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DICTIONARY-BASED EFFECTIVE AND EFFICIENT TURKISH 

LEMMATIZER 

 

ABSTRACT 

 

In this thesis, we present a new Turkish lemmatizer that runs on the GPU and 

investigate its accuracy and performance. Turkish is an agglutinative language, with 

a rich morphological structure, contains homographic and inflectional word forms 

which are lowering the accuracy of stemmers. Thus, in Turkish information retrieval 

systems, the ability to lemmatize Turkish words efficiently and effectively is 

important. Our study aims at developing a fast dictionary based lemmatizing 

approach for indexing and searching documents in Turkish. 

 

Recent introduction of CUDA (Compute Unified Device Architecture) libraries 

for high performance computing on graphic processing units (GPUs) by NVIDIA has 

increased the trend to use GPUs as general purpose performance environment 

(GPGPU). Today researchers started to exploit GPU’s high computational capability 

through CUDA in many applicative contexts requiring intensive use of 

computational resources such as molecular dynamics, fluid dynamics, cryptology, 

computer vision, astrophysics and genetics.(e.g. Manavski and Valle, 2008 ) CUDA 

can be used also in the information retrieval because of its massively workload. Our 

program, achieves a speedup of as much as 90 times on a recent GPU (NVIDIA 

GeForce GT240M) over the equivalent CPU-bound version, ultimately with the use 

of parallelized execution of lemmatization algorithm using a data structure inspired 

from “Radix Trie”. Here, we present evaluation results of our string lemmatizing 

kernels for use in CUDA, which executes parallelized lemmatizing for a test set of 

query strings. We compared our lemmatization algorithm running on GPU with the 

serial CPU bound version, and explored issues associated with efficient use of GPU 

resources with eight different algorithms. 

 

Keywords: Information Retrieval, Turkish Information Retrieval, Lemmatizer, 

CUDA, GPGPU, Parallel Programming  
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SÖZLÜK TABANLI ETKİN VE VERİMLİ TÜRKÇE GÖVDELEYİCİ 

 

ÖZ 

  

Bu çalışmada, GPU üzerinde çalışan bir Türkçe gövdeleyici algoritması geliştirdik 

ve daha sonra bu algoritmanın performansını ve verimliliğini araştırdık. Türkçe 

sondan eklemeli ve zengin morfolojik yapıya sahip bir dil olarak eşsesli ve yapısal 

değişkinliğe uğrayabilen kelimeleri içerdiği için sözlük kullanmadan sadece kurallar 

tanımlanarak gövdeleme yapılması zahmetli ve verimsiz olacaktır. Bu yüzden Türkçe 

bilgi getirim sistemlerinde, Türkçe kelimelerin etkin ve verimli bir şekilde sözlük 

tabanlı gövdelenmesi önemlidir. Bu çalışmamız Türkçe dökümanların indekslenmesi 

ve aranması amacıyla sözlük tabanlı hızlı bir gövdeleyici geliştirmeyi amaçlıyor. 

 

Yüksek performanslı programlama amacıyla Nvidia tarafından tanıtılmış, grafik 

programlama üniteleri üzerinde çalışan ve hala geliştirilmekte olan CUDA 

kütüphanesi grafik programlama ünitelerinin, grafik programlamanın dışında genel 

amaçlı performans ortamı olarak kullanılması eğilimini arttırdı. Bugünlerde, 

araştırmacılar hesaplama kaynaklarının yoğun olarak kullanılmasını gerektiren 

moleküler dinamikler, akışkan dinamikleri, kriptoloji, görüntü işleme, astrofizik ve 

genetik gibi bir çok alanda CUDA ile grafik programlama ünitlerinin yüksek 

hesaplama kabiliyetinden yararlanmaya başladı.(Manavski ve Valle, 2008 gibi) 

CUDA bilgi getirim işlemlerinin doğasında olan büyük iş yükleri için de 

kullanılabilir. Bizim programımız GPU üzerinde (NVIDIA GeForce GT240M) 

“Radix Trie” veri yapısı mantığıyla geliştirilen gövdeleyici algoritmasının  paralel 

çalışırılması ile CPU üzerinde çalışan seri versiyonuna göre, 90 kata kadar 

performans artışı sağladı.  Bu tezde, kelime gövdeleyici algoritmalarımızın test 

kelime seti üzerinde çalıştırarak elde ettiğimiz sonuçları gösteriyoruz. GPU üzerinde 

çalışan gövdeleyici algoritmamızı CPU üzerinde çalışan versiyonuyla karşılaştırdık 

ve GPU kaynaklarını nasıl daha verimli kullanılabileceğimizi sekiz farklı 

algoritmayla araştırdık. 

  

Anahtar Sözcükler: Bilgi Erişimi, Türkçe Bilgi Erişimi, Gövdeleyici, CUDA, 

GPGPU, Paralel Programlama  
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 CHAPTER ONE  

INTRODUCTION 

 

1.1 Introduction 

 

With dramatic expand of Internet technology, computer users generating new data 

for their requirements on the web so online data that the information retrieval based 

on is increasing rapidly. Along with these growth; information retrieval deals on 

large-scale documents that are created for different purposes in many different 

languages by numerous users. Information retrieval (IR) works for classifying, 

indexing and searching on this huge amount of data. As the necessity of this, various 

approaches are applied to address this issue for indexing, retrieval and ranking, some 

of them are kept secret due to commercial benefits. Stemming and lemmatizing 

methods are only some of these approaches. In addition to these approaches, more 

specific, language dependent methods are required to improve results. For this 

purpose the major points of a language that differ from others must be determined. In 

particular, for Turkish, we come up with the differences of Turkish Alphabet and the 

grammar structure for suffixes. Word structures can grow to an unmanageable size 

because Turkish morphology is very complex and more over there are many 

exceptional cases in Turkish. From the point of the differences of Turkish 

Morphology, a lemmatizer is a need for accurate IR programs.  

Lemmatizers play a significant role in information retrieval (Frakes &          

Baeza-Yates, 1992). The ability to lemmatize words efficiently and effectively is 

thus important. Lemmatization is used in the IR for listing all the morphological 

variants of a word. Usually, this is done by looking up a list of related words in a 

dictionary. This kind of lemmatization is computationally simpler, since almost all 

the work is done off-line in compiling the dictionary of morphological variants. 

Lemmatization is another normalization technique where for each inflected word 

form in a document or request, its basic form, the lemma, is identified. The benefits 

of lemmatization are the same as in stemming. In addition, when basic word forms 

are used, the searcher may match an exact search key to an exact index key. Such 

accuracy is not possible with truncated, ambiguous stems.  
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Within the field of internet technology and growing online data there is an 

increasing demand for faster ways to solve a variety of information retrieval and 

natural language processing problems, for some of which Compute Unified Device 

Architecture (CUDA) might be the right answer due to its scalable programming 

model. CUDA is still relatively new and evolving rapidly and with its each new 

release the computational abilities of the devices grow and it becomes easier to 

exploit their computational power. 

Graphics Programming Units (GPUs) differ from general-purpose 

microprocessors in their design for utilizing the Single Instruction Multiple Data 

(SIMD) paradigm. Due to the inherent parallelism of graphic programming, GPUs 

adopted multicore architectures long before regular processors evolved to such a 

design. As a result, today GPUs consist of many small computation cores that 

support a higher number of floating-point operations per second. Originally designed 

to accelerate computer graphics applications through massive on-chip parallelism, 

GPUs have evolved into powerful platforms for more general purposes of compute-

intensive tasks, called as GPGPU (General Purpose Graphic Programming Unit). 

Given their extremely high workload, information retrieval provides a very 

interesting potential application domain for GPUs. NVIDIA’s launch of the CUDA 

with its simple but effective programming model has resulted in the adoption of 

GPUs by a diversity of domains. The NVIDIA CUDA programming model takes its 

power from this simplicity, much in contrast to the previous approaches of GPGPU 

environments. With CUDA, programmers no longer have to master graphics specific 

knowledge, before being able to efficiently program GPUs. It has been demonstrated 

that CUDA can significantly speed-up many computationally intensive applications 

from domains such as scientific computation, physics, molecular dynamics 

simulation, genetics, imaging and the finance sector.  

In this thesis, we introduce a Turkish lemmatizer works on GPGPU through 

NVIDIA’s CUDA. Building an efficient IR lemmatizer for GPUs is a non-trivial task 

due to the branching and diverging nature of lemmatizing algorithm and hardware 

constraints provided by the GPU. We outline and discuss a general architecture of 

our lemmatizer and later we present our studies on GPU-based version of lemmatizer 
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with different performance optimization techniques. Finally, we compare CPU-

bound and GPU-bound versions of our algorithm and make a performance analysis. 

 

This thesis is divided into seven chapters. The next chapter, chapter two, reviews 

lemmatization process briefly and in addition to that explains our data structure 

selection phases and implementation of lemmatizing algorithms in detail. 

 

Chapter three introduces the GPU and GPGPU architecture and illustrates how 

they work. It is important to know development environment to use it efficiently. 

  

Chapter four identifies CUDA, its programming model and abstractions, and also 

required works to achieve higher speed up rate. 

  

Chapter five gives information about our studies of parallelization and redesigning 

of algorithm in order to achieve an efficient lemmatizer on GPU. 

 

Chapter six is about experiments and results on a selected dataset in two sub-

chapters. In first part, we looked at accuracy of our lemmatizer and later we 

measured performance of it. 

 

Finally last chapter, chapter seven, discusses results, concludes and gives a look to 

possible future research studies. 
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 CHAPTER TWO 

LEMMATIZATION 

 

2.1 Lemma 

 

In linguistics, a lemma (from the Greek noun “lẽmma”, “headword”) is the 

“dictionary form” or “canonical form” of a set of words. More specifically, a lemma 

is the canonical form of a lexeme where lexeme refers to the set of all the forms that 

have the same meaning, and lemma refers to the particular form that is chosen as 

base form to represent the lexeme. In information retrieval, this unit is usually also 

the citation form or headword by which it is indexed. Lemmas have special 

significance in highly inflected and agglutinative language such as Turkish. 

 

In a dictionary-based lemmatizer, a lemma can be seen as the headword of a 

dictionary entry. Where, a dictionary entry consists of two parts: 

 

 the lemma, 

 the information of the lemma. 

 

2.1.1 Difference between stem and lemma 

 

In computational linguistics, a stem is the part of the word that never changes 

even when morphologically inflected, whilst a lemma is the base form of the word. 

For example, with a “fixed prefix truncate by 4 characters” stemmer extracts stem as 

“boyn” from the word “boynu” where the lemma is “boyun”. During searching, the 

retrieval system using this stemmer most probably return documents related to 

“boynuz” (horn) since they will share the same stem “boyn”. In linguistic analysis, 

the stem is defined more generally as the analyzed base form from which all 

inflected forms can be formed. 
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2.2 Lemmatization 

 

Lemmatization is the process of determining the lemma for a given word, so 

different inflected forms of a word can be analyzed as a single item. 

Lemmatization is the process which creates the set of lemmas of a lexical database. It 

is conceived as starting from text-words found in a corpus and leading to lemmas 

heading dictionary entries.  

  

Lemmatization is related to stemming but unlike stemming, which operates only 

on a single word at a time, lemmatization operates on the full text and therefore can 

discriminate between words that have different meanings depending on part of 

speech. On the other hand, stemmer operates on a single word without knowledge of 

the context that chops off the ends of words, and often includes the removal of 

derivational affixes. Therefore stemmers cannot discriminate between words, which 

have different meanings depending on part of speech. However, stemmers are 

typically easier to implement and run faster, and the reduced accuracy may not 

matter for some applications. The goal of both stemming and lemmatization is to 

reduce inflectional forms and sometimes derivationally related forms of a word to a 

common base form. 

 

In our case, dictionary-based lemmatizer,  lemmatization usually refers to doing 

things properly with the use of a vocabulary and morphological analysis of words, 

normally aiming to remove inflectional endings only and to return the base or 

dictionary form of a word, which is corresponding to the lemma. 

 

2.3 Turkish Lemmatization 

 

2.3.1 Morphological Structure of Turkish Words 

 

Stemming and lemmatizing is an essential task for indexing and information 

retrieval purposes in agglutinative languages. Turkish is also an agglutinative 

language, which has a rich morphological structure. Words are usually composed of 

http://www.christianlehmann.eu/ling/ling_meth/ling_description/lexicography/database.html
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a stem and of at least two or three affixes appended to it. And this is why it is usually 

harder analyze a Turkish text.  

 

In linguistics, a morpheme is the smallest meaningful component of a word and 

morphology is analysis and description of the structure of morphemes. Morphology 

is also interested in how morphemes can be combined to form words. For example if 

we analyze the word “tezim” (“my thesis” in English) we see that it has two units. 

One of them is main meaning of word. In this example “tez” is the main meaning of 

the word. This morpheme is called stem; and the remaining morpheme which is “im” 

in this example is called as affix. 

 

In Turkish, there are two kinds of processes to combine morphemes to form 

words: inflection and derivation. Word structures are formed by affixations of 

derivational and inflectional suffixes to stems. 

 

Inflectional process is adding grammatical affixes to word stem. It doesn’t change 

the class of word. Unlike English nouns, which have only two kinds of inflection 

(plural and possessive); there are more kinds of inflectional affixes in Turkish. 

 

For example the word “arabalar” (“cars” in English) can be broken down into 

morphemes as follows: 

 

“araba”  +  “-lar” 

 

where the  +’s indicate morpheme boundaries. Here “araba” (“car” in English) 

and “arabalar” are both nouns. 

 

Derivational process is simply an affix addition to a word stem which will change 

the meaning and in some cases the class of the stem. For example when we break the 

word “gözlük” (“eye glasses” in English) into morphemes: 

 

“göz” + “-lük” 



7 

 

 

 

the affix “-lik” is a derivational morpheme. It changes the meaning of the word 

while it doesn’t change the class of stem. The words “göz” (“eye” in English) and 

“gözlük” are both nouns. 

 

Some derivational affixes can change both words meaning and class. For example 

when we look at morphemes of the word “öğretmen” (“teacher” in English): 

 

“öğret” + “-men” 

 

the affix “-men” is a derivational morpheme in the word “öğret” (“to teach” in 

English). It changes both the meaning of the word and class of the stem. The word 

“öğretmen” is a noun while the word “öğret” is a verb. 

 

There are two main classes for Turkish roots. These classes are nominal and 

verbal. Morphemes added to a root word can convert the word from a nominal to a 

verbal structure (vice versa) or can create adverbial constructs. Under some 

circumstances vowels in the roots and morphemes may be deleted depending on the 

affix (vowel deletion / haplology). Similarly consonants in the roots words or in the 

affixed morphemes may get through some modifications and may sometimes be 

deleted. These two rules are presented below: 

 

 Last consonant alteration 

 

If last letter of a word or suffix is a stop consonant (süreksiz sert sessiz), and a 

suffix that starts with a vowel is appended to that word, last letter changes (voicing). 

Changes are p-b, ç-c, k-ğ, t-d, g-ğ. 

 

Some last consonant alteration examples are : kitap→kitab-a, pabuç→pabuc-u, 

cocuk→cocuğ-a, hasat→hasad-ı, garp→garbı 

 

And with some suffixes: elma-cık→elma-cığ-ı, yap-acak→yap-acağ-ım 
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When a word ends with “nk”, then “k” changes to “g” instead of “ğ”: 

cenk→ceng-e, çelenk→çeleng-i 

 

For some loan words, g-ğ change occurs: psikolog→psikoloğ-a 

 

 Vowel deletion (vowel ellipsis or haplology) 

 

Last vowel before the last consonant drops in some words when a suffix starting 

with a vowel is appended: ağız→ağz-a, burun→burn-um, zehir→zehr-e, 

nakit→nakd-e,  lütuf→lütf-un 

 

Also some verbs obeys this rule: kavur→kavr-ul 

 

2.3.2 Structure Of Dictionary 

 

The dictionary we have used for our work is “Büyük Türkçe Sözlük” (Grand 

Turkish Dictionary), the one that is published by TDK (Turkish Language 

Association) and it is open to public via internet (http://tdkterim.gov.tr/bts/). This 

dictionary lists the senses along with their definitions and example sentences that are 

provided for some senses.  

 

 “Büyük Türkçe Sözlük” consists different kinds of dictionaries like science 

terms, art terms, sports terms, place names, regional dialects, etc. A typical entry 

from this dictionary for the word “tez” (has two meanings : 1.fast 2.thesis) is given 

below in Figure 2.1: 

 

(I) 1.  Çabuk olan, süratli. 2. Süratli bir biçimde. 

 Güncel Türkçe Sözlük  

 (II) 1. Sav. 2. Üniversitelerde öğrencilerin veya öğretim üyelerinin hazırlayıp bazen 

bir sınav kurulu önünde savundukları bilimsel eser: “Tezini mitolojiden hazırlayan 

gözlüklü bir delikanlı.” - H. Taner. 

 Güncel Türkçe Sözlük  

Figure 2.1 Dictionary entry for query word “tez” 

http://tdkterim.gov.tr/bts/
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The entry in the dictionary has the following information:  

 

(II) . (sense number) / 2. (subsense) / Üniversitelerde öğrencilerin veya öğretim 

üyelerinin hazırlayıp bazen bir sınav kurulu önünde savundukları bilimsel eser 

(definition) / “Tezini mitolojiden hazırlayan gözlüklü bir delikanlı.” (example 

sentence) /  - H. Taner. (citation)  / Güncel Türkçe Sözlük (dictionary type) 

 

As is seen, in Turkish, a word commonly has more than one meaning. In order to 

work efficiently we parsed and analyzed all the entries on “Büyük Türkçe Sözlük” 

then inserted them into a database table. Later  the dictionary in the database is used 

for word (lemma) and sense enumeration of it for standardization. More specifically, 

we parsed and inserted the information on previous entry of dictionary (on Figure 

2.1) into database as follows: 

 

Table 2.1 Representation of dictionary on database table 

ID OrderNo Word Meaning Dictionary 

Type 

342864 311713 tez Çabuk olan, süratli. Güncel 

Türkçe 

Sözlük 

342865 311713 tez  Süratli bir biçimde. Güncel 

Türkçe 

Sözlük 

342867 311713 tez  Sav. Güncel 

Türkçe 

Sözlük 

342868 311713 tez Üniversitelerde öğrencilerin veya 

öğretim üyelerinin hazırlayıp 

bazen bir sınav kurulu önünde 

savundukları bilimsel eser 

Güncel 

Türkçe 

Sözlük 

 

Here it can be seen that “tez” has four meanings (on Table 2.1) in database while 

the entry is divided into two meanings in “Büyük Türkçe Sözlük” (Figure 2.1). While 

constructing the database we parsed all meanings into separate records with having 

different “ID” but having same “OrderNo” on identical lemma. Thus, we can access 

to and use lemma’s all different meanings with only its “OrderNo” field and can 
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select appropriate meaning for use of word sense disambiguation algorithms via its 

unique “ID”. 

