

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

A GENETIC ALGORITHM FOR A FLEXIBLE
JOB SHOP SCHEDULING PROBLEM WITH

SEQUENCE DEPENDENT SETUP TIMES

by

Ezgi ÖZDÖL

October, 2011

İZMİR

A GENETIC ALGORITHM FOR A FLEXIBLE
JOB SHOP SCHEDULING PROBLEM WITH

SEQUENCE DEPENDENT SET UP TIMES

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of Science

In Industrial Engineering Program

by

Ezgi ÖZDÖL

October, 2011

İZMİR

iii

ACKNOWLEDGEMENTS

I would like to express my thanks to my supervisor Asst. Prof. Dr. Gökalp

YILDIZ for his guidance and patience to complete my thesis.

I thank my manager and colleagues who support me in both academic and general

aspects.

Finally, I would like to give the deepest thanks to my family for their love and

endless supports. It would have been impossible for me to complete this research

without their love and encouragement.

 Ezgi ÖZDÖL

iv

A GENETIC ALGORITHM FOR A FLEXIBLE JOB SHOP SCHEDULING

PROBLEM WITH SEQUENCE DEPENDENT SET UP TIMES

ABSTRACT

This thesis addresses the problem of scheduling flexible job shops with sequence

dependent setup times, and aims at minimizing makespan as an objective by using

genetic algorithms. The flexible job shop is characterized by job flow through a

number of work centers that contain identical or nonidentical parallel machines.

Flexible Job Shop Problems divided into two subproblems. In the first subproblem,

assignments of operations to machines are made. In the second subproblem,

sequencing problem is solved. For the first subproblem, three assignment methods

were used in this thesis. The first method is “Approach by Localization” which

assigns each operation to the suitable machine by taking into accounts the processing

times and workloads of machines. This assignment procedure assumes that there are

no setup times. The second method is modified version of the first method. In this

method, we modified the assignment procedure by using sequence dependent setup

times in addition to processing times and workloads of machines. In the third

method, assignments were made randomly just for the comparison purposes. For the

second subproblem, dispatching rules such as shortest processing time (SPT), most

work remaining (MWR), longest processing time (LPT), shortest setup time first rule

(SSTFR), random rule and neighborhood search were applied to sequence the

machines.

The main feature of this thesis is to combine the sequence dependent setup times

with the processing times and the workloads on both assignment and sequencing

procedures. The performance of genetic algorithm was also analyzed by taking into

account the issues such as, initial population generation, sequencing, selection and

mutation methods.

Keywords: Flexible Job Shop Scheduling, Sequence Dependent Set-up Time,

Genetic Algorithms

v

SIRA BAĞIMLI HAZIRLIK ZAMANLI ESNEK ATÖLYE TİPİ

ÇİZELGELEME PROBLEMİ İÇİN BİR GENETİK ALGORİTMA

ÖZ

Bu tezde, sıra bağımlı hazırlık zamanlı esnek atölye çizelgeleme problemlerinden,

tamamlanma zamanı minimizasyonu Genetik Algoritma ile çözülmüştür. Esnek

atölye çizelgeleme problemlerinde iş akışı paralel ve paralel olmayan iş istasyonları

arasında olmaktadır. Esnek atölye çizelgeleme problemi iki alt problemden

oluşmaktadır. İlk problem; her bir operasyonun makinalara atamaların yapılması,

ikinci problem ise ataması yapılan makina önündeki iş sıralamaların yapılmasıdır. Bu

tezde, ilk problemde, üç makine atama yöntemi kullanılmıştır. İlk yöntem her bir

operasyonu makinalara atarken makina yüklerini ve iş sürelerini göz önünde

bulundurarak atama yapan “Approach by Localization” yöntemidir. Bu yöntem

makine hazırlık zamanlarını göz önünde bulundurmamaktadır. İkinci yöntem

“Approach by Localization” yönteminin sıra bağımlı hazırlık zamanlarını da makina

yükleri ve iş süreleri ile birlikte göz önünde bulundurdurarak modife edildiği

yöntemdir. Üçüncü yöntem ise karşılaştırma amaçlı kullanılan, makine atamalarının

rastgele yapıldığı yöntemdir. İkinci problemde operasyon ataması yapılmış her bir

makina önündeki sıralamalar, En Kısa Hazırlık Zamanı, En Kısa İşlem Zamanı, En

Uzun İşlem Zamanı, En Uzun Kalan Süre ve Rasgele, öncelik dağıtım kuralları ile

oluşturulmaktadır.

Bu tezde, makine atamaları ve makine önündeki sıralamalar yapılırken sıra

bağımlı hazırlık zamanları iş süreleri ve makine yükleri ile birlikte ele alınmıştır.

Farklı problem büyüklüklerinde başlangıç popülasyonu yaratma, sistemde kalma

süresi hesaplama, seçme ve mutasyon yöntemlerinin genetik algoritma performansı

üstünde etkileri araştırılmıştır.

Anahtar Sözcükler: Esnek Atölye Çizelgeleme, Sıra Bağımlı Hazırlık Zamanı,

Genetik Algoritmalar

vi

CONTENTS

 Page

THESIS EXAMINATION RESULT FORM .. ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZ .. v

CHAPTER ONE-INTRODUCTION ... 1

1.1 Motivation of the Research .. 1

1.2 Thesis Outline .. 3

CHAPTER TWO-SCHEDULING PROBLEMS .. 4

2.1 Introduction .. 4

2.2 Notation of Scheduling Problems .. 5

2.2.1 Machine Environment () ... 6

2.2.1.1 Single Machine ... 7

2.2.1.2 Parallel Machine ... 7

2.2.1.3 Flow Shop .. 7

2.2.1.4 Job Shop ... 8

2.2.1.5 Flexible Flow Shop .. 8

2.2.1.6 Flexible Job Shop ... 9

2.2.2 Side Constraints () .. 9

2.2.3 Objective () .. 11

2.2.3.1 Performance Measures Based on Completion Time 11

2.2.3.2 Performance Measures Based on Flow Time ... 12

2.2.3.3 Performance Measures Based on Lateness .. 13

2.2.3.4 Performance Measures Based on Number of Late/tardy Jobs 15

2.2.3.5 Performance Measures Based on Tardiness ... 15

vii

2.2.3.6 Performance Measures Based on Earliness .. 16

2.3 General Assumption of Scheduling Problems ... 18

2.4 Summary .. 19

CHAPTER THREE-FLEXIBLE JOB SHOP SCHEDULING 20

3.1 Introduction .. 20

3.2 Solution Approaches for Scheduling Problems ... 21

3.2.1 Exact Optimisation Methods ... 22

3.2.1.1 Dynamic Programming .. 22

3.2.1.2 Integer Programming ... 22

3.2.2 Heuristic Approaches .. 23

3.2.2.1 Dispatching Rules .. 23

3.2.2.2 Local Search ... 23

3.3 Literature Review ... 26

3.4 Summary .. 36

CHAPTER FOUR-GENETIC ALGORITHMS ... 37

4.1 Introduction .. 37

4.2 Solving Scheduling Problems with Genetic Algorithms 37

4.3 Genetic Algorithm .. 38

4.3.1 Chromosome Representation .. 39

4.3.2 Genetic Operators ... 42

4.3.2.1 Selection Operator .. 43

4.3.2.1.1 Roulette-Wheel Selection ..44

4.3.2.1.2 Rank Based Selection ...44

4.3.2.1.3 Tournament Selection ..44

4.3.2.2 Crossover Operators ... 45

4.3.2.2.1 Partial-Mapped crossover (PMX) ..45

4.3.2.2.2 Order Crossover (OX) ..45

4.3.2.2.3 Position-Based Crossover ..46

4.3.2.2.4 Order-Based Crossover ..46

4.3.2.2.5 Cycle Crossover (CX) ..46

4.3.2.2.6 Linear Order Crossover (LOX) ..47

viii

4.3.2.2.7 Subsequence Exchange Crossover ...47

4.3.2.2.8 Job-Based Order Crossover ...48

4.3.2.2.9 Partial Schedule Exchange Crossover ..48

4.3.2.2.10 Substring Exchange Crossover ..49

4.3.2.3 Mutation Operator .. 49

4.3.3 Genetic Parameters ... 50

4.4 Summary .. 51

CHAPTER FIVE-SOLVING FLEXIBLE JOB SHOP SCHEDULING
PROBLEM WITH SEQUENCE DEPENDENT SET UP TIME BY USING
GENETIC ALGORITHM .. 52

5.1 Introduction .. 52

5.2 Description of the Problem .. 53

5.3 Performance Measures ... 55

5.4 Proposed Genetic Algorithm .. 55

5.5 Initial Population Generation ... 56

5.5.1 Fitness Evaluation ... 64

5.5.1.1 Dispatching Rules .. 64

5.5.1.1.1 Most Work Remaining Rule (MWR) ...65

5.5.1.1.2 Shortest Processing Time Rule (SPT) ..65

5.5.1.1.3 Longest Procesing Time Rule (LPT) ...65

5.5.1.1.4 Random Rule ..65

5.5.1.1.5 Shortest Setup Time First Rule (SSTFR) ...65

5.5.1.2 Neighborhood Search ... 66

5.5.2 Selection .. 66

5.5.2.1 Selection of Reproduction .. 66

5.5.2.2 Selection of Replacement ... 67

5.5.3 Crossover .. 67

5.5.4 Mutation .. 69

5.6 Parameters .. 72

5.7 Computational Results ... 74

ix

CHAPTER SIX-CONCLUSION .. 79

6.1 Conclusion ... 79

6.2 Future Research .. 80

REFERENCES ... 81

APPENDICES .. 85

1

CHAPTER ONE

INTRODUCTION

1.1 Motivation of the Research

Many modern manufacturing environments are flexible job shops. Advanced

machines allow different jobs to be processed on the same machine by changing

machine tools. Setup activities of a new job then depend on the previous job on the

machine. Some complicated products require multiple visits to the same processing

station and all jobs are not ready to start their processing operation at the same time.

This thesis is related to reentrant flexible job shop with sequence dependent setup

time. A reentrant flexible job shop refers to the machine environment in which each

job should be processed on each one of a series of work centers has its own

predetermined route to follow, and may visit a machine more than once.

Scheduling reentrant flexible job shops with the objective of minimizing

makespan is one of the most complex scheduling problems and has been proved to

be NP-hard. There are several researchers who developed methods to solve this

problem. Processing restrictions, such as sequence-dependent setup times and

recirculation have received more attention from many researchers ((Kacem,

Hammadi and Borne, 2003); (Chen and Wu, 2007); (Pezzella, Morganti and

Ciaschetti, 2008); (Gao, Sun and Gen, 2008); (Gen, Gao and Lin, 2009); (Fattahi and

Fallahi, 2010)).

In order to specify assumptions for this thesis, we briefly describe the

characteristics of the problem in the following list.

1. Each job consists of one fixed sequence of operations.

2. Each machine can process at most one job at a time, and each job can only be

processed on one machine at a time.

2

3. There are no interruptions and cancellations between jobs.

4. All machines are available continuously.

5. There are identical or nonidentical paralel machines

6. All jobs can be started at t = 0.

7. All machines are available at t = 0.

8. There are sequence dependent setup time between operations.

9. Setup for a job cannot begin until the job is available to the current work

center and the desired machine in the work center is idle.

10. All data including processing times and setup times are deterministic.

11. There are no precedence constraints among operations of different jobs.

12. Neither release times nor due dates are specified.

13. There are two cases, the first is that all machine can process all the jobs (total

flexibility), and the other is that all machines can not process all the jobs

(partial flexibility).

The significance of this thesis can be summarized as follows:

1. This thesis takes into consideration flexible job shop problems including

identical or nonidentical parallel machines and sequence-dependent setup

times. These characteristics usually occur in real world production

environments.

2. Genetic Algorithm is used for solving the flexible job shop scheduling

problem with the sequence dependent setup time.

3. Test problems of different sizes have been solved and regression analysis has

been used for showing the effects of makespan calculation, initial population

generation, selection and mutation methods on the genetic algorithm

performance.

3

1.2 Thesis Outline

In Chapter Two, the classification of problem is given. In Chapter Three, the

literature review of flexible job shop scheduling problems is given. In Chapter Four,

basic information about genetic algorithm is given, In Chapter Five, the design and

the implementation issues of genetic algorithm for flexible job shop scheduling

problems with sequence dependent setup time are discussed. In Chapter Six,

conclusions and the future research is given.

4

CHAPTER TWO

SCHEDULING PROBLEMS

2.1 Introduction

Scheduling is a decision making process that is used on a regular basis in many

manufacturing and services industries. It deals with the allocation of resources to

tasks over given time periods, and its goal is to optimize one or more objectives

(Pinedo, 2002).

Baker (1992) categorizes the major scheduling models by specifying the resource

configuration and the nature of tasks. The resources and tasks in an organization can

take many different forms. The resources may be machines and the tasks may be

operations in a production process.

Pinedo (2002) describes the scheduling problems according to four types of

information:

1. The jobs and operations to be processed.

2. The number and types of machines that the shop comprises.

3. Disciplines that restrict the manner in which assignments can be made.

4. The criteria by which a schedule will be evaluated.

The nature of job arrivals provides the distinction between static and dynamic

problems. If a set of jobs available for scheduling does not change over time, the

system is called as static, in contrast to cases in which new jobs appear over time,

where the system is called as dynamic. Traditionally, static models have proven to be

more tractable than dynamic models, and have been studied more extensively (Baker,

1992).

4

5

Two kinds of feasibility constraints are commonly found in scheduling problems.

First, there are limits on the capacity of machines, and the second, there are

technological restrictions on the order in which some jobs can be performed

Scheduling functions rely on mathematical techniques and heuristic methods to

allocate limited resources to the activities that must be done. This allocation of

resources must be done in such a way that the company optimizes its objectives and

achieves its goals. Objectives may have many different forms, such as minimizing

the time needed for completing all activities, minimizing the number of activities that

are completed after the committed due dates and so on (Pinedo, 2002).

2.2 Notation of Scheduling Problems

Scheduling problem descriptions include number of abbreviations and symbols

that represent characteristics and functions or variables. Graham (1979) classifies

machine scheduling problems by a standard three-field notation. This notation is

represented by  |  |  which is generic notation of scheduling problems. First field

“” is used to describe the machine environment. This field allows for the

identification of single machine, various types of parallel machines, flow shop, job

shop, flexible job shop, and flexible flow shop problems. The second field “” is

used for describing the task and resource characteristics. This field includes

parameter settings for characterizing the possibility for release dates, precedence

constraints, sequence dependent setup times, preemptions, storage / waiting

constraints, machine eligibility and recirculation. The third field “” is used for

denoting the performance measures. This field includes completion time, flow time,

tardiness and earliness, etc.

: Machine Configuration

(1) Single-Machine

(mP) Indentical Parallel-Machine

(mR) Unrelated Parallel Machine

6

(mF) Flow Shop

(mJ) Job Shop

(cFF) Flexible Flow Shop

(cFJ) Flexible Job Shop

: Constraints

(jr) Release dates

(prec) Precedence constraints

(kjs ,) Sequence dependent setup times

(prmp) Preemptions (resume or repeat)

(block) Storage / waiting constraints

(jM) Machine eligibility

(circ) Recirculation

: Objectives and Performance Measures

1. Completion time

2. Flow time

3. Tardiness

4. Earliness

5. Lateness

6. Throughput

7. Late/tardy jobs

2.2.1 Machine Environment ()

The possible machine environments are single machine, parallel machine, flow

shop and job shop models.

