
100 — . i . i i i i i i i —— CPU (3 Usage)
50 |
sie]
40

20—

] 1 15 27 36 45 54 63 T2 a1 an
Wall Clock Tirme (Seconds)

Figure 5.26 CPU usage of original and optimized code with 300 words in i7 8 threaded machine

62

5.3.5 600 words

With 600 words original code works for about 144 seconds (0-144) and the
optimized code works for 45 seconds (144-189) as can be seen in Figure 5.27.
100— _ _ _ _ _ _ _ _ _ _ —— CPU (% Usage)
Bl —
60—
40 —

20—

0

il 18 36 54 72 L] 108 126 144 162 180
Wall Clack Tirme (Seconds)

Figure 5.27 CPU usage of original and optimized code with 600 words in i7 8 threaded machine

5.3.6 1000 words

As shown in Figure 5.28, while working with 1000 words execution time is about
248 seconds (0-248) and execution time of the optimized code is about 62 seconds
(248-310).

100 — _ _ . _ . _ _ . _ . —— CPU % Usage)
80—
il —
40 —

20—

0 1 1 T 1 T T T T 1 1
i} 31 62 93 124 155 136 217 248 279 310

Yisall Clock Time (Seconds)
Figure 5.28 CPU usage of original and optimized code with 1000 words in 17 8 threaded machine

5.3.7 5000 words

It can be seen in Figure 5.29 that when the input size is increased to 5000 words
the total execution time of the original code increases to 1224 seconds (0-1224)

while the total execution time of the optimized code increases to only 306 seconds

(1224-1530).

63

100 — —— CPU (%% Usage)

80—

il —

40—

20—

I 153 306 459 612 765 918 1071 1224 1377 1530
Wirall Clock Time (Seconds)

Figure 5.29 CPU usage of original and optimized code with 5000 words in i7 8 threaded machine

5.3.8 10000 words

When the input size is increased to 10000 words the difference between the total
execution times of the original and the optimized code increases too. The original
code works for about 2400 seconds (0-2400) (about 40 minutes) while the optimized
code works for about 700 seconds (2400-3100) (about 10 minutes) as shown in
Figure 5.30.

100 o —— CPU (% Usage)
a0 —
bl —
40—

20—

il i1 622 133 1244 1555 1366 2177 2488 2799 3110
Wall Clack Tirme (Seconds)

Figure 5.30 CPU usage of original and optimized code with 10000 words in i7 8 threaded machine

64

5.4 Results of tests

5.4.1 Performance results

As summary, the difference which occurs with the input size changes and

hardware design difference can be seen in Figure 5.31, Figure 5.32 and Figure 5.33.

As you see in Figure 5.31, when the input contains 50 words on dual core
machine, the difference between the total execution time of the original code and the
optimized code is about 11 seconds and when the input data contains 10000 words,

the difference increases to about 1220 seconds.

4000

3500 —

3000 —

2500 —

2000 —

M Optimized Code
1500

Id Original Code

1000

500

50 100 150 300 600 1000 5000 10000
words words words words words words words words

Figure 5.31 Summary of results of original and optimized code with different input sizes

in dual core machine

As you see in Figure 5.32, when the input contains 50 words on quad core
machine, the difference between the total execution time of the original code and the
optimized code is about 10 seconds and when the input data contains 10000 words,

the difference increases to about 1710 seconds.

65

3500

3000

2500

2000

1500 M Optimized Code

Id Original Code

1000

500

50 100 150 300 600 1000 5000 10000
words words words words words words words words

Figure 5.32 Summary of results of original and optimized code with different input sizes

in 2 quad core machine

As you see in Figure 5.33, when the input contains 50 words on i7 8 threaded
machine, the difference between the total execution time of the original code and the
optimized code is about 9 seconds which can be ignored. But when the input data

contains 10000 words, the difference increases to about 30 minutes which cannot be

ignored.
3000
2500
2000
M Optimized
1500 Code
| i Original
1000 Code
500
0 T —_— T - . T —] T
50 100 150 300 600 1000 5000 10000
words words words words words words words words

Figure 5.33 Summary of results of original and optimized code with different input sizes

in 17 8 threaded machine

66

Figure 5.34 shows these results together where the effect of optimization can be

seen clearly.