 

2.3.3 Data Structure Selection 

  

When we were thinking for the best possible data structure that is suitable for our 

needs; our design goals were: 

 

 The data structure should support prefix searching.  

 The data structure should store thousands of entries with a low space 

complexity (must be suitable with the architecture constraints of GPU 

discussed on Chapter Three).  

 The data structure should be able to store prefixes with variable lengths in 

each node. 

 The data structure should be fast (because we seek through thousands of 

words in dictionary). 

 Look-up method of data structure should not be data dependent and recursive        

(must be suitable with constraints of CUDA detailed on Section 4.1). 

 The data structure should be suitable with Turkish language’s rich 

agglutinative structure. 

 The data structure should be suitable with our finite state machine 

implementation discussed on Section 2.6.  

 

After a little survey we decided on trie structure which is suitable for our 

requirements because the way tries are space efficient since nodes are shared 

between keys with common prefixes, facilitates longest-prefix matching, and also 

can be seen as a deterministic finite automaton with regard to its manner of work 

pattern. 

 

Tries (name comes from reTRIEval trees) are tree-based structures where each 

node represents a part of the key. A trie is an ordered tree structure that is used to 
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store a collection of the keys, which are usually strings. All the descendants of a node 

have a common prefix of the string associated with that node. 

 

 

 

For instance, a trie would store the list of Turkish words presented in Table 2.2 as 

follows: 

 

 

Figure 2.2 Visual representation of the words' settlement on trie in Table 2.2. 
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a 
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k 

u 

l 
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a 
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Table 2.2 A sample list of Turkish words 

Words 

Doğmak Dokunak 

Doğum Dokunaç 

Doku Dokunma 

Dokuma Dokunmak 

Dokumacı Dokunmatik 

Dokumak Dokunulmaz 



12 

 

 

 

There are several variants of the trie data structure, one of the most efficient being 

the PATRICIA (Practical Algorithm To Retrieve Information Coded In 

Alphanumeric) trie, which is also known as “Radix” trie (Morrison, 1968). 

 

The main characteristic of the radix trie is the way it eliminates unnecessary nodes 

by grouping the sequences of keys whenever possible. Each node with only one child 

is merged with its child. The result is that every internal node has at least two 

children. Unlike in regular tries, edges can be labeled with sequences of characters as 

well as single characters. This makes them much more efficient for sets of strings 

that share long prefixes.  

 

Using a Radix trie, the words in Table 2.2 would be inserted as Figure 2.3 below: 

 

 

Figure 2.3 Radix Trie allocation for given set of words 

 

Radix tries can be constructed time affiliated to the length of the corpus, and 

provide exact matching of a query in time proportional to the length of the query, 

independent of the size of the corpus. 

 

Basically, radix trie is a compact data structure that can give you the longest 

prefix of an entry key in O(N) steps (in the worst case), with N the length of the 

longest prefix. 
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For instance, the look-up method used with radix trie, taking the following 

Turkish word “dokunmatik” as argument retrieves the object highlighted in the 

Figure 2.4 below: 

 

 

Figure 2.4 Look-up of {dokunmatik} in PATRICIA Trie 

  

We first designed our structure as a digital radix trie that holds keys on external 

nodes and binary representation of characters on trie but then; to adopt the rules 

haplology (vowel deletion) and consonant alteration we implemented the trie to work 

on characters instead of binary numbers. 

 

In order to prepare our dictionary for selected structure, we stored the parsed and 

analyzed lemmas (dictionary entries) and their extracted features from their 

information in the database into a XML like formatted file, which would be helpful 

for designing our structure. Because XML style annotation increases readability and 

allows manual addition to corpus with simple text editors or code snippets. 

 

We have divided the information on the database records into two XML files. One 

to hold meanings of lemmas named as “Dictionary Data XML” and the other one 

named as “Trie Data XML” to hold headwords of the lemmas, thinking the fact that 

our lemmatizer doesn’t need meanings of words for its purpose. The structure of the 

“Dictionary Data XML” can be seen below in Figure 2.5. 
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<?xml version="1.0" encoding="utf-8" standalone="yes"?> 

<root> 

. 

. 

. 

<RECORD ID="342864" orderno="311713" meaning="tez"  

anlam="Çabuk olan, süratli." type="Güncel Türkçe Sözlük"/> 

<RECORD ID="342865" orderno="311713" meaning="tez"  

meaning="Süratli bir biçimde." type="Güncel Türkçe Sözlük"/> 

<RECORD ID="342867" orderno="311713" word="tez"  

meaning="Sav." type="Güncel Türkçe Sözlük"/> 

<RECORD ID="342868" orderno="311713"  

word="tez" meaning="Üniversitelerde öğrencilerin veya  

öğretim üyelerinin hazırlayıp bazen bir sınav kurulu  

önünde savundukları bilimsel eser" type="Güncel  

Türkçe Sözlük"/> 

. 

. 

. 

</root> 

 

 

More elaborately, in “Dictionary Data XML”, ”word” stands for lemma itself 

(“word” field in database) and the “ID” field in the XML corresponds to the 

lemma’s “ID” on database table and likewise “orderno” corresponds to “OrderNo” 

in the database and finally “type” represents dictionary type (“DictionaryType” field 

in database). The “ID” field differs on each record but “orderno” field stays same on 

identical lemma (word) which is conceptually parallel with the database table 

formation. 

 

The structure of the XML file which provides lemmas (can be seen in Figure 2.6) 

for lemmatizer contains prefix information and basic level morphological analysis of 

the words. If a word has a corresponding meaning in the dictionary or is a common 

prefix of more than one word in the dictionary; it is stored as a separate node. Here if 

a node has a corresponding meaning in “Dictionary Data XML” it’s “orderno” 

 

Figure 2.5 Representation of word “tez” in Dictionary Data XML 
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property stored as “Data” property of node in “Trie Data XML”. Similarly, if a node 

is available for a consonant alteration; the alteration affix had been saved into 

“ConsAlterKey” property. ”MasterData” and “MasterKey” were added in order to 

hold the verb meaning and verb version respectively for the cases that a lemma has 

more than one meaning. We simply unify these two versions into one lemma but 

separate meanings. For example, assuming the analyzing / parsing procedure meets 

with word “oymak”, the procedure will save the meaning of “oy” (“vote” in English 

and is a noun) into “Data” property, the meaning of “oy (mak)” (“to drill” in English 

and is verb) into “MasterData” property and the suffix “mak” into “MasterKey”. 

Finally “VowelDeletion” was added to hold the information that if a node is 

available for haplology or in other words, can be skippable in order to search its sub 

nodes. The consonant alteration keys and vowel deletion datas are not added 

manually. These properties added automatically via an algorithm by analyzing all of 

the lemma’s morphemes on “Trie Data XML” file’s constructing time. The resulting 

corpus is 14.31MB and has 137372 nodes. The structure of XML can be seen below: 
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<?xml version="1.0" encoding="utf-8" standalone="yes"?> 

<root> 

. 

. 

<t ConsAlterKey="" MasterKey="" VowelDeletion="0" Data=""  

MasterData=""> 

    . 

    .    

    <e ConsAlterKey="" MasterKey="mek" VowelDeletion="0"  

    Data="306029" MasterData="308662"> 

     . 

     .  

<z ConsAlterKey=""  

MasterKey="mak" VowelDeletion="0"  

Data="311713" MasterData="" /> 

      . 

      .  

    </e> 

    . 

    .  

</t> 

. 

. 

</root> 

 

 

After we formed our XML files, we defined our trie nodes with regard to XML 

formation. Each property of a XML node has a corresponding property on our trie 

node definition which are presented below: 

 

 Key: This property holds actual key of node. (This property of node 

corresponds to “name” property of XML node) 

 

 ConsAlterKey: This property holds the consonant alteration key of node’s 

“key”. This node will be null if key is not suitable for consonant alteration but 

will store the replacement key on other case. For example if key is “k” this 

 

Figure 2.6 Representation of word "tez" in “Trie Data XML” 
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property will be “ğ” or “g” with regard to parent node. If parent node’s key 

ends with “n” then “ConsAlterKey” will be “g” otherwise “ğ”. (This property 

of node corresponds to “ConsAlterKey” property on XML node) 

 

 MasterKey: This property doesn’t actually necessary for lemmatizing process 

but we need it when we use our lemmatizer on word sense disambiguation or 

query / document expansion (finding an appropriate synonym of word) 

purposes. Can be ”mak” or “mek” depending on prefix on parent node. (This 

property of node corresponds to “MasterKey” property on XML node) 

 

 Data: This property holds dictionary order of the word. Like “MasterKey” 

this is only required when we need to get lemma’s meaning from dictionary 

and work on it. We use this property to decide whether the node’s key 

corresponds to a lemma when added to its prefixes. (This property of node 

corresponds to “Data” property on XML node) 

 

 MasterData: Considering the fact that in Turkish a word can be used both as 

a verb and a noun this property holds verb meaning of some words having 

more than one meaning. For example: “oymak” has two meanings. 

“tribe/clan” (noun) and “to drill” (verb) so Data holds noun meaning and 

“MasterData” holds verb meaning. (This property of node corresponds to 

“MasterData” property on XML node) 

 

 VowelDeletion: This property holds a boolean variable stating the node’s key 

is suitable for haplology. (This property of node corresponds to 

“VowelDeletion” property on XML node) 

 

 Children: This property holds a pointer of node’s children. 

 

 ChildCount: This property holds count of children of node. 

  

So regard to this structure, the words on Table 2.2 settles to trie as follows: 
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And a visual presentation of trie for an explicit view is shown below: 

 

 

Figure 2.7 Our trie allocation of dictionary words shown in Table 2.3. 

 

 

do 

ğ 

M.Data: 97914 

um 

V.Deletion:1 

Data:98331 

ku 

Data:98598 

M.Data:98661 

ma 

Data:98651 

cı 

Data:98654 

n 

M.Data :98722 

a 

k 

Data:98675 

ç 

Data:98669 

ma 

Data:98710 

Table 2.3 Representation of the words in Table 2.2 on our structure. 

Node 

No 

Key ConsAlter  

Key 

Master 

Key 

Vowel 

Deletion 

Data Master 

Data 

Children  

0 Do - - - - - 1,3 

1 Do-ğ - mak - - 97914 2 

2 Do-ğ-um - - 1 98331 - - 

3 Do-ku - mak - 98598 98661 4,6 

4 Do-ku-ma - - - 98651 - 5 

5 Do-ku-ma-cı - - - 98654 - - 

6 Do-ku-n - mak - - 98722 7,10 

7 Do-ku-n-a - - - - - 8,9 

8 Do-ku-n-a-k ğ - - 98675 - - 

9 Do-ku-n-a-ç c - - 98669 - - 

10 Do-ku-n-ma - - - 98710 - - 
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2.3.4 Lemmatization Algorithm 

 

In Turkish, the suffixes are affixed to the stem according to definite ordering 

rules. The agglutinative and rule-based nature of word formations in Turkish allows 

modeling of the morphological structure of language in Finite State Machines 

(FSMs). In Figure 2.8 there is a finite state machine expressing the ordering rules of 

these suffixes based on our algorithm with a list of Turkish words in Table 2.4. The 

double circles on nodes represent the accept states of the FSM. A character on an arc 

indicates which suffix causes a state transition. And “any” on an arc represents the 

rest of the characters that is not indicated by any arc from current state. If there are 

multiple characters on an arc, all of the suffixes defined by those characters can 

cause that state transition. While traversing the FSM by consuming suffixes in each 

transition, reaching to an accepting state means that a possible stem is reached. 

 

Table 2.4 A sample list of Turkish words 

 

The finite machine in brief: 

 

 accepts the string x if it ends up in an accepting state, and 

 rejects x if it does not end up in an accepting state. 

 

Words 

Doğmak Dokumak 

Doğum Dokunak 

Doku Dokunaç 

Dokuma Dokunma 

Dokumacı Dokunmak 
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Figure 2.8 FSM representation of our lemmatizing algorithm for the words on Table 2.4. 

 

Thus, for example if we give word “dokusu” as an input, FSM in Figure 2.8 starts 

with q0, then reads the word, character by character, changing state after each 

character read. When the FSM is in state q0 and reads character “d”, it enters state 

q1. Then follows a route of q1→ (o) →q2→ (k) →q6→ (u) →q7. After that it reads 

“s” and doesn’t change state since there is no state bound to “s”. Same happens for 

“u”. And after FSM consumes all characters; it accepts “doku” as lemma since it is 

an accepting state. Transition table of FSM in Figure 2.8 is shown on Table 2.5 

below: 
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Table 2.5 State transition table of FSM in Figure 2.8 

 d o ğ k u m a c ç ı n Word 

q0 q1 q0 q0 q0 q0 q0 q0 q0 q0 q0 q0  - 

q1 q0 q2 q0 q0 q0 q0 q0 q0 q0 q0 q0 d 

q2 q0 q0 q3 q6 q0 q0 q0 q0 q0 q0 q0 do 

q3 q3 q3 q3 q3 q4 q5 q3 q3 q3 q3 q3 doğ 

q4 q3 q3 q3 q3 q3 q5 q3 q3 q3 q3 q3 doğu 

q5 q5 q5 q5 q5 q5 q5 q5 q5 q5 q5 q5 doğum 

q6 q0 q0 q0 q0 q7 q0 q0 q0 q0 q0 q9 dok 

q7 q7 q7 q7 q7 q7 q8 q7 q7 q7 q7 q9 doku 

q8 q7 q7 q7 q7 q7 q7 q15 q7 q7 q7 q7 dokum 

q9 q9 q9 q9 q9 q9 q10 q12 q9 q9 q9 q9 dokun 

q10 q9 q9 q9 q9 q9 q9 q11 q9 q9 q9 q9 dokunm 

q11 q11 q11 q11 q11 q11 q11 q11 q11 q11 q11 q11 dokunma 

q12 q9 q9 q14 q14 q9 q9 q9 q13 q13 q9 q9 dokuna 

q13 q13 q13 q13 q13 q13 q13 q13 q13 q13 q13 q13 dokunak 

q14 q14 q14 q14 q14 q14 q14 q14 q14 q14 q14 q14 dokunaç 

q15 q15 q15 q15 q15 q15 q15 q15 q16 q15 q15 q15 dokuma 

q16 q15 q15 q15 q15 q15 q15 q15 q15 q15 q17 q15 dokumac 

q17 q17 q17 q17 q17 q17 q17 q17 q17 q17 q17 q17 dokumacı 

 

While we are taking the advantage of our dictionary based algorithm we did also 

consider some rules for more effective and accurate lemmatization. In Turkish, when 

a suffix is used, a letter may change into another one or may be discarded. For 

example, the change of “p” to “b” in example of “kitap” (“book” in English) and 

“kitaba” is an example of letter transformation (consonant alteration). And “burun” 

(“nose” in English) to “burnum” illustrates the second case since the letter u drops 

(vowel deletion). Our algorithm can handle both situations with some exceptions on 

the latter. Because a match is more important than transformation in our algorithm; 

we simply ignore the transformation when we find a match in current node’s 

children. Thus, the exceptions occur when there is a node key equals to 

transformation character. For example “kayıt” evolves into “kayda” with “-a” suffix, 

and in the dictionary there are lemmas like “kaydırmak” and “kaydetmek” which 
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consists the “d” transformed letter after their “kay” morpheme. So when procedure 

looks up for “kayda” in trie it encounters with “d” after “kay” (to slide) lemma. From 

this point, the procedure doesn’t look for a transformation and continues to its path 

on trie from “d” node, since there is a valid match. And it returns “kay” as lemma 

because there is no child node with “a” key after “d” node (there is no lemma as 

“kayda” in dictionary). 

 

In summary, when user wants to lemmatize a word with our lemmatizer, 

lemmatization procedure starts searching characters of word from left to right and 

seeks them through in trie nodes. If a node key matches with current character or 

character sequence, then procedure checks whether the node has its “Data” or 

“MasterData” (has a meaning in dictionary) properties are occupied which determine 

the accepting states of our implementation. This process continues until the query has 

no more suffixes left to search; and at the end, latest lemma (accepting state) is 

returned as an output. Here is a pseudo code for simplified CPU-based version of our 

algorithm (Figure 2.9). 
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(a) 

 

PROCEDURE LemmatizeWord(Trie,token,lemma) 

 

 CurrentNode = Root of Trie; 

 Buffer= array of 21 characters (longest Turkish word’s length) 

     MatchIndex= -1; 

     MatchLength=0; 

     HaplologyIndex=-1; 

 

    WHILE CurrentNode NOT NULL DO 

 

 IF CurrentNode HAS NOT any children  

    THEN RETURN; 

 ENDIF 

         

       MatchIndex = -1; 

       MatchLength = 0; 

       HaplologyIndex = -1; 

 

   FOR position = 0 TO ChildCount of CurrentNode DO 
 

           CurrentChild = Node at position of CurrentNode’s Children 

    CurrentKey = Key of CurrentChild; 

           CurrentConsKey = ConsonantAlterKey of CurrentChild; 

 

We look that if current node’s key or consonant alteration key, and token 

has a common prefix by a simple string compare algorithm 

 

CommonPrefixLength = GetCommonPrefix(CurrentKey, 

CurrentConsKey,token); 

 

If we have a match then we break loop and proceed to second part of 

algorithm 

 

    IF CommonPrefixLength > MatchLength 

            THEN 

              MatchLength = CommonPrefixLength; 

              MatchIndex = position; 

              BREAK LOOP; 

           ENDIF 

 

If there is no match we look if current node is suitable for haplology 

through its preprocessed Haplology property but we dont break loop 

because a match is more important than a haplology and succeeding nodes 

may contain a common prefix 

 

    IF CurrentChild has narrow vowel  

       THEN 

     IF HaplologyIndex < 0  

    THEN 

                  HaplologyIndex = position; 

   ENDIF 

          ENDIF  

 

      ENDFOR 
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(b) 

If we don’t have a match (MatchIndex equals to its initial value), we 

look if there is a haplology. If HaplologyIndex bigger than its initial 

value we move our pointer to current node’s child node at haplology index 

and concatenate its key to the buffer. Otherwise it means we have reached 

the latest lemma, so we just assign buffer vrb. to lemma vrb. and return. 

