

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

DICTIONARY-BASED EFFECTIVE AND

EFFICIENT TURKISH LEMMATIZER

by

Mert CİVRİZ

September, 2011

İZMİR

DICTIONARY-BASED EFFECTIVE AND

EFFICIENT TURKISH LEMMATIZER

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University In

Partial Fulfillment of the Requirements for the Degree of Master of Science in

Computer Engineering, Computer Engineering Program

by

Mert CİVRİZ

September, 2011

İZMİR

iii

ACKNOWLEDGMENTS

I would like to thank to my thesis advisor Assist. Prof. Dr. Adil Alpkoçak for his

help, suggestions, patience and systematic guidance throughout the all formation

phases of this thesis.

Furthermore, I would like to thank to Aslan Türk for his motivations, advices and

help through my graduate school years.

And my special thanks go to my family; the most valuable asset of my life; for all

their support, patience and happiness they gave me throughout my life.

Mert Civriz

iv

DICTIONARY-BASED EFFECTIVE AND EFFICIENT TURKISH

LEMMATIZER

ABSTRACT

In this thesis, we present a new Turkish lemmatizer that runs on the GPU and

investigate its accuracy and performance. Turkish is an agglutinative language, with

a rich morphological structure, contains homographic and inflectional word forms

which are lowering the accuracy of stemmers. Thus, in Turkish information retrieval

systems, the ability to lemmatize Turkish words efficiently and effectively is

important. Our study aims at developing a fast dictionary based lemmatizing

approach for indexing and searching documents in Turkish.

Recent introduction of CUDA (Compute Unified Device Architecture) libraries

for high performance computing on graphic processing units (GPUs) by NVIDIA has

increased the trend to use GPUs as general purpose performance environment

(GPGPU). Today researchers started to exploit GPU’s high computational capability

through CUDA in many applicative contexts requiring intensive use of

computational resources such as molecular dynamics, fluid dynamics, cryptology,

computer vision, astrophysics and genetics.(e.g. Manavski and Valle, 2008) CUDA

can be used also in the information retrieval because of its massively workload. Our

program, achieves a speedup of as much as 90 times on a recent GPU (NVIDIA

GeForce GT240M) over the equivalent CPU-bound version, ultimately with the use

of parallelized execution of lemmatization algorithm using a data structure inspired

from “Radix Trie”. Here, we present evaluation results of our string lemmatizing

kernels for use in CUDA, which executes parallelized lemmatizing for a test set of

query strings. We compared our lemmatization algorithm running on GPU with the

serial CPU bound version, and explored issues associated with efficient use of GPU

resources with eight different algorithms.

Keywords: Information Retrieval, Turkish Information Retrieval, Lemmatizer,

CUDA, GPGPU, Parallel Programming

v

SÖZLÜK TABANLI ETKİN VE VERİMLİ TÜRKÇE GÖVDELEYİCİ

ÖZ

Bu çalışmada, GPU üzerinde çalışan bir Türkçe gövdeleyici algoritması geliştirdik

ve daha sonra bu algoritmanın performansını ve verimliliğini araştırdık. Türkçe

sondan eklemeli ve zengin morfolojik yapıya sahip bir dil olarak eşsesli ve yapısal

değişkinliğe uğrayabilen kelimeleri içerdiği için sözlük kullanmadan sadece kurallar

tanımlanarak gövdeleme yapılması zahmetli ve verimsiz olacaktır. Bu yüzden Türkçe

bilgi getirim sistemlerinde, Türkçe kelimelerin etkin ve verimli bir şekilde sözlük

tabanlı gövdelenmesi önemlidir. Bu çalışmamız Türkçe dökümanların indekslenmesi

ve aranması amacıyla sözlük tabanlı hızlı bir gövdeleyici geliştirmeyi amaçlıyor.

Yüksek performanslı programlama amacıyla Nvidia tarafından tanıtılmış, grafik

programlama üniteleri üzerinde çalışan ve hala geliştirilmekte olan CUDA

kütüphanesi grafik programlama ünitelerinin, grafik programlamanın dışında genel

amaçlı performans ortamı olarak kullanılması eğilimini arttırdı. Bugünlerde,

araştırmacılar hesaplama kaynaklarının yoğun olarak kullanılmasını gerektiren

moleküler dinamikler, akışkan dinamikleri, kriptoloji, görüntü işleme, astrofizik ve

genetik gibi bir çok alanda CUDA ile grafik programlama ünitlerinin yüksek

hesaplama kabiliyetinden yararlanmaya başladı.(Manavski ve Valle, 2008 gibi)

CUDA bilgi getirim işlemlerinin doğasında olan büyük iş yükleri için de

kullanılabilir. Bizim programımız GPU üzerinde (NVIDIA GeForce GT240M)

“Radix Trie” veri yapısı mantığıyla geliştirilen gövdeleyici algoritmasının paralel

çalışırılması ile CPU üzerinde çalışan seri versiyonuna göre, 90 kata kadar

performans artışı sağladı. Bu tezde, kelime gövdeleyici algoritmalarımızın test

kelime seti üzerinde çalıştırarak elde ettiğimiz sonuçları gösteriyoruz. GPU üzerinde

çalışan gövdeleyici algoritmamızı CPU üzerinde çalışan versiyonuyla karşılaştırdık

ve GPU kaynaklarını nasıl daha verimli kullanılabileceğimizi sekiz farklı

algoritmayla araştırdık.

Anahtar Sözcükler: Bilgi Erişimi, Türkçe Bilgi Erişimi, Gövdeleyici, CUDA,

GPGPU, Paralel Programlama

vi

CONTENTS

 Page

M.Sc. THESIS EXAMINATION RESULT FORM .. ii

ACKNOWLEDGMENTS .. iii

ABSTRACT .. iv

ÖZ .. v

 CHAPTER ONE - INTRODUCTION .. 1

1.1 Introduction ... 1

 CHAPTER TWO - LEMMATIZATION ... 4

2.1 Lemma ... 4

2.1.1 Difference between stem and lemma ... 4

2.2 Lemmatization ... 5

2.3 Turkish Lemmatization ... 5

2.3.1 Morphological Structure of Turkish Words .. 5

2.3.2 Structure Of Dictionary ... 8

2.3.3 Data Structure Selection .. 10

2.3.4 Lemmatization Algorithm ... 19

 CHAPTER THREE - GPU AND GPGPU .. 26

3.1 GPU ... 26

3.1.1 GPU Architecture .. 28

3.2 GPGPU .. 32

 CHAPTER FOUR - CUDA .. 33

vii

4.1 CUDA Overview ... 33

4.2 CUDA Programming Model ... 34

4.2.1 CUDA Kernels... 34

4.2.2 Thread Model... 36

4.2.3 Memory Model .. 39

4.2.3.1 Global memory .. 41

4.2.3.2 Local Memory .. 41

4.2.3.3 Shared memory .. 42

4.2.3.4 Registers ... 42

4.2.3.5 Constant Memory... 42

4.2.3.6 Texture Memory .. 43

4.3 CUDA Optimization Strategy ... 43

4.3.1 Instruction Throughput .. 43

4.3.1.1 Arithmetic Instructions .. 43

4.3.1.2 Control Flow Instructions .. 44

4.3.1.3 Memory Instructions .. 44

4.3.2 Memory Bandwidth ... 45

4.3.2.1 Data Transfers between Host and Device .. 46

4.3.2.2 Global Memory Accesses .. 46

4.3.2.3 Local Memory .. 47

4.3.2.4 Constant Memory... 47

4.3.2.5 Texture Memory .. 47

4.3.2.6 Shared Memory .. 47

4.3.2.7 Registers ... 48

4.3.3 Occupancy ... 48

 CHAPTER FIVE - LEMMATIZATION ON GPU ... 50

5.1 Lemmatization Algorithm on CUDA .. 50

5.1.1 Redesigning Structure .. 50

5.1.2 Occupancy ... 56

viii

 CHAPTER SIX - EVALUATION ... 59

6.1 Test Data and Measurement Method ... 59

6.1.1 Test Data .. 59

6.1.2 Measurement.. 59

6.2 Evaluation of Lemmatizer Accuracy ... 60

6.2.1 Precision at N documents .. 66

6.2.2 Precision – Recall Averages .. 67

6.2.3 Map, Gmap and Rprec ... 68

6.2.4 Bpref .. 69

6.3 Evaluation of Lemmatizer Performance .. 70

6.3.1 Parameters.. 70

6.3.2 Methods ... 71

6.3.3 Results ... 71

CHAPTER SEVEN - CONCLUSION AND FUTURE WORK 76

REFERENCES ... 79

APPENDICES .. 83

1

 CHAPTER ONE

INTRODUCTION

1.1 Introduction

With dramatic expand of Internet technology, computer users generating new data

for their requirements on the web so online data that the information retrieval based

on is increasing rapidly. Along with these growth; information retrieval deals on

large-scale documents that are created for different purposes in many different

languages by numerous users. Information retrieval (IR) works for classifying,

indexing and searching on this huge amount of data. As the necessity of this, various

approaches are applied to address this issue for indexing, retrieval and ranking, some

of them are kept secret due to commercial benefits. Stemming and lemmatizing

methods are only some of these approaches. In addition to these approaches, more

specific, language dependent methods are required to improve results. For this

purpose the major points of a language that differ from others must be determined. In

particular, for Turkish, we come up with the differences of Turkish Alphabet and the

grammar structure for suffixes. Word structures can grow to an unmanageable size

because Turkish morphology is very complex and more over there are many

exceptional cases in Turkish. From the point of the differences of Turkish

Morphology, a lemmatizer is a need for accurate IR programs.

Lemmatizers play a significant role in information retrieval (Frakes &

Baeza-Yates, 1992). The ability to lemmatize words efficiently and effectively is

thus important. Lemmatization is used in the IR for listing all the morphological

variants of a word. Usually, this is done by looking up a list of related words in a

dictionary. This kind of lemmatization is computationally simpler, since almost all

the work is done off-line in compiling the dictionary of morphological variants.

Lemmatization is another normalization technique where for each inflected word

form in a document or request, its basic form, the lemma, is identified. The benefits

of lemmatization are the same as in stemming. In addition, when basic word forms

are used, the searcher may match an exact search key to an exact index key. Such

accuracy is not possible with truncated, ambiguous stems.

2

Within the field of internet technology and growing online data there is an

increasing demand for faster ways to solve a variety of information retrieval and

natural language processing problems, for some of which Compute Unified Device

Architecture (CUDA) might be the right answer due to its scalable programming

model. CUDA is still relatively new and evolving rapidly and with its each new

release the computational abilities of the devices grow and it becomes easier to

exploit their computational power.

Graphics Programming Units (GPUs) differ from general-purpose

microprocessors in their design for utilizing the Single Instruction Multiple Data

(SIMD) paradigm. Due to the inherent parallelism of graphic programming, GPUs

adopted multicore architectures long before regular processors evolved to such a

design. As a result, today GPUs consist of many small computation cores that

support a higher number of floating-point operations per second. Originally designed

to accelerate computer graphics applications through massive on-chip parallelism,

GPUs have evolved into powerful platforms for more general purposes of compute-

intensive tasks, called as GPGPU (General Purpose Graphic Programming Unit).

Given their extremely high workload, information retrieval provides a very

interesting potential application domain for GPUs. NVIDIA’s launch of the CUDA

with its simple but effective programming model has resulted in the adoption of

GPUs by a diversity of domains. The NVIDIA CUDA programming model takes its

power from this simplicity, much in contrast to the previous approaches of GPGPU

environments. With CUDA, programmers no longer have to master graphics specific

knowledge, before being able to efficiently program GPUs. It has been demonstrated

that CUDA can significantly speed-up many computationally intensive applications

from domains such as scientific computation, physics, molecular dynamics

simulation, genetics, imaging and the finance sector.

In this thesis, we introduce a Turkish lemmatizer works on GPGPU through

NVIDIA’s CUDA. Building an efficient IR lemmatizer for GPUs is a non-trivial task

due to the branching and diverging nature of lemmatizing algorithm and hardware

constraints provided by the GPU. We outline and discuss a general architecture of

our lemmatizer and later we present our studies on GPU-based version of lemmatizer

3

with different performance optimization techniques. Finally, we compare CPU-

bound and GPU-bound versions of our algorithm and make a performance analysis.

This thesis is divided into seven chapters. The next chapter, chapter two, reviews

lemmatization process briefly and in addition to that explains our data structure

selection phases and implementation of lemmatizing algorithms in detail.

Chapter three introduces the GPU and GPGPU architecture and illustrates how

they work. It is important to know development environment to use it efficiently.

Chapter four identifies CUDA, its programming model and abstractions, and also

required works to achieve higher speed up rate.

Chapter five gives information about our studies of parallelization and redesigning

of algorithm in order to achieve an efficient lemmatizer on GPU.

Chapter six is about experiments and results on a selected dataset in two sub-

chapters. In first part, we looked at accuracy of our lemmatizer and later we

measured performance of it.

