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FUZZY TIME SERIES AND RELATED APPLICATIONS

ABSTRACT

Currently,  inventing  new  approaches  for  modeling  the  classical  time  series 

analysis with last decade’s favorites theme Fuzzy Logic and Sets Theory is going to 

be popular. In many different scientific models and research areas the Fuzzy Logic 

Systems are easy to integrate with. Forecasting the short/long distance of future is the 

main objective of Time Series Analysis and lately it evolves Fuzzy Logic Systems. 

The main aim in this thesis is evaluating the forecasting or estimation error rate on 

invented and also improved new models, if they have stronger or weaker affiliations.

At  the  introduction  section,  effects  of  Time  Series  Analysis  and  Fuzzy Logic 

Systems in human daily life are separately discussed. The second and third sections 

include the axioms, definitions of Time Series Analysis and Fuzzy Logic and Sets 

Theory.  The  following  section  after  them defines  and  compares  how  the  newly 

invented methodology of Fuzzy Time Series gathered. Also the pros and cons of the 

new system is discussed, so if the forecasting or estimating abilities are superior or 

not.

Keywords: Box-jenkins, fuzzy logic, fuzzy numbers, time series analysis, high-order 

fuzzy time series.
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BULANIK ZAMAN SERİLERİ VE UYGULAMALARI

ÖZ

Bu çalışmada, uzun yıllardır süregelen klasik zaman serileri araştırmalarına yeni 

bilimsel  yaklaşımların  incelenmesi  hedeflenmiştir.  Son  yılların  gözde  bilim  alanı 

olan,  Bulanık  Mantık  ve  Kümeler  Teorisi  ile  Zaman  Serisi  Analizi  iç  içe 

geçirilmiştir. Bu tezde birçok farklı bilim alanına veya araştırma konusuna kolaylıkla 

bütünleşmiş  bulanık  mantık  sistemleri  kullanılmıştır.  Geleceği  tahminlemede  çok 

önemli rol oynayan Zaman Serileri’ne çeşitli yöntemler dahil edilmektedir. Tezin ana 

amacı; tezde önerilen yöntemlerin tahminlemede, modellemede hata payını azaltma 

ve/veya  tahmincinin  yeteneklerini  geliştirme  gücüne  sahip  olup  olmadığını 

araştırmak. Düşük miktarda veri ile çalışma imkanı sağlayabildiğini sınamaktır.

Tezin  ilk  bölümü  güncel  hayatta  bilimin  etkileri,  Zaman  Serileri  Analizi  ve 

Bulanık Mantık Sistemlerinin yaşamımıza etkisini anlatmaktadır.  İkinci ve üçüncü 

bölümler  ise  sırası  ile  Zaman  Serileri  ve  Bulanık  Kümeler  Teorisi  konularının 

prensip ve bilimsel  temellerini  açıklamaktadır.  Tezin dördüncü bölümü,  ikinci  ve 

üçüncü bölümlerin nasıl birleşerek yepyeni bir bilimsel açılım olan, Bulanık Zaman 

Serilerini  oluşturduğunu ve  bu  yeni  sistemin,  geçmiş  yöntemlere  olan  olumlu  ve 

olumsuz kabiliyetlerini incelemekte ve sorgulamaktadır.

Anahtar sözcükler : Box-jenkins,  bulanık mantık, bulanık sayılar, zaman serisi 

analizi, yüksek mertebeli bulanık zaman serileri.
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CHAPTER ONE

INTRODUCTION

Time series analysis is a problem which has always attracted the attention of soft 

computing (SC) researchers. Forecasting future values of a series is usually a very 

complex task, and many SC methods and models have been faced with it, including 

fuzzy rule-based models (FRBM) in their various formulations. Notwithstanding, a 

common characteristic of those approaches is that they usually consider time series 

as just another data set which requires some small adaptations to be cast into the 

regression  or  classification  format  for  which  most  SC  models  were  created. 

However, time series analysis is a prominent field in Econometrics, which has been 

widely  studied  under  a  statistical  perspective  during  the  last  centuries.  In  1807, 

Fourier proved that a deterministic time series can be approximated by a sum of sine 

and cosine terms. But it  was not until the beginnings of the 20th century when a 

stochastic approach for time series was first introduced, while the foundations for a 

general  stochastic  process theory were fixed in the 1930s by Khinchin (1934) & 

Kolmogorov (1931). Independently, in 1927 Yule (1927) stated that Fourier analysis 

is  not  suited  for  stochastic  time  series  analysis  and  introduced  second  order 

autoregressive  processes  as  theoretical  schemes  able  to  generate  series  with 

stochastic cyclic oscillations.

In 1970, the idea of forecasting future values of a time series as a combination of 

its past values received a strong impulse after Box & Jenkins (1970). In that work, 

Box & Jenkins proposed a modeling cycle for the autoregressive (AR) model, which 

assumes that future values of a time series can be expressed as a linear combination 

of its past values.

Of course  this  linearity  assumption  implies  certain  limitations,  and  in  the  last 

years  much  research  has  been  devoted  to  nonlinear  models.  Nonlinear  and  non-

stationary models are more flexible in capturing the characteristics of data and, in 

some cases, are better in terms of estimation and forecasting. These advances do not 

rule out linear models at all, because these models are a first approach which can be 
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of great help to further estimate some of the parameters. Furthermore, modeling of 

any real-world problem by using nonlinear models must start by evaluating if the 

behavior of the series follows a linear or nonlinear pattern.

For some reason, SC researchers do not usually go deep into classical time series 

analysis, disregarding all the knowledge gathered through the years in the statistical 

field. In this thesis, we take a step forward in the quest for an SC-based time series 

research which integrates methods and models introducing a dynamical forecasting 

accuracy coming from fuzzy rule-based models.

By applying  this  test,  practitioners  will  be  able  to  determine  if  a  series  data 

generating process is linear, in which case it can be modeled by using a linear model 

or a single-rule fuzzy rule-based model. The experiments show that the test is robust 

against Type I errors (rejecting the null hypothesis when it is actually true) and very 

powerful against Type II errors (not rejecting the null hypothesis when it is false).

The structure of the thesis is as follows: in Chapter 2, a brief review of some 

statistical models of Time Series Analysis with Box & Jenkins (1970) methodology 

is offered, while in Chapter 3 their links with fuzzy rule-based models are recalled. 

In Chapter 4 the fuzzy rule-based methods are presented, both intuitively and in its 

mathematical formulation. 



CHAPTER TWO

TIME SERIES ANALYSIS

 

2.1 The Concept of a Time Series

A time series is defined as a sequence of observations (measurements) ordered by 

time {xt}, t Є T. We restrict ourselves to equidistant time series, i.e. the parameter set 

is a finite set of equidistant points of time: T = {1, 2, 3, … ,N}.

We distinguish two classes of time series analysis approaches:

• One class which represents a time series with a kinetic model (component 

analysis, classical analysis):

xt = f(t)................................................................................................................(1)

the measurements or observations are seen as a function of time;

• One class which represents a time series with a dynamical model (“ARIMA 

model”, “Box & Jenkins procedure”):

xt = f(xt−1, xt−2, xt−3,…).........................................................................................(2)

the measurements or observations are not seen as a function of time, but as a function 

of their own past (and, perhaps of the past of other measured or observed variables).

The classical procedure decomposes the time series function xt=f(t) into up to four 

components:

• The trend: a long-term monotonic change of the average level of the time series,

• The trade cycle: a long wave in the time series,

• The seasonal component: a yearly variation in the time series,

3
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• The residual component which represents all the influences on the time series 

which are not explained by the other three components.

2.2 The Box & Jenkins Method

2.2.1 The Concepts of Box & Jenkins Method

The Box & Jenkins model is based on a combination of two different approaches 

which are used for modeling a univariate time series. Particularly Auto-regressive 

(AR) and Moving Averages (MA) models are used to decompose the time series into 

a trend, seasonal, cycle or residual components. 

The Box & Jenkins model assumes that the time series is stationary, but models 

can  be  extended  to  include  seasonal  AR and seasonal  MA terms.  Although this 

complicates the notation and mathematics of the model, the underlying concepts for 

seasonal AR and MA terms are similar to the non-seasonal AR and MA terms.

The most general Box & Jenkins model includes difference operators; such as AR 

and MA terms, seasonal difference operators, seasonal AR and MA terms. As with 

modeling in general, however, only necessary terms should be included in the model.

As typically in classical time series, an effective fitting of Box & Jenkins models 

requires at least a moderately long series, which consists at least of 50 observations 

(Chatfield, 1996). Many other would recommend at least 100 observations.

There are three primary stages in building a Box & Jenkins time series model

1. Model Identification

2. Model Estimation

3. Model Validation (Diagnostics)
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2.2.2 Box & Jenkins Model Identification

The first  step in developing a Box-Jenkins model  is to determine if  the series 

is stationary and  if  there  is  any  significant  seasonality that  needs  to  be  modeled. 

Stationarity can be assessed from a run sequence plot. The run sequence plot should 

show constant location and scale. It can also be detected from an autocorrelation plot. 

Specifically, non-stationarity is often indicated by an autocorrelation plot with very 

slow decay.

In an additive time series model (3) the first two components are often aggregated 

into the smooth components. Component two and three are often aggregated into the 

cyclic component. The simplest case assumes that the four components add up to the 

time series:

xt = m(t)+k(t)+s(t)+u(t).....................................................................................(3)

• m is a monotonic function,

• k is a periodic function with period>1 year,

• s is a periodic function with period=1 year,

• u is a random function (stochastic process).

In many cases we can observe that the amplitude of s(t) and/or the variance of u(t)  

increase with  t (or with  m(t)). Hence it is a good idea to model the time series as 

follows:

xt = m(t)*k(t)*s(t)*u(t) (multiplicative model)..................................................(4)

so it leads to,

log xt = m(t)+k(t)+s(t)+u(t) (multiplicative model)..........................................(5)

which is the same as,
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xt = exp[m(t)] exp[k(t)] exp[s(t)] exp[u(t)] (multiplicative model)..................(6)

In both cases one will estimate the parameters of the functions  m, k, and s with 

regression methods (making some assumptions about the period of the trade cycle 

component). The residual component u(t) is the regression residual (so-called global 

component model).

Seasonality (or periodicity) can usually be assessed from an autocorrelation plot, a 

seasonal sub series plot,  or a spectral  plot.  Instead one could try to eliminate the 

residual  component  by some smoothing  procedure  such as  moving averages  (so-

called  local  component  model).  Box  &  Jenkins  recommend  the  differencing 

approach to achieve stationarity. However, fitting a curve and subtracting the fitted 

values  from the  original  data  can also  be used  in  the  context  of  Box & Jenkins 

models.

At the model identification stage, main goal is to detect seasonality, if it exists, 

and to identify the order for the seasonal autoregressive and seasonal moving average 

terms.  For  many  series,  the  period  is  known  and  a  single  seasonality  term  is 

sufficient.  For  example,  for  monthly  data  we  would  typically  include  either  a 

seasonal AR 12 term or a seasonal MA 12 term. For Box & Jenkins models, we do 

not explicitly remove seasonality before fitting the model. Instead, we include the 

order  of  the seasonal  terms  in the  model  specification  to  the ARIMA estimation 

software. However, it may be helpful to apply a seasonal difference to the data and 

regenerate the autocorrelation and partial autocorrelation plots. This may help in the 

model identification of the non-seasonal component of the model. In some cases, the 

seasonal differencing may remove most or all of the seasonality effect.

Once stationarity and seasonality have been addressed, the next step is to identify 

the order (i.e.,  the  p and  q) of the autoregressive and moving average terms. The 

primary  tools  for  doing  this  are  the  autocorrelation  plot  and  the  partial 

autocorrelation  plot.  The  sample  autocorrelation  plot  and  the  sample  partial 
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autocorrelation plot are compared to the theoretical behavior of these plots when the 

order is known.

Specifically,  for an AR(1)  process,  the sample  autocorrelation  function should 

have an exponentially decreasing appearance. However, higher-order AR processes 

are often a mixture of exponentially decreasing and damped sinusoidal components.

Table 2.1 Sample autocorrelation function for model identification.

Shape Indicated Model

Exponential, decaying to 
zero

Autoregressive model. Use the partial autocorrelation 
plot to identify the order of the autoregressive model.

Alternating positive and 
negative, decaying to zero

Autoregressive model. Use the partial autocorrelation 
plot to help identify the order.

One or more spikes, rest are 
essentially zero

Moving average model, order identified by where plot 
becomes zero.

Decay, starting after a few 
lags

Mixed autoregressive and moving average model.

All zero or close to zero Data is essentially random.

High values at fixed intervals Include seasonal autoregressive term.

No decay to zero Series is not stationary.

For higher-order autoregressive processes, the sample autocorrelation needs to be 

supplemented with a partial  autocorrelation plot.  The partial  autocorrelation of an 

AR(p) process becomes zero at lag  (p+1) and greater, so we examine the sample 

partial autocorrelation function to see if there is evidence of a departure from zero. 

This  is  usually  determined  by  placing  a  95% confidence  interval  on  the  sample 

partial  autocorrelation  plot  (most  software  programs  that  generate  sample 

autocorrelation plots will also plot this confidence interval). If the software program 

does  not  generate  the  confidence  band,  it  is  approximately,  with  N denoting  the 

sample size.
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The autocorrelation function of a MA(q) process becomes zero at lag (q+1) and 

greater, so we examine the sample autocorrelation function to see where it essentially 

becomes zero. We do this by placing the 95% confidence interval for the sample 

autocorrelation function on the sample autocorrelation plot. Most software that can 

generate  the  autocorrelation  plot  can  also  generate  this  confidence  interval.  The 

sample partial  autocorrelation function is generally not helpful for identifying the 

order of the moving average process.

In practice,  the sample autocorrelation and partial  autocorrelation functions are 

random variables and will not give the same picture as the theoretical functions. This 

makes the model identification more difficult.  In particular, mixed models can be 

particularly difficult to identify.

As  an  example,  there  is  a  time  series  graph  in  Figure  2.1  of  electricity 

consumption in  F.R.G. (Federal  Republic  of Germany).  This  time series includes 

some of the component defined at section 2.2.1.

 

Figure 2.1 The yearly electricity consumptions between years 1955–1980 in F.R.G. 
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2.2.2.1 Stationary Processes

A stochastic process is a series {Xt}, tЄT of random variables Xt. Here, t - the time 

parameter - is an element of the index set  T which we will identify with the set of 

(positive) integers.

A random variable X is a mapping X: Ω→R which attributes real numbers X(ω) to 

the  outcomes  ω of  a  random  process.  Thus,  a  result  ω of  a  random  process 

corresponds to the time series {Xt}, tЄT.

From one realization of a stochastic process mean function and variance function 

can only be estimated if we make certain assumptions about the process behind a 

time series. Note that we can never check whether these assumptions are met.

We will assume that empirical time series are realizations of stationary processes 

and test of the time series which we will analyze can be a realization of a stationary 

process. If this is not the case, then we will try to transform (filter) the time series in 

a manner that at least the filtered time series is stationary.

We call a stochastic process {Xt}, tЄT

• Stationary with respect to the mean if μ (t) = μ for all tЄT,

• Stationary with respect to the variance if σ2(t) = σ2 for all tЄT,

• Stationary with respect to the covariance if γ (s, t) = γ (s+r, t+r) for all r,s,tЄT,

• Weakly stationary if it is both stationary with respect to the mean and to the 

covariance.