7

2.2.1.1 Single Machine

In this case, there is only one machine (= 1). The basic single machine model is

fundamental in the study of sequencing (Pinedo, 2002). The simplest sequencing

problem is the one in which there is a single resource or machine. Single machine

models are also important in decomposition methods, when scheduling problems in

more complicated machine environments are divided into a number of smaller single

machine scheduling problems.

2.2.1.2 Parallel Machine

Parallel machine model is a generalization of the single machine model. Many

production environments consist of several stages or workcenters, each with a

number of machines in parallel. The machines at a workcenter may be identical or

may not be exactly identical (Pinedo, 2002).

Identical Parallel Machines (= P): In this case, m identical machines are in the

system and any job can run on any machine, each having the same processing time.

Unrelated Parallel Machines ( = R): In this case, m identical machines are in

the system and any job can run on any machine, each having the different processing

time.

2.2.1.3 Flow Shop

In a flow shop environment (F), all routes of all jobs are identical and all

jobs visit the same machines in the same sequence. The job sequence may vary from

machine to machine since jobs may be resequenced between the machines. In the

classical flow shop problem, processing times are sequence-independent, fixed, and

known in advance. Each machine is continuously available from time zero, and

operations are processed without preemption (Pinedo, 2002).

8

In the flow shop, each job needs to visit the machines in the same fixed order,

which is assumed to be  m,...,2,1 . A machine after the completion of current job

chooses to process any job in its queue. In many applications, the machines also need

to process the jobs in the order that the jobs enter in the queue. Such schedules are

called as first in first out (FIFO) schedules and the flow shop is referred to as the

permutation flow shop (PFSP).

2.2.1.4 Job Shop

The job shop scheduling problem (J) is to determine a schedule of jobs that

have prespecified operation sequences in a multi-machine environment. In the

classical job shop scheduling problem, n jobs are processed for completion on m

unrelated machines. For each job, technology constraints specify a complete, distinct

routing which is fixed and known in advance. Processing times are sequence-

independent, fixed, and known in advance. Each machine is continuously available

from time zero, and operations are processed without preemption (Pinedo, 2002).

The general JSSP is strongly NP-hard. In order to match today’s market

requirements, manufacturing systems must become more flexible and efficient. To

achieve these objectives, the systems need not only automated and flexible machines,

but also flexible scheduling systems. The flexible job shop scheduling problem

extends JSSP by assuming that, for each given operation, there is at least one

instance of the machine type necessary to perform it.

2.2.1.5 Flexible Flow Shop

Flexible flow shop environment (= cFF) is a generalization of the flow shop. It

consists of a number of stages in series with a number of machines in parallel at each

step. The routes of all jobs are identical and all jobs visit the same workcenters in the

same sequence. The job sequence may vary from machine to machine since jobs may

be resequenced between the machines.

9

In the flow shop, each job needs to visit the machines in the same fixed order, but

in the flexible flow shop, each job needs to visit the any machines which are parallel

in the same fixed order. In the classical flexible flow shop problem, processing times

are sequence-independent, fixed, and known in advance. Each machine is

continuously available from time zero, and operations are processed without

preemption.

2.2.1.6 Flexible Job Shop

A generalization of the job shop is the flexible job shops with workcenters that

have multiple machines in parallel (= cFJ). The flexible job shop scheduling

problem could be formulated as follows. There is a set of n jobs  nJJJ ,...,1 to be

processed. Each job iJ consists of a predetermined sequence of operations. Each job

iJ may have different number of operation. There is a set of m machines M = { 1M ,

. . , mM }. For each operation jiO , , there is a set of alternative machines set jiM , for

performing it. Then each job could be processed more than once on the same

machine. The processing time of each operation on each machine is predefined. All

jobs are released at time 0. All machines are available at time 0, the preemption is

not allowed, and each machine could perform at most one operation at any time.

There are no precedence constraints among operations of different jobs.

2.2.2 Side Constraints ()

The side constraints capture various restrictions on the scheduling problem. These

are release dates, precedence constraints, setup times, preemption, storage / waiting

constraints, machine eligibility, and recirculation.

Release Dates (= jr): The release date jr of job j is also known as the ready date.

It is the time the job arrives at the system, the earliest time at which job j can start its

processing.

10

Precedence Constraints (= prec): In scheduling problems, a job often can start

only after a given set of other jobs has been completed. Such constraints can be

described by a precedence constraints graph.

Setup Times ( = kjs ,): A time period required for preparing a machine. For

example, probably the machine needs to be cooled down after the job j before

starting the job k. Unless otherwise specified, these set-up times are assumed to be 0.

Preemption (= prmp): Sometimes, during the execution of a job, an event

forcing the scheduler to interrupt the processing of that job occurs in order to make

the machine available for another job.

Storage and waiting constraints (=block): In many production systems, the

amount of the space available for Work-In-Process (WIP) storage is limited. This

puts an upper bound on the number of jobs waiting for a machine. In job shops, this

can cause blocking. Suppose the storage space between two successive machines is

limited. When the buffer is full, the upstream machine cannot release a job that has

been completed into the buffer. Instead, that job has completed its processing and

thus prevents that machine from processing another job.

Machine eligibility constraints (= jM): In a parallel machine environment, it

may often be the case that the job j can not be assigned to just any of the machines

available; it can only go on a machine that belongs to a specific subset jM . This may

occur when the m machines in parallel are not exactly identical.

Recirculation (=circ): When some jobs visit a machine group more than once,

this is called as recirculation.

11

2.2.3 Objective ()

The objective function decides how the scheduling algorithm is designed.

However, there is a large list of possible objective functions depending on the

application. The classical objective functions are either of “minsum” or “minmax”

type. Oyetunji (Oyetunji, 2009) addressed mathematical expressions for about 29

distinct scheduling objectives.

 2.2.3.1 Performance Measures Based on Completion Time

The completion time of the job iJ is the time at which the processing of the job

iJ finishes. For a multi operation job, it is the time the last operation of the job iJ

finished. Oyetunji’s (Oyetunji, 2009) classification of scheduling criteria based on

completion time of jobs are as follows:

The total completion time is the sum of all the completion times of the jobs. A

common problem is to minimize the total completion time.

Total completion time(totC) =


n

i
iC

1

 (2.1)

Total weighted completion time is the sum of all the completion times multiplied

by relative weights of the jobs. A common problem is to minimize the total weighted

completion time.

Total weighted completion time (totwC) =


n

i
iiCw

1

 (2.2)

Average completion time gives the average time required for completing each job.

A common problem is to minimize the average completion time.

12

Average completion time (avgC) = 


n

i
iC

n 1

1
 (2.3)

Average weighted completion time is the total weighted completion time divided

by the number of jobs. Since the number of jobs in any particular problem instance is

constant, the total weighted completion time criterion is equivalent to the total

weighted completion time criterion. A common problem involves the minimization

of the total weighted completion time.

Average weighted completion time(avgwC) = 


n

i
iiCw

n 1

1
 (2.4)

The maximum completion time also called as makespan is the completion time of

the last job. A common problem of interest is to minimize maxC , or to minimize the

completion time of the last job leaving the system.

Maximum completion time (maxC) = max (1C , 2C , …, nC) (2.5)

2.2.3.2 Performance Measures Based on Flow Time

The flow time of the job iJ is the time that the job iJ spends in the workshop. It

is the time interval between the time during which the job is released to the shop and

the time during which the processing of the job is completed. Oyetunji’s (Oyetunji,

2009) classification of scheduling criteria based on completion time of jobs are as

follows:

The total flow time is the sum of all flow times of the jobs. A common problem is

to minimize the total flow time.

Total flow time(totF) = 



n

i
İ

n

i
ii

n

i
i

n

i
i rCrCF

1111

)((2.6)

13

Total weighted flow time is the sum of all the flow times multiplied by relative

weights of the jobs. A common problem is to minimize the total weighted flow time.

Total weighted flow time(totWF) = 



n

i
ii

n

i
ii

n

i
ii rwCwFw

111

 (2.7)

The average flow time gives the average time spent by each job in the shop. A

common problem is to minimize the average flow time. The average flow time

criterion is equivalent to the total flow time criterion.

Average flow time(avgF) = 



n

i
i

n

i
i

n

i
i r

n
C

n
F

n 111

111
 (2.8)

Average weighted flow time is considered as an usual problem.

Average weighted flow time(avgwF) = 



n

i
ii

n

i
ii

n

i
ii rw

n
Cw

n
Fw

n 111

111
 (2.9)

The maximum flow time is the longest one of the flow times of the jobs. A

common problem of interest is to minimize maxF .

Maximum flow time (maxF) = max (1F , 2F , …, nF) (2.10)

maxF = max{(1C - 1r), (2C - 2r), …, (nC - nr)} (2.11)

2.2.3.3 Performance Measures Based on Lateness

This is the difference between the completion time and the due date which is the

expected delivery time of the job. Oyetunji’s (Oyetunji, 2009) classification of

scheduling criteria based on completion time of jobs are as follows:

14

The total lateness is the sum of all latenesses of the jobs. A common problem is to

minimize the total lateness.

Total lateness(totL) = 



n

i
i

n

i
ii

n

i
i

n

i
i dCdCL

1111

)((2.12)

Total weighted lateness is the sum of all latenesses multiplied by relative weights

of the jobs. A common problem is to minimize the total weighted lateness.

Total weighted lateness(totwL) = 



n

i
ii

n

i
ii

n

i
ii dw

n
Cw

n
Lw

111

11
 (2.13)

The average lateness is total lateness divided by the number of jobs. Therefore,

minimizing total lateness also minimizes the average lateness. A common problem is

to minimize the average lateness.

Average lateness(avgL) = 



n

i
i

n

i
i

n

i
i d

n
C

n
L

n 111

111
 (2.14)

The average weighted lateness is total weighted lateness divided by the number of

jobs. Also, minimizing total weighted lateness also minimizes the average weighted

lateness. A common problem is to minimize the average weighted lateness.

Average weighted lateness(avgwL) = 



n

i
ii

n

i
ii

n

i
ii dw

n
Cw

n
Lw

n 111

111
 (2.15)

The maximum lateness (maxL) is the longest lateness of the jobs. A common

problem of interest is to minimize maxL .

Maximum lateness (maxL) = max (1L , 2L , …, nL) (2.16)

maxL = max{(1C - 1d), (2C - 2d), …, (nn dC )} (2.17)

15

2.2.3.4 Performance Measures Based on Number of Late/Tardy Jobs

A job is said to be late or tardy if it is completed after its due date. Oyetunji’s

(Oyetunji, 2009) classification of scheduling criteria based on completion time of the

jobs are as follows:

Let iU =


 

otherwise

dC ii

,0

,1
 ni ,..,1

Number of tardy jobs (NT) =


n

i
iU

1

The number of tardy jobs measures the number of jobs that are completed after

their due dates. Typical problem of interest is to minimize the number of tardy jobs.

Minimizing number of tardy jobs criterion is equivalent to maximizing number of

early jobs criterion.

Average number of tardy jobs (avgNT) =The average number of tardy jobs is the

number of tardy jobs divided by the number of jobs. Typical problem of interest is to

minimize the average number of tardy jobs. Minimizing the average number of tardy

jobs criterion is equivalent to maximizing the average number of early jobs criterion.

2.2.3.5 Performance Measures Based on Tardiness

Tardiness is similar to the lateness except that it carries only positive values.

Whenever a job is completed before its due dates, its lateness is negative while its

tardiness is zero. Oyetunji’s (Oyetunji, 2009) classification of scheduling criteria

based on completion time of jobs are as follows:

The total tardiness (totT) is the sum of all the tardiness of the jobs. A common

problem is to minimize the total tardiness.

Total tardiness (totT) =)}](,0{[max
11

ii

n

i

n

i
i dCT  



 (2.18)

16

This is the sum of all the tardiness multiplied by the relative weights of the jobs.

A common problem is to minimize the total weighted tardiness.

Total weighted tardiness (totwT) =)}](,0{[max
11

ii

n

i
i

n

i
ii dCwTw  



 (2.19)

The average tardiness is total tardiness divided by the number of jobs. Therefore,

minimizing total tardiness criterion also minimizes the average tardiness criterion. A

common problem is to minimize the average tardiness.

Average tardiness (avgT) =)}](,0{[max
11

11
ii

n

i

n

i
i dC

n
T

n
 



 (2.20)

The average weighted tardiness is the total weighted tardiness divided by the

number of the jobs. Minimizing total weighted tardiness also minimizes the average

weighted tardiness. A common problem is to minimize the average weighted

tardiness.

Average weighted tardiness (avgwT) =)}](,0{[max
11

11
ii

n

i
i

n

i
ii dCw

n
Tw

n
 



(2.21)

The maximum tardiness is the longest tardiness of the jobs. A common problem

of interest is to minimize maxT .

Maximum tardiness(maxT) = max (1T , 2T , …, nT) (2.22)

maxT = max{0, (1C - 1d), (2C - 2d), …, (nC - nd)} (2.23)

2.2.3.6 Performance Measures Based on Earliness

Earliness is the opposite of lateness; hence, whenever the lateness is negative, the

earliness is positive, and whenever the lateness is positive, the earliness is zero.

17

Oyetunji’s (Oyetunji, 2009) classification of scheduling criteria based on completion

time of the jobs are as follows:

The total earliness (totE) is the sum of all earlinesses of the jobs. A common

problem is to maximize the total earliness.

Total earliness(totE) = }]0),{([max
11

ii

n

i

n

i
i CdE  



 (2.24)

Total weighted earliness is the sum of all earliness multiplied by the relative

weights of the jobs. A common problem is to maximize the total weighted earliness.

Total weighted earliness (totwE) = }]0),{([max
11

ii

n

i
i

n

i
ii CdwTw  



 (2.25)

The average earliness is total earliness divided by the number of jobs. A common

problem is to maximize the average earliness. Therefore, maximizing total earliness

criterion also maximizes the average earliness criterion.

Average earliness (avgE) = }]0),{([max
11

11
ii

n

i

n

i
i Cd

n
T

n
 



 (2.26)

The average weighted earliness is the total weighted earliness divided by the

number of jobs. A common problem is to maximize the average weighted earliness.

Maximizing the total weighted earliness also maximizes the average weighted

earliness.

Average weighted earliness (avgwE) = }]0),{([max
11

11
ii

n

i
i

n

i
ii Cdw

n
Tw

n
 



(2.27)

18

The maximum earliness (maxE) is the longest earliness of the jobs. A common

problem of interest is to maximize maxE .

Maximum earliness (maxE) = max (1E , 2E , …, nE) (2.28)

maxE = max{(11 Cd ), (22 Cd ), …, (nn Cd ),0} (2.29)

2.3 General Assumption of Scheduling Problems

To simplify the complexity of manufacturing and service environments, most of

the scheduling problems are solved under assumptions associated with job

characteristics and objective functions.

The following list gives a set of these assumptions and points out when some of

them are inadequate to represent a realistic scheduling problem (Pinedo,2002)

Batches of jobs are always treated as a single job: Although this assumption may

be appropriate in many situations, in case of large lots, it may produce poor quality

schedules. The classical machine scheduling formulation does not allow starting to

process on succeeding machine until all the parts in the lot are processed on the

preceding machine. However, a better schedule may be obtained by transferring, a

part of a batch to the preceding machine before the completion of the whole batch.

Preemption is not allowed: In most scheduling problems, preemption occurs

when an operation is stopped and resumed at a later time. For example, a high

priority job enters in the system, a machine suspends to process a low priority job

and start processing an high priority job. To simplify the complexity, it is assumed

that the preemption is not allowed

Each job visits all machines exactly once: In most of the job shops, the

preemption may occur when an operation is stopped, due to the reason such as arrival

19

at a high prpority job. For example, if a high priority job enters in the system, a

machine suspends to process low priority job and start processing high priority job.