10000 words
S000 words
1000 words M Dual core ariginal
600 words M Dual core optimized
200 words M ? quad core original
M 2 quad core optimized
150 words 9 H
mi7 8 threaded original
100 words
mi7 8 threaded optimized
S0 words | |
-1] |] I
Q 1000 2000 000 4000

Figure 5.34 Summary of results of original and optimized code with different input sizes

on different machine designs

5.4.2 Battery status results

To see the difference and effects in terms of battery usage, an application has been
developed. In this application, the windows application analyzed in the previous
section is executed between the battery power status checks of the machine. At first
the notebook is fully charged. It is unplugged, and the application is started. It starts
with checking the battery status of the machine. When it reaches to a starting point,
the windows application is started with original source codes. When the application
stops, the battery status is measured again and the result is saved. Then the machine

is recharged fully and the same work is done for the application with optimized code.

67

Battery status change results according to different input sizes are given in Table
5.1 with their time costs in a dual core machine where bigger battery status change

differences are expected in more threaded machines.

Table 5.1 Performance and battery usage comparison of original and optimized code with different

input sizes in a dual core machine

Original code Optimized code
Execution time | Battery Execution time | Battery Status

Status change change
50 words 18 seconds %99 - %99 11 seconds %99 - %99
100 words 36 seconds %99 - %99 24 seconds %99 - %99
150 words 54 seconds %99 - %99 30 seconds %99 - %99
300 words 102 seconds %99 - %98 63 seconds %99 - %99
600 words 208 seconds %99 - %95 169 seconds %99 - %97
1000 words | 343 seconds %99 - %93 278 seconds %99 - %95
5000 words | 1723 seconds %99 - %63 1057 seconds %99 - %T4
10000 words | 3440 seconds %99 - %30 2355 seconds %99 - %43

By using the results shown in Table 5.1, curve fitting can be done to find an
equation for a curve that fits this data. The data set can be defined as shown below:
X — independent variable (execution time difference of original and optimized
code)
Y - dependent variable (battery status change difference of original and

optimized code)

After performing curve fitting, an equation will be formed like “y = mx + C”
where;

y = dependent variable, x = independent variable, m and C = constants

Here, curve fitting is applied on performance gain data (execution time difference
of original and optimized code) and energy gain data (battery usage difference of

original and optimized code) and result is shown in Figure 5.35.

68

14

— y = -1E-05x2 + 0,024x + 0,083
12

/ R2=0,990
10 =

battery status change{%)
e3]

2 Real results

4 / Expected results
I

0 .
2) 200 400 600 800 1000 1200

execution time {ms)

Figure 5.35 Curve fitting resuits for performance gain with battery life gain

5.4.3 Energy results

To see the difference and effects in terms of energy consumption, extra add-on
has been used with the same application and with different input files. The device is

a wattmeter that can measure the energy consumption quantity and calculate energy

cost and it is shown in Figure 5.36.

Figure 5.36 Wattmeter

69

5.4.3.1 10000 words

The results of the energy consumption tests for 10000 words on different

machines are given in Table 5.2.