In processes which are stationary with respect to their covariance we write the 

covariance and correlation functions
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γ (s, t) = γ (s+r, t+r) = γ (s-t) = γ (τ) = γ (-τ).....................................................(7)

and

ρ (s, t) = ρ (s+r, t+r) = ρ (s-t) = ρ (τ) = ρ (-τ)...................................................(8)

2.2.2.2 Autocorrelation & Partial Autocorrelation

An important guide to the properties of a time series is provided by a series of 

quantities called sample autocorrelation coefficients, which measure the correlation 

between  observations  at  different  distances  apart.  Autocorrelation  seems  like  the 

ordinary correlation coefficient, but the main difference is that autocorrelation uses xt 

and xt+1, instead of x and y. And it’s given by
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x1 is  the  mean  of  first  N-1 observations  and  x2 is  the  mean  of  the  last  N-1 

observations.

Sample  partial  ACF  of  Series  (spacf)  is  a  vector  of  length  nLags + 1 

corresponding to  lags  0, 1, 2, ..., n Lags.  The  first  element  of  spacf  is  unity,  that 

is, spacf(1) = 1 = Ordinary  Least  Squares  (OLS)  regression  coefficient  of  Series 

regressed upon itself.
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Figure 2.2 The sample autocorrelation function yearly electricity consumptions between 

years 1955–1980 in F.R.G. 

Figure 2.3 The sample partial  autocorrelation function yearly electricity consumptions 

between years 1955–1980 in F.R.G. 

When the autocorrelation is used to detect non-randomness, it is usually only the 

first (lag 1) autocorrelation that is of interest. When the autocorrelation is used to 

identify an appropriate time series model, the autocorrelations are usually plotted for 

many lags.

2.2.2.3 Smoothing the Time Series

Inherent  in  the  collection  of  data  taken  over  time  is  some  form  of  random 

variation. There exist methods for reducing of canceling the effect due to random 

variation. An often-used technique in industry is "smoothing". This technique, when 

properly  applied,  reveals  more  clearly  the  underlying  trend,  seasonal  and  cyclic 

components.

There are two distinct groups of smoothing methods:

• Averaging Methods

• Exponential Smoothing Methods
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Figure 2.4 The smoothed yearly electricity consumptions between years 1955–1980 in Federal 

Republic of Germany. 
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The n-th order moving Average process

Xt = μ + Zt + β1 Zt-1+ β2 Zt-2+…+ βn Zt-n.....................................................(11)

where μ, βi are constants and Zt  denotes a purely random process.

2.2.3 Calculating the Trend Components

The trend component (or the ”smooth“ component as a whole) is mostly estimated 

by polynomial regression (∑ =
t tu min!2

)

xt = β0 + β1 t+ β2 t2 + β3 t3 +. . .+ut...........................................................(12)

2.2.4 Estimating the Trend Component: Prediction

If we use only the first 15 (instead of 25) years for parameter estimation, i.e. if we 

use only the knowledge available at the end of 1974, the time series model would be 

straighter, compare to parameters from full knowledge used model.

Figure 2.5 The smoothed yearly electricity consumptions between years 1955–1970 in Federal 

Republic of Germany. 
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Figure 2.6 The smoothed yearly electricity consumptions between years 1955–1980 in Federal 

Republic of Germany. 

2.3 Estimation

There are several  different methods for estimating the parameters. All of them 

should produce very similar  estimates,  but may be more or less efficient  for any 

given  model.  In  general,  during  the  parameter  estimation  phase  a  function 

minimization algorithm is used (the so-called quasi-Newton method) to maximize the 

likelihood  of  the  observed  series,  given  the  parameter  values.  In  practice,  this 

requires  the  calculation  of  the  sums  of  squares  (SS)  of  the  residuals,  given  the 

respective  parameters.  So  the  chosen  model  could  be  fitted  best  by  using  these 

methods.

2.3.1 Estimating the Autocovariance & Autocorrelation Functions

The autocorrelation coefficients describing very useful statistical information as it 

are noted in Section 2.4. Autocorrelation function (acf) of a stationary time series 

shows the main properties and characteristics of the set.
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If X(t) is a stationary time series and has the mean of μ and variance of σ2 then,

( )( ) Nxxxxc
kN

t
kttk /

1
∑

−

=
+ −−= ............................................................................(13)

A progressive method of estimating the acf is the jackknife estimation.  In this 

procedure  the  time  series  is  divided  into  two  halves,  and  the  sample  acv.f.  is 

estimated from each half of the series. The method is denoted as

( )212

1
2~

kkkk cccc +−= ........................................................................................(14)

To advance the theoretical acf the jackknife method should be adapted to estimate 

a lesser biased equation (14). The jackknife estimator is given in an obvious notation 

by

( )212

1
2~

kkkk rrrr +−= ........................................................................................(15)

2.3.2 Fitting a Moving Average Process

First it needed to estimate the parameters of the process, and then the order of the 

process  should  be  found.  The  theoretical  first  order  autocorrelation  coefficients 

equate by

( )2
111

ˆ1/ˆ ββ +=r .................................................................................................(16)

and choose the solution  1β̂  such that | 1β̂ | < 1, because it can be shown that this 

gives  rise to an inefficient  estimator.  The approach suggested by Box & Jenkins 

(1970). If z=0, we have
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The order of the moving average process is usually evident from the sample acf 

for a given set of data. The theoretical acf MA(q) process has a very simple form in 

that it ‘cuts off’ at lag q, and so the analyst should look for the lag beyond which the 

values of rk are close to zero.

2.3.3 Fitting an Autoregressive Process

In autoregressive model is an observation of a time period depends on a number 

of past observations and that period random error. The order of the model  p is the 

number  of  past  observations  included  in  the  model. Suppose  we  have  an 

Autoregressive (AR) process of order p, with mean μ, given by

( ) ( ) tptptt ZXXX +−++−=− −− µαµαµ 11 .................................................(17)

In first order case, with p=1, we find
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and
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where ( ) ( )21 ,xx  are the means of the first and last (N-1) observations.

Determining only by looking at acf won’t be enough for an AR process. Partial 

autocorrelation function (spacf) comes to an aid to determine the order of the AR 



17

process. To find out the data set, if it’s a MA or AR process, simply using the table, 

which is suggested by Box & Jenkins (1970), might be appropriate.

Table 2.2 Box. & Jenkins MA or AR decision table.

Process MA AR

Autocorrelation function Cuts off

Infinite. Tails off. 

Damped Exponentials 

and/or Cosine waves

Partial Autocorrelation 

function

Infinite. Tails off. 

Damped Exponentials 

and/or Cosine waves

Cuts off

2.4 Forecasting

One of the strongest powers of time series analysis is to forecast the future values 

of an observed time series. Forecasting is a very important procedure in many areas 

such  as  economics,  stock  control  or  in  production  to  determine  the  planning  of 

coming seasons.

Our data from the time series aren’t always simple to be foretold how it’s going to 

end.  Mostly time series are sophisticated and are dependent more then one other 

series, which has to be defined by multivariate, rather than univariate. Forecasting of 

a time series might be analyzed under these two topics.

2.4.1 Univariate procedures

There are lots of common and uncommon methods used to forecast a univariate 

time series. Some of them are efficient at long-term forecasting,  instead of short-

term. The well known basic models for both terms are extrapolation of trend curves, 

exponential  smoothing,  the  Box-Jenkins  procedure,  stepwise  autoregression,  the 

Holt-Winters forecasting procedure.

2.4.2 Multivariate procedures
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Forecasting a multivariate time series is a more complicated and harder process. 

As in section 2.7.1 methods vary either for long-, short-term forecasting.  There are 

two known basic models like multiple regression and economic models.



CHAPTER THREE

FUZZY SETS & FUZZY THEORY

After describing the fundamentals  of Time Series Analysis,  in this chapter the 

basics  about  Fuzzy Logic  will  be  discussed.  Under  following topics  the  use and 

integration of fuzzy systems through other disciplines defined more clearly.

3.1 The Concept of a Fuzzy Time Series

Fuzzy logic (FL) was introduced to the scientific arena in 1965 by Prof. Lotfi A. 

Zadeh,  who  is  a  professor  of  computer  science  at  the  University  of  California, 

Berkeley,  and  the  first  industrial  applications  appeared  in  1970s.  The  historical 

progress of the traditional fuzzy logic is given below following the documentation of 

fuzzy  TECH  5.3  User’s  Manual.  One  of  the  early  applications  of  Fuzzy  Logic 

Controller (FLC) was developed by Ebrahim Mamdani in England for controlling a 

steam engine. In Germany, Hans Jurgen Zimmermann applied FL to decision support 

systems. Another important milestone is the use of FL for cement kiln control in 

1975 in Denmark.

These successful applications in Europe drew the interest of Japanese scientists in 

the  beginning  of  1980s.  One  of  the  early  applications  in  Japan  was  on  a  water 

treatment plant, realized by Michio Sugeno in 1983. In 1987, fuzzy logic control was 

also applied to Sendai railways.  After  these applications  FL became prevalent  in 

Japan,  and  used  in  many  industrial  and  consumer  products,  such  as  washing 

machines,  cameras,  etc.  Because  of  the  technological  advantages  and  the 

establishment  of  many  companies,  quite  a  number  of  fuzzy  societies  have  been 

founded in Japan. These include:

- International Fuzzy Systems Association (IFSA) 

- Japan Society for Fuzzy Theory and Systems (SOFT) 

- Biomedical Fuzzy Systems Association (BMFSA) 

- Laboratory for International Fuzzy Engineering Research (LIFE) 
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- Fuzzy Logic Systems Institute Iizuka (FLSI) 

- Center for Promotion of Fuzzy Logic at TITech.

The rapid  rise  of  FL in  Japan also  influenced  Europe  and a  great  number  of 

industrial  applications  of  FL  started  to  appear.  About  the  same  time,  US  also 

responded to the competition between Japan and Europe, and FL was used in new 

areas, such as decision support systems, hard disk controllers, memory cache, echo 

cancellation, network routing, and speech recognition.

Traditional FLCs have widely been used in many control applications with great 

success for more than three decades. In real life applications, systems are confronted 

with many uncertainties and imprecise information due to the inner and outer dynam- 

ics of the systems, such as highly nonlinear systems, incomplete sensory information 

and noise from external environment. To overcome these uncertainties, Fuzzy Logic 

Systems (FLSs) work collectively with some optimization techniques that enable the 

tuning of the system to achieve the desired performance.

Several  approaches  are  proposed  in  the  literature  to  this  end  Jang  & Sun  & 

Mizutani, (1997), Mendel (2001a). However, when a system is affected by both inner 

and  outer  uncertainties,  the  traditional  type-1  fuzzy  logic  systems  may  become 

inadequate, and the type of optimization that is done becomes irrelevant. To obtain 

the desired performance and come up with a minimum error response, some other 

approaches should be sought. This thesis has the goal of comparing the performance 

of  various  different  approaches  to  fuzzy  modeling  on  historical  time  series  data, 

namely  the  traditional  FLS  with  parameterized  conjunctions.  The  historical 

backgrounds of these methods are briefly summarized.

A FS (Fuzzy Sets) has IF-THEN type of rules. During the optimization process, 

both the antecedent and the consequent part of the rules can be tuned. If the linguistic 

terms play a major role in the design of fuzzy controller, the tuning of the member- 

ship functions may not be desirable as the linguistic interpretation can be lost due to 

the membership functions moving out of the domain or having large intersections 
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with each other. In applications where the interpretation of the linguistic variable, the 

expert knowledge, and the rule base are important, the membership functions should 

therefore not be modified, at least not drastically. In this thesis, Fuzzy Time Series 

Analysis  is  proposed  as  other  approaches  alternative  to  traditional  Time  Series 

Analysis.

3.2 Fuzzy Modeling

The most important feature of fuzzy logic is the ability to define human thinking 

and interpretation about the system by using various kinds of (e.g., Gaussian, Gbell, 

Triangular, Trapezoidal) membership functions and IF-THEN type of rules. In fuzzy 

models, in which the human expert knowledge is the key element of the design of the 

fuzzy model, tuning the membership functions can result in the loss or distortion of 

the expert knowledge. In such applications, another type of adaptation can be more 

appropriate than the adaptation of the membership functions Batyrshin & Kaynak & 

Rudas (2002).

First of all, when we consider the traditional fuzzy logic systems, there are four 

main components, which can be described as in the list below. The main structure of 

type-1 fuzzy logic systems is shown in Figure 2.1.

- Fuzzification

- Fuzzy Rule-Base

- Fuzzy Inference Engine

- Defuzzification
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Figure 3.1 Type-1 Fuzzy Logic System

Another approach alternative to traditional fuzzy logic is type-2 fuzzy logic. In 

literature, type-2 fuzzy logic was first proposed by Prof. L. A. Zadeh in 1975 as an 

extension  of  type-1  fuzzy  sets,  and  the  basic  mathematical  and  theoretical 

foundations  were  established  by him  John & Coupland (2007).  One of  the most 

important features of type-2 fuzzy sets is the ability to incorporate uncertainties into 

the membership functions, and this feature makes type-2 fuzzy sets preferable when 

there exist significant uncertainties.

The progress of type-2 fuzzy logic since 1975 is briefly summarized below and 

prepared  by  the  help  of  the  report  “Type-2  Fuzzy  Logic:  A  Historical  View” 

published in 2007 John & Coupland (2007).

The  emergence  of  fuzzy  set  theory  goes  back  to  the  years  1975-1981.  Some 

notable works are those carried out by  Mizumoto & Tanaka (1981)  and Dubois & 

Prade (1982) such as on logical connectives (AND and OR).

By the mid-1980s, type-2 interval fuzzy sets started to be developed by scientists, 

Gorzalczany, Turksen, Schwartz and Klir & Folger. 

In the study of Prof. L. A. Zadeh (1996), fuzzy logic is defined as computing with 

words (CWW). In addition, Mendel (2001b, 2003) use type-2 fuzzy logic for CWW.
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The  number  of  publications  from  1988  to  today  reported  at 

http://www.type2fuzzylogic.org/publications/statistics.php can be seen in Figure 3.2. 

The numbers include all types of publications.

Figure 3.2 Number of publications in each year

A search in Web of Science done by entering “type-2 fuzzy” under the general 

search  tab  results  in  Figures  3.3  and  3.4.  The  number  of  publications  those  in 

journals cited by SCIE (Science Citation Index Expanded).
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Figure 3.3 Citations in each year

Most of the applications in this topic are about in the area of control engineering 

and medical science. The milestones of the control applications are: Plant Control 

with type-2 interval  fuzzy sets,  type-2 interval  fuzzy logic  controller  gives better 

results than type-1 under high uncertainties, control of complex multi-variable liquid 

level process with type-2 interval fuzzy controller,  the control of non-autonomous 

robots in a football game with type-2 interval fuzzy logic controller.

Figure 3.4 Published items in each year
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As it is mentioned earlier, traditional Time Series Analysis is not efficient in many 

applications to problems containing great amount of uncertainty.

The aim of this thesis is a comparative study of fuzzy modeling methods which 

are  used to  forecast  time series  data  more  accurately.  Based on such study,  it  is 

proposed to develop and improve alternative methods to traditional fuzzy logic and 

make these methods preferable in applications where the systems have great amount 

of uncertainty.