       

IF MatchIndex == -1  

       THEN 

         IF HaplologyIndex > -1  

       THEN 

            CurrentNode = Node at HaplologyIndex of CurrentNode’s Children 

           CurrentKey = Key of CurrentNode; 

            Buffer = Concatenate CurrentKey to Buffer; 

         ENDIF 

       ELSE  

   THEN 

 IF Lemma IS NULL 

  THEN 

    Lemma = Buffer; 

 ENDIF 

      RETURN; 

      ENDIF 

 

If we have a match, the procedure continues from here.And firstly we 

delete common prefix from token. 

TokenLength = length of token; 

token= substring of token from MatchLength to TokenLength; 

 

Later we move the pointer to the child node at MatchIndex of current 

node’s children and concatenate current node’s key to the buffer. 

CurrentNode = Node at MatchIndex of CurrentNode’s Children 

       CurrentKey = Key of CurrentNode;    

Buffer = Concatenate CurrentKey to Buffer;  

CurrentData = Data of CurrentNode; 

 CurrentMasterData = MasterData of CurrentNode; 

 

And finally we look if current node has a corresponding meaning in the 

dictionary.If current node’s Data or MasterData properties are not NULL 

it means we have an accept state and a possible lemma.So we assign buffer 

to lemma variable. 

    IF CurrentData IS NOT NULL OR CurrentMasterData IS NOT NULL 

        THEN 

          Lemma = Buffer; 

      ENDIF 

 

If all the characters in word is consumed then quit and return with 

latest lemma. 

    IF Character length of Token == 0   

        THEN  RETURN;      

    ENDIF 

 

   ENDWHILE 

ENDPROCEDURE 

 

Figure 2.9 (a) is the first part and (b) is the second part of the pseudo code of the CPU-bound version 

of lemmatizing algoritm 
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For example when we want to lemmatize token “tezim”; the lemmatizing 

procedure detailed with pseudocode on Figure 2.9 will follow the steps shown below 

on Table 2.6: 

 

Table 2.6 Steps taken while lemmatizing word "tezim" 

Step Buffer Current 

Key 

Lemma Token Current 

Data 

Current Master 

Data 

1 - root - tezim - - 

2 - t - tezim - - 

3 t t - ezim - - 

4 t e - ezim 306029 30862 

5 te e te zim - - 

6 te z te zim 311713 - 

7 tez z tez im - - 

8 tez No 

match 

tez im - - 

  

The procedure starts to search “tezim” on trie (Step 1). The first match happens 

at the node which has “t” key (Step 2). Following this match the key (“t”) is 

concatenated to buffer and is deleted from token which lefts token equal to “ezim”. 

Then the procedure looks if the current node has its “Data” property occupied. 

Current node (“t”) has no data property so procedure continues to search “ezim” 

through the child nodes of it (Step 3). The next match comes up at node “e” (child of 

node with key “t”) (Step 4). Here node with key “e” has its “Data” property (“te” has 

a meaning in dictionary) not null. So, key “e” is concatenated to buffer and then the 

content of buffer is assigned to lemma. Later procedure starts to search the resulting 

token “zim” through child nodes (Step 5). When the procedure comes at node with 

key “z” a match happens; and because “z” has a valid “Data” property the steps done 

at node “e” are repeated for node “z” and these left token as “im” (Step 6 and 7). 

The token “im” has no match with the child nodes of “z”, so lemma and buffer 

doesn’t change and procedure returns the lemma as ”tez” along with the dictionary 

meaning as “311713” which is the last accepting state (Step 8).  
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 CHAPTER THREE  

GPU AND GPGPU 

 

3.1 GPU 

 

A graphics processing unit or GPU is a processor attached to a graphics card 

dedicated to calculating floating point operations. GPU has evolved into a highly 

parallel, multithreaded; many core processor with tremendous computational power 

and very high memory bandwidth, as illustrated by Figure 3.1. 
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Figure 3.1 Floating-point operations per second (a) and memory bandwidths of the CPU and GPU 

(b)  (NVIDIA Corporation, November 2010). 
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The reason behind the divergence in floating-point capability (FLOPS) between 

the CPU and the GPU is that the CPU evolved to be good at any problem whether it 

is parallel or not and performs best when small pieces of data are processed in a 

complex, but sequential way. This lets the CPU to utilize the many transistors used 

for caching, branch prediction and instruction level parallelism. On the other hand 

the GPU is specialized for compute intensive, highly parallel workloads (massively 

data parallel problems) to work efficiently and therefore designed such that more 

transistors are devoted to data processing rather than data caching and flow control, 

as schematically illustrated by Figure 3.2. 

 

Figure 3.2 The GPU devotes more transistors to Data Processing (NVIDIA Corporation, 

November 2010)/ 

 

More specifically, the GPU is designed to address problems that can be expressed 

as data parallel computations, since the program works in SIMD fashion, with high 

arithmetic intensity. Also there is a lower requirement for sophisticated flow control 

and, the program is executed on many data elements and has high arithmetic 

intensity, the memory access latency can be hidden with calculations instead of big 

data caches. 

 

CPU’s execution units can support a limited number of concurrent threads. Today 

servers with four quad-core processors can run only 16 threads concurrently (32 if 

the CPUs support Hyper Threading). On the other hand GPUs can support from 768 

to more than 30000 active threads (NVIDIA Corporation, August 2010). 
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 In addition that above, CPU threads are heavyweight entities. The operating 

system must swap threads’ state (on and off) on CPU execution channels to provide 

multithreading (e.g. round - robin). Thus; context switching is slow and expensive. 

On the contrary threads running on GPUs are extremely lightweight. Because all 

active threads have their own separate memory registers, so no swapping of registers 

or state need occur between GPU threads.  

 

Both the host system and the device have their own random access memory 

(RAM). On the host system, RAM is generally equally accessible to all code. On the 

device, RAM is divided virtually and physically into different types, each of which 

has a special purpose and fulfills different needs.  

 

Another important difference between a CPU and a typical GPU is the memory 

bandwidth. Because of simpler memory models and no requirements from legacy 

operating systems, the GPU can support more than 180 GB/s of memory bandwidth, 

while the bandwidth of CPUs is around 20 GB/s (in Figure 3.1.b). 

 

3.1.1 GPU Architecture 

 

The GPU is a many core processor containing an array of streaming 

multiprocessors (SMs). A SM contains an array of streaming processors (SP), along 

with two more processors called special function units (SFUs). Each SFU has four 

floating point (FP) multiply units which are used for transcendental operations (e.g. 

sin, cosine) and interpolation. There’s a MT issue unit that dispatches instructions to 

all of the SPs and SFUs in the group. In addition to the processor cores in a SM, 

there's a very small instruction cache, a read only data cache and a 16KB read/write 

shared memory (NVIDIA Corporation, November 2010). The units can be seen in 

Figure 3.3 below. 
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Figure 3.3 Streaming Multiprocessor 

(Shimpi & Wilson, 2008) 

 

A streaming processor (SP) is a fully pipelined, single-issue, in-order 

microprocessor, built with two arithmetic logic units (ALU) and a floating point unit 

(FPU) (Figure 3.4). But a SP doesn’t have any cache, so it’s not particularly great at 

anything other than computing tons of mathematical operations (Shimpi & Wilson, 

2008). 

 

 

Figure 3.4 Streaming Processor (Shimpi & Wilson, 2008) 
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Each SM manages multithread allocating and scheduling as well as handling 

divergence through an instruction scheduling unit (MT issue). SM maps each thread 

to an SP for execution where each thread maintains its own register state. After this 

point threads have all the resources they need to run, threads can launch and execute 

basically for free. So all the SPs in a SM execute their threads in lock-step, according 

to the order of instructions issued by the scheduler. The SM creates and manages 

threads in bundles called as warps (NVIDIA Corporation, November 2010).  

 

 

Figure 3.5 Scheduling of warps on SM (Shimpi & Wilson, 2008) 
 

A warp is the smallest unit of scheduling within each SM. In SIMT fashion, 

threads are assembled into groups of 32 called “warps” which are simultaneously 

executed on different SPs at hardware level. Threads in warps share the control logic 

(i.e. the current instruction). Thus, every thread within a warp must be executing the 



31 

 

 

same instruction but different warps built from threads executing the same program 

can follow completely independent paths down the code. This means that branch 

granularity is 32 threads; every warp are allowed to can branch independently of all 

others (divergence), but if one or more threads within a warp branch in a different 

direction than the rest then every single thread in that warp must execute both code 

paths. Resolving divergence is also automatically handled by the hardware. The GPU 

achieves efficiency by splitting its work-load into multiple warps and multiplexing 

many warps onto the same SM (Figure 3.5). When a warp that is scheduled attempts 

to execute an instruction whose operands are not ready (e.g. an incomplete memory 

load), the SM switches context to another warp that is ready to execute, thereby 

hiding the latency of slow operations such as memory loads. Each SM can have 32 

warps in work at the same time (NVIDIA Corporation, November 2010).   

 

 

Figure 3.6 Nvidia Fermi GPUs’ architecture (NVIDIA Corporation, 2009) 
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To sum it up, a CUDA compatible GPU architecture is shown above in Figure 

3.6. In NVIDIA’s CUDA compatible Fermi GPU architecture, a SM is made up of 

two SIMD 16-way units. Each SIMD 16-way has 16 SPs, thus a SM in Fermi has 32 

SPs or 32 CUDA cores and 64KB shared memory (NVIDIA Corporation, 2009). 

 

3.2 GPGPU 

 

General purpose graphics processing units (GPGPU) offers new opportunities for 

the information retrieval community. GPUs are highly optimized towards the types 

of operations needed in graphics, but GPU vendors have recently started to allow 

researchers to exploit their computing power for other types of applications. Modern 

GPUs offer large numbers of computing cores (48 cores in NVIDIA GeForce 

GT240M, 512 Cores in NVIDIA Fermi) that can perform many operations in 

parallel, plus a very high memory bandwidth (memory throughput) that allows 

processing of large amounts of data (NVIDIA Corporation, November 2010). 

However, to be efficient, computations need to the carefully structured to conform 

the programming model offered by the GPU, which is a data-parallel model 

reminiscent of the massively parallel SIMD (single instruction multiple data) fashion. 

Recently, GPU vendors have started to offer better support for general-purpose 

computation on GPUs. One major vendor of GPUs, NVIDIA, recently introduced the 

Compute Unified Device Architecture (CUDA), a new hardware and software 

architecture that simplifies GPU programming. 
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 CHAPTER FOUR 

CUDA 

 

4.1 CUDA Overview 

 

CUDA (Compute Unified Device Architecture) is a general-purpose hardware 

interface designed to let programmers exploit NVIDIA graphics hardware for general 

purposes instead of graphics programming. CUDA provides a programming model 

and well defined programming abstracts (e.g. memory model, thread model) that are 

consistent between all CUDA devices. The programming model describes how 

parallel code is written, launched and executed on a device via defining model a 

virtual model of GPU architecture allowing users  a direct access to corresponding 

hardware. Thread model presents a thread hierarchy on how threads works and the 

memory model defines the different types of memories that are available to a CUDA 

program. 

 

The functional paradigm of CUDA views the GPU as a coprocessor to the CPU. 

The GPUs supporting this language also facilitate scattered (arbitrary addresses) 

memory transactions in GPU which are essential for GPUs to operate as a general-

purpose computational machine. 

 

CUDA has several advantages (NVIDIA Corporation, November 2010) over 

traditional computation models on GPUs (GPGPU): 

 

 Code can read/write from and to arbitrary addresses in memory (scattered 

transaction). 

 A fast shared memory region that can be shared amongst threads which 

enables higher bandwidths. 

 Faster read / write operations from and to the GPU 

 Full support for integer and bitwise operations. 
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But those advantages come with some limitations (NVIDIA Corporation, 

November 2010) presented below: 

 

 CUDA does not allow recursions and function pointers. 

 Transferring the data between the CPU and the GPU is slow due to the bus 

bandwidth and latency. 

 The SIMD execution model becomes a significant limitation for any divergent 

task (i.e. divergent branches in the code). 

 CUDA is only available on NVIDIA GPU’s. 

 

4.2 CUDA Programming Model 

 

The programming model most commonly used when programming a GPU is 

based on the stream programming model. In the stream programming model, input to 

and output from a computation comes in the form of streams. A stream is a collection 

of homogeneous data elements on which some operation, called a kernel, is to be 

performed, and the operation on one element is independent of the other elements in 

the stream. 

 

In CUDA programming model there are three key abstractions which are a 

hierarchy of thread groups, shared memories, and barrier synchronization. These 

abstractions guide the programmer to partition the problem into sub problems that 

can be solved independently in parallel, and then into finer pieces that can be solved 

cooperatively in parallel. Each sub-problem can be scheduled to be solved on any of 

the available processor cores: A compiled CUDA program can therefore execute on 

any number of processor cores, and only the runtime system needs to know the 

physical processor count. 

 

4.2.1 CUDA Kernels 

 

In CUDA, GPU is modeled as a collection of streaming multiprocessors (SM) 

which work in Single Program Multiple Data (SPMD) fashion. With regard to this 

model, programmer writes a kernel and then the programming model generates lots 
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of threads that execute the same kernel, each working on a different set of data in 

parallel (NVIDIA Corporation, November 2010). A CUDA kernel is a function that 

is executed on a large set of data elements, shown in Figure 4.1 

 

Thread ID 

0     1     2     3    4     5     6     7    8 

 

 

 

 

 

 

Figure 4.1 Kernel Execution 

 

In this model, the programmer writes two separate kernels for a GPGPU 

application: code for the GPU kernel and the code for the CPU kernel. The CPU 

kernel must proceed through five general stages: 

 

1. Allocate necessary input and output data space in GPU memory. 

2. Transfer input data from host (CPU) memory to the GPU. 

3. Call the GPU kernel wait until GPU kernel finishes its work. GPU kernel is 

executed parallel in each core. 

4. Transfer the output data back to host memory from the GPU’s memory. 

5. Free allocated data space from GPU memory. 

 

In brief, the GPU kernel is a sequence of instructions that directs each GPU thread 

to perform necessary operations on a unique data element in cause of the concurrent 

execution of all GPU threads in a SIMD (single-instruction, multiple-data) workflow.  

 

These kernels are dynamically dispatched and executed in bundles of threads on 

SIMD multiprocessors. At any given clock cycle, each processor executes the 

identical kernel instruction on a thread bundle, but each thread operates on distinct 

data. 

int tid = threadIdx.x; 

c[tid] = a[tid] + b[tid]; 
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4.2.2 Thread Model 

  

There are two important differences between GPU threads and CPU threads. First, 

there is no cost to create and destroy threads on the GPU. Additionally, GPU 

multiprocessors perform context switches between thread bundles (analogous to 

process switching between processes on a CPU) with zero latency. Both of these 

factors enable the GPU to provide its thread-level parallelism with very low 

overhead. 

 

The CUDA programming model organizes threads into a three-level hierarchy as 

shown in Figure 4.2. At the highest level of the hierarchy is the grid. A grid is a two 

dimensional array of thread blocks, and thread blocks are in turn three dimensional 

arrays of threads. 

 

 

Figure 4.2 Hierarchy of threads in CUDA (NVIDIA Corporation, 

November 2010) 
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For convenience, threadIdx variable on CUDA is a built- in 3-component vector, 

so that threads can be identified via this variable. This provides a natural way to map 

data on memory and invoke computation across the elements in a domain such as a 

vector, matrix, or volume. There is a limit to the number of threads per block, since 

all threads of a block are expected to reside on the same processor core and must 

share the limited memory resources of that core. On current GPUs, a thread block 

may contain up to 1024 threads (NVIDIA Corporation, November 2010). 

 

Blocks are organized into a one-dimensional or two-dimensional grid of thread 

blocks as illustrated by Figure 4.3. The number of thread blocks in a grid is usually 

defined by the size of the data being processed due to the limitation to the number of 

threads per block. 

 

Figure 4.3 Grid of Thread Blocks (NVIDIA Corporation, 

November 2010) 
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A kernel is executed by a grid (as illustrated on Figure 4.4). The size of the grid 

and the thread-blocks are determined by the programmer, according to the size of the 

data being operated on and to the complexity of the algorithm, at kernel launch time. 

While threads from different blocks operate independently; threads in a thread block 

can share data through shared memory and synchronize their execution. Each thread-

block in a grid has its own unique identifier and each thread has a unique identifier 

within a block. Using a combination of block-id and thread-id, it is possible to 

distinguish each individual thread running on the entire device. Only a single grid of 

thread blocks can be launched on the GPU at once, and the hardware limits on the 

number of thread blocks and threads vary across different GPU architectures.  

 

 

Figure 4.4 Kernel execution and thread model (NVIDIA 

Corporation, November 2010) 
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4.2.3 Memory Model 

 

 

Figure 4.5 Memory hierarchy (NVIDIA Corporation, November 2010) 

 

CUDA threads may access data from multiple memory spaces during their 

execution as illustrated by Figure 4.5. Each thread has private local memory. Also 

each thread block has shared memory visible to all threads of the block and with the 

same lifetime as the block. All threads have access to the same global memory. 