Finally last chapter, chapter seven, discusses results, concludes and gives a look to

possible future research studies.

4

 CHAPTER TWO

LEMMATIZATION

2.1 Lemma

In linguistics, a lemma (from the Greek noun “lẽmma”, “headword”) is the

“dictionary form” or “canonical form” of a set of words. More specifically, a lemma

is the canonical form of a lexeme where lexeme refers to the set of all the forms that

have the same meaning, and lemma refers to the particular form that is chosen as

base form to represent the lexeme. In information retrieval, this unit is usually also

the citation form or headword by which it is indexed. Lemmas have special

significance in highly inflected and agglutinative language such as Turkish.

In a dictionary-based lemmatizer, a lemma can be seen as the headword of a

dictionary entry. Where, a dictionary entry consists of two parts:

 the lemma,

 the information of the lemma.

2.1.1 Difference between stem and lemma

In computational linguistics, a stem is the part of the word that never changes

even when morphologically inflected, whilst a lemma is the base form of the word.

For example, with a “fixed prefix truncate by 4 characters” stemmer extracts stem as

“boyn” from the word “boynu” where the lemma is “boyun”. During searching, the

retrieval system using this stemmer most probably return documents related to

“boynuz” (horn) since they will share the same stem “boyn”. In linguistic analysis,

the stem is defined more generally as the analyzed base form from which all

inflected forms can be formed.

5

2.2 Lemmatization

Lemmatization is the process of determining the lemma for a given word, so

different inflected forms of a word can be analyzed as a single item.

Lemmatization is the process which creates the set of lemmas of a lexical database. It

is conceived as starting from text-words found in a corpus and leading to lemmas

heading dictionary entries.

Lemmatization is related to stemming but unlike stemming, which operates only

on a single word at a time, lemmatization operates on the full text and therefore can

discriminate between words that have different meanings depending on part of

speech. On the other hand, stemmer operates on a single word without knowledge of

the context that chops off the ends of words, and often includes the removal of

derivational affixes. Therefore stemmers cannot discriminate between words, which

have different meanings depending on part of speech. However, stemmers are

typically easier to implement and run faster, and the reduced accuracy may not

matter for some applications. The goal of both stemming and lemmatization is to

reduce inflectional forms and sometimes derivationally related forms of a word to a

common base form.

In our case, dictionary-based lemmatizer, lemmatization usually refers to doing

things properly with the use of a vocabulary and morphological analysis of words,

normally aiming to remove inflectional endings only and to return the base or

dictionary form of a word, which is corresponding to the lemma.

2.3 Turkish Lemmatization

2.3.1 Morphological Structure of Turkish Words

Stemming and lemmatizing is an essential task for indexing and information

retrieval purposes in agglutinative languages. Turkish is also an agglutinative

language, which has a rich morphological structure. Words are usually composed of

http://www.christianlehmann.eu/ling/ling_meth/ling_description/lexicography/database.html

6

a stem and of at least two or three affixes appended to it. And this is why it is usually

harder analyze a Turkish text.

In linguistics, a morpheme is the smallest meaningful component of a word and

morphology is analysis and description of the structure of morphemes. Morphology

is also interested in how morphemes can be combined to form words. For example if

we analyze the word “tezim” (“my thesis” in English) we see that it has two units.

One of them is main meaning of word. In this example “tez” is the main meaning of

the word. This morpheme is called stem; and the remaining morpheme which is “im”

in this example is called as affix.

In Turkish, there are two kinds of processes to combine morphemes to form

words: inflection and derivation. Word structures are formed by affixations of

derivational and inflectional suffixes to stems.

Inflectional process is adding grammatical affixes to word stem. It doesn’t change

the class of word. Unlike English nouns, which have only two kinds of inflection

(plural and possessive); there are more kinds of inflectional affixes in Turkish.

For example the word “arabalar” (“cars” in English) can be broken down into

morphemes as follows:

“araba” + “-lar”

where the +’s indicate morpheme boundaries. Here “araba” (“car” in English)

and “arabalar” are both nouns.

Derivational process is simply an affix addition to a word stem which will change

the meaning and in some cases the class of the stem. For example when we break the

word “gözlük” (“eye glasses” in English) into morphemes:

“göz” + “-lük”

7

the affix “-lik” is a derivational morpheme. It changes the meaning of the word

while it doesn’t change the class of stem. The words “göz” (“eye” in English) and

“gözlük” are both nouns.

Some derivational affixes can change both words meaning and class. For example

when we look at morphemes of the word “öğretmen” (“teacher” in English):

“öğret” + “-men”

the affix “-men” is a derivational morpheme in the word “öğret” (“to teach” in

English). It changes both the meaning of the word and class of the stem. The word

“öğretmen” is a noun while the word “öğret” is a verb.

There are two main classes for Turkish roots. These classes are nominal and

verbal. Morphemes added to a root word can convert the word from a nominal to a

verbal structure (vice versa) or can create adverbial constructs. Under some

circumstances vowels in the roots and morphemes may be deleted depending on the

affix (vowel deletion / haplology). Similarly consonants in the roots words or in the

affixed morphemes may get through some modifications and may sometimes be

deleted. These two rules are presented below:

 Last consonant alteration

If last letter of a word or suffix is a stop consonant (süreksiz sert sessiz), and a

suffix that starts with a vowel is appended to that word, last letter changes (voicing).

Changes are p-b, ç-c, k-ğ, t-d, g-ğ.

Some last consonant alteration examples are : kitap→kitab-a, pabuç→pabuc-u,

cocuk→cocuğ-a, hasat→hasad-ı, garp→garbı

And with some suffixes: elma-cık→elma-cığ-ı, yap-acak→yap-acağ-ım

8

When a word ends with “nk”, then “k” changes to “g” instead of “ğ”:

cenk→ceng-e, çelenk→çeleng-i

For some loan words, g-ğ change occurs: psikolog→psikoloğ-a

 Vowel deletion (vowel ellipsis or haplology)

Last vowel before the last consonant drops in some words when a suffix starting

with a vowel is appended: ağız→ağz-a, burun→burn-um, zehir→zehr-e,

nakit→nakd-e, lütuf→lütf-un

Also some verbs obeys this rule: kavur→kavr-ul

2.3.2 Structure Of Dictionary

The dictionary we have used for our work is “Büyük Türkçe Sözlük” (Grand

Turkish Dictionary), the one that is published by TDK (Turkish Language

Association) and it is open to public via internet (http://tdkterim.gov.tr/bts/). This

dictionary lists the senses along with their definitions and example sentences that are

provided for some senses.

 “Büyük Türkçe Sözlük” consists different kinds of dictionaries like science

terms, art terms, sports terms, place names, regional dialects, etc. A typical entry

from this dictionary for the word “tez” (has two meanings : 1.fast 2.thesis) is given

below in Figure 2.1:

(I) 1. Çabuk olan, süratli. 2. Süratli bir biçimde.

 Güncel Türkçe Sözlük

 (II) 1. Sav. 2. Üniversitelerde öğrencilerin veya öğretim üyelerinin hazırlayıp bazen

bir sınav kurulu önünde savundukları bilimsel eser: “Tezini mitolojiden hazırlayan

gözlüklü bir delikanlı.” - H. Taner.

 Güncel Türkçe Sözlük

Figure 2.1 Dictionary entry for query word “tez”

http://tdkterim.gov.tr/bts/

9

The entry in the dictionary has the following information:

(II) . (sense number) / 2. (subsense) / Üniversitelerde öğrencilerin veya öğretim

üyelerinin hazırlayıp bazen bir sınav kurulu önünde savundukları bilimsel eser

(definition) / “Tezini mitolojiden hazırlayan gözlüklü bir delikanlı.” (example

sentence) / - H. Taner. (citation) / Güncel Türkçe Sözlük (dictionary type)

As is seen, in Turkish, a word commonly has more than one meaning. In order to

work efficiently we parsed and analyzed all the entries on “Büyük Türkçe Sözlük”

then inserted them into a database table. Later the dictionary in the database is used

for word (lemma) and sense enumeration of it for standardization. More specifically,

we parsed and inserted the information on previous entry of dictionary (on Figure

2.1) into database as follows:

Table 2.1 Representation of dictionary on database table

ID OrderNo Word Meaning Dictionary

Type

342864 311713 tez Çabuk olan, süratli. Güncel

Türkçe

Sözlük

342865 311713 tez Süratli bir biçimde. Güncel

Türkçe

Sözlük

342867 311713 tez Sav. Güncel

Türkçe

Sözlük

342868 311713 tez Üniversitelerde öğrencilerin veya

öğretim üyelerinin hazırlayıp

bazen bir sınav kurulu önünde

savundukları bilimsel eser

Güncel

Türkçe

Sözlük

Here it can be seen that “tez” has four meanings (on Table 2.1) in database while

the entry is divided into two meanings in “Büyük Türkçe Sözlük” (Figure 2.1). While

constructing the database we parsed all meanings into separate records with having

different “ID” but having same “OrderNo” on identical lemma. Thus, we can access

to and use lemma’s all different meanings with only its “OrderNo” field and can

10

select appropriate meaning for use of word sense disambiguation algorithms via its

unique “ID”.

2.3.3 Data Structure Selection

When we were thinking for the best possible data structure that is suitable for our

needs; our design goals were:

 The data structure should support prefix searching.

 The data structure should store thousands of entries with a low space

complexity (must be suitable with the architecture constraints of GPU

discussed on Chapter Three).

 The data structure should be able to store prefixes with variable lengths in

each node.

 The data structure should be fast (because we seek through thousands of

words in dictionary).

 Look-up method of data structure should not be data dependent and recursive

(must be suitable with constraints of CUDA detailed on Section 4.1).

 The data structure should be suitable with Turkish language’s rich

agglutinative structure.

 The data structure should be suitable with our finite state machine

implementation discussed on Section 2.6.

After a little survey we decided on trie structure which is suitable for our

requirements because the way tries are space efficient since nodes are shared

between keys with common prefixes, facilitates longest-prefix matching, and also

can be seen as a deterministic finite automaton with regard to its manner of work

pattern.

Tries (name comes from reTRIEval trees) are tree-based structures where each

node represents a part of the key. A trie is an ordered tree structure that is used to

11

store a collection of the keys, which are usually strings. All the descendants of a node

have a common prefix of the string associated with that node.

For instance, a trie would store the list of Turkish words presented in Table 2.2 as

follows:

Figure 2.2 Visual representation of the words' settlement on trie in Table 2.2.

d

o

ğ

m

a

k

u

m

k

u

m

a

c

ı

k

n

a

ç k

m

a

t

i

k

k

u

l

m

a

z

Table 2.2 A sample list of Turkish words

Words

Doğmak Dokunak

Doğum Dokunaç

Doku Dokunma

Dokuma Dokunmak

Dokumacı Dokunmatik

Dokumak Dokunulmaz

12

There are several variants of the trie data structure, one of the most efficient being

the PATRICIA (Practical Algorithm To Retrieve Information Coded In

Alphanumeric) trie, which is also known as “Radix” trie (Morrison, 1968).

The main characteristic of the radix trie is the way it eliminates unnecessary nodes

by grouping the sequences of keys whenever possible. Each node with only one child

is merged with its child. The result is that every internal node has at least two

children. Unlike in regular tries, edges can be labeled with sequences of characters as

well as single characters. This makes them much more efficient for sets of strings

that share long prefixes.

Using a Radix trie, the words in Table 2.2 would be inserted as Figure 2.3 below:

Figure 2.3 Radix Trie allocation for given set of words

Radix tries can be constructed time affiliated to the length of the corpus, and

provide exact matching of a query in time proportional to the length of the query,

independent of the size of the corpus.

Basically, radix trie is a compact data structure that can give you the longest

prefix of an entry key in O(N) steps (in the worst case), with N the length of the

longest prefix.

do

ğ

mak um

ku

ma

cı k

n

a

ç k

ma

k tik

ulmaz

13

For instance, the look-up method used with radix trie, taking the following

Turkish word “dokunmatik” as argument retrieves the object highlighted in the

Figure 2.4 below:

Figure 2.4 Look-up of {dokunmatik} in PATRICIA Trie

We first designed our structure as a digital radix trie that holds keys on external

nodes and binary representation of characters on trie but then; to adopt the rules

haplology (vowel deletion) and consonant alteration we implemented the trie to work

on characters instead of binary numbers.

In order to prepare our dictionary for selected structure, we stored the parsed and

analyzed lemmas (dictionary entries) and their extracted features from their

information in the database into a XML like formatted file, which would be helpful

for designing our structure. Because XML style annotation increases readability and

allows manual addition to corpus with simple text editors or code snippets.

We have divided the information on the database records into two XML files. One

to hold meanings of lemmas named as “Dictionary Data XML” and the other one

named as “Trie Data XML” to hold headwords of the lemmas, thinking the fact that

our lemmatizer doesn’t need meanings of words for its purpose. The structure of the

“Dictionary Data XML” can be seen below in Figure 2.5.

do

ğ

mak um

ku

ma

cı k

n

a

ç k

ma

k tik

ulmaz

14

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<root>

.

