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A GENETIC ALGORITHM FOR A FLEXIBLE JOB SHOP SCHEDULING 

PROBLEM WITH SEQUENCE DEPENDENT SET UP TIMES 

 
ABSTRACT 

 

This thesis addresses the problem of scheduling flexible job shops with sequence 

dependent setup times, and aims at minimizing makespan as an objective by using 

genetic algorithms. The flexible job shop is characterized by job flow through a 

number of work centers that contain identical or nonidentical parallel machines. 

Flexible Job Shop Problems divided into two subproblems. In the first subproblem, 

assignments of operations to machines are made. In the second subproblem, 

sequencing problem is solved. For the first subproblem, three assignment methods 

were used in this thesis. The first method is “Approach by Localization” which 

assigns each operation to the suitable machine by taking into accounts the processing 

times and workloads of machines. This assignment procedure assumes that there are 

no setup times. The second method is modified version of the first method. In this 

method, we modified the assignment procedure by using sequence dependent setup 

times in addition to processing times and workloads of machines. In the third 

method, assignments were made randomly just for the comparison purposes. For the 

second subproblem, dispatching rules such as shortest processing time (SPT), most 

work remaining (MWR), longest processing time (LPT), shortest setup time first rule 

(SSTFR), random rule and neighborhood search were applied to sequence the 

machines. 

 

The main feature of this thesis is to combine the sequence dependent setup times 

with the processing times and the workloads on both assignment and sequencing 

procedures. The performance of genetic algorithm was also analyzed by taking into 

account the issues such as, initial population generation, sequencing, selection and 

mutation methods. 

 

Keywords: Flexible Job Shop Scheduling, Sequence Dependent Set-up Time, 

Genetic Algorithms  
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SIRA BAĞIMLI HAZIRLIK ZAMANLI ESNEK ATÖLYE TİPİ 

ÇİZELGELEME PROBLEMİ İÇİN BİR GENETİK ALGORİTMA 

 

ÖZ 

 

Bu tezde, sıra bağımlı hazırlık zamanlı esnek atölye çizelgeleme problemlerinden, 

tamamlanma zamanı minimizasyonu Genetik Algoritma ile çözülmüştür. Esnek 

atölye çizelgeleme problemlerinde iş akışı paralel ve paralel olmayan iş istasyonları 

arasında olmaktadır. Esnek atölye çizelgeleme problemi iki alt problemden 

oluşmaktadır. İlk problem; her bir operasyonun makinalara atamaların yapılması, 

ikinci problem ise ataması yapılan makina önündeki iş sıralamaların yapılmasıdır. Bu 

tezde, ilk problemde, üç makine atama yöntemi kullanılmıştır. İlk yöntem her bir 

operasyonu makinalara atarken makina yüklerini ve iş sürelerini göz önünde 

bulundurarak atama yapan “Approach by Localization” yöntemidir. Bu yöntem 

makine hazırlık zamanlarını göz önünde bulundurmamaktadır. İkinci yöntem 

“Approach by Localization” yönteminin sıra bağımlı hazırlık zamanlarını da makina 

yükleri ve iş süreleri ile birlikte göz önünde bulundurdurarak modife edildiği 

yöntemdir. Üçüncü yöntem ise karşılaştırma amaçlı kullanılan, makine atamalarının 

rastgele yapıldığı yöntemdir. İkinci problemde operasyon ataması yapılmış her bir 

makina önündeki sıralamalar, En Kısa Hazırlık Zamanı, En Kısa İşlem Zamanı, En 

Uzun İşlem Zamanı, En Uzun Kalan Süre ve Rasgele, öncelik dağıtım kuralları ile 

oluşturulmaktadır. 

 

Bu tezde, makine atamaları ve makine önündeki sıralamalar yapılırken sıra 

bağımlı hazırlık zamanları iş süreleri ve makine yükleri ile birlikte ele alınmıştır. 

Farklı problem büyüklüklerinde başlangıç popülasyonu yaratma, sistemde kalma 

süresi hesaplama, seçme ve mutasyon yöntemlerinin genetik algoritma performansı 

üstünde etkileri araştırılmıştır. 

 

Anahtar Sözcükler: Esnek Atölye Çizelgeleme, Sıra Bağımlı Hazırlık Zamanı, 

Genetik Algoritmalar 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Motivation of the Research 

 

Many modern manufacturing environments are flexible job shops. Advanced 

machines allow different jobs to be processed on the same machine by changing 

machine tools. Setup activities of a new job then depend on the previous job on the 

machine. Some complicated products require multiple visits to the same processing 

station and all jobs are not ready to start their processing operation at the same time. 

 

This thesis is related to reentrant flexible job shop with sequence dependent setup 

time. A reentrant flexible job shop refers to the machine environment in which each 

job should be processed on each one of a series of work centers has its own 

predetermined route to follow, and may visit a machine more than once. 

 

Scheduling reentrant flexible job shops with the objective of minimizing 

makespan is one of the most complex scheduling problems and has been proved to 

be NP-hard. There are several researchers who developed methods to solve this 

problem. Processing restrictions, such as sequence-dependent setup times and 

recirculation have received more attention from many researchers ((Kacem, 

Hammadi and Borne, 2003); (Chen and Wu, 2007); (Pezzella, Morganti and 

Ciaschetti, 2008); (Gao, Sun and Gen, 2008); (Gen, Gao and Lin, 2009); (Fattahi and 

Fallahi, 2010)). 

 

In order to specify assumptions for this thesis, we briefly describe the 

characteristics of the problem in the following list. 

 

1. Each job consists of one fixed sequence of operations. 

2. Each machine can process at most one job at a time, and each job can only be 

processed on one machine at a time. 
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3. There are no interruptions and cancellations between jobs. 

4. All machines are available continuously. 

5. There are identical or nonidentical paralel machines 

6. All jobs can be started at t = 0. 

7. All machines are available at t = 0. 

8. There are sequence dependent setup time between operations. 

9. Setup for a job cannot begin until the job is available to the current work 

center and the desired machine in the work center is idle. 

10. All data including processing times and setup times are deterministic. 

11. There are no precedence constraints among operations of different jobs. 

12. Neither release times nor due dates are specified. 

13. There are two cases, the first is that all machine can process all the jobs (total 

flexibility), and the other is that all machines can not process all the jobs 

(partial flexibility). 

 

The significance of this thesis can be summarized as follows: 

 

1. This thesis takes into consideration flexible job shop problems including 

identical or nonidentical parallel machines and sequence-dependent setup 

times. These characteristics usually occur in real world production 

environments.  

2. Genetic Algorithm is used for solving the flexible job shop scheduling 

problem with the sequence dependent setup time. 

3. Test problems of different sizes have been solved and regression analysis has 

been used for showing the effects of makespan calculation, initial population 

generation, selection and mutation methods on the genetic algorithm 

performance. 
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1.2 Thesis Outline 

 

In Chapter Two, the classification of problem is given. In Chapter Three, the 

literature review of flexible job shop scheduling problems is given. In Chapter Four, 

basic information about genetic algorithm is given, In Chapter Five, the design and 

the implementation issues of genetic algorithm for flexible job shop scheduling 

problems with sequence dependent setup time are discussed. In Chapter Six, 

conclusions and the future research is given. 
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CHAPTER TWO 

SCHEDULING PROBLEMS 

 

2.1 Introduction 

 

Scheduling is a decision making process that is used on a regular basis in many 

manufacturing and services industries. It deals with the allocation of resources to 

tasks over given time periods, and its goal is to optimize one or more objectives 

(Pinedo, 2002). 

 

Baker (1992) categorizes the major scheduling models by specifying the resource 

configuration and the nature of tasks. The resources and tasks in an organization can 

take many different forms. The resources may be machines and the tasks may be 

operations in a production process.  

 

Pinedo (2002) describes the scheduling problems according to four types of 

information: 

 

1. The jobs and operations to be processed. 

2. The number and types of machines that the shop comprises. 

3. Disciplines that restrict the manner in which assignments can be made. 

 

4. The criteria by which a schedule will be evaluated. 

 

The nature of job arrivals provides the distinction between static and dynamic 

problems. If a set of jobs available for scheduling does not change over time, the 

system is called as static, in contrast to cases in which new jobs appear over time, 

where the system is called as dynamic. Traditionally, static models have proven to be 

more tractable than dynamic models, and have been studied more extensively (Baker, 

1992). 

 

 

4 
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Two kinds of feasibility constraints are commonly found in scheduling problems. 

First, there are limits on the capacity of machines, and the second, there are 

technological restrictions on the order in which some jobs can be performed 

 

Scheduling functions rely on mathematical techniques and heuristic methods to 

allocate limited resources to the activities that must be done. This allocation of 

resources must be done in such a way that the company optimizes its objectives and 

achieves its goals. Objectives may have many different forms, such as minimizing 

the time needed for completing all activities, minimizing the number of activities that 

are completed after the committed due dates and so on (Pinedo, 2002). 

 

2.2 Notation of Scheduling Problems 

 

Scheduling problem descriptions include number of abbreviations and symbols 

that represent characteristics and functions or variables. Graham (1979) classifies 

machine scheduling problems by a standard three-field notation. This notation is 

represented by  |  |   which is generic notation of scheduling problems. First field 

“” is used to describe the machine environment. This field allows for the 

identification of single machine, various types of parallel machines, flow shop, job 

shop, flexible job shop, and flexible flow shop problems. The second field “” is 

used for describing the task and resource characteristics. This field includes 

parameter settings for characterizing the possibility for release dates, precedence 

constraints, sequence dependent setup times, preemptions, storage / waiting 

constraints, machine eligibility and recirculation. The third field “” is used for 

denoting the performance measures. This field includes completion time, flow time, 

tardiness and earliness, etc. 

 

: Machine Configuration 

(1) Single-Machine 

( mP ) Indentical Parallel-Machine 

( mR ) Unrelated Parallel Machine 
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( mF ) Flow Shop  

( mJ ) Job Shop  

( cFF ) Flexible Flow Shop 

( cFJ ) Flexible Job Shop 

 

: Constraints 

( jr ) Release dates 

(prec) Precedence constraints 

( kjs , ) Sequence dependent setup times 

(prmp) Preemptions (resume or repeat) 

(block) Storage / waiting constraints  

( jM ) Machine eligibility 

(circ) Recirculation 

 

: Objectives and Performance Measures 

1. Completion time 

2. Flow time 

3. Tardiness 

4. Earliness 

5. Lateness 

6. Throughput 

7. Late/tardy jobs 

 

2.2.1 Machine Environment ()  

 

The possible machine environments are single machine, parallel machine, flow 

shop and job shop models. 
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2.2.1.1 Single Machine  

 

In this case, there is only one machine (= 1). The basic single machine model is 

fundamental in the study of sequencing (Pinedo, 2002). The simplest sequencing 

problem is the one in which there is a single resource or machine. Single machine 

models are also important in decomposition methods, when scheduling problems in 

more complicated machine environments are divided into a number of smaller single 

machine scheduling problems. 

 

2.2.1.2 Parallel Machine 

 

Parallel machine model is a generalization of the single machine model. Many 

production environments consist of several stages or workcenters, each with a 

number of machines in parallel. The machines at a workcenter may be identical or 

may not be exactly identical (Pinedo, 2002). 

 

Identical Parallel Machines (= P):  In this case, m identical machines are in the 

system and any job can run on any machine, each having the same processing time.  

 

Unrelated Parallel Machines ( = R): In this case, m identical machines are in 

the system and any job can run on any machine, each having the different processing 

time. 

 

2.2.1.3 Flow Shop  

 

In a flow shop environment ( F ), all routes of all jobs are identical and all 

jobs visit the same machines in the same sequence. The job sequence may vary from 

machine to machine since jobs may be resequenced between the machines. In the 

classical flow shop problem, processing times are sequence-independent, fixed, and 

known in advance. Each machine is continuously available from time zero, and 

operations are processed without preemption (Pinedo, 2002). 
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In the flow shop, each job needs to visit the machines in the same fixed order, 

which is assumed to be  m,...,2,1 . A machine after the completion of current job 

chooses to process any job in its queue. In many applications, the machines also need 

to process the jobs in the order that the jobs enter in the queue. Such schedules are 

called as first in first out (FIFO) schedules and the flow shop is referred to as the 

permutation flow shop (PFSP). 

 

2.2.1.4 Job Shop  

 

The job shop scheduling problem ( J ) is to determine a schedule of jobs that 

have prespecified operation sequences in a multi-machine environment. In the 

classical job shop scheduling problem, n  jobs are processed for completion on m 

unrelated machines. For each job, technology constraints specify a complete, distinct 

routing which is fixed and known in advance. Processing times are sequence-

independent, fixed, and known in advance. Each machine is continuously available 

from time zero, and operations are processed without preemption (Pinedo, 2002). 

 

The general JSSP is strongly NP-hard. In order to match today’s market 

requirements, manufacturing systems must become more flexible and efficient. To 

achieve these objectives, the systems need not only automated and flexible machines, 

but also flexible scheduling systems. The flexible job shop scheduling problem 

extends JSSP by assuming that, for each given operation, there is at least one 

instance of the machine type necessary to perform it. 

 

2.2.1.5 Flexible Flow Shop  

 

Flexible flow shop environment (= cFF ) is a generalization of the flow shop. It 

consists of a number of stages in series with a number of machines in parallel at each 

step. The routes of all jobs are identical and all jobs visit the same workcenters in the 

same sequence. The job sequence may vary from machine to machine since jobs may 

be resequenced between the machines.  
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In the flow shop, each job needs to visit the machines in the same fixed order, but 

in the flexible flow shop, each job needs to visit the any machines which are parallel 

in the same fixed order. In the classical flexible flow shop problem, processing times 

are sequence-independent, fixed, and known in advance. Each machine is 

continuously available from time zero, and operations are processed without 

preemption. 

 

2.2.1.6 Flexible Job Shop  

 

A generalization of the job shop is the flexible job shops with workcenters that 

have multiple machines in parallel (= cFJ ).  The flexible job shop scheduling 

problem could be formulated as follows. There is a set of n  jobs  nJJJ ,...,1  to be 

processed. Each job iJ  consists of a predetermined sequence of operations. Each job 

iJ  may have different number of operation. There is a set of m  machines M = { 1M , 

. . , mM }. For each operation jiO , , there is a set of alternative machines set jiM ,  for 

performing it. Then each job could be processed more than once on the same 

machine. The processing time of each operation on each machine is predefined. All 

jobs are released at time 0. All machines are available at time 0, the preemption is 

not allowed, and each machine could perform at most one operation at any time. 

There are no precedence constraints among operations of different jobs. 

 

2.2.2 Side Constraints ()  

 

The side constraints capture various restrictions on the scheduling problem. These 

are release dates, precedence constraints, setup times, preemption, storage / waiting 

constraints, machine eligibility, and recirculation. 

 

Release Dates (= jr ): The release date jr of job j is also known as the ready date. 