There are also two additional read-only memory spaces accessible by all threads; the 

constant and texture memory spaces.  
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The global, shared, constant and texture memory spaces are optimized for 

different memory usages. Appropriate use of these memory spaces can have 

significant performance implications for CUDA applications. The performance 

characteristics and restrictions of memory spaces are shown on Table 4.1 below: 

 

Table 4.1 Memory accessibility and latency - *Cached only on devices of compute capability 2.x 

(NVIDIA Corporation, August 2010) 

Memory  Location 

on/off chip  

Cached  Access  Scope  Lifetime  Penalty 

Register  On  n/a  R/W  1 thread  Thread  1x 

Local  Off  No* R/W  1 thread  Thread  100x 

Shared  On  n/a  R/W  All threads 

in block  

Block  1x 

Global  Off  No* R/W  All threads 

+ host  

Host 

allocation  

100x 

Constant  Off  Yes  R  All threads 

+ host  

Host 

allocation  

1x 

Texture  Off  Yes  R  All threads 

+ host  

Host 

allocation  

1x 

 

With respect to Table 4.1 local and global memories are located off-chip and 

accessing to these spaces are 100 times slower. On the other hand, although they are 

located off-chip; accessing constant and texture memory spaces are faster due to 

caching. Another point from this table is accessibility of memory spaces by threads. 

According to the Table 4.1 each thread can: 

 

 Read/Write per-thread registers  

 Read/Write per-thread local memory 

 Read/Write per-block shared memory 

 Read/Write per-grid global memory 

 Read only per-grid constant memory 

 Read only per-grid texture memory  

 

Accessibility of memory spaces are shown in Figure 4.6 below. 
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Figure 4.6 Memory Access (NVIDIA Corporation, November 2010) 

 

4.2.3.1 Global memory 

 

Global memory is accessible from either the host or device threads and has the 

lifetime of the application. Potentially 100x slower than register or shared memory 

because the global memory resides off-chip and space is not cached, so it is 

important to follow the right access pattern to get maximum memory bandwidth 

which has a direct impact to performance.  

 

4.2.3.2 Local Memory 

 

Local memory is only accessible by the threads and has the lifetime of the thread. 

Actually, local memory is a memory abstraction that implies "local in the scope of 

each thread". It resides in global memory that is allocated by the compiler and 
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delivers the same performance as any other global memory region which is 100x 

slower than register or shared memory. 

 

The variables placed by the compiler to local memory are, arrays which are not 

indexed with constant quantities, large structures that would consume too much 

register space and any variable if the kernel uses more registers than available. 

 

4.2.3.3 Shared memory 

  

Shared memory is accessible by any thread of the block from which it was created 

and has the lifetime of the block. Because it is on-chip, the shared memory space is 

much faster than the local and global memory spaces. In fact, for all threads of a 

warp, accessing the shared memory can be as fast as a register when there are no 

bank conflicts or when reading from the same address. Threads belonging to the 

same thread block can co-operate with each other, by using shared memory. 

 

4.2.3.4 Registers  

  

Registers are only accessible by threads and have a same lifetime with the thread. 

They are the fastest form of memory on the multi-processor. Simple scalar variables 

are placed into registers. 

 

4.2.3.5 Constant Memory 

 

Constant memory is accessible from either the host or device threads and has the 

lifetime of the application. The constant memory space is cached so a read from 

constant memory costs one memory read from device memory only on a cache miss. 

For all threads of a warp, reading from the constant cache is as fast as reading from a 

register as long as all threads read the same address.  
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4.2.3.6 Texture Memory 

 

Texture memory is accessible from either the host or device threads and has the 

lifetime of the application. The texture memory space is cached so a texture sampling 

costs one memory read from device memory only on a cache miss. Texture memory 

also offers different addressing modes, as well as data filtering, for some specific 

data formats. 

 

4.3 CUDA Optimization Strategy 

 

Many type of approaches that can be used to optimize performance on GPU, but 

especial for CUDA, there are three types of optimization strategy: 

 

 Optimization of instruction usage to achieve maximum instruction throughput 

 Optimization of  memory usage to achieve maximum memory throughput  

 Optimization of  parallel execution to achieve maximum utilization 

 

4.3.1 Instruction Throughput 

 

To maximize instruction throughput the programmer should:  

 Minimize the use of arithmetic instructions with low throughput, for example 

single-precision instead of double-precision 

 Minimize divergent warps caused by control flow instructions. 

 Reduce the number of instructions 

 

4.3.1.1 Arithmetic Instructions 

 

A multiprocessor takes 8 clock cycles for single-precision 32 bit floating-point 

add, multiply, and multiply-add, integer add, bitwise operations, compare and type 

conversion instructions on GPU’s with compute capability 1.x (NVIDIA 

Corporation, August 2010). 
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Integer division and modulo operation are particularly more expensive and should 

be avoided if possible or replaced with bitwise operations whenever possible 

 

GPU’s with compute capability 1.3 has only one double precision floating point 

unit (FPU) per multiprocessor (SM), is shared by all the threads on SM, whereas 

there are 8 single precision FPUs. So sinf(x), cosf(x), tanf(x), sincosf(x) and other 

double precision operations deliver  8x worse performance than with single precision 

(NVIDIA Corporation, August 2010). 

 

4.3.1.2 Control Flow Instructions 

 

Threads within a warp execute the same instruction. Thus, in case of flow control 

instructions (if, switch, do, for, while), threads in a warp may follow different 

execution paths (divergence) causing significant decline on the effective instruction 

throughput. In this situation hardware serializes the different executions paths, 

increasing the total number of instructions executed for this warp. So, if we have two 

divergent paths within a warp, the two will be serialized, entire warp executing both. 

When all the different execution paths have completed, the threads converge back to 

the same execution path. That is where the performance penalty comes from, if flow 

diverges within a warp. To obtain best performance in cases where the control flow 

depends on the thread ID, the controlling condition should be written so as to 

minimize the number of divergent warps (NVIDIA Corporation, August 2010).  

 

4.3.1.3 Memory Instructions 

 

When accessing local or global memory, there are 400 to 600 clock cycles of 

memory latency. Much of this global memory latency can be hidden by the thread 

scheduler if there are sufficient arithmetic intensity (independent arithmetic 

instructions that can be issued) while waiting for the global memory access to 

complete (NVIDIA Corporation, August 2010). 
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4.3.2 Memory Bandwidth 

 

GPUs offer high bandwidth throughput. With respect to memory resources, each 

GPU multiprocessor contains a set of dedicated registers, a store of read-only 

constant and texture cache, and a small amount of shared memory. These memory 

types are shared between the individual processors of a multiprocessor. In addition to 

these memory types, threads evaluated by a processor may also access the GPU’s 

larger, and comparatively slower, global memory. Therefore, programmers should be 

careful while designing algorithm and organizing memory accesses because wrong 

usage of these memory spaces directly affects the performance. The access time 

penalties of different memory spaces are shown on Table 4.2. 

 

Table 4.2 Access time penalties of different memory spaces on GPU (NVIDIA Corporation, August 

2010) 

Memory Penalty 

register 1x 

local 100x 

shared 1x 

global 100x 

constant 1x 

 

The first step in maximizing overall memory throughput for the application is to 

minimize data transfers with low bandwidth by minimizing data transfers between 

the host and the device. Since off-chip device memories are of much higher latency 

and lower bandwidth than on-chip memory, memory accesses to them should be 

minimized. 

 

Shared memory can be seen as a user-managed cache. A typical programming 

pattern is to cache data coming from device memory into shared memory; in other 

words, to have each thread of a block:  

 

 Load data from device memory to shared memory 
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 Synchronize with all the other threads of the block so that each thread can 

safely read shared memory locations that were written by different threads 

 Process the data in shared memory 

 Synchronize again if necessary to make sure that shared memory has been 

updated with the results 

 Write the results back to device memory 

 

4.3.2.1 Data Transfers between Host and Device 

 

Because of the overhead associated with each transfer, instead of transferring 

small portions of data separately, batching many small transfers into a single large 

transfer always performs better. 

 

4.3.2.2 Global Memory Accesses 

 

The task of effectively hiding the global memory access latency and managing the 

memory hierarchy is very crucial for obtaining maximal performance from the GPU. 

 

The global memory space is not cached, so it is all the more important to follow 

the right access pattern to get maximum memory bandwidth, especially given how 

costly accesses to device memory are.  

 

First, the device is capable of accessing device memory via 32, 64, or 128 byte 

memory transactions (NVIDIA Corporation, August 2010). When a warp executes 

an instruction that accesses global memory, it unites the memory accesses of the 

threads within the warp into one or more of these memory transactions, depending on 

the size of the word accessed by each thread. So the structure layout on device 

memory must be aligned to their size (or multiple of their size) in order to achieve 

memory transactions without latency. Because, global memory bandwidth is used 

most efficiently when the simultaneous memory accesses by threads in a half-warp 

can be coalesced into a single memory transaction. Coalescing can be maximized by 
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redesigning structure to most optimal access patterns and using data types that meet 

the size and alignment.  

 

4.3.2.3 Local Memory 

 

Like the global memory space, the local memory space is not cached, so accesses 

to local memory are as expensive as accesses to global memory and are subject to the 

same requirements for memory coalescing as described at Section 4.3.2.2. 

 

4.3.2.4 Constant Memory 

 

The constant memory is placed off-chip but space is cached so a read from 

constant memory costs one memory read from device memory only on a cache miss, 

otherwise it just costs as one read from its cache. 

 

4.3.2.5 Texture Memory 

 

The texture memory space is placed off-chip but space is cached so a texture fetch 

costs one memory read from device memory only on a cache miss, otherwise it just 

costs one read from the its cache. 

 

4.3.2.6 Shared Memory 

 

The shared memory space is much faster than the local and global memory 

spaces. In fact, for all threads of a warp accessing the shared memory is as fast as 

accessing a register as long as there are no bank conflicts between the threads, as 

detailed below.  

 

Shared memory is divided into equally-sized memory modules, called banks, 

which can be accessed simultaneously. So, any memory transaction request made of 

n addresses that fall in n distinct memory banks can be serviced simultaneously, 

yielding an effective bandwidth that is n times as high as the bandwidth of a single 
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module. It is therefore important to understand how memory addresses map to 

memory banks in order to schedule the memory requests so as to minimize bank 

conflicts. 

 

4.3.2.7 Registers 

 

Generally, accessing a register has no latency since it doesn’t require an extra 

clock cycle, but delays may occur due to register read-after-write dependencies and 

register memory bank conflicts. 

 

4.3.3 Occupancy 

 

One of the key challenges in algorithmic design for GPGPUs is to keep all 

processing elements busy. In other words, to ensure high utilization (occupancy) of 

resources and provide more parallel work is dispatched than the stream processors 

available. Using latency-hiding techniques, a processor waiting on a memory 

accessing can thus simply switch context to another dispatched work unit which has 

load its necessary data from memory. 

 

The multiprocessor occupancy is the ratio of active warps to the maximum 

number of warps supported on a multiprocessor of the GPU. Maximizing the 

occupancy can help to cover latency during global memory loads. The occupancy is 

determined by the amount of shared memory and registers used by each thread block.  

Because of this, programmers need to choose the size of thread blocks with care in 

order to maximize occupancy. Each multiprocessor on the device has a set of N 

registers available for use by CUDA program threads.  These registers are a shared 

resource that is allocated among the thread blocks executing on a multiprocessor. 

The CUDA compiler attempts to minimize register usage to maximize the number of 

thread blocks that can be active in the machine simultaneously. If a program tries to 

launch a kernel for which the registers used per thread times the thread block size is 

greater than N, the launch will fail. 
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It is important to note that two key resources of the SM, namely the shared 

memory and the register file, are shared by the thread-blocks that are concurrently 

active on the SM. For example, if each SM has 16KB of shared memory and each 

thread-block requires 8KB of shared memory, then no more than 2 thread blocks can 

be concurrently scheduled on the SM, as it is seen in Figure 4.7. 

 

      Register           Shared Memory                  Register      Shared Memory 

       Usage         Usage        Usage  Usage 

 

    (a)            (b) 

Figure 4.7 GPU Resources are not utilized properly. 

 

From Figure 4.7, in (a) we are wasting the available shared memory space and 

there is only 3 thread block can be concurrently active because of heavily register 

usage. We should move some variables from registers to shared memory to balance 

resource usage. Similarly in (b) resources wasted because of high shared memory 

usage and we should reduce shared memory usage by threads in order to increase 

occupancy. 
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 CHAPTER FIVE 

LEMMATIZATION ON GPU 

 

5.1 Lemmatization Algorithm on CUDA 

 

While working on CUDA the methods applied to the development should include 

the following: 

 

1) Minimize data transfer with global memory 

2) Work on faster accessible memory units 

3) Accessing of global memory should be coalesced as much as possible 

4) Avoid branch divergence within a CUDA warp 

5) Use resources of GPU efficiently to avoid limitations of hardware 

 

In order to work efficient under these constraints, we had to change our trie 

structure. While we were optimizing our code through CUDA our guidelines were: 

 

1) Get rid of pointers. Working with pointers on GPU is not efficient. 

2) Minimize memory read/writes. 

3) Minimize divergent (if-else, for, while) blocks. 

4) Minimize memory usage of variables. 

5) Do load/store works on faster memory units and later store result in slower 

units. 

6) Reduce instructions and complexity as possible. 

 

5.1.1 Redesigning Structure 

 

First of all we changed our trie structure to node array (namely, array of structs) 

in order to get rid of pointers. Instead of storing each child’s pointer in parent node 

we stored the child’s index at node array. And we inserted our nodes on array by 

traversing tree with two different approaches, breadth-first and pre-order traversal 

basis, in the cause of memory access coalescing (discussed in Section 4.3.2.2).
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After that we changed our look-up algorithm with regard to the changes in structure. 

The previous and latter structures can be seen in Figure 5.1. 

 

 

(a) 

 
(b) 

 

 (c) 

Figure 5.1 (a) Trie Structure. (b) Array of nodes structure with nodes placed via breadth-first 

traversal on trie. (c) Array of nodes structure with nodes placed via pre-order traversal on trie. 
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Arrays of structures (AOS) keep things nicely organized but are generally bad for 

performance in data parallel computation. When the structure is laid out in memory, 

the compiler will produce interleaved data, in the sense that all the structures will be 

contiguous but there will be a constant offset between a structure instance and the 

same element of the following instance. This offset particularly depends on the 

structure definition. To make sure SIMD operations can work efficiently on data, 

they shall be allocated in continuous memory space. So the best bet for performance 

is to design software around structures of arrays (SOA). 

 

In GPU, global memory is accessed in chunks depending on to memory bus. If we 

don’t use whole chunk the bandwidth is wasted (NVIDIA Corporation, August 

2010). If we look at the memory layout in global memory, the AOS layout would 

have all the node’s contents together, whereas in the SOA layout we would have all 

the keys (required data) together in RAM. So in theory, the SOA layout would be 

better performing because when we access the key data, we will get more data in 

chunk since size of key is smaller than whole struct.  

 

For example; assuming a chunk size of 32 bytes and we have 16 nodes where a 

node consists a key with 2 bytes and a data with 2 bytes; if the AOS algorithm would 

want to access key of node 1, and then to the key of node 9; this request will cause a 

chunk miss, causing the processor to fetch in node 9 into the chunk by a second read. 

On the other hand with SOA algorithm, all 16 keys can be read into chunk by one 

read, providing a performance boost. 
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Figure 5.2 Node (struct) of arrays structure 

 

AOS is also faster when all the data in the chunks are aligned to multiples of 

32/64/128 bytes but becomes slower when it does not. The takeaway from all this is 

the layout of our data affects the running speed by a large amount, but it’s also 

important to write small tests to validate whether SOA or AOS better. In our case 

SOA performed better than AOS. The results are written on evaluation part, Section 

6.2 of the thesis. 

 

To decide which structure performs best we developed 9 different version of our 

lemmatizer each is working with distinct structure: 

 

 Sequential algorithm with tree struct  

 

A sequential, CPU-based version of our lemmatizer which uses a radix trie. 

 

 Parallel array of structs algorithm  

 

A data parallel version of our algorithm which uses a struct array instead of trie. 

But look-up algorithm is similar to radix search. This algorithm uses 12 registers, 42 

bytes local memory and 48 bytes shared memory on GPU with 256 threads per 

block. 
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 Parallel arrays algorithm 

 

A data parallel version of our algorithm which uses separate arrays instead of 

struct array. We defined each property of struct as a separate array. Look-up 

algorithm is similar. This algorithm uses 15 registers, 42 bytes local memory and 96 

bytes shared memory on GPU with 256 threads per block. 

 

 Parallel struct of arrays algorithm 

 

A data parallel version of our algorithm which uses a structure of arrays instead 

of an array of structures. We defined each property of struct as a separate array in 1 

unique struct. Look-up algorithm is similar. This algorithm uses 15 registers, and 42 

bytes local memory 48 bytes shared memory on GPU with 256 threads per block. 

 

 Parallel array of structs algorithm with compact (smaller) nodes  

 

A data parallel version of our algorithm which uses a struct array instead of trie. 

But this time structs are smaller because we  removed Data, MasterData, MasterKey 

due to fact that they are not necessary for lemmatizing.(these properties was added to 

structs for WSD and query/document expansion purposes). Look-up algorithm is 

similar to radix search. This algorithm uses 13 registers, 42 bytes local memory and 

48 bytes shared memory on GPU with 256 threads per block. 

 

 Parallel arrays algorithm with compact (smaller) arrays 

 

A data parallel version of our algorithm which uses a struct array instead of trie. 

Data, MasterData and MasterKey arrays are removed. Look-up algorithm is similar 

to radix search. This algorithm uses 15 registers, 42 bytes local memory and 88 bytes 

shared memory on GPU with 256 threads per block. 
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 Parallel struct of arrays algorithm with compact (smaller) nodes with 

compact (smaller) nodes inserted from trie via pre-order traversal basis 

 

A data parallel version of our algorithm which uses a structure of arrays instead of 

an array of structures. We defined each property of struct as a separate array in 1 

unique struct but removed Data, MasterData and MasterKey properties. Look-up 

algorithm is similar. This algorithm uses 15 registers, 42 bytes local memory and 48 

bytes shared memory on GPU with 256 threads per block. 