.

.

<RECORD ID="342864" orderno="311713" meaning="tez"

anlam="Çabuk olan, süratli." type="Güncel Türkçe Sözlük"/>

<RECORD ID="342865" orderno="311713" meaning="tez"

meaning="Süratli bir biçimde." type="Güncel Türkçe Sözlük"/>

<RECORD ID="342867" orderno="311713" word="tez"

meaning="Sav." type="Güncel Türkçe Sözlük"/>

<RECORD ID="342868" orderno="311713"

word="tez" meaning="Üniversitelerde öğrencilerin veya

öğretim üyelerinin hazırlayıp bazen bir sınav kurulu

önünde savundukları bilimsel eser" type="Güncel

Türkçe Sözlük"/>

.

.

.

</root>

More elaborately, in “Dictionary Data XML”, ”word” stands for lemma itself

(“word” field in database) and the “ID” field in the XML corresponds to the

lemma’s “ID” on database table and likewise “orderno” corresponds to “OrderNo”

in the database and finally “type” represents dictionary type (“DictionaryType” field

in database). The “ID” field differs on each record but “orderno” field stays same on

identical lemma (word) which is conceptually parallel with the database table

formation.

The structure of the XML file which provides lemmas (can be seen in Figure 2.6)

for lemmatizer contains prefix information and basic level morphological analysis of

the words. If a word has a corresponding meaning in the dictionary or is a common

prefix of more than one word in the dictionary; it is stored as a separate node. Here if

a node has a corresponding meaning in “Dictionary Data XML” it’s “orderno”

Figure 2.5 Representation of word “tez” in Dictionary Data XML

15

property stored as “Data” property of node in “Trie Data XML”. Similarly, if a node

is available for a consonant alteration; the alteration affix had been saved into

“ConsAlterKey” property. ”MasterData” and “MasterKey” were added in order to

hold the verb meaning and verb version respectively for the cases that a lemma has

more than one meaning. We simply unify these two versions into one lemma but

separate meanings. For example, assuming the analyzing / parsing procedure meets

with word “oymak”, the procedure will save the meaning of “oy” (“vote” in English

and is a noun) into “Data” property, the meaning of “oy (mak)” (“to drill” in English

and is verb) into “MasterData” property and the suffix “mak” into “MasterKey”.

Finally “VowelDeletion” was added to hold the information that if a node is

available for haplology or in other words, can be skippable in order to search its sub

nodes. The consonant alteration keys and vowel deletion datas are not added

manually. These properties added automatically via an algorithm by analyzing all of

the lemma’s morphemes on “Trie Data XML” file’s constructing time. The resulting

corpus is 14.31MB and has 137372 nodes. The structure of XML can be seen below:

16

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<root>

.

.

<t ConsAlterKey="" MasterKey="" VowelDeletion="0" Data=""

MasterData="">

 .

 .

 <e ConsAlterKey="" MasterKey="mek" VowelDeletion="0"

 Data="306029" MasterData="308662">

 .

 .

<z ConsAlterKey=""

MasterKey="mak" VowelDeletion="0"

Data="311713" MasterData="" />

 .

 .

 </e>

 .

 .

</t>

.

.

</root>

After we formed our XML files, we defined our trie nodes with regard to XML

formation. Each property of a XML node has a corresponding property on our trie

node definition which are presented below:

 Key: This property holds actual key of node. (This property of node

corresponds to “name” property of XML node)

 ConsAlterKey: This property holds the consonant alteration key of node’s

“key”. This node will be null if key is not suitable for consonant alteration but

will store the replacement key on other case. For example if key is “k” this

Figure 2.6 Representation of word "tez" in “Trie Data XML”

17

property will be “ğ” or “g” with regard to parent node. If parent node’s key

ends with “n” then “ConsAlterKey” will be “g” otherwise “ğ”. (This property

of node corresponds to “ConsAlterKey” property on XML node)

 MasterKey: This property doesn’t actually necessary for lemmatizing process

but we need it when we use our lemmatizer on word sense disambiguation or

query / document expansion (finding an appropriate synonym of word)

purposes. Can be ”mak” or “mek” depending on prefix on parent node. (This

property of node corresponds to “MasterKey” property on XML node)

 Data: This property holds dictionary order of the word. Like “MasterKey”

this is only required when we need to get lemma’s meaning from dictionary

and work on it. We use this property to decide whether the node’s key

corresponds to a lemma when added to its prefixes. (This property of node

corresponds to “Data” property on XML node)

 MasterData: Considering the fact that in Turkish a word can be used both as

a verb and a noun this property holds verb meaning of some words having

more than one meaning. For example: “oymak” has two meanings.

“tribe/clan” (noun) and “to drill” (verb) so Data holds noun meaning and

“MasterData” holds verb meaning. (This property of node corresponds to

“MasterData” property on XML node)

 VowelDeletion: This property holds a boolean variable stating the node’s key

is suitable for haplology. (This property of node corresponds to

“VowelDeletion” property on XML node)

 Children: This property holds a pointer of node’s children.

 ChildCount: This property holds count of children of node.

So regard to this structure, the words on Table 2.2 settles to trie as follows:

18

And a visual presentation of trie for an explicit view is shown below:

Figure 2.7 Our trie allocation of dictionary words shown in Table 2.3.

do

ğ

M.Data: 97914

um

V.Deletion:1

Data:98331

ku

Data:98598

M.Data:98661

ma

Data:98651

cı

Data:98654

n

M.Data :98722

a

k

Data:98675

ç

Data:98669

ma

Data:98710

Table 2.3 Representation of the words in Table 2.2 on our structure.

Node

No

Key ConsAlter

Key

Master

Key

Vowel

Deletion

Data Master

Data

Children

0 Do - - - - - 1,3

1 Do-ğ - mak - - 97914 2

2 Do-ğ-um - - 1 98331 - -

3 Do-ku - mak - 98598 98661 4,6

4 Do-ku-ma - - - 98651 - 5

5 Do-ku-ma-cı - - - 98654 - -

6 Do-ku-n - mak - - 98722 7,10

7 Do-ku-n-a - - - - - 8,9

8 Do-ku-n-a-k ğ - - 98675 - -

9 Do-ku-n-a-ç c - - 98669 - -

10 Do-ku-n-ma - - - 98710 - -

19

2.3.4 Lemmatization Algorithm

In Turkish, the suffixes are affixed to the stem according to definite ordering

rules. The agglutinative and rule-based nature of word formations in Turkish allows

modeling of the morphological structure of language in Finite State Machines

(FSMs). In Figure 2.8 there is a finite state machine expressing the ordering rules of

these suffixes based on our algorithm with a list of Turkish words in Table 2.4. The

double circles on nodes represent the accept states of the FSM. A character on an arc

indicates which suffix causes a state transition. And “any” on an arc represents the

rest of the characters that is not indicated by any arc from current state. If there are

multiple characters on an arc, all of the suffixes defined by those characters can

cause that state transition. While traversing the FSM by consuming suffixes in each

transition, reaching to an accepting state means that a possible stem is reached.

Table 2.4 A sample list of Turkish words

The finite machine in brief:

 accepts the string x if it ends up in an accepting state, and

 rejects x if it does not end up in an accepting state.

Words

Doğmak Dokumak

Doğum Dokunak

Doku Dokunaç

Dokuma Dokunma

Dokumacı Dokunmak

20

Figure 2.8 FSM representation of our lemmatizing algorithm for the words on Table 2.4.

Thus, for example if we give word “dokusu” as an input, FSM in Figure 2.8 starts

with q0, then reads the word, character by character, changing state after each

character read. When the FSM is in state q0 and reads character “d”, it enters state

q1. Then follows a route of q1→ (o) →q2→ (k) →q6→ (u) →q7. After that it reads

“s” and doesn’t change state since there is no state bound to “s”. Same happens for

“u”. And after FSM consumes all characters; it accepts “doku” as lemma since it is

an accepting state. Transition table of FSM in Figure 2.8 is shown on Table 2.5

below:

21

Table 2.5 State transition table of FSM in Figure 2.8

 d o ğ k u m a c ç ı n Word

q0 q1 q0 q0 q0 q0 q0 q0 q0 q0 q0 q0 -

q1 q0 q2 q0 q0 q0 q0 q0 q0 q0 q0 q0 d

q2 q0 q0 q3 q6 q0 q0 q0 q0 q0 q0 q0 do

q3 q3 q3 q3 q3 q4 q5 q3 q3 q3 q3 q3 doğ

q4 q3 q3 q3 q3 q3 q5 q3 q3 q3 q3 q3 doğu

q5 q5 q5 q5 q5 q5 q5 q5 q5 q5 q5 q5 doğum

q6 q0 q0 q0 q0 q7 q0 q0 q0 q0 q0 q9 dok

q7 q7 q7 q7 q7 q7 q8 q7 q7 q7 q7 q9 doku

q8 q7 q7 q7 q7 q7 q7 q15 q7 q7 q7 q7 dokum

q9 q9 q9 q9 q9 q9 q10 q12 q9 q9 q9 q9 dokun

q10 q9 q9 q9 q9 q9 q9 q11 q9 q9 q9 q9 dokunm

q11 q11 q11 q11 q11 q11 q11 q11 q11 q11 q11 q11 dokunma

q12 q9 q9 q14 q14 q9 q9 q9 q13 q13 q9 q9 dokuna

q13 q13 q13 q13 q13 q13 q13 q13 q13 q13 q13 q13 dokunak

q14 q14 q14 q14 q14 q14 q14 q14 q14 q14 q14 q14 dokunaç

q15 q15 q15 q15 q15 q15 q15 q15 q16 q15 q15 q15 dokuma

q16 q15 q15 q15 q15 q15 q15 q15 q15 q15 q17 q15 dokumac

q17 q17 q17 q17 q17 q17 q17 q17 q17 q17 q17 q17 dokumacı

While we are taking the advantage of our dictionary based algorithm we did also

consider some rules for more effective and accurate lemmatization. In Turkish, when

a suffix is used, a letter may change into another one or may be discarded. For

example, the change of “p” to “b” in example of “kitap” (“book” in English) and

“kitaba” is an example of letter transformation (consonant alteration). And “burun”

(“nose” in English) to “burnum” illustrates the second case since the letter u drops

(vowel deletion). Our algorithm can handle both situations with some exceptions on

the latter. Because a match is more important than transformation in our algorithm;

we simply ignore the transformation when we find a match in current node’s

children. Thus, the exceptions occur when there is a node key equals to

transformation character. For example “kayıt” evolves into “kayda” with “-a” suffix,

and in the dictionary there are lemmas like “kaydırmak” and “kaydetmek” which

22

consists the “d” transformed letter after their “kay” morpheme. So when procedure

looks up for “kayda” in trie it encounters with “d” after “kay” (to slide) lemma. From

this point, the procedure doesn’t look for a transformation and continues to its path

on trie from “d” node, since there is a valid match. And it returns “kay” as lemma

because there is no child node with “a” key after “d” node (there is no lemma as

“kayda” in dictionary).

In summary, when user wants to lemmatize a word with our lemmatizer,

lemmatization procedure starts searching characters of word from left to right and

seeks them through in trie nodes. If a node key matches with current character or

character sequence, then procedure checks whether the node has its “Data” or

“MasterData” (has a meaning in dictionary) properties are occupied which determine

the accepting states of our implementation. This process continues until the query has

no more suffixes left to search; and at the end, latest lemma (accepting state) is

returned as an output. Here is a pseudo code for simplified CPU-based version of our

algorithm (Figure 2.9).

23

(a)

PROCEDURE LemmatizeWord(Trie,token,lemma)

 CurrentNode = Root of Trie;

 Buffer= array of 21 characters (longest Turkish word’s length)

 MatchIndex= -1;

 MatchLength=0;

 HaplologyIndex=-1;

 WHILE CurrentNode NOT NULL DO

 IF CurrentNode HAS NOT any children

 THEN RETURN;

 ENDIF

 MatchIndex = -1;

 MatchLength = 0;

 HaplologyIndex = -1;

 FOR position = 0 TO ChildCount of CurrentNode DO

 CurrentChild = Node at position of CurrentNode’s Children

 CurrentKey = Key of CurrentChild;

 CurrentConsKey = ConsonantAlterKey of CurrentChild;

We look that if current node’s key or consonant alteration key, and token

has a common prefix by a simple string compare algorithm

CommonPrefixLength = GetCommonPrefix(CurrentKey,

CurrentConsKey,token);

If we have a match then we break loop and proceed to second part of

algorithm

 IF CommonPrefixLength > MatchLength

 THEN

 MatchLength = CommonPrefixLength;

 MatchIndex = position;

 BREAK LOOP;

 ENDIF

If there is no match we look if current node is suitable for haplology

through its preprocessed Haplology property but we dont break loop

because a match is more important than a haplology and succeeding nodes

may contain a common prefix

 IF CurrentChild has narrow vowel

 THEN

 IF HaplologyIndex < 0

 THEN

 HaplologyIndex = position;

 ENDIF

 ENDIF

 ENDFOR

24

(b)

If we don’t have a match (MatchIndex equals to its initial value), we

look if there is a haplology. If HaplologyIndex bigger than its initial

value we move our pointer to current node’s child node at haplology index

and concatenate its key to the buffer. Otherwise it means we have reached

the latest lemma, so we just assign buffer vrb. to lemma vrb. and return.