It is the time the job arrives at the system, the earliest time at which job j can start its 

processing. 
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Precedence Constraints (= prec): In scheduling problems, a job often can start 

only after a given set of other jobs has been completed. Such constraints can be 

described by a precedence constraints graph.  

 

Setup Times ( = kjs , ): A time period required for preparing a machine. For 

example, probably the machine needs to be cooled down after the job j before 

starting the job k. Unless otherwise specified, these set-up times are assumed to be 0. 

 

Preemption (= prmp): Sometimes, during the execution of a job, an event 

forcing the scheduler to interrupt the processing of that job occurs in order to make 

the machine available for another job. 

 

Storage and waiting constraints (=block): In many production systems, the 

amount of the space available for Work-In-Process (WIP) storage is limited. This 

puts an upper bound on the number of jobs waiting for a machine. In job shops, this 

can cause blocking. Suppose the storage space between two successive machines is 

limited. When the buffer is full, the upstream machine cannot release a job that has 

been completed into the buffer. Instead, that job has completed its processing and 

thus prevents that machine from processing another job.  

 

Machine eligibility constraints (= jM ): In a parallel machine environment, it 

may often be the case that the job j  can not be assigned to just any of the machines 

available; it can only go on a machine that belongs to a specific subset jM . This may 

occur when the m  machines in parallel are not exactly identical. 

 

Recirculation (=circ): When some jobs visit a machine group more than once, 

this is called as recirculation. 
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2.2.3 Objective () 

 

The objective function decides how the scheduling algorithm is designed. 

However, there is a large list of possible objective functions depending on the 

application. The classical objective functions are either of “minsum” or “minmax” 

type. Oyetunji (Oyetunji, 2009) addressed mathematical expressions for about 29 

distinct scheduling objectives. 

 

 2.2.3.1 Performance Measures Based on Completion Time 

 

The completion time of the job iJ  is the time at which the processing of the job 

iJ  finishes. For a multi operation job, it is the time the last operation of the job iJ  

finished. Oyetunji’s (Oyetunji, 2009) classification of scheduling criteria based on 

completion time of jobs are as follows: 

 

The total completion time is the sum of all the completion times of the jobs. A 

common problem is to minimize the total completion time.  

 

Total completion time( totC ) =


n

i
iC

1

 (2.1) 

 

Total weighted completion time is the sum of all the completion times multiplied 

by relative weights of the jobs. A common problem is to minimize the total weighted 

completion time.  

 

Total weighted completion time ( totwC ) =


n

i
iiCw

1

 (2.2) 

 

Average completion time gives the average time required for completing each job. 

A common problem is to minimize the average completion time.  
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Average completion time ( avgC ) = 


n

i
iC

n 1

1
 (2.3) 

 

Average weighted completion time is the total weighted completion time divided 

by the number of jobs. Since the number of jobs in any particular problem instance is 

constant, the total weighted completion time criterion is equivalent to the total 

weighted completion time criterion. A common problem involves the minimization 

of the total weighted completion time.  

 

Average weighted completion time( avgwC ) = 


n

i
iiCw

n 1

1
 (2.4) 

 

The maximum completion time also called as makespan is the completion time of 

the last job. A common problem of interest is to minimize maxC  , or to minimize the 

completion time of the last job leaving the system. 

 

Maximum completion time ( maxC ) = max ( 1C  , 2C , …, nC ) (2.5) 

 

2.2.3.2 Performance Measures Based on Flow Time 

  

The flow time of the job iJ  is the time that the job iJ  spends in the workshop. It 

is the time interval between the time during which the job is released to the shop and 

the time during which the processing of the job is completed. Oyetunji’s (Oyetunji, 

2009) classification of scheduling criteria based on completion time of jobs are as 

follows: 

 

The total flow time is the sum of all flow times of the jobs. A common problem is 

to minimize the total flow time.  

 

Total flow time( totF ) = 



n

i
İ

n

i
ii

n

i
i

n

i
i rCrCF

1111

)(  (2.6) 
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Total weighted flow time is the sum of all the flow times multiplied by relative 

weights of the jobs. A common problem is to minimize the total weighted flow time. 

 

Total weighted flow time( totWF ) = 



n

i
ii

n

i
ii

n

i
ii rwCwFw

111

 (2.7) 

 

The average flow time gives the average time spent by each job in the shop. A 

common problem is to minimize the average flow time. The average flow time 

criterion is equivalent to the total flow time criterion. 

 

Average flow time( avgF ) = 



n

i
i

n

i
i

n

i
i r

n
C

n
F

n 111

111
 (2.8) 

 

Average weighted flow time is considered as an usual problem.  

 

Average weighted flow time( avgwF ) = 



n

i
ii

n

i
ii

n

i
ii rw

n
Cw

n
Fw

n 111

111
 (2.9) 

 

The maximum flow time is the longest one of the flow times of the jobs. A 

common problem of interest is to minimize maxF .  

 

Maximum flow time ( maxF ) = max ( 1F  , 2F  , …, nF   ) (2.10) 

 

maxF  = max{( 1C  - 1r  ), ( 2C  - 2r ), …, ( nC  - nr )} (2.11) 

 

2.2.3.3 Performance Measures Based on Lateness 

 

This is the difference between the completion time and the due date which is the 

expected delivery time of the job. Oyetunji’s (Oyetunji, 2009) classification of 

scheduling criteria based on completion time of jobs are as follows: 

 



14 

 

The total lateness is the sum of all latenesses of the jobs. A common problem is to 

minimize the total lateness. 

 

Total lateness( totL ) = 
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Total weighted lateness is the sum of all latenesses multiplied by relative weights 

of the jobs. A common problem is to minimize the total weighted lateness. 

 

Total weighted lateness( totwL ) = 
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The average lateness is total lateness divided by the number of jobs. Therefore, 

minimizing total lateness also minimizes the average lateness. A common problem is 

to minimize the average lateness.  

 

Average lateness( avgL ) = 
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The average weighted lateness is total weighted lateness divided by the number of 

jobs. Also, minimizing total weighted lateness also minimizes the average weighted 

lateness. A common problem is to minimize the average weighted lateness.  

Average weighted lateness( avgwL ) = 
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  (2.15) 

 

The maximum lateness ( maxL ) is the longest lateness of the jobs. A common 

problem of interest is to minimize maxL . 

 

Maximum lateness ( maxL ) = max ( 1L , 2L  , …, nL )  (2.16) 

 

maxL = max{( 1C  - 1d  ), ( 2C  - 2d  ), …, ( nn dC   )}  (2.17) 
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2.2.3.4 Performance Measures Based on Number of Late/Tardy Jobs 

 

A job is said to be late or tardy if it is completed  after its due date. Oyetunji’s 

(Oyetunji, 2009) classification of scheduling criteria based on completion time of the 

jobs are as follows: 

 

Let  iU  =


 

otherwise

dC ii

,0

,1
      ni ,..,1  

 

Number of tardy jobs (NT) =


n

i
iU

1

 

The number of tardy jobs measures the number of jobs that are completed after 

their due dates. Typical problem of interest is to minimize the number of tardy jobs. 

Minimizing number of tardy jobs criterion is equivalent to maximizing number of 

early jobs criterion. 

 

Average number of tardy jobs ( avgNT ) =The average number of tardy jobs is the 

number of tardy jobs divided by the number of jobs. Typical problem of interest is to 

minimize the average number of tardy jobs. Minimizing the average number of tardy 

jobs criterion is equivalent to maximizing the average number of early jobs criterion. 

 

2.2.3.5 Performance Measures Based on Tardiness  

 

Tardiness is similar to the lateness except that it carries only positive values. 

Whenever a job is completed before its due dates, its lateness is negative while its 

tardiness is zero. Oyetunji’s (Oyetunji, 2009) classification of scheduling criteria 

based on completion time of jobs are as follows: 

 

The total tardiness ( totT ) is the sum of all the tardiness of the jobs. A common 

problem is to minimize the total tardiness. 

Total tardiness ( totT ) = )}](,0{[max
11

ii

n

i

n

i
i dCT  



  (2.18) 



16 

 

 

This is the sum of all the tardiness multiplied by the relative weights of the jobs. 

A common problem is to minimize the total weighted tardiness.  

 

Total weighted tardiness ( totwT ) = )}](,0{[max
11

ii

n

i
i

n

i
ii dCwTw  



  (2.19) 

The average tardiness is total tardiness divided by the number of jobs. Therefore, 

minimizing total tardiness criterion also minimizes the average tardiness criterion. A 

common problem is to minimize the average tardiness. 

 

Average tardiness ( avgT ) = )}](,0{[max
11
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i
i dC
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n
 



  (2.20) 

 

The average weighted tardiness is the total weighted tardiness divided by the 

number of the jobs. Minimizing total weighted tardiness also minimizes the average 

weighted tardiness. A common problem is to minimize the average weighted 

tardiness.  

 

Average weighted tardiness ( avgwT ) = )}](,0{[max
11

11
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Tw

n
 



 

(2.21) 

 

The maximum tardiness is the longest tardiness of the jobs. A common problem 

of interest is to minimize maxT .  

 

Maximum tardiness( maxT ) = max ( 1T  , 2T , …, nT  )  (2.22) 

maxT = max{0, ( 1C  - 1d ), ( 2C  - 2d ), …, ( nC  - nd )}  (2.23) 

 

2.2.3.6 Performance Measures Based on Earliness 

 

Earliness is the opposite of lateness; hence, whenever the lateness is negative, the  

earliness is positive, and whenever the lateness is positive, the earliness is zero. 
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Oyetunji’s (Oyetunji, 2009) classification of scheduling criteria based on completion 

time of the jobs are as follows: 

 

The total earliness ( totE ) is the sum of all earlinesses of the jobs. A common 

problem is to maximize the total earliness.  

 

Total earliness( totE ) = }]0),{([max
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  (2.24) 

 

Total weighted earliness is the sum of all earliness multiplied by the relative 

weights of the jobs. A common problem is to maximize the total weighted earliness.  

 

Total weighted earliness ( totwE ) = }]0),{([max
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  (2.25) 

 

The average earliness is total earliness divided by the number of jobs. A common 

problem is to maximize the average earliness. Therefore, maximizing total earliness 

criterion also maximizes the average earliness criterion.  

 

Average earliness ( avgE ) = }]0),{([max
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  (2.26) 

 

The average weighted earliness is the total weighted earliness divided by the 

number of jobs. A common problem is to maximize the average weighted earliness. 

Maximizing the total weighted earliness also maximizes the average weighted 

earliness. 

 

Average weighted earliness ( avgwE ) = }]0),{([max
11
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(2.27) 

 



18 

 

The maximum earliness ( maxE ) is the longest earliness of the jobs. A common 

problem of interest is to maximize maxE .  

 

Maximum earliness ( maxE ) = max ( 1E  , 2E  , …, nE  )  (2.28) 

 

maxE  = max{( 11 Cd  ), ( 22 Cd   ), …, ( nn Cd   ),0}  (2.29) 

 

2.3 General Assumption of Scheduling Problems 

 

To simplify the complexity of manufacturing and service environments, most of 

the scheduling problems are solved under assumptions associated with job 

characteristics and objective functions.  

 

The following list gives a set of these assumptions and points out when some of 

them are inadequate to represent a realistic scheduling problem (Pinedo,2002) 

 

Batches of jobs are always treated as a single job: Although this assumption may 

be appropriate in many situations, in case of large lots, it may produce poor quality 

schedules. The classical machine scheduling formulation does not allow starting to 

process on succeeding machine until all the parts in the lot are processed on the 

preceding machine. However, a better schedule may be obtained by transferring, a 

part of a batch to the preceding machine before the completion of the whole batch. 

 

Preemption is not allowed: In most scheduling problems, preemption occurs 

when an operation is stopped and resumed at a later time. For example, a high 

priority job enters in the system, a machine suspends to process a low priority job 

and start processing an high priority job. To simplify the complexity, it is assumed 

that the preemption is not allowed 

 

Each job visits all machines exactly once: In most of the job shops, the 

preemption may occur when an operation is stopped, due to the reason such as arrival 
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at a high prpority job. For example, if a high priority job enters in the system, a 

machine suspends to process low priority job and start processing high priority job. 

To simplify this complexity, it is assumed that preemption is not allowed. 

 

Machines are always available: In practice, machines may not be available 

because of maintenance and failures. To overcome the uncertainty, machines are 

assumed to be available all the time. 

 

Job ready times are all known in advance: This is the characteristic that 

distinguishes deterministic and stochastic problems. In a  deterministic environment, 

all jobs are ready for processing at time zero, and the jobs are ready for processing at 

different times in stochastic environment. 

 

The problem is purely deterministic: In practice, scheduling problems are 

stochastic in nature. Machine failures, unpredictable processing times caused the 

uncertainty, so the scheduling problems are mostly assumed deterministic.  

 

Machines are the only resources modelled: To simplify the complexity of 

scheduling problems, it is assumed that machines are the only resources that are 

modelled, but in practice, it may be necessary to model additional resources such as 

transportation devices, tools or skilled labor. 

 

2.4 Summary 

 

Scheduling problems involve finding optimal schedule under various objectives, 

different machine environments, and characteristics of the jobs. A detailed 

description of machine scheduling and objective functions were presented in this 

chapter. In this thesis, flexible job shop scheduling problem with sequence dependent 

setup time with completion time based objective is studied. 
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CHAPTER THREE 

FLEXIBLE JOB SHOP SCHEDULING 

 

3.1 Introduction 

 

One of the most necessary subjects in planning and managing processes of 

manufacturing environments is the scheduling of operations (Pinedo, 2002). The Job-

Shop Scheduling Problem (JSSP) is the most complicated and typical problem of all 

kinds of production scheduling problems (Chen, 2006). A classical job shop, denoted 

Jm || Cmax by using the notation presented in Pinedo (Pinedo, 2002), refers to a job 

shop with a single machine in each workcenter and a makespan ( maxC ) as the 

scheduling objective. JSSP is one of the hardest combinatorial optimization 

problems. It belongs to the class of non-deterministics polynomial-time hard (NP-

hard) problems, consequently there are no known algorithms guaranteeing to give an 

optimal solution and run in polynomial time. 

 

JSSP considers a set of jobs to be processed on a set of machines. Each job is 

defined by an ordered set of operations and each operation is assigned to a machine 

with a predefined constant processing times. The order of the operations within the 

jobs and its corresponding machines are fixed a priori and independently from job to 

job. For solving this problem, we need to find a sequence of operations on each 

machine respecting some constraints and optimising some objective function. Many 

different types of objectives are important in manufacturing settings. In practice, the 

overall objective is often a composite of several basic objectives. The most important 

ones of these basic objectives are completion time, flow time, lateness, tardiness, and 

earliness. 

 

Flexible Job-shop Scheduling Problem (FJSSP) which denoted cFJ || maxC  is a 

generalization of the job shop and the parallel machine environment, which provides 

a closer approximation to a wide range of real manufacturing systems (Cheng, Gen 

and Tsujimura, 2009).  
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FJSSP can be decomposed into two sub-problems; assigning the operations to 

machines (the routing problem) and sequencing the operations on the machines (the 

sequencing problem) in order to minimize the performance measures. Then, FJSSP 

becomes more difficult than the classical JSSP because it contains an additional 

problem such as assigning operations to machines. FJSSP is NP-hard since it is an 

extension of the JSSP (Gao,Sun and Gen 2008). 