 

 Parallel struct of arrays algorithm with compact (smaller) nodes inserted 

from trie via pre-order traversal basis and also exploits shared memory 

 

A data parallel version of our algorithm which uses a structure of arrays instead of 

an array of structures. We defined each property of struct as a separate array in 1 

unique struct but removed Data, MasterData and MasterKey properties. In addition; 

we also carried some variables into shared memory in order to reduce global memory 

read/writes. Look-up algorithm is similar. This algorithm uses 16 registers, 21 bytes 

local memory and 3888 bytes shared memory on GPU with 256 threads per block. 

 

 Parallel struct of arrays algorithm with compact (smaller) nodes inserted 

from trie via breadth-first traversal basis and also exploits shared 

memory 

 

A data parallel version of our algorithm which uses a structure of arrays instead of 

an array of structures. But this time, we preferred placing structs on array from trie 

via breadth-first basis. This approach visits the elements level-by-level. So we 

inserted all the nodes on current level of trie before we proceeded to sub levels. With 

this algorithm, the only difference is layout of dictionary on memory. We defined 

each property of struct as a separate array in 1 unique struct but removed Data, 

MasterData and MasterKey properties. In addition; we also carried some variables 

into shared memory in order to reduce global memory read/writes. Look-up 
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algorithm is similar. This algorithm uses 16 registers, 21 bytes local memory and 

3888 bytes shared memory on GPU with 256 threads per block. 

 

5.1.2 Occupancy 

 

In our algorithm, trie needs 12.31MB space which can only reside on global 

memory of GPU. So we had to achieve coalesced accessing and warp occupancy as 

much as possible to hide latency of memory transactions. In order to achieve an 

occupancy ratio of 1, we redesigned our algorithm regard to GPU specifications (can 

be seen on Appendix 2). The specifications of our GPU as follows: 

 

 Total global memory      : 947 MB      

 Shared memory per processor   : 16 KB 

 Warp size                         : 32 

 Max. threads per block           : 512 

 Total constant memory           : 64 KB 

 Clock rate                        : 1210000KHz 

 Multiprocessors on device        : 6 

 Multicores on each processor     : 8 

 Max count of threads in each processor   : 1024 

 Max count of register      : 16384 

 

Regard to this specifications we should keep shared memory usage by each thread 

block under 16KB considering the fact that each multi-processor has 16KB shared 

memory unit. Also there is a limit of 16384 registers per multiprocessor. So we 

should organize our shared memory, register and thread usage considering these 

limitations to prevent performance comedown. 

 

Our kernel uses 16 Registers per each thread. So we can map maximum of 

16384/16 = 1024 threads on a multiprocessor without decreasing warp occupancy. If 

we select our thread number per block 256 then we will have 1024/256=4 blocks of 

threads each needs 256*16=4096 registers. To fit in 4 blocks of threads in a 
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multiprocessor without reducing occupancy ratio; we should limit our shared 

memory usage on each block to maximum of 4KB (since 4KB * 4 block = 16 KB) 

and on each thread to 4KB / 256 =16 bytes. So in final analysis, considering our 

kernel uses 16 registers per thread if we select our thread number per block 256 we 

should use 16 bytes of shared memory per thread or 4KB of total to achieve full warp 

occupancy.  

 

Our resource usage and occupancy measurements can be seen on Figure 5.3, 

Figure 5.4 and Figure 5.5. 

 

 

Figure 5.3 Selected threads per block to achieve full occupancy. Red triangle shows our Block 

size 

 

Figure 5.4 Optimized register usage of kernel to achieve full occupancy. Red triangle shows our 

register usage per thread. 
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Figure 5.5 Optimized shared memory usage to achieve full occupancy. Red triangle shows our 

register usage per thread. 

 

These figures tell us that we have full utilization of resources and achieve a warp 

occupancy ratio of 1. We could also use 512 threads per block and get full occupancy 

(32 threads) but in order to do that we should lower the shared memory usage by 

threads. Because if we increase thread count without limiting their shared memory 

usage we will have a shared memory overflow which causes a performance decline. 
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 CHAPTER SIX 

EVALUATION 

 

6.1 Test Data and Measurement Method 

 

6.1.1 Test Data 

 

To measure our lemmatizer’s accuracy and performance we have used the 

recently constructed Milliyet dataset (the news articles and columns of 5 years, 2001–

2005, from the Turkish daily newspaper Milliyet (http://www.milliyet.com.tr)) for 

Turkish along with the TREC-style query and relevance judgments set 

(Can, Kocberber, Balcik, Kaynak, Ocalan, & Vursavas, 2008). The dataset includes 

408,305 documents which contains 95.5 million words (each document contains 234 

words on the average), with 72 ad-hoc queries and 33 assessors. The query set 

provided as a set of words that describes a user information need with three fields: 

topic (a few words), description (one or two sentences), and narrative (more 

explanation). We used the queries on the description field in our tests which includes 

72 queries consisting 936 words with 13 terms average and 1.74 stop words, on 

average (queries can be seen at Appendix 5). 

 

6.1.2 Measurement 

 

Precision and recall are the common evaluation measures in information retrieval. 

Most of the other measures are derived from them. 

 

a) Recall is the measure of the ability of a system to present all relevant items. 

 

        Number of relevant items retrieved 

Recall =  

      Number of relevant items in collection 

 

b) Precision is the measure of the ability of a system to present only relevant 

items. 

http://www.milliyet.com.tr/
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Fazli%20Can
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Seyit%20Kocberber
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Erman%20Balcik
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Cihan%20Kaynak
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Huseyin%20Cagdas%20Ocalan
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Number of relevant items retrieved 

Precision = 

Total number of items retrieved 

 

Where, retrieved is number of documents retrieved by a search of query and 

relevant is total possible relevant documents within a given query. 

 

Retrieval tasks whose results are a ranked list of documents can be evaluated by 

the trec_eval program. “trec_eval” was written by Chris Buckley (It is available from 

the TREC website at http://trec.nist.gov/trec_eval). We used the trec_eval package 

version 8.1 for obtaining the effectiveness measures. An evaluation report for a run 

evaluated by “trec_eval” gives a report with the measurements following (trec_eval 

output can be seen at Appendix 1):  

 

Table 6.1 Trec_eval measurement types 

Name Description 

num_ret  Total number of documents retrieved over all queries 

num_rel Total number of relevant documents over all queries 

num_rel_ret Total number of relevant documents retrieved over all queries 

map Mean Average Precision (MAP) 

gm_map  Average Precision. Geometric Mean, 

q_score=log(MAX(map,.00001)) 

Rprec R-Precision (Precision after R (= num-rel for topic) documents 

retrieved) 

bpref Binary Preference, top R judged nonrel 

recip_rank Reciprical rank of top relevant document 

iprec@recall_N Interpolated Recall - Precision Averages at N recall 

P@N Precision after N docs retrieved 

. 

6.2 Evaluation of Lemmatizer Accuracy 

 

Firstly we wanted to see how accurate our lemmatizer on a small set. To achieve 

this task, we manually lemmatized words on queries provided by dataset (72 Queries, 

936 words) via “Büyük Türkçe Sözlük” (Turkish Language Association’s Grand 

Dictionary) in order to create base lemmas for measurement. After that we applied 

http://trec.nist.gov/trec_eval
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our lemmatizer on same query set. Then we compared the base lemmas with our 

lemmatizer’s output for each query. Table 6.2 shows a small fraction of the output, 

the rest of this table can be seen at Appendix 6.  

 

Table 6.2 Lemmatization of query set 

Query  Lemmatized Query Accuracy Summary 

Kuş gribi nedir, nasıl bulaşır, 

belirtileri nelerdir sorularına 

cevap olabilecek dokümanlar.  

kuş grip bulaş belirti soru 

cevap olabil doküman  

100%   

Türkiye’nin Avrupa Birliği’ne 

tam üyelik sürecinde Kıbrıs 

sorununu ele alan bir doküman. 

türkiye avrupa birlik tam 

üyelik süreç kıbrıs sorun ele 

alan doküman  

90.91% The lemma of “ele” 

must be “el” (hand) 

but our lemmatizer 

returns “ele”+ 

“(mek)” (to eliminate)  

And the lemma of 

“alan”’ must be   

“al”+ “(mak)” (to 

take) But our 

lemmatizer return 

“alan”(region) 

Türkiye’de üniversiteye giriş 

sınavının gençler üzerindeki 

etkileri, gençlerin ve 

kamuoyunun bu sınav için 

düşündükleri. 

türkiye üniversite giriş sınav 

genç etki genç kamuoyu 

sınav düşün 

100%  

Güney Asya’yı 26 Aralık 2004’te 

vuran büyük Tsunami faciası ve 

bu facianın sonuçları. 

güney asya 26 aralık 2004 

vur büyük tsunami facia 

facia sonuç  

100%  

Mavi akımın ulusal enerji 

politikamızdaki yeri, ekonomik 

maliyeti 

mavi akım ulusal enerji 

politika yer ekonomik 

maliyet  

100%  

Büyük bir bölümü deprem 

bölgesi olan Türkiye'de deprem 

öncesi alınan tedbirler nelerdir? 

büyük bölüm deprem bölge 

ol türkiye deprem önce alın 

tedbir  

100%  

Türk Silahlı Kuvvetleri ile PKK 

arasında meydana gelen 

çatışmalar 

türk silahlı kuvvet pkk arası 

meydan gelen çatışma  

100%  
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The queries consist of total 936 words. Eliminating stop words from queries lefts 

us 786 words and our lemmatizer’s total accuracy is with 764 correct lemmas  equals 

to %97.201 (764 correct lemmas / 786 words). 

 

Of course this evaluation was not sufficient enough to make a decision about our 

lemmatizer’s effectiveness. So we decided to build an information retrieval (IR) 

system and observe our lemmatizer’s impact on retrieval process.  

 

While creating our test environment, we didn’t want to deal with the development 

of an IR system from scratch; so instead, we used “Lucene” which is an open 

source IR software library, created by Doug Cutting (It is available at 

http://lucene.apache.org/java/docs/index.html). Because “Lucene” offers users full 

text indexing and searching capability along with: 

 

 ranked searching (best results returned first ) 

 Many query types: phrase queries, wildcard queries, proximity queries, range 

queries etc.  

 fielded searching (e.g., title, author, contents)  

 sorting by any field  

 multiple-index searching with merged results  

 simultaneous update and searching 

 

After we dealed with IR system development problem via “Lucene”; we 

compared the effects of three different approaches on (Turkish) IR effectiveness on 

“Lucene”:  

 

a) NS: The abbreviation stands for no stemming. This approach uses all words as 

an indexing term. The retrieval performance of this approach provides a 

baseline for comparison. 

 

b) FPT5: The abbreviation stands for fixed prefix truncation by length of 5 

characters. We simply truncate the words and use the first 5 characters of each 

http://lucene.apache.org/java/docs/index.html
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word as its stem; words with less than 5 characters are used as a stem with no 

truncation. We used this fixed prefix stemmer because it had shown before 

that it produces good results on Turkish language (Can & others., 2008). 

 

c) LDB:  This abbreviation stands for our dictionary based lemmatizer. 

 

In this study, we also used a stop words list (stop words list can be seen on 

Appendix 3) consists of the most frequent words of Turkish language, and some 

manually added words. Then we applied FPT5 stemmer to these words. So in final 

case, we generated a stop word list composed of 5 character-length words (our stop 

words list can be seen on Appendix 4). Later, we used this stop word list to eliminate 

words, before applying the stemmers to them. For this purpose, we first used the 

FPT5 stemmer to find the appropriate stem, and then we searched the stemmed word 

in the stop word list. 

 

The indexing information on “Lucene” with different stemmers, using the stop 

word list, is shown in Table 6.3.  

 

Table 6.3 The indexes created for search engine 

 NS FPT5 LDB Gain % 

of FPT5 

over NS 

Gain % 

of LDB 

over NS 

Gain % of 

LDB over  

FPT5 

Indexed 

Term 

Count 

1679002 283365  69099 83.12% 95.88% 75.61% 

Index Size  1584MB 1357MB 1004MB 14.33% 36.62% 26.01% 

 

From table, it means that FPT5 and LDB provide 14.33% and 36.62%, 

respectively, storage efficiency with respect to NS. The storage size of the index 

builded with LDB is the most efficient among others. 

 

To encapsulate, our evaluation process can be summarized as follows. First we 

constructed three different indexes via three different options (listed above) applied 

to indexing process respectively. Then we applied selected option on the queries in 

the same way. After that we ran each of the queries on the system using the index 
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that is created with same option as the query stemmed, and then with the information 

returned by system, we created a TREC-style output by using the first 1000 results 

returned. This output allows us to measure the results in “trec_eval”. Thus, finally, 

we measured the IR effectiveness of these three stemming approaches with 

“trec_eval” program and compared them. The measurement results are below on 

Table 6.4:  
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Table 6.4 Trec_eval measurement results. 

 NS FPT5 LDB  % of  

LDB – NS 

increase   

% of  

LDB – 

FPT5 

increase 

num_ret  72000 72000 72000 - - 

num_rel 7510 7510 7510 - - 

num_rel_ret 4136 4870 5424 31.14 11.38 

map 0.1904 0.2288 0.2941 54.46 28.54 

gm_map 0.0771 0.1148 0.2063 167.57 79.70 

Rprec 0.2352 0.2728 0.3356 42.69 23.02 

bpref 0.3406 0.4036 0.4144 21.67 2.68 

recip_rank 0.5701 0.6688 0.7899 38.55 18.11 

P@5 0.4333 0.5278 0.6139 41.68 16.31 

P@10 0.4125 0.4847 0.5667 37.38 16.92 

P@15 0.4093 0.4630 0.5481 33.91 18.38 

P@20 0.3882 0.4375 0.5188 33.64 18.58 

P@30 0.3560 0.3981 0.4796 34.72 20.47 

P@100 0.2332 0.2737 0.3300 41.51 20.57 

P@200 0.1670 0.1976 0.2302 37.84 16.50 

P@500 0.0955 0.1123 0.1283 34.35 14.25 

P@1000 0.0574 0.0676 0.0753 31.18 11.39 

iprec@recall_0.00 0.6273 0.7130 0.8214 30.94 15.20 

iprec@recall_0.10 0.3764 0.4515 0.5863 55.77 29.86 

iprec@recall_0.20 0.3058 0.3684 0.4913 60.66 33.36 

iprec@recall_0.30 0.2527 0.3131 0.4112 62.72 31.33 

iprec@recall_0.40 0.2139 0.2538 0.3422 59.98 34.83 

iprec@recall_0.50 0.1741 0.2120 0.2749 57.90 29.67 

iprec@recall_0.60 0.1328 0.1697 0.2137 60.92 25.93 

iprec@recall_0.70 0.1020 0.1260 0.1653 62.06 31.19 

iprec@recall_0.80 0.0691 0.0824 0.1103 59.62 33.86 

iprec@recall_0.90 0.0433 0.0388 0.0455 5.08 17.27 

iprec@recall_1.00 0.0073 0.0012 0.0116 58.90 866.67 
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To give a judgment on which is the best of these stemming approaches, we should 

consider the precision – recall average, bpref, GM_MAP, MAP, P@10, and P@20 

values on Table 6.4.  

 

6.2.1 Precision at N documents 

 

 

Figure 6.1 Visual presentation of precision at top N ranked retrieved documents 
 

Precision at the top N documents, commonly 10 and 20 documents (P@10, 

P@20), are preferred measure because of their simplicity and intuitiveness. The 

precision computed after a given number of documents have been retrieved reflects 

the actual measured system performance as a user might see it. 

 

P@10 and P@20 values of LDB are about 17% and 18.5% higher than that of 

FPT5, also about 37% and 33.5% higher than that of NS. Due to these observations, 

our lemmatizer provides better results for first 20 results which are the results which 

an ordinary user will commonly look only at them. 
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6.2.2 Precision – Recall Averages 

 

 

Figure 6.2 Visual presentation of interpolated precision - recall averages 

 

The precision - recall graph (Figure 6.2) is created using the 11 cutoff values from 

the precision at recall level averages on Table 6.4. Characteristically these graphs 

slope downward from left to right, enforcing the notion that as more relevant 

documents are retrieved (recall increases); the more non-relevant documents are 

retrieved (precision decreases).  

 

This graph is the most commonly used method for comparing systems. Curves 

closest to the upper right-hand corner of the graph (where recall and precision are 

maximized) indicate the best performance. The plots of different stemmers are 

plotted on the same graph and it can be clearly seen that LDB is superior to both 

other approaches. 
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6.2.3 Map, Gmap and Rprec 

 

 

Figure 6.3 Visual representations of gm_map, map and Rprec values 

 

MAP is the mean of the average precision value that reflects the performance over 

all relevant documents. The measure is not an average of the precision at standard 

recall levels. Rather, it is the average of the precision value obtained after each 

relevant document is retrieved. MAP is considered as a more reliable measure for 

effectiveness (Buckley & Voorhees, 2004; Sanderson & Zobel, 2005). 

 

In terms of MAP measure, the performance of LBD is 28.54% better than FPT5’s 

performance and has an increase of 54.46% than that of NS. According to the MAP 

results, FPT5 is obviously dropping behind LDB. 

 

The geometric mean average precision (GMAP) measures improvements for low-

performing queries. GMAP is the geometric mean of per-query average precision, in 

contrast with MAP which is the arithmetic mean. If a run doubles the average 

precision for topic A from 0.03 to 0.06, while decreasing topic B from 0.3 to 0.27, 

the arithmetic mean is unchanged, but the geometric mean will show an 

improvement. 
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GMAP measures show us that LBD is 79.70% better than FPT5 and 167.57% than 

NS. Again, LDB is the best effective option.  

 

R-Precision is the precision after R documents have been retrieved, where R is the 

number of relevant documents for the query. It trivializes the exact ranking of the 

retrieved relevant documents, which can be particularly useful in TREC where there 

are large numbers of relevant documents. LBD outpaces FPT5 and NS on this 

measure with 23.02% and 43.62%, respectively. 