3.2.1 Fuzzification

Initially, the crisp inputs are fuzzified by using membership functions. A fuzzy set 

A is defined in universe of discourse  X and is indicated by a membership grade, 

which takes values in the closed interval  0 and 1 ([0, 1]) Jang & Sun & Mizutani, 

(1997).

( ){ }XxxxA A ∈= )(, µ .............................................................................(3.1)

where  x are the elements of  X,  and  µA(x)  is called the membership function,  and 

indicates the degree of belonging . Every element of X maps to a membership grade 

taking the values between 0 and 1. The fuzzy sets can be defined by using linguistic 

labels such as; SMALL, LARGE, MODERATE, YOUNG, SLOW, FAST, etc. These 

fuzzy sets are specified by membership functions, so that mathematical computations 

can be performed. There are several types of membership functions. For instance, 

gaussian,  gbell,  triangular,  trapezoidal,  etc.  In  the  following  several  types  of 

membership functions are shown Jang & Sun & Mizutani, (1997).

3.2.1.1 Gaussian Membership Function

A Gaussian membership function (mf) is defined as follows:

[ ]( )
2

2

1

,, mfGaussian 





 −

−
= σ

cx

ecentersigmax ..........................................(3.2)



26

where c is the center and σ is the width of the membership function. x is the input of 

the system. The example of Gaussian mf is shown in Figure 3.5.

Figure  3.5 Gaussian  membership functions  with linguistic  values  “Very  Small”,  “Small”, 

“Medium”, “Large”, “Very Large”

3.2.1.2 Triangular Membership Function
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where  a, b, and  c define the corners of the membership function and a≤ b≤ c. The 

example of triangle mf is shown in Figure 3.6.
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Figure 3.6 Triangular membership functions with linguistic values “Small”, “Large”

3.2.1.3 Gbell Shaped Membership Function

[ ]( )
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1

1
,,, mf Gbell

−+
=

........................................................(3.4)

where a determines the width, b determines the slope and c determines the center of 

the membership function. The example of Gbell mf is shown in Figure 3.7.
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Figure 3.7 Gbell shaped membership functions with linguistic values “Small”, “Large”

3.2.2 Fuzzy Rule-Base and Fuzzy Inference System (FIS)

Fuzzy Inference Systems are prevalently applied in control engineering and in 

multidisciplinary areas. FIS involves nonlinear mapping from input data to output 

data and this nonlinear mapping is performed by using fuzzy if-then rules. Fuzzy 

Logic  Systems  are  universal  approximators  and this  property enables  us to  build 

optimal fuzzy models Batyrshin & Kaynak & Rudas (2002). Traditionally, to obtain 

an optimal fuzzy model, the membership function parameters are tuned.

The IF part of the rule is called antecedent or premise, and the THEN part of the 

rule is called consequent or conclusion part of the rule. The examples of fuzzy if-then 

rules that are used in daily life are as follows;

• IF temperature is HIGH and humidity is HIGH, THEN fan works fast.

• IF the soil is DRY and the temperature is HIGH, THEN open the valve 

ROUNDLY.

• IF X is  POSITIVE LARGE and Y is  POSITIVE LARGE, THEN Z is 

POSITIVE LARGE.
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The fuzzy models  differ  by using  different  consequent  membership  functions, 

aggregation  and  defuzzification  methods  Batyrshin  &  Kaynak  &  Rudas  (2002). 

There are various types of fuzzy models; but the most commonly used ones are:

• MAMDANI MODEL

Ri = IF X1 is Ai1 and ... and Xn is Ain,

THEN Zi = Ci

• SUGENO MODEL (a.k.a. TSK)

Ri = IF X1 is Ai1 and ... and Xn is Ain,

THEN zi = ai
nxn + ai

n−1xn−1 + … + ai
0

where i (i = 1,2,...,M) indicates the number of rule. In these rule structures, Ain  and 

Ci are the antecedent and consequent fuzzy sets, respectively.  Zi is the output of the 

Mamdani model and is a fuzzy set. zi is the output of the Sugeno model, which is a 

first order polynomial at the consequent part of the rule structure. Xn is the input 

variable and n is the number of input variable.

Mamdani and Sugeno model are the same in the fuzzification block and in the 

antecedent part of the rules; they only differ in the consequent part of the if-then 

rules.

As it is seen, both in Mamdani and Sugeno model the antecedent parts of the rules 

are the same, which contains antecedent fuzzy sets Ain’s, and inputs Xn’s. They differ 

in the consequent part of the rules. In Mamdani Model, the consequent part is a fuzzy 

set, Ci. On the other hand, in Sugeno Model, the consequent is a real valued function 

zi = ai
nxn  + ai

n−1xn−1  + … + ai
0.  Depending on the degree of the polynomial,  the 

Sugeno model is called as zero order Sugeno model, first order Sugeno model, and 

so on  Batyrshin & Kaynak & Rudas (2002),  Jang & Sun & Mizutani, (1997).  The 

antecedent part of the rules are combined with the fuzzy operators such as AND, OR, 

NOT. These operators determine the firing strength (ωi) of the rules.
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Now let’s consider the traditional type-1 fuzzy logic operators and assume Ain are 

fuzzy  sets  where  i indicate  the  number  of  rules  and  n indicates  the  number  of 

antecedent fuzzy sets.

3.2.2.1 Intersection of Fuzzy Sets

The intersection is called as AND operator and is basically used for  finding the 

minimum of the antecedent membership functions Jang & Sun & Mizutani, (1997)

( ) ( )( )21 21
,min xx

ii AA
i µµω = ............................................................................(3.5)

Generally, instead of minimum, one can use any t-norm. T-norm is defined as a 

function  T:  [0,1]  x  [0,1]→  [0,1] satisfying  the  four  conditions  monotonicity, 

commutativity, associativity, and boundary Jang & Sun & Mizutani, (1997)

Monotonicity:

T(x,y)≤ T(u,v) if x≤ u and y≤ v .............................................................(3.6)

Commutativity:

T(x,y) = T(y,x) ......................................................................................(3.7)

Associativity:

T(x,T(y,z)) = T(T(x,y),z) .......................................................................(3.8)

Boundary:

T(0,0) = 0,

T(1,x) = T(x,1) = x................................................................................(3.9)

In literature, the most commonly used t-norm operations are minimum, algebraic 

product,  bounded  product,  and  drastic  product  that  are  calculated  as  follows, 

respectively Jang & Sun & Mizutani, (1997)
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Tc(x,y) = min(x,y) ...........................................................................................(3.10)

Tp(x,y) = xy......................................................................................................(3.11)

Tb(x,y) = max{0,(x+y−1)} ..............................................................................(3.12)
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The corresponding surfaces of t-norms are given in Figure 3.8 where 0≤ x,y≤ 1

Figure 3.8 The corresponding surface of t-norms a. Minimum, b. Algebraic Product, c. Bounded 

Product, d. Drastic Product
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3.2.2.2 Union of Fuzzy Sets

Union (disjunction) of the fuzzy sets is defined by OR operator and is calculated 

usually by finding the maximum of the antecedent membership functions:

( ) ( )( )21 21
,max xx

ii AA
i µµω = ...........................................................................(3.14)

Generally, instead of maximum, one can use any s-norm. S-norm is defined as a 

function  S:[0,1]x[0,1]→[0,1] satisfying  the  four  conditions  monotonicity, 

commutativity, associativity, and boundary Jang & Sun & Mizutani, (1997)

Monotonicity:

S(x,y)≤ S(u,v) if x≤ u and y≤ u..............................................................(3.15)

Commutativity:

S(x,y) = S(y,x) ......................................................................................(3.16)

Associativity:

S(x,S(y,z)) = S(S(x,y),z) ........................................................................(3.17)

Boundary:

S(1,1) = 1,

S(x,0) = S(0,x) = x................................................................................(3.18)

In  literature,  the  most  commonly  used  S-norms  are  maximum,  algebraic  sum, 

bounded sum, and drastic sum that are respectively calculated as follows Jang & Sun 

& Mizutani, (1997)

Sc(x,y) = max(x,y) ...........................................................................................(3.19)

Sp(x,y) = x+y-xy...............................................................................................(3.20)
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Sb(x,y) = min{1,(x+y)} ....................................................................................(3.21)
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The corresponding surfaces of t-norms are given in Figure 3.9

Figure 3.9 The corresponding surface of s-norms a.  Minimum, b.  Algebraic  Sum, c.  Bounded 

Sum, d. Drastic Sum
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3.2.3 Weighted Average Calculation in TSK Model

In TSK FLS, there is no need to defuzzify the results of the rules; since they are 

already a crisp output  Jang & Sun & Mizutani, (1997). Their weighted average is 

calculated as:

∑
∑

=

==
M

i

i

M

i

ii z
z

1

1

ω

ω
...............................................................................................(3.23)

M is the number of rules (i = 1, 2, ..., M) and z is the actual output of the system.

3.2.4 Mamdani Fuzzy Inference and Defuzzification Methods

As  it  was  stated  earlier,  the  antecedent  parts  of  the  rules  are  same  for  both 

Mamdani and Sugeno model. However, in Mamdani model “compositional rule of 

inference” is carried out, and can be defined as max-min composition of fuzzy sets. If 

Ain are the antecedent membership functions and  Ci is the consequent membership 

function, the max-min composition is calculated as:

max-min composition = max(min(Ai1,...,Ain,Ci)) .............................................(3.24)

In addition, compositional rule of inference can be used as the combination of 

max and product,  for example,  t-norm and t-conorm operators.After  finding each 

result  of  the  rule,  these  results  are  aggregated  by  using  one  of  the  aggregation 

methods; such as maximum, sum, probabilistic or MATLAB Fuzzy Logic Toolbox 

Tutorial.

Each result of the rule that  is calculated by implication method is a fuzzy set. 

Defuzzification method converts the fuzzy sets into a crisp value. First of all,  the 

qualified fuzzy sets  are aggregated,  and then by using appropriate  defuzzification 

method the crisp output is derived Jang & Sun & Mizutani, (1997).
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In Mamdani model, there are five types of defuzzification methods;

1. Center of Area

2. Bisector of Area

3. Small of Maximum

4. Middle of Maximum

5. Large of Maximum

3.2.4.1 Center of Area (Centroid) Defuzzification Method

Center  of  area  method  is  the  most  commonly  used  defuzzification  method  in 

Mamdani  models.  In this  method,  the center of gravitiy of the aggregated output 

membership function is found and is calculated as follows:

( )
( )∫

∫=
z

z

dzz

zdzz
z

µ

µ
0 .............................................................................................(3.25)

where z0 is the centroid of the area, a crisp value,  z is the output variable, and µ(z)  

indicates the aggregated output of the membership functions. An example of centroid 

method is shown in Figure 3.10.

Figure 3.10 Center of area (Centroid) defuzzification method
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3.2.4.2 Bisector Defuzzification Method

In bisector of area method the vertical line divides the aggregated region in two 

equal areas, and z0 satisfies the following equation:

( ) ( )∫∫ =
β

α
µµ

0

0

z

z
dzzdzz ................................................................................(3.26)

where  { }Zzz ∈=minα  and  { }Zzz ∈=maxβ .  An  example  of  bisector  of  area 

method is shown in Figure 3.11.

Figure 3.11 Bisector of area defuzzification method

3.2.4.3 Smallest of Maximum (SOM) Defuzzification Method

SOM,  z0, isthesmallest value where value  z takes on maximum. An example of 

SOM defuzzification method is shown in Figure 3.12
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Figure 3.12 Smallest of Maximum (SOM) defuzzification method

3.2.4.4 Largest of Maximum (LOM) Defuzzification Method

The largest of the maximum, z0, is the largest corresponding value to the largest z 

value. An example of LOM defuzzification method is given in Figure 3.13.

Figure 3.13 Largest of Maximum (LOM) defuzzification method
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3.2.4.5 Mean of Maximum (MOM) Defuzzification Method

Mean of the maximum, is the mean value of the SOM and LOM. An example of 

mean of maximum method is shown in Figure 3.14. 

Figure 3.14 Mean of Maximum (MOM) defuzzification method

For better understanding, the defuzzification methods described above are shown 

in Figure 3.15.

Figure 3.15 All five defuzzification methods



CHAPTER FOUR

FUZZY TIME SERIES ANALYSIS

 

4.1 The Concept of a Fuzzy Time Series

In recent years, many researchers have presented different forecasting methods to 

deal with forecasting problems based on classical time series analysis. While dealing 

with  forecasting  problems  using  classical  time  series  analysis  methods,  it  is 

important to decide the sufficient universe of discourse due to the fact that it will 

affect  the  forecasting  accuracy.  In  fuzzy  time  series,  it’s  been  presented  a  new 

method to deal with the forecasting problems based on different orders of fuzzy time 

series, where the universe of discourse is tuned by using some algorithms, where 

Fuzzy Sets Theory and Fuzzy Reasoning is integrated to the historical observations 

of  classical  time  series.  The  proposed  methods  can  achieve  a  higher  forecasting 

accuracy rate than some of the existing time series analysis methods.

The time series forecast  has been a widely used forecasting method. Although 

time  series  forecast  can  deal  with  many  forecasting  problems,  it  cannot  solve 

forecasting  problems in  which  the historical  data  are  vague,  imprecise,  or  are  in 

linguistic  terms.  To  address  this  problem,  Song  and  Chissom  (1993a,  b,  1994) 

presented the definitions of fuzzy time series by using fuzzy relational equations and 

approximate  reasoning.  Since  then,  a  number  of  researchers  have  built  on  their 

research  and developed  different  fuzzy  forecasting  methods  (Chen (1996,  2002); 

Hwang, Chen & Lee (1998); Chen & Hwang (2000); Huarng (2001a,b); Lee & Chou 

(2004).

Generally, the existing fuzzy forecasting methods can be classified into two types: 

time-variant  and time-invariant.  In  time-variant  models  Song & Chissom (1994), 

Hwang (1998), Chen & Hwang (2000) used fuzzy composition operations, such as 

F(t)=F(t−1) ◦ Rw(t, t−1) or F(t)=F(t−1) ◦ Ow(t), to calculate the forecasted values. 

On the other hand, time-invariant forecasting models by Song & Chissom (1993a), 

Chen (1996 & 2002), Huarng (2001a,b), Lee & Chou (2004) often form fuzzy logical 
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relationships, such as Ai → Am or Ai, ... ,Ak → Am, based on historical data, and group 

them as heuristic rules to derive the forecasted values.

This chapter would be divided in three parts, to gain an understanding how Fuzzy 

Time Series methodology works. In first part the basic understanding and early times 

invention  of  Fuzzy  Time  Series  will  be  discussed.  The  main  idea  and  how  the 

structure was build would be defined; hence the following two parts are going to be 

as classified above, time-invariant and time-variant models.

4.2 The Invention of Fuzzy Time Series

No one could deny the laudable accomplishment that time series techniques have 

achieved in the past decades in a wide range of areas Box & Jenkins (1970). Time 

series, defined as a collection of random variables indexed on time, can be employed 

to  model  many a phenomenon.  As fuzzy set  theory is  enjoying  wider  and wider 

recognitions and acceptance, one has found it possible to consider the extension of 

the conventional concept of time series. One possibility is to assume that the values a 

time series takes are fuzzy sets while they are taken in a deterministic fashion. This 

has led to the concept of fuzzy time series Song & Chissom (1993). The possibility is 

to assume that both the values and the probability in which a time series takes its 

fuzzy values are fuzzy sets, and this is the motif of this chapter.