To simplify this complexity, it is assumed that preemption is not allowed.

Machines are always available: In practice, machines may not be available

because of maintenance and failures. To overcome the uncertainty, machines are

assumed to be available all the time.

Job ready times are all known in advance: This is the characteristic that

distinguishes deterministic and stochastic problems. In a deterministic environment,

all jobs are ready for processing at time zero, and the jobs are ready for processing at

different times in stochastic environment.

The problem is purely deterministic: In practice, scheduling problems are

stochastic in nature. Machine failures, unpredictable processing times caused the

uncertainty, so the scheduling problems are mostly assumed deterministic.

Machines are the only resources modelled: To simplify the complexity of

scheduling problems, it is assumed that machines are the only resources that are

modelled, but in practice, it may be necessary to model additional resources such as

transportation devices, tools or skilled labor.

2.4 Summary

Scheduling problems involve finding optimal schedule under various objectives,

different machine environments, and characteristics of the jobs. A detailed

description of machine scheduling and objective functions were presented in this

chapter. In this thesis, flexible job shop scheduling problem with sequence dependent

setup time with completion time based objective is studied.

20

CHAPTER THREE

FLEXIBLE JOB SHOP SCHEDULING

3.1 Introduction

One of the most necessary subjects in planning and managing processes of

manufacturing environments is the scheduling of operations (Pinedo, 2002). The Job-

Shop Scheduling Problem (JSSP) is the most complicated and typical problem of all

kinds of production scheduling problems (Chen, 2006). A classical job shop, denoted

Jm || Cmax by using the notation presented in Pinedo (Pinedo, 2002), refers to a job

shop with a single machine in each workcenter and a makespan (maxC) as the

scheduling objective. JSSP is one of the hardest combinatorial optimization

problems. It belongs to the class of non-deterministics polynomial-time hard (NP-

hard) problems, consequently there are no known algorithms guaranteeing to give an

optimal solution and run in polynomial time.

JSSP considers a set of jobs to be processed on a set of machines. Each job is

defined by an ordered set of operations and each operation is assigned to a machine

with a predefined constant processing times. The order of the operations within the

jobs and its corresponding machines are fixed a priori and independently from job to

job. For solving this problem, we need to find a sequence of operations on each

machine respecting some constraints and optimising some objective function. Many

different types of objectives are important in manufacturing settings. In practice, the

overall objective is often a composite of several basic objectives. The most important

ones of these basic objectives are completion time, flow time, lateness, tardiness, and

earliness.

Flexible Job-shop Scheduling Problem (FJSSP) which denoted cFJ || maxC is a

generalization of the job shop and the parallel machine environment, which provides

a closer approximation to a wide range of real manufacturing systems (Cheng, Gen

and Tsujimura, 2009).

21

FJSSP can be decomposed into two sub-problems; assigning the operations to

machines (the routing problem) and sequencing the operations on the machines (the

sequencing problem) in order to minimize the performance measures. Then, FJSSP

becomes more difficult than the classical JSSP because it contains an additional

problem such as assigning operations to machines. FJSSP is NP-hard since it is an

extension of the JSSP (Gao,Sun and Gen 2008).

3.2 Solution Approaches for Scheduling Problems

There are many more scheduling problems that are intrinsically very hard. These

problems are referred to as NP-hard. They are typically combinatorial problems that

cannot be formulated as linear programs and there are no simple rules or algorithms

that yield optimal solutions in a limited amount of computer time. There are various

classes of methods that are useful for obtaining optimal solutions for such NP-hard

problems. Solutions approaches can be classified as exact solution approaches and

heuristic approaches.

Developing an exact method for determining an optimal schedule is one of the

current research areas in job shop scheduling. Optimization techniques are capable of

finding an optimal solution for scheduling a small number of jobs and machines

within a reasonable amount of time. Moreover there are methods that can be applied

to these optimization techniques for improving solution speed and solving larger

problem sizes. In scheduling more complex job shop problems, optimization

techniques may only be able to solve a very small problem. However, developing an

optimization technique may still lead to the creation of an approximation algorithm

for solving larger problem sizes. A number of researchers develop an optimization

technique and then use it in a preliminary test for their proposed heuristic approaches

for large-sized problems (Pinedo, 2002).

22

3.2.1 Exact Optimisation Methods

Exact optimisation methods are classified into two groups. First one is Dynamic

Programming which solve complex problems by breaking them down into simpler

subproblems. Second one is Integer Programming which is a mathematical program

in which some or all of the variables are restricted to be integers.

3.2.1.1 Dynamic Programming

Dynamic Programming can be applied to problems that are solvable in

polynomial time as well as problems that are NP-Hard. Dynamic Programming is a

method for solving complex problems by breaking them down into simpler steps

until it finds a solution for the original problem.

Dynamic programming enumerates in all possible solutions. The problem is

divided into a number of stages, and at each stage a decision is required which

impacts on the decisions to be made in larger stages (Pinedo, 2002).

3.2.1.2 Integer Programming

When a planning and scheduling problem can be formulated as an Integer

Program, the best known approaches are branch and bound, cutting plane and hybrid

methods.

The branch and bound method consists of two fundamental procedures:

branching and bounding. Branching is the procedure of partitioning a large problem

into two or more sub-problems usually and mutually exclusive. Furthermore, the sub-

problems can be partitioned in a similar way. Bounding calculates a lower bound on

the optimal solution value for each sub-problem generated in the branching process.

Cutting plane methods focuses on the linear program relaxation of the integer

program. These methods generate additional linear constraints that must be satisfied

23

so that the variables become integers. Hybrid methods typically combine ideas from

various different approaches (Pinedo, 2002).

3.2.2 Heuristic Approaches

Scheduling problems belong to a broad class of combinatorial optimization

problems. To solve these problems, one tends to use optimization algorithms which

certainly always find optimal solutions. However, not for all optimization problems,

polynomial time optimization algorithms can be constructed. This is because of the

fact that some of the problems are NP-hard. In such cases one often uses heuristic

algorithms which tend towards but do not guarantee the finding of optimal solutions

for any instance of an optimization problem (Cheng et al., 2009).

3.2.2.1 Dispatching Rules

 A dispatching rule prioritizes all the jobs that are waiting for processing on a

machine. Dispatching rules can be classified in various ways. A distinction can be

made between static and dynamic rules. Static rules are not time dependent. They are

just a function of the job or the machine data. Dynamic rules are time dependent. A

second way of classifying dispatching rules is made according to the information

they are based upon. A local rule uses only information pertaining to either the queue

where the job is waiting or the machine where the job is queued. A global rule may

use information pertaining to other machines, such as processing time of the job on

the next machine on its route or the current queue length at that machine (Pinedo,

2002).

3.2.2.2 Local Search

Important classes of improvement type algorithms are the local search procedures.

A local search procedure does not guarantee an optimal solution. It usually attempts

to find a better schedule in the neighbourhood of the current one. Local search

algorithms may be run several times on the same problem instance. At each iteration,

24

a local search procedure performs a search within the neighbourhood and evaluates

the various neighbouring solutions.

Local search in the simplest form, the hill-climbing, stops as soon it counters a

local optimum. NP-Hard problems often possess may local optima, even this remedy

may not be potent enough to yield satisfactory solutions. In view of this difficulty,

several extension of local search has been proposed, which offer the possibility to

escape local optima by accepting occasional deteriorations of the objective function.

In what follows we discuss successful approaches based on the related ideas, namely

simulated annealing and tabu search. These properties are then used to construct a

new population which contains a better solution than the previous one. This

technique is known as genetic algorithm (Pinedo, 2002).

3.2.2.2.1 Tabu Search (TS). Tabu search uses a local search procedure to

iteratively move from a solution to another solution in the neighbourhood, until some

stopping criterion has been satisfied. Tabu search for scheduling problems starts

from an initial solution which can be obtained by various methods such as

dispatching rules, insertion methods, and random methods. In a transition from

current solution to a new solution a neighborhood structure is defined in order to

create a subset of possible neighbors to be chosen for performing a move. The best

neighbor, which is not in the tabu list or satisfies the aspiration criterion if it is in the

tabu list, is selected based on the neighborhood structure, and then the move is

performed, which leads to a new solution. The selected neighbor is added into the

tabu list which indicates a short-term memory for the recent move history. The

aspiration criterion is used when the best neighbor is in tabu list but performing a

forbidden move may lead to a better solution. The stopping criterion can be defined

in two ways: stop the search when reaching a lower bound, or stop the search after

completing a maximum number of iterations (Glover, 1990)

3.2.2.2.2 Genetic Algorithm (GA). The genetic algorithm is a search heuristic that

mimics the process of natural evolution. This heuristic is routinely used to generate

useful solutions for optimization and search problems. Genetic algorithms belong to

25

the larger class of evolutionary algorithms (EA), which generate solutions to

optimization problems using techniques inspired by natural evolution, such as

inheritance, mutation, selection, and crossover (Pinedo, 2002).

3.2.2.2.3 Shifting Bottleneck Procedure (SB). The idea of the SB procedure is to

schedule each machine in a job shop optimally under the condition that disjunctive

arc directions in each optimal schedule of every single machine concur with an

optimal job shop schedule. The general steps of SB consist of sub-problem

identification and optimization, bottleneck machine determination, sequencing the

bottleneck machine, and re-optimization of each scheduled machine. These steps are

repeated until all the machines are scheduled. The sub-problem identification and

optimization intends to find an optimal sequence of jobs in each unscheduled

machine. Each sub-problem consists of a number of operations that are subject to

release dates and due dates that are determined by sequences of operations on other

machines. The sequence of operations on a given machine is determined by

minimizing the maximum lateness in the associated sub-problem. Then the

bottleneck machine is the machine which has the highest maximum lateness from

previous step. Next, disjunctive arcs with regard to the optimal sequence of jobs in

the bottleneck machine are inserted into the disjunctive graph that represents the job

shop problem. In the re-optimization step, for each scheduled machine, a job

sequence in a particular machine is redefined by finding a new optimal solution of

this machine sub-problem, while keeping job sequences fixed in the remaining

machines. This re-optimization method is repeated for all scheduled machines

(Pinedo, 2002)

26

3.2.2.2.4 Simulating Annealing (SA). Simulated Annealing procedure is a search

process originating from the fields of material science and physics. It is a

probabilistic method for finding the global minimum that may possess several local

minima. The simulating annealing procedure goes through a number of iterations.

The algorithm, in its search for an optimal schedule, moves from one schedule to

another. At iteration, a search for a new schedule is conducted within the

neighbourhood (Pinedo,2002)

3.3 Literature Review

This thesis addresses the problem of scheduling flexible job shops with sequence

dependent setup time with makespan objective (cFJ | kjs , | maxC). Besides

makespan; setup times and workload are examined. Genetic algorithm has been

applied for solving the problem. In this section, scheduling studies in flexible job

shop scheduling problems are focused on. Sequence dependent setup times studies

are also included, so this thesis deals with sequence dependent flexible job shop

scheduling problems.

Bruker and Schlie (1990) were among the first to address flexible job shop

scheduling problem. They developed a polynomial algorithm for solving the flexible

job-shop scheduling problem with two jobs.

In order to solve the realistic case with more than two jobs, local search

algorithms such as TS, GA, SB, SA are developed.

 Brandimarte (1993) is the first researcher who applies TS to flexible job shops

scheduling problem with makespan objective (cFJ || maxC) and the first researcher

to use the decomposition for the FJSP. He solved the routing sub-problem by using

some existing dispatching rules and then focused on the scheduling sub-problem,

which is solved by using a tabu search heuristic.

27

Hurink, Jurisch and Thole (1994) proposed a tabu search heuristic to flexible job

shop scheduling problem with makespan objective (cFJ || maxC) in which

reassignment and rescheduling are considered as two different types of moves. Initial

solutions are calculated by using a fast heuristic based on insertion techniques and

beam search. The tabu search algorithms yield excellent results for almost all

problems.

Dauzere-Peres and Paulli (1997) defined a new neighbourhood structure for

flexible job shop scheduling problem with makespan objective (cFJ || maxC) where

there was no distinction between reassigning and re-sequencing an operation, and

proposed a TS algorithm.

Bruker and Neyer(1998) proposed the best insertion of an operation in

neighbourhood function to solve the FJSP with a makespan objective (cFJ || maxC),

but the algorithm they suggest is too time consuming. In order to reduce the

computational effort, they propose a faster algorithm that guarantees only the

feasibility of an insertion.

Valls, Perez and Quintanilla (1998) presented the application of TS in a

generalized job shop with parallel machines, job batches, setup times, and release

and due dates (FJc | jr , kjs , ,due-date| maxC). This problem deals with a makespan

minimization by treating the due dates as constraints. The proposed TS have two

aspects. First, the core of the heuristic is a tabu threshold algorithm which uses a set

of moves aimed at resolving violated constraints. Second, the TS algorithm

supplements the first algorithm with two diversification strategies which depends on

the state of the search. The overall proposed algorithms seem very complicated but

overall performance is superior as being able to obtain known optimal solution over

95% of 190 randomly generated problems in small run time on 66 MHz 486DX2

processor (for instance 67 seconds for 100 jobs–17 machines including parallel

machines).

28

Mastrolilli and Gambardella (2000) improved Dauzere-Peres’ tabu search

techniques and presented two neighbourhood functions. Their TS is the well-known

efficient approach for solving FJSP with makespan objective (cFJ || maxC). Their

approach is compared with other TS heuristics developed by Brandimarte (1993),

Hurink et al. (1994), Barnes and Chambers (1996), Dauzere, Perez and Paulli

(1997), and Brucker and Neyer (1998). They carried out experiments on a 266 MHz

Pentium over 178 benchmark problems obtained from the other comparative

heuristics. The results show that the Mastrolilli and Gambardella heuristic is able to

find 120 new upper bounds (of the 178 problems) and 77 of them are optimal

solutions.

Fattahi, Mehrabad and Jolai (2007) presents a tabu search algorithm that solves

the flexible job shop scheduling problem with sequence dependent setup times to

minimize the makespan time (cFJ | kjs , | maxC). The proposed tabu search algorithm

is composed of two parts. The first part is a procedure that searches for the best

sequence of job operations, and the second part is a procedure that finds the best

choice of machine alternatives. Results of the algorithm are compared with the

optimal solution obtained by using mathematical model. Computational results

indicate that the proposed algorithm can produce optimal solutions in a short

computational time for small and medium sized problems.

Chen, Ihlow and Lehmann (1999) developed a GA for a flexible job shop

scheduling problem to minimize the makespan (cFJ || maxC). In the representation,

encoding each individual requires two chromosomes. The first chromosome defines

the routing policy and the second chromosome defines the sequence of the operations

on each identical parallel machine. In reproduction, single-point and two-point

crossovers are applied in the first chromosome. For the second chromosome, two

crossovers called as “order-preserving single point crossover” and “order-preserving

two-point crossover” are developed. The GA is tested in a SPARC-workstation on

three instances. The results show that the instances with 10 jobs, 10 machines and 32

total operations require an average run time of approximately 16 minutes which is

considered to be high with respect to the number of operations.