IF MatchIndex == -1

 THEN

 IF HaplologyIndex > -1

 THEN

 CurrentNode = Node at HaplologyIndex of CurrentNode’s Children

 CurrentKey = Key of CurrentNode;

 Buffer = Concatenate CurrentKey to Buffer;

 ENDIF

 ELSE

 THEN

 IF Lemma IS NULL

 THEN

 Lemma = Buffer;

 ENDIF

 RETURN;

 ENDIF

If we have a match, the procedure continues from here.And firstly we

delete common prefix from token.

TokenLength = length of token;

token= substring of token from MatchLength to TokenLength;

Later we move the pointer to the child node at MatchIndex of current

node’s children and concatenate current node’s key to the buffer.

CurrentNode = Node at MatchIndex of CurrentNode’s Children

 CurrentKey = Key of CurrentNode;

Buffer = Concatenate CurrentKey to Buffer;

CurrentData = Data of CurrentNode;

 CurrentMasterData = MasterData of CurrentNode;

And finally we look if current node has a corresponding meaning in the

dictionary.If current node’s Data or MasterData properties are not NULL

it means we have an accept state and a possible lemma.So we assign buffer

to lemma variable.

 IF CurrentData IS NOT NULL OR CurrentMasterData IS NOT NULL

 THEN

 Lemma = Buffer;

 ENDIF

If all the characters in word is consumed then quit and return with

latest lemma.

 IF Character length of Token == 0

 THEN RETURN;

 ENDIF

 ENDWHILE

ENDPROCEDURE

Figure 2.9 (a) is the first part and (b) is the second part of the pseudo code of the CPU-bound version

of lemmatizing algoritm

25

For example when we want to lemmatize token “tezim”; the lemmatizing

procedure detailed with pseudocode on Figure 2.9 will follow the steps shown below

on Table 2.6:

Table 2.6 Steps taken while lemmatizing word "tezim"

Step Buffer Current

Key

Lemma Token Current

Data

Current Master

Data

1 - root - tezim - -

2 - t - tezim - -

3 t t - ezim - -

4 t e - ezim 306029 30862

5 te e te zim - -

6 te z te zim 311713 -

7 tez z tez im - -

8 tez No

match

tez im - -

The procedure starts to search “tezim” on trie (Step 1). The first match happens

at the node which has “t” key (Step 2). Following this match the key (“t”) is

concatenated to buffer and is deleted from token which lefts token equal to “ezim”.

Then the procedure looks if the current node has its “Data” property occupied.

Current node (“t”) has no data property so procedure continues to search “ezim”

through the child nodes of it (Step 3). The next match comes up at node “e” (child of

node with key “t”) (Step 4). Here node with key “e” has its “Data” property (“te” has

a meaning in dictionary) not null. So, key “e” is concatenated to buffer and then the

content of buffer is assigned to lemma. Later procedure starts to search the resulting

token “zim” through child nodes (Step 5). When the procedure comes at node with

key “z” a match happens; and because “z” has a valid “Data” property the steps done

at node “e” are repeated for node “z” and these left token as “im” (Step 6 and 7).

The token “im” has no match with the child nodes of “z”, so lemma and buffer

doesn’t change and procedure returns the lemma as ”tez” along with the dictionary

meaning as “311713” which is the last accepting state (Step 8).

26

 CHAPTER THREE

GPU AND GPGPU

3.1 GPU

A graphics processing unit or GPU is a processor attached to a graphics card

dedicated to calculating floating point operations. GPU has evolved into a highly

parallel, multithreaded; many core processor with tremendous computational power

and very high memory bandwidth, as illustrated by Figure 3.1.

(a)

(b)

NV30 NV40

G70

G80

GT200

T12

3GHz Dual

Core P4

3GHz

 Core 2 Duo

3GHz

Xeon Quad
Westmere

0

200

400

600

800

1000

1200

1400

22.09.2002 04.02.2004 18.06.2005 31.10.2006 14.03.2008 27.07.2009

G
F

L
O

P
s

NVIDIA GPU

Intel CPU

NV30

NV40
G70

G80

GT200

T12

3GHz Dual

Core P4

3GHz

Core 2 Duo

3GHz

Xeon Qujad Westmere

0

20

40

60

80

100

120

140

160

180

200

22.09.2002 04.02.2004 18.06.2005 31.10.2006 14.03.2008 27.07.2009

G
B

y
te

/s

NVIDIA GPU

Intel CPU

Figure 3.1 Floating-point operations per second (a) and memory bandwidths of the CPU and GPU

(b) (NVIDIA Corporation, November 2010).

27

The reason behind the divergence in floating-point capability (FLOPS) between

the CPU and the GPU is that the CPU evolved to be good at any problem whether it

is parallel or not and performs best when small pieces of data are processed in a

complex, but sequential way. This lets the CPU to utilize the many transistors used

for caching, branch prediction and instruction level parallelism. On the other hand

the GPU is specialized for compute intensive, highly parallel workloads (massively

data parallel problems) to work efficiently and therefore designed such that more

transistors are devoted to data processing rather than data caching and flow control,

as schematically illustrated by Figure 3.2.

Figure 3.2 The GPU devotes more transistors to Data Processing (NVIDIA Corporation,

November 2010)/

More specifically, the GPU is designed to address problems that can be expressed

as data parallel computations, since the program works in SIMD fashion, with high

arithmetic intensity. Also there is a lower requirement for sophisticated flow control

and, the program is executed on many data elements and has high arithmetic

intensity, the memory access latency can be hidden with calculations instead of big

data caches.

CPU’s execution units can support a limited number of concurrent threads. Today

servers with four quad-core processors can run only 16 threads concurrently (32 if

the CPUs support Hyper Threading). On the other hand GPUs can support from 768

to more than 30000 active threads (NVIDIA Corporation, August 2010).

28

 In addition that above, CPU threads are heavyweight entities. The operating

system must swap threads’ state (on and off) on CPU execution channels to provide

multithreading (e.g. round - robin). Thus; context switching is slow and expensive.

On the contrary threads running on GPUs are extremely lightweight. Because all

active threads have their own separate memory registers, so no swapping of registers

or state need occur between GPU threads.

Both the host system and the device have their own random access memory

(RAM). On the host system, RAM is generally equally accessible to all code. On the

device, RAM is divided virtually and physically into different types, each of which

has a special purpose and fulfills different needs.

Another important difference between a CPU and a typical GPU is the memory

bandwidth. Because of simpler memory models and no requirements from legacy

operating systems, the GPU can support more than 180 GB/s of memory bandwidth,

while the bandwidth of CPUs is around 20 GB/s (in Figure 3.1.b).

3.1.1 GPU Architecture

The GPU is a many core processor containing an array of streaming

multiprocessors (SMs). A SM contains an array of streaming processors (SP), along

with two more processors called special function units (SFUs). Each SFU has four

floating point (FP) multiply units which are used for transcendental operations (e.g.

sin, cosine) and interpolation. There’s a MT issue unit that dispatches instructions to

all of the SPs and SFUs in the group. In addition to the processor cores in a SM,

there's a very small instruction cache, a read only data cache and a 16KB read/write

shared memory (NVIDIA Corporation, November 2010). The units can be seen in

Figure 3.3 below.

29

Figure 3.3 Streaming Multiprocessor

(Shimpi & Wilson, 2008)

A streaming processor (SP) is a fully pipelined, single-issue, in-order

microprocessor, built with two arithmetic logic units (ALU) and a floating point unit

(FPU) (Figure 3.4). But a SP doesn’t have any cache, so it’s not particularly great at

anything other than computing tons of mathematical operations (Shimpi & Wilson,

2008).

Figure 3.4 Streaming Processor (Shimpi & Wilson, 2008)

30

Each SM manages multithread allocating and scheduling as well as handling

divergence through an instruction scheduling unit (MT issue). SM maps each thread

to an SP for execution where each thread maintains its own register state. After this

point threads have all the resources they need to run, threads can launch and execute

basically for free. So all the SPs in a SM execute their threads in lock-step, according

to the order of instructions issued by the scheduler. The SM creates and manages

threads in bundles called as warps (NVIDIA Corporation, November 2010).

Figure 3.5 Scheduling of warps on SM (Shimpi & Wilson, 2008)

A warp is the smallest unit of scheduling within each SM. In SIMT fashion,

threads are assembled into groups of 32 called “warps” which are simultaneously

executed on different SPs at hardware level. Threads in warps share the control logic

(i.e. the current instruction). Thus, every thread within a warp must be executing the

31

same instruction but different warps built from threads executing the same program

can follow completely independent paths down the code. This means that branch

granularity is 32 threads; every warp are allowed to can branch independently of all

others (divergence), but if one or more threads within a warp branch in a different

direction than the rest then every single thread in that warp must execute both code

paths. Resolving divergence is also automatically handled by the hardware. The GPU

achieves efficiency by splitting its work-load into multiple warps and multiplexing

many warps onto the same SM (Figure 3.5). When a warp that is scheduled attempts

to execute an instruction whose operands are not ready (e.g. an incomplete memory

load), the SM switches context to another warp that is ready to execute, thereby

hiding the latency of slow operations such as memory loads. Each SM can have 32

warps in work at the same time (NVIDIA Corporation, November 2010).

Figure 3.6 Nvidia Fermi GPUs’ architecture (NVIDIA Corporation, 2009)

32

To sum it up, a CUDA compatible GPU architecture is shown above in Figure

3.6. In NVIDIA’s CUDA compatible Fermi GPU architecture, a SM is made up of

two SIMD 16-way units. Each SIMD 16-way has 16 SPs, thus a SM in Fermi has 32

SPs or 32 CUDA cores and 64KB shared memory (NVIDIA Corporation, 2009).

3.2 GPGPU

General purpose graphics processing units (GPGPU) offers new opportunities for

the information retrieval community. GPUs are highly optimized towards the types

of operations needed in graphics, but GPU vendors have recently started to allow

researchers to exploit their computing power for other types of applications. Modern

GPUs offer large numbers of computing cores (48 cores in NVIDIA GeForce

GT240M, 512 Cores in NVIDIA Fermi) that can perform many operations in

parallel, plus a very high memory bandwidth (memory throughput) that allows

processing of large amounts of data (NVIDIA Corporation, November 2010).

However, to be efficient, computations need to the carefully structured to conform

the programming model offered by the GPU, which is a data-parallel model

reminiscent of the massively parallel SIMD (single instruction multiple data) fashion.

Recently, GPU vendors have started to offer better support for general-purpose

computation on GPUs. One major vendor of GPUs, NVIDIA, recently introduced the

Compute Unified Device Architecture (CUDA), a new hardware and software

architecture that simplifies GPU programming.

33

 CHAPTER FOUR

CUDA

4.1 CUDA Overview

CUDA (Compute Unified Device Architecture) is a general-purpose hardware

interface designed to let programmers exploit NVIDIA graphics hardware for general

purposes instead of graphics programming. CUDA provides a programming model

and well defined programming abstracts (e.g. memory model, thread model) that are

consistent between all CUDA devices. The programming model describes how

parallel code is written, launched and executed on a device via defining model a

virtual model of GPU architecture allowing users a direct access to corresponding

hardware. Thread model presents a thread hierarchy on how threads works and the

memory model defines the different types of memories that are available to a CUDA

program.

The functional paradigm of CUDA views the GPU as a coprocessor to the CPU.

The GPUs supporting this language also facilitate scattered (arbitrary addresses)

memory transactions in GPU which are essential for GPUs to operate as a general-

purpose computational machine.

CUDA has several advantages (NVIDIA Corporation, November 2010) over

traditional computation models on GPUs (GPGPU):

 Code can read/write from and to arbitrary addresses in memory (scattered

transaction).

 A fast shared memory region that can be shared amongst threads which

enables higher bandwidths.

 Faster read / write operations from and to the GPU

 Full support for integer and bitwise operations.

34

But those advantages come with some limitations (NVIDIA Corporation,

November 2010) presented below:

 CUDA does not allow recursions and function pointers.

 Transferring the data between the CPU and the GPU is slow due to the bus

bandwidth and latency.

 The SIMD execution model becomes a significant limitation for any divergent

task (i.e. divergent branches in the code).

 CUDA is only available on NVIDIA GPU’s.