Fuzzy time series is quite common in our daily lives. For example, one usually 

uses linguistic terms such as "good", "bad", "not very good" and so on to express 

one's  mood  or  feeling.  If  recording  such  observations,  one  will  have  a  dynamic 

process whose observations are linguistic or fuzzy sets. This is a fuzzy time series. 

Through application Song & Chissom (1993), it has been found that FTS can be a 

good means to predict a variety of dynamic processes.

In our daily lives, it can be observed that one sometimes associates fuzzy events 

with a linguistic value as the probability with which the event takes place. These 

linguistic  values  are  called  linguistic  probability  in  Zadeh  (1975),  or  fuzzy 
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probability. For example, in weather forecasting, the weatherman would associate a 

fuzzy probability  with a certain  weather  condition,  e.g.,  he may associate  a  high 

chance with a good weather, or a nearly thirty percent chance with heavy rains for 

the next day, and so forth. Here, the terms "a high chance", "'a good weather". "a 

nearly  30% chance"  and  "heavy  rains"  are  fuzzy.  If  one  recorded  such  weather 

forecasting for a period of time, one would have a dynamic process whose values are 

fuzzy sets and the probability with which this process assumes a given value is also a 

fuzzy set. Obviously, this phenomenon is not hard to encounter but how to model it 

mathematically needs special attention.

A natural question will be how to model or describe this process mathematically 

with a proper approach. Since what is involved here are fuzzy sets, fuzzy logic is of 

course the first candidate to be considered. As is the case of fuzzy time series, if we 

separated the fuzzy observations  and the fuzzy probabilities,  we would have two 

different fuzzy time series, and the methods employed in Song & Chissom (1993) 

can be borrowed here. But what we are more interested in is to model the process as 

a  whole.  Moreover,  you  would  be  curious  to  know  if  there  is  any  relationship 

between the fuzzy observations and the fuzzy probabilities. To clear this curiosity the 

invention of Fuzzy Time Series should be understood.

4.2.1 Fuzzy Time Series and its Models by Q. Song & B.S. Chissom

Time series, defined as a collection of random variables indexed on time, can be 

employed to model many a phenomenon. As fuzzy set theory is enjoying wider and 

wider  recognitions  and  acceptance,  one  has  found  it  possible  to  consider  the 

extension of the conventional concept of time series. One possibility is to assume 

that  the  values  a  time  series  takes  are  fuzzy  sets  while  they  are  taken  in  a 

deterministic  fashion.  This  has  led  to  the  concept  of  fuzzy  time  series  Song  & 

Chissom (1993, 1994). Another possibility is to consider the values a time series 

takes are fuzzy sets while the probability in which those values are taken is real. This 

is  the  concept  of  fuzzy  stochastic  processes  Wang  &  Zhang  (1992).  The  other 
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possibility is to assume that both the values and the probability in which a time series 

takes its fuzzy values are fuzzy sets.

Fuzzy time series is quite common in our daily lives. For example, one usually 

uses linguistic terms such as "good", "bad", "not very good" and so on to express 

one's  mood  or  feeling.  If  recording  such  observations,  one  will  have  a  dynamic 

process whose observations are linguistic or fuzzy sets. This is a fuzzy time series. 

Through applications Song & Chissom (1993), it has been found that FTS can be a 

good means to predict a variety of dynamic processes.

In our daily lives, it can be observed that one sometimes associates fuzzy events 

with a linguistic value as the probability with which the event takes place. These 

linguistic values are called linguistic probability in Zadeh (1975). For example, in 

weather  forecasting,  the  weatherman  would  associate  a  fuzzy  probability  with  a 

certain weather condition, e.g., he may associate a high chance with a good weather 

or a nearly thirty percent chance with heavy rains for the next day and so forth. Here, 

the terms "a high chance", "'a good weather", "a nearly 30% chance" and "heavy 

rains" are fuzzy. If one recorded such weather forecasting for a period of time, one 

would have a dynamic process whose values are fuzzy sets and the probability with 

which  this  process  assumes  a  given  value  is  also  a  fuzzy  set.  Obviously,  this 

phenomenon is  not  hard to  encounter  but  how to model  it  mathematically  needs 

special attention. It'll be define as dynamic process as Fuzzy Time Series (FTS). It is 

so named because of its two distinguishing characteristics: Its observations are fuzzy 

and the probabilities with which it assumes an observed value are fuzzy as well.

4.2.1.1 Definitions of the Fuzzy Time Series

A natural question will be how to model or describe this process mathematically 

with a proper approach. Since what is involved here are fuzzy sets, fuzzy logic is of 

course the first candidate to be considered. As is the case of fuzzy time series, if we 

separated the fuzzy observations  and the fuzzy probabilities,  we would have two 

different fuzzy time series, and the methods employed in Song & Chissom (1993) 
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can be borrowed here. But what we are more interested in is to model the process as 

a whole. Moreover, we are curious to know if there is any relationship between the 

fuzzy observations and the fuzzy probabilities. The goal of this section is to give 

some preliminary results on FTS and its models.

In probability theory, if  Ω, a non-empty set, is the sample space, and  A is a  α-

algebra of subsets of Ω, then any element A in A is called an event. The probability of 

event  A,  P(A),  is  a  measure  over  a  measurable  space  (Ω,  A),  satisfying  certain 

conditions. (Ω, A, P) is usually called a probability space. When a given event is not 

well-defined, we may encounter the so-called fuzzy event which is defined by Zadeh 

as follows Zadeh (1968).

Definition 1

Let (Ω, A,P) be a probability space in which A is the α-algebra of Borel sets in Ω 

and P is a probability measure over Ω. Then, a fuzzy event in Ω is a fuzzy set A in Ω 

whose membership function [ ]( )1,0: →ΩAA µµ  is Borel-measurable.

The probability of a fuzzy event A is defined by Zadeh with the Lebesgue-Stieltjes 

integral as follows Zadeh (1968):

( ) ( )∫=
nR

A dPxAP µ

which is the expectation of its membership function.

Klement generalized Zadeh's definition of fuzzy events by means of the fuzzy α-

algebras which is stated as follows Klement (1980).

Definition 2

 (Fuzzy σ-algebra). Let X be a non-empty set, I the unit interval [0,1] and B the σ-

algebra of Borel subsets of I. The subset α of lX is a fuzzy σ-algebra if

(1) σα∈∀ constantx
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(2) σµσµ ∈−⇒∈∀ 1

(3) σµσµ ∈⇒⊂∀ ∈∈ nNnNnn sup)(

With such a definition, any element in a is also a fuzzy event. The advantage of 

this generalization is that fuzzy valued probability (or fuzzy probability for short) can 

be associated with a  fuzzy event.  It  will  adopt  this  generalized concept  of fuzzy 

events.

Fuzzy probabilities are fuzzy sets defined on I=[0,1] whose membership functions 

are Borel-measurable. Just as probability is a measure, so is fuzzy probability. In this 

case, it is a fuzzy valued measure. Many authors have contributed to the development 

of fuzzy valued measures. Klement (1980) defined the fuzzy-valued measure in an 

axiomatic  way  where  the  fuzzy  measure  takes  values  on  non-negative  fuzzy 

numbers.  Ralescu & Nikodym (1996) also proposed a definition of fuzzy valued 

measures.  Other variants  can be found in the literature  Zhang & Li  & Ma & Li 

(1990) and Stojakovic (1994). Here, in this section we will only consider the fuzzy 

probability  which  takes  values  on  fuzzy  sets  with  the  understanding  that  fuzzy 

numbers may be regarded as fuzzy subsets. Similar to probability distribution, we 

can develop the concept of fuzzy probability distributions as a fuzzy mapping from a 

fuzzy  α-algebra to a set of fuzzy probabilities, i.e., its domain is a fuzzy  α-algebra 

and its range is a class fuzzy subsets defined on the interval I=[0,1]. Denote the fuzzy 

probability distribution as G.

Definition 3

 (Fuzzy probability  distribution). If  a fuzzy mapping  G  satisfies  the following 

conditions:

(1) ,Ø)Ø(,)( =Ω=Ω GG

(2) );(G(A)then,If BGBA ⊃⊃

(3) ),()( AGAG cc =

(4) ( ) ( ) { } σ∈= iii AAGAG   where, ;

then it is called a fuzzy probability distribution.
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In  the  above,  condition  (1)  is  the  boundary  condition  which  is  analogous  to 

P(Ω)=1  and  P(Ø)=0;  condition  (2)  is  simply  the  monotonicity  of  a  measure; 

condition  (3)  is  quite  unique  but  necessary.  For  example,  if  we  know  that  the 

probability of having a "Hot" day is "Likely", then the probability of having a day 

"Not Hot", according to (3), will be "Not Likely". Condition (4) says that G is closed 

under countable unions where Ai and Aj (i≠j) need not be disjoint. The necessity for 

(4) can be seen from an example. Suppose that the fuzzy probability of having “Hot 

Day” is “Likely”,  and that of “Very Hot Day” is “Very Likely”.  Then, the fuzzy 

probability  of having "Either  A Hot or A Very Hot Day"  will  be "Likely".  This 

should be regarded as  being consistent  with what  we can observe in  daily  lives. 

According  to  Definition  2,  a  fuzzy  subset  is  characterized  by  its  membership 

function.  If  G(Ai) is  a  fuzzy  probability,  then  its  membership  function  is  Borel-

measurable, and therefore ( ) iAG  has a Borel-measurable membership function. In 

addition, it can be shown that the following properties can be derived from these four 

conditions:

(a)  Ø;)(G(A)then,ØIf =∩=∩ BGBA

(b) ( ) ( ) { } σ∈= iii AAGAG   where,

(c) { } ( ) ( )nnijii AGAGjiAAA ∞→=≤⊆∈ limThen  . if  and ,Let  σ .

Several  remarks are in order. Fuzzy Mapping  G assigns a fuzzy probability to 

each fuzzy event in σ. It seems that conditions that G should satisfy can be proposed 

in an axiomatic fashion, and these conditions may not be unique, for basically  G 

mimics the process how one assigns a fuzzy probability to a fuzzy event. The process 

of assigning a fuzzy probability  to a fuzzy event  is,  unfortunately,  influenced by 

one's  preferences,  experiences,  emotion,  and  several  other  subjective  and 

psychological factors. Thus, we would rather say that the conditions that  G should 

satisfy are normative  than descriptive.  It  is  believed that  when assigning a  fuzzy 

probability, one should follow a certain set of rules although one can do it otherwise. 

Whether or not the conditions proposed above are meaningful can only be justified 

through observations. It can be seen that G defines a fuzzy valued measure on a. Its 

range, instead of in the interval [0,1], is in a class of fuzzy sets, i.e., its value can be a 

fuzzy subset defined on the interval [0,l]. Although there exist many open questions 
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about this measure, we will proceed without touching upon these questions in the 

sequel. To define a fuzzy time series and the fuzzy stochastic fuzzy time series, we 

will employ the concept of fuzzy mappings proposed by Dubois & Prade (1982), 

although several other versions are also applicable:

Definition 4

(Fuzzy mappings). Dubois & Prade (1982) proposed a fuzzy mapping f from a set 

U to a set  V is a mapping from U to the set of non-empty fuzzy sets of  V, namely

( ) { }Ø→VP .

With all the above definitions,  we are ready to discuss fuzzy time series now. 

First, a new definition of fuzzy time series which is different from Song & Chissom 

(1993a) should be given to improve the process.

Definition 5

(Fuzzy time series). Let M be a fuzzy mapping from T to F:

FTM →:

where { } { } ,,,,2,1,0, 21 ffFttT == , and fi’s are fuzzy sets. Then M is said 

to  be  a  fuzzy  time  series,  and  is  denoted  as  F(t). Since  in  Definition  5,  each 

observation  fi is  assumed  implicitly  to  be  deterministic,  F(t) should  be  called  a 

deterministic fuzzy time series. 

Definition 6

(Fuzzy  time  series).  If  there  exists  a  fuzzy  relationship  R(t−  1,t),  such  that 

F(t)=F(t−1)◦R(t−1,t),  where “◦” is  an arithmetic  operator,  then  F(t) is  said to be 

caused  by  F(t−1).  The  relationship  between  F(t) and  F(t−1) can  be  denoted  by 

F(t−1)→F(t).
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Definition 7

(Fuzzy  time  series).  Suppose  F(t) is  calculated  by  F(t−1) only  and 

F(t)=F(t−1)◦R(t−1,t). For  any  t,  if  R(t−1,t) is  independent  of  t,  then  F(t) is 

considered a time-invariant fuzzy time series. Otherwise, F(t) is time-variant.

Definition 8

(Fuzzy  time  series). Suppose  ( ) ( ) ji AtFAtF
~

 and 
~

1 ==− ,  a  fuzzy  logical 

relationship can be defined as

ji AA
~~ →

where  are  called  the  left-hand  side  and  the  right-hand  side  of  the  fuzzy  logical 

relationship, respectively.

4.2.1.2 Major Steps of the Fuzzy Time Series

Chen (1996) revised the time-invariant models in Song & Chissom (1993 a, b) to 

simplify  the  calculations.  In  addition,  Chen’s  method  can  generate  more  precise 

forecasting  results  than  those of  Song and Chissom (1993 a,  b).  Chen’s  method 

consists of the following major steps:

Step 1: Define the universe of discourse U.

Step 2: Divide U into several equal-length intervals.

Step 3: Define the fuzzy sets on U and fuzzify the historical data.

Step 4: Derive the fuzzy logical relationships based on the historical data.

Step 5: Classify the derived fuzzy logical relationships into groups.

Step 6: Utilize three defuzzification rules to calculate the forecasted values.

These major steps of solving a Time Series collection in a fuzzy way would be 

defined more detailed and used in different  applications  in data sets at  following 

sections with various methodologies. 
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4.2.2 Handling Forecasting Problems Using Fuzzy Time Series

In  this  section,  a  method  to  deal  with  the  forecasting  problems  is  presented. 

Assume that the enrollment of year t is x and assume that the enrollment of year t-1 

is y, then the variation of the enrollments between year t and year t-1 is equal to x-y. 

Firstly, we describe some heuristic rules which are similar to the human thought: 

Rule 1: The variation of the enrollments between this year and last year is related 

to the variations of the enrollments between this year  and the past years,  and the 

relationship of the enrollments between this year and last year is closer than the one 

between this year and the other past years.

Rule 2: If the trend of the number of enrollments of the past years is increasing, 

then the number of enrollments of this year is increasing. If the trend of the number 

of enrollments of the past years is decreasing, then the number of enrollments of this 

year is decreasing.

From Rules 1 and 2, we might  have two problems. Firstly,  if  the trend of the 

variations of the enrollments of the past years is not so obvious, how can we know 

the trend of the variation of the enrollment this year? Secondly, how to define the 

degree of variation of this year'? The solutions of these two problems are described 

by the following heuristic rule:

Rule  3:  Let  the  variation  of  last  year  be  a  criterion.  Compute  the  fuzzy 

relationships  between last  year  and the other past years  based on data  variations. 