29

Wang and Brunn (2000) also developed a GA for a flexible job shop scheduling

problem to minimize the makespan (cFJ || maxC). A chromosome consists of m sub-

chromosomes where m is the number of machines in the shops. Each sub-

chromosome, consisting of n genes where n is the number of jobs, represents the job

numbers and their corresponding processing routes. A crossover operator called

“sequence-extracting crossover” is developed. Computational results show that the

GA can find the optimal solution when solving a 6 job–6 machine benchmark

problem within about two minutes running time. However, it is unclear that how the

GA performs in larger size problems with identical parallel machines in work

centers.

Kacem, Hammadi, and Borne (2003) proposed a genetic algorithm controlled by

the assigned model which is generated by the Approach of Localization (AL) to

solve FJSP with makespan and workload objectives (cFJ || maxC , workload).

Chromosome representation combines both routing and sequencing information.

Dispatching rules are then applied for sequencing the operations. Once this initial

population is found, they apply crossover and mutation operators to jointly modify

assignments and sequences, producing better individual ones.

Pezzella, Morganti and Ciaschetti (2008) adopted many of the choices of Kacem

et al. (2003) and presented a genetic algorithm (GA) in which uses a mix of different

strategies for generating the initial population, selecting individuals. The initial

population is generated according to Approach by Localization. This approach takes

into account both the processing times and the workload of the machines, i.e., the

sum of the processing times of the operations assigned to each machine. The

procedure consists of finding the machine with the minimum processing time, fixing

that assignment, and then adding this time to every subsequent entry in the same

column (machine workload update). Since this approach is strongly dependent on the

order in which operations and machines are given in the table, Pezella et al. slightly

modify it in two ways: The first one is to search for the global minimum in the

processing time table. The second one is to permute the jobs and the machines

randomly in the table.

30

Gao, Gen and Sun (2008) studied the FJSP with a multi-objective approach. They

developed a hybrid genetic algorithm (hGA) for this problem with makespan and

workload objective (cFJ || maxC , workload). Their algorithm is the well-known

competitive genetic algorithm for solving the FJSP.

 Gen, Gao and Lin (2009) developed a new approach hybridizing genetic

algorithm with shifting bottleneck to fully exploit the global search of genetic

algorithm and the local search of shifting bottleneck for solving multi-objective

flexible job shop scheduling problem with makespan and workload objective (cFJ

|| maxC , workload). The genetic algorithm uses two vectors to represent each solution

candidate of the FJSP. Phenotype-based crossover and mutation operators are

proposed to adapt to the special chromosome structures and the characteristics of the

problem. The shifting bottleneck works over two kinds of effective neighbourhood,

which use interchange of operation sequences and assignment of new machines for

operations on the critical path. In order to strengthen the search ability, the

neighbourhood structure can be dynamically adjusted in the local search procedure.

The performance of the proposed method is analyzed by numerical experiments on

three representative problems.

Defersha and Chen (2009) modified Kacem’s approach by taking into account

setup times and they proposed a parallel genetic algorithm to solve FJSP with

sequence dependent setup time (cFJ | kjs , ,batch| maxC). They developed a

comprehensive model for FJSP by considering several factors in an integrated

manner and assume that the jobs have sequence dependent setup time. The number

of researches considering this issue in FJSP is limited. The model also allows a given

setup to be either attached or detached depending on the actual requirements. Other

important factors incorporated in the proposed model are machine release date. The

last incorporated factor is the concept of time lag. In order to solve this NP-hard

problem efficiently, they proposed a parallel genetic algorithm (PGA) implemented

by using “island” model. In this parallelization model, subpopulations are separately

31

evolved in several processors and this subpopulations exchange individuals

periodically. The PGA was executed on a high-performance computing environment

composed of multiple interconnected workstations. The developed model and

solution procedure were extensively tested with medium and large problem

instances. The results obtained by using the PGA are very promising.

Fattahi and Fallahi (2010) used Kacem’s approach under dynamic flexible job

shop conditions (cFJ || maxC , workload). In this research, a mathematical model for

the dynamic flexible job shop scheduling problem and a meta-heuristic algorithm

based on GA is developed. The proposed algorithm improves the efficiency and

stability of schedules. Numerical experiments were used for evaluating the

performance and the effectiveness of the proposed algorithm. It is concluded that the

bi-objective model can improve the efficiency and stability of schedules based on a

real example from a part making industry. The experimental results show that the

proposed algorithm is capable of producing the optimal solutions for small sized

problems. Also the results of the proposed algorithm are between the upper and the

lower bounds for medium sized problems. These upper and lower bounds of are

computed by the branch and bound method. So, the proposed algorithm is capable of

reaching near optimal solutions for medium sized problems. The standard deviation

of the solutions are equal to zero for small sized problems which show the high

quality of the algorithm on small sized problems. Nevertheless, the standard

deviation of the solutions is increased for the medium and large sized problems. So

the convergence of the proposed algorithm is decreased for large sized problems.

Also the genetic algorithm parameters are adjusted based on preliminary

experiments.

Mason, Fowler and Carlyle (2002) proposed a modified shifting bottleneck called

MSB for minimizing total weighted tardiness in complex job shops. (cFJ |batch|

total weighted tardiness) They defined the complex job shop as a flexible job shop

with sequence-dependent setup times, recirculation, batching, and possibly non-zero

ready times. This type of production environment can be found in wafer fabrication

facilities in semiconductor industries. In the proposed heuristic, a disjunctive graph is

32

used for representing the problem. The Apparent Tardiness Cost with Setups (ATCS)

index for parallel machines scheduling problem, developed by Lee and Pinedo

(1997), is modified to accommodate batching problems. The modified ATCS, called

BATCS, is used in the subproblem solution procedures. The re-optimization step,

considering the newly added disjunctive arcs for the selected machine, is the optional

step in MSB. To assess the ability of their proposed models, a benchmark problem is

used for comparing the MSB with a number of existing dispatching rules. The results

show that the MSB needs the re-optimization step in order to obtain a better solution

but the computational time will increase about 50%.

Mason and Oey (2003) reported that cyclic paths in a disjunctive graph may occur

when scheduling complex job shops, resulting in feasible schedules during the

execution of the MSB heuristic (Mason et al. 2002). To eliminate the cyclic paths,

they modified the disjunctive graph representing the complex job shop problems and

identified all possible causes of infeasible schedule generation. Then, the Cycle

Elimination Procedure (CEP) was developed to tackle this problem. The mechanism

of CEP is spotting batching nodes that cause the cyclic schedule, and then removing

them. Their proposed procedure is applied in practical wafer fabrication. The results

indicated that solution times increased about 10% with a satisfied level of solution

quality. However, the algorithm executed for only two product types and for one

shift. So utilization of the proposed MSB with CEP is still unclear.

Ho, Tay and Lai(2007) proposed an architecture for learning and evolving of

Flexible Job-Shop schedules called LEarnable Genetic Architecture (LEGA) with

makespan objective (cFJ || maxC). LEGA provides an effective integration between

evolution and learning within a random search process unlike the “canonical

evolution algorithm”, where random elitist selection and mutational genetics are

assumed; through LEGA, the knowledge extracted from previous generation by its

schemata learning module is used for influencing the diversities and the qualities of

offsprings. In addition, the architecture specifies a population generator module that

generates the initial population of schedules and also trains the schemata learning

module. A large range of benchmark data taken from literature and generated by

33

these researchers are used for analyzing the efficacy of LEGA. Experimental results

indicated that an instantiation of LEGA called GENACE outperforms current

approaches using canonical EAs in computational time and quality of schedules.

Tay and Ho (2004) developed new algorithm called as GENACE to solve FJSSP

with makespan and workload objective (cFJ || maxC , workload). We show how

composite dispatching rules (CDRs) are used for solving the FJSP with recirculation

by themselves and for providing a bootstrapping mechanism to initialize GENACE.

They then adopted a cultural evolutionary architecture to maintain the knowledge of

schemata and resource allocations learned over each generation. The belief spaces

influence mutation and selection over a feasible chromosome representation.

Experimental results show that GENACE obtains better upper bounds for 11 out of

13 benchmark problems, with improvement factors of 2 to 48 percent when

compared to results by Kacem et al, Brandimarte.

Xia and Wu (2005) made use of particle swarm optimization (PSO) to assign

operations on machines and SA algorithm to schedule operations for JSSP with

makespan objective (cFJ || maxC).

Rossi and Dini (2007) proposed an ant colony optimisation-based software system

for solving FMS scheduling in a job-shop environment with routing flexibility,

sequence-dependent setup and transportation time with makespan criterion (cFJ

| jis , ,block| maxC). The objective in this thesis is to develop several procedures for

scheduling flexible job shops with sequence dependent setup time with makespan

objective. In literature, minimizing makespan is usually found in job shop scheduling

problems because it concerns the reduction of the completion time for only the last

complete job by moving operations in the longest path in a given schedule. This

thesis takes into account flexible job shop problems including non-identical parallel

machines, sequence-dependent setup times. These characteristics usually occur in

real world production environments. In the last decade, processing restrictions, such

as sequence-dependent setup times, recirculation, batch non-zero ready times as well

34

as due-date based objectives in flexible job shop scheduling problems, have received

more attention from many researchers. In this research zero ready times, makespan

objectives and sequence dependent setup time are used.

Table 3.1 Some applications of flexible job shop scheduling problems

Problem class Algorithm Citation

flexible job shop || makespan||

two jobs

Polynomial Algorithm - Bruker and Schlie(1990)

flexible job shop || makespan TS - Brandimarte(1993)

- Hurink, Jurisch, and Thole

(1994).

- Barnes and Chambers (1996)

- Dauzere-Perez and Paulli

(1997)

- Brucker and Neyer (1998)

- Tung, and Nagi(1999)

- Chen et al. (1999)

- Wang and Brunn (2000)

- Mastrolilli and Gambardella

(2000)

flexible job shop || makespan

GA - Chen et al. (1999)

- Wang and Brunn (2000)

- M. Zandieh,I. Mahdavi,A.

Bagheri(2008)

flexible job shop ||sequence

dependent setup time ||

makespan

TS - Mehraba and Fattahi(2007)

flexible job shop ||

multiobjective

Hybrid GA - Gao,Gen M, Sun L, Zhao

X(2007)

- Mitsuo Gen, Jie Gao(2009)

flexible job shop ||sequence

dependent setup time ||

makespan

ACO - Andrea Rossi, Gino

Dini(2007)

,

35

Table 3.1 (Cont) Some applications of flexible job shop scheduling problems

Problem class Algorithm Citation

flexible job shop ||

multiobjective

GA+Approach by

localization

- Kacem, Hammadi, and

Borne(2003)

- M. Gen (2005)

- F.Pezella, G.Morganti,G.

Ciaschetti (2007)

flexible job shop

| ready time, sequence-

dependent

setup time, reentrant job,

batch

| multiobjective

Paralel GA+ Approach

by localization

- Defersha and Chen(2009)

Dynamic flexible job shop ||

makespan

GA+Approach by

localization

- Fattahi and Fallahi(2010)

 flexible job shop

| ready time, sequence-

dependent

setup time, reentrant job,

batch

| total weighted tardiness

SB - Mason et al. (2002)

- Mason and Oey (2003)

flexible job shop ||sequence

dependent

setup time || makespan

Matematical

model+heuristics

- Parviz Fattahi, Mohammed

Saidi Mehrabad(2006)

- R. Moghaddas,

M.Houshmand (2008)

flexible job shop ||

multiobjective

PSO+SA -Xia and Wu(2005)

flexible job shop || total

tardiness

TS -Valls et al. (1998)

36

3.4 Summary

Flexible job shop scheduling problems have been widely presented in the

literature. GA and TS are reasonable approaches for scheduling problems since they

have been applied for scheduling several job shop classes and obtained fairly good

solutions. In flexible job shop scheduling problems, infeasible schedules may be

generated during searching. Prevention of infeasible schedules is a key characteristic

in the development of an effective metaheuristic. In GAs, good encodings that lead to

feasible schedules are required.

37

CHAPTER FOUR

GENETIC ALGORITHMS

4.1 Introduction

A genetic algorithm (GA) is a class of adaptive stochastic optimization algorithms

involving the search and the optimization. Genetic algorithms were first used by John

Holland (1975) for the formal investigation of the mechanisms of natural adaptation,

but the algorithms have been modified to solve computational search problems.

Modern GA deviates greatly from the original form proposed by Holland. There is

no single firm definition for a genetic algorithm.

GAs are successfully used for finding solution to a range of the optimization

problems. GA solves a large scale of design, control, scheduling or other engineering

optimization problems. The general idea is to start with randomly generated

solutions, to implement an evolutionary process, and then to search for better

solutions while eliminating poor solutions from the current generation to the next

generation.

4.2 Solving Scheduling Problems with Genetic Algorithms

Most scheduling problems are NP-Hard, the time required for optimally solving

the problem increases exponentially with the size of the problem. GA are

successfully used for solving the scheduling problems and well suited to solve

production scheduling problems.

Genetic algorithms operate on a population of solutions rather than a single

solution. In production scheduling, this population of solutions consists of many

answers that may have different, sometimes conflicting objectives. To apply a

genetic algorithm to a scheduling problem, we must first represent it as a genome.

One way to represent a scheduling genome is to define a sequence of tasks. Each task

and its corresponding start time represent a gene.

38

There are three basic approaches of applying the genetic algorithms to a scheduling

problem (Gen et al., 1999):

1. Adapt problems to the genetic algorithms

2. Adapt the genetic algorithms to problems

3. Adapt both the genetic algorithms and problems

In this Chapter, we focus on the representation of solutions and design of genetic

operators for solving the flexible job shop scheduling problem.

4.3 Genetic Algorithm

GA is a search method that mimics the process of natural evolution. This heuristic

is routinely used for generating useful solutions to optimization and search problems.

Genetic algorithms belong to the larger class of evolutionary algorithms (EA), which

generate solutions to optimization problems using techniques inspired by natural

evolution, such as inheritance, mutation, selection, and crossover.

Each individual is characterized by its fitness. The fitness of an individual is

measured by the associated value of the objective function. The procedure works

iteratively, and each iteration is referred to as a generation. At each iterative step, a

number of different solutions are generated and carried over to the next generation.

And this procedure is repeated until some stopping criterion is met.

A population of individuals is maintained within search space for a GA, each

representing a possible solution to a given problem. Each individual is coded as a

finite length vector of components, or variables. To continue the genetic analogy,

these individuals are likened to chromosomes and the variables are analogous to the

genes. Thus a chromosome is composed of several genes. A fitness score is assigned

to each solution representing the abilities of an individual to compete. The individual

with the optimal or generally near optimal fitness score is sought. The GA aims at

using selective breeding of the solutions to produce offspring better than the parents

39

by combining information from the chromosomes. The GA maintains a population of

n chromosomes with associated fitness values. Parents are selected to mate, on the

basis of their fitnesses for producing offspring. Consequently, better solutions give

more opportunities to reproduce so that offspring inherits characteristics from each

parent. New generations of solutions are produced containing, on average, better

genes than a typical solution in a previous generation. Each successive generation

will contain better partial solutions than previous generations (Shopova and

Vaklieva, 2006). Figure 4.1 shows the Architecture of GA.

4.3.1 Chromosome Representation

Genetic representation is a way of representing solutions in evolutionary

computation methods. Mesghouni (1997) used “parallel machine representation” and

“parallel job representation”. Chen et al. (1999) divided the chromosome into two

parts as A string and B string. A string contains a list of all operations of all jobs and

machines selected for corresponding operations, while B string contains a list of

operations that are processed on each machine. These representations must be

adjusted for feasibility. Tay and Ho (2007) used the chromosome representation

having two parts, namely “operation order” which was adopted from Ramiro (2003)

and “machine selection” which use an array of binary values to present machine

selection.