4.2 CUDA Programming Model

The programming model most commonly used when programming a GPU is

based on the stream programming model. In the stream programming model, input to

and output from a computation comes in the form of streams. A stream is a collection

of homogeneous data elements on which some operation, called a kernel, is to be

performed, and the operation on one element is independent of the other elements in

the stream.

In CUDA programming model there are three key abstractions which are a

hierarchy of thread groups, shared memories, and barrier synchronization. These

abstractions guide the programmer to partition the problem into sub problems that

can be solved independently in parallel, and then into finer pieces that can be solved

cooperatively in parallel. Each sub-problem can be scheduled to be solved on any of

the available processor cores: A compiled CUDA program can therefore execute on

any number of processor cores, and only the runtime system needs to know the

physical processor count.

4.2.1 CUDA Kernels

In CUDA, GPU is modeled as a collection of streaming multiprocessors (SM)

which work in Single Program Multiple Data (SPMD) fashion. With regard to this

model, programmer writes a kernel and then the programming model generates lots

35

of threads that execute the same kernel, each working on a different set of data in

parallel (NVIDIA Corporation, November 2010). A CUDA kernel is a function that

is executed on a large set of data elements, shown in Figure 4.1

Thread ID

0 1 2 3 4 5 6 7 8

Figure 4.1 Kernel Execution

In this model, the programmer writes two separate kernels for a GPGPU

application: code for the GPU kernel and the code for the CPU kernel. The CPU

kernel must proceed through five general stages:

1. Allocate necessary input and output data space in GPU memory.

2. Transfer input data from host (CPU) memory to the GPU.

3. Call the GPU kernel wait until GPU kernel finishes its work. GPU kernel is

executed parallel in each core.

4. Transfer the output data back to host memory from the GPU’s memory.

5. Free allocated data space from GPU memory.

In brief, the GPU kernel is a sequence of instructions that directs each GPU thread

to perform necessary operations on a unique data element in cause of the concurrent

execution of all GPU threads in a SIMD (single-instruction, multiple-data) workflow.

These kernels are dynamically dispatched and executed in bundles of threads on

SIMD multiprocessors. At any given clock cycle, each processor executes the

identical kernel instruction on a thread bundle, but each thread operates on distinct

data.

int tid = threadIdx.x;

c[tid] = a[tid] + b[tid];

36

4.2.2 Thread Model

There are two important differences between GPU threads and CPU threads. First,

there is no cost to create and destroy threads on the GPU. Additionally, GPU

multiprocessors perform context switches between thread bundles (analogous to

process switching between processes on a CPU) with zero latency. Both of these

factors enable the GPU to provide its thread-level parallelism with very low

overhead.

The CUDA programming model organizes threads into a three-level hierarchy as

shown in Figure 4.2. At the highest level of the hierarchy is the grid. A grid is a two

dimensional array of thread blocks, and thread blocks are in turn three dimensional

arrays of threads.

Figure 4.2 Hierarchy of threads in CUDA (NVIDIA Corporation,

November 2010)

37

For convenience, threadIdx variable on CUDA is a built- in 3-component vector,

so that threads can be identified via this variable. This provides a natural way to map

data on memory and invoke computation across the elements in a domain such as a

vector, matrix, or volume. There is a limit to the number of threads per block, since

all threads of a block are expected to reside on the same processor core and must

share the limited memory resources of that core. On current GPUs, a thread block

may contain up to 1024 threads (NVIDIA Corporation, November 2010).

Blocks are organized into a one-dimensional or two-dimensional grid of thread

blocks as illustrated by Figure 4.3. The number of thread blocks in a grid is usually

defined by the size of the data being processed due to the limitation to the number of

threads per block.

Figure 4.3 Grid of Thread Blocks (NVIDIA Corporation,

November 2010)

38

A kernel is executed by a grid (as illustrated on Figure 4.4). The size of the grid

and the thread-blocks are determined by the programmer, according to the size of the

data being operated on and to the complexity of the algorithm, at kernel launch time.

While threads from different blocks operate independently; threads in a thread block

can share data through shared memory and synchronize their execution. Each thread-

block in a grid has its own unique identifier and each thread has a unique identifier

within a block. Using a combination of block-id and thread-id, it is possible to

distinguish each individual thread running on the entire device. Only a single grid of

thread blocks can be launched on the GPU at once, and the hardware limits on the

number of thread blocks and threads vary across different GPU architectures.

Figure 4.4 Kernel execution and thread model (NVIDIA

Corporation, November 2010)

39

4.2.3 Memory Model

Figure 4.5 Memory hierarchy (NVIDIA Corporation, November 2010)

CUDA threads may access data from multiple memory spaces during their

execution as illustrated by Figure 4.5. Each thread has private local memory. Also

each thread block has shared memory visible to all threads of the block and with the

same lifetime as the block. All threads have access to the same global memory.

There are also two additional read-only memory spaces accessible by all threads; the

constant and texture memory spaces.

40

The global, shared, constant and texture memory spaces are optimized for

different memory usages. Appropriate use of these memory spaces can have

significant performance implications for CUDA applications. The performance

characteristics and restrictions of memory spaces are shown on Table 4.1 below:

Table 4.1 Memory accessibility and latency - *Cached only on devices of compute capability 2.x

(NVIDIA Corporation, August 2010)

Memory Location

on/off chip

Cached Access Scope Lifetime Penalty

Register On n/a R/W 1 thread Thread 1x

Local Off No* R/W 1 thread Thread 100x

Shared On n/a R/W All threads

in block

Block 1x

Global Off No* R/W All threads

+ host

Host

allocation

100x

Constant Off Yes R All threads

+ host

Host

allocation

1x

Texture Off Yes R All threads

+ host

Host

allocation

1x

With respect to Table 4.1 local and global memories are located off-chip and

accessing to these spaces are 100 times slower. On the other hand, although they are

located off-chip; accessing constant and texture memory spaces are faster due to

caching. Another point from this table is accessibility of memory spaces by threads.

According to the Table 4.1 each thread can:

 Read/Write per-thread registers

 Read/Write per-thread local memory

 Read/Write per-block shared memory

 Read/Write per-grid global memory

 Read only per-grid constant memory

 Read only per-grid texture memory

Accessibility of memory spaces are shown in Figure 4.6 below.

41

Figure 4.6 Memory Access (NVIDIA Corporation, November 2010)

4.2.3.1 Global memory

Global memory is accessible from either the host or device threads and has the

lifetime of the application. Potentially 100x slower than register or shared memory

because the global memory resides off-chip and space is not cached, so it is

important to follow the right access pattern to get maximum memory bandwidth

which has a direct impact to performance.

4.2.3.2 Local Memory

Local memory is only accessible by the threads and has the lifetime of the thread.

Actually, local memory is a memory abstraction that implies "local in the scope of

each thread". It resides in global memory that is allocated by the compiler and

42

delivers the same performance as any other global memory region which is 100x

slower than register or shared memory.

The variables placed by the compiler to local memory are, arrays which are not

indexed with constant quantities, large structures that would consume too much

register space and any variable if the kernel uses more registers than available.

4.2.3.3 Shared memory

Shared memory is accessible by any thread of the block from which it was created

and has the lifetime of the block. Because it is on-chip, the shared memory space is

much faster than the local and global memory spaces. In fact, for all threads of a

warp, accessing the shared memory can be as fast as a register when there are no

bank conflicts or when reading from the same address. Threads belonging to the

same thread block can co-operate with each other, by using shared memory.

4.2.3.4 Registers

Registers are only accessible by threads and have a same lifetime with the thread.

They are the fastest form of memory on the multi-processor. Simple scalar variables

are placed into registers.

4.2.3.5 Constant Memory

Constant memory is accessible from either the host or device threads and has the

lifetime of the application. The constant memory space is cached so a read from

constant memory costs one memory read from device memory only on a cache miss.

For all threads of a warp, reading from the constant cache is as fast as reading from a

register as long as all threads read the same address.

43

4.2.3.6 Texture Memory

Texture memory is accessible from either the host or device threads and has the

lifetime of the application. The texture memory space is cached so a texture sampling

costs one memory read from device memory only on a cache miss. Texture memory

also offers different addressing modes, as well as data filtering, for some specific

data formats.

4.3 CUDA Optimization Strategy

Many type of approaches that can be used to optimize performance on GPU, but

especial for CUDA, there are three types of optimization strategy:

 Optimization of instruction usage to achieve maximum instruction throughput

 Optimization of memory usage to achieve maximum memory throughput

 Optimization of parallel execution to achieve maximum utilization

4.3.1 Instruction Throughput

To maximize instruction throughput the programmer should:

 Minimize the use of arithmetic instructions with low throughput, for example

single-precision instead of double-precision

 Minimize divergent warps caused by control flow instructions.

 Reduce the number of instructions

4.3.1.1 Arithmetic Instructions

A multiprocessor takes 8 clock cycles for single-precision 32 bit floating-point

add, multiply, and multiply-add, integer add, bitwise operations, compare and type

conversion instructions on GPU’s with compute capability 1.x (NVIDIA

Corporation, August 2010).

44

Integer division and modulo operation are particularly more expensive and should

be avoided if possible or replaced with bitwise operations whenever possible

GPU’s with compute capability 1.3 has only one double precision floating point

unit (FPU) per multiprocessor (SM), is shared by all the threads on SM, whereas

there are 8 single precision FPUs. So sinf(x), cosf(x), tanf(x), sincosf(x) and other

double precision operations deliver 8x worse performance than with single precision

(NVIDIA Corporation, August 2010).

4.3.1.2 Control Flow Instructions

Threads within a warp execute the same instruction. Thus, in case of flow control

instructions (if, switch, do, for, while), threads in a warp may follow different

execution paths (divergence) causing significant decline on the effective instruction

throughput. In this situation hardware serializes the different executions paths,

increasing the total number of instructions executed for this warp. So, if we have two

divergent paths within a warp, the two will be serialized, entire warp executing both.

When all the different execution paths have completed, the threads converge back to

the same execution path. That is where the performance penalty comes from, if flow

diverges within a warp. To obtain best performance in cases where the control flow

depends on the thread ID, the controlling condition should be written so as to

minimize the number of divergent warps (NVIDIA Corporation, August 2010).

4.3.1.3 Memory Instructions

When accessing local or global memory, there are 400 to 600 clock cycles of

memory latency. Much of this global memory latency can be hidden by the thread

scheduler if there are sufficient arithmetic intensity (independent arithmetic

instructions that can be issued) while waiting for the global memory access to

complete (NVIDIA Corporation, August 2010).

45

4.3.2 Memory Bandwidth

GPUs offer high bandwidth throughput. With respect to memory resources, each

GPU multiprocessor contains a set of dedicated registers, a store of read-only

constant and texture cache, and a small amount of shared memory. These memory

types are shared between the individual processors of a multiprocessor. In addition to

these memory types, threads evaluated by a processor may also access the GPU’s

larger, and comparatively slower, global memory. Therefore, programmers should be

careful while designing algorithm and organizing memory accesses because wrong

usage of these memory spaces directly affects the performance. The access time

penalties of different memory spaces are shown on Table 4.2.

Table 4.2 Access time penalties of different memory spaces on GPU (NVIDIA Corporation, August

2010)

Memory Penalty

register 1x

local 100x

shared 1x

global 100x

constant 1x

The first step in maximizing overall memory throughput for the application is to

minimize data transfers with low bandwidth by minimizing data transfers between

the host and the device. Since off-chip device memories are of much higher latency

and lower bandwidth than on-chip memory, memory accesses to them should be

minimized.

Shared memory can be seen as a user-managed cache. A typical programming

pattern is to cache data coming from device memory into shared memory; in other

words, to have each thread of a block:

 Load data from device memory to shared memory

46

 Synchronize with all the other threads of the block so that each thread can

safely read shared memory locations that were written by different threads

 Process the data in shared memory

 Synchronize again if necessary to make sure that shared memory has been

updated with the results

 Write the results back to device memory

4.3.2.1 Data Transfers between Host and Device

Because of the overhead associated with each transfer, instead of transferring

small portions of data separately, batching many small transfers into a single large

transfer always performs better.

4.3.2.2 Global Memory Accesses

The task of effectively hiding the global memory access latency and managing the

memory hierarchy is very crucial for obtaining maximal performance from the GPU.

The global memory space is not cached, so it is all the more important to follow

the right access pattern to get maximum memory bandwidth, especially given how

costly accesses to device memory are.

First, the device is capable of accessing device memory via 32, 64, or 128 byte

memory transactions (NVIDIA Corporation, August 2010). When a warp executes

an instruction that accesses global memory, it unites the memory accesses of the

threads within the warp into one or more of these memory transactions, depending on

the size of the word accessed by each thread. So the structure layout on device

memory must be aligned to their size (or multiple of their size) in order to achieve

memory transactions without latency. Because, global memory bandwidth is used

most efficiently when the simultaneous memory accesses by threads in a half-warp

can be coalesced into a single memory transaction. Coalescing can be maximized by

47

redesigning structure to most optimal access patterns and using data types that meet

the size and alignment.