 

6.2.4 Bpref 

 

Table 6.4 also shows the performance of NS, FPT5, and LDB in terms of bpref 

and the percentage improvement provided by LDB with respect to NS and FPT5. For 

easy comparison, bpref values of NS, FPT5, and LDB are shown as bar charts in 

Figure 6.4. 

 

 

Figure 6.4 Visual representations of bpref values 

 

The bpref or “binary preference” measure was introduced by Buckley and 

Voorhees (2004) which is designed for situations where relevance judgments are 
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incomplete. Bpref computes a preference relation of whether judged relevant 

documents are retrieved ahead of judged irrelevant documents (ignores the 

documents not evaluated by users). Bpref and MAP are very highly correlated when 

used with complete judgments. But when judgments are incomplete like the ones we 

use, rankings of systems by bpref still correlate highly to the original ranking, 

whereas rankings of systems by MAP do not. 

 

In terms of bpref, LBD is better than the rest (2.68% better than FPT5, 21.67% 

better than NS). The bpref values of FPT5 and LBD are close to each other; on the 

other hand, P@10 and P@20 values of LBD are about 15% higher than that of FPT5. 

 

6.3 Evaluation of Lemmatizer Performance 

 

6.3.1 Parameters 

  

We did a set of benchmarks on two different word sets, 100,000 words and 

1,000,000 words; both are eliminated from stop words and constructed with random 

words taken from random documents of Milliyet dataset (created by Can & others., 

2008). 

 

Benchmarks were launched on the same environment which has the following 

configuration: 

 

 Windows 7 64-bit OS 

 Intel T9600 2.8 GHz CPU 

 4 GB RAM 

 NVIDIA GT240M 

 Cuda SDK version 3.2 

 

Before we started to run tests, we selected “threads per block” parameter as 256 

and defined “thread block count” parameter as “word count” / “threads per block” for 

all kernels. Also all algorithms tested have full warp occupancy. 
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6.3.2 Methods 

 

We subjected the one sequential CPU-bound as a reference and its eight CUDA 

equivalent algorithms for benchmarking. Each test was run with both 100,000 and 

1,000,000 words. The tests were conducted each utilizes different structures which 

are discussed at Section 5.1.1 for evaluation:  

 

1. LW:  Uses sequential algorithm with tree struct.(acronym of Lemmatize 

Word) 

2. LWAOS: Uses parallel array of structs algorithm 

3. LWArrays: Uses parallel arrays algorithm 

4. LWSOA: Uses parallel struct of arrays algorithm 

5. LWCompactAOS: Uses parallel array of structs algorithm with compact 

nodes  

6. LWCompactArrays: Uses parallel arrays algorithm with compact nodes  

7. LWCompactSOA: Uses parallel struct of arrays algorithm with compact 

nodes  

8. LWCompactSOAShared: Uses parallel struct of arrays algorithm with 

compact nodes placed via pre-order traversal basis and exploits shared 

memory 

9. LWCompactSOABFS: Uses parallel struct of arrays algorithm with compact 

nodes placed via breadth – first traversal basis and exploits shared memory 

 

6.3.3 Results 

 

For our first test we prepared 100,000 words and ran each algorithm 10 times to 

be sure on accuracy of results and then wrote down the obtained average time to 

Table 6.5. Results of benchmarking all of methods, compared by memory bandwidth 

and time consuming are summarized in Table 6.5.  

 

The performance of each method to process 100,000 words is described in Table 

6.5, where “Total Runtime” represents the time that it takes to copy the data to the 
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graphics card, call and execute the kernel, and copy the results from the graphics 

card back to system memory in milliseconds. ”Bandwidth” column is rate at which 

data can be read from or stored into a memory. Memory bandwidth is usually 

expressed in units of bytes/second, ”Total Speed up factor” column is value of CPU-

bound kernel time divided by value of current kernel time. 

 

Table 6.5 Results for 100,000 words 

Algorithm Type Structure Total 

Runtime 

in 

milliseconds 

Bandwidth 

(GBps) 

Total 

Speed 

up 

factor 

LW SEQ Trie 2876.633 N/A - 

LWAOS CUDA AOS 58.809 11.41 48.92 

LWArrays CUDA Arrays 58.232 11.53 49.40 

LWSOA CUDA SOA 46.126 10.97 62.36 

LWCompactAOS CUDA AOS 53.519 11.52 53.75 

LWCompactArrays CUDA Arrays 57.787 11.66 49.78 

LWCompactSOA CUDA SOA 39.075 13.18 73.62 

LWCompactSOAShared CUDA SOA  + 

Shared 

Memory 

34.344 13.95 83.76 

LWCompactSOABFS CUDA SOA via  

BFS  + 

Shared 

Memory 

32.284 14.84 89.10 

  

The table clearly shows that the parallel algorithms outperform the sequential 

implementation. The speedup values of over 48x to 90x testify sufficient efficiency 

of our solution. 
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Figure 6.5 Visual representation of results for 100,000 words in terms of search runtime 

 

Here, in Figure 6.5, the bar chart shows the total performance times for our eight 

lemmatizing algorithms applied on 100,000 words. Side by side, these bars show 

how performance is affected by structure selection and memory layout. Worth 

noticing is the performance of LWCompactSOABFS implementation is the best 

performing. 

 

Later, we tested all algorithms on 1 million words set with the same methods 

applied in previous tests; in order to test effects of input data size on performance. 

And the results are as follows: 
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Table 6.6 Results for 1 million words 

Algorithm Type Structure Total runtime 

in 

milliseconds 

Bandwidth 

(GBps) 

Total 

Speed 

up 

factor 

LW SEQ AOS 29076.238 N/A - 

LWAOS CUDA AOS 594.041 11.66 48.95 

LWArrays CUDA Arrays 598.227 11.39 48.60 

LWSOA CUDA SOA 475.802 10.83 61.11 

LWCompactAOS CUDA AOS 590.683 11.41 49.23 

LWCompactArrays CUDA Arrays 595.149 11.63 48.86 

LWCompactSOA CUDA SOA 391.942 13.41 74.19 

LWCompactSOAShared CUDA SOA+ 

Shared 

Memory 

345.192 14.15 84.23 

LWCompactSOABFS CUDA SOA via 

BFS + 

Shared 

Memory 

324.315 14.86 89.65 

 

From the Table 6.6, we can see that there is no significant difference from the 

results seen before in Table 6.5 Our data parallel algorithms outpace the sequential 

implementation with enormous speed up factors. 

 

Also our GPU bandwidth performance (memory throughput) ratio to the GPU’s 

(NVIDIA GeForce GT240M) theoretical bandwidth (25.6GBps) is good which is 

14.86GBps / 25.6GBps = 58% (GPU Specifications are added to Appendix 2). Ratio 

must be over 50% in order to be called good and 70% is very good (NVIDIA 

Corporation, August 2010). 
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Figure 6.6 Visual representations of results for 1 million words 

 

Apparently, LWCompactSOABFS implementation performance has turned out to 

be outperforming the other implementations again. This algorithm maps naturally to 

the GPU, exploiting its parallelism and cache, and this is reflected in the considerable 

speed increase over a CPU version by around 90 orders of magnitude. 

 

Another performance increase can be observed in accessing the data located in 

GPU’s memory, which is accelerated using the shared memory. However, it seems 

that the optimization using shared memory is significant, if we compare the 

performance gain between LWCompactSOA and LWCompactSOAShared algorithms 

which are sharing same structure but latter exploits shared memory; the timing 

measurements show that using the shared memory optimizes the execution time by at 

almost 15%. 

 

So in brief, compared to the CPU baseline implementation, we achieved 

significant speed-up factors of the CUDA kernels to the sequential kernel ranging 

from 49x to 90x in our evaluations.  
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CHAPTER SEVEN                         

CONCLUSION AND FUTURE WORK 

 

In this thesis, we presented a hardware accelerated implementation of Turkish 

lemmatizing algorithm exploiting GPU devices through NVIDIA’s CUDA and 

evaluation of it. The work enables researchers to easily utilize their CUDA device for 

lemmatizing big chunks of words from within in C or C++ applications. Our 

lemmatizer is based on CUDA, so, other cards supporting CUDA can also be used, 

and our approach can be ported to other programming environments. 

 

Our study conclusively shows that lemmatizing is essential in the implementation 

of Turkish information retrieval systems. In our IR experiments, the most effective 

stemming method was our lemmatizer. The performance comparison of fixed prefix 

truncation (FPT5), our lemmatizer (LDB), and no stemming approaches (NS), shows 

that our lemmatizer performs better than the other two in terms of all measurements. 

The stemming option LDB provides 28.54% in terms of MAP; 79.70% in terms of 

GMAP; 16.92% in terms of P10; 18.58% in terms of P20 and 2.68% in terms of 

bpref, respectively, higher performance than that of FPT5. 

 

But in terms of bpref, the measurements also show that FPT5 and LDB provide 

comparable results (with 2.68% difference), similar to work of Can & others. (2008) 

that showed for Turkish lemmatizer and a simple stemmer provide retrieval 

environments with similar bpref performances. 

 

To streamline the overall results, it is clear that LDB produced the best results 

against other approaches in terms of all measurements. The FPT5 is also effective, 

but not as effective as LDB.  

 

Even though floating-point calculations are not dominating our lemmatizing 

algorithm and its word processing characteristics limits the effectiveness due to non-

synchronized branching and diverging, data dependent loop bounds, we achieved a 

significant speedup over the baseline algorithm on a CPU. More specifically, we 
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achieve up to a 90x speedup over CPU based sequential algorithm for the problem 

solution on selected word sets. This work demonstrates the potential of GPUs to 

accelerate even branch dominated massive word lemmatizing algorithms by carefully 

selecting and redesigning data structures and selecting appropriate memory types on 

hardware. 

 

 We took eight different approaches to the selection of an efficient data structure 

for CUDA programming model. We used our lemmatizer to lemmatize several 

different word sets and evaluated the performance of the eight parallel algorithms in 

comparison to a baseline implementation running on a single CPU. Our results 

showed that the parallel algorithms run significantly faster. More specifically our 

fastest algorithm (LWCompactSOABFS) achieved a speedup of around 90x in 

comparison to the baseline to perform lemmatization on a word set containing 1 

million words. LWCompactSOABFS performs very well compared to the other 

algorithms, since its layout is compatible with the SIMD computation model of 

GPUs. The results confirm that; the struct of arrays implementation constructed with 

breadth-first traversal from trie offers best results for our lemmatizer. 

 

Previous works on agglutinative languages (Can & others., 2008; Kettunen, 

Kunttu, & Jarvelin, 2005) show that lemmatizers are more effective than simple 

fixed prefix truncate but latter is preferable because the way its low complexity and 

simplicity. On the other hand , in this thesis, we show that we can exploit the gains of 

lemmatization via GPGPU, which provides us a more effective and efficient 

lemmatizer.  

 

For future work there are several additional evaluations and improvements that 

are of interest. The algorithms we used for our evaluation all have similar 

characteristics. We may add some feedback mechanism to look up algorithm in order 

to increase accuracy. Feedback mechanism should allow look up procedure to turn 

back to parent node in case of the character looked up in trie is available for both 

transformation and key match (discussed in Section 2.3.4) or is available for two 

different haplology cases (node has both i and u narrow vowels and procedure must 
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choose one of them). Thus, if the procedure chooses wrong path it can turn back to 

parent node with the aim of proceeding through second route. But this will slow up 

the procedure a little bit and also will increase data dependency which is the most 

significant case to be avoided in parallel computing. So, in order to add this 

mechanism may be obliged to change the whole structure of procedure. Furthermore, 

our lemmatizer is working on only single words the lemmatizing process can be 

improved to handle phrases. Also the lemmatizer returns words meanings from 

dictionary which makes it perfect sub-tool for word sense disambiguation (WSD) 

programs. With our lemmatizer and a parallel WSD algorithm to select most 

appropriate lemma may result to a higher accuracy. 

 

Also as the device memory, registers and shared memory increase, additional 

amounts of data can be processed in parallel. It is expected that future versions of 

CUDA and future NVIDIA devices will offer increased performance. To take 

advantage of performance increases with these developments, the structure of 

algorithm can be changed and variables can be placed on faster memories as an 

additional effort. 
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APPENDIX  1 

 

Table A. 1 Evaluation measures of trec_eval program 

Name Description 

num_ret  Total number of documents retrieved over all queries 

num_rel Total number of relevant documents over all queries 

num_rel_ret Total number of relevant documents retrieved over all queries 

map Mean Average Precision (MAP) 

gm_map  Average Precision. Geometric Mean, 

q_score=log(MAX(map,.00001)) 

Rprec R-Precision (Precision after R (= num-rel for topic) documents 

retrieved) 

bpref Binary Preference, top R judged nonrel 

recip_rank Reciprical rank of top relevant document 

iprec@recall_0.00 Interpolated Recall - Precision Averages at 0.00 recall 

iprec@recall_0.10 Interpolated Recall - Precision Averages at 0.10 recall 

iprec@recall_0.20 Interpolated Recall - Precision Averages at 0.20 recall 

iprec@recall_0.30 Interpolated Recall - Precision Averages at 0.30 recall 

iprec@recall_0.40 Interpolated Recall - Precision Averages at 0.40 recall 

iprec@recall_0.50 Interpolated Recall - Precision Averages at 0.50 recall 

iprec@recall_0.60 Interpolated Recall - Precision Averages at 0.60 recall 

iprec@recall_0.70 Interpolated Recall - Precision Averages at 0.70 recall 

iprec@recall_0.80 Interpolated Recall - Precision Averages at 0.80 recall 

iprec@recall_0.90 Interpolated Recall - Precision Averages at 0.90 recall 

iprec@recall_1.00 Interpolated Recall - Precision Averages at 1.00 recall 

P@5 Precision after 5 docs retrieved 

P@10 Precision after 10 docs retrieved 

P@15 Precision after 15 docs retrieved 

P@20 Precision after 20 docs retrieved 

P@30 Precision after 30 docs retrieved 

P@100 Precision after 100 docs retrieved 

P@200 Precision after 200 docs retrieved 

P@500 Precision after 500 docs retrieved 

P@1000 Precision after 1000 docs retrieved 

 

 

 



84 

 

 

APPENDIX 2 

 

Table A. 2 Specifications of NVIDIA GeForce GT240M GPU (NVIDIA Corporation, June 2009) 

Model GeForce GT 240M 

Year 
June 15, 2009 

Code name GT216 

Fab (nm) 40 

Businterface 
PCIe 2.0 x16 

Memory max (MiB) 1024 

Clock speed 

Core (MHz) 
550 

Shader (MHz) 
1210 

Memory (MHz) 
1600 

Config core 48:16:08 

Memory 

Bandwidth max (GB/s) 25.6 

Bus type GDDR3 

Bus width (bit) 128 

Graphics library support 

(version) 

DirectX 10.1 

OpenGL 
3.3 

GFLOPs (MADD/MUL) 174 

TDP (Watts) 23 
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APPENDIX 3 

 

Table A. 3 Stop words list 

Stop Words 

a bunu hem mu s vb 

acaba bunun henüz mü sana var 

altı burada hep n sekiz veya 

ama bütün hepsi nasıl sen veyahut 

ancak c hepsine ne senden y 

artık ç hepsini ne kadar seni ya 

asla çoğu her ne zaman senin ya da 

aslında çoğuna her biri neden siz yani 

az çoğunu herkes nedir sizden yedi 

b çok herkese neler size yerine 

bana çünkü herkesi nerde sizi yine 

bazen d hiç nerede sizin yoksa 

bazı da hiç kimse nereden sonra z 

bazıları daha hiçbiri nereye ş zaten 

bazısı de hiçbirine nesi şayet zira 

belki değil hiçbirini neyse şey  

ben demek ı niçin şeyden  

beni diğer i niye şeye  

benim diğeri için o şeyi  

beş diğerleri içinde on şeyler  

bile diye iki ona şimdi  

bir dokuz ile ondan şöyle  

birçoğu dolayı ise onlar şu  

birçok dört işte onlara şuna  

birçokları e j onlardan şunda  

biri elbette k onların şundan  

birisi en kaç onların şunlar  

birkaç f kadar onu şunu  

birkaçı fakat kendi onun şunun  

birşey falan kendine orada t  

birşeyi felan kendini oysa tabi  

biz filan ki oysaki tamam  

bize g kim ö tüm  

bizi gene kime öbürü tümü  

bizim gibi kimi ön u  

böyle ğ kimin önce ü  

böylece h kimisi ötürü üç  

bu hâlâ l öyle üzere  

buna hangisi m p üzerine  

bunda hani madem r v  

bundan hatta mı rağmen ve  
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APPENDIX 4 

 

Table A. 4 Our stop words list. (We applied fixed prefix truncate by 5 to words on Appendix 3) 

Stop Words 

a ç ı on şuna 

acaba çoğu i ona şunda 

altı çoğun için ondan şunla 

ama çok iki onlar şunu 

ancak çünkü ile onu şunun 

artık d ise onun t 

asla da işte orada tabi 

aslın daha j oysa tamam 

az de k oysak tüm 

b değil kaç ö tümü 

bana demek kadar öbürü u 

bazen diğer kendi ön ü 

bazı diye ki önce üç 

bazıl dokuz kim ötürü üzere 

bazıs dolay kime öyle üzeri 

belki dört kimi p v 

ben e kimin r ve 

beni elbet kimis rağme vb 

benim en l s var 

beş f m sana veya 

bile fakat madem sekiz veyah 

bir falan mı sen y 

birço felan mi sende ya 

biri filan midir seni yani 

biris g mu senin yedi 

birka gene mudur siz yerin 

birşe gibi mü sizden yine 

biz ğ n size yoksa 

bize h nasıl sizi z 

bizi hâlâ ne sizin zaten 

bizim hangi neden sonra zira 

böyle hani nedir ş  

bu hatta neler şayet  

buna hem nerde şey  

bunda henüz nered şeyde  

bunla hep nerey şeye  

bunu hepsi nesi şeyi  

bunun her neyse şeyle  

burad herke niçin şimdi  

bütün hiç niye şöyle  

c hiçbi o şu  
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APPENDIX 5 

 

Table A. 5 Queries in the dataset.We used the queries in the “description” column. 