 

3.2 Solution Approaches for Scheduling Problems 

 

There are many more scheduling problems that are intrinsically very hard. These 

problems are referred to as NP-hard. They are typically combinatorial problems that 

cannot be formulated as linear programs and there are no simple rules or algorithms 

that yield optimal solutions in a limited amount of computer time. There are various 

classes of methods that are useful for obtaining optimal solutions for such NP-hard 

problems. Solutions approaches can be classified as exact solution approaches and 

heuristic approaches.  

 

Developing an exact method for determining an optimal schedule is one of the 

current research areas in job shop scheduling. Optimization techniques are capable of 

finding an optimal solution for scheduling a small number of jobs and machines 

within a reasonable amount of time. Moreover there are methods that can be applied 

to these optimization techniques for improving solution speed and solving larger 

problem sizes. In scheduling more complex job shop problems, optimization 

techniques may only be able to solve a very small problem. However, developing an 

optimization technique may still lead to the creation of an approximation algorithm 

for solving larger problem sizes. A number of researchers develop an optimization 

technique and then use it in a preliminary test for their proposed heuristic approaches 

for large-sized problems (Pinedo, 2002). 
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3.2.1 Exact Optimisation Methods 

 

Exact optimisation methods are classified into two groups. First one is Dynamic 

Programming which  solve complex problems by breaking them down into simpler 

subproblems. Second one is Integer Programming which is a mathematical program 

in which some or all of the variables are restricted to be integers. 

 

3.2.1.1 Dynamic Programming 

 

Dynamic Programming can be applied to problems that are solvable in 

polynomial time as well as problems that are NP-Hard. Dynamic Programming is a 

method for solving complex problems by breaking them down into simpler steps 

until it finds a solution for the original problem.  

 

Dynamic programming enumerates in all possible solutions. The problem is 

divided into a number of stages, and at each stage a decision is required which 

impacts on the decisions to be made in larger stages (Pinedo, 2002). 

 

3.2.1.2 Integer Programming 

 

When a planning and scheduling problem can be formulated as an Integer 

Program, the best known approaches are branch and bound, cutting plane and hybrid 

methods. 

 

The branch and bound method consists of two fundamental procedures:  

branching and bounding. Branching is the procedure of partitioning a large problem 

into two or more sub-problems usually and mutually exclusive. Furthermore, the sub-

problems can be partitioned in a similar way. Bounding calculates a lower bound on 

the optimal solution value for each sub-problem generated in the branching process. 

Cutting plane methods focuses on the linear program relaxation of the integer 

program. These methods generate additional linear constraints that must be satisfied 
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so that the variables become integers. Hybrid methods typically combine ideas from 

various different approaches (Pinedo, 2002). 

 

3.2.2 Heuristic Approaches 

 

Scheduling problems belong to a broad class of combinatorial optimization 

problems. To solve these problems, one tends to use optimization algorithms which 

certainly always find optimal solutions. However, not for all optimization problems, 

polynomial time optimization algorithms can be constructed. This is because of the 

fact that some of the problems are NP-hard. In such cases one often uses heuristic 

algorithms which tend towards but do not guarantee the finding of optimal solutions 

for any instance of an optimization problem (Cheng et al., 2009).  

 

3.2.2.1 Dispatching Rules 

 

 A dispatching rule prioritizes all the jobs that are waiting for processing on a 

machine. Dispatching rules can be classified in various ways. A distinction can be 

made between static and dynamic rules. Static rules are not time dependent. They are 

just a function of the job or the machine data. Dynamic rules are time dependent. A 

second way of classifying dispatching rules is made according to the information 

they are based upon. A local rule uses only information pertaining to either the queue 

where the job is waiting or the machine where the job is queued. A global rule may 

use information pertaining to other machines, such as processing time of the job on 

the next machine on its route or the current queue length at that machine (Pinedo, 

2002). 

 

3.2.2.2 Local Search 

 

Important classes of improvement type algorithms are the local search procedures. 

A local search procedure does not guarantee an optimal solution. It usually attempts 

to find a better schedule in the neighbourhood of the current one. Local search 

algorithms may be run several times on the same problem instance. At each iteration, 
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a local search procedure performs a search within the neighbourhood and evaluates 

the various neighbouring solutions.  

 

Local search in the simplest form, the hill-climbing, stops as soon it counters a 

local optimum. NP-Hard problems often possess may local optima, even this remedy 

may not be potent enough to yield satisfactory solutions. In view of this difficulty, 

several extension of local search has been proposed, which offer the possibility to 

escape local optima by accepting occasional deteriorations of the objective function. 

In what follows we discuss successful approaches based on the related ideas, namely 

simulated annealing and tabu search. These properties are then used to construct a 

new population which contains a better solution than the previous one. This 

technique is known as genetic algorithm (Pinedo, 2002). 

 

3.2.2.2.1 Tabu Search (TS). Tabu search uses a local search procedure to 

iteratively move from a solution to another solution in the neighbourhood, until some 

stopping criterion has been satisfied. Tabu search for scheduling problems starts 

from an initial solution which can be obtained by various methods such as 

dispatching rules, insertion methods, and random methods. In a transition from 

current solution to a new solution a neighborhood structure is defined in order to 

create a subset of possible neighbors to be chosen for performing a move. The best 

neighbor, which is not in the tabu list or satisfies the aspiration criterion if it is in the 

tabu list, is selected based on the neighborhood structure, and then the move is 

performed, which leads to a new solution. The selected neighbor is added into the 

tabu list which indicates a short-term memory for the recent move history. The 

aspiration criterion is used when the best neighbor is in tabu list but performing a 

forbidden move may lead to a better solution. The stopping criterion can be defined 

in two ways: stop the search when reaching a lower bound, or stop the search after 

completing a maximum number of iterations (Glover, 1990) 

 

3.2.2.2.2 Genetic Algorithm (GA). The genetic algorithm is a search heuristic that 

mimics the process of natural evolution. This heuristic is routinely used to generate 

useful solutions for optimization and search problems. Genetic algorithms belong to 
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the larger class of evolutionary algorithms (EA), which generate solutions to 

optimization problems using techniques inspired by natural evolution, such as 

inheritance, mutation, selection, and crossover (Pinedo, 2002). 

  

3.2.2.2.3 Shifting Bottleneck Procedure (SB). The idea of the SB procedure is to 

schedule each machine in a job shop optimally under the condition that disjunctive 

arc directions in each optimal schedule of every single machine concur with an 

optimal job shop schedule. The general steps of SB consist of sub-problem 

identification and optimization, bottleneck machine determination, sequencing the 

bottleneck machine, and re-optimization of each scheduled machine. These steps are 

repeated until all the machines are scheduled. The sub-problem identification and 

optimization intends to find an optimal sequence of jobs in each unscheduled 

machine. Each sub-problem consists of a number of operations that are subject to 

release dates and due dates that are determined by sequences of operations on other 

machines. The sequence of operations on a given machine is determined by 

minimizing the maximum lateness in the associated sub-problem. Then the 

bottleneck machine is the machine which has the highest maximum lateness from 

previous step. Next, disjunctive arcs with regard to the optimal sequence of jobs in 

the bottleneck machine are inserted into the disjunctive graph that represents the job 

shop problem. In the re-optimization step, for each scheduled machine, a job 

sequence in a particular machine is redefined by finding a new optimal solution of 

this machine sub-problem, while keeping job sequences fixed in the remaining 

machines. This re-optimization method is repeated for all scheduled machines 

(Pinedo, 2002) 
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3.2.2.2.4 Simulating Annealing (SA). Simulated Annealing procedure is a search 

process originating from the fields of material science and physics. It is a 

probabilistic method for finding the global minimum that may possess several local 

minima. The simulating annealing procedure goes through a number of iterations. 

The algorithm, in its search for an optimal schedule, moves from one schedule to 

another. At iteration, a search for a new schedule is conducted within the 

neighbourhood (Pinedo,2002) 

 

3.3 Literature Review 

 

This thesis addresses the problem of scheduling flexible job shops with sequence 

dependent setup time with makespan objective ( cFJ | kjs ,  | maxC ). Besides 

makespan; setup times and workload are examined. Genetic algorithm has been 

applied for solving the problem. In this section, scheduling studies in flexible job 

shop scheduling problems are focused on. Sequence dependent setup times studies 

are also included, so this thesis deals with sequence dependent flexible job shop 

scheduling problems. 

 

Bruker and Schlie (1990) were among the first to address flexible job shop 

scheduling problem. They developed a polynomial algorithm for solving the flexible 

job-shop scheduling problem with two jobs.  

 

In order to solve the realistic case with more than two jobs, local search 

algorithms such as TS, GA, SB, SA are developed. 

 

 Brandimarte (1993) is the first researcher who applies TS to flexible job shops 

scheduling problem with makespan objective ( cFJ  || maxC ) and the first researcher 

to use the decomposition for the FJSP. He solved the routing sub-problem by using 

some existing dispatching rules and then focused on the scheduling sub-problem, 

which is solved by using a tabu search heuristic.   
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Hurink, Jurisch and Thole (1994) proposed a tabu search heuristic to flexible job 

shop scheduling problem with makespan objective ( cFJ  || maxC ) in which 

reassignment and rescheduling are considered as two different types of moves. Initial 

solutions are calculated by using a fast heuristic based on insertion techniques and 

beam search. The tabu search algorithms yield excellent results for almost all 

problems.  

 

Dauzere-Peres and Paulli (1997) defined a new neighbourhood structure for 

flexible job shop scheduling problem with makespan objective ( cFJ  || maxC )  where 

there was no distinction between reassigning and re-sequencing an operation, and 

proposed a TS algorithm.  

 

Bruker and Neyer(1998) proposed the best insertion of an operation in 

neighbourhood function to solve the FJSP with a makespan objective ( cFJ  || maxC ), 

but the algorithm they suggest is too time consuming. In order to reduce the 

computational effort, they propose a faster algorithm that guarantees only the 

feasibility of an insertion.  

 

Valls, Perez and Quintanilla (1998) presented the application of TS in a 

generalized job shop with parallel machines, job batches, setup times, and release 

and due dates ( FJc | jr , kjs , ,due-date| maxC ). This problem deals with a makespan 

minimization by treating the due dates as constraints. The proposed TS have two 

aspects. First, the core of the heuristic is a tabu threshold algorithm which uses a set 

of moves aimed at resolving violated constraints. Second, the TS algorithm 

supplements the first algorithm with two diversification strategies which depends on 

the state of the search. The overall proposed algorithms seem very complicated but 

overall performance is superior as being able to obtain known optimal solution over 

95% of 190 randomly generated problems in small run time on 66 MHz 486DX2 

processor (for instance 67 seconds for 100 jobs–17 machines including parallel 

machines). 
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Mastrolilli and Gambardella (2000) improved Dauzere-Peres’ tabu search 

techniques and presented two neighbourhood functions. Their TS is the well-known 

efficient approach for solving FJSP with makespan objective ( cFJ  || maxC ). Their 

approach is compared with other TS heuristics developed by Brandimarte (1993), 

Hurink et al. (1994), Barnes and Chambers (1996), Dauzere, Perez and Paulli 

(1997), and Brucker and Neyer (1998). They carried out experiments on a 266 MHz 

Pentium over 178 benchmark problems obtained from the other comparative 

heuristics. The results show that the Mastrolilli and Gambardella heuristic is able to 

find 120 new upper bounds (of the 178 problems) and 77 of them are optimal 

solutions. 

 

Fattahi, Mehrabad and Jolai (2007) presents a tabu search algorithm that solves 

the flexible job shop scheduling problem with sequence dependent setup times to 

minimize the makespan time ( cFJ  | kjs , | maxC ). The proposed tabu search algorithm 

is composed of two parts. The first part is a procedure that searches for the best 

sequence of job operations, and the second part is a procedure that finds the best 

choice of machine alternatives. Results of the algorithm are compared with the 

optimal solution obtained by using mathematical model. Computational results 

indicate that the proposed algorithm can produce optimal solutions in a short 

computational time for small and medium sized problems. 

 

Chen, Ihlow and Lehmann (1999) developed a GA for a flexible job shop 

scheduling problem to minimize the makespan ( cFJ  || maxC ). In the representation, 

encoding each individual requires two chromosomes. The first chromosome defines 

the routing policy and the second chromosome defines the sequence of the operations 

on each identical parallel machine. In reproduction, single-point and two-point 

crossovers are applied in the first chromosome. For the second chromosome, two 

crossovers called as “order-preserving single point crossover” and “order-preserving 

two-point crossover” are developed. The GA is tested in a SPARC-workstation on 

three instances. The results show that the instances with 10 jobs, 10 machines and 32 

total operations require an average run time of approximately 16 minutes which is 

considered to be high with respect to the number of operations. 
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Wang and Brunn (2000) also developed a GA for a flexible job shop scheduling 

problem to minimize the makespan ( cFJ  || maxC ). A chromosome consists of m sub-

chromosomes where m is the number of machines in the shops. Each sub-

chromosome, consisting of n genes where n is the number of jobs, represents the job 

numbers and their corresponding processing routes. A crossover operator called 

“sequence-extracting crossover” is developed. Computational results show that the 

GA can find the optimal solution when solving a 6 job–6 machine benchmark 

problem within about two minutes running time. However, it is unclear that how the 

GA performs in larger size problems with identical parallel machines in work 

centers. 

 

Kacem, Hammadi, and Borne (2003) proposed a genetic algorithm controlled by 

the assigned model which is generated by the Approach of Localization (AL) to 

solve FJSP with makespan and workload objectives ( cFJ  || maxC , workload). 

Chromosome representation combines both routing and sequencing information. 

Dispatching rules are then applied for sequencing the operations. Once this initial 

population is found, they apply crossover and mutation operators to jointly modify 

assignments and sequences, producing better individual ones. 

 

Pezzella, Morganti and Ciaschetti (2008) adopted many of the choices of Kacem 

et al. (2003) and presented a genetic algorithm (GA) in which uses a mix of different 

strategies for generating the initial population, selecting individuals. The initial 

population is generated according to Approach by Localization. This approach takes 

into account both the processing times and the workload of the machines, i.e., the 

sum of the processing times of the operations assigned to each machine. The 

procedure consists of finding the machine with the minimum processing time, fixing 

that assignment, and then adding this time to every subsequent entry in the same 

column (machine workload update). Since this approach is strongly dependent on the 

order in which operations and machines are given in the table, Pezella et al. slightly 

modify it in two ways: The first one is to search for the global minimum in the 

processing time table. The second one is to permute the jobs and the machines 

randomly in the table. 
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Gao, Gen and Sun (2008) studied the FJSP with a multi-objective approach. They 

developed a hybrid genetic algorithm (hGA) for this problem with makespan and 

workload objective ( cFJ  || maxC , workload). Their algorithm is the well-known 

competitive genetic algorithm for solving the FJSP. 