4.3.2.3 Local Memory

Like the global memory space, the local memory space is not cached, so accesses

to local memory are as expensive as accesses to global memory and are subject to the

same requirements for memory coalescing as described at Section 4.3.2.2.

4.3.2.4 Constant Memory

The constant memory is placed off-chip but space is cached so a read from

constant memory costs one memory read from device memory only on a cache miss,

otherwise it just costs as one read from its cache.

4.3.2.5 Texture Memory

The texture memory space is placed off-chip but space is cached so a texture fetch

costs one memory read from device memory only on a cache miss, otherwise it just

costs one read from the its cache.

4.3.2.6 Shared Memory

The shared memory space is much faster than the local and global memory

spaces. In fact, for all threads of a warp accessing the shared memory is as fast as

accessing a register as long as there are no bank conflicts between the threads, as

detailed below.

Shared memory is divided into equally-sized memory modules, called banks,

which can be accessed simultaneously. So, any memory transaction request made of

n addresses that fall in n distinct memory banks can be serviced simultaneously,

yielding an effective bandwidth that is n times as high as the bandwidth of a single

48

module. It is therefore important to understand how memory addresses map to

memory banks in order to schedule the memory requests so as to minimize bank

conflicts.

4.3.2.7 Registers

Generally, accessing a register has no latency since it doesn’t require an extra

clock cycle, but delays may occur due to register read-after-write dependencies and

register memory bank conflicts.

4.3.3 Occupancy

One of the key challenges in algorithmic design for GPGPUs is to keep all

processing elements busy. In other words, to ensure high utilization (occupancy) of

resources and provide more parallel work is dispatched than the stream processors

available. Using latency-hiding techniques, a processor waiting on a memory

accessing can thus simply switch context to another dispatched work unit which has

load its necessary data from memory.

The multiprocessor occupancy is the ratio of active warps to the maximum

number of warps supported on a multiprocessor of the GPU. Maximizing the

occupancy can help to cover latency during global memory loads. The occupancy is

determined by the amount of shared memory and registers used by each thread block.

Because of this, programmers need to choose the size of thread blocks with care in

order to maximize occupancy. Each multiprocessor on the device has a set of N

registers available for use by CUDA program threads. These registers are a shared

resource that is allocated among the thread blocks executing on a multiprocessor.

The CUDA compiler attempts to minimize register usage to maximize the number of

thread blocks that can be active in the machine simultaneously. If a program tries to

launch a kernel for which the registers used per thread times the thread block size is

greater than N, the launch will fail.

49

It is important to note that two key resources of the SM, namely the shared

memory and the register file, are shared by the thread-blocks that are concurrently

active on the SM. For example, if each SM has 16KB of shared memory and each

thread-block requires 8KB of shared memory, then no more than 2 thread blocks can

be concurrently scheduled on the SM, as it is seen in Figure 4.7.

 Register Shared Memory Register Shared Memory

 Usage Usage Usage Usage

 (a) (b)

Figure 4.7 GPU Resources are not utilized properly.

From Figure 4.7, in (a) we are wasting the available shared memory space and

there is only 3 thread block can be concurrently active because of heavily register

usage. We should move some variables from registers to shared memory to balance

resource usage. Similarly in (b) resources wasted because of high shared memory

usage and we should reduce shared memory usage by threads in order to increase

occupancy.

50

 CHAPTER FIVE

LEMMATIZATION ON GPU

5.1 Lemmatization Algorithm on CUDA

While working on CUDA the methods applied to the development should include

the following:

1) Minimize data transfer with global memory

2) Work on faster accessible memory units

3) Accessing of global memory should be coalesced as much as possible

4) Avoid branch divergence within a CUDA warp

5) Use resources of GPU efficiently to avoid limitations of hardware

In order to work efficient under these constraints, we had to change our trie

structure. While we were optimizing our code through CUDA our guidelines were:

1) Get rid of pointers. Working with pointers on GPU is not efficient.

2) Minimize memory read/writes.

3) Minimize divergent (if-else, for, while) blocks.

4) Minimize memory usage of variables.

5) Do load/store works on faster memory units and later store result in slower

units.

6) Reduce instructions and complexity as possible.

5.1.1 Redesigning Structure

First of all we changed our trie structure to node array (namely, array of structs)

in order to get rid of pointers. Instead of storing each child’s pointer in parent node

we stored the child’s index at node array. And we inserted our nodes on array by

traversing tree with two different approaches, breadth-first and pre-order traversal

basis, in the cause of memory access coalescing (discussed in Section 4.3.2.2).

51

After that we changed our look-up algorithm with regard to the changes in structure.

The previous and latter structures can be seen in Figure 5.1.

(a)

(b)

 (c)

Figure 5.1 (a) Trie Structure. (b) Array of nodes structure with nodes placed via breadth-first

traversal on trie. (c) Array of nodes structure with nodes placed via pre-order traversal on trie.

52

Arrays of structures (AOS) keep things nicely organized but are generally bad for

performance in data parallel computation. When the structure is laid out in memory,

the compiler will produce interleaved data, in the sense that all the structures will be

contiguous but there will be a constant offset between a structure instance and the

same element of the following instance. This offset particularly depends on the

structure definition. To make sure SIMD operations can work efficiently on data,

they shall be allocated in continuous memory space. So the best bet for performance

is to design software around structures of arrays (SOA).

In GPU, global memory is accessed in chunks depending on to memory bus. If we

don’t use whole chunk the bandwidth is wasted (NVIDIA Corporation, August

2010). If we look at the memory layout in global memory, the AOS layout would

have all the node’s contents together, whereas in the SOA layout we would have all

the keys (required data) together in RAM. So in theory, the SOA layout would be

better performing because when we access the key data, we will get more data in

chunk since size of key is smaller than whole struct.

For example; assuming a chunk size of 32 bytes and we have 16 nodes where a

node consists a key with 2 bytes and a data with 2 bytes; if the AOS algorithm would

want to access key of node 1, and then to the key of node 9; this request will cause a

chunk miss, causing the processor to fetch in node 9 into the chunk by a second read.

On the other hand with SOA algorithm, all 16 keys can be read into chunk by one

read, providing a performance boost.

53

Figure 5.2 Node (struct) of arrays structure

AOS is also faster when all the data in the chunks are aligned to multiples of

32/64/128 bytes but becomes slower when it does not. The takeaway from all this is

the layout of our data affects the running speed by a large amount, but it’s also

important to write small tests to validate whether SOA or AOS better. In our case

SOA performed better than AOS. The results are written on evaluation part, Section

6.2 of the thesis.

To decide which structure performs best we developed 9 different version of our

lemmatizer each is working with distinct structure:

 Sequential algorithm with tree struct

A sequential, CPU-based version of our lemmatizer which uses a radix trie.

 Parallel array of structs algorithm

A data parallel version of our algorithm which uses a struct array instead of trie.

But look-up algorithm is similar to radix search. This algorithm uses 12 registers, 42

bytes local memory and 48 bytes shared memory on GPU with 256 threads per

block.

54

 Parallel arrays algorithm

A data parallel version of our algorithm which uses separate arrays instead of

struct array. We defined each property of struct as a separate array. Look-up

algorithm is similar. This algorithm uses 15 registers, 42 bytes local memory and 96

bytes shared memory on GPU with 256 threads per block.

 Parallel struct of arrays algorithm

A data parallel version of our algorithm which uses a structure of arrays instead

of an array of structures. We defined each property of struct as a separate array in 1

unique struct. Look-up algorithm is similar. This algorithm uses 15 registers, and 42

bytes local memory 48 bytes shared memory on GPU with 256 threads per block.

 Parallel array of structs algorithm with compact (smaller) nodes

A data parallel version of our algorithm which uses a struct array instead of trie.

But this time structs are smaller because we removed Data, MasterData, MasterKey

due to fact that they are not necessary for lemmatizing.(these properties was added to

structs for WSD and query/document expansion purposes). Look-up algorithm is

similar to radix search. This algorithm uses 13 registers, 42 bytes local memory and

48 bytes shared memory on GPU with 256 threads per block.

 Parallel arrays algorithm with compact (smaller) arrays

A data parallel version of our algorithm which uses a struct array instead of trie.

Data, MasterData and MasterKey arrays are removed. Look-up algorithm is similar

to radix search. This algorithm uses 15 registers, 42 bytes local memory and 88 bytes

shared memory on GPU with 256 threads per block.

55

 Parallel struct of arrays algorithm with compact (smaller) nodes with

compact (smaller) nodes inserted from trie via pre-order traversal basis

A data parallel version of our algorithm which uses a structure of arrays instead of

an array of structures. We defined each property of struct as a separate array in 1

unique struct but removed Data, MasterData and MasterKey properties. Look-up

algorithm is similar. This algorithm uses 15 registers, 42 bytes local memory and 48

bytes shared memory on GPU with 256 threads per block.

 Parallel struct of arrays algorithm with compact (smaller) nodes inserted

from trie via pre-order traversal basis and also exploits shared memory

A data parallel version of our algorithm which uses a structure of arrays instead of

an array of structures. We defined each property of struct as a separate array in 1

unique struct but removed Data, MasterData and MasterKey properties. In addition;

we also carried some variables into shared memory in order to reduce global memory

read/writes. Look-up algorithm is similar. This algorithm uses 16 registers, 21 bytes

local memory and 3888 bytes shared memory on GPU with 256 threads per block.

 Parallel struct of arrays algorithm with compact (smaller) nodes inserted

from trie via breadth-first traversal basis and also exploits shared

memory

A data parallel version of our algorithm which uses a structure of arrays instead of

an array of structures. But this time, we preferred placing structs on array from trie

via breadth-first basis. This approach visits the elements level-by-level. So we

inserted all the nodes on current level of trie before we proceeded to sub levels. With

this algorithm, the only difference is layout of dictionary on memory. We defined

each property of struct as a separate array in 1 unique struct but removed Data,

MasterData and MasterKey properties. In addition; we also carried some variables

into shared memory in order to reduce global memory read/writes. Look-up

56

algorithm is similar. This algorithm uses 16 registers, 21 bytes local memory and

3888 bytes shared memory on GPU with 256 threads per block.

5.1.2 Occupancy

In our algorithm, trie needs 12.31MB space which can only reside on global

memory of GPU. So we had to achieve coalesced accessing and warp occupancy as

much as possible to hide latency of memory transactions. In order to achieve an

occupancy ratio of 1, we redesigned our algorithm regard to GPU specifications (can

be seen on Appendix 2). The specifications of our GPU as follows:

 Total global memory : 947 MB

 Shared memory per processor : 16 KB

 Warp size : 32

 Max. threads per block : 512

 Total constant memory : 64 KB

 Clock rate : 1210000KHz

 Multiprocessors on device : 6

 Multicores on each processor : 8

 Max count of threads in each processor : 1024

 Max count of register : 16384

Regard to this specifications we should keep shared memory usage by each thread

block under 16KB considering the fact that each multi-processor has 16KB shared

memory unit. Also there is a limit of 16384 registers per multiprocessor. So we

should organize our shared memory, register and thread usage considering these

limitations to prevent performance comedown.

Our kernel uses 16 Registers per each thread. So we can map maximum of

16384/16 = 1024 threads on a multiprocessor without decreasing warp occupancy. If

we select our thread number per block 256 then we will have 1024/256=4 blocks of

threads each needs 256*16=4096 registers. To fit in 4 blocks of threads in a

57

multiprocessor without reducing occupancy ratio; we should limit our shared

memory usage on each block to maximum of 4KB (since 4KB * 4 block = 16 KB)

and on each thread to 4KB / 256 =16 bytes. So in final analysis, considering our

kernel uses 16 registers per thread if we select our thread number per block 256 we

should use 16 bytes of shared memory per thread or 4KB of total to achieve full warp

occupancy.

Our resource usage and occupancy measurements can be seen on Figure 5.3,

Figure 5.4 and Figure 5.5.

Figure 5.3 Selected threads per block to achieve full occupancy. Red triangle shows our Block

size

Figure 5.4 Optimized register usage of kernel to achieve full occupancy. Red triangle shows our

register usage per thread.

Our Block Size
256

0

8

16

24

32

16 80 144 208 272 336 400 464

M
u

lt
ip

ro
c
e
s
s
o

r
 W

a
rp

 O
c
c
u

p
a
n

c
y

Threads Per Block

Varying Block Size

Our Register
Count 16

0

8

16

24

32

0

4

8

1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
0

6
4

M
u

lt
ip

ro
c

e
s

s
o

r
 W

a
rp

 O
c

c
u

p
a

n
c

y

Registers Per Thread

Varying Register Count

58

Figure 5.5 Optimized shared memory usage to achieve full occupancy. Red triangle shows our

register usage per thread.

These figures tell us that we have full utilization of resources and achieve a warp

occupancy ratio of 1. We could also use 512 threads per block and get full occupancy

(32 threads) but in order to do that we should lower the shared memory usage by

threads. Because if we increase thread count without limiting their shared memory

usage we will have a shared memory overflow which causes a performance decline.