From the  derived  fuzzy  relationships,  we can  know the  degrees  of  relationships 

between the variation of last year and the variations of other past years. The variation 

of this year can be obtained from the derived fuzzy relationships.

Based on these heuristic  rules,  firstly  we can fuzzify the historical  enrollment 

data. In Song & Chen (1993a, 1993b) used the linguistic values (not many), (not too 

many), (many), (many many), (very many), (too many), (too many many) to describe 
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the enrollments of the historical data. In this paper, we use the fuzzified variation of 

the historical  enrollments and the linguistic  values (big decrease),  (decrease),  (no 

change),  (increase),  (big  increase),  (too  big  increase)  to  forecast  the  university 

enrollments. The fuzzified variation of the historical enrollments between year t and 

year t-1 can be described as follows:

( ) ( ) ( ) ( ) ( )increase big/L/decrease/decrease big/ 21 mi uuuutF ++++= 

where F(t) denotes the fuzzified variation of the enrollments between year t and year 

t - 1, ui is the grade of membership to the linguistic value L, m is the number of the 

elements in the universe of discourse, and mi ≤≤1 .

To  forecast  the  enrollment  of  year  t,  we must  decide  how many years  of  the 

enrollments data will be used, where the number of years of the enrollments data we 

used is called the window basis. Suppose we set a window basis to w years, then the 

variation of last year is used to be a criterion and the other variations of w past years 

are used to form a matrix which is called the operation matrix. The criterion matrix 

C(t) and the operation matrix OW(t) at year t are expressed as follows:

( ) ( ) ( ) ( ) ( )
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We can calculate the relation between the operation matrix OW(t) and the criterion 

matrix  C(t), and  we  can  get  a  relation  matrix  R(t)[w,m] by  performing 

R(t)=OW(t)○C(t), where
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where  mjwicOR jijij ≤≤≤≤×= 1 ,1 , ,  and  “x" is  the  multiplication  operation. 

From the relation matrix R(t), we can know the degree of relationships between last 

year and the other past years in data variations. Then, we can get the forecasting 

variation of the enrollment of year t, where 

( ) ( ) ( ) ( )[ ],R,,R,R,R,,R,R,R,,R,R wm2m1mw12212w12111  MaxMaxMaxtF =

The methods algorithm steps are presented as follows:

Step 1: Calculating the variations of the historical data.

From  the  historical  enrollment  data  shown  in  Song  & Chissom (1993  a,  b), 

compute the variations of the enrollments between any two continuous years. The 

variation of this year is the enrollment of this year minus the enrollment of last year. 

For  example,  if  the enrollment  of  1972 is  13,563 and the  enrollment  of  1971 is 

13,055 then the variation of year 1972=13,563–13,055=508. Based on the historical 

enrollment data shown in Song & Chissom (1993 a, b), we can obtain the variations 

of the enrollments between any two continuous years as shown in Table 4.1.

We can find the minimum increase  Dmin and maximum increase  Dmax. Then we 

define the universe of discourse U, U=[Dmin - D1, Dmax + D2] , where D1 and D2 are 

suitable  positive numbers.  In this  section,  we set  Dmin= -955, Dmax=-291, D1=45,  

D2=109, so U can be represented as U = [-1000, 1400].
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Table 4.1  Alabama enrollments differentiations

Actual 

Enrollments
Differentiation

1971 13,055

1972 13,563 +508

1973 13,867 +304

1974 14,696 +829

1975 15,460 +764

1976 15,311 -149

1977 15,603 +292

1978 15,861 +258

1979 16,807 +946

1980 16,919 +112

1981 16,388 -531

1982 15,433 -955

1983 15,497 +64

1984 15,145 -352

1985 15,163 +18

1986 15,984 +821

1987 16,859 +875

1988 18,150 +1291

1989 18,970 +820

1990 19,328 +358

1991 19,337 +9

1992 18,876 -461
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Step 2: Partition the universe of discourse U into several even length intervals u1,  

u2, …, um.

In this section, the universe of discourse  U partitioned into six intervals, where 

ul=[-1000,-600], u2=[-600,-200], u3=[-200,200], u4=[200,600], us=[600,1000], and 

u6=[1000,1400].

Step 3: Define fuzzy sets on the universe of discourse U.

First, determine some linguistic values represented by fuzzy sets to describe the 

degree of variation between two continuous years.  In this  paper,  we consider six 

fuzzy  sets  which  are  A1=(big_decrease),  A2=(decrease),  A3=(no_change), 

A4=(increase), A5=(big_increase), A6=(too_big_increase). Then, define fuzzy sets A1,  

A2... A6 on the universe of discourse U as follows:

6543216

6543215

6543214

6543213

6543212

6543211

/1/5.0/0/0/0/0

/5.0/1/5.0/0/0/0

/5.0/1/5.0/0/0/0

/0/0/5.0/1/5.0/0

/0/0/0/5.0/1/5.0

/0/0/0/0/5.0/1

uuuuuuA

uuuuuuA

uuuuuuA

uuuuuuA

uuuuuuA

uuuuuuA

+++++=
+++++=
+++++=

+++++=
+++++=

+++++=

Step 4: Fuzzify the values of historical data.

If the number of variation of the enrollment of year  i  is  p, where iup ∈ , and if 

there is a value represented by fuzzy set Ak in which the maximum membership value 

occurs at uj, then p is translated to Ak. The fuzzified variations of the enrollment data 

are shown in Table 4.2.
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Table 4.2  Fuzzified historical enrollments

Year Differentiation
Fuzzified 

variations
Year Differentiation

Fuzzified 

variations

1971 1982 -955 A1

1972 +508 A4 1983 +64 A3

1973 +304 A4 1984 -352 A2

1974 +829 A5 1985 +18 A3

1975 +764 A5 1986 +821 A5

1976 -149 A3 1987 +875 A5

1977 +292 A4 1988 +1291 A6

1978 +258 A4 1989 +820 A5

1979 +946 A5 1990 +358 A4

1980 +112 A3 1991 +9 A3

1981 -531 A2 1992 -461 A2

Step 5: Choose a suitable  window basis  w, and calculate  the output  from the 

operation matrix  OWS(t) and the criterion matrix  C(t), where t is the year for which 

we want to forecast the enrollment. For example, if we set  w=5, then we can set a 

4x6 operation matrix 05(t) and a 1x6 criterion matrix C(t). Because w=5, we must use 

six past  years  enrollment  data,  so we begin to forecast  in 1977. In this  case,  the 

operation matrix 05(t) and the criterion matrix C(t) are as follows:
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( ) [ ]
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Calculate  the  relation  matrix  R(t) by  ( )[ ] ( )[ ] ( )[ ]jtCjitOjitR W ×= ,, ,  where 

41 ≤≤ i , and 61 ≤≤ j . Then, based on formula (1), we can get

( )
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Based on formula (1), we can get the fuzzified forecasting variation  F(1977) of 

year 1977 shown as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( )








=

005.05.000

increase big tooincrease bigincreasechange nodecreasedecrease big
1977F

The fuzzified forecasted variations for the remaining years can be calculated by 

the same way and all the results are listed in Table 4.3.

Step  6:  Defuzzify  the  fuzzy  forecasted  variations  derived  in  Step  5.  The 

following principles to defuzzify the fuzzified forecasted variations are:

(1) If the grades of membership of the fuzzified forecasted variation have only 

one maximum ui, and the midpoint of ui is mi, then the forecasted variation is mi. If 

the grades of membership of the fuzzified forecasted variation have more than one 

maximum ul, u2, ... , uk, and their midpoints are ml, m2, ..., mk respectively, then the 

forecasted variation is (m1+ rn2+ ...+mk)/k. For example, from Table 4.3, we can see 

that the maximum membership value of  F(1977) is  0.5 which occurs at  u3 and  u4, 

where the midpoint of u3 is 0 and the midpoint of u4 is 400. The forecasted variation 

of year 1977 is (0 + 400)/2 = 200.
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Table 4.3 Membership functions of the forecasted variations

Year U1 U2 U3 U4 U5 U6

1977 0 0 0.5 0.5 0 0

1978 0 0 0.5 1 0.5 0

1979 0 0 0.5 1 0.5 0

1980 0 0 0 0.5 1 0.25

1981 0 0.25 1 0.5 0 0

1982 0 0.5 0.5 0 0 0

1983 0.5 0.5 0 0 0 0

1984 0 0.5 1 0.25 0 0

1985 0.5 1 0.5 0 0 0

1986 0 0.5 1 0.25 0 0

1987 0 0 0 0.25 0 0

1988 0 0 0 0.25 1 0.25

1989 0 0 0 0 0.5 0.5

1990 0 0 0 0.25 1 0.5

1991 0 0 0 0.5 0.5 0

1992 0 0 0.5 0.5 0 0

(2) If the grades of membership of the fuzzified forecasted variation are all 0, then 

we set the forecasted variation to 0.
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Table 4.4 Forecasting results of the fuzzy time series method

Actual 

Enrollments

Forecasted 

Enrollments
Errors

1977 15,603 15,511 0.59%
1978 15,861 16,003 0.90%
1979 16,807 16,261 3.25%
1980 16,919 17,607 4.04%
1981 16,388 16,919 3.24%
1982 15,433 16,188 4.89%
1983 15,497 14,833 4.28%
1984 15,145 15,497 2.32%
1985 15,163 14,745 2.76%
1986 15,984 15,163 5.14%
1987 16,859 16,384 2.82%
1988 18,150 17,659 2.71%
1989 18,970 19,150 0.95%
1990 19,328 19,770 2.29%
1991 19,337 19,928 3.06%
1992 18,876 19,537 3.50%

Step  7: Calculate  the  forecasted  enrollments.  The  forecasted  enrollment  is 

forecasted variation plus the number of actual enrollment of last year. For example, if 

the forecasted variation in 1977 is 200, and the actual enrollment in 1976 is 15,311, 

then the forecasted enrollment of 1977 is  15,311+200=15,511.  The results of the 

forecasted enrollment  of the University of Alabama are shown in Table 4.4.  The 

following error of each year by the proposed method under the window basis w=5 is 

also shown in Table  4.4.  The curve of  the actual  enrollments  and the forecasted 

enrollments are shown in Fig. 4.1 where the window basis is 5.
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Figure 4.1 The Curve of the Actual Enrollments & Forecasted Enrollments

4.2.3 Fuzzy Time Series Modeling Using Trapezoidal Fuzzy Numbers

The fuzzy time series forecast Song & Chissom (1993a, b) was a widely used 

forecasting method,  which can solve forecasting problems in which the historical 

data  are  vague,  imprecise,  or  are  in  linguistic  terms.  Since  then,  a  number  of 

researchers have built  on their  research and developed different fuzzy forecasting 

methods Chen (1996 & 2002), Hwang, Chen & Lee (1998), Chen & Hwang (2000), 

Huarng (2001a, b), Lee & Chou (2004). As discussed previously, the existing fuzzy 

forecasting methods can be classified into two types: time-variant and time-invariant.

However, the drawback of both time-variant and time-invariant forecasting lies in 

the  fact  that  their  forecasting  value  is  a  single-point  value.  In  some  way,  the 

forecasting results are just like the output of the traditional time series forecasting 

methods. Nevertheless, the single-point value cannot provide a decision analyst more 

useful information. To resolve this problem, the present study intends to develop an 
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improved  fuzzy  time  series  method  based  on  Chen’s  method  (1996)  because  it 

provides an efficient forecasting algorithm and generates better forecasting results. 

The present research can achieve two major goals. The first goal is to provide the 

forecasting values with a trapezoidal fuzzy number instead of a single-point value. 

By doing  so,  the  decision  analyst  can  gather  the  information  about  the  possible 

forecasted ranges under different degrees of confidence. The second goal is to revise 

Chen’s  algorithm to  improve  the  accuracy  in  forecasting  values.  Two numerical 

examples  were employed  to  effectively compare  the proposed method with three 

fuzzy time series methods Chen (1996), Hwang (1998), Lee & Chou (2004) as well 

as to illustrate the proposed method and evaluate its forecasting performance.

Song & Chissom (1993a, b, 1994) defined their fuzzy time series by means of 

discrete fuzzy sets. The discrete fuzzy sets can be defined as follows: Let  U be the 

universe of discourse, where U ={u1,u2, ...,un}. A fuzzy set Ai of U is defined by

nnAAAi uuuA
iii

/)(/)(/)(
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~22~11~ µµµµµµ +++=  ................................................ (2)
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u

i
µ  and ni ≤≤1 .

Chen (1996) revised the time-invariant models in Song & Chissom (1993a, b) to 

simplify  the  calculations.  In  addition,  Chen’s  method  can  generate  more  precise 

forecasting results than those of Song & Chissom (1993a, b). Chen’s method consists 

of the following major steps:

Step 1: Define the universe of discourse U.

Step 2: Divide U into several equal-length intervals.

Step 3: Define the fuzzy sets on U and fuzzify the historical data.

Step 4: Derive the fuzzy logical relationships based on the historical data.

Step 5: Classify the derived fuzzy logical relationships into groups.

Step 6: Utilize three defuzzification rules to calculate the forecasted values.
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The  aim of  the  present  research  is  to  develop  an  improved  fuzzy  time  series 

method that can both provide the forecasting values in terms of trapezoidal fuzzy 

numbers  and  generate  more  accurate  forecasting  results  at  the  same  time.  As 

mentioned  in  Sect.  1,  we  chose  Chen’s  method  as  a  foundation  to  develop  the 

proposed method. Several modifications between the proposed method and Chen’s 

method are listed below:

1. Use a more advanced method to determine the number of equal-length intervals.

2. Use trapezoidal fuzzy numbers to define the fuzzy sets in fuzzy time series.

3.  Apply  the  arithmetic  operations  of  trapezoidal  fuzzy  numbers  to  compute  the 

forecasted values.

First, the number and the length of intervals are assigned subjectively in Chen’s 

method.  However,  Huarng (2001b)  argued that  the  different  number  of  intervals 

could affect the accuracy of the forecasting results. To resolve this problem, Huarng 

designed  an  average-based  length  method  that  can  effectively  determine  the 

appropriate  interval length in order to improve the forecasting results.  Hence, the 

first  modification is to employ the average-based length method to determine the 

appropriate  length and number of intervals.  Second, the current fuzzy time series 

models Song & Chissom (1993a, b, 1994), Chen (1996, 2002), Hwang (1998), Chen 

& Hwang (2000), Huarng (2001a, b), Lee & Chou (2004) utilize discrete fuzzy sets 

to define their fuzzy time series. Their discrete fuzzy sets are defined as follows:

Assume  there  are  m intervals,  which  are  u1=[d1,d2],  u2=[d2,d3],  u3=[d3,d4], 

u4[d4,d5]  ,...,  um−3=[dm−3,dm−2],  um−2=[dm−2,dm−1],  um−1=[dm−1,dm]  and  um=[dm,dm+1]. 

Thus, the fuzzy sets are defined such;
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The  present  study  attempts  to  replace  the  above  discrete  fuzzy  sets  with 

trapezoidal fuzzy numbers, which could be defined as
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According to the above definition, the discrete fuzzy sets can be replaced with the 

following trapezoidal fuzzy numbers:

Figure 4.2 A Trapezoidal Fuzzy Number

( )
( )
( )

( )
( )211

1121

54323

43212

32101

,,,
~

,,,
~

,,,
~

,,,
~

,,,
~

++−

+−−−

=

=

=

=

=

mmmmm

mmmmm

ddddA

ddddA

ddddA

ddddA

ddddA





61

Chen (1996) developed three heuristic  rules to calculate  the forecasted values. 