Table 5.2 Energy consumption test results for 10000 words

of wh wh- | Average Real Real
Threads Idle watt Time Time
wh (min)
Optimized 8 40 17,06 | 209,26 11,47 0:11:28
Test | (Core i7)
1 Regular 8 100 | 20,64 151,21 39,68 0:39:41
(Core i7)
Optimized 8 40 17,35 | 211,89 11,33 0:11:20
Test | (Core i7)
2 Regular 8 100 | 20,66 151,25 39,67 0:39:40
(Core i7)
Optimized 4 40 17,15 127,78 18,78 0:18:47
Test | (Q6600)
3 Regular 4 87 26,23 104,69 49,67 0:49:40
(Q6600)
Optimized 2 10 1,28 9,18 65,37 1:05:22
Test | (D525)
4 Regular 2 23 2,99 9,18 152,57 2:32:34
(D525)
Optimized 2 20 5,41 32,89 36,48 0:36:29
Test | (Core2Duo)
5 Regular 2 30 7,37 31,82 56,56 0:56:34
(Core2Duo)
Optimized 2 20 6,09 34,50 34,78 0:34:47
Test | (Core2Duo)
6 Regular 2 30 7,34 31,77 56,65 0:56:39
(Core2Duo)
Optimized 2 20 5,12 32,25 37,21 0:37:13
Test | (Core2Duo)
7 Regular 2 30 7,36 31,80 56,61 0:56:37
(Core2Duo)
Optimized 2 20 4,53 31,02 38,68 0:38:41
Test | (Core2Duo)
8 Regular 2 30 7,42 31,88 56,46 0:56:28
(Core2Duo)
Optimized 2 20 5,92 34,08 35,21 0:35:13
Test | (Core2Duo)
9 Regular 2 30 7,40 31,86 56,49 0:56:29
(Core2Duo)

5.4.3.2 50000 words

70

The results of the energy consumption tests for 50000 words on different

machines are given in Table 5.3.

Table 5.3 Energy consumption test results for 50000 words

of wh wh- | Average | Real Time | Real
Threads Idle watt (min) Time
wh
Optimized 8 223 | 8542 | 194,32 68,96 1:08:57
Test | (Core i7)
1 Regular 8 520 | 118,09 | 155,26 200,96 3:20:57
(Core i7)
Optimized 8 220 | 77,43 185,17 71,29 1:11:17
Test | (Core i7)
2 Regular 8 520 | 117,09 | 154,87 201,46 3:21:27
(Core i7)
Optimized 8 230 | 91,98 199,97 69,01 1:09:01
Test | (Core i7)
3 Regular 8 520 | 118,48 | 155,41 200,76 3:20:46
(Core i7)
Optimized 4 233 | 107,75 | 135,63 103,22 1:43:13
Test | (Q6600)
4 Regular 4 460 | 151,50 | 108,85 253,56 | 4:13:34
(Q6600)
Optimized 4 230 | 105,82 | 135,20 102,07 1:42:04
Test | (Q6600)
5 Regular 4 460 | 150,95 | 108,65 254,02 | 4:14:01
(Q6600)
Optimized 2 140 | 140,00 | 43,55 192,90 | 3:12:54
Test | (Core2Duo)
6 Regular 2 180 | 180,00 | 37,25 289,95 4:49:57
(Core2Duo)

As can be seen from the tables, tests have been done in different machines with

different designs and by using different input files. The watt-hour (wh) is a unit of

energy commonly used to measure electricity. One watt-hour is the amount of

electrical energy equivalent to a one-watt load drawing power for one hour and here,

“wh” column shows this quantity while executing the code. Also, the “wh-idle”

column shows the amount of electrical energy for that machine uses when it is idle

and does nothing. Watt is the unit of power and defined as one joule per second.

71

During the tests done at this step, the device shows the watt value and its average
value for the executed code are given in “Average watt” column in the tables. It can
also be calculated from the watt-hour values with the execution time given in the
remaining columns of the table. For example; from the results of Test-1 in Table 5.2

by using the Equation 4 and Equation 5, it can be calculated:

W =1 Joule/Second (4)
1 wh = 3600 Joule (5)
= 209,26 = (40%*3600) / (11,47*60)

By using the test results energy consumption of the original and optimized code
can be calculated and compared. For example by using the test results of Test-1

shown in Table 5.2, cost of the original and optimized code can be calculated:

> Coptimized = Toptimized * Eoptimized
= (68,96 min. / 60) * 223 wh
= 1,15 hours * 223 wh
256,45 wh
0,25 kwh

> Coriginal = Toriginal * Eoriginal

(200,96 min. / 60) * 520 wh
= 3,35 hours * 520 wh

= 1742 wh

= 1,742 kwh

Test results show that saving energy is possible by coding efficiently. Here, the
effect of design of the machine and amount of the job done on energy consumption
can be seen. Especially thread count is very effective on energy consumption that can
be seen clearly from the results. As thread count increases the difference between

original and optimized code gets bigger in terms of execution time and watt-hour

72

value (energy). So, optimization done for less energy consumption results with

bigger benefits.