Kacem et al. (2003) used a type of representation called as “machine assignment

representation”. An array consisting of binary values are used for presenting the

machine selection. The best reported performance results so far belong to Kacem.

Each unit value in the assignment table maps a machine to a corresponding

operation. After using an assignment algorithm to find a set of feasible schedules,

they are used as an initial population for GA.

40

Figure 4.1 Architecture of GA (Shopova & Vaklieva, 2006)

Chromosome
representation

Initial population

Fitness function

Selection for
reproduction

Crossover

Mutation

Selection for replacement

Solution
Stop

criteria

YES

NO

41

Several different chromosome representations have been proposed for the JSP.

Gen et al. (1999) summarized chromosome representations for the job shop

scheduling problem.

operation-based representation: This representation uses a permutation with m-

repetitions of job numbers for the problem with n jobs and m machines. A job is

represented a set of operations that has to be scheduled on m machines. Each job

occurs m times in the permutation. By scanning the permutation from left to right,

the kth occurance of a job number refers to the thk operation in the technological

sequence of this job. No infeasible solutions will result in this representation (Gen et

al.,1999).

job-based representation: This representation merely encode the chromosome

according to the job sequence. Each job occurs one time. By scanning the encoding

from left to right, all the operations of the first job in the representation scheduled

first (Gen et al.,1999).

preference list-based representation: In this representation, the chromosome

represents the preferences of each job. There are M sub-chromosomes in each

chromosome where each sub-chromosome represent the preference of the jobs on

that machine (Gen et al.,1999).

job pair relation-based representation: In this representation, a chromosome is

symbolized by a binary string, where each bit stands for the order of a job pair for a

particular machine (Gen et al.,1999).

priority rule-based representation: This representation encodes a chromosome as

a sequence of dispatching rules. The job schedule is created by using a heuristic

based on the dispatching rules sequence (Gen et al.,1999).

disjunctive graph-based representation: This representation encodes the

chromosome as a binary string that corresponds to an ordered list of disjunctive arcs

42

connecting the different operations to be processed by the same machine (Gen et

al.,1999).

completion time-based representation: This chromosome representation is an

ordered list of completion times of operations. This representation may yield an

infeasible schedule. So,when the crossover operator is applied, special crossover

operators should be designed for it (Gen et al.,1999).

machine-based representation: This representation encodes the chromosomes as

a sequence of machines. This representation may yield an infeasible schedule. So,

when the crossover operator is applied, special crossover operators should be

designed for it (Gen et al.,1999).

random keys representation: This representation encodes a solution with random

numbers. These values are used as sort keys to decode the solution. Each gene

consists of two parts. The integer part of any random key is interpreted as the

machine assignment for that job. Sorting the fractional parts provides the job

sequence on each machine (Gen et al.,1999).

Among the nine encoding methods, the job-based encoding and the machine-

based encoding are the pure literal string; the operation-based encoding, the

preference list-based encoding and the priority rule-based encoding are the general

literal string. Note that the preference list-based encoding is well used in many

studies. It consists of several substrings and one substring is a pure literal string

corresponding to an operation sequence to a machine. In this thesis, operation-based

representation is ued.

4.3.2 Genetic Operators

The performance of the genetic algorithm depends on the choice of good genetic

operators. Genetic operator is an operator used in genetic algorithms to maintain

genetic diversity. These operators are selection, crossover and mutation operators.

43

Selection is a genetic operator that chooses a chromosome from the current

generation’s population for inclusion in the next generation’s population. Before

making selection into the next generation’s population, selected chromosomes may

undergo crossover or mutation depending upon the probability of crossover and

mutation. Crossover is a genetic operator that combines two chromosomes called

parents to produce a new chromosome called offspring. The idea behind crossover is

that the new chromosome may be better than both of the parents if it takes the best

characteristics from each of the parents. Crossover occurs during evolution according

to a user-definable crossover probability. Mutation is a genetic operator that alters

one ore more genes in a chromosome from its initial state. This can result in entirely

new gene being added to the gene pool. With these new genes, the genetic algorithm

may be able to arrive to a better solution. Mutation is an important part of the genetic

search to prevent the population from stagnating at any local optima. Mutation

occurs during evolution according to a user-definable mutation probability (Shopova

& Vaklieva, 2006).

4.3.2.1 Selection Operator

Selection is the first operator. There are two types of selection operators applied in

genetic algorithms. The first one is selection of reproduction which determines the

sampling that will produce the offspring. The second one is the selection of

replacement which selects individuals will be included in the next population.

The selection of reproduction involves randomly choosing members of the

population to enter a mating pool. GA includes three biased selection schemes for

reproduction; rank based, roulette-wheel, and tournament selection. After the

production of new individual, it is necessary to decide which individuals survive in

the next generation. Selection for replacement creates a new generation from the

current one and the obtained offsprings. Selection of replacement methods replace all

parents by their children, only if their children are better fitness values. In this thesis

roulette-wheel selection is used.

44

4.3.2.1.1 Roulette-Wheel Selection. The simplest proportionate selection scheme

is roulette-wheel selection, also called as stochastic sampling with replacement. The

individuals are mapped to contiguous segments of a line in such a manner that each

individual's segment will be equal in size to its fitness. A random number is

generated and the individual whose segment spans the random number is selected.

The process is repeated until the desired number of individuals is obtained. This

technique is analogous to a roulette wheel with each slice proportional in size to the

fitness (Shopova and Vaklieva, 2006).

4.3.2.1.2 Rank Based Selection. Rank-based selection is similar to the

proportionate selection schemes. In it, individual’s rank, instead of the fitness

function, is used for calculating the selection probability. The latter gives a better

chance of chromosomes with small fitness values to take part in the reproductive

process and preserves populations from a premature convergence (Shopova and

Vaklieva, 2006).

 “Linear ranking” and “Square ranking” are two methods which are common in

use. In linear ranking, the selection probability is proportional to the rank of each

individual. In square ranking, the selection probability is the square of its rank:

4.3.2.1.3 Tournament Selection. In tournament selection, a number of individuals

in a tour is randomly chosen from the population and the best individual from this

group is selected as parent. This process is repeated as often as individuals must be

chosen. The parameter for tournament selection is the tournament size “Tour”.

“Tour” takes values ranging from 2 to number of individuals in population (Shopova

and Vaklieva, 2006).

45

4.3.2.2 Crossover Operators

Crossover is the second genetic operator. Various crossover operators have been

proposed for literal permutation encodings, such as partial-mapped crossover (PMX),

order crossover (OX), cycle crossover (CX), position-based crossover, order-based

crossover, etc. (Gen et al.,1999). In this thesis, position based crossover is used.

There are two different basic considerations for designing crossover operators for

literal permutation encodings;

1. To make less change when crossing over so as to inherit parents' features as

much as possible.

2. To make more change when crossing over so as to explore new patterns of

permutation and thereby enhance the search ability.

4.3.2.2.1 Partial-Mapped Crossover (PMX). PMX has the following major steps:

1. Select two cut-points along the string at random. The substrings defined by

the two cut-points are called the mapping sections.

2. Exchange two substrings between parents to produce proto-child.

3. Determine the mapping relationship between two mapping sections.

4. Legalize offspring with the mapping relationship (Gen et al.,1999).

4.3.2.2.2 Order Crossover (OX). Order crossover (OX) can be viewed as a kind of

variation of PMX that uses a different repairing procedure. OX has the following

major steps:

1. Select a substring from one parent at random.

2. Produce a proto-child by copying the substrings into the corresponding

positions as they are in the parent.

3. Delete all the symbols from the second parent, which are already in the

substring. The resultant sequence contains the symbols the proto-child needs.

46

4. Place the symbols into the unfixed positions of the proto-child from left to

right according to the order of the sequence to produce an offspring (Gen et

al.,1999).

4.3.2.2.3 Position-Based Crossover. Position-based crossover firstly generates a

random mask and then exchanges relative genes between parents according to the

mask. A crossover mask is simply a binary string with the same size of chromosome.

The parity of each bit in the mask determines, for each corresponding bit in an

offspring, from which the parent will receive that bit. Because uniform crossover will

produce illegal offspring for literal permutation encodings, position-based crossover

uses a repairing procedure to resolve the illegitimacy. Position-based crossover has

the following major steps:

1. Select a set of positions from one parent at random.

2. Produce a proto-child by copying the symbols on these positions into the

corresponding positions of the proto-child.

3. Delete the symbols which are already selected from the second parent. The

resultant sequence contains only the symbols the proto-child needs.

4. Place the symbols into the unfixed positions of the proto-child from left to

right according to the order of the sequence to produce one offspring (Gen et

al.,1999).

4.3.2.2.4 Order-Based Crossover. Order-based crossover is a slight variation of

position-based crossover in that the order of symbols in the selected position in one

parent is imposed on the corresponding ones in the other parent (Gen et al.,1999).

4.3.2.2.5 Cycle Crossover (CX). Cycle crossover (CX) is the same as the position-

based crossover. It takes some symbols from one parent and the remaining symbols

from the other parent. The difference is that the symbols from the first parent are not

selected randomly and only those symbols are selected which defined a cycle

according to the corresponding positions between parents. CX works as follows:

47

1. Find the cycle which is defined by the corresponding positions of symbols

between parents.

2. Copy the symbols in the cycle to a child with the corresponding positions of

one parent.

3. Determine the remaining symbols for the child by deleting those symbols

which are already in the cycle from the other parent.

4. Full the child with the remaining symbols (Gen et al.,1999).

4.3.2.2.6 Linear Order Crossover (LOX). Order crossover tends to transmit the

relative positions of the genes rather than the absolute ones. In the order of crossover,

the chromosome is considered to be circular since the operator is devised for the

travelling salesman problem. In the job-shop problem, the chromosome can not be

considered as circular. For this reason they developed a variant of the OX called

Linear Order Crossover (LOX), where the chromosome is considered linear instead

of circular. The LOX works as follows:

1. Select sublists from parents randomly.

2. Remove sublist2 from parent 1 leaving some `holes' (marked with h) and then

slide the holes from the extremities towards the center until they reach the

cross section. Similarly, remove sublist1 from parent 2 and slide holes to

cross section.

3. Insert sublist1 into the holes of parent 2 to form the offspring 1 and insert

sublist2 into the holes of parent 1 to form an offspring 2 (Gen et al.,1999).

The crossover operator can preserve both the relative positions between genes and

the absolute positions relative to the extremities of parents as much as possible. The

extremities correspond to high and low priority operations.

4.3.2.2.7 Subsequence Exchange Crossover. A job sequence matrix is used as

encodings. For a n job m machine problem, the encoding is an nm matrix where

each row specifies an operation sequence for each machine. A subsequence is

defined as a set of jobs which are processed consecutively on a machine for both

48

parents but not necessarily in the same order. This method includes the following

two steps:

1. Identify subsequences one for one machine for the parents.

2. Exchange these subsequences machine by machine among parents to create

offspring (Gen et al.,1999).

Because it is difficult to maintain the precedence relation among operations in

either initial population or offspring by use of the job sequence matrix encoding,

Giffler and Thompson algorithm is used to carefully adjust job orders on each

machine to resolve the infeasibility and to convert offspring into active schedules.

4.3.2.2.8 Job-Based Order Crossover. The job-based order crossover is designed

for the encoding of job-sequence matrix. It has the following steps:

1. Identify the sets of jobs from parents, one set for one machine.

2. Copy the selected jobs of the first parent onto the corresponding positions

of the first child machine by machine. Do the same thing for the second

child.

3. Full the unfixed position of the first child by the not-selected jobs from left

to right according to the order as they appear in the second parent. Do the

same thing for the second child (Gen et al.,1999).

4.3.2.2.9 Partial Schedule Exchange Crossover. Gen et al. (1994) proposed a

partial schedule exchange crossover for an operation-based encoding. They consider

partial schedules as the natural building blocks and intend to use such crossover to

maintain building blocks in the offspring. It has the following steps:

1. Identify a partial schedule in one parent randomly and in the other parent

accordingly.

2. Exchange the partial schedules to generate proto-offspring.

3. Determine the missed and exceeded genes for the proto-offspring.

49

4. Legalize offspring by deleting exceeded genes and adding missed genes (Gen

et al.,1999).

The partial schedule is identified with the same job in the head and tail of the

partial schedule.

4.3.2.2.10 Substring Exchange Crossover. Cheng et al. (1997) gave an another

version of partial schedule exchange crossover, called substring exchange crossover.

It can be viewed as a kind of adaptation of two cut-points crossover for general literal

string encodings. It has the following steps:

1. First, select two cut-points along the string at random. Exchange two

substrings defined by the two cuts between two parents to produce proto-

children.

2. Determine the missed and exceeded genes for each proto-child by making a

comparison between two substrings.

3. Legalize the proto-children by replacing the exceeded genes with the missed

genes in a random way (Gen et al.,1999).

4.3.2.3 Mutation Operator

Mutation is the third genetic operator. It is the primary search operator. Mutation

operator assure the diversity of the population to prevent the premature convergence

of GA. Mutation changes the value of individual genes at random with a certain

probability and assures that all the points in the search space are likely to be

examined. Several mutation operators have been proposed, such as inversion,

insertion, displacement, reciprocal exchange mutation, and shift mutation (Gen et al,

1999). In this thesis insertion mutation and modified version of insertion mutation

methods are used.

 Inversion mutation: Selects two positions within a chromosome at random

and then inverts the substring between these two positions.

50

 Insertion mutation: Selects a gene at random and inserts it in a random

position.

 Displacement mutation: Selects a substring at random and inserts it in a

random position. Insertion can be viewed as a special case of displacement in where

substring just contains one gene.

 Reciprocal exchange mutation: Selects two positions at random and then

swaps the genes on these positions. Shift mutation first chooses a gene randomly and

then shifts it to a random position of right or left from the gene's position.

 Shift mutation: Chooses a gene randomly and then shifts it to a random

position of right or left from the gene’s position.

4.3.3 Genetic Parameters

There may be many parameters which are considered in implementing the GA

procedure. Three of the most important parameters are population size, probability

of crossover and probability of mutation.

 Population size: Population size affects the efficiency of the algorithm. If we

have smaller population, it would only cover a small search space and may results in

poor performance. A larger population would cover more space and prevent

premature convergence to local solutions. At the same time, a larger population

needs more number of evaluations per generation and may slow down the

convergence rate.

 Probability of Crossover: Probability of crossover or crossover rate is the

parameter that affects the rate at which the crossover operator is applied. A higher

crossover rate introduces new strings more quickly into the population. A low

crossover rate may cause stagnation due to the lower exploration rate.

51

 Probability of Mutation: Probability of mutation or mutation rate is the

probability of changing the bit position of each string in the new population. A low

mutation rate helps to prevent any bit positions from getting stuck to single value,

whereas a high mutation rate results in essentially random search.

4.4 Summary

Genetic algorithm is adaptive method which may be used to solve search and

optimisation problems. They are based on the genetic processes of biological

organisms. Scheduling of large-scale problems includes a number of difficulties for

search and optimization techniques. Genetic algorithms are well suited to such

problems owing to their adaptability and their effectiveness at searching large spaces.

In the following chapter, the genetic algorithm is applied to flexible job shop

scheduling problem.

52

CHAPTER FIVE

SOLVING FLEXIBLE JOB SHOP SCHEDULING PROBLEM WITH

SEQUENCE DEPENDENT SET UP TIME BY USING GENETIC

ALGORITHM

5.1 Introduction

This chapter presents a solution approach to a flexible job shop scheduling

problem with sequence dependent setup time by using GA. The objective is to

minimize the makespan. Besides makespan, workload and setup times are also

analysed. In this thesis, we focus on the methods which assign the jobs to the

machines, sequence the jobs on the machine, selection methods and mutation

methods. Genetic algorithm determines a solution approach to minimize the

performance measures by the combination of these methods. Matlab is used for

solving this problem.