These three heuristic rules use the midpoints  of intervals  to derive the forecasted 

values. To maintain the complete forecasting information, the present study intends 

to  replace  the  midpoints  of  intervals  with  the  trapezoidal  fuzzy  numbers. 

Specifically,  we  can  apply  the  addition  operation  and  the  scalar  multiplication 

operation of the trapezoidal fuzzy numbers to compute the forecasted values.

Step 1: Collect the historical data Dvt.

Step 2: Define  the  universe  of  discourse  U.  Find the  maximum  Dmax and  the 

minimum Dmin among all Dvt. For easy partitioning of U, two small numbers D1 and 

D2 are assigned. The universe of discourse U is then defined by:

[ ]2max1min , DDDDU +−=

Step 3: Determine the appropriate length of interval  l. Here, the average-based 

length method by Huarng (2001b) can be applied to determine the appropriate l. The 

length of interval l is computed by the following steps:

Table 4.5 Base length coefficients of fuzzy numbers

Range Base
0.1 – 1.0 0.1
1.1 – 10 1
11 - 100 10

101 – 1,000 100
1,001 – 10,000 1,000

1. Calculate all the absolute differences between the values  Dvt−1 and  Dvt as the 

first differences, and then compute the average of the first differences.

2. Take one-half of the average as the length.

3. Find the located range of the length and determine the base Table 4.5.

4. According to the assigned base, round the length as the appropriate l.
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Step 4: Define fuzzy numbers. The number of intervals (fuzzy numbers),  m, is 

computed by 

[ ] lDDDDm /1min2max +−+=

Thus, there are m intervals and m fuzzy numbers.

Assume  there  are  m  intervals,  and  m fuzzy  numbers,  which  are  u1=[d1,d2],  

u2=[d2,d3],  u3=[d3,d4],  u4[d4,d5]  ,  ...,  um−3=[dm−3,dm−2],  um−2=[dm−2,dm−1],  

um−1=[dm−1,dm] and um=[dm,dm+1]. And the fuzzy number are defined like 
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Step 5: Fuzzify the historical data. If the value of Dvt is located in the range of uj, 

then it belongs to fuzzy number Aj. All Dvt must be classified into the corresponding 

fuzzy numbers.

Step 6: Generate the fuzzy logical relationships. For all fuzzified data, derive the 

fuzzy logical relationships based on Definition 8 in Section 4.2.1.1. The fuzzy logical 

relationship is like kj AA
~~ →  which denotes that “if the Dvt−1 value of time t-1 is Aj, 

then that of time t is Ak.

Step 7: Establish the fuzzy logical relationship groups. The derived fuzzy logical 

relationships  can be arranged into fuzzy logical  relationship  groups based on the 

same fuzzy numbers on the left-hand sides of the fuzzy logical relationships. The 

fuzzy logical relationship groups are like the following;
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Step 8: Calculate the forecasted outputs.  The forecasted value at  time  t,  Fvt is 

determined by the following three heuristic rules. Assume the fuzzy number of Dvt−1  

at time t-1 is Aj.

Rule 1: If the fuzzy logical relationship group of Aj is empty; then the value of Fvt 

is Aj, which is (dj-1, dj, dj+1, dj+2).

Rule 2: If the fuzzy logical relationship group of Ak is on-to-one; then the value of 

Fvt is Aj, which is (dk-1, dk, dk+1, dk+2).

Rule 3: If the fuzzy logical relationship group of Aj is one-to-many; then the value 

of Fvt is calculated as follows,
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4.2.4 Chen’s Enhanced Forecasting Enrollments Model

By this Method, a new method to forecast the enrollments of the University of 

Alabama based on fuzzy time series is presented. The historical enrollments of the 

University of Alabama are shown in Table 4.6.
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Table 4.6 The historical enrollments of the university of alabama

Year
Actual 

Enrollments
Year

Actual 

Enrollments
1971 13,055 1982 15,433
1972 13,563 1983 15,497
1973 13,867 1984 15,145
1974 14,696 1985 15,163
1975 15,460 1986 15,984
1976 15,311 1987 16,859
1977 15,603 1988 18,150
1978 15,861 1989 18,970
1979 16,807 1990 19,328
1980 16,919 1991 19,337
1981 16,388 1992 18,876

First, this method defines the universe of discourse and partitions the universe of 

discourse  into  some even and equal  length  intervals.  Then,  it  gets  the  statistical 

distributions of the historical enrollment data in each interval and re-divided each 

interval.

Then, it defines linguistic values represented by fuzzy sets based on the re-divided 

intervals and fuzzifies the historical enrollments to get fuzzified enrollments. Then, it 

establishes fuzzy logical relationships based on the fuzzified enrollments. Finally, it 

uses a set of rules to determine whether the trend of the forecasting goes up or down 

and to forecast the enrollments.

Assume that we want to forecast the enrollment of year n, then the “difference of 

differences” of the enrollments between years n-1 and n-2 and between years n-2 and 

n-3, such as, [(the enrollment of year (n-1)) - (the enrollment of year (n-2))] - [(the  

enrollment  of  year  (n-2))  -  (  the enrollment  of  year (n-3))].  This  method is  now 

presented as follows:

Step 1: Define the universe of discourse U and partition it into several even and 

equal length intervals u1, u2... ,un. For example, assume that the universe of discourse 

U=[13,000, 20,000] is partitioned into seven even and equal length intervals u1, u2,  

u3,  u4,  u5,  u6,  u7,  where  u1=[13,000,  14,000],  u2=[14,000,  15,000],  u3=[15,000, 
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16,000],  u4=[16,000,  17,000],  u5=[17,000,  18,000],  u6=[18,000,  19,000]  and 

u7=[19,000, 20,000].

Step 2: Get a statistics of the distribution of the historical  enrollments in each 

interval. Sort the intervals based on the number of historical enrollment data in each 

interval from the highest to the lowest. Find the interval having the largest number of 

historical enrollment data and divide it into four sub-intervals of equal length. Find 

the interval having the second largest number of historical enrollment data and divide 

it into three sub-intervals of equal length. Find the interval having the third largest 

number of historical  enrollment data and divide it into two sub-intervals  of equal 

length. Find the interval with the fourth largest number of historical enrollment data 

and let the length of this interval remain unchanged. If there are no data distributed in 

an interval, and then discard this interval.

For  example,  the  distributions  of  the  historical  enrollment  data  in  different 

intervals are summarized as shown in Table 4.7.
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Table 4.7 The distribution of the historical enrollment data

Intervals
Number of historical 

enrollment

[13,000, 14,000] 3

[14,000, 15,000] 1

[15,000, 16,000] 9

[16,000, 17,000] 4

[17,000, 18,000] 0

[18,000, 19,000] 3

[19,000, 20,000] 2

After executing this step, the universe of discourse [13,000, 20,000] is re-divided 

into the following intervals in Table 4.8

Table 4.8 The intervals of the historical enrollment data

U1,1=[13,000, 13,500] U1,2=[13,500, 14,000]

U2=[14,000, 15,000] U3,1=[15,000, 15,250]

U3,2=[15,250, 15,500] U3,3=[15,500, 15,750]

U3,4=[15,750, 16,000] U4,1=[16,000, 16,333]

U4,2=[16,333, 13,500] U4,3=[16,667, 17,000]

U6,1=[18,000, 18,500] U6,2=[18,500, 19,000]

U7=[19,000, 20,000]

Step 3: Define each fuzzy set Ai based on the re-divided intervals and fuzzify the 

historical  enrollments shown in Table 4.6, where fuzzy set  Ai denotes a linguistic 

value  of  the  enrollments  represented  by a  fuzzy  set,  and  1≤i≤13 .  For  example, 

A1=(very_very_very_very_few),  A2=(very_very_very_few),  A3=(very_very_few), 

A4=(very_few),  A5=(few),  A6=(moderate),  A7=(many),  A8=(many_many), 

A9=(very_many),  A10=(very_few),  A11=(too_many_many), 

A12=(too_many_many_many),  A13=(too_many_many_many_many),  defined  as 

follows:
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72,61,63,42,41,44,3

3,32,31,322,11,113

72,61,63,42,41,44,3

3,32,31,322,11,112

72,61,63,42,41,44,3

3,32,31,322,11,111

72,61,63,42,41,44,3

3,32,31,322,11,110
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3,32,31,322,11,13
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72,61,63,42,41,44,3
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For simplicity, the membership values of fuzzy set Ai either are 0, 0.5 or 1, where 

1≤i≤13. Then, fuzzify the historical enrollments shown in Table 4.6 and the linguistic 

values  of  the  enrollments  A1,  A2…  A13.  The  reason  for  fuzzify  the  historical 

enrollments into fuzzified enrollments is to translate crisp values into fuzzy sets to 

get a fuzzy time series.

Step 4: Establish fuzzy logical relationships based on the fuzzified enrollments:

where the fuzzy logical relationship “Aj →Aq ” denotes “ if the fuzzified enrollments 

of year n-1 is Aj , then the fuzzified enrollments of year n is Aq ”. For example, based 
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on the fuzzify historical enrollments obtained in Step 3, we can get the fuzzy logical 

relationships as shown in Table 4.9.

Table 4.9 Fuzzy logical relationships

A1 →A2 A2 →A2 A2 →A3

A3 →A5 A5 →A5 A5 →A6

A6 →A7 A7 →A10 A10 →A10

A1 →A2 A9 →A5 A5 →A5

A10 →A9 A4 →A4 A4 →A7

A7 →A10 A10 →A11 A11 →A12

A12 →A13 A13 →A12 A13 →A12

Step 5:  Divide each interval  derived in Step 2 into four subintervals  of equal 

length, where the 0.25-point and 0.75-point of each interval are used as the upward 

and  downward  forecasting  points  of  the  forecasting.  Use  the  following  rules  to 

determine whether the trend of the forecasting goes up or down and to forecast the 

enrollment. Assume that the fuzzy logical relationship is  Ai  → Aj, where Ai denotes 

the fuzzified enrollment of year n-1 and Aj denotes the fuzzified enrollment of year n, 

then (1) If j>i and the difference of the differences of the enrollments between years 

n-1 and  n-2  and  between  years  n-2  and  n-3  is  positive,  then  the  trend  of  the 

forecasting will go up, and we use the following Rule 2 to forecast the enrollments; 

(2) If j>i and the difference of the differences of the enrollments between years n-1 

and n-2 and between years n-2 and n-3 is negative, then the trend of the forecasting 

will go down, and we use the following Rule 3 to forecast the enrollments; (3) If j < 

i and the difference of the differences of the enrollments between years n-1 and n-2 

and between years  n-2 and n-3 is positive, then the trend of the forecasting will go 

up, and we use the following Rule 2 to forecast the enrollments; (4) If  j<i and the 

difference  of  the  differences  of  the  enrollments  between  years  n-1 and  n-2 and 

between years n-2 and n-3 is negative, then the trend of the forecasting will go down, 

and we use  the  following Rule  3  to  forecast  the  enrollments;  (5)  If  j=i and  the 

difference  of  the  differences  of  the  enrollments  between  years  n-1 and  n-2 and 
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between years  n-2 and  n-3 is positive, then the trend of the forecasting will go up, 

and  we use  the  following Rule  2  to  forecast  the  enrollments;  (4)  If  j<i and  the 

difference  of  the  differences  of  the  enrollments  between  years  n-1 and  n-2 and 

between years n-2 and n-3 is negative, then the trend of the forecasting will go down, 

and we use  the  following Rule  3  to  forecast  the  enrollments;  (5)  If  j=i and  the 

difference  of  the  differences  of  the  enrollments  between  years  n-1 and  n-2 and 

between years  n-2  and n-3 is positive, then the trend of the forecasting will go up, 

and  we use  the  following Rule  2  to  forecast  the  enrollments;  (6)  If  j=i and  the 

difference  of  the  differences  of  the  enrollments  between  years  n-1 and  n-2 and 

between years n-2 and n-3 is negative, then the trend of the forecasting will go down, 

and we us the following Rule 3 to forecast the enrollments, where Rule 1, Rule 2 and 

Rule 3 are shown as follows:

Rule 1: When forecasting the enrollment of year 1973, there are no data before 

the enrollments of year 1970, therefore we are not able to calculate the difference of 

the enrollments between years 1971 and 1970 and the difference of the differences 

between years 1972 and 1971 and between years 1971 and 1970. Therefore, if |(the  

difference of the enrollments between years 1972 and 1971)|/2 > half of the length of 

the interval corresponding to the fuzzified enrollment Aj with the membership value 

equal to 1, then the trend of the forecasting of this interval will be upward, and the 

forecasting enrollment falls at the 0.75-point of this interval; if |(the difference of the 

enrollments between years 1972 and 1971)|/2 = half  of the length of the interval 

corresponding to the fuzzified enrollment  Aj with the membership value equal to 1, 

then the forecasting  enrollment  falls  at  the middle  value  of  this  interval;  if  |(the  

difference of the enrollments between years 1972 and 1971)|/2 < half of the length of 

the interval corresponding to the fuzzified enrollment Aj with the membership value 

equal to 1, then the trend of the forecasting of this interval will be downward, and the 

forecasting enrollment falls at the 0.25-point of the interval.

Rule  2:  If  (|the  difference  of  the  differences  between  years  n-1  and n-2  and  

between  years  (n-2)  and  (n-3)|  ×  2  +  the  enrollments  of  year  (n-1)) or  (the  

enrollments of year (n-1) - |the difference of the differences between years (n-1) and  
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(n-2) and between years (n-2) and (n-3)| × 2) falls in the interval corresponding to 

the fuzzified enrollment  Aj with the membership value equal to 1, then the trend of 

the forecasting of this interval will be upward, and the forecasting enrollment falls at 

the 0.75-point of the interval of the corresponding fuzzified enrollment  Aj with the 

membership value equal to 1; if (|the difference of the differences between years (n-

1) and (n-2) and between years (n-2) and n-3|/2 + the enrollments of year (n-1) ) or 

(the enrollments of year (n-1) - |the difference of the differences between years (n-1)  

and  (n-2)  and  between  years  (n-2)  and  (n-3)|/2) falls  in  the  interval  of  the 

corresponding fuzzified enrollment Aj with the membership value equal to 1, then the 

trend of the forecasting of this interval will be downward, and the forecasting value 

falls at the 0.25-point of the interval of the corresponding fuzzified enrollment  Aj 

with  the  membership  value  equal  to  1;  if  neither  is  the  case,  then  we  let  the 

forecasting  enrollment  be  the  middle  value  of  the  interval  corresponding  to  the 

fuzzified enrollment Aj with the membership value equal to 1.