 

 Gen, Gao and Lin (2009) developed a new approach hybridizing genetic 

algorithm with shifting bottleneck to fully exploit the global search of genetic 

algorithm and the local search of shifting bottleneck for solving multi-objective 

flexible job shop scheduling problem with makespan and workload objective ( cFJ  

|| maxC , workload). The genetic algorithm uses two vectors to represent each solution 

candidate of the FJSP. Phenotype-based crossover and mutation operators are 

proposed to adapt to the special chromosome structures and the characteristics of the 

problem. The shifting bottleneck works over two kinds of effective neighbourhood, 

which use interchange of operation sequences and assignment of new machines for 

operations on the critical path. In order to strengthen the search ability, the 

neighbourhood structure can be dynamically adjusted in the local search procedure. 

The performance of the proposed method is analyzed by numerical experiments on 

three representative problems. 

 

Defersha and Chen (2009) modified Kacem’s approach by taking into account 

setup times and they proposed a parallel genetic algorithm to solve FJSP with 

sequence dependent setup time ( cFJ  | kjs , ,batch| maxC ). They developed a 

comprehensive model for FJSP by considering several factors in an integrated 

manner and assume that the jobs have sequence dependent setup time. The number 

of researches considering this issue in FJSP is limited. The model also allows a given 

setup to be either attached or detached depending on the actual requirements. Other 

important factors incorporated in the proposed model are machine release date. The 

last incorporated factor is the concept of time lag. In order to solve this NP-hard 

problem efficiently, they proposed a parallel genetic algorithm (PGA) implemented 

by using “island” model. In this parallelization model, subpopulations are separately 
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evolved in several processors and this subpopulations exchange individuals 

periodically. The PGA was executed on a high-performance computing environment 

composed of multiple interconnected workstations. The developed model and 

solution procedure were extensively tested with medium and large problem 

instances. The results obtained by using the PGA are very promising. 

 

Fattahi and Fallahi (2010) used Kacem’s approach under dynamic flexible job 

shop conditions ( cFJ  || maxC , workload). In this research, a mathematical model for 

the dynamic flexible job shop scheduling problem and a meta-heuristic algorithm 

based on GA is developed. The proposed algorithm improves the efficiency and 

stability of schedules. Numerical experiments were used for evaluating the 

performance and the effectiveness of the proposed algorithm. It is concluded that the 

bi-objective model can improve the efficiency and stability of schedules based on a 

real example from a part making industry. The experimental results show that the 

proposed algorithm is capable of producing the optimal solutions for small sized 

problems. Also the results of the proposed algorithm are between the upper and the 

lower bounds for medium sized problems. These upper and lower bounds of are 

computed by the branch and bound method. So, the proposed algorithm is capable of 

reaching near optimal solutions for medium sized problems. The standard deviation 

of the solutions are equal to zero for small sized problems which show the high 

quality of the algorithm on small sized problems. Nevertheless, the standard 

deviation of the solutions is increased for the medium and large sized problems. So 

the convergence of the proposed algorithm is decreased for large sized problems. 

Also the genetic algorithm parameters are adjusted based on preliminary 

experiments. 

 

Mason, Fowler and Carlyle (2002) proposed a modified shifting bottleneck called 

MSB for minimizing total weighted tardiness in complex job shops. ( cFJ  |batch| 

total weighted tardiness)  They defined the complex job shop as a flexible job shop 

with sequence-dependent setup times, recirculation, batching, and possibly non-zero 

ready times. This type of production environment can be found in wafer fabrication 

facilities in semiconductor industries. In the proposed heuristic, a disjunctive graph is 
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used for representing the problem. The Apparent Tardiness Cost with Setups (ATCS) 

index for parallel machines scheduling problem, developed by Lee and Pinedo 

(1997), is modified to accommodate batching problems. The modified ATCS, called 

BATCS, is used in the subproblem solution procedures. The re-optimization step, 

considering the newly added disjunctive arcs for the selected machine, is the optional 

step in MSB. To assess the ability of their proposed models, a benchmark problem is 

used for comparing the MSB with a number of existing dispatching rules. The results 

show that the MSB needs the re-optimization step in order to obtain a better solution 

but the computational time will increase about 50%.  

 

Mason and Oey (2003) reported that cyclic paths in a disjunctive graph may occur 

when scheduling complex job shops, resulting in feasible schedules during the 

execution of the MSB heuristic (Mason et al. 2002). To eliminate the cyclic paths, 

they modified the disjunctive graph representing the complex job shop problems and 

identified all possible causes of infeasible schedule generation. Then, the Cycle 

Elimination Procedure (CEP) was developed to tackle this problem. The mechanism 

of CEP is spotting batching nodes that cause the cyclic schedule, and then removing 

them. Their proposed procedure is applied in practical wafer fabrication. The results 

indicated that solution times increased about 10% with a satisfied level of solution 

quality. However, the algorithm executed for only two product types and for one 

shift. So utilization of the proposed MSB with CEP is still unclear. 

 

Ho, Tay and Lai(2007) proposed an architecture for learning and evolving of 

Flexible Job-Shop schedules called LEarnable Genetic Architecture (LEGA) with 

makespan objective ( cFJ  || maxC ). LEGA provides an effective integration between 

evolution and learning within a random search process unlike the “canonical 

evolution algorithm”, where random elitist selection and mutational genetics are 

assumed; through LEGA, the knowledge extracted from previous generation by its 

schemata learning module is used for influencing the diversities and the qualities of 

offsprings. In addition, the architecture specifies a population generator module that 

generates the initial population of schedules and also trains the schemata learning 

module. A large range of benchmark data taken from literature and generated by 
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these researchers are used for analyzing the efficacy of LEGA. Experimental results 

indicated that an instantiation of LEGA called GENACE outperforms current 

approaches using canonical EAs in computational time and quality of schedules. 

 

Tay and Ho (2004) developed new algorithm called as GENACE to solve FJSSP 

with makespan and workload objective ( cFJ  || maxC , workload). We show how 

composite dispatching rules (CDRs) are used for solving the FJSP with recirculation 

by themselves and for providing a bootstrapping mechanism to initialize GENACE. 

They then adopted a cultural evolutionary architecture to maintain the knowledge of 

schemata and resource allocations learned over each generation. The belief spaces 

influence mutation and selection over a feasible chromosome representation. 

Experimental results show that GENACE obtains better upper bounds for 11 out of 

13 benchmark problems, with improvement factors of 2 to 48 percent when 

compared to results by Kacem et al, Brandimarte. 

 

Xia and Wu (2005) made use of particle swarm optimization (PSO) to assign 

operations on machines and SA algorithm to schedule operations for JSSP with 

makespan objective ( cFJ  || maxC ). 

 

Rossi and Dini (2007) proposed an ant colony optimisation-based software system 

for solving FMS scheduling in a job-shop environment with routing flexibility, 

sequence-dependent setup and transportation time with makespan criterion ( cFJ  

| jis , ,block| maxC ). The objective in this thesis is to develop several procedures for 

scheduling flexible job shops with sequence dependent setup time with makespan 

objective. In literature, minimizing makespan is usually found in job shop scheduling 

problems because it concerns the reduction of the completion time for only the last 

complete job by moving operations in the longest path in a given schedule. This 

thesis takes into account flexible job shop problems including non-identical parallel 

machines, sequence-dependent setup times. These characteristics usually occur in 

real world production environments. In the last decade, processing restrictions, such 

as sequence-dependent setup times, recirculation, batch non-zero ready times as well 
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as due-date based objectives in flexible job shop scheduling problems, have received 

more attention from many researchers. In this research zero ready times, makespan 

objectives and sequence dependent setup time are used. 

 

Table 3.1 Some applications of flexible job shop scheduling problems 

Problem class Algorithm Citation 

flexible job shop || makespan|| 

two jobs 

Polynomial Algorithm - Bruker and Schlie(1990) 

flexible job shop || makespan TS - Brandimarte(1993) 

- Hurink, Jurisch, and Thole 

(1994). 

- Barnes and Chambers (1996) 

- Dauzere-Perez and Paulli 

(1997) 

- Brucker and Neyer (1998) 

- Tung, and Nagi(1999) 

- Chen et al. (1999) 

- Wang and Brunn (2000) 

- Mastrolilli and Gambardella 

(2000) 

flexible job shop || makespan 

 

GA - Chen et al. (1999) 

- Wang and Brunn (2000) 

- M. Zandieh,I. Mahdavi,A. 

Bagheri(2008) 

flexible job shop ||sequence 

dependent setup time || 

makespan 

TS - Mehraba and Fattahi(2007) 

flexible job shop || 

multiobjective 

Hybrid GA - Gao,Gen M, Sun L, Zhao 

X(2007) 

- Mitsuo Gen, Jie Gao(2009) 

flexible job shop ||sequence 

dependent setup time || 

makespan 

ACO - Andrea Rossi, Gino 

Dini(2007) 

, 
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Table 3.1 (Cont) Some applications of flexible job shop scheduling problems 

Problem class Algorithm Citation 

flexible job shop || 

multiobjective 

GA+Approach by 

localization 

- Kacem, Hammadi, and 

Borne(2003) 

- M. Gen (2005) 

- F.Pezella, G.Morganti,G. 

Ciaschetti (2007) 

flexible job shop 

| ready time, sequence-

dependent 

setup time, reentrant job, 

batch 

| multiobjective 

Paralel GA+ Approach 

by localization 

- Defersha and Chen(2009) 

Dynamic flexible job shop || 

makespan  

GA+Approach by 

localization 

- Fattahi and Fallahi(2010) 

 

 flexible job shop 

| ready time, sequence-

dependent 

setup time, reentrant job, 

batch 

| total weighted tardiness 

SB - Mason et al. (2002) 

- Mason and Oey (2003) 

flexible job shop ||sequence 

dependent  

setup time || makespan 

Matematical 

model+heuristics 

- Parviz Fattahi, Mohammed 

Saidi Mehrabad(2006) 

- R. Moghaddas, 

M.Houshmand (2008) 

flexible job shop || 

multiobjective 

PSO+SA -Xia and Wu(2005) 

 

flexible job shop || total 

tardiness 

 

TS -Valls et al. (1998) 
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3.4 Summary 

 

Flexible job shop scheduling problems have been widely presented in the 

literature. GA and TS are reasonable approaches for scheduling problems since they 

have been applied for scheduling several job shop classes and obtained fairly good 

solutions. In flexible job shop scheduling problems, infeasible schedules may be 

generated during searching. Prevention of infeasible schedules is a key characteristic 

in the development of an effective metaheuristic. In GAs, good encodings that lead to 

feasible schedules are required.  
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CHAPTER FOUR 

GENETIC ALGORITHMS 

 

4.1 Introduction 

 

A genetic algorithm (GA) is a class of adaptive stochastic optimization algorithms 

involving the search and the optimization. Genetic algorithms were first used by John 

Holland (1975) for the formal investigation of the mechanisms of natural adaptation, 

but the algorithms have been modified to solve computational search problems. 

Modern GA deviates greatly from the original form proposed by Holland. There is 

no single firm definition for a genetic algorithm. 

 

GAs are successfully used for finding solution to a range of the optimization 

problems. GA solves a large scale of design, control, scheduling or other engineering 

optimization problems. The general idea is to start with randomly generated 

solutions, to implement an evolutionary process, and then to search for better 

solutions while eliminating poor solutions from the current generation to the next 

generation. 

 

4.2 Solving Scheduling Problems with Genetic Algorithms 

 

Most scheduling problems are NP-Hard, the time required for optimally solving 

the problem increases exponentially with the size of the problem. GA are 

successfully used for solving the scheduling problems and well suited to solve 

production scheduling problems. 

 

Genetic algorithms operate on a population of solutions rather than a single 

solution. In production scheduling, this population of solutions consists of many 

answers that may have different, sometimes conflicting objectives. To apply a 

genetic algorithm to a scheduling problem, we must first represent it as a genome. 

One way to represent a scheduling genome is to define a sequence of tasks. Each task 

and its corresponding start time represent a gene. 
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There are three basic approaches of applying the genetic algorithms to a scheduling 

problem (Gen et al., 1999): 

 

1. Adapt problems to the genetic algorithms 

2. Adapt the genetic algorithms to problems 

3. Adapt both the genetic algorithms and problems 

 

In this Chapter, we focus on the representation of solutions and design of genetic 

operators for solving the flexible job shop scheduling problem. 

 

4.3 Genetic Algorithm 

 

GA is a search method that mimics the process of natural evolution. This heuristic 

is routinely used for generating useful solutions to optimization and search problems. 

Genetic algorithms belong to the larger class of evolutionary algorithms (EA), which 

generate solutions to optimization problems using techniques inspired by natural 

evolution, such as inheritance, mutation, selection, and crossover. 

 

Each individual is characterized by its fitness. The fitness of an individual is 

measured by the associated value of the objective function. The procedure works 

iteratively, and each iteration is referred to as a generation. At each iterative step, a 

number of different solutions are generated and carried over to the next generation. 

And this procedure is repeated until some stopping criterion is met. 

 

A population of individuals is maintained within search space for a GA, each 

representing a possible solution to a given problem. Each individual is coded as a 

finite length vector of components, or variables. To continue the genetic analogy, 

these individuals are likened to chromosomes and the variables are analogous to the 

genes. Thus a chromosome is composed of several genes. A fitness score is assigned 

to each solution representing the abilities of an individual to compete. The individual 

with the optimal or generally near optimal fitness score is sought. The GA aims at 

using selective breeding of the solutions to produce offspring better than the parents 
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by combining information from the chromosomes. The GA maintains a population of 

n chromosomes with associated fitness values. Parents are selected to mate, on the 

basis of their fitnesses for producing offspring. Consequently, better solutions give 

more opportunities to reproduce so that offspring inherits characteristics from each 

parent. New generations of solutions are produced containing, on average, better 

genes than a typical solution in a previous generation. Each successive generation 

will contain better partial solutions than previous generations (Shopova and 

Vaklieva, 2006). Figure 4.1 shows the Architecture of GA. 

 

4.3.1 Chromosome Representation  

 

Genetic representation is a way of representing solutions in evolutionary 

computation methods. Mesghouni (1997) used “parallel machine representation” and 

“parallel job representation”. Chen et al. (1999) divided the chromosome into two 

parts as A string and B string. A string contains a list of all operations of all jobs and 

machines selected for corresponding operations, while B string contains a list of 

operations that are processed on each machine. These representations must be 

adjusted for feasibility. Tay and Ho (2007) used the chromosome representation 

having two parts, namely “operation order” which was adopted from Ramiro (2003) 

and “machine selection” which use an array of binary values to present machine 

selection. 

 

Kacem et al. (2003) used a type of representation called as “machine assignment 

representation”. An array consisting of binary values are used for presenting the 

machine selection. The best reported performance results so far belong to Kacem. 