5.4.4 Summary of results

As shown in previous sections, by using appropriate types, strategies and ways,

execution time, battery usage and energy consumption can be decreased. During this

decrement, memory and cpu usage of the applications can be worried. Figure 5.37

and Figure 5.38 show memory and cpu usage of the applications with original code

and optimized code consecutively. As can be seen from these figures CPU usage

increases in optimized code (because of parallel programming) and memory usage is

almost same.

Applications | Processes | Services Performance Metworking | Users

CPU Usage CPU Usage History

Al L
.'||'|J. | a1

P

T
I"llll"--.lrlb'l o 1I|1|'|||"1|‘|""1','ﬂ‘-"ﬂ'-1"|

Memory Physical Memory Usage History

Physical Memary (MB)

Total 3071
Cached 1717
Available 1839
Free 168

Kernel Memaory (MB)

Paged 277
Monpaged 38
Processes: 50 CPU Usage: 50%

System

Handles 20437
Threads 857
Processes 50
Up Time 0:04:33:45
Commit (MB) 1425 [6140

Resource Maonitar,..]

Physical Memorny: 40%

Figure 5.37 Memory and cpu usage during execution of original code

73

Applications | Processes | Services Performance Metworking | Users

CPU Usage CPU Usage History

Memory Physical Memory Usage History

Physical Memary (MEB) System

Total 3071 Handles 20029

Cached 1718 Threads 666

Available 1833 Processes 50

Free 167 Up Time 0:04:30:03
Commit (MB) 1491 /6140

Kernel Memaory (ME)

Paged 277

Monpaged 35 [Resource Monitar...]

Processes: 50 CPU Usage: 98% Physical Memory: 40%

Figure 5.38 Memory and cpu usage during execution of optimized code

Also, it must be noted that all graphs that show cpu usage are not like a straight
line and it is increasing and decreasing around average value. It can be because of a
waiting of cpu for the disk or 10. Also different works done during the code cause
different cpu utilization as shown in part of the report in Figure 5.39. As can be seen
from the report, cpu usage of optimized code is about %99.8 but in details of code,
cpu usage during decryption (%56.6) and encryption (%43.2) methods are also

different, where there are differences in their details too.

Different tools have been used to see and compare the results on different
environments. For example there is a functionality within the PowerCfg utility for
evaluating system energy efficiency for the Windows family of operating systems
which also enables system manufacturers to inspect a Windows platform for
common energy efficiency problems. In Windows 7, the Windows PowerCfg utility
is enhanced to detect many common energy efficiency problems, such as ineffective
use of suspend by USB devices, excessive processor utilization, increased timer

resolution, inefficient power policy settings, and battery capacity degradation.

74

EnergyResultsWindowsApp.Energy. Decrypt
. (Aoatbd,int32 int32)
EnergyResultsWindowsApp.Form

LbtnEncrypt_Click{object,dass
System.EventArgs)

ultsWindowsApp.Energy.Encrypt
t32)

EnergyResultsWindowsApp.Forml.btnEncrypt Click{object,class System.EventArgs)

Show calling functions

‘unction Code View

I\Users\ufaklik\Documents\Visual Studio 2010VProjects\EnergyResultsWindowsApp\EnergyResultsWindowsApp\Energy.cs

1
Stopwatch s1 = Stopwatch.StartNew();
43.2 % Encrypt(key, period, increment);
56.6 % Decrypt(key, period, increment);
s1.5top();
toplamSure += sl.ElapsedMilliseconds;
¥

Figure 5.39 CPU usage details of optimized code

It also generates an HTML-formatted report that contains details about each
problem that it detected. Here, this analysis has been done for original and optimized
code separately and two reports have been generated. After getting these reports the
results reached in previous sections are supported. All environmental parameters are
same which shows that the tests are done under the same conditions for original and
optimized code. Also cpu utilization of applications are same with the previous

results as shown in Figure 5.40 and Figure 5.41.