Rule 3: If  (|the difference of the differences between years (n-1) and (n-2) and 

between years (n-2) and (n-3)|/2 + the enrollments of year (n-1)) or (the enrollments  

of year (n-1) - |the difference of the differences between years (n-1) and (n-2) and  

between years (n-2) and (n-3)|/2) falls in the interval of the corresponding fuzzified 

enrollment Aj with the membership value equal to 1, then the trend of the forecasting 

o this interval will be downward, and the forecasting enrollment falls at the 0.25-

point  of  the  interval  corresponding  to  the  fuzzified  enrollment  Aj with  the 

membership value  equal to 1; if (|the difference of the differences between years (n-

1) and (n-2) and between years (n-2) and (n-3)| × 2 + the enrollment of year (n-1)) 

or (the enrollment of year (n-1) - |the difference of the differences between years (n-

1)  and  (n-2)  and  between  years  (n-2)  and  (n-3)|  ×  2)  falls  in  the  interval 

corresponding to the fuzzified enrollment  Aj with the membership value equal to 1, 

then the trend of the forecasting of this interval will be upward, and the forecasting 

enrollment  falls  at  the  0.75-point  of  the  interval  corresponding  to  the  fuzzified 

enrollment Aj with the membership value equal to 1; if neither is the case, then we let 

the forecasting enrollment be the middle value of the interval corresponding to the 

fuzzified enrollment Aj with the membership value equal to 1.
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4.2.5 Fuzzy Forecasting Enrollments Using High-Order Fuzzy Time Series and  

Genetic Algorithms

Under this topic a total different method is defined for forecasting enrollments 

using high-order fuzzy time series and genetic algorithms to forecast the enrollments 

of the University of Alabama. From Table 4.6 the minimum enrollment Dmin and the 

maximum enrollment Dmax of the University of Alabama are 13,055 and 19337. The 

universe of discourse  U=[13,000, 20,000], and the universe of discourse  U can be 

divided into n intervals u1, u2, …, un, where u1=[13,000, x1], u2=[ x1 , x2], …, un=[xn-1,  

20,000]. Each chromosome consists of n-1 genes shown as follows:

x1 x2 x3 … xn-1

The algorithm (called Algorithm-GA) for forecasting enrollments and calculating 

the  Mean  Square  Error  (MSE)  based  on  the  above  chromosome  is  presented  as 

follows.

( )

n
MSE

n

i

2

1
ii Enrollment Forecasted - Enrollment Actual∑

==
.........................(3)

Figure 4.3 Membership functions constructed from genes of a chromosome
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Step 1: Construct the membership functions corresponding to the genes x1, x2, …,  

xn-1, of a chromosome, as shown in Figure 4. For example, assume that there is a 

chromosome shown as follows:

15,29

1

15,92

6

15,94

7

17,68

9

17,73

2

18,25

2

Then, the membership functions corresponding to the chromosome are as shown 

in Figure 4.4.

Figure 4.4 Membership functions constructed from genes of a chromosome
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Step 2: Based on Figure 4.3 and Chen’s (1996) method fuzzify the historical 

enrollments of the University of Alabama shown in Table 4.6. For example, from 

Figure 4.4, we can see that u1= [13,000, 15,291], u2= [15,291, 15,926], u3= [15,926,  

15,947]  u4= [15,947,  17,689],  u5= [17,689,  17,732],  u6= [17,732,  18,252],  u7= 

[18,252, 20,000].  Then, the fuzzified results of the historical enrollments shown in 

Table 4.6 are shown in Table 4.10.

Table 4.10 Alabama enrollments with fuzzified enrollments

Actual 

Enrollments

Fuzzified 

Enrollments
1971 13,055 A1

1972 13,563 A1

1973 13,867 A1

1974 14,696 A1

1975 15,460 A2

1976 15,311 A2

1977 15,603 A2

1978 15,861 A2

1979 16,807 A4

1980 16,919 A4

1981 16,388 A4

1982 15,433 A2

1983 15,497 A2

1984 15,145 A1

1985 15,163 A1

1986 15,984 A4

1987 16,859 A4

1988 18,150 A6

1989 18,970 A7

1990 19,328 A7

1991 19,337 A7

1992 18,876 A7
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Step 3: Generate  fuzzy logical  relationships  based on the  jth order  fuzzy time 

series, where  j>1. For example, from Table 4.10, we can get the third-order fuzzy 

logical  relationships  as  shown  in  Table  4.11,  where  the  symbol  #  denotes  an 

unknown value. 

Table 4.11 Alabama enrollments with fuzzified enrollments

#, A1, A1 →  A2 A1, A1, A1 → A1 A1, A1, A1 → A2 A1, A1, A2 → A2

A1, A2, A2 → A2 A2, A2, A2 → A2 A2, A2, A2 → A4 A2, A2, A4 → A4

A2, A4, A4 → A4 A4, A4, A4 → A2 A4, A4, A2 → A2 A4, A2, A2 → A1

A2, A2, A1 → A1 A2, A1, A1 → A4 A1, A1, A4 → A4 A1, A4, A4 → A6

A4, A4, A6 → A7 A4, A6, A7 → A7 A6, A7, A7 → A7 A7, A7, A7 → A7

Step 4: Based on the  jth order  fuzzy logical  relationships,  where  j>1, forecast 

enrollments using the following principles:

(1) If the jth order fuzzified historical enrollments for year i are Aij, Ai(j-1), …, 

Ai1, where j>1, and if there is the following fuzzy logical relationship in which the 

current state is “Aij, Ai(j-1), …, Ai1”, shown as follows:

jijiij AAAA →− 1)1( ,,, 

where Aij, Ai(j-1), …, Ai1 are fuzzy sets, the maximum membership value Ak occurs 

at interval uk, and the midpoint of uk is mk, then the forecasted enrollment of the ith 

year is mk.

(2) If the jth order fuzzified historical enrollments for year i are Aij, Ai(j-1), …, 

Ai1, where j>1, and if there are the following fuzzy logical relationships in which 

the current state is “Aij, Ai(j-1), …, Ai1,”, shown as follows:
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where Aij, Ai(j-1), …, Ai1, Aj1, Aj2, and Ajp are fuzzy sets, the maximum membership 

values of Aj1, Aj2, …, and Ajp occurs at interval u1, u2, …, and up, respectively, and 

the  midpoint  of  the  intervals  u1,  u2,  …,  and  up,  and  m1,  m2,  …,  and  mp, 

respectively, then the forecasted enrollment of the ith year is (m1+m2+…+ mp)/p.

Table 4.12 Alabama enrollments with fuzzified enrollments

Year
Actual 

Enrollments

Forecasted 

Enrollments
Year

Actual 

Enrollments

Forecasted 

Enrollments

1971 13,055 1982 15,433 15,609

1972 13,563 1983 15,497 15,609

1973 13,867 14,146 1984 15,145 14,146

1974 14,696 14,878 1985 15,163 14,146

1975 15,460 14,878 1986 15,984 16,818

1976 15,311 15,609 1987 16,859 16,818

1977 15,603 15,609 1988 18,150 17,992

1978 15,861 16,214 1989 18,970 19,126

1979 16,807 16,214 1990 19,328 19,126

1980 16,919 16,818 1991 19,337 19,126

1981 16,388 16,818 1992 18,876 19,126

For  example,  when  using  the  third-order  forecasting  model  to  forecast  the 

enrollments of the University of Alabama, then, according to the third-order fuzzy 

logical  relationships shown in Table 4.11, the forecasting results  are as shown in 

Table 4.12,  where the process to forecast  the enrollment  of 1973 is  described as 

follows. When forecasting the enrollment of 1973, we must look at the enrollments 

of  the  previous  three  years  before  1973.  From Table  4.11,  we  can  see  that  the 

enrollment of 1970 is unknown. Thus, the fuzzified enrollment of 1970 is denoted as 
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#, the fuzzified enrollment of 1971 is A1, and the fuzzified enrollment of 1972 is A1, 

where the symbol # denotes an unknown value.

Then, we look at the fuzzy logical relationships shown in Table 4.11 to find any 

fuzzy logical relationship whose current state is  “#, A1, A1”. In Table 4.11, we can 

find the fuzzy logical relationship “#, A1, A1→A1” whose current state is “#, A1, A1”. 

Because the maximum membership value of  A1 occurs at  interval  u1,  u1=[13,000, 

15,291], and the midpoint of u1 occurs at 14,146, the forecasted enrollment of 1973 is 

14,146. In the same way, the enrollments of the University of Alabama from 1974 to 

1992 can be forecasted, as shown in Table 4.12. The mean square error (MSE) of a 

chromosome can be calculated, where

( )

n
MSE

n

i

2

1
ii Enrollment Forecasted - Enrollment Actual∑

==
.........................(3)

Let  the value of  MSE be the fitness value  of the genetic  algorithm,  where  m 

denotes the number of historical data. The system will choose chromosomes with 

smaller MSE values for evolution. For example, from the experimental result, we can 

see that the MSE value of the chromosome

15,291 15,926 15,947 17,689 17,732 18,252

is 209,003, as shown in Table 4.13.



77

Table 4.13 MSE values of the chromosome

Actual  

Enrollments

(Ai)

Forecasted 

Enrollments

(Fi)

(Ai - Fi) (Ai - Fi)2

1971 13,055
1972 13,563
1973 13,867 14,146 279 77,841
1974 14,696 14,878 182 33,124
1975 15,460 14,878 -582 33,8724
1976 15,311 15,609 298 88,804
1977 15,603 15,609 6 36
1978 15,861 16,214 353 124,609
1979 16,807 16,214 -593 351,649
1980 16,919 16,818 -101 10,201
1981 16,388 16,818 430 184,900
1982 15,433 15,609 176 30,976
1983 15,497 15,609 112 12,544
1984 15,145 14,146 -999 998,001
1985 15,163 14,146 -1017 1,034,289
1986 15,984 16,818 834 695,556
1987 16,859 16,818 -41 1,681
1988 18,150 17,992 -158 24,964
1989 18,970 19,126 156 24,336
1990 19,328 19,126 -202 40,804
1991 19,337 19,126 -211 44,521
1992 18,876 19,126 250 62,500

The algorithm for forecasting enrollments using high-order fuzzy time series and 

genetic  algorithm  is  presented  as  follows.  Assume  that  the  system  randomly 

generates 30 chromosomes as the initial population as shown in Table 4.14.

Step 1: Randomly choose two chromosomes from the population for performing 

crossover operations and randomly choose a crossover point.  For example,  if  the 

crossover  point  selected  by  the  system  is  “2”,  then  it  performs  the  crossover 

operations after the crossover point, as shown in Figure 4.5.
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Figure 4.5 (a) Before the crossover operation. (b) After the crossover operation.

After  performing  the  crossover  operations,  if  the  values  of  the  genes  of  a 

chromosome are not in an ascending sequence, then the system sorts the values of the 

genes in the chromosomes in an ascending sequence, as shown in Table 4.15.

Table 4.14 The initial population generated from the system.

Chromosome

Number

Gene Number

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6

Chrom.1 15,291 15,926 15,947 17,689 17,732 18,252

Chrom.2 13,162 13,381 13,538 17,312 18,313 18,777

Chrom.3 14,239 15,111 17,219 17,289 18,409 18,497

Chrom.4 13,212 17,194 17,939 18,265 18,847 19,101

Chrom.5 14,283 16,820 18,627 18,709 18,745 19,158

Chrom.6 14,500 16,008 16,227 18,469 19,074 19,834

Chrom.7 13,886 16,106 16,290 16,668 17,821 18,473

Chrom.8 14,516 15,510 15,627 18,030 18,126 19,482

Chrom.9 14,641 14,729 15,417 19,023 19,621 19,884

Chrom.10 13,150 13,757 15,307 19,275 19,356 19,960

Chrom.11 14,124 14,535 15,876 16,895 17,848 18,457
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Table 4.14 The initial population generated from the system (continues)

Chromosome

Number

Gene Number

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6

Chrom.12 14,539 14,621 17,582 18,355 18,542 19,203

Chrom.13 13,169 15,081 15,883 18,012 19,586 19,943

Chrom.14 14,186 16,709 17,376 18,108 19,525 19,569

Chrom.15 15,093 15,795 16,684 17,812 17,951 18,116

Chrom.16 13,510 14,715 17,545 18,646 19,157 19,975

Chrom.17 13,445 13,925 16,653 17,672 19,225 19,264

Chrom.18 13,038 13,326 14,133 15,612 17,003 18,005

Chrom.19 13,121 14,175 15,601 16,464 16,579 18,011

Chrom.20 13,732 16,025 16,127 16,798 19,795 19,858

Chrom.21 13,987 16,052 16,069 16,959 17,578 19,805

Chrom.22 13,708 14,143 15,269 15,390 16,602 19,733

Chrom.23 14,754 15,648 15,769 17,237 17,880 18,854

Chrom.24 14,194 14,396 17,748 18,193 18,734 19,456

Chrom.25 13,187 13,209 13,367 16,787 16,819 19,552

Chrom.26 14,109 14,432 15,421 17,501 18,327 19,052

Chrom.27 15,339 15,583 15,895 16,540 19,304 19,607

Chrom.28 14,228 14,399 14,439 14,514 15,869 18,372

Chrom.29 13,709 14,022 16,110 16,724 18,830 19,502

Chrom.30 13,636 15,723 16,215 17,796 17,831 19,195

Step 2: Randomly select a chromosome from the population and randomly select 

a  gene from the selected chromosome to perform the mutation  operation.  In this 

article,  we set  the mutation rate  to  0.05.  If  the random number generated  by the 

system is smaller than or equal to the mutation rate (0.05) the mutation operation 

mutates  the  selected  gene  of  the  selected  chromosome.  Assume  that  gene  x3 is 

randomly selected by the system to perform the mutation operation,  and then the 

value of x3 will be replaced by a random value between x2 and x4. For example, let us 

consider the chromosomes shown in Figure 4.6.
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Figure 4.6 (a) Chromosome before the mutation.  (b) Chromosome after the mutation.

Assume that the system selects the third gene of the chromosome to perform the 

mutation operation; then the value of the third gene (i.e., 15,876) will be replaced by 

a random number between 14,535 and 16,895 generated by the system. Assume that 

the random number generated by the system is 15,489, and then the value “15,876” 

of the third gene of the chromosome is replaced by “15,489”, as shown in Figure 4.6.