Each unit value in the assignment table maps a machine to a corresponding 

operation. After using an assignment algorithm to find a set of feasible schedules, 

they are used as an initial population for GA. 
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Figure 4.1 Architecture of GA (Shopova & Vaklieva, 2006) 
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Several different chromosome representations have been proposed for the JSP. 

Gen et al. (1999) summarized chromosome representations for the job shop 

scheduling problem. 

 
operation-based representation: This representation uses a permutation with m-

repetitions of job numbers for the problem with n jobs and m machines. A job is 

represented a set of operations that has to be scheduled on m machines. Each job 

occurs m times in the permutation. By scanning the permutation from left to right, 

the kth occurance of a job number refers to the thk operation in the technological 

sequence of this job. No infeasible solutions will result in this representation (Gen et 

al.,1999). 

 

job-based representation: This representation merely encode the chromosome 

according to the job sequence. Each job occurs one time. By scanning the encoding 

from left to right, all the operations of the first job in the representation scheduled 

first (Gen et al.,1999). 

 

preference list-based representation: In this representation, the chromosome 

represents the preferences of each job. There are M sub-chromosomes in each 

chromosome where each sub-chromosome represent the preference of the jobs on 

that machine (Gen et al.,1999). 

 

job pair relation-based representation: In this representation, a chromosome is 

symbolized by a binary string, where each bit stands for the order of a job pair for a 

particular machine (Gen et al.,1999). 

 

priority rule-based representation: This representation encodes a chromosome as 

a sequence of dispatching rules. The job schedule is created by using a heuristic 

based on the dispatching rules sequence (Gen et al.,1999). 

 

disjunctive graph-based representation: This representation encodes the 

chromosome as a binary string that corresponds to an ordered list of disjunctive arcs 
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connecting the different operations to be processed by the same machine (Gen et 

al.,1999). 

 

completion time-based representation: This chromosome representation is an 

ordered list of completion times of operations. This representation may yield an 

infeasible schedule. So,when the crossover operator is applied, special crossover 

operators should be designed for it (Gen et al.,1999). 

 

machine-based representation: This representation encodes the chromosomes as 

a sequence of machines. This representation may yield an infeasible schedule. So, 

when the crossover operator is applied, special crossover operators should be 

designed for it (Gen et al.,1999). 

 

random keys representation: This representation encodes a solution with random 

numbers. These values are used as sort keys to decode the solution. Each gene 

consists of two parts. The integer part of any random key is interpreted as the 

machine assignment for that job. Sorting the fractional parts provides the job 

sequence on each machine (Gen et al.,1999). 

 

Among the nine encoding methods, the job-based encoding and the machine-

based encoding are the pure literal string; the operation-based encoding, the 

preference list-based encoding and the priority rule-based encoding are the general 

literal string. Note that the preference list-based encoding is well used in many 

studies. It consists of several substrings and one substring is a pure literal string 

corresponding to an operation sequence to a machine. In this thesis, operation-based 

representation is ued. 

 

4.3.2 Genetic Operators 

 

The performance of the genetic algorithm depends on the choice of good genetic 

operators. Genetic operator is an operator used in genetic algorithms to maintain 

genetic diversity. These operators are selection, crossover and mutation operators. 
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Selection is a genetic operator that chooses a chromosome from the current 

generation’s population for inclusion in the next generation’s population. Before 

making selection into the next generation’s population, selected chromosomes may 

undergo crossover or mutation depending upon the probability of crossover and 

mutation. Crossover is a genetic operator that combines two chromosomes called 

parents to produce a new chromosome called offspring. The idea behind crossover is 

that the new chromosome may be better than both of the parents if it takes the best 

characteristics from each of the parents. Crossover occurs during evolution according 

to a user-definable crossover probability. Mutation is a genetic operator that alters 

one ore more genes in a chromosome from its initial state. This can result in entirely 

new gene being added to the gene pool. With these new genes, the genetic algorithm 

may be able to arrive to a better solution. Mutation is an important part of the genetic 

search to prevent the population from stagnating at any local optima. Mutation 

occurs during evolution according to a user-definable mutation probability (Shopova 

& Vaklieva, 2006). 

 

4.3.2.1 Selection Operator 

 

Selection is the first operator. There are two types of selection operators applied in 

genetic algorithms. The first one is selection of reproduction which determines the 

sampling that will produce the offspring. The second one is the selection of 

replacement which selects individuals will be included in the next population. 

 

The selection of reproduction involves randomly choosing members of the 

population to enter a mating pool. GA includes three biased selection schemes for 

reproduction; rank based, roulette-wheel, and tournament selection. After the 

production of new individual, it is necessary to decide which individuals survive in 

the next generation. Selection for replacement creates a new generation from the 

current one and the obtained offsprings. Selection of replacement methods replace all 

parents by their children, only if their children are better fitness values. In this thesis 

roulette-wheel selection is used. 
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4.3.2.1.1 Roulette-Wheel Selection. The simplest proportionate selection scheme 

is roulette-wheel selection, also called as stochastic sampling with replacement. The 

individuals are mapped to contiguous segments of a line in such a manner that each 

individual's segment will be equal in size to its fitness. A random number is 

generated and the individual whose segment spans the random number is selected. 

The process is repeated until the desired number of individuals is obtained. This 

technique is analogous to a roulette wheel with each slice proportional in size to the 

fitness (Shopova and Vaklieva, 2006). 

 

4.3.2.1.2 Rank Based Selection. Rank-based selection is similar to the 

proportionate selection schemes. In it, individual’s rank, instead of the fitness 

function, is used for calculating the selection probability. The latter gives a better 

chance of chromosomes with small fitness values to take part in the reproductive 

process and preserves populations from a premature convergence (Shopova and 

Vaklieva, 2006). 

 

 “Linear ranking” and “Square ranking” are two methods which are common in 

use. In linear ranking, the selection probability is proportional to the rank of each 

individual. In square ranking, the selection probability is the square of its rank: 

 
4.3.2.1.3 Tournament Selection. In tournament selection, a number of individuals 

in a tour is randomly chosen from the population and the best individual from this 

group is selected as parent. This process is repeated as often as individuals must be 

chosen. The parameter for tournament selection is the tournament size “Tour”. 

“Tour” takes values ranging from 2 to number of individuals in population (Shopova 

and Vaklieva, 2006). 

 



45 

 

4.3.2.2 Crossover Operators 

 

Crossover is the second genetic operator. Various crossover operators have been 

proposed for literal permutation encodings, such as partial-mapped crossover (PMX), 

order crossover (OX), cycle crossover (CX), position-based crossover, order-based 

crossover, etc. (Gen et al.,1999). In this thesis, position based crossover is used. 

 

There are two different basic considerations for designing crossover operators for 

literal permutation encodings; 

1. To make less change when crossing over so as to inherit parents' features as 

much as possible.  

2. To make more change when crossing over so as to explore new patterns of 

permutation and thereby enhance the search ability.  

4.3.2.2.1 Partial-Mapped Crossover (PMX). PMX has the following major steps: 

 

1. Select two cut-points along the string at random. The substrings defined by 

the two cut-points are called the mapping sections. 

2. Exchange two substrings between parents to produce proto-child. 

3. Determine the mapping relationship between two mapping sections. 

4. Legalize offspring with the mapping relationship (Gen et al.,1999). 

 

4.3.2.2.2 Order Crossover (OX). Order crossover (OX) can be viewed as a kind of 

variation of PMX  that uses a different repairing procedure. OX has the following 

major steps: 

 

1. Select a substring from one parent at random. 

2. Produce a proto-child by copying the substrings into the corresponding 

positions as they are in the parent. 

3. Delete all the symbols from the second parent, which are already in the 

substring. The resultant sequence contains the symbols the proto-child needs. 
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4. Place the symbols into the unfixed positions of the proto-child from left to 

right according to the order of the sequence to produce an offspring (Gen et 

al.,1999). 

 

4.3.2.2.3 Position-Based Crossover. Position-based crossover firstly generates a 

random mask and then exchanges relative genes between parents according to the 

mask. A crossover mask is simply a binary string with the same size of chromosome. 

The parity of each bit in the mask determines, for each corresponding bit in an 

offspring, from which the parent will receive that bit. Because uniform crossover will 

produce illegal offspring for literal permutation encodings, position-based crossover 

uses a repairing procedure to resolve the illegitimacy. Position-based crossover has 

the following major steps: 

 

1. Select a set of positions from one parent at random. 

2. Produce a proto-child by copying the symbols on these positions into the 

corresponding positions of the proto-child. 

3. Delete the symbols which are already selected from the second parent. The 

resultant sequence contains only the symbols the proto-child needs. 

4. Place the symbols into the unfixed positions of the proto-child from left to 

right according to the order of the sequence to produce one offspring (Gen et 

al.,1999). 

 

4.3.2.2.4 Order-Based Crossover. Order-based crossover is a slight variation of 

position-based crossover in that the order of symbols in the selected position in one 

parent is imposed on the corresponding ones in the other parent (Gen et al.,1999). 

 

4.3.2.2.5 Cycle Crossover (CX). Cycle crossover (CX) is the same as the position-

based crossover. It takes some symbols from one parent and the remaining symbols 

from the other parent. The difference is that the symbols from the first parent are not 

selected randomly and only those symbols are selected which defined a cycle 

according to the corresponding positions between parents. CX works as follows: 
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1. Find the cycle which is defined by the corresponding positions of symbols 

between parents. 

2. Copy the symbols in the cycle to a child with the corresponding positions of 

one parent. 

3. Determine the remaining symbols for the child by deleting those symbols 

which are already in the cycle from the other parent. 

4. Full the child with the remaining symbols (Gen et al.,1999). 

 

4.3.2.2.6 Linear Order Crossover (LOX). Order crossover tends to transmit the 

relative positions of the genes rather than the absolute ones. In the order of crossover, 

the chromosome is considered to be circular since the operator is devised for the 

travelling salesman problem. In the job-shop problem, the chromosome can not be 

considered as circular. For this reason they developed a variant of the OX called 

Linear Order Crossover (LOX), where the chromosome is considered linear instead 

of circular. The LOX works as follows: 

 

1. Select sublists from parents randomly. 

2. Remove sublist2 from parent 1 leaving some `holes' (marked with h) and then 

slide the holes from the extremities towards the center until they reach the 

cross section. Similarly, remove sublist1 from parent 2 and slide holes to 

cross section. 

3. Insert sublist1 into the holes of parent 2 to form the offspring 1 and insert 

sublist2 into the holes of parent 1 to form an offspring 2 (Gen et al.,1999). 

 

The crossover operator can preserve both the relative positions between genes and 

the absolute positions relative to the extremities of parents as much as possible. The 

extremities correspond to high and low priority operations. 

 

4.3.2.2.7 Subsequence Exchange Crossover. A job sequence matrix is used as 

encodings. For a n job m machine problem, the encoding is an nm  matrix where 

each row specifies an operation sequence for each machine. A subsequence is 

defined as a set of jobs which are processed consecutively on a machine for both 
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parents but not necessarily in the same order. This method includes the following 

two steps: 

 

1. Identify subsequences one for one machine for the parents. 

2. Exchange these subsequences machine by machine among parents to create 

offspring (Gen et al.,1999). 

 

Because it is difficult to maintain the precedence relation among operations in 

either initial population or offspring by use of the job sequence matrix encoding, 

Giffler and Thompson algorithm is used to carefully adjust job orders on each 

machine to resolve the infeasibility and to convert offspring into active schedules. 

 

4.3.2.2.8 Job-Based Order Crossover. The job-based order crossover is designed 

for the encoding of job-sequence matrix. It has the following steps: 

 

1. Identify the sets of jobs from parents, one set for one machine. 

2. Copy the selected jobs of the first parent onto the corresponding positions 

of the first child machine by machine. Do the same thing for the second 

child. 

3. Full the unfixed position of the first child by the not-selected jobs from left 

to right according to the order as they appear in the second parent. Do the 

same thing for the second child (Gen et al.,1999). 

 

4.3.2.2.9 Partial Schedule Exchange Crossover. Gen et al. (1994) proposed a 

partial schedule exchange crossover for an operation-based encoding. They consider 

partial schedules as the natural building blocks and intend to use such crossover to 

maintain building blocks in the offspring. It has the following steps: 

 

1. Identify a partial schedule in one parent randomly and in the other parent 

accordingly. 

2. Exchange the partial schedules to generate proto-offspring. 

3. Determine the missed and exceeded genes for the proto-offspring. 
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4. Legalize offspring by deleting exceeded genes and adding missed genes (Gen 

et al.,1999). 

 

The partial schedule is identified with the same job in the head and tail of the 

partial schedule. 

 

4.3.2.2.10 Substring Exchange Crossover. Cheng et al. (1997) gave an another 

version of partial schedule exchange crossover, called substring exchange crossover. 

It can be viewed as a kind of adaptation of two cut-points crossover for general literal 

string encodings. It has the following steps: 

 

1. First, select two cut-points along the string at random. Exchange two 

substrings defined by the two cuts between two parents to produce proto-

children. 

2. Determine the missed and exceeded genes for each proto-child by making a 

comparison between two substrings. 

3. Legalize the proto-children by replacing the exceeded genes with the missed 

genes in a random way (Gen et al.,1999). 

 

4.3.2.3 Mutation Operator 

 

Mutation is the third genetic operator. It is the primary search operator. Mutation 

operator assure the diversity of the population to prevent the premature convergence 

of GA. Mutation changes the value of individual genes at random with a certain 

probability and assures that all the points in the search space are likely to be 

examined. Several mutation operators have been proposed, such as inversion, 

insertion, displacement, reciprocal exchange mutation, and shift mutation (Gen et al, 

1999). In this thesis insertion mutation and modified version of insertion mutation 

methods are used. 

 

 Inversion mutation: Selects two positions within a chromosome at random 

and then inverts the substring between these two positions.  



50 

 

 Insertion mutation: Selects a gene at random and inserts it in a random 

position.  

 

 Displacement mutation: Selects a substring at random and inserts it in a 

random position. Insertion can be viewed as a special case of displacement in where 

substring just contains one gene.  

 

 Reciprocal exchange mutation: Selects two positions at random and then 

swaps the genes on these positions. Shift mutation first chooses a gene randomly and 

then shifts it to a random position of right or left from the gene's position. 

 

 Shift mutation: Chooses a gene randomly and then shifts it to a random 

position of right or left from the gene’s position.  

 

4.3.3 Genetic Parameters 

 

There may be many parameters which are considered in implementing the GA 

procedure. Three of the most important  parameters are population size, probability 

of crossover and probability of mutation. 

 

 Population size: Population size affects the efficiency of the algorithm. If we 

have smaller population, it would only cover a small search space and may results in 

poor performance. A larger population would cover more space and prevent 

premature convergence to local solutions. At the same time, a larger population 

needs more number of evaluations per generation and may slow down the 

convergence rate.  

 

 Probability of Crossover: Probability of crossover or crossover rate is the 

parameter that affects the rate at which the crossover operator is applied. A higher 

crossover rate introduces new strings more quickly into the population. A low 

crossover rate may cause stagnation due to the lower exploration rate. 
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 Probability of Mutation: Probability of mutation or mutation rate is the 

probability of changing the bit position of each string in the new population. A low 

mutation rate helps to prevent any bit positions from getting stuck to single value, 

whereas a high mutation rate results in essentially random search. 