As a result, two different applications which do the same work and give the same
output did their work in different times with different battery usage and this
difference gets bigger as the job being done gets bigger. Think that you are out where
you cannot charge your notebook having low battery power on which you have to do
a job. In this case, if you use optimized code you can see the work results before it
becomes empty where maybe the battery power will be insufficient for the original

one.

75

CPU Utilization:Processor utilization is high

The average processor utilization during the trace was high. The system will consume less power when the average processor utilization is very low, Review processor utilization for individual
processes to determine which applications and services contribute the most to total processor utiization.

Average Utilization (%) 99.81

Power Policy:802.11 Radio Power Policy is Maximum Performance (Plugged In)
The current power policy for 802.11-compatible wireless network adapters is not configured to use low-power modes.

CPU utilization:Individual process with significant processor utilization.
This process is responsible for a significant portion of the total processor utilization recorded durina the trace.

Process Name KodHizDeneme_Enerji.vshost.exe

PID 3600

Mverage Utilization (%) 938.87

Module Average Module Utilization (%)
74.52

\Device\HarddiskVolume3\Windows\assembly\NativeImage:

16.31
\mscorlib.ni.dll

\ Device\HarddiskVolume3\Windows\ Microsoft.NET\ Framewo 7.41

Figure 5.40 A part of report generated with PowerCfg utility while executing optimized code

CPU Utilization:Processor utilization is high

The average processor utiization during the trace was high, The system will consume less power when the average processor utiization is very low. Review processor utlization for individual
processes to determine which applications and services contribute the most to total processor utlization.

Average Utilization (%) 50.98

Power Policy:802.11 Radio Power Policy is Maximum Performance (Plugged In)
The current power policy for 802.11-compatible wireless network adapters is not configured to use low-power modes.

CPU utilization:Individual process with significant processor utilization.
This process is responsible for a significant portion of the total processor utilization recorded during the trace.

Process Name KodHizDeneme_Enerji.vshost.exe

PID 3304

Average Utilization (%) 49.93

Module Average Module Utilization (%)
49.88

\SystemRoot\system32\ntkrnlpa.exe 0.02

\SystemRoot\system32\DRIVERS\atikmdag.sys 0.00

Figure 5.41 A part of report generated with PowerCfg utility while executing original code

CHAPTER SIX

CONCLUSIONS

With the increasing role of power-conscious systems in our lives, energy
consumption gained more importance and by the way, as battery systems cannot long

last, power usage is still a major concern studied from the perspective of software.

In this thesis, the aim is finding various ways, types and techniques at the software
implementation level (especially within OOP development) that use lower energy

while providing same output.

Results show that, the time CPU spends is parallel with the battery usage and
energy consumption, so it is the basic approach in this research that ‘if the
application works faster it consumes less energy with the help of increased idle

time’. In addition to previous works done before, contributions of this thesis are;

= High performance can be supplied by optimizing the source code.

= Battery usage of the code is generally parallel with the execution time of it
and long battery life can be supplied by using appropriate strategy or type
in the source code.

= Energy consumption can generally be estimated and writing energy
efficient code is possible.

= Execution time of the programs gives clues about energy consumption
because longer execution time generally means less idle time and more
energy consumption.

= Optimizing software from the higher levels possible, it is cheaper and
easier.

= Design of the hardware (also the number of threads) and amount of the job

done affect the performance and energy consumption of the software.