FJSSP is a generalization of the job shop with workcenters that have multiple

machines in parallel. Flexible Job Shop Problems are divided into two subproblems.

In the first subproblem, assignments of operations to the machines are made. In the

second subproblem, the sequencing problem is solved.

 For the first subproblem, assignment methods were used in this thesis. The first

method is “Approach by Localization” which assigns each operation to the suitable

machine by taking into account the processing times and the workloads of machines.

This assignment procedure assumes that there are no setup times. Approach by

Localization methode was first developed by Kacem (2002). Pazella(2007) modified

it by mixing machine and opeation places. Chen(2009) resolved it by parallel genetic

algorithm (PGA) through the inclusion of sequence dependent setup time.

Fattahi(2010) applied this method for solving the dynamic flexible job shop problem

scheduling.

53

The second method is a modified version of the first method. In this method, we

modified the assignment procedure by using sequence dependent setup times in

addition to processing times and workloads of machines. In the third method,

assignments were made randomly just for the comparison purposes.

For the second subproblem, dispatching rules such as shortest processing time

(SPT), most work remaining (MWR), longest processing time (LPT), shortest setup

time first rule (SSTFR), random rule and neighborhood search were applied for

sequencing the machines.

Setup times are not generally added to flexible job shop scheduling problem in the

literature due to the complexity of the problem. In this thesis, sequence-dependent

setup times are taken into consideration in machine assignments realized not only

during the formation of the initial population but also in the calculation of the

makespan. In the literature, solution methods of flexible job shop scheduling

problems are divided into two as optimum and approximate solutions. Algorithms

giving the optimum solution are suitable for small sized problems. Heuristic

algorithms are used for large sized problems because finding the optimum solution

takes a long time. In this thesis, Genetic Algorithm Method is used among heuristic

methods.

5.2 Description of the Problem

This thesis takes into consideration flexible job shop problems including identical

or nonidentical parallel machines and sequence-dependent setup times. JSSP

considers a set of jobs to be processed on a set of machines. Each job is defined by

an ordered set of operations and each operation is assigned to a machine with a

predefined constant processing times. The order of the operations within the jobs and

its corresponding machines are fixed a priori and independently from job to job. For

solving this problem, we need to find a sequence of operations on each machine

respecting some constraints and optimising some objective function.

54

Figure 5.1 Flexible Job Shop Scheduling

Following assumptions are considered for the problem;

1. Each job consists of one fixed sequence of operations.

2. Each machine can process at most one job at a time, and each job can only be

processed on one machine at a time.

3. There are no interruptions and cancellations between the jobs.

4. All machines are available continuously.

5. There are identical or nonidentical paralel machines in the system.

6. All jobs can be started at t = 0.

7. All machines are available at t = 0.

8. There are sequence dependent setup time between the jobs.

9. Setup for a job cannot begin until the job is available to the current work

center and the desired machine in the work center is idle.

10. All data including processing times and setup times are known

deterministically.

11. There are no precedence constraints among operations of different jobs.

12. Neither release times nor due dates are specified.

13. There are two cases, the first is that all machine can process all the jobs (total

flexibility), the second is that all machines can not process all the jobs (partial

flexibility).

55

5.3 Performance Measures

Different types of objectives may be considered in scheduling problems. These

are performance measures based on completion time, flow time, lateness, number of

late/tardy jobs, earliness, and number of early jobs. In this thesis, one of the

completion time based performance measures, makespan was selected, workload and

setup times were also evaluated.

Makespan is the difference between the start and finish of a sequence of jobs. The

maximum completion time is also called as the makespan which is the completion

time of the last job. A common problem of interest is to minimize maxC , or to

minimize the completion time of the last job leaving the system. This criterion is

usually used for measuring the level of utilization of the machine. The workload is

the sum of processing times of the machines. The setup time is the time period

required for preparing a machine to be ready for accepting a job.

5.4 Proposed Genetic Algorithm

In FJSP, two subproblems should be solved as it was stated in Chapter Two. In

the first subproblem, assignments of operations to the machines are made by using

assignment methods. In the second subproblem, sequencing problem is solved by

dispatching rules and neighborhood search.

The following algorithm represents the methodology that we used for scheduling

flexible job shops with sequence dependent setup times by using genetic algorithm.

Step 1: Initial population are created by the assignment methods. One of the three

assignment methods are used while creating an initial population.

Step 2: Each cromosomes in the population are evaluated by using dispatching

rules such as shortest processing time (SPT), most work remaining (MWR), longest

56

processing time (LPT), shortest setup time first rule (SSTFR), random rule and

neighborhood search. These rules were applied for sequencing the machines.

Step 3: Two chromosomes are selected in the population by using roulette wheel

selection method to apply crossover operator.

Step 4: Crossover and mutation operator are applied on the pairs of selected

chromosomes.

Step 5: A new population is created by replacing a portion of the original

population with the new chromosomes produced in the previous step.

Step 6: If the end condition is satisfied, stop, and return the best solution in

current population, otherwise go to Step 2.

5.5 Initial Population Generation

The performance of GA is affected by various factors such as coefficients and

constants, genetic operators, parameters and some strategies. Generating initial

population strategies and chromosomal representations are also examples of these

factors.

Better efficiency of GA can be achieved by modifiying the chromosomal

representations so as to generate feasible solutions, and avoiding the use of a repair

mechanism. In this thesis, two chromosomal representation are used. The first one

represents the machine assignment and the second one represents the operation

sequence on the machines.

The initial population strategy is applied for reducing the number of search to

reach the optimum design in the solution space. In this thesis, the initial population is

generated by three methods and these methods are compared. The first method is

based on the procedure presented in Pezella (Pezella et al., 2007) which in turn is

57

based on the localization approach of Kacem (Kacem et al., 2002). This approach

takes into account both the processing time and the workload of the machines. The

procedure consists of finding, for each operation, the machine with the minimum

processing time, fixing that assignment, and then adding this time to every

subsequent entry in the same column. Since this approach is strongly dependent on

the order in which operations and machines, Pezella (Pezella et al., 2007), slightly

modify randomly permuted jobs and machines. The second method modifies these

approach taking into account the sequence dependent setup time. The third method is

a random method which generates the initial population randomly. After using an

assignment algorithm for finding a set of feasible schedules, they are used as an

initial population for GA.

Chromosomal Representation: In this thesis, two chromosomal representations

are used. The first one represents the machine assignment and the second one

represents the operation sequence on the machines.

0- 1 values are used for machine assignment representation. Each unit value in the

assignment representation maps a machine to a corresponding operation. In this

representation, infeasible solutions are not allowed. Table 5.1 represents the

processing time possibilities on various machines. Table 5.2 represents the

assignment of jobs on the machines.

Table 5.1 Processing time matrix

1M 2M 3M 4M

1,1O 1 3 4 1

2,1O 3 8 2 1

3,1O 3 5 4 7

1,2O 4 1 1 4

2,2O 2 3 9 3

3,2O 9 1 2 2

1,3O 8 6 3 5

2,3O 4 1 8 5

58

Table 5.2 Machine asignment matrix

1M 2M 3M 4M

1,1O 1 0 0 0

2,1O 0 0 1 0

3,1O 0 0 1 0

1,2O 0 0 0 1

2,2O 0 1 0 0

3,2O 0 0 0 1

1,3O 0 0 1 0

2,3O 0 0 0 1

Operation sequence on the machines are represented as “operation-based

representation”. In this representation, the order of operations within the permutation

is interpreted as a sequence for building a schedule solution. The decoding procedure

scans each permutation from left to right and uses sequence information for building

a schedule consecutively. Infeasible solutions are not allowed. Each operation reads

the machine data in the machine assignment matrix in Table 5.2 and the processing

time data in the processing time matrix in Table 5.1. A permutation of job numbers

expresses the order in which the operations of jobs are scheduled in the Gannt

Chart.in Figure 5.1.

Figure 5.2:Permutation of jobs and job sequence on Gantt Chart

Approach by Localization Method: Approach by Localization method enables

us to assign each operation to the suitable machine by taking into account the

59

processing times and the workloads of machines on which we have already assigned

the operations. This method is applied for reducing the size of the search space of the

problem to increase the probability of catching the global solution and enhance the

performance of the GA. Pseudo code for generating initial population by Approach

by Localization method is as follows:

Step 0: Create a table D, presenting the processing time possibilities for each

operation on various machines.

 Set op=0

 Set num_of_op=N

Step 1: Randomly permute jobs and machines in the table “D”.

Step 2: op=op+1

Step 3: Find the machine with the minimum processing time for operation “op” and

select this machine to assign operation “op”.

Step 4: Fixing that assignment then to add this time to every subsequent entry in the

same column and update table “D”

Step 5: If op is equal to “num_of_op”?

 YES, Set “D”

 NO, Go to Step 2

The first step of the algorithm initializes a table D which represents the processing

time possibilities for each operation on various machines. We define num_of_op as

the number of operation and “op”as a counter. Second step of the algorithm, we

randomly permute the jobs and the machines in the table “D”.

In the other steps of the algorithm, the procedure consists of finding the machine

with the minimum processing time for each operation, fixing that assignment, and

then adding this time to every subsequent entry in the same column.

In Approach by Localization method; first we randomly permute jobs and

machines in the processing time table in Table 5.1. The assignment procedure starts

with the first row. We select the machine which has the minimum processing time

60

for related operation. After fixing that assignment, we update the workload of the

machines by adding processing time in the same column.

Table 5.3 Updated processing time matrix

The assignment procedure continues with the second row. We select the machine

which has the minimum processing time for related operation. After fixing that

assignment, we update workload of the machines in Table 5.4 by adding processing

time in the same column.

Table 5.4 Updated processing time matrix

This procedure proceeds until all operations are assigned to a particular machine.

Finally the assignment table representing the operations and their assignments to

machines is generated.

 1M 4M 3M 2M 1M 4M 3M 2M

1,1O 1 1 4 3 1 1 4 3

2,1O 3 1 2 8 4 1 2 8

3,1O 3 7 4 5 4 7 4 5

1,2O 4 4 1 1 5 4 1 1

2,2O 2 3 9 3 3 3 9 3

3,2O 9 2 2 1 10 2 2 1

1,3O 8 5 3 6 9 5 3 6

2,3O 4 1 8 5 5 1 8 5

 1M 4M 3M 2M x 1M 4M 3M 2M

1,1O 1 1 4 3 1 1 4 3

2,1O 4 1 2 8 4 1 2 8

3,1O 4 7 4 5 4 8 4 5

1,2O 5 4 1 1 5 5 1 1

2,2O 3 3 9 3 3 4 9 3

3,2O 10 2 2 1 10 3 2 1

1,3O 9 5 3 6 9 6 3 6

2,3O 5 1 8 5 5 2 8 5

61

Modified version of Approach by Localization: In this method, we modified the

assignment procedure by using sequence dependent setup times in addition to

processing times and workloads of machines.

The setup times are generated for each machine according to the a uniform

discrete distribution U[min it ,max it] which it is the processing time of the tasks for

each machine. It is assumed that the setup times between operations in machine k

could not be greater than the longest processing time of operations, which requires

the machine k. The setup time could not be started until the related job is free from

its previous operations. In Table 5.5, the processing times of operations are

presented. In Table 5.6, the setup times are generated for machine 1 according to a

uniform discrete distribution U[1, 9] where 1 is the minimum processing time in the

Table 5.5 for machine 1 and 9 is the maximum processing time for machine 1. For

each machine, setup matrices are generated by this procedure. Pseudo code for

generating initial population by modified Approach by Localization method as

follows:

Table 5.5 Processing time matrix

1M 2M 3M 4M

1,1O 1 3 4 1

2,1O 3 8 2 1

3,1O 3 5 4 7

1,2O 4 1 1 4

2,2O 2 3 9 3

3,2O 9 1 2 2

1,3O 8 6 3 5

2,3O 4 5 8 1

62

Table 5.6 Setup time matrix for machine 1

1,1O 2,1O 3,1O 1,2O 2,2O 3,2O 1,3O 2,3O

1,1O 0 5 4 6 1 2 3 3

2,1O 4 0 5 3 4 4 2 3

3,1O 3 2 0 3 6 1 5 5

1,2O 5 5 4 0 2 3 4 4

2,2O 5 5 3 4 0 1 2 2

3,2O 2 2 6 3 4 0 3 5

1,3O 1 3 3 4 5 4 0 6

2,3O 4 4 2 3 4 6 2 0

Step 0: Create a table “D”, presenting the processing time possibilities for each

operation on the various machines and setup matrix “S” for each machine.

 Set op=0

 Set num_of_op=N

Step 1: Randomly permute the jobs and the machines in the table “D”.

Step 2: op=op+1

Step 3: Find the machine with the minimum processing time for operation “op” and

select this machine to assign operation “op”.

Step 4: Fix that assignment, then add this time, and sequence the dependent setup

time to every subsequent entry in the same column and update the table “D”

Step 5: If op is equal to “num_of_op”?

 YES, Set “D”

 NO, Go to Step 2

The first step of the algorithm initializes a table D which represents the processing

time possibilities for each operation on various machines and a table S which

represents the setup times of the operations. We define “num_of_op” as the number

of operation and “op”as a counter. In the second step of the algorithm, we randomly

permute jobs and machines in the table “D”.

63

In other steps of the algorithm, the procedure consists of finding, the machine

with the minimum processing time for each operation, fixing that assignment, and

then adding this time and sequence dependent setup time to every subsequent entry

in the same column.

In modified version of Approach by Localization; sequence dependent setup times

are used on both assignment and sequencing algorithm. First, we randomly permute

the jobs and the machines in the processing time table. The assignment procedure

starts with the first row. We select the machine which has the minimum processing

time for related operation. After fixing that assignment, we update workload of the

machines in Table 5.7 by adding processing time and the sequence dependent set up

time in the same column. This procedure proceeds until all operations are assigned to

a particular machine. Finally, the assignment table representing the operations and

their assignments to the machines is generated.

Table 5.7 Updated processing time matrix

Random Assignment Method: In the third method, assignments were made

randomly just for the comparison purposes. Machines are randomly selected for each

operation. When we assign all operations to the machines, we generate one

individual. Pseudo-code for randomly generating initial population as follows:

 1M 4M 3M 2M 1M 4M 3M 2M

1,1O 1 1 4 3 1 1 4 3

2,1O 3 1 2 8 3 1 2 8

3,1O 3 7 4 5 3 7 4 5

1,2O 4 4 1 1 4 4 1 1

2,2O 2 3 9 3 2 3 9 3

3,2O 9 2 2 1 9 2 2 1

1,3O 8 5 3 6 8 5 3 6

2,3O 4 1 8 5 4 1 8 5

jkihji SP ,,,, 

64

Step 1: Create a table “D”, presenting the processing time possibilities on various

machines

 Set op=0

 Set num_of_op=N

Step 2: op=op+1

Step 3: Randomly select one machine for operation “op”

Step 4: If op is equal to “num_of_op”?

 YES, Set “E”

 NO, Go to Step 2

The first step of the algorithm initializes a table D which represents the processing

time possibilities for each operation on the various machines. We define

“num_of_op” as the number of operation and “op”as a counter. In the second step of

the algorithm, we randomly permute the jobs and the machines in the table “D”.

In the other steps of the algorithm, one operation is assigned to a specific machine

randomly for each operation.