 

4.4 Summary 

 

Genetic algorithm is adaptive method which may be used to solve search and 

optimisation problems. They are based on the genetic processes of biological 

organisms. Scheduling of large-scale problems includes a number of difficulties for 

search and optimization techniques. Genetic algorithms are well suited to such 

problems owing to their adaptability and their effectiveness at searching large spaces. 

In the following chapter, the genetic algorithm is applied to flexible job shop 

scheduling problem. 
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CHAPTER FIVE 

SOLVING FLEXIBLE JOB SHOP SCHEDULING PROBLEM WITH 

SEQUENCE DEPENDENT SET UP TIME BY USING GENETIC 

ALGORITHM 

 

5.1 Introduction 

 

This chapter presents a solution approach to a flexible job shop scheduling 

problem with sequence dependent setup time by using GA. The objective is to 

minimize the makespan. Besides makespan, workload and setup times are also 

analysed. In this thesis, we focus on the methods which assign the jobs to the 

machines, sequence the jobs on the machine, selection methods and mutation 

methods. Genetic algorithm determines a solution approach to minimize the 

performance measures by the combination of these methods. Matlab is used for 

solving this problem. 

 

FJSSP is a generalization of the job shop with workcenters that have multiple 

machines in parallel. Flexible Job Shop Problems are divided into two subproblems. 

In the first subproblem, assignments of operations to the machines are made. In the 

second subproblem, the sequencing problem is solved.  

 

 For the first subproblem, assignment methods were used in this thesis. The first 

method is “Approach by Localization” which assigns each operation to the suitable 

machine by taking into account the processing times and the workloads of machines. 

This assignment procedure assumes that there are no setup times. Approach by 

Localization methode was first developed by Kacem (2002). Pazella(2007) modified 

it by mixing machine and opeation places. Chen(2009) resolved it by parallel genetic 

algorithm (PGA) through the inclusion of sequence dependent setup time. 

Fattahi(2010) applied this method for solving the dynamic flexible job shop problem 

scheduling. 
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The second method is a modified version of the first method. In this method, we 

modified the assignment procedure by using sequence dependent setup times in 

addition to processing times and workloads of machines. In the third method, 

assignments were made randomly just for the comparison purposes.  

 

For the second subproblem, dispatching rules such as shortest processing time 

(SPT), most work remaining (MWR), longest processing time (LPT), shortest setup 

time first rule (SSTFR), random rule and neighborhood search were applied for 

sequencing the machines. 

 

Setup times are not generally added to flexible job shop scheduling problem in the 

literature due to the complexity of the problem. In this thesis, sequence-dependent 

setup times are taken into consideration in machine assignments realized not only 

during the formation of the initial population but also in the calculation of the 

makespan. In the literature, solution methods of flexible job shop scheduling 

problems are divided into two as optimum and approximate solutions. Algorithms 

giving the optimum solution are suitable for small sized problems. Heuristic 

algorithms are used for large sized problems because finding the optimum solution 

takes a long time. In this thesis, Genetic Algorithm Method is used among heuristic 

methods. 

 

5.2 Description of the Problem 

 

This thesis takes into consideration flexible job shop problems including identical 

or nonidentical parallel machines and sequence-dependent setup times. JSSP 

considers a set of jobs to be processed on a set of machines. Each job is defined by 

an ordered set of operations and each operation is assigned to a machine with a 

predefined constant processing times. The order of the operations within the jobs and 

its corresponding machines are fixed a priori and independently from job to job. For 

solving this problem, we need to find a sequence of operations on each machine 

respecting some constraints and optimising some objective function. 
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Figure 5.1 Flexible Job Shop Scheduling 

 

Following assumptions are considered for the problem; 

 

1. Each job consists of one fixed sequence of operations. 

2. Each machine can process at most one job at a time, and each job can only be 

processed on one machine at a time. 

3. There are no interruptions and cancellations between the jobs. 

4. All machines are available continuously. 

5. There are identical or nonidentical paralel machines in the system. 

6. All jobs can be started at t = 0. 

7. All machines are available at t = 0. 

8. There are sequence dependent setup time between the jobs. 

9. Setup for a job cannot begin until the job is available to the current work 

center and the desired machine in the work center is idle. 

10. All data including processing times and setup times are known 

deterministically. 

11. There are no precedence constraints among operations of different jobs. 

12. Neither release times nor due dates are specified. 

13. There are two cases, the first is that all machine can process all the jobs (total 

flexibility), the second is that all machines can not process all the jobs (partial 

flexibility). 
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5.3 Performance Measures 

 

Different types of objectives may be considered in scheduling problems. These 

are performance measures based on completion time, flow time, lateness, number of 

late/tardy jobs, earliness, and number of early jobs. In this thesis, one of the 

completion time based performance measures, makespan was selected, workload and 

setup times were also evaluated.  

 

Makespan is the difference between the start and finish of a sequence of jobs. The 

maximum completion time is also called as the makespan which is the completion 

time of the last job. A common problem of interest is to minimize maxC , or to 

minimize the completion time of the last job leaving the system. This criterion is 

usually used for measuring the level of utilization of the machine. The workload is 

the sum of processing times of the machines. The setup time is the time period 

required for preparing a machine to be ready for accepting a job.  

 

5.4 Proposed Genetic Algorithm 

 

In FJSP, two subproblems should be solved as it was stated in Chapter Two. In 

the first subproblem, assignments of operations to the machines are made by using 

assignment methods. In the second subproblem, sequencing problem is solved by 

dispatching rules and neighborhood search.  

 

The following algorithm represents the methodology that we used for scheduling 

flexible job shops with sequence dependent setup times by using genetic algorithm. 

 

Step 1: Initial population are created by the assignment methods. One of the three 

assignment methods are used while creating an initial population.  

 

Step 2: Each cromosomes in the population are evaluated by using dispatching 

rules such as shortest processing time (SPT), most work remaining (MWR), longest 
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processing time (LPT), shortest setup time first rule (SSTFR), random rule and 

neighborhood search. These rules were applied for sequencing the machines. 

 

Step 3: Two chromosomes are selected in the population  by using roulette wheel 

selection method to apply crossover operator. 

 

Step 4: Crossover and mutation operator are applied on the pairs of selected 

chromosomes. 

 

Step 5: A new population is created by replacing a portion of the original 

population with the new chromosomes produced in the previous step. 

 

Step 6: If the end condition is satisfied, stop, and return the best solution in 

current population, otherwise go to Step 2. 

 

5.5 Initial Population Generation 

 

The performance of GA is affected by various factors such as coefficients and 

constants, genetic operators, parameters and some strategies. Generating initial 

population strategies and chromosomal representations are also examples of these 

factors.  

 

Better efficiency of GA can be achieved by modifiying the chromosomal 

representations so as to generate feasible solutions, and avoiding the use of a repair 

mechanism. In this thesis, two chromosomal representation are used. The first one 

represents the machine assignment and the second one represents the operation 

sequence on the machines. 

 

The initial population strategy is applied for reducing the number of search to 

reach the optimum design in the solution space. In this thesis, the initial population is 

generated by three methods and these methods are compared. The first method is 

based on the procedure presented in Pezella (Pezella et al., 2007) which in turn is 
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based on the localization approach of Kacem (Kacem et al., 2002). This approach 

takes into account both the processing time and the workload of the machines. The 

procedure consists of finding, for each operation, the machine with the minimum 

processing time, fixing that assignment, and then adding this time to every 

subsequent entry in the same column. Since this approach is strongly dependent on 

the order in which operations and machines, Pezella (Pezella et al., 2007), slightly 

modify randomly permuted jobs and machines. The second method modifies these 

approach taking into account the sequence dependent setup time. The third method is 

a random method which generates the initial population randomly. After using an 

assignment algorithm for finding a set of feasible schedules, they are used as an 

initial population for GA. 

 

Chromosomal Representation: In this thesis, two chromosomal representations 

are used. The first one represents the machine assignment and the second one 

represents the operation sequence on the machines. 

 

0- 1 values are used for machine assignment representation. Each unit value in the 

assignment representation maps a machine to a corresponding operation. In this 

representation, infeasible solutions are not allowed. Table 5.1 represents the 

processing time possibilities on various machines. Table 5.2 represents the 

assignment of jobs on the machines. 

 

Table 5.1 Processing time matrix 

 
1M  2M  3M  4M  

1,1O  1 3 4 1 

2,1O  3 8 2 1 

3,1O  3 5 4 7 

1,2O  4 1 1 4 

2,2O  2 3 9 3 

3,2O  9 1 2 2 

1,3O  8 6 3 5 

2,3O  4 1 8 5 
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Table 5.2 Machine asignment matrix 

 
1M  2M  3M  4M  

1,1O  1 0 0 0 

2,1O  0 0 1 0 

3,1O  0 0 1 0 

1,2O  0 0 0 1 

2,2O  0 1 0 0 

3,2O  0 0 0 1 

1,3O  0 0 1 0 

2,3O  0 0 0 1 

 

Operation sequence on the machines are represented as “operation-based 

representation”. In this representation, the order of operations within the permutation 

is interpreted as a sequence for building a schedule solution. The decoding procedure 

scans each permutation from left to right and uses sequence information for building 

a schedule consecutively. Infeasible solutions are not allowed. Each operation reads 

the machine data in the machine assignment matrix in Table 5.2 and the processing 

time data in the processing time matrix in Table 5.1. A permutation of job numbers 

expresses the order in which the operations of jobs are scheduled in the Gannt 

Chart.in Figure 5.1.  

 

 
Figure 5.2:Permutation of jobs and job sequence on Gantt Chart 

 

Approach by Localization Method: Approach by Localization method enables 

us to assign each operation to the suitable machine by taking into account the 
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processing times and the workloads of machines on which we have already assigned 

the operations. This method is applied for reducing the size of the search space of the 

problem to increase the probability of catching the global solution and enhance the 

performance of the GA. Pseudo code for generating initial population by Approach 

by Localization method is as follows: 

 

Step 0: Create a table D, presenting the processing time possibilities for each 

operation on various machines. 

          Set op=0  

          Set num_of_op=N 

Step 1: Randomly permute jobs and machines in the table “D”. 

Step 2: op=op+1 

Step 3: Find the machine with the minimum processing time for operation “op” and 

select this machine to assign operation “op”. 

Step 4: Fixing that assignment then to add this time to every subsequent entry in the 

same column and update table “D”     

Step 5: If op is equal to “num_of_op”? 

            YES, Set “D” 

             NO, Go to Step 2 

 

The first step of the algorithm initializes a table D which represents the processing 

time possibilities for each operation on various machines. We define num_of_op as 

the number of operation and “op”as a counter. Second step of the algorithm, we 

randomly permute the jobs and the machines in the table “D”. 

 

In the other steps of the algorithm, the procedure consists of finding the machine 

with the minimum processing time for each operation, fixing that assignment, and 

then adding this time to every subsequent entry in the same column. 

 

In Approach by Localization method; first we randomly permute jobs and 

machines in the processing time table in Table 5.1. The assignment procedure starts 

with the first row. We select the machine which has the minimum processing time 
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for related operation. After fixing that assignment, we update the workload of the 

machines by adding processing time in the same column. 

 

Table 5.3 Updated processing time matrix 

 

 

 

 

 

 

 

 

 

 

The assignment procedure continues with the second row. We select the machine 

which has the minimum processing time for related operation. After fixing that 

assignment, we update workload of the machines in Table 5.4 by adding processing 

time in the same column. 

 

Table 5.4 Updated processing time matrix 

 

 

 

 

 

 

 

 

 

 

This procedure proceeds until all operations are assigned to a particular machine. 

Finally the assignment table representing the operations and their assignments to 

machines is generated. 

 1M  4M  3M  2M   1M  4M  3M  2M  

1,1O  1 1 4 3  1 1 4 3 

2,1O  3 1 2 8  4 1 2 8 

3,1O  3 7 4 5  4 7 4 5 

1,2O  4 4 1 1  5 4 1 1 

2,2O  2 3 9 3  3 3 9 3 

3,2O  9 2 2 1  10 2 2 1 

1,3O  8 5 3 6  9 5 3 6 

2,3O  4 1 8 5  5 1 8 5 

 1M  4M  3M  2M  x 1M  4M  3M  2M  

1,1O  1 1 4 3  1 1 4 3 

2,1O  4 1 2 8  4 1 2 8 

3,1O  4 7 4 5  4 8 4 5 

1,2O  5 4 1 1  5 5 1 1 

2,2O  3 3 9 3  3 4 9 3 

3,2O  10 2 2 1  10 3 2 1 

1,3O  9 5 3 6  9 6 3 6 

2,3O  5 1 8 5  5 2 8 5 
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Modified version of Approach by Localization: In this method, we modified the 

assignment procedure by using sequence dependent setup times in addition to 

processing times and workloads of machines. 

 

The setup times are generated for each machine according to the a uniform 

discrete distribution U[min it ,max  it ] which it  is the processing time of the tasks for 

each machine. It is assumed that the setup times between operations in machine k 

could not be greater than the longest processing time of operations, which requires 

the machine k. The setup time could not be started until the related job is free from 

its previous operations. In Table 5.5, the processing times of operations are 

presented. In Table 5.6, the setup times are generated for machine 1 according to a 

uniform discrete distribution U[1, 9] where 1 is the minimum processing time in the 

Table 5.5 for machine 1 and 9 is the maximum processing time for machine 1. For 

each machine, setup matrices are generated by this procedure. Pseudo code for 

generating initial population by modified Approach by Localization method as 

follows: 

 

Table 5.5 Processing time matrix  

 
1M  2M  3M  4M  

1,1O  1 3 4 1 

2,1O  3 8 2 1 

3,1O  3 5 4 7 

1,2O  4 1 1 4 

2,2O  2 3 9 3 

3,2O  9 1 2 2 

1,3O  8 6 3 5 

2,3O  4 5 8 1 
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Table 5.6 Setup time matrix for machine 1 

 
1,1O  2,1O  3,1O  1,2O  2,2O  3,2O  1,3O  2,3O  

1,1O  0 5 4 6 1 2 3 3 

2,1O  4 0 5 3 4 4 2 3 

3,1O  3 2 0 3 6 1 5 5 

1,2O  5 5 4 0 2 3 4 4 

2,2O  5 5 3 4 0 1 2 2 

3,2O  2 2 6 3 4 0 3 5 

1,3O  1 3 3 4 5 4 0 6 

2,3O  4 4 2 3 4 6 2 0 

 

 

Step 0: Create a table “D”, presenting the processing time possibilities for each 

operation on the various machines and setup matrix “S” for each machine. 

          Set op=0  

          Set num_of_op=N 

Step 1: Randomly permute the jobs and the machines in the table “D”. 

Step 2: op=op+1 

Step 3: Find the machine with the minimum processing time for operation “op” and 

select this machine to assign operation “op”. 