Table 4.15 After crossover and sorting the index of genes in the chromosomes

Chromosome

Number

Gene Number

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6

Chrom.1 14,124 14,535 15,876 16,895 19,525 19,569

Chrom.2 15,093 15,795 16,684 17,812 17,951 18,473

Chrom.3 14,516 15,510 15,627 18,030 18,126 19,733

Chrom.4 14,754 15,648 15,769 18,193 18,734 19,456

Chrom.5 13,038 13,326 14,133 15,612 15,869 18,372

Chrom.6 13,121 14,175 15,601 16,464 19,304 19,607

Chrom.7 15,291 15,926 15,947 17,689 17,732 19,101

Chrom.8 13,886 16,106 16,290 16,668 17,821 18,116

Chrom.9 13,169 15,081 15,883 16,724 18,830 19,502

Chrom.10 13,636 15,723 17,219 17,289 18,409 18,497

Chrom.11 13,367 13,987 16,052 16,787 16,819 19,552

Chrom.12 14,109 14,432 15,421 17,501 18,313 18,777

Chrom.13 13,445 13,925 16,653 16,798 19,795 19,858
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Table 4.15 After crossover and sorting the index of genes in the chromosomes (continues)

Chromosome

Number

Gene Number

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6

Chrom.14 14,186 16,709 17,376 17,848 18,108 18,457

Chrom.15 14,500 16,008 16,227 18,469 19,074 19,975

Chrom.16 13,709 14,022 16,110 18,012 19,586 19,943

Chrom.17 15,339 15,583 15,895 16,540 16,579 18,011

Chrom.18 14,28 16,820 18,627 18,709 18,745 19,203

Chrom.19 14,228 14,399 14,439 14,514 17,003 18,005

Chrom.20 13,708 14,143 15,269 15,390 16,602 19,482

Chrom.21 13,732 16,025 16,127 17,672 19,225 19,264

Chrom.22 13,212 17,194 17,939 18,252 18,265 18,847

Chrom.23 14,239 15,111 16,215 17,796 17,831 19,195

Chrom.24 13,162 13,381 13,538 17,312 18,327 19,052

Chrom.25 13,187 13,209 16,069 16,959 17,578 19,805

Chrom.26 13,510 14,715 17,545 18,646 19,157 19,834

Chrom.27 14,194 14,396 17,237 17,748 17,880 18,854

Chrom.28 14,539 14,621 17,582 18,355 18,542 19,158

Chrom.29 14,641 14,729 15,417 19,023 19,621 19,960

Chrom.30 13,150 13,757 15,307 19,275 19,356 19,88

Step 3: Calculate the MSE value of each derived chromosome obtained from Step 

2  based  on  the  algorithm  Algorithm-GA*  presented  previously.  The  results  are 

shown in Table 4.16.
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Table 4.16 The MSE values of the chromosomes after crossover and mutation operations.

Chromosome

Number
MSE

Chromosome

Number
MSE

Chromosome 1 297,470 Chromosome 16 253,133

Chromosome 2 129,169 Chromosome 17 270,647

Chromosome 3 173,649 Chromosome 18 501,718

Chromosome 4 520,723 Chromosome 19 1,438,292

Chromosome 5 498,592 Chromosome 20 693,002

Chromosome 6 523,545 Chromosome 21 329,334

Chromosome 7 233,348 Chromosome 22 883,698

Chromosome 8 252,649 Chromosome 23 225,963

Chromosome 9 255,308 Chromosome 24 890,302

Chromosome 10 242,733 Chromosome 25 379,907

Chromosome 11 537,351 Chromosome 26 980,279

Chromosome 12 337,461 Chromosome 27 1,088,842

Chromosome 13 904,830 Chromosome 28 1,073,041

Chromosome 14 312,478 Chromosome 29 1,586,739

Chromosome 15 382,629 Chromosome 30 1,778,588

Step 4: Select  20 chromosomes from the population shown in Table 4.16 that 

have lower MSE values, and put 10 chromosomes randomly generated by the sys- 

tem into them to form the new population of the next generation, as shown in Table 

4.17. In the same way, after repeatedly performing Step 1 to Step 4 to evolve 1000 

generations, the chromosome that has the lowest value of MSE is the best solution to 

be used to forecast the enrollments of the University of Alabama.
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Table 4.17 The chromosomes of the next generation.
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Chrom.1 14,124 14,535 15,876 16,895 17,848 18,457 114,129

Chrom.2 15,093 15,795 16,684 17,812 17,951 18,473 129,169

Chrom.3 15,093 15,795 16,684 17,812 17,951 18,116 162,231

Chrom.4 14,516 15,510 15,627 18,030 18,126 19,733 173,649

Chrom.5 14,516 15,510 15,627 18,030 18,126 19,482 177,756

Chrom.6 14,754 15,648 15,769 17,237 17,880 18,854 180,976

Chrom.7 13,038 13,326 14,133 15,612 17,003 18,005 185,036

Chrom.8 13,121 14,175 15,601 16,464 16,579 18,011 193,039

Chrom.9 15,291 15,926 15,947 17,689 17,732 18,252 209,008

Chrom.10 13,886 16,106 16,290 16,668 17,821 18,473 218,605

Chrom.11 14,239 15,111 16,215 17,796 17,831 19,195 225,963

Chrom.12 15,291 15,926 15,947 17,689 17,732 19,101 233,348

Chrom.13 13,636 15,723 17,219 17,289 18,409 18,497 242,733

Chrom.14 13,886 16,106 16,290 16,668 17,821 18,116 252,649

Chrom.15 13,709 14,022 16,110 18,012 19,586 19,943 253,133

Chrom.16 13,169 15,081 15,883 18,012 19,586 19,943 254,270

Chrom.17 13,169 15,081 15,883 16,724 18,830 19,502 255,308

Chrom.18 13,636 15,723 16,215 17,796 17,831 19,195 266,532

Chrom.19 13,987 16,052 16,069 16,959 17,578 19,805 268,621

Chrom.20 15,339 15,583 15,895 16,540 16,579 18,011 270,65

The loop will continue till  the best 20 generations are created and the cycle is 

ending.  The  process  provides  great  forecasts  with  lowest  mean  square  errors 

comparing  to  various  methods  introduced  in  this  master  thesis.  That  means  this 

method with artificial computer technologies might be the most accurate forecasting 

method for time series which are time-variant or time-invariant.



84

Table 4.17 The chromosomes of the next generation. (Continues)
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6Chrom.21 13,832 18,015 18,035 19,356 19,523 19,590 1,795,597

Chrom.22 13,953 14,470 15,475 16,799 16,830 17,786 174,952

Chrom.23 13,462 13,473 14,128 14,473 16,485 19,184 750,216

Chrom.24 13,494 14,261 16,077 17,787 19,600 19,925 244,710

Chrom.25 13,853 14,282 16,067 17,791 18,454 18,767 214,065

Chrom.26 13,352 13,800 17,240 17,722 18,543 19,574 1,014,534

Chrom.27 13,306 14,349 17,524 18,055 18,303 18,954 1,065,016

Chrom.28 17,100 17,334 17,554 17,752 17,963 19,925 1,485,862

Chrom.29 15,470 16,752 17,065 17,386 18,961 19,481 268,896

Chrom.30 14,039 14,200 14,680 15,675 17,279 18,61 152,876

4.2.6 Fuzzy Metric Approach for Fuzzy Time Series

Since first appearance of Fuzzy Time Series, nearly all  the researchers present 

their method to forecast the enrollments of the University of Alabama based on fuzzy 

time series based on Jilani & Burney (2007) and Jilani, Burney & Ardil (2007). The 

historical enrollments of the University of Alabama are shown in Table 4.5.

Firstly,  we  defined  the  partition  the  universe  of  discourse  into  equal  length 

intervals.  Then based on frequency density  portioning,  we redefine  the  intervals. 

After  this,  define  some  membership  function  for  each  interval  of  the  historical 

enrollment data to obtain fuzzy enrollments to form a fuzzy time series.  Then, it 

establishes fuzzy logical relationships (FLRs) based on the fuzzified enrollments in 

Table IV. Finally, it uses our proposed method. The proposed method bases on Hsu 

& Chen (2004) approach of partitioning universe of discourse are as follows:

Step 1: Define the universe of discourse U and partition it into several even and 

equal length intervals u1, u2... un. For example, assume that the universe of discourse 

U= [13000,20000] is partitioned into seven even and equal length intervals.
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Step 2: Get a weighted aggregation Zimmermann (2001) of the fuzzy distribution 

of the historical enrollments in each interval. Sort the intervals based on the number 

of historical enrollment data in each interval from the highest to the lowest. Find the 

interval having the largest number of historical enrollment data and divide it into four 

sub-intervals of equal length. Find the interval having the second largest number of 

historical enrollment data and divide it into three sub-intervals of equal length. Find 

the interval having the third largest number of historical enrollment data and divide it 

into  two  sub-intervals  of  equal  length.  Find  the  interval  with  the  fourth  largest 

number  of  historical  enrollment  data  and  let  the  length  of  this  interval  remain 

unchanged. If there are no data distributed in an interval then discard this interval. 

For example, the distributions of the historical enrollment data in different intervals 

are summarized as shown in Table 4.18 from Hsu & Chen (2004).

Table 4.18 The intervals for enrollments of the university of alabama

Intervals Number of historical enrollment data

[13,000, 14,000] 3

[14,000, 15,000] 1

[15,000, 16,000] 9

[16,000, 17,000] 4

[17,000, 18,000] 0

[18,000, 19,000] 3

[19,000, 20,000] 2

After executing this step, the universe of discourse [13,000, 20,000] is re-divided 

into the following intervals Hsu & Chen (2004), see Table 4.19.
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Table 4.19 The fuzzy intervals using frequency density based partitioning

Linguistic Intervals
U1 [13,000, 13,500]
U2 [13,500, 14,000]
U3 [14,000, 15,000]
U4 [15,000, 15,250]
U5 [15,250, 15,500]
U6 [15,500, 15,750]
U7 [15,750, 16,000]
U8 [16,000, 16,333]
U9 [16,333, 13,500]
U10 [16,667, 17,000]
U11 [18,000, 18,500]
U12 [18,500, 19,000]
U13 [19,000, 20,000]

Step 3: Define each fuzzy set Ai based on the re-divided intervals and fuzzify the 

historical  enrollments shown in Table 4.6, where fuzzy set  Ai denotes a linguistic 

value  of  the  enrollments  represented  by  a  fuzzy  set.  We  have  used  triangular 

membership function to define the fuzzy sets Ai. The reason for fuzzify the historical 

enrollments into fuzzified enrollments is to translate crisp values into fuzzy sets to 

get a fuzzy time series.
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Table 4.20  Third-order fuzzy logical relationships

A2, A2, A3 →  A5 A7, A10, A10 → A9 A4, A4, A7 → A10

A2, A3, A5 → A5 A10, A10, A9 → A5 A4, A7, A10 → A11

A3, A5, A5 → A6 A10, A9, A5 → A5 A7, A10, A11 → A12

A5, A5, A6 → A7 A9, A5, A5 → A4 A10, A11, A12 → A13

A5, A6, A7 → A10 A5, A5, A4 → A4 A11, A12, A13 → A13

A6, A7, A10 → A10 A5, A4, A4 → A7 A12, A13, A13 → A12

Step 4: Establish fuzzy logical relationships based on the fuzzified enrollments 

where the fuzzy logical relationship “Ap, Aq, Ar →As” denotes that “if the fuzzified 

enrollments  of  year  p,  q and  r  are  Ap ,Aq and  Ar respectively,  then  the  fuzzified 

enrollments of year (r) is Ar”.



CHAPTER FIVE

CONCLUSION

5.1 Conclusion of the Results

In various methods there has been proven that since the beginning of the idea 

solving Time Series data sets by fuzzify them is going to improve very fast. The 

actual  forecasting  error  rate  is  significantly  low,  comparing  to  previous 

methodologies. Also comparing the Mean Square Error (MSE) during years shown 

in Table 5.1 indicates the improvement of Fuzzy Time Series Analysis.

This  table  also includes  the Average Forecasting Error Rate  (AFER) which is 

calculated as 

( )
%100×

−

=
n

A
FA

AF ER i

ii

this formula shows that how far the forecasting falls away from the actual data, and 

how accurate its forecasting’s could project the real time values. Observing the error 

rate is a significant advantage to decide, if the method or model does it’s job, or not. 

But also, it should give the same results as a classical Time Series Analysis process 

produces. Rather using the new one as a fast growing child or the more experienced 

mature methodology. 

 There are sure some other benefits using one of the Fuzzy Time Series Methods. 

In my opinion two of them are strictly strong: against assumptions, small data set 

effectiveness.

As typically in classical time series, an effective fitting of Box & Jenkins models 

requires at least a moderately long series, which consists at least of 50 observations 

(Chatfield, 1996). Many other would recommend at least 100 observations. In Fuzzy 

Time Series Models there are no upper/lower limits, which stricken the analyst to 
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carve dozens of information  or data.  While  using soft  computing  technologies  in 

Fuzzy Time  Series,  competing  with  enormous  data  sets,  is  also  an  easy  task  to 

accomplish.

It’s  been briefly explained  in second chapter  that,  during processing the Time 

Series Set with Box & Jenkins Methodology, a lot of assumptions, hypothesis should 

be proven, to run the forecasting steps. In Fuzzy Time Series no assumptions needed 

to build a model and forecast a future value. The meaning of using no assumptions is 

deep;  because  that  greatly  reduces  the  analysis  time,  lesser  complications  in 

theoretical iterations, more flexibility to improve the model, smarter basis for soft 

computing algorithms.

The mathematical language used in Fuzzy Time Series is based on Fuzzy Logic, 

which makes  it  more  understandable.  The great  ability comes with Fuzzy Logic: 

Computing with linguistic terms or definitions. Working with qualitative historical 

data by Fuzzy Time Series, has no issue to convert them in real numbers. Also the 

dynamics of fuzzy logic improves, the understanding of trend and other components 

affecting the historical data.

In summary, lots of different approaches have been made and there are going to 

be more. The best parts of Fuzzy Time Series have been tried to define in this Master 

Degree  Thesis.  Fuzzy  Logic  integration  in  Time  Series  Analysis,  made  a  lot  of 

improvement in this field of research. As a strong, accurate and fast processing Time 

Series forecasting tool, Fuzzy Time Series Methodology’s doing his job way over. 

Since, comparing the invention time of Fuzzy Time Series theory, there is a giant 

leap of improvement. In a short period of time this theory is going to pass all the 

prejudice, fortify itself in science history.
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Table 5. 1  MSE results for methods used in this chapter.

Year

Actual 

Enroll-

ments

Song & 

Chissom 

(1993)

Chen 

(1996)

Chen 

(2002)

Chen 

(2004)

Jilani,  

Burney & 

Ardil

(2007)

Chung & 

Chen

(2009)

1971 13,055 13,579

1972 13,563 14,000 14,000 13,750 13,798

1973 13,867 14,000 14,000 13,875 13,798

1974 14,696 14,000 14,000 14,500 14,750 14,452

1975 15,460 15,500 15,500 15,500 15,375 15,373

1976 15,311 16,000 16,000 15,500 15,312.5 15,373

1977 15,603 16,000 16,000 15,500 15,625 15,623

1978 15,861 16,000 16,000 15,500 15,812.5 15,883

1979 16,807 16,000 16,000 16,500 16,833.5 17,079 16,846

1980 16,919 16,813 16,833 16,500 16,833.5 17,079 16,846

1981 16,388 16,813 16,833 16,500 16,42 16,497 16,420

1982 15,433 16,789 16,833 15,500 15,375 15,373 15,462

1983 15,497 16,000 16,000 15,500 15,375 15,373 15,462

1984 15,145 16,000 16,000 15,500 15,125 15,024 15,153

1985 15,163 16,000 16,000 15,500 15,125 15,024 15,153

1986 15,984 16,000 16,000 15,500 15,937.5 15,883 15,977

1987 16,859 16,000 16,000 16,500 16,833.5 17,079 16,846

1988 18,150 16,813 16,833 18,500 18,250 17,991 18,133

1989 18,970 19,000 19,000 18,500 18,875 18,802 18,910

1990 19,328 19,000 19,000 19,500 19,250 18,994 19,334

1991 19,337 19,000 19,000 19,500 19,250 18,994 19,334

1992 18,876 19,000 19,000 18,500 18,875 18,916 18,910

MSE 423,027 775,687 86,694 5,353 41,426 1,101

AFER % 4.38 % 3.11 %2.4452 %1.5294 %2.3865 %1.0242
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