Our Shared
Memory Usage

3888

0

8

16

24

32

0

5
1
2

1
0
2
4

1
5
3
6

2
0
4
8

2
5
6
0

3
0
7
2

3
5
8
4

4
0
9
6

4
6
0
8

5
1
2
0

5
6
3
2

6
1
4
4

6
6
5
6

7
1
6
8

7
6
8
0

8
1
9
2

8
7
0
4

9
2
1
6

9
7
2
8

1
0
2
4
0

1
0
7
5
2

1
1
2
6
4

1
1
7
7
6

1
2
2
8
8

1
2
8
0
0

1
3
3
1
2

1
3
8
2
4

1
4
3
3
6

1
4
8
4
8

1
5
3
6
0

1
5
8
7
2

1
6
3
8
4

M
u

lt
ip

ro
c

e
s
s
o

r
 W

a
rp

 O
c
c
u

p
a

n
c
y

Shared Memory Per Block

Varying Shared Memory Usage

59

 CHAPTER SIX

EVALUATION

6.1 Test Data and Measurement Method

6.1.1 Test Data

To measure our lemmatizer’s accuracy and performance we have used the

recently constructed Milliyet dataset (the news articles and columns of 5 years, 2001–

2005, from the Turkish daily newspaper Milliyet (http://www.milliyet.com.tr)) for

Turkish along with the TREC-style query and relevance judgments set

(Can, Kocberber, Balcik, Kaynak, Ocalan, & Vursavas, 2008). The dataset includes

408,305 documents which contains 95.5 million words (each document contains 234

words on the average), with 72 ad-hoc queries and 33 assessors. The query set

provided as a set of words that describes a user information need with three fields:

topic (a few words), description (one or two sentences), and narrative (more

explanation). We used the queries on the description field in our tests which includes

72 queries consisting 936 words with 13 terms average and 1.74 stop words, on

average (queries can be seen at Appendix 5).

6.1.2 Measurement

Precision and recall are the common evaluation measures in information retrieval.

Most of the other measures are derived from them.

a) Recall is the measure of the ability of a system to present all relevant items.

 Number of relevant items retrieved

Recall =

 Number of relevant items in collection

b) Precision is the measure of the ability of a system to present only relevant

items.

http://www.milliyet.com.tr/
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Fazli%20Can
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Seyit%20Kocberber
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Erman%20Balcik
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Cihan%20Kaynak
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Huseyin%20Cagdas%20Ocalan

60

Number of relevant items retrieved

Precision =

Total number of items retrieved

Where, retrieved is number of documents retrieved by a search of query and

relevant is total possible relevant documents within a given query.

Retrieval tasks whose results are a ranked list of documents can be evaluated by

the trec_eval program. “trec_eval” was written by Chris Buckley (It is available from

the TREC website at http://trec.nist.gov/trec_eval). We used the trec_eval package

version 8.1 for obtaining the effectiveness measures. An evaluation report for a run

evaluated by “trec_eval” gives a report with the measurements following (trec_eval

output can be seen at Appendix 1):

Table 6.1 Trec_eval measurement types

Name Description

num_ret Total number of documents retrieved over all queries

num_rel Total number of relevant documents over all queries

num_rel_ret Total number of relevant documents retrieved over all queries

map Mean Average Precision (MAP)

gm_map Average Precision. Geometric Mean,

q_score=log(MAX(map,.00001))

Rprec R-Precision (Precision after R (= num-rel for topic) documents

retrieved)

bpref Binary Preference, top R judged nonrel

recip_rank Reciprical rank of top relevant document

iprec@recall_N Interpolated Recall - Precision Averages at N recall

P@N Precision after N docs retrieved

.

6.2 Evaluation of Lemmatizer Accuracy

Firstly we wanted to see how accurate our lemmatizer on a small set. To achieve

this task, we manually lemmatized words on queries provided by dataset (72 Queries,

936 words) via “Büyük Türkçe Sözlük” (Turkish Language Association’s Grand

Dictionary) in order to create base lemmas for measurement. After that we applied

http://trec.nist.gov/trec_eval

61

our lemmatizer on same query set. Then we compared the base lemmas with our

lemmatizer’s output for each query. Table 6.2 shows a small fraction of the output,

the rest of this table can be seen at Appendix 6.

Table 6.2 Lemmatization of query set

Query Lemmatized Query Accuracy Summary

Kuş gribi nedir, nasıl bulaşır,

belirtileri nelerdir sorularına

cevap olabilecek dokümanlar.

kuş grip bulaş belirti soru

cevap olabil doküman

100%

Türkiye’nin Avrupa Birliği’ne

tam üyelik sürecinde Kıbrıs

sorununu ele alan bir doküman.

türkiye avrupa birlik tam

üyelik süreç kıbrıs sorun ele

alan doküman

90.91% The lemma of “ele”

must be “el” (hand)

but our lemmatizer

returns “ele”+

“(mek)” (to eliminate)

And the lemma of

“alan”’ must be

“al”+ “(mak)” (to

take) But our

lemmatizer return

“alan”(region)

Türkiye’de üniversiteye giriş

sınavının gençler üzerindeki

etkileri, gençlerin ve

kamuoyunun bu sınav için

düşündükleri.

türkiye üniversite giriş sınav

genç etki genç kamuoyu

sınav düşün

100%

Güney Asya’yı 26 Aralık 2004’te

vuran büyük Tsunami faciası ve

bu facianın sonuçları.

güney asya 26 aralık 2004

vur büyük tsunami facia

facia sonuç

100%

Mavi akımın ulusal enerji

politikamızdaki yeri, ekonomik

maliyeti

mavi akım ulusal enerji

politika yer ekonomik

maliyet

100%

Büyük bir bölümü deprem

bölgesi olan Türkiye'de deprem

öncesi alınan tedbirler nelerdir?

büyük bölüm deprem bölge

ol türkiye deprem önce alın

tedbir

100%

Türk Silahlı Kuvvetleri ile PKK

arasında meydana gelen

çatışmalar

türk silahlı kuvvet pkk arası

meydan gelen çatışma

100%

62

The queries consist of total 936 words. Eliminating stop words from queries lefts

us 786 words and our lemmatizer’s total accuracy is with 764 correct lemmas equals

to %97.201 (764 correct lemmas / 786 words).

Of course this evaluation was not sufficient enough to make a decision about our

lemmatizer’s effectiveness. So we decided to build an information retrieval (IR)

system and observe our lemmatizer’s impact on retrieval process.

While creating our test environment, we didn’t want to deal with the development

of an IR system from scratch; so instead, we used “Lucene” which is an open

source IR software library, created by Doug Cutting (It is available at

http://lucene.apache.org/java/docs/index.html). Because “Lucene” offers users full

text indexing and searching capability along with:

 ranked searching (best results returned first)

 Many query types: phrase queries, wildcard queries, proximity queries, range

queries etc.

 fielded searching (e.g., title, author, contents)

 sorting by any field

 multiple-index searching with merged results

 simultaneous update and searching

After we dealed with IR system development problem via “Lucene”; we

compared the effects of three different approaches on (Turkish) IR effectiveness on

“Lucene”:

a) NS: The abbreviation stands for no stemming. This approach uses all words as

an indexing term. The retrieval performance of this approach provides a

baseline for comparison.

b) FPT5: The abbreviation stands for fixed prefix truncation by length of 5

characters. We simply truncate the words and use the first 5 characters of each

http://lucene.apache.org/java/docs/index.html

63

word as its stem; words with less than 5 characters are used as a stem with no

truncation. We used this fixed prefix stemmer because it had shown before

that it produces good results on Turkish language (Can & others., 2008).

c) LDB: This abbreviation stands for our dictionary based lemmatizer.

In this study, we also used a stop words list (stop words list can be seen on

Appendix 3) consists of the most frequent words of Turkish language, and some

manually added words. Then we applied FPT5 stemmer to these words. So in final

case, we generated a stop word list composed of 5 character-length words (our stop

words list can be seen on Appendix 4). Later, we used this stop word list to eliminate

words, before applying the stemmers to them. For this purpose, we first used the

FPT5 stemmer to find the appropriate stem, and then we searched the stemmed word

in the stop word list.

The indexing information on “Lucene” with different stemmers, using the stop

word list, is shown in Table 6.3.

Table 6.3 The indexes created for search engine

 NS FPT5 LDB Gain %

of FPT5

over NS

Gain %

of LDB

over NS

Gain % of

LDB over

FPT5

Indexed

Term

Count

1679002 283365 69099 83.12% 95.88% 75.61%

Index Size 1584MB 1357MB 1004MB 14.33% 36.62% 26.01%

From table, it means that FPT5 and LDB provide 14.33% and 36.62%,

respectively, storage efficiency with respect to NS. The storage size of the index

builded with LDB is the most efficient among others.

To encapsulate, our evaluation process can be summarized as follows. First we

constructed three different indexes via three different options (listed above) applied

to indexing process respectively. Then we applied selected option on the queries in

the same way. After that we ran each of the queries on the system using the index

64

that is created with same option as the query stemmed, and then with the information

returned by system, we created a TREC-style output by using the first 1000 results

returned. This output allows us to measure the results in “trec_eval”. Thus, finally,

we measured the IR effectiveness of these three stemming approaches with

“trec_eval” program and compared them. The measurement results are below on

Table 6.4:

65

Table 6.4 Trec_eval measurement results.

 NS FPT5 LDB % of

LDB – NS

increase

% of

LDB –

FPT5

increase

num_ret 72000 72000 72000 - -

num_rel 7510 7510 7510 - -

num_rel_ret 4136 4870 5424 31.14 11.38

map 0.1904 0.2288 0.2941 54.46 28.54

gm_map 0.0771 0.1148 0.2063 167.57 79.70

Rprec 0.2352 0.2728 0.3356 42.69 23.02

bpref 0.3406 0.4036 0.4144 21.67 2.68

recip_rank 0.5701 0.6688 0.7899 38.55 18.11

P@5 0.4333 0.5278 0.6139 41.68 16.31

P@10 0.4125 0.4847 0.5667 37.38 16.92

P@15 0.4093 0.4630 0.5481 33.91 18.38

P@20 0.3882 0.4375 0.5188 33.64 18.58

P@30 0.3560 0.3981 0.4796 34.72 20.47

P@100 0.2332 0.2737 0.3300 41.51 20.57

P@200 0.1670 0.1976 0.2302 37.84 16.50

P@500 0.0955 0.1123 0.1283 34.35 14.25

P@1000 0.0574 0.0676 0.0753 31.18 11.39

iprec@recall_0.00 0.6273 0.7130 0.8214 30.94 15.20

iprec@recall_0.10 0.3764 0.4515 0.5863 55.77 29.86

iprec@recall_0.20 0.3058 0.3684 0.4913 60.66 33.36

iprec@recall_0.30 0.2527 0.3131 0.4112 62.72 31.33

iprec@recall_0.40 0.2139 0.2538 0.3422 59.98 34.83

iprec@recall_0.50 0.1741 0.2120 0.2749 57.90 29.67

iprec@recall_0.60 0.1328 0.1697 0.2137 60.92 25.93

iprec@recall_0.70 0.1020 0.1260 0.1653 62.06 31.19

iprec@recall_0.80 0.0691 0.0824 0.1103 59.62 33.86

iprec@recall_0.90 0.0433 0.0388 0.0455 5.08 17.27

iprec@recall_1.00 0.0073 0.0012 0.0116 58.90 866.67

66

To give a judgment on which is the best of these stemming approaches, we should

consider the precision – recall average, bpref, GM_MAP, MAP, P@10, and P@20

values on Table 6.4.

6.2.1 Precision at N documents

Figure 6.1 Visual presentation of precision at top N ranked retrieved documents

Precision at the top N documents, commonly 10 and 20 documents (P@10,

P@20), are preferred measure because of their simplicity and intuitiveness. The

precision computed after a given number of documents have been retrieved reflects

the actual measured system performance as a user might see it.

P@10 and P@20 values of LDB are about 17% and 18.5% higher than that of

FPT5, also about 37% and 33.5% higher than that of NS. Due to these observations,

our lemmatizer provides better results for first 20 results which are the results which

an ordinary user will commonly look only at them.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

P@5 P@10 P@15 P@20 P@30 P@100 P@200 P@500 P@1000

P
re

ci
si

o
n

 P(N) : P @ Top N ranked retrived documents

NS FPT5 LDB

67

6.2.2 Precision – Recall Averages

Figure 6.2 Visual presentation of interpolated precision - recall averages

The precision - recall graph (Figure 6.2) is created using the 11 cutoff values from

the precision at recall level averages on Table 6.4. Characteristically these graphs

slope downward from left to right, enforcing the notion that as more relevant

documents are retrieved (recall increases); the more non-relevant documents are

retrieved (precision decreases).