Step 4: Fix that assignment, then add this time, and sequence the dependent setup 

time to every subsequent entry in the same column and update the table “D”    

Step 5: If op is equal to “num_of_op”? 

            YES, Set “D”   

            NO, Go to Step 2 

 

The first step of the algorithm initializes a table D which represents the processing 

time possibilities for each operation on various machines and a table S which 

represents the setup times of the operations. We define “num_of_op” as the number 

of operation and “op”as a counter. In the second step of the algorithm, we randomly 

permute jobs and machines in the table “D”. 
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In other steps of the algorithm, the procedure consists of finding, the machine 

with the minimum processing time for each operation, fixing that assignment, and 

then adding this time and sequence dependent setup time to every subsequent entry 

in the same column. 

 

In modified version of Approach by Localization; sequence dependent setup times 

are used on both assignment and sequencing algorithm. First, we randomly permute 

the jobs and the machines in the processing time table. The assignment procedure 

starts with the first row. We select the machine which has the minimum processing 

time for related operation. After fixing that assignment, we update workload of the 

machines in Table 5.7 by adding processing time and the sequence dependent set up 

time in the same column. This procedure proceeds until all operations are assigned to 

a particular machine. Finally, the assignment table representing the operations and 

their assignments to the machines is generated. 

 

Table 5.7 Updated processing time matrix 

 

 

 

 

 

 

 

 

 

 

Random Assignment Method: In the third method, assignments were made 

randomly just for the comparison purposes. Machines are randomly selected for each 

operation. When we assign all operations to the machines, we generate one 

individual. Pseudo-code for randomly generating initial population as follows: 

 

 

 1M  4M  3M  2M   1M  4M  3M  2M  

1,1O  1 1 4 3  1 1 4 3 

2,1O  3 1 2 8  3 1 2 8 

3,1O  3 7 4 5  3 7 4 5 

1,2O  4 4 1 1  4 4 1 1 

2,2O  2 3 9 3  2 3 9 3 

3,2O  9 2 2 1  9 2 2 1 

1,3O  8 5 3 6  8 5 3 6 

2,3O  4 1 8 5  4 1 8 5 

jkihji SP ,,,,   
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Step 1: Create a table “D”, presenting the processing time possibilities on various 

machines 

            Set op=0  

            Set num_of_op=N 

Step 2: op=op+1 

Step 3: Randomly select one machine for operation “op” 

Step 4: If op is equal to “num_of_op”? 

            YES, Set “E” 

             NO, Go to Step 2 

 

The first step of the algorithm initializes a table D which represents the processing 

time possibilities for each operation on the various machines. We define 

“num_of_op” as the number of operation and “op”as a counter. In the second step of 

the algorithm, we randomly permute the jobs and the machines in the table “D”. 

 

In the other steps of the algorithm, one operation is assigned to a specific machine 

randomly for each operation. 

 

5.5.1 Fitness Evaluation 

 

Fitness function is a particular type of objective function that prescribes the 

goodness of a solution in a genetic algorithm so that particular chromosome can be 

ranked against all the other chromosomes. In this thesis, the main objective is to 

minimize the makespan.  

 

5.5.1.1 Dispatching Rules 

 

Detailed scheduling decisions in a job shop are usually determined by dispatching 

rules. Most dispatching rules immediately assign the work to the machines as long as 

the said work is available. In this thesis, the shortest processing time, the longest 

processing time, the most work remaining, the first shortest setup time, and random 

rule are used. 
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Table 5.8 A list of job shop dispatch rules 

 

5.5.1.1.1 Most Work Remaining Rule (MWR). Most work remaining rule orders 

the jobs in the order of most remaining processing times. Whenever a machine is 

freed, the job with the most remaining processing time begins processing.  

 

5.5.1.1.2 Shortest Processing Time Rule (SPT). The shortest processing time rule 

sequence the jobs in the increasing order of processing times. Whenever a machine is 

freed, the job with the shortest processing time begins processing. In the single 

machine environment with zero ready time for all jobs, this rule minimizes the mean 

flow time and the work in process, and the mean lateness in the system.    

 

5.5.1.1.3 Longest Procesing Time Rule (LPT). The longest processing time rule 

sequences the jobs in decreasing order of processing times. Whenever a machine is 

freed, the job with the longest processing time begins processing.  

 

5.5.1.1.4 Random Rule. Random rule orders the jobs randomly. Whenever a 

machine is freed, randomly selected job begins processing. 

 

5.5.1.1.5 Shortest Setup Time First Rule (SSTFR). Shortest setup time first rule 

orders the jobs according to shortest setup time. Whenever a machine is freed, the 

job which has shortest setup time begins processing. 

Rule Description 

SPT Select an operation with shortest processing time 

MWR Select an operation for the job with the most total processing time remaining 

LPT Select an operation with the longest processing time 

SSTFR Select an operation with the shortest setup time 

RANDOM Randomly Select an operation 
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5.5.1.2 Neighborhood Search 

 

A neighborhood of a schedule is defined as all possible neighbors which are 

generated by moving some operations in the current location to a different position. 

The generating mechanism is a method of taking one sequence as a seed and 

systematically creating a collection of related sequences. Neighborhood search 

algorithms which alternatively called as local search algorithms are a wide class of 

improvement algorithms where an improved solution may be found at each iteration 

by searching the “neighborhood” of the current solution. A critical issue in the design 

of a neighborhood search algorithm is the choice of the neighborhood structure, that 

is, the manner in which the neighborhood is defined. As a rule of thumb, the larger 

the neighborhood, the better is the quality of the locally optimal solutions, and the 

greater is the accuracy of the final solution that is obtained. At the same time, the 

larger the neighborhood, the longer it takes to search the neighborhood at each 

iteration. For this reason, a larger neighborhood does not necessarily produce a more 

effective heuristic unless one can search the larger neighborhood in a very efficient 

manner.  

 

5.5.2 Selection 

 

Selection is the first genetic operator. Two types of selection methods are applied 

in the genetic algorithms. First method is selection of reproduction, second method is 

selection of replacement. Selection of reproduction determines the sampling that will 

produce the offspring. After the production of a new individual, it is necessary to 

decide which individuals survive in the next generation. Selection for replacement 

creates a new generation from the current one and the obtained offspring (Shopova 

and Bancheva, 2006). 

 

5.5.2.1 Selection of Reproduction 

 

The selection function is used for creating an evolutionary pressure. Well 

performing chromosomes have a higher chance of surviving. This kind of selection 
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aims at identifying better chromsomes of the population that would be taken for 

reproduction.  

 

In this thesis, the roulette wheel selection is used for selection of reproduction. In 

roulette wheel selection, individuals are given a probability of being selected that is 

directly proportionate to their fitness. Two individuals are then chosen randomly 

based on these probabilities, and the offspring is produced. The individuals of the 

population are assumed as slots of the roulette-wheel. Each slot is as width as the 

probability for selection of corresponding chromosome is great. The scaled fitness 

function is used for calculating respective selection probabilities. The number of 

expected copies in the sampling pool is proportional to its selection probability.  

 

5.5.2.2 Selection of Replacement 

 

After the reproduction, we have to decide which individuals will be survived and 

transferred to the next generation. In this thesis, two selection of replacement  

methods are used. In the first method, parents replace the children randomly. Each 

resulting offspring will be evaluated and two individuals will be added to the 

population of the next generation randomly. In the second method, parents replace 

the children only if their children are better. Each resulting offspring will be 

evaluated and better one of the two individuals will be added to the population of the 

next generation. 

 

5.5.3 Crossover 

 

Crossover creates a new individual from its parents. During crossover, parents are 

selected from the mating pool by the roulette-wheel selection method. In this thesis, 

position based crossover is used. Genes from one parent’s chromosome are swapped 

with corresponding genes on other parent’s chromosome to create two children. We 

assign n random numbers generated from uniform distribution to each gene position 

of the parents, then copy the gene of parent 1 and 2 to offspring 1–2 and 2–1, 
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respectively. Each resulting offspring will be evaluated and better one of the two 

individuals will be added to the population of the next generation.  

Table 5.9 Parent–1 

 1M  2M  3M  4M  

1,1O  1 0 0 0 

2,1O  0 0 1 0 

3,1O  0 0 1 0 

1,2O  0 0 0 1 

2,2O  0 0 0 1 

3,2O  0 1 0 0 

1,3O  0 1 0 0 

2,3O  0 1 0 0 

 

Table 5.10 Parent–2 

 1M  2M  3M  4M  

1,1O  1 0 0 0 

2,1O  0 1 0 0 

3,1O  0 0 1 0 

1,2O  0 0 0 1 

2,2O  1 0 0 0 

3,2O  0 0 0 1 

1,3O  0 0 0 1 

2,3O  0 1 0 0 

 

Table 5.11 Child-1 

 1M  2M  3M  4M  

1,1O  1 0 0 0 

2,1O  0 1 0 0 

3,1O  0 0 1 0 

1,2O  0 0 0 1 

2,2O  1 0 0 0 

3,2O  0 1 0 0 

1,3O  0 0 0 1 

2,3O  0 1 0 0 
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Table 5.12 Child-2 

 1M  2M  3M  4M  

1,1O  1 0 0 0 

2,1O  0 0 1 0 

3,1O  0 0 1 0 

1,2O  0 0 0 1 

2,2O  0 0 0 1 

3,2O  0 0 0 1 

1,3O  0 1 0 0 

2,3O  0 1 0 0 

 

Two parents are selected from the mating pool (Parent–1 in Figure 5.9 and 

Parent–2 in Figure 5.10), n random numbers are generated from uniform distribution. 

Generated numbers indicate the operation located in the selected rows of those 

parents. Tables 5.9 and 5.10 illustrate the condition that the generated numbers are 2, 

5, and 7. When childs 1 and 2  are being generated from parents, selected rows of 

parent 1 passes only to child 2 and selected rows of parent 2 passes only to child 1. 

Unselected rows of parent 1 passes only to child 1 and unselected rows of parent 2 

passes only to child 2. Finally Child–1 in Table 5.11 and Child–2 in Table 5.12 are 

generated. 

 

5.5.4 Mutation 

 

Mutation is a third genetic operator which is used for maintaining a genetic 

diversity from one generation of a population to the next generation. Individuals in 

the population choosen for mutation have a mutation rate. Mutation rate calculated in 

the following part. Mutation usually works on a single chromosome and mutation 

creates another chromosome or exchange the values of two string positions.  

 

The purpose of the mutation operator is to prevent the genetic population from 

converging to a local minimum, and to introduce to the population new possible 

solutions. 

 



70 

 

1. Keep the diversity of the population in solution progress. 

2. Preserve the algorithm from the premature convergence. 

3. Lead for obtaining the best solutions for the reasonable number of generations. 

 

In this thesis two mutation methods are used. First method is intelligent mutation, 

second method is random mutation. These mutation operators only change the 

assignment property of the chromosomes. In intelligent mutation; first, we select the 

job which has the most raised value of the effective processing time; second, we 

select the operation of the selected job which will mutate. Third, we select the 

shortest processing time from alternative machine for the selected operation. In 

random mutation; first, we choose the operation that will mutate. Second, we assign 

a new machine to this operation. Assigned machine should be chosen randomly from 

a set of machines that can prosses this operation. 

 

Intelligent mutation reduce the effective processing time, which helps to minimize 

the objectives which are makespan and the total workload of the machine. Random 

mutation method provides the genetic diversity. 

 

In intelligent mutation; first, we calculate effective procesing time of the jobs. For 

example job1 has three operations ( 1,1O , 2,1O , 3,1O ). These operations are assigned to 

specific machines. Total processing times of these operations in these machines are 

the effective processing times of the job1. In Figure 5.13, job 1 has the most raised 

value of the effective processing time. Therefore, we have to cover the list of its 

operations to reduce this duration. Operation 1,1O , can be assigned to the machine-1 

instead of the machine-3. We reduce the effective processing time to 9 units of time 

and the makespan to 6 units. 
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Table 5.13 Before intelligent mutation 

 
1M  2M  3M  4M  

1,1O  0 0 1 0 

2,1O  0 0 1 0 

3,1O  1 0 0 0 

1,2O  0 0 1 0 

2,2O  0 0 0 1 

3,2O  0 1 0 0 

1,3O  0 0 1 0 

2,3O  0 0 0 1 

 

Table 5.14 After intelligent mutation 

 
1M  2M  3M  4M  

1,1O  1 0 0 0 

2,1O  0 0 1 0 

3,1O  1 0 0 0 

1,2O  0 0 1 0 

2,2O  0 0 0 1 

3,2O  0 1 0 0 

1,3O  0 0 1 0 

2,3O  0 0 0 1 

 

In random mutation, we assign n random numbers generated from a uniform (0, 1) 

distribution to their genes. If a random number given for a gene is less than a 

mutation probability then the method of random mutation is used for mutating the 

operation. We assign a new machine to this operation. Assigned machine should be 

chosen randomly from a set of machines that can process this operation. 

4+2+3=9 

3+1=4 

1+3+1+=5 

1+2+3=6 
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Table 5.15 Before random mutation 

 
1M  2M  3M  4M  

1,1O  1 0 0 0 

2,1O  0 0 0 1 

3,1O  1 0 0 0 

1,2O  0 0 1 0 

2,2O  0 0 0 1 

3,2O  0 1 0 0 

1,3O  1 0 0 0 

2,3O  0 0 0 1 

 

 

 

 

Table 5.16 After random mutation 

 
1M  2M  3M  4M  

1,1O  1 0 0 0 

2,1O  0 0 0 1 

3,1O  1 0 0 0 

1,2O  0 0 1 0 

2,2O  0 0 0 1 

3,2O  0 1 0 0 

1,3O  1 0 0 0 

 

5.6 Parameters 

 

There are many parameters that can be considered when programming the GA 

procedure. These parameters are crossover rate, mutation rate, genes rate. The good 

performance of GA requires the proper choice of crossover and mutation operators. 

In this section, the adjustment method of these parameters is given. A problem is 

selected in initial experiments to evaluate the parameters. The considered problem is 

run ten times for different combinations of these parameters. The average of ten 

solutions is used as the performance criterion. In parameters adjustment method, at 

first, one of them is changed in its domain and other parameters are fixed in the 

Randomly select the 
operation 
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smallest amount of their domain. So the best value for variation parameter will be 

obtained by considering the performance criterion. This step is repeated for other 

parameters to find the best setting of them. The results of the preliminary 

experiments are shown in the following tables.  

 

The higher the crossover and gene rate, the more quickly new structures are 

introduced into the population. If the crossover and gene rate is too high, 

high-performance structures are discarded faster than the selection can produce 

improvements. If the crossover and gene rate is too low, the search may stagnate due 

to the lower exploration rate. Current experiments allowed seven different crossover 

rates, varying from 0.3 to 0.9 in increments of 0.1 and the mutation rate and the gene 

rate are fixed at 0.05 and 0.3. The results show that the best crossover rate is 0.6.  