QueryID Topic Description 

235 Kuş Gribi Kuş gribi nedir, nasıl bulaşır, belirtileri nelerdir sorularına 

cevap olabilecek dokümanlar. 

238 Kıbrıs Sorunu Türkiye’nin Avrupa Birliği’ne tam üyelik sürecinde Kıbrıs 

sorununu ele alan bir doküman. 

241 Üniversiteye giriş sınavı Türkiye’de üniversiteye giriş sınavının gençler üzerindeki 

etkileri, gençlerin ve kamuoyunun bu sınav için 

düşündükleri. 

243 Tsunami Güney Asya’yı 26 Aralık 2004’te vuran büyük Tsunami 

faciası ve bu facianın sonuçları. 

244 Mavi Akım Doğalgaz 

Projesi 

Mavi akımın ulusal enerji politikamızdaki yeri, ekonomik 

maliyeti 

258 Deprem Tedbir Önlem Büyük bir bölümü deprem bölgesi olan Türkiye'de deprem 

öncesi alınan tedbirler nelerdir 

265 Türkiye PKK çatışmaları Türk Silahlı Kuvvetleri ile PKK arasında meydana gelen 

çatışmalar 

270 Film Festivalleri Türkiye’ de gerçekleştirilen film festivalleri ve bu 

festivallerde ödül alan sanatçılar. 

271 Bedelli askerlik 

uygulaması 

Askerlik hizmetinin bedelli olarak yapılmasının Türk 

kamuoyu üzerindeki etkileri, ilgili makamların söz konusu 

uygulama hakkındaki görüşleri. 

278 Stresle Başa Çıkma 

Yolları 

Günlük hayatımızı birçok yönden olumsuz etkileyen stresle 

nasıl mücadele edebiliriz 

282 Şampiyonlar Ligi Futbol Avrupa Şampiyonlar ligi 2004-2005 sezonu 

mücadelesi 

283 17 Ağustos Depremi 17 Ağustos Depreminin Türkiye üzerindeki sosyal ve 

ekonomik etkileri 

284 Türkiye'de internet 

kullanımı 

Son yıllarda bilişim teknolojisinin gelişmesiyle internet 

kullanımının artması, kullanıcı profili, kullanım amaçları. 

288 Amerika Irak işgal 

demokrasi petrol 

Amerika'nın Irak operasyonu demokrasi adına yapılmış bir 

hareket midir yoksa petrol için yapılan bir işgal midir? 

289 Türkiye'de futbol şikesi Şikenin Türk futbolundaki yeri, etkisi, yarattığı sonuçlar, bu 

konuda alınan tedbirler, verilen cezalar, uzman görüşleri. 

294 Fadıl Akgündüz Fadıl Akgündüz'ün milletvekili olamayacağına ilişkin  
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yapılan itirazlar. 

295 İşsizlik sorunu Türkiye'de işsizlik sorununun bireylerin ruhsal sağlığı 

üzerindeki olumsuz etkileri, işsizliğin toplumsal ve 

ekonomik sonuçları. 

296 2005 F1 Türkiye Grand 

Prix 

Formula 1'de 2005 sezonun 14'üncü yarışı Türkiye Grand 

Prix'sini rakamlarla anlatan bir doküman. 

298 Ekonomik kriz Türkiye'de ekonomik krize neden olan olaylar. 

300 Nuri Bilge Ceylan Nuri Bilge Ceylan sinemasının Türk sinemasına etkileri 

301 Türkiye'de meydana 

gelen depremler 

Türkiye'de meydana gelen depremlerin insanlar üzerindeki 

etkileri ve bu depremlere karşı alınan önlemler. 

302 ABD-Irak Savaşı ABD ve İngiltere'nin Irak'a yönelik başlattığı saldırının 

ardından tarafların kayıplarını açıklayan bir doküman. 

304 Hakan Şükür'ün milli 

takım kadrosuna 

alınmaması 

Ersun Yanal Hakan Şükür'ü  A milli futbol takımı kadrosuna 

dahil etmeme kararı doğru mu yanlış mı  Ersun Yanal haklı 

mı haksız mı 

305 Avrupa Birliği, Türkiye 

ve insan hakları 

Türkiye'nin Avrupa Birliği'ne (AB) uyum sürecinde insan 

haklarıyla ilgili yaptığı yenilikler, çıkardığı kanunlar 

306 Turizm Son yıllarda Türk turizmindeki gelişmeler 

307 Türkiye’deki sokak 

çocukları 

Türkiye’deki özellikle İstanbul’daki sokak çocuklarıyla ilgili 

olarak yapılan çalışmalar, bu çocukların sokak çocuğu olma 

nedenleri, parçalanmış  ailelerin bu olaya etkileri, bu 

çocukların sayıları, olayın toplumsal etkileri, bu çocukların 

işlediği suçlar. 

308 Türk filmleri ve sineması Son yıllarda büyük sıçrama yaptığı söylenen Türk 

sinemasında yeni parlayan isimler, en kayda değer filmler, 

eski ustaların bu konudaki katkıları. 

311 Pakistan Depremi Pakistan’da 8 Ekim’de meydana gelen büyük deprem ve bu 

depremin sonuçları 

324 Sanat ödülleri Türkiye'de edebiyat, müzik, resim, sinema gibi sanat 

dallarında verilmiş ödüller. 

339 Avrupa Birliği Fonları Avrupa Birliği tarafından Türkiye'de, kamuya ve özel 

sektöre ait her alandaki proje ve programlar için ayrılan 

fonlar, geri ödemeli veya hibeli krediler. 

342 Futbolda şike Futbolda şike söylentileri, yorumlar   ve kanıtlar 

343 milletvekili  

dokunulmazlığı 

Milletvekilleri meclis kararı olmadan yargılanamaz, 

soruşturmaya tabii tutulamaz. 

344 2001 Erkekler Avrupa milli takımı sporcularının turnuva süresindeki ve turnuva 
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Basketbol Şampiyonası sonrasındaki düşünceleri, onlarla yapılan röportajlar ve 

takımdaki son haberler 

347 2002 Dünya Kupası Türk Milli Takımı’nın 3. olduğu 2002 Dünya Kupası 

348 bilişim eğitimi ve 

projeleri 

Türkiye'de yapılan bilişim eğitimi ve bilişim projeleri, bu 

eğitimin ve projelerin kaliteleri ve sanayiye katkıları 

349 Global ısınma Global ısınmanın dünya iklimine olumsuz etkileri nelerdir, 

bu etkileri azaltmak veya yok etmek için neler yapmalıyız? 

350 Türkiye'de mortgage Mortgage'in nasıl işleyeceği, Türkiye'ye yararları ve mevcut 

kredi sistemleri üzerindeki oluşturacağı etki. Kamuoyunun 

mortgage'den beklentileri. 

352 ABD Afganistan Savaşı ABD'nin Afganistan'a yaptığı operasyonda Türkiye’nin 

rolünü açıklayan bir doküman. 

360 Yüzüklerin Efendisi-

Kralın Dönüşü 

11 dalda ödül alan Yüzüklerin Efendisi-Kralın Dönüşü 

filminin başarısını anlatan bir doküman. 

362 Beyin Göçü Türkiye'de yetişen akademik olarak başarılı öğrencilerin 

üniversite veya sonrasındaki bilimsel çalışmaları için yurt 

dışını tercih etmeleri 

366 aile kadın şiddet Aile içinde kadına karşı uygulanan şiddetin alkol ve 

parasızlık gibi sebepler dışında ne gibi sebepleri vardır 

Kadına şiddet daha çok hangi tür toplumlarda görülmektedir 

Çocuk gelişimine etkileri nelerdir 

367 sporcuların doping 

yapması 

Sporcuların doping yapması yarışma veya müsabakalarda 

fiziksel dayanıklıklarını artırmak için kullanımı yasak olan 

performans artırıcı maddeleri kullanmasıdır. 

368 ozon tabakasındaki delik Ozon tabakası dünyaya uzaydan gelen ultraviyole ışınları 

süzen bir filtredir. Bu filtrede oluşan delik cilt kanseri 

vakalarında artışa neden olmaktadır. 

373 Rusya'da okul baskını Kuzey Osetya’da yüzlerce kişinin rehin tutulduğu okul 

binasına Rus güçleri tarafından düzenlenen operasyon. 

374 İstanbul'da bombalı 

saldırı 

İstanbul'da 15 Kasım 2003 tarihinde, Kuledibi'ndeki Neve 

Şalom ve Şişli'deki Betyaakov Sinagogu yakınlarında saat 

09.30'da meydana gelen patlamalar. 

377 Sakıp Sabancı'nın vefatı Sakıp Sabancı'nın 10 Nisan 2004 saat 05.55 sıralarında vefat 

etmesiyle ilgili dokümanlar. 

378 Ecevit Sezer çatışması MGK toplantısında Cumhurbaşkanı Sezer’in Başbakan 

Ecevit’e anayasayı fırlatmasıyla  gelişen olaylar. 
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382 Kıbrıs Türk üniversiteleri Kıbrıs’ta açılan yeni üniversitelerin ve burada okuyan 

öğrencilerin sorunları, nasıl öğrenci aldıkları, denklik, 

kalacak yurt, öğretim üyesi bulma konusunda yaşanan 

sorunlar. 

383 Türkiye'de 2003 yılında 

turizm 

Türkiye'ye 2003'te gelen turist sayısı ve dağılımı, illerdeki 

turizm durumu, turizmin ekonomiye katkısı, 

406 Türkiye'nin Nükleer 

santral çalışmaları 

Türkiye'nin Nükleer santral çalışmaları, nükleer santral 

projeleri 

411 hızlı tren kazası hızlı tren kazasının nedenleri ve alınan önlemler 

412 YÖK'ün 

Üniversitelerimiz 

üzerindeki etkisi 

Yüksek Öğretim Kurulu, YÖK'ün kuruluşu, 

üniversitelerimiz üzerindeki olumlu olumsuz etkileri, 

eleştirilen yönleri, YÖK hükümet ilişkileri 

414 İbrahim Tatlıses’in 

kadınları 

İbrahim Tatlıses’in yaşadığı aşklar ve kadınlarla ilgili 

yarattığı huzursuzluklar kavgalar. 

416 Parçalanmış aileler Parçalanmış aile bireylerinin  yaşadığı sorunlar, özellikle bu 

türden ailelerin çocuklarının ve kadınlarının durumları. 

417 Aile içi şiddet Aile bireyleri arasında yaşanan şiddet olayları ve sebepleri. 

Çocuklara ve kadınlara uygulanan şiddet, buna maruz 

kalanların yaşadığı sorunlar. 

419 Türkiye’de kanser Türkiye’de son yıllarda özellikle Karadeniz bölgesinde 

arttığı düşünülen kanserli hasta sayısının Çernobil olayı ile 

varsa olan ilişkisi ve bu ilişkiyi irdeleyen çalışmalar, resmi 

kuruluşlar tarafından verilen istatistiklerin güvenilirliği. 

421 Futbol terörü ve 

holiganizm 

Futbolda yaşanan şiddet olayları, bunların nedenleri ve 

engellenmesi için alınacak önlemler. 

423 Türkiye'de ikinci el 

otomobil piyasası 

Türkiye'de son yıllarda ikinci el otomobil piyasasındaki 

durum, son dönemlerde piyasada yaşanan düşüşün sebep ve 

sonuçları, yeni otomobil piyasasındaki yeniliklerle bağlantısı 

424 Tarihi eser kaçakçılığı Türkiye'den kaçırılan tarihi eserler ve tarihi eser kaçakçılığa 

karşı yapılanlar 

426 Festival İnsanların eğlenmesi ve kültür paylaşımı yapabilmesi için 

düzenlenen festivaller. 

428 Türkiye'de bayram 

tatillerinde meydana 

gelen trafik kazaları 

Türkiye'de bayram tatillerinde meydana gelen trafik 

kazalarının nedenleri, ve alınan önlemler. 

432 öğrenmeyi etkileyen 

faktörler 

öğrenmeyi etkileyen faktörler ve etkileri, öğrenme teknikleri 
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433 Kekik otu Kekik otunun faydaları, sağlık üzerindeki etkileri 

435 telif hakları Türkiye'de telif hakkı yasalarının durumu ve bu konuda 

yapılan çalışmalar 

437 İnternet ve toplum İnternet'in yaygınlaşması, sunulan hizmetler, toplum 

üzerindeki etkileri. 

442 Tarım Hayvancılık 

Sorunları 

Türkiye'de tarım ve hayvancılık alanında yaşanan 

problemler ve bunların çözüm yolları. 

444 İran'da Nükleer Enerji İran'ın nükleer enerji ile ilgili politikaları, açıklamaları, 

nükleer enerji ile ilgili İran'da sürdürülen faaliyetler, 

uluslararası toplumdan İran'a nükleer enerji politikaları ile 

ilgili yöneltilen tepkiler veya verilen destekler 

450 satranç Satrancın yazılı basında ne ölçüde yer aldığı 

452 Kalıtsal Hastalıklar Genlerin insan sağlığı üzerindeki etkisi, hastalıkların kalıtsal 

nedenleri. 

472 hiperaktivite ve dikkat 

eksikliği 

hiperaktivite ve dikkat eksikliği nedir Belirtileri, teşhisi, 

tedavisi nelerdir Çocukların ve yetişkinlerin günlük 

yaşamına olumlu ve olumsuz etkileri nedir Hiperaktif 

çocuklara öğretmen nasıl yaklaşmalı Bu çocuklara yönelik 

eğitim sistemi nasıl geliştirilebilir 

474 lenf kanseri Türkiye'deki lenf kanser istatistikleri 

481 28 Şubat süreci 28 Şubat süreci ve Türkiye üzerindeki etkileri 
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APPENDIX 6 

 

Table A. 6 Lemmatized queries 

Query  Lemmatized Query Accuracy Summary 

Kuş gribi nedir, nasıl bulaşır, 

belirtileri nelerdir sorularına 

cevap olabilecek dokümanlar.  

kuş grip bulaş belirti soru 

cevap olabil doküman  

100%   

Türkiye’nin Avrupa Birliği’ne 

tam üyelik sürecinde Kıbrıs 

sorununu ele alan bir doküman. 

türkiye avrupa birlik tam 

üyelik süreç kıbrıs sorun ele 

alan doküman  

90.91% The lemma of “ele” 

must be “el” (hand) 

but our lemmatizer 

returns “ele”+ 

“(mek)” (to 

eliminate)  

And the lemma of 

“alan”’ must be   

“al”+ “(mak)” (to 

take) But our 

lemmatizer return 

“alan”(region) 

Türkiye’de üniversiteye giriş 

sınavının gençler üzerindeki 

etkileri, gençlerin ve 

kamuoyunun bu sınav için 

düşündükleri. 

türkiye üniversite giriş 

sınav genç etki genç 

kamuoyu sınav düşün 

100%  

Güney Asya’yı 26 Aralık 

2004’te vuran büyük Tsunami 

faciası ve bu facianın sonuçları. 

güney asya 26 aralık 2004 

vur büyük tsunami facia 

facia sonuç  

100%  

Mavi akımın ulusal enerji 

politikamızdaki yeri, ekonomik 

maliyeti 

mavi akım ulusal enerji 

politika yer ekonomik 

maliyet  

100%  

Büyük bir bölümü deprem 

bölgesi olan Türkiye'de deprem 

öncesi alınan tedbirler nelerdir? 

büyük bölüm deprem bölge 

ol türkiye deprem önce alın 

tedbir  

100%  

Türk Silahlı Kuvvetleri ile PKK 

arasında meydana gelen 

çatışmalar 

türk silahlı kuvvet pkk arası 

meydan gelen çatışma  

100%  

Türkiye’ de gerçekleştirilen film 

festivalleri ve bu festivallerde 

ödül alan sanatçılar. 

türkiye gerçekleştiril film 

festival festival ödül alan 

sanatçı  

87.5% The lemma of  “alan” 

must be “al”+”(mak)” 

(to take) But our 
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lemmatizer return 

“alan”(region) 

Askerlik hizmetinin bedelli 

yapılmasının Türk kamuoyu 

üzerindeki etkileri, ilgili 

makamların söz konusu 

uygulama hakkındaki görüşleri. 

askerlik hizmet bedelli 

yapılma türk kamuoyu etki 

ilgili makam söz konu 

uygulama hakkında görüş  

100%  

Günlük hayatımızı birçok 

yönden olumsuz etkileyen 

stresle nasıl mücadele 

edebiliriz? 

günlük hayat yön olumsuz 

etkile stres mücadele ede  

87.5% The lemma of  “ede” 

must be “et”+”(mek)” 

(to do) But our 

lemmatizer return 

“ede”(brother) 

Futbol Avrupa Şampiyonlar ligi 

2004-2005 sezonu mücadelesi  

futbol avrupa şampiyon lig 

2004-2005 sezon mücadele  

100%  

17 Ağustos Depreminin Türkiye 

üzerindeki sosyal ve ekonomik 

etkileri  

17 ağustos deprem türkiye 

sosyal ekonomik etki  

100%  

Son yıllarda bilişim 

teknolojisinin gelişmesiyle 

internet kullanımının artması, 

kullanıcı profili, kullanım 

amaçları. 

son yıl bilişim teknoloji 

gelişme internet kullanım 

artma kullanıcı profil 

kullanım amaç  

100%  

Amerika'nın Irak operasyonu 

demokrasi adına yapılmış bir 

hareket midir yoksa petrol için 

yapılan bir işgal midir? 

amerika ırak operasyon 

demokrasi adına yapıl 

hareket petrol yapılan işgal  

90% The lemma of  

“yapılan” must be 

“yapıl”+ “(mak)” (be 

done) But our 

lemmatizer return 

“yapılan”+ “(mak) “ 

(to be settled) 

Şikenin Türk futbolundaki yeri, 

etkisi, yarattığı sonuçlar, bu 

konuda alınan tedbirler, verilen 

cezalar, uzman görüşleri. 