76

77

It would be very useful if there is a tool or algorithm that converts an existing
code to its lower-power counterpart. So finally, this study can be used in developing
automatic techniques for determining the energy consumption of applications and

decreasing the energy consumption with software optimization techniques.

78

REFERENCES

Allen, S. (2010). C# Method Parameter Performance and Registers. Retrieved
February 15, 2010, from http://dotnetperls.com/method-parameter

Applications Power Management. (n.d.). Retrieved March 07, 2010, from

http://lesswatts.org/projects/applications-power-management/

Aslan, K. (2006). Derleyicilerin kod optimizasyonu. Retrieved May 10, 2010, from
http://www.kaanaslan.com/resource/article/display_article.php ?page=1&id=75

Best Practices For Writing High Performance Code. (2010). Retrieved May 10,
2010, from http://www.csharphelp.com/2010/02/c-best-practices-to-write-high-

performance-code/

Boxing and Unboxing. (2010). Retrieved February 15, 2010, from http://msdn

microsoft.com/en-us/library/yz2beSwk.aspx

Chantarasathaporn, K., & Srisa-an, C. (2006). Object-Oriented Programming
Strategies in C# for Power Conscious System. Retrieved January 5, 2010, from

http://www.waset.org/journals/waset/v10/v10-17.pdf

Chatzigeorgiou, A. (2002). Performance and power evaluation of C++ object-
oriented programming in embedded processors. Retrieved November 04, 2010,
from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.6227 &rep=rep
1 &type=pdf

Flinn, J., & Satyanarayanan, M. (1999). Energy-aware adaptation for mobile
applications. Retrieved June 8, 2010, from http://portal.acm.org/citation.cfm?id=
319155

Gusev, A. (2006). Simple rules that boost your mobile application's performance.
Retrieved October 13, 2009, from http://www.developer.com/ws/data/article

79

.php/10944_3643266_1/Simple-Rules-that-Boost-Y our-Mobile- Applications-

Performance.htm

Kumar, V., & Gupta, A. (1993). Analyzing Scalability of Parallel Algorithms and
Architectures. Retrieved May 21, 2010, from http://portal.acm.org/citation.cfm?id
=186528.186531

Larsson, P. (2008). Energy-Efficient Software Guidelines. Retrieved May 12, 2010,

from http://software.intel.com/en-us/articles/energy-efficient-software-guidelines/

Lee, M., & Tiwari, V., & Malik, S., & Fujita, M. (1995). Power Analysis and Low-
Power Scheduling Techniques for Embedded DSP Software. Retrieved January
10, 2010, from http://portal.acm.org/citation.cfm?1d=224486.224525

Leijen, D., & Hall, J. (2007). Optimized Managed Code For Multi-Core Machines.
Retrieved May 16, 2010, from http://msdn.microsoft.com/en-us/magazine/cc

163340.aspx

LessWatts — Saving Power With Linux. (n.d.). Retrieved February 04, 2010, from

http://www.lesswatts.org/projects/applications-power-management/avoid-pulling

php

Miettinen, A. P., & Hirvisalo, V. (2009). Energy-efficient parallel software for
mobile hand-held devices. Retrieved May 24, 2010, from http://portal.acm.org/
citation.cfm?id=1855591.1855603

Naik, K., & Wei, S.L. (2001). Software Implementation Strategies for Power-
Conscious Systems. Retrieved January 5, 2010, from http://portal.acm.org/citation

cfm?1d=383768

80

Rodriguez, J. & Dutta, S. (2008). Writing High Performance .NET Code. Retrieved
December 18, 2009, from http://software.intel.com/en-us/articles/writing-high-

performance-net-code/

Scarpazza, D. (2006). A source-level estimation and optimization methodology for
execution time and energy consumption of embedded software. Retrieved
February 7, 2010, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.127.3267 &rep=rep1 &type=pdf