 

Table 5.17 The effect of crosover rate 
Crossover Rate Mutation Rate Gene Rate    Makespan 
0,3 0,05 0,3 31.5 
0,4 0,05 0,3 32 
0,5 0,05 0,3 32.1 
0,6 0,05 0,3 30.5 
0,7 0,05 0,3 31.9 
0,8 0,05 0,3 31 
0,9 0,05 0,3 31.5 

 

Eight different gene rates are allowed, which vary from 0.1 to 0.8 in increments of 

0.1, and the crossover rate and the mutation rate are fixed at 0.6 and 0.05 

respectively. The results show that the best gene rate is 0.3.  

 

Table 5.18 The effect of genes rate 
Gene rate      Crossover Rate Mutation Rate Makespan 
0,1 0,6 0,05 32 
0,2 0,6 0,05 31.5 
0,3 0,6 0,05 30.5 
0,4 0,6 0,05 31.4 
0,5 0,6 0,05 31.4 
0,6 0,6 0,05 32.1 
0,8 0,6 0,05 30.9 

 

Mutation is a search operator which increases the variability of the population. 

The current experiments allowed seven values for the mutation rate, increasing from 
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0.005 to 0.05 and the crossover rate and the gene rate are fixed at 0.6 and 0.3 

respectively. 

 

Table 5.19 The effect of mutation rate 

Mutation Rate      Crossover Rate Gene Rate Makespan 
0,005 0,6 0,3 31.1 

0,010 0,6 0,3 31.6 
0,015 0,6 0,3 32.2 
0,02 0,6 0,3 32.1 
0,03 0,6 0,3 31.8 
0,04 0,6 0,3 31.3 
0,05 0,6 0,3 30.5 

 

In this thesis, the best values for parameters cp , gp  and mp  are obtained as 0.6, 

0.3, and 0.05, respectively. We use these parameters in the experimental design part. 

 

5.7 Computational Results 

 

Computational results are divided into three parts which are makespan, setup time 

and workload based on the size of problem instances. We use three problem 

instances which are small and medium sizes, and we create setup matrices for these 

problem instances. Setup matrices are created by the method which explained in the 

previous parts. 

 

We assess the performance of genetic algorithm factors in the context of optimal 

solution. These factors are makespan calculation methods, initial population 

generation methods, selection methods, and mutation methods. Makespan calculation 

metods are MWR, SPT, SSTFR, RANDOM, LPT, NEIGHBORHOOD. Initial 

population generation methods are random generation, Approach by Localization 

and modified Approach by Localization method. Selection methods are best selection 

and random selection methods. Mutation methods are intelligent mutation and 

random mutation methods. Regresison analysis are used for investigating the effect 

of the factors on the makespan, setup time and workload. Regression analysis is used 

for understanding which independent variables are related to the dependent variable, 

and for exploring the forms of these relationships. In restricted circumstances, 
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regression analysis can be used for inferring causal relationships between 

independent and dependent variables. Makespan, setup time and workload are 

dependent variables. Makespan calculation, initial population generation, selection, 

and mutation methods are independent variables. 

 

Small-sized  total flexible flexible job shop problem 

 

In this part, we consider the factors which affect total flexible small-sized flexible 

job shop problems with sequence dependent setup time. The characteristics of the 

problem are recirculation, total flexibility and setup time. In this problem, there are 4 

machines, 3 jobs, and 8 operations. Initial population size is 100 and the number of 

generation is 500. Parameters for this tested problem are shown in Table 5.20.  

 

Table 5.20 Parameters for small-size test problem 

Parameters Small-sized problem 
Number of jobs 3 
Number of machines 4 
Number of operations 8 
Initial population 100 
Number of generation 500 
  
 

This minimization problem is solved by a combination of different factors. Each 

combination has four factors which are makespan, initial population, selection and, 

mutation methods. Total number of combination is 72. Each combination run five 

times, and minimum makespan, setup time and workload solutions are taken for each 

run. In total, 360 minimum makespan, setup time and workload solutions are 

obtained. Best solutions are obtained through approach by localization method, 

neighborhood search mehod, best selection method, and intelligent mutation method. 

Mean makespan, setup time and workload obtained by this combination are given in 

Table 5.21. Regression analysis is used for these solutions to investigate the affect of 

the factors on the makespan, setup time and workload. Regression analysis shows 

that initial population generation, selection and mutation methods affect the 

makespan and the workload performance. Initial population generation and selection 
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methods affect the setup time performance. Regression analysis results are 

summarized in table 5.22. 

 
Table 5.21 GA results for total flexible small size test problem 

 
 
 

Mean Makespan Mean Setup Mean Workload 

Best combination 
results 

 

9 5.5 23 

 
Table 5.22 Regression analysis results for total flexible small size test problem 
 Makespan 

Method  
Initial 
Population 
Method 

Selection 
Method 

Mutation 
Method 

Makespan 
 

Not effected effected effected effected 

Setup 
 

Not effected effected effected Not effected 

Workload 
 

Not effected effected effected effected 

 

 

Medium-sized partial flexible flexible job shop problem 

 
In this part, we consider the factors which affect partial flexible medium-sized 

flexible job shop problems with sequence dependent setup time. The characteristics 

of the problem are recirculation, partial flexibility and setup time. In this problem, 

there are 8 machines, 8 jobs, and 27 operations. Initial population size is 100 and the 

number of generation is 500. Parameters for this tested problem are shown in Table 

5.23.  

 

Table 5.23 Parameters for partial flexible medium-sized test problem 

Problem size Medium 
Number of jobs 8 
Number of machines 8 
Number of operations 27 
Initial population 100 
Number of generation 500 

 

This minimization problem is solved by a combination of different factors. Each 

combination has four factors which are makespan, initial population, selection and 

mutation methods. Total number of combination is 72. Each combination run five 

times and minimum makespan, setup time and workload solutions are taken for each 
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run. Totally 360 minimum makespan, setup time and workload solutions are 

obtained. Best solutions are obtained through approach by localization method, 

neighborhood search mehod, best selection method, and intelligent mutation method. 

Mean makespan, setup time and workload obtained by this combination are given in 

Table 5.24. Regression analysis is used for these solutions to investigate the affect of 

the factors on the makespan, setup time, and workload. Regression analysis shows 

that population generation and selection methods affect the makespan, workload and 

setup time performance. Regression analysis results are summarized in table 5.25. 

 

Table 5.24 GA results for partial flexible medium sized test problem 

 
 
 

Mean Makespan Mean Setup Mean Workload 

Best 
combination 
results 

 

35.2 77 169.8 

 
Table 5.25 Regression analysis results for partial flexible medium sized test problem 

 Makespan 
Method  

Initial 
Population 
Method 

Selection 
Method 

Mutation 
Method 

Makespan 
 

Not effected effected effected Not effected 

Setup 
 

Not effected effected effected Not effected 

Workload 
 

Not effected effected effected Not effected 

 

Medium-sized total flexible flexible job shop problems 

 

In this part, we consider the factors which affect total flexible medium-sized 

flexible job shop problems with sequence dependent setup time. The characteristics 

of the problem are recirculation, total flexibility, and setup time. In this problem, 

there are 10 machines, 10 jobs, and 30 operations. Initial population size is 100 and 

the number of generation is 500. Parameters for this tested problem are shown in 

Table 5.26.  
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Table 5.26 Parameters for total flexible medium-sized test problem 

Problem size Medium 
Number of jobs 10 
Number of machines 10 
Number of operations 30 
Initial population 100 
Number of generation 500 
  
 

This minimization problem is solved by a combination of different factors. Each 

combination has four factors which are makespan, initial population, selection and 

mutation methods. Total number of combination is 72. Each combination run five 

times and minimum makespan, setup time, and workload solutions are taken for each 

run. In total, 360 minimum makespan, setup time, and workload solutions are 

obtained. Best solutions are obtained through approach by localization method, 

neighborhood search mehod, best selection method, and intelligent mutation method. 

Mean makespan, setup time and workload obtained by this combination are given in 

Table 5.27. Regression analysis is used for these solutions to investigate the affect of 

the factors on the makespan, setup time, and workload. Regression analysis shows 

that population generation and selection methods affect the makespan, workload, and 

setup time performance. Regression analysis results are summarized in table 5.28. 

 

Table 5.27 GA reults for total flexible medium sized test problem 

 
 
 

Mean Makespan Mean Setup Mean Workload 

Best 
combination 
results 

 

29.2 136 193 

 

Table 5.28 Regression analysis results for total flexible medium sized test problem 

 Makespan 
Method  

Initial 
Population 
Method 

Selection 
Method 

Mutation 
Method 

Makespan 
 

Not effected effected effected Not effected 

Setup 
 

Not effected effected effected Not effected 

Workload 
 

Not effected effected effected Not effected 
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CHAPTER SIX 

CONCLUSION 

 

6.1 Conclusion 

 

This thesis has investigated the problem of scheduling flexible job shops with 

sequence dependent set up time to minimize makespan objective. The flexible job 

shop is characterized by reentrant job shop through a number of different work 

centers containing identical and non-identical parallel machines. The main feature of 

this thesis is to combine the sequence dependent setup times with the processing 

times and the workloads on both assignment and sequencing procedures. The 

performance of genetic algorithm was also analyzed by taking into account the issues 

such as initial population generation, sequencing, selection, and mutation methods. 

 

We assess the performance of genetic algorithm factors in the context of optimal 

solution for total flexible small-sized, total flexible medium-sized, and partial 

flexible medium-sized problems. These factors are makespan calculation methods, 

initial population generation methods, selection methods, and mutation methods. 

Makespan calculation metods are MWR, SPT, SSTFR, RANDOM, LPT, 

NEIGHBORHOOD. Initial population generation methods are random generation, 

Approach by Localization, and modified Approach by Localization method. 

Selection methods are best selection and random selection methods. Mutation 

methods are intelligent mutation and random mutation methods. Regresison analysis 

are used for investigating the effect of the factors on the makespan, setup time, and 

workload. The genetic algorithm was developed with the purpose of solving total 

flexible small-sized, total flexible medium-sized, and partial flexible medium-sized 

problems and exploiting in comparison to different makespan calculation, initial 

population generation, selection, and mutation methods. 

 

Experimental designs show that initial population generation, selection, and 

mutation methods affect the makespan, and workload performance for total flexible 

small sized problem. Initial population generation and selection methods affect the 
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setup time performance. For partial flexible medium sized problem, initial population 

generation and selection methods affect makespan, workload, and setup time 

performance. For total flexible medium-sized problem initial population generation 

and selection methods affect makespan, workload and setup time performance. 

 

6.2 Future Research 

 

In this thesis, we focused on flexible job shop scheduling problem with sequence 

dependent setup time with makespan objective. For future studies, different 

objectives are added such as due date, lateness, and tardiness. In this thesis, setup for 

a job cannot begin until the job is available for the current work center and the 

desired machine in the work center is idle. For future studies we may consider a 

setup condition in which a machine desired for a job can start setup activities 

immediately after being idle even though the job is not arrived to the machine yet. 
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APPENDIX A: Problem Instances 

 

Table A.1: Large Example (10 jobs, 10 machines, total flexibility) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1M  2M  3M  4M  5M  6M  7M  8M  9M  10M  

1,1O  1 4 6 9 3 5 2 8 9 5 

2,1O  4 1 1 3 4 8 10 4 11 4 

3,1O  3 2 5 1 5 6 9 5 10 3 

1,2O  2 10 4 5 9 8 4 15 8 4 

2,2O  4 8 7 1 9 6 1 10 7 1 

3,2O  6 11 2 7 5 3 5 14 9 2 

1,3O  8 5 8 9 4 3 5 3 8 1 

2,3O  9 3 6 1 2 6 4 1 7 2 

3,3O  7 1 8 5 4 9 1 2 3 4 

1,4O  5 10 6 4 9 5 1 7 1 6 

2,4O  4 2 3 8 7 4 6 9 8 4 

3,4O  7 3 12 1 6 5 8 3 5 2 

1,5O  7 10 4 5 6 3 5 15 2 6 

2,5O  5 6 3 9 8 2 8 6 1 7 

3,5O  6 1 4 1 10 4 3 11 13 9 

1,6O  8 9 10 8 4 2 7 8 3 10 

2,6O  7 3 12 5 4 3 6 9 2 15 

3,6O  4 7 3 6 3 4 1 5 1 11 

1,7O  1 7 8 3 4 9 4 13 10 7 

2,7O  3 8 1 2 3 6 11 2 13 3 

3,7O  5 4 2 1 2 1 8 14 5 7 

1,8O  5 7 11 3 2 9 8 5 12 8 

2,8O  8 3 10 7 5 13 4 6 8 4 

3,8O  6 2 13 5 4 3 5 7 9 5 

1,9O  3 9 1 3 8 1 6 7 5 4 

2,9O  4 6 2 5 7 3 1 9 6 7 

3,9O  8 5 4 8 6 1 2 3 10 12 

1,10O  4 3 1 6 7 1 2 6 20 6 

2,10O  3 1 8 1 9 4 1 4 17 15 

3,10O  9 2 4 2 3 5 2 4 10 23 



86 

 

Table A.2: Medium Example ( 8 machines, 8 jobs; partial flexibility) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1M  2M  3M  4M  5M  6M  7M  8M  

1,1O  5 3 5 3 3 X 10 9 

2,1O  10 X 5 8 3 9 9 6 

3,1O  X 10 X 5 6 2 4 5 

1,2O  5 7 3 9 8 X 9 X 

2,2O  X 8 5 2 6 7 10 9 

3,2O  X 10 X 5 6 4 1 7 

4,2O  10 8 9 6 4 7 X X 

1,3O  10 X X 7 6 5 2 4 

2,3O  X 10 6 4 8 9 10 X 

3,3O  1 4 5 6 X 10 X 7 

1,4O  3 1 6 5 9 7 8 4 

2,4O  12 11 7 8 10 5 6 9 

3,4O  4 6 2 10 3 9 5 7 

1,5O  3 6 7 8 9 X 10 X 

2,5O  10 X 7 4 9 8 6 X 

3,5O  X 9 8 7 4 2 7 X 

4,5O  11 9 X 6 7 5 3 6 

1,6O  6 7 1 4 6 9 X 10 

2,6O  11 X 9 9 9 7 6 4 

3,6O  10 5 9 10 11 X 10 X 

1,7O  5 4 2 6 7 X 10 X 

2,7O  X 9 X 9 11 9 10 5 

3,7O  X 8 9 3 8 6 X 10 

1,8O  2 8 5 9 X 4 X 10 

2,8O  7 4 7 8 9 X 10 X 

3,8O  9 9 X 8 5 6 7 1 

4,8O  9 X 3 7 1 5 8 X 
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Table A.3: Small Example (3 jobs, 4 machines; total flexibility) 

 

 

 

 

 

 

 

 

 

 

 

 1M  2M  3M  4M  

1,1O  1 3 4 1 

2,1O  3 8 2 1 

3,1O  3 5 4 7 

1,2O  4 1 1 4 

2,2O  2 3 9 3 

3,2O  9 1 2 2 

1,3O  8 6 3 5 

2,3O  4 5 8 1 
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