şike türk futbol yer etki 

yarat sonuç konu alın tedbir 

veril ceza uzman görüş  

100%  

Fadıl Akgündüz'ün milletvekili 

olamayacağına ilişkin  yapılan 

itirazlar. 

fadıl akgündüz milletvekili 

ol ilişkin yapılan itiraz  

85.71% The lemma of  

“yapılan” must be 

“yapıl”+”(mak)” (be 

done)  But our 

lemmatizer return 

“yapılan”+”(mak)”  

(to be settled) 

Türkiye'de işsizlik sorununun türkiye işsizlik sorun birey 100%  
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bireylerin ruhsal sağlığı 

üzerindeki olumsuz etkileri, 

işsizliğin toplumsal ve 

ekonomik sonuçları. 

ruhsal sağlık olumsuz etki 

işsizlik toplumsal ekonomik 

sonuç  

Formula 1'de 2005 sezonun 

14'üncü yarışı Türkiye Grand 

Prix'sini rakamlarla anlatan bir 

doküman. 

form 1 2005 sezon 14 yarış 

türkiye grand pr rakam 

anlat doküman  

91.67% “Formula” and “Prix“ 

are not Turkish words 

and therefore they 

don’t take place in 

Turkish dictionary. 

Lemmatizer returns 

latest found lemma. 

Türkiye'de ekonomik krize 

neden olan olaylar. 

türkiye ekonomik kriz ol 

olay  

100%  

Nuri Bilge Ceylan sinemasının 

Türk sinemasına etkileri 

nuri bilge ceylan sinema 

türk sinema etki  

100%  

Türkiye'de meydana gelen 

depremlerin insanlar üzerindeki 

etkileri ve bu depremlere karşı 

alınan önlemler. 

türkiye meydan gelen 

deprem insan etki deprem 

karşı alın önlem  

100%  

ABD ve İngiltere'nin Irak'a 

yönelik başlattığı saldırının 

ardından tarafların kayıplarını 

açıklayan bir doküman. 

abd ingiltere ırak yönelik 

başlat saldırı ardı taraf 

kayıp açıkla doküman  

100%  

Ersun Yanal Hakan Şükür'ü  A 

milli futbol takımı kadrosuna 

dahil etmeme kararı doğru mu 

yanlış mı  Ersun Yanal haklı mı 

haksız mı 

ersun yanal hakan şükür 

milli futbol takım kadro 

dahil etme karar doğru 

yanlış ersun yanal haklı 

haksız  

100%  

Türkiye'nin Avrupa Birliği'ne 

(AB) uyum sürecinde insan 

haklarıyla ilgili yaptığı 

yenilikler, çıkardığı kanunlar 

türkiye avrupa birlik ab 

uyum süreç insan hak ilgili 

yap yenilik çıkar kanun  

100%  

Son yıllarda Türk turizmindeki 

gelişmeler 

son yıl türk turizm gelişme  100%  

Türkiye’deki özellikle 

İstanbul’daki sokak çocuklarıyla 

ilgili yapılan çalışmalar, bu 

çocukların sokak çocuğu olma 

nedenleri, parçalanmış  ailelerin 

bu olaya etkileri, bu çocukların 

sayıları, olayın toplumsal 

türkiye özellikle istanbul 

sokak çocuk ilgili yapılan 

çalışma çocuk sokak çocuk 

olma parçalan aile olay etki 

çocuk sayı olay toplumsal 

etki çocuk işlet suç  

95.83% The lemma of  

“yapılan” must be 

“yapıl”+”(mak)” (be 

done).  But our 

lemmatizer return 

“yapılan”(mak) (to be 

settled) 
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etkileri, bu çocukların işlediği 

suçlar. 

Son yıllarda büyük sıçrama 

yaptığı söylenen Türk 

sinemasında yeni parlayan 

isimler, en kayda değer filmler, 

eski ustaların bu konudaki 

katkıları. 

son yıl büyük sıçrama yap 

söylen türk sinema yeni 

parla isim kay değer film 

eski usta konu katkı  

94.44% The lemma of  

“kayda” must be 

“kayıt” (registration) 

But our lemmatizer 

returns “kay”+ 

”(mak)“  (to slide). 

This problem occurs 

because there are 

valid entries like 

“kaydırmak” and 

“kaydetmek” so 

lemmatizer goes to 

“kayd” on trie then 

can’t find any match 

and returns the latest 

lemma (“ kay”). 

Pakistan’da 8 Ekim’de meydana 

gelen büyük deprem ve bu 

depremin sonuçları 

pakistan 8 ekim meydan 

gelen büyük deprem 

deprem sonuç  

100%  

Türkiye'de edebiyat, müzik, 

resim, sinema gibi sanat 

dallarında verilmiş ödüller. 

türkiye edebiyat müzik 

resim sinema sanat dal veril 

ödül  

100%  

Avrupa Birliği tarafından 

Türkiye'de, kamuya ve özel 

sektöre ait her alandaki proje ve 

programlar için ayrılan fonlar, 

geri ödemeli veya hibeli 

krediler. 

avrupa birlik tarafından 

türkiye kamu özel sektör ait 

alan proje program ayrıl fon 

geri ödemeli hibe kredi  

100%  

Futbolda şike söylentileri, 

yorumlar   ve kanıtlar 

futbol şike söylenti yorum 

kanıt  

100%  

Milletvekili meclis kararı 

olmadan yargılanamaz, 

soruşturmaya tabii tutulamaz. 

milletvekili meclis karar 

olma yargılan soruşturma 

tabii tutul  

100%  

milli takımı sporcularının 

turnuva süresindeki ve turnuva 

sonrasındaki düşünceleri, onlarla 

yapılan röportajlar ve takımdaki 

son haberler 

milli takım sporcu turnuva 

süresinde turnuva düşünce 

yapılan röportaj takım 

haber  

100%  

Türk Milli Takımı’nın 3. olduğu türk milli takım 3 ol 2002 100%  
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2002 Dünya Kupası dünya kupa  

Türkiye'de yapılan bilişim 

eğitimi ve bilişim projeleri, bu 

eğitimin ve projelerin kaliteleri 

ve sanayiye katkıları 

türkiye yapılan bilişim 

eğitim bilişim proje eğitim 

proje kalite sanayi katkı  

100%  

Global ısınmanın dünya iklimine 

olumsuz etkileri nelerdir, bu 

etkileri azaltmak veya yok et 

için neler yapmalıyız? 

global ısınma dünya iklim 

olumsuz etki etki azalt yok 

et yapma  

100%  

Mortgage'in nasıl işleyeceği, 

Türkiye'ye yararları ve mevcut 

kredi sistemleri üzerindeki 

oluşturacağı etki. Kamuoyunun 

mortgage'den beklentileri. 

mor işle türkiye yarar 

mevcut kredi sistem oluştur 

etki kamuoyu mor beklenti  

83.33% “Mortgage” is not a 

Turkish word and 

doesn’t take place in 

Turkish dictionary. 

Lemmatizer returns 

latest found lemma. 

ABD'nin Afganistan'a yaptığı 

operasyonda Türkiye’nin rolünü 

açıklayan bir doküman.  

abd afganistan yap 

operasyon türkiye rol açıkla 

doküman  

100%  

11 dalda ödül alan Yüzüklerin 

Efendisi-Kralın Dönüşü filminin 

başarısını anlatan bir doküman. 

11 dal ödül alan yüzük 

efendi dönüş film başarı 

anlat doküman  

90.91% The lemma of “alan”’ 

must be “al”+”(mak) 

“ (to take) But our 

lemmatizer returns 

“alan”(region) 

Türkiye'de yetişen akademik 

başarılı öğrencilerin üniversite 

veya sonrasındaki bilimsel 

çalışmaları için yurt dışını tercih 

etmeleri 

türkiye yetişen akademik 

başarılı öğrenci üniversite 

bilimsel çalışma yurt dış 

tercih etme  

100%  

Aile içinde kadına karşı 

uygulanan şiddetin alkol ve 

parasızlık gibi sebepler dışında 

ne gibi sebepleri vardır? Kadına 

şiddet daha çok hangi tür 

toplumlarda görülmektedir? 

Çocuk gelişimine etkileri 

nelerdir? 

aile içinde kadın karşı 

uygulan şiddet alkol 

parasızlık sebep dışında 

sebep vardır kadın şiddet 

tür toplum görül çocuk 

gelişim etki  

95% The lemma of “alan”’ 

must be “var” 

(available ) But our 

lemmatizer returns 

“vardır”+”(mak)”  ( 

to let a matter reach) 

Sporcuların doping yapması 

yarışma veya müsabakalarda 

fiziksel dayanıklıklarını artırmak 

için kullanımı yasak olan 

performans artırıcı maddeleri 

kullanmasıdır. 

sporcu doping yapma 

yarışma müsabaka fiziksel 

dayanıklık artır kullanım 

yasak ol performans artırıcı 

madde kullanma  

100%  
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Ozon tabakası dünyaya uzaydan 

gelen ultraviyole ışınnları süzen 

bir filtredir. Bu filtrede oluşan 

delik cilt kanseri vakalarında 

artışa neden olmaktadır. 

ozon tabaka dünya uzay 

gelen ultraviyole ışın süzen 

filtre filtre oluş delik cilt 

kanser vaka artış ol  

100%  

Kuzey Osetya’da yüzlerce 

kişinin rehin tutulduğu okul 

binasına Rus güçleri tarafından 

düzenlenen operasyon. 

kuzey osetya yüz kişi rehin 

tutul okul bina rus güç 

tarafından düzenlen 

operasyon  

100%  

İstanbul'da 15 Kasım 2003 

tarihinde, Kuledibi'ndeki Neve 

Şalom ve Şişli'deki Betyaakov 

Sinagogu yakınlarında saat 

09.30'da meydana gelen 

patlamalar. 

istanbul 15 kasım 2003 

tarih kuledibi neve şal şişli 

bet sinagog yakın saat 09 

30 meydan gelen patlama  

88.89% 

 

 

“Şalom” and 

“Betyaakov “ are not  

Turkish words and 

don’t take place in 

Turkish dictionary. 

Lemmatizer returns 

latest found lemma. 

Sakıp Sabancı'nın 10 Nisan 2004 

saat 05.55 sıralarında vefat 

etmesiyle ilgili dokümanlar. 

sakıp sabancı 10 nisan 2004 

saat 05 55 sıra vefat etme 

ilgili doküman  

100%  

MGK toplantısında 

Cumhurbaşkanı Sezer’in 

Başbakan Ecevit’e anayasayı 

fırlatmasıyla  gelişen olaylar. 

mgk toplantı 

cumhurbaşkanı sezer 

başbakan ecevit anayasa 

fırlatma gelişen olay  

100%  

Kıbrıs’ta açılan yeni 

üniversitelerin ve burada okuyan 

öğrencilerin sorunları, nasıl 

öğrenci aldıkları, denklik, 

kalacak yurt, öğretim üyesi 

bulma konusunda yaşanan 

sorunlar. 

kıbrıs açıl yeni üniversite 

okuyan öğrenci sorun 

öğrenci al denklik kal yurt 

öğretim üye bulma konu 

yaşan sorun  

100%  

Türkiye'ye 2003'te gelen turist 

sayısı ve dağılımı, illerdeki 

turizm durumu, turizmin 

ekonomiye katkısı, 

türkiye 2003 gelen turist 

sayı dağılım il turizm 

durum turizm ekonomi 

katkı  

100%  

Türkiye'nin Nükleer santral 

çalışmaları, nükleer santral 

projeleri 

türkiye nükleer santral 

çalışma nükleer santral 

proje  

100%  

hızlı tren kazasının nedenleri ve 

alınan önlemler 

hızlı tren kaza alın önlem  100%  

Yüksek Öğretim Kurulu, yüksek öğretim kurulu yök 92.85% The lemma of 
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YÖK'ün kuruluşu, 

üniversitelerimiz üzerindeki 

olumlu olumsuz etkileri, 

eleştirilen yönleri, YÖK 

hükümet ilişkileri 

kuruluş üniversite olumlu 

olumsuz etki eleştiril yön 

yök hükümet ilişki  

“kurulu”’ must be 

“kurul” (commision ) 

But our lemmatizer 

returns “kurulu”  

(installed) 

İbrahim Tatlıses’in yaşadığı 

aşklar ve kadınlarla ilgili 

yarattığı huzursuzluklar 

kavgalar. 

ibrahim tatlı yaşat aşk 

kadın ilgili yarat 

huzursuzluk kavga  

77.78% “Tatlıses” is a special 

name doesn’t have a 

specific lemma.The 

lemma of “yaşadığı”’ 

must be “yaşa” + 

“(mak)” (to live) But 

our lemmatizer 

returns “yaşat” + 

“(mak)” (to keep 

alive ) 

Parçalanmış aile bireylerinin  

yaşadığı sorunlar, özellikle bu 

türden ailelerin çocuklarının ve 

kadınlarının durumları. 

parçalan aile birey yaşat 

sorun özellikle tür aile 

çocuk kadın durum  

90.91% .The lemma of 

“yaşadığı”’ must be 

“yaşa” + “(mak)” (to 

live) But our 

lemmatizer returns 

“yaşat” + “(mak)” (to 

keep alive ) 

Aile bireyleri arasında yaşanan 

şiddet olayları ve sebepleri. 

Çocuklara ve kadınlara 

uygulanan şiddet, buna maruz 

kalanların yaşadığı sorunlar. 

aile birey ara yaşan şiddet 

olay sebep çocuk kadın 

uygulan şiddet maruz kalan 

yaşat sorun  

93.33% .The lemma of 

“yaşadığı”’ must be 

“yaşa” + “(mak)” (to 

live) But our 

lemmatizer returns 

“yaşat” + “(mak)” (to 

keep alive ) 

Türkiye’de son yıllarda özellikle 

Karadeniz bölgesinde arttığı 

düşünülen kanserli hasta 

sayısının Çernobil olayı ile 

varsa olan ilişkisi ve bu ilişkiyi 

irdeleyen çalışmalar, resmi 

kuruluşlar tarafından verilen 

istatistiklerin güvenilirliği. 

türkiye son yıl özellikle 

karadeniz bölge art düşünül 

kanserli hasta sayı çe olay 

var ol ilişki ilişki irdeleyen 

çalışma resmi kuruluş 

tarafından veril istatistik 

güvenilirlik  

96% 

 

 

 

“Çernobil” is not a 

Turkish word and 

therefore doesnt take 

place in Turkish 

dictionary. 

Lemmatizer returns 

latest found lemma. 

Futbolda yaşanan şiddet olayları, 

bunların nedenleri ve 

engellenmesi için alınacak 

önlemler. 

futbol yaşan şiddet olay 

engellenme alın önlem  

100%  

Türkiye'de son yıllarda ikinci el 

otomobil piyasasındaki durum, 

son dönemlerde piyasada 

türkiye son yıl ikinci el 

otomobil piyasa durum 

dönem piyasa yaşan düşüş 

100%  



99 

 

 

yaşanan düşüşün sebep ve 

sonuçları, yeni otomobil 

piyasasındaki yeniliklerle 

bağlantısı 

sebep sonuç yeni otomobil 

piyasa yenilik bağlantı  

Türkiye'den kaçırılan tarihi 

eserler ve tarihi eser kaçakçılığa 

karşı yapılanlar 

türkiye kaçır tarih eser tarih 

eser kaçakçılık karşı 

yapılan  

100%  

İnsanların eğlenmesi ve kültür 

paylaşımı yapabilmesi için 

düzenlenen festivaller. 

insan eğlenme kültür 

paylaşım yapabilme 

düzenlen festival  

100%  

Türkiye'de bayram tatillerinde 

meydana gelen trafik kazalarının 

nedenleri, ve alınan önlemler. 

türkiye bayram tatil meydan 

gelen trafik kaza alın önlem  

100%  

öğrenmeyi etkileyen faktörler ve 

etkileri, öğrenme teknikleri  

öğrenme etkile faktör etki 

öğrenme teknik  

100%  

Kekik otunun faydaları, sağlık 

üzerindeki etkileri 

kekik ot fayda sağlık etki  100%  

Türkiye'de telif hakkı 

yasalarının durumu ve bu 

konuda yapılan çalışmalar 

türkiye telif hakkı yasa 

durum konu yapılan 

çalışma  

100%  

İnternet'in yaygınlaşması, 

sunulan hizmetler, toplum 

üzerindeki etkileri. 

internet yaygınlaşma sunul 

hizmet toplum etki  

100%  

Türkiye'de tarım ve hayvancılık 

alanında yaşanan problemler ve 

bunların çözüm yolları. 

türkiye tarım hayvancılık 

alan yaşan problem çözüm 

yol  

100%  

İran'ın nükleer enerji ile ilgili 

politikaları, açıklamaları, 

nükleer enerji ile ilgili İran'da 

sürdürülen faaliyetler, 

uluslararası toplumdan İran'a 

nükleer enerji politikaları ile 

ilgili yöneltilen tepkiler veya 

verilen destekler 

iran nükleer enerji ilgili 

politika açıklama nükleer 

enerji ilgili iran sürdür 

faaliyet uluslararası toplum 

iran nükleer enerji politika 

ilgili yönelt tepki veril 

destek  

100%  

Satrancın yazılı basında ne 

ölçüde yer aldığı 

satranç yazılı basın ölçü yer 

al  

100%  

Genlerin insan sağlığı 

üzerindeki etkisi, hastalıkların 

kalıtsal nedenleri. 

gen insan sağlık etki 

hastalık kalıtsal  

100%  
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hiperaktivite ve dikkat eksikliği 

nedir Belirtileri, teşhisi, tedavisi 

nelerdir Çocukların ve 

yetişkinlerin günlük yaşamına 

olumlu ve olumsuz etkileri nedir 

Hiperaktif çocuklara öğretmen 

nasıl yaklaşmalı Bu çocuklara 

yönelik eğitim sistemi nasıl 

geliştirilebilir 

hiperaktivite dikkat eksiklik 

belirti teşhis tedavi çocuk 

yetişkin günlük yaşam 

olumlu olumsuz etki 

hiperaktif çocuk öğretmen 

yaklaşma çocuk yönelik 

eğitim sistem geliştir  

100%  

Türkiye'deki lenf kanser 

istatistikleri 

türkiye lenf kanser istatistik  100%  

28 Şubat süreci ve Türkiye 

üzerindeki etkileri 

28 şubat süreç türkiye etki  100%  
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