5.5.1 Fitness Evaluation

Fitness function is a particular type of objective function that prescribes the

goodness of a solution in a genetic algorithm so that particular chromosome can be

ranked against all the other chromosomes. In this thesis, the main objective is to

minimize the makespan.

5.5.1.1 Dispatching Rules

Detailed scheduling decisions in a job shop are usually determined by dispatching

rules. Most dispatching rules immediately assign the work to the machines as long as

the said work is available. In this thesis, the shortest processing time, the longest

processing time, the most work remaining, the first shortest setup time, and random

rule are used.

65

Table 5.8 A list of job shop dispatch rules

5.5.1.1.1 Most Work Remaining Rule (MWR). Most work remaining rule orders

the jobs in the order of most remaining processing times. Whenever a machine is

freed, the job with the most remaining processing time begins processing.

5.5.1.1.2 Shortest Processing Time Rule (SPT). The shortest processing time rule

sequence the jobs in the increasing order of processing times. Whenever a machine is

freed, the job with the shortest processing time begins processing. In the single

machine environment with zero ready time for all jobs, this rule minimizes the mean

flow time and the work in process, and the mean lateness in the system.

5.5.1.1.3 Longest Procesing Time Rule (LPT). The longest processing time rule

sequences the jobs in decreasing order of processing times. Whenever a machine is

freed, the job with the longest processing time begins processing.

5.5.1.1.4 Random Rule. Random rule orders the jobs randomly. Whenever a

machine is freed, randomly selected job begins processing.

5.5.1.1.5 Shortest Setup Time First Rule (SSTFR). Shortest setup time first rule

orders the jobs according to shortest setup time. Whenever a machine is freed, the

job which has shortest setup time begins processing.

Rule Description

SPT Select an operation with shortest processing time

MWR Select an operation for the job with the most total processing time remaining

LPT Select an operation with the longest processing time

SSTFR Select an operation with the shortest setup time

RANDOM Randomly Select an operation

66

5.5.1.2 Neighborhood Search

A neighborhood of a schedule is defined as all possible neighbors which are

generated by moving some operations in the current location to a different position.

The generating mechanism is a method of taking one sequence as a seed and

systematically creating a collection of related sequences. Neighborhood search

algorithms which alternatively called as local search algorithms are a wide class of

improvement algorithms where an improved solution may be found at each iteration

by searching the “neighborhood” of the current solution. A critical issue in the design

of a neighborhood search algorithm is the choice of the neighborhood structure, that

is, the manner in which the neighborhood is defined. As a rule of thumb, the larger

the neighborhood, the better is the quality of the locally optimal solutions, and the

greater is the accuracy of the final solution that is obtained. At the same time, the

larger the neighborhood, the longer it takes to search the neighborhood at each

iteration. For this reason, a larger neighborhood does not necessarily produce a more

effective heuristic unless one can search the larger neighborhood in a very efficient

manner.

5.5.2 Selection

Selection is the first genetic operator. Two types of selection methods are applied

in the genetic algorithms. First method is selection of reproduction, second method is

selection of replacement. Selection of reproduction determines the sampling that will

produce the offspring. After the production of a new individual, it is necessary to

decide which individuals survive in the next generation. Selection for replacement

creates a new generation from the current one and the obtained offspring (Shopova

and Bancheva, 2006).

5.5.2.1 Selection of Reproduction

The selection function is used for creating an evolutionary pressure. Well

performing chromosomes have a higher chance of surviving. This kind of selection

67

aims at identifying better chromsomes of the population that would be taken for

reproduction.

In this thesis, the roulette wheel selection is used for selection of reproduction. In

roulette wheel selection, individuals are given a probability of being selected that is

directly proportionate to their fitness. Two individuals are then chosen randomly

based on these probabilities, and the offspring is produced. The individuals of the

population are assumed as slots of the roulette-wheel. Each slot is as width as the

probability for selection of corresponding chromosome is great. The scaled fitness

function is used for calculating respective selection probabilities. The number of

expected copies in the sampling pool is proportional to its selection probability.

5.5.2.2 Selection of Replacement

After the reproduction, we have to decide which individuals will be survived and

transferred to the next generation. In this thesis, two selection of replacement

methods are used. In the first method, parents replace the children randomly. Each

resulting offspring will be evaluated and two individuals will be added to the

population of the next generation randomly. In the second method, parents replace

the children only if their children are better. Each resulting offspring will be

evaluated and better one of the two individuals will be added to the population of the

next generation.

5.5.3 Crossover

Crossover creates a new individual from its parents. During crossover, parents are

selected from the mating pool by the roulette-wheel selection method. In this thesis,

position based crossover is used. Genes from one parent’s chromosome are swapped

with corresponding genes on other parent’s chromosome to create two children. We

assign n random numbers generated from uniform distribution to each gene position

of the parents, then copy the gene of parent 1 and 2 to offspring 1–2 and 2–1,

68

respectively. Each resulting offspring will be evaluated and better one of the two

individuals will be added to the population of the next generation.

Table 5.9 Parent–1

 1M 2M 3M 4M

1,1O 1 0 0 0

2,1O 0 0 1 0

3,1O 0 0 1 0

1,2O 0 0 0 1

2,2O 0 0 0 1

3,2O 0 1 0 0

1,3O 0 1 0 0

2,3O 0 1 0 0

Table 5.10 Parent–2

 1M 2M 3M 4M

1,1O 1 0 0 0

2,1O 0 1 0 0

3,1O 0 0 1 0

1,2O 0 0 0 1

2,2O 1 0 0 0

3,2O 0 0 0 1

1,3O 0 0 0 1

2,3O 0 1 0 0

Table 5.11 Child-1

 1M 2M 3M 4M

1,1O 1 0 0 0

2,1O 0 1 0 0

3,1O 0 0 1 0

1,2O 0 0 0 1

2,2O 1 0 0 0

3,2O 0 1 0 0

1,3O 0 0 0 1

2,3O 0 1 0 0

69

Table 5.12 Child-2

 1M 2M 3M 4M

1,1O 1 0 0 0

2,1O 0 0 1 0

3,1O 0 0 1 0

1,2O 0 0 0 1

2,2O 0 0 0 1

3,2O 0 0 0 1

1,3O 0 1 0 0

2,3O 0 1 0 0

Two parents are selected from the mating pool (Parent–1 in Figure 5.9 and

Parent–2 in Figure 5.10), n random numbers are generated from uniform distribution.

Generated numbers indicate the operation located in the selected rows of those

parents. Tables 5.9 and 5.10 illustrate the condition that the generated numbers are 2,

5, and 7. When childs 1 and 2 are being generated from parents, selected rows of

parent 1 passes only to child 2 and selected rows of parent 2 passes only to child 1.

Unselected rows of parent 1 passes only to child 1 and unselected rows of parent 2

passes only to child 2. Finally Child–1 in Table 5.11 and Child–2 in Table 5.12 are

generated.

5.5.4 Mutation

Mutation is a third genetic operator which is used for maintaining a genetic

diversity from one generation of a population to the next generation. Individuals in

the population choosen for mutation have a mutation rate. Mutation rate calculated in

the following part. Mutation usually works on a single chromosome and mutation

creates another chromosome or exchange the values of two string positions.

The purpose of the mutation operator is to prevent the genetic population from

converging to a local minimum, and to introduce to the population new possible

solutions.

70

1. Keep the diversity of the population in solution progress.

2. Preserve the algorithm from the premature convergence.

3. Lead for obtaining the best solutions for the reasonable number of generations.

In this thesis two mutation methods are used. First method is intelligent mutation,

second method is random mutation. These mutation operators only change the

assignment property of the chromosomes. In intelligent mutation; first, we select the

job which has the most raised value of the effective processing time; second, we

select the operation of the selected job which will mutate. Third, we select the

shortest processing time from alternative machine for the selected operation. In

random mutation; first, we choose the operation that will mutate. Second, we assign

a new machine to this operation. Assigned machine should be chosen randomly from

a set of machines that can prosses this operation.

Intelligent mutation reduce the effective processing time, which helps to minimize

the objectives which are makespan and the total workload of the machine. Random

mutation method provides the genetic diversity.

In intelligent mutation; first, we calculate effective procesing time of the jobs. For

example job1 has three operations (1,1O , 2,1O , 3,1O). These operations are assigned to

specific machines. Total processing times of these operations in these machines are

the effective processing times of the job1. In Figure 5.13, job 1 has the most raised

value of the effective processing time. Therefore, we have to cover the list of its

operations to reduce this duration. Operation 1,1O , can be assigned to the machine-1

instead of the machine-3. We reduce the effective processing time to 9 units of time

and the makespan to 6 units.

71

Table 5.13 Before intelligent mutation

1M 2M 3M 4M

1,1O 0 0 1 0

2,1O 0 0 1 0

3,1O 1 0 0 0

1,2O 0 0 1 0

2,2O 0 0 0 1

3,2O 0 1 0 0

1,3O 0 0 1 0

2,3O 0 0 0 1

Table 5.14 After intelligent mutation

1M 2M 3M 4M

1,1O 1 0 0 0

2,1O 0 0 1 0

3,1O 1 0 0 0

1,2O 0 0 1 0

2,2O 0 0 0 1

3,2O 0 1 0 0

1,3O 0 0 1 0

2,3O 0 0 0 1

In random mutation, we assign n random numbers generated from a uniform (0, 1)

distribution to their genes. If a random number given for a gene is less than a

mutation probability then the method of random mutation is used for mutating the

operation. We assign a new machine to this operation. Assigned machine should be

chosen randomly from a set of machines that can process this operation.

4+2+3=9

3+1=4

1+3+1+=5

1+2+3=6

72

Table 5.15 Before random mutation

1M 2M 3M 4M

1,1O 1 0 0 0

2,1O 0 0 0 1

3,1O 1 0 0 0

1,2O 0 0 1 0

2,2O 0 0 0 1

3,2O 0 1 0 0

1,3O 1 0 0 0

2,3O 0 0 0 1

Table 5.16 After random mutation

1M 2M 3M 4M

1,1O 1 0 0 0

2,1O 0 0 0 1

3,1O 1 0 0 0

1,2O 0 0 1 0

2,2O 0 0 0 1

3,2O 0 1 0 0

1,3O 1 0 0 0

5.6 Parameters

There are many parameters that can be considered when programming the GA

procedure. These parameters are crossover rate, mutation rate, genes rate. The good

performance of GA requires the proper choice of crossover and mutation operators.

In this section, the adjustment method of these parameters is given. A problem is

selected in initial experiments to evaluate the parameters. The considered problem is

run ten times for different combinations of these parameters. The average of ten

solutions is used as the performance criterion. In parameters adjustment method, at

first, one of them is changed in its domain and other parameters are fixed in the

Randomly select the
operation

73

smallest amount of their domain. So the best value for variation parameter will be

obtained by considering the performance criterion. This step is repeated for other

parameters to find the best setting of them. The results of the preliminary

experiments are shown in the following tables.

The higher the crossover and gene rate, the more quickly new structures are

introduced into the population. If the crossover and gene rate is too high,

high-performance structures are discarded faster than the selection can produce

improvements. If the crossover and gene rate is too low, the search may stagnate due

to the lower exploration rate. Current experiments allowed seven different crossover

rates, varying from 0.3 to 0.9 in increments of 0.1 and the mutation rate and the gene

rate are fixed at 0.05 and 0.3. The results show that the best crossover rate is 0.6.

Table 5.17 The effect of crosover rate
Crossover Rate Mutation Rate Gene Rate Makespan
0,3 0,05 0,3 31.5
0,4 0,05 0,3 32
0,5 0,05 0,3 32.1
0,6 0,05 0,3 30.5
0,7 0,05 0,3 31.9
0,8 0,05 0,3 31
0,9 0,05 0,3 31.5

Eight different gene rates are allowed, which vary from 0.1 to 0.8 in increments of

0.1, and the crossover rate and the mutation rate are fixed at 0.6 and 0.05

respectively. The results show that the best gene rate is 0.3.

Table 5.18 The effect of genes rate
Gene rate Crossover Rate Mutation Rate Makespan
0,1 0,6 0,05 32
0,2 0,6 0,05 31.5
0,3 0,6 0,05 30.5
0,4 0,6 0,05 31.4
0,5 0,6 0,05 31.4
0,6 0,6 0,05 32.1
0,8 0,6 0,05 30.9

Mutation is a search operator which increases the variability of the population.

The current experiments allowed seven values for the mutation rate, increasing from

74

0.005 to 0.05 and the crossover rate and the gene rate are fixed at 0.6 and 0.3

respectively.

Table 5.19 The effect of mutation rate

Mutation Rate Crossover Rate Gene Rate Makespan
0,005 0,6 0,3 31.1

0,010 0,6 0,3 31.6
0,015 0,6 0,3 32.2
0,02 0,6 0,3 32.1
0,03 0,6 0,3 31.8
0,04 0,6 0,3 31.3
0,05 0,6 0,3 30.5

In this thesis, the best values for parameters cp , gp and mp are obtained as 0.6,

0.3, and 0.05, respectively. We use these parameters in the experimental design part.

5.7 Computational Results

Computational results are divided into three parts which are makespan, setup time

and workload based on the size of problem instances. We use three problem

instances which are small and medium sizes, and we create setup matrices for these

problem instances. Setup matrices are created by the method which explained in the

previous parts.

We assess the performance of genetic algorithm factors in the context of optimal

solution. These factors are makespan calculation methods, initial population

generation methods, selection methods, and mutation methods. Makespan calculation

metods are MWR, SPT, SSTFR, RANDOM, LPT, NEIGHBORHOOD. Initial

population generation methods are random generation, Approach by Localization

and modified Approach by Localization method. Selection methods are best selection

and random selection methods. Mutation methods are intelligent mutation and

random mutation methods. Regresison analysis are used for investigating the effect

of the factors on the makespan, setup time and workload. Regression analysis is used

for understanding which independent variables are related to the dependent variable,

and for exploring the forms of these relationships. In restricted circumstances,

75

regression analysis can be used for inferring causal relationships between

independent and dependent variables. Makespan, setup time and workload are

dependent variables. Makespan calculation, initial population generation, selection,

and mutation methods are independent variables.

Small-sized total flexible flexible job shop problem

In this part, we consider the factors which affect total flexible small-sized flexible

job shop problems with sequence dependent setup time. The characteristics of the

problem are recirculation, total flexibility and setup time. In this problem, there are 4

machines, 3 jobs, and 8 operations. Initial population size is 100 and the number of

generation is 500. Parameters for this tested problem are shown in Table 5.20.

Table 5.20 Parameters for small-size test problem

Parameters Small-sized problem
Number of jobs 3
Number of machines 4
Number of operations 8
Initial population 100
Number of generation 500

This minimization problem is solved by a combination of different factors. Each

combination has four factors which are makespan, initial population, selection and,

mutation methods. Total number of combination is 72. Each combination run five

times, and minimum makespan, setup time and workload solutions are taken for each

run. In total, 360 minimum makespan, setup time and workload solutions are

obtained. Best solutions are obtained through approach by localization method,

neighborhood search mehod, best selection method, and intelligent mutation method.

Mean makespan, setup time and workload obtained by this combination are given in

Table 5.21. Regression analysis is used for these solutions to investigate the affect of

the factors on the makespan, setup time and workload. Regression analysis shows

that initial population generation, selection and mutation methods affect the

makespan and the workload performance. Initial population generation and selection

76

methods affect the setup time performance. Regression analysis results are

summarized in table 5.22.