This graph is the most commonly used method for comparing systems. Curves

closest to the upper right-hand corner of the graph (where recall and precision are

maximized) indicate the best performance. The plots of different stemmers are

plotted on the same graph and it can be clearly seen that LDB is superior to both

other approaches.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

P
re

ci
si

o
n

Recall

NS FPT5 LDB

68

6.2.3 Map, Gmap and Rprec

Figure 6.3 Visual representations of gm_map, map and Rprec values

MAP is the mean of the average precision value that reflects the performance over

all relevant documents. The measure is not an average of the precision at standard

recall levels. Rather, it is the average of the precision value obtained after each

relevant document is retrieved. MAP is considered as a more reliable measure for

effectiveness (Buckley & Voorhees, 2004; Sanderson & Zobel, 2005).

In terms of MAP measure, the performance of LBD is 28.54% better than FPT5’s

performance and has an increase of 54.46% than that of NS. According to the MAP

results, FPT5 is obviously dropping behind LDB.

The geometric mean average precision (GMAP) measures improvements for low-

performing queries. GMAP is the geometric mean of per-query average precision, in

contrast with MAP which is the arithmetic mean. If a run doubles the average

precision for topic A from 0.03 to 0.06, while decreasing topic B from 0.3 to 0.27,

the arithmetic mean is unchanged, but the geometric mean will show an

improvement.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

gm_map map Rprec

P
re

ci
si

o
n

NS FPT5 LDB

69

GMAP measures show us that LBD is 79.70% better than FPT5 and 167.57% than

NS. Again, LDB is the best effective option.

R-Precision is the precision after R documents have been retrieved, where R is the

number of relevant documents for the query. It trivializes the exact ranking of the

retrieved relevant documents, which can be particularly useful in TREC where there

are large numbers of relevant documents. LBD outpaces FPT5 and NS on this

measure with 23.02% and 43.62%, respectively.

6.2.4 Bpref

Table 6.4 also shows the performance of NS, FPT5, and LDB in terms of bpref

and the percentage improvement provided by LDB with respect to NS and FPT5. For

easy comparison, bpref values of NS, FPT5, and LDB are shown as bar charts in

Figure 6.4.

Figure 6.4 Visual representations of bpref values

The bpref or “binary preference” measure was introduced by Buckley and

Voorhees (2004) which is designed for situations where relevance judgments are

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

bpref

NS

FPT5

LDB

70

incomplete. Bpref computes a preference relation of whether judged relevant

documents are retrieved ahead of judged irrelevant documents (ignores the

documents not evaluated by users). Bpref and MAP are very highly correlated when

used with complete judgments. But when judgments are incomplete like the ones we

use, rankings of systems by bpref still correlate highly to the original ranking,

whereas rankings of systems by MAP do not.

In terms of bpref, LBD is better than the rest (2.68% better than FPT5, 21.67%

better than NS). The bpref values of FPT5 and LBD are close to each other; on the

other hand, P@10 and P@20 values of LBD are about 15% higher than that of FPT5.

6.3 Evaluation of Lemmatizer Performance

6.3.1 Parameters

We did a set of benchmarks on two different word sets, 100,000 words and

1,000,000 words; both are eliminated from stop words and constructed with random

words taken from random documents of Milliyet dataset (created by Can & others.,

2008).

Benchmarks were launched on the same environment which has the following

configuration:

 Windows 7 64-bit OS

 Intel T9600 2.8 GHz CPU

 4 GB RAM

 NVIDIA GT240M

 Cuda SDK version 3.2

Before we started to run tests, we selected “threads per block” parameter as 256

and defined “thread block count” parameter as “word count” / “threads per block” for

all kernels. Also all algorithms tested have full warp occupancy.

71

6.3.2 Methods

We subjected the one sequential CPU-bound as a reference and its eight CUDA

equivalent algorithms for benchmarking. Each test was run with both 100,000 and

1,000,000 words. The tests were conducted each utilizes different structures which

are discussed at Section 5.1.1 for evaluation:

1. LW: Uses sequential algorithm with tree struct.(acronym of Lemmatize

Word)

2. LWAOS: Uses parallel array of structs algorithm

3. LWArrays: Uses parallel arrays algorithm

4. LWSOA: Uses parallel struct of arrays algorithm

5. LWCompactAOS: Uses parallel array of structs algorithm with compact

nodes

6. LWCompactArrays: Uses parallel arrays algorithm with compact nodes

7. LWCompactSOA: Uses parallel struct of arrays algorithm with compact

nodes

8. LWCompactSOAShared: Uses parallel struct of arrays algorithm with

compact nodes placed via pre-order traversal basis and exploits shared

memory

9. LWCompactSOABFS: Uses parallel struct of arrays algorithm with compact

nodes placed via breadth – first traversal basis and exploits shared memory

6.3.3 Results

For our first test we prepared 100,000 words and ran each algorithm 10 times to

be sure on accuracy of results and then wrote down the obtained average time to

Table 6.5. Results of benchmarking all of methods, compared by memory bandwidth

and time consuming are summarized in Table 6.5.

The performance of each method to process 100,000 words is described in Table

6.5, where “Total Runtime” represents the time that it takes to copy the data to the

72

graphics card, call and execute the kernel, and copy the results from the graphics

card back to system memory in milliseconds. ”Bandwidth” column is rate at which

data can be read from or stored into a memory. Memory bandwidth is usually

expressed in units of bytes/second, ”Total Speed up factor” column is value of CPU-

bound kernel time divided by value of current kernel time.

Table 6.5 Results for 100,000 words

Algorithm Type Structure Total

Runtime

in

milliseconds

Bandwidth

(GBps)

Total

Speed

up

factor

LW SEQ Trie 2876.633 N/A -

LWAOS CUDA AOS 58.809 11.41 48.92

LWArrays CUDA Arrays 58.232 11.53 49.40

LWSOA CUDA SOA 46.126 10.97 62.36

LWCompactAOS CUDA AOS 53.519 11.52 53.75

LWCompactArrays CUDA Arrays 57.787 11.66 49.78

LWCompactSOA CUDA SOA 39.075 13.18 73.62

LWCompactSOAShared CUDA SOA +

Shared

Memory

34.344 13.95 83.76

LWCompactSOABFS CUDA SOA via

BFS +

Shared

Memory

32.284 14.84 89.10

The table clearly shows that the parallel algorithms outperform the sequential

implementation. The speedup values of over 48x to 90x testify sufficient efficiency

of our solution.

73

Figure 6.5 Visual representation of results for 100,000 words in terms of search runtime

Here, in Figure 6.5, the bar chart shows the total performance times for our eight

lemmatizing algorithms applied on 100,000 words. Side by side, these bars show

how performance is affected by structure selection and memory layout. Worth

noticing is the performance of LWCompactSOABFS implementation is the best

performing.

Later, we tested all algorithms on 1 million words set with the same methods

applied in previous tests; in order to test effects of input data size on performance.

And the results are as follows:

0

10

20

30

40

50

60

Total Runtime

LWAOS

LWArrays

LWSOA

LWCompactAOS

LWCompactArrays

LWCompactSOA

LWCompactSOAShared

LWCompactSOABFS

74

Table 6.6 Results for 1 million words

Algorithm Type Structure Total runtime

in

milliseconds

Bandwidth

(GBps)

Total

Speed

up

factor

LW SEQ AOS 29076.238 N/A -

LWAOS CUDA AOS 594.041 11.66 48.95

LWArrays CUDA Arrays 598.227 11.39 48.60

LWSOA CUDA SOA 475.802 10.83 61.11

LWCompactAOS CUDA AOS 590.683 11.41 49.23

LWCompactArrays CUDA Arrays 595.149 11.63 48.86

LWCompactSOA CUDA SOA 391.942 13.41 74.19

LWCompactSOAShared CUDA SOA+

Shared

Memory

345.192 14.15 84.23

LWCompactSOABFS CUDA SOA via

BFS +

Shared

Memory

324.315 14.86 89.65

From the Table 6.6, we can see that there is no significant difference from the

results seen before in Table 6.5 Our data parallel algorithms outpace the sequential

implementation with enormous speed up factors.

Also our GPU bandwidth performance (memory throughput) ratio to the GPU’s

(NVIDIA GeForce GT240M) theoretical bandwidth (25.6GBps) is good which is

14.86GBps / 25.6GBps = 58% (GPU Specifications are added to Appendix 2). Ratio

must be over 50% in order to be called good and 70% is very good (NVIDIA

Corporation, August 2010).

75

Figure 6.6 Visual representations of results for 1 million words

Apparently, LWCompactSOABFS implementation performance has turned out to

be outperforming the other implementations again. This algorithm maps naturally to

the GPU, exploiting its parallelism and cache, and this is reflected in the considerable

speed increase over a CPU version by around 90 orders of magnitude.

Another performance increase can be observed in accessing the data located in

GPU’s memory, which is accelerated using the shared memory. However, it seems

that the optimization using shared memory is significant, if we compare the

performance gain between LWCompactSOA and LWCompactSOAShared algorithms

which are sharing same structure but latter exploits shared memory; the timing

measurements show that using the shared memory optimizes the execution time by at

almost 15%.

So in brief, compared to the CPU baseline implementation, we achieved

significant speed-up factors of the CUDA kernels to the sequential kernel ranging

from 49x to 90x in our evaluations.

0

100

200

300

400

500

600

Total Runtime

M
il

li
se

c
o

n
d

s

LWAOS

LWArrays

LWSOA

LWCompactAOS

LWCompactArrays

LWCompactSOA

LWCompactSOAShared

LWCompactSOABFS

 76

CHAPTER SEVEN

CONCLUSION AND FUTURE WORK

In this thesis, we presented a hardware accelerated implementation of Turkish

lemmatizing algorithm exploiting GPU devices through NVIDIA’s CUDA and

evaluation of it. The work enables researchers to easily utilize their CUDA device for

lemmatizing big chunks of words from within in C or C++ applications. Our

lemmatizer is based on CUDA, so, other cards supporting CUDA can also be used,

and our approach can be ported to other programming environments.

Our study conclusively shows that lemmatizing is essential in the implementation

of Turkish information retrieval systems. In our IR experiments, the most effective

stemming method was our lemmatizer. The performance comparison of fixed prefix

truncation (FPT5), our lemmatizer (LDB), and no stemming approaches (NS), shows

that our lemmatizer performs better than the other two in terms of all measurements.

The stemming option LDB provides 28.54% in terms of MAP; 79.70% in terms of

GMAP; 16.92% in terms of P10; 18.58% in terms of P20 and 2.68% in terms of

bpref, respectively, higher performance than that of FPT5.

But in terms of bpref, the measurements also show that FPT5 and LDB provide

comparable results (with 2.68% difference), similar to work of Can & others. (2008)

that showed for Turkish lemmatizer and a simple stemmer provide retrieval

environments with similar bpref performances.

To streamline the overall results, it is clear that LDB produced the best results

against other approaches in terms of all measurements. The FPT5 is also effective,

but not as effective as LDB.

Even though floating-point calculations are not dominating our lemmatizing

algorithm and its word processing characteristics limits the effectiveness due to non-

synchronized branching and diverging, data dependent loop bounds, we achieved a

significant speedup over the baseline algorithm on a CPU. More specifically, we

77

achieve up to a 90x speedup over CPU based sequential algorithm for the problem

solution on selected word sets. This work demonstrates the potential of GPUs to

accelerate even branch dominated massive word lemmatizing algorithms by carefully

selecting and redesigning data structures and selecting appropriate memory types on

hardware.

 We took eight different approaches to the selection of an efficient data structure

for CUDA programming model. We used our lemmatizer to lemmatize several

different word sets and evaluated the performance of the eight parallel algorithms in

comparison to a baseline implementation running on a single CPU. Our results

showed that the parallel algorithms run significantly faster. More specifically our

fastest algorithm (LWCompactSOABFS) achieved a speedup of around 90x in

comparison to the baseline to perform lemmatization on a word set containing 1

million words. LWCompactSOABFS performs very well compared to the other

algorithms, since its layout is compatible with the SIMD computation model of

GPUs. The results confirm that; the struct of arrays implementation constructed with

breadth-first traversal from trie offers best results for our lemmatizer.

Previous works on agglutinative languages (Can & others., 2008; Kettunen,

Kunttu, & Jarvelin, 2005) show that lemmatizers are more effective than simple

fixed prefix truncate but latter is preferable because the way its low complexity and

simplicity. On the other hand , in this thesis, we show that we can exploit the gains of

lemmatization via GPGPU, which provides us a more effective and efficient

lemmatizer.

For future work there are several additional evaluations and improvements that

are of interest. The algorithms we used for our evaluation all have similar

characteristics. We may add some feedback mechanism to look up algorithm in order

to increase accuracy. Feedback mechanism should allow look up procedure to turn

back to parent node in case of the character looked up in trie is available for both

transformation and key match (discussed in Section 2.3.4) or is available for two

different haplology cases (node has both i and u narrow vowels and procedure must

78

choose one of them). Thus, if the procedure chooses wrong path it can turn back to