Simunic, T. & Benini, L. & Micheli, G. & Hans, M. (1999). Source Code
Optimization and Profiling of Energy Consumption in Embedded Systems.
Retrieved January 8, 2010, from http://www.cs.york.ac.uk/rts/docs/SIGDA-
Compendium-1994-2004/papers/2000/isss00/pdffiles/10_3.pdf

Steigerwald, B., & Chabukswar, R., & Krishnan, K., & Vega, J.D. (2007). Creating
Energy - Efficient Software. Retrieved February 5, 2010, from http://software.

intel.com/en-us/articles/creating-energy-efficient-software-part-1/

Steinke, S., & Schwarz, L., & Wehmeyer, L., & Marwedel, P. (2001). Low Power
Code Generation for a RISC Processor by Register Pipelining.

Stemen, P. (2008). Extending battery life with energy efficient applications.
Retrieved June 21, 2009, from http://channel9.msdn.com/pdc2008/PC02/

Tiwari, V., & Malik, S., & Wolfe, A. (1994). Compilation Techniques for Low
Energy: An Overview. Retrieved June 21, 2009, from http://ieeexplore.
ieee.org/xpl/freeabs_all.jsp?arnumber=573195

Tiwari, V., & Malik, S., & Wolfe, A. (1996). Instruction Level Power Analysis and
Optimization of Software. Retrieved June 21, 2009, from http://www.springerlink
.com/content/vOn5573147686547/

81

Toub, S. (2010). Patterns of parallel programming. Retrieved March 18, 2010, from
http://www.microsoft.com/downloads/details.aspx ?FamilylD=86b3d32b-ad26-
4bb8-a3ae-c1637026c3ee&displaylang=en

Varszegi, J. (2004). Retrieved May 7, 2010, from http://dotnet.sys-con.com/node/
46342

Yagmur, O. (2004). Kod Optimizasyonu ve Tasinabilir Programlar Uretmek.
Retrieved January 6, 2010, from http://www.csharpnedir.com/articles/read/?filter
=&author=&cat=c&i1d=296&title=Kod%200ptimizasyonu%20ve%20Ta%C5%9
F%CA4%3B 1nabilir%20Programlar%20%C3%9Cretmek

Senyurt, B.S. (2010). Paralel Programlamada Performans, Hiz, Verimlilik ve
Olceklenebilirlik Olgiimleri. Retrieved June 20, 2010, from http:/www.

buraksenyurt.com/category/Parallel-Programming.aspx

APPENDICES

82

A sample code used in comparing styles and types in the specified language is

below. It is the example of comparing recursion and iteration.

private int TestRecursive(int pl)

{

}

if (pl <= 1) return pl;
int result = pl + TestRecursive(pl - 1);
return result;

private int TestNonRecursive (int pl)

{

}

int result = 0;

while (pl > 0) {
result = result + pl;
pl-—;

}

return result;

private void Compare ()

{

Stopwatch sl = Stopwatch.StartNew();
int res = 0;
for (int i =

{

1; 1 < 10000; i++)

res += TestRecursive(i);

}
sl.Stop();

res = 0;
Stopwatch s2 = Stopwatch.StartNew();
for (int 1 = 1; 1 < 10000; i++)
{
res += TestNonRecursive (i) ;
}
s2.Stop();

83

The sample code used in comparing battery usage is shown below (A timer is
used and in every tick it checks the battery status for reaching a starting point, if it
reaches, the test code is started and when it stops the battery status is measured again

to see the energy consumption of the code):

private void timerl_Tick (object sender, EventArgs e)
{
if (!_hasStarted)
{
if (GetBatteryStatus() == "99")
{

lblStart.Text += DateTime.Now.ToString() + " ("
+ GetBatteryStatus() + ")";

_hasStarted = true;

_p =

Process.Start (@"EnergyResultsWindowsApp.exe") ;

}
else {
if (!IsProcessOpen ("EnergyResultsWindowsApp")) {
timerl.Enabled = false;
1blEnd.Text += DateTime.Now.ToString() + " (" +
GetBatteryStatus() + ")";