Table 5.21 GA results for total flexible small size test problem

Mean Makespan Mean Setup Mean Workload

Best combination
results

9 5.5 23

Table 5.22 Regression analysis results for total flexible small size test problem
 Makespan

Method
Initial
Population
Method

Selection
Method

Mutation
Method

Makespan

Not effected effected effected effected

Setup

Not effected effected effected Not effected

Workload

Not effected effected effected effected

Medium-sized partial flexible flexible job shop problem

In this part, we consider the factors which affect partial flexible medium-sized

flexible job shop problems with sequence dependent setup time. The characteristics

of the problem are recirculation, partial flexibility and setup time. In this problem,

there are 8 machines, 8 jobs, and 27 operations. Initial population size is 100 and the

number of generation is 500. Parameters for this tested problem are shown in Table

5.23.

Table 5.23 Parameters for partial flexible medium-sized test problem

Problem size Medium
Number of jobs 8
Number of machines 8
Number of operations 27
Initial population 100
Number of generation 500

This minimization problem is solved by a combination of different factors. Each

combination has four factors which are makespan, initial population, selection and

mutation methods. Total number of combination is 72. Each combination run five

times and minimum makespan, setup time and workload solutions are taken for each

77

run. Totally 360 minimum makespan, setup time and workload solutions are

obtained. Best solutions are obtained through approach by localization method,

neighborhood search mehod, best selection method, and intelligent mutation method.

Mean makespan, setup time and workload obtained by this combination are given in

Table 5.24. Regression analysis is used for these solutions to investigate the affect of

the factors on the makespan, setup time, and workload. Regression analysis shows

that population generation and selection methods affect the makespan, workload and

setup time performance. Regression analysis results are summarized in table 5.25.

Table 5.24 GA results for partial flexible medium sized test problem

Mean Makespan Mean Setup Mean Workload

Best
combination
results

35.2 77 169.8

Table 5.25 Regression analysis results for partial flexible medium sized test problem

 Makespan
Method

Initial
Population
Method

Selection
Method

Mutation
Method

Makespan

Not effected effected effected Not effected

Setup

Not effected effected effected Not effected

Workload

Not effected effected effected Not effected

Medium-sized total flexible flexible job shop problems

In this part, we consider the factors which affect total flexible medium-sized

flexible job shop problems with sequence dependent setup time. The characteristics

of the problem are recirculation, total flexibility, and setup time. In this problem,

there are 10 machines, 10 jobs, and 30 operations. Initial population size is 100 and

the number of generation is 500. Parameters for this tested problem are shown in

Table 5.26.

78

Table 5.26 Parameters for total flexible medium-sized test problem

Problem size Medium
Number of jobs 10
Number of machines 10
Number of operations 30
Initial population 100
Number of generation 500

This minimization problem is solved by a combination of different factors. Each

combination has four factors which are makespan, initial population, selection and

mutation methods. Total number of combination is 72. Each combination run five

times and minimum makespan, setup time, and workload solutions are taken for each

run. In total, 360 minimum makespan, setup time, and workload solutions are

obtained. Best solutions are obtained through approach by localization method,

neighborhood search mehod, best selection method, and intelligent mutation method.

Mean makespan, setup time and workload obtained by this combination are given in

Table 5.27. Regression analysis is used for these solutions to investigate the affect of

the factors on the makespan, setup time, and workload. Regression analysis shows

that population generation and selection methods affect the makespan, workload, and

setup time performance. Regression analysis results are summarized in table 5.28.

Table 5.27 GA reults for total flexible medium sized test problem

Mean Makespan Mean Setup Mean Workload

Best
combination
results

29.2 136 193

Table 5.28 Regression analysis results for total flexible medium sized test problem

 Makespan
Method

Initial
Population
Method

Selection
Method

Mutation
Method

Makespan

Not effected effected effected Not effected

Setup

Not effected effected effected Not effected

Workload

Not effected effected effected Not effected

79

CHAPTER SIX

CONCLUSION

6.1 Conclusion

This thesis has investigated the problem of scheduling flexible job shops with

sequence dependent set up time to minimize makespan objective. The flexible job

shop is characterized by reentrant job shop through a number of different work

centers containing identical and non-identical parallel machines. The main feature of

this thesis is to combine the sequence dependent setup times with the processing

times and the workloads on both assignment and sequencing procedures. The

performance of genetic algorithm was also analyzed by taking into account the issues

such as initial population generation, sequencing, selection, and mutation methods.

We assess the performance of genetic algorithm factors in the context of optimal

solution for total flexible small-sized, total flexible medium-sized, and partial

flexible medium-sized problems. These factors are makespan calculation methods,

initial population generation methods, selection methods, and mutation methods.

Makespan calculation metods are MWR, SPT, SSTFR, RANDOM, LPT,

NEIGHBORHOOD. Initial population generation methods are random generation,

Approach by Localization, and modified Approach by Localization method.

Selection methods are best selection and random selection methods. Mutation

methods are intelligent mutation and random mutation methods. Regresison analysis

are used for investigating the effect of the factors on the makespan, setup time, and

workload. The genetic algorithm was developed with the purpose of solving total

flexible small-sized, total flexible medium-sized, and partial flexible medium-sized

problems and exploiting in comparison to different makespan calculation, initial

population generation, selection, and mutation methods.

Experimental designs show that initial population generation, selection, and

mutation methods affect the makespan, and workload performance for total flexible

small sized problem. Initial population generation and selection methods affect the

79

80

setup time performance. For partial flexible medium sized problem, initial population

generation and selection methods affect makespan, workload, and setup time

performance. For total flexible medium-sized problem initial population generation

and selection methods affect makespan, workload and setup time performance.

6.2 Future Research

In this thesis, we focused on flexible job shop scheduling problem with sequence

dependent setup time with makespan objective. For future studies, different

objectives are added such as due date, lateness, and tardiness. In this thesis, setup for

a job cannot begin until the job is available for the current work center and the

desired machine in the work center is idle. For future studies we may consider a

setup condition in which a machine desired for a job can start setup activities

immediately after being idle even though the job is not arrived to the machine yet.

81

REFERENCES

Andrea R., & Gino D. (2007) Flexible job-shop scheduling with routing flexibility

and separable setup times using ant colony optimisation method. Robotics and

Computer-Integrated Manufacturing, 23, 503–516

Brandimarte P., (1993) Routing and scheduling in a flexible job shop by Taboo

search. Annals of Operations Research, 41 (1), 157–183.

Brucker, P., &. Neyer, J. (1998) Tabu Search for the Multi-mode Job-Shop Problem.

Operations Research Spektrum,20, 21-28.

Bruker, P., & Schlie, R. (1990). Job-shop scheduling with multi-purpose machines.

Computing, 45, 369–375.

Cheng, R., Gen, M., & Tsujimura, Y. (1996) A Tutorial Survey of Job-shop

Scheduling Problems Using Genetic Algorithms, Part I: Representation.

Computers & Industrial Engineering,30,.983-997.

Cheng, R., Gen, M., & Tsujimura, Y. (1999) A Tutorial Survey of Job-shop

SchedulingProblems Using Genetic Algorithms, Part II: Hybrid Genetic Search

Strategies. Computers &Industrial Engineering,36, 343-364.

Dauzere, Peres S., & Paulli, J. (1997) An Integrated Approach for Modeling and

Solving the General Multiprocessor Job-Shop Scheduling Problem using Tabu

Search. Annals of Operations Research,70, 281-306.

Fattahi, P., & Fallahi, A. (2010) Dynamic scheduling in flexible job shop systems by

considering simultaneously efficiency and stability. CIRP Journal of

Manufacturing Science and Technology, 2, .114–123.

82

Chen, H., Ihlow, J., & Lehmann, C. (1999) A genetic algorithm for flexible job-shop

scheduling. The proceedings of the 1999 IEEE international Conference on

Robotics & Automation, Detroit, 1120–1125.

Fattahi, P., Mehrabad, M.S., & Jolai, F. (2006) Mathematical modeling and heuristic

approaches to flexible job shop scheduling problems. Journal of Intelligent

Manufacturing, 18, 331-342.

Gao,J., Sun, L., & Gen, M. (2008) A hybrid genetic and variable neighborhood

descent algorithm for flexible job shop scheduling problems. Computer Operation

Research ,35,.2892–2907.

Gao, J., Gen, M., Sun, L., & Zhao, X.(2008) A hybrid of genetic algorithm and

bottleneck shifting for multiobjective flexible job shop scheduling problems.

Computers & Industrial Engineering, 53(1), 149–162.

Glover, F. (1990) Tabu Search – Part II. ORSA Journal on Computing, 2, pp.4-32.

Hurink, E., Jurisch, B., & Thole, M. (1994). Tabu search for the job shop scheduling

problem with multi-purpose machines. Operations Research Spektrum,15, 205–

215.

Joseph, Y.T. Leung, & James, H. Anderson (2004) Handbook on Scheduling:

Algorithms, Models, and Performance Analysis CRC Press, Boca Raton, FL,

USA.

Kacem, I., Hammadi, S., & Borne, P. (2003) Approach by Localization and

Multiobjective Evolutionary Optimization for Flexible Job-Shop Scheduling

Problems. IIE transactions on Systems, Man, and Cybernetics,32,1-13.

83

Masghouni, K., Hammadi, S., & Borne, P.(1997) Evolution Programs for Job-shop

Scheduling. Proc. IEEE International Conference on Computational and

Simulation,720- 725.

Mason, S.J., Fowler, J.W., & Carlyle, W.M. (2002) A Modified Shift Bottleneck

Heuristicfor Minimizing Total Weight Tardiness in Complex Job Shops. Journal

of Scheduling,5,247-262.

Mason, S.J., & Oey, K. (2003) Scheduling Complex Job Shops Using Disjunctive

Graphs: A Cycle Elimination Procedure. International Journal of Production

Research,41,981-994.

Mastrolilli, M., & Gambardella, L.M. (2000) Effective Neighbourhood Functions for

the Flexible Job Shop Problem. Journal of Scheduling,3,3-20.

Gen, M..,Gao, J., & Lin, L.(2009)Multistage-based genetic algorithm for flexible

job-shop scheduling problem. Intelligent and Evolutionary System SCI,187,. 183-

196.

Ho, J.C. Tay, & E.M.K. Lai (2007) An effective architecture for learning and

evolving flexible job-shop schedules. European Journal of Operational

Research,179 (2), 316–333.

Pezzella F, Morganti G, & Ciaschetti G (2008) A genetic algorithm for the flexible

job-shop scheduling problem. Computer Operation Research, 35,3202–3212.

Pinedo, M. (2002) Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, Inc,

New Jersey

Ramiro,V., Camino, R., Vela, J.P., & Alberto, G.(2003) A Knowledge-based

Evolutionary Strategy for Scheduling Problems with Bottlenecks. European J. of

Operational Research,145 (1), 57- 71

84

Shopova, E.G., & Vaklieva, G. (2006) BASIC—A genetic algorithm for

engineering problems solution. Computers and Chemical Engineering, 30, 1293–

1309.

Xia, W.J., & Wu, Z.M. (2005). An effective hybrid optimization approach for multi-

objective flexible job-shop scheduling problems. Computers & Industrial

Engineering, 48, 409–425.

Valls, V., Perez, M.A., & Quintanilla, M.S. (1998) A Tabu Search Approach to

Machine Scheduling. European Journal of Operational Research, 106, 277-300.

Wang, W., & Brunn, P. (2000) An Effective Genetic Algorithm for Job Shop

Scheduling. Proceeding in Instn Mechanical Engineering, 214, 293-300.

Tay, J.C.,& Ho, N.(2004) GENACE: An Efficient Cultural Algorithm for Solving the

Flexible Job-Shop Problem. Proc. IEEE, Congres of Evolutionary Computation,

1759- 1766.

85

APPENDIX A: Problem Instances

Table A.1: Large Example (10 jobs, 10 machines, total flexibility)

 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

1,1O 1 4 6 9 3 5 2 8 9 5

2,1O 4 1 1 3 4 8 10 4 11 4

3,1O 3 2 5 1 5 6 9 5 10 3

1,2O 2 10 4 5 9 8 4 15 8 4

2,2O 4 8 7 1 9 6 1 10 7 1

3,2O 6 11 2 7 5 3 5 14 9 2

1,3O 8 5 8 9 4 3 5 3 8 1

2,3O 9 3 6 1 2 6 4 1 7 2

3,3O 7 1 8 5 4 9 1 2 3 4

1,4O 5 10 6 4 9 5 1 7 1 6

2,4O 4 2 3 8 7 4 6 9 8 4

3,4O 7 3 12 1 6 5 8 3 5 2

1,5O 7 10 4 5 6 3 5 15 2 6

2,5O 5 6 3 9 8 2 8 6 1 7

3,5O 6 1 4 1 10 4 3 11 13 9

1,6O 8 9 10 8 4 2 7 8 3 10

2,6O 7 3 12 5 4 3 6 9 2 15

3,6O 4 7 3 6 3 4 1 5 1 11

1,7O 1 7 8 3 4 9 4 13 10 7

2,7O 3 8 1 2 3 6 11 2 13 3

3,7O 5 4 2 1 2 1 8 14 5 7

1,8O 5 7 11 3 2 9 8 5 12 8

2,8O 8 3 10 7 5 13 4 6 8 4

3,8O 6 2 13 5 4 3 5 7 9 5

1,9O 3 9 1 3 8 1 6 7 5 4

2,9O 4 6 2 5 7 3 1 9 6 7

3,9O 8 5 4 8 6 1 2 3 10 12

1,10O 4 3 1 6 7 1 2 6 20 6

2,10O 3 1 8 1 9 4 1 4 17 15

3,10O 9 2 4 2 3 5 2 4 10 23

86

Table A.2: Medium Example (8 machines, 8 jobs; partial flexibility)

 1M 2M 3M 4M 5M 6M 7M 8M

1,1O 5 3 5 3 3 X 10 9

2,1O 10 X 5 8 3 9 9 6

3,1O X 10 X 5 6 2 4 5

1,2O 5 7 3 9 8 X 9 X

2,2O X 8 5 2 6 7 10 9

3,2O X 10 X 5 6 4 1 7

4,2O 10 8 9 6 4 7 X X

1,3O 10 X X 7 6 5 2 4

2,3O X 10 6 4 8 9 10 X

3,3O 1 4 5 6 X 10 X 7

1,4O 3 1 6 5 9 7 8 4

2,4O 12 11 7 8 10 5 6 9

3,4O 4 6 2 10 3 9 5 7

1,5O 3 6 7 8 9 X 10 X

2,5O 10 X 7 4 9 8 6 X

3,5O X 9 8 7 4 2 7 X

4,5O 11 9 X 6 7 5 3 6

1,6O 6 7 1 4 6 9 X 10

2,6O 11 X 9 9 9 7 6 4

3,6O 10 5 9 10 11 X 10 X

1,7O 5 4 2 6 7 X 10 X

2,7O X 9 X 9 11 9 10 5

3,7O X 8 9 3 8 6 X 10

1,8O 2 8 5 9 X 4 X 10

2,8O 7 4 7 8 9 X 10 X

3,8O 9 9 X 8 5 6 7 1

4,8O 9 X 3 7 1 5 8 X

87

Table A.3: Small Example (3 jobs, 4 machines; total flexibility)

 1M 2M 3M 4M

1,1O 1 3 4 1

2,1O 3 8 2 1

3,1O 3 5 4 7

1,2O 4 1 1 4

2,2O 2 3 9 3

3,2O 9 1 2 2

1,3O 8 6 3 5

2,3O 4 5 8 1

	img001
	417417.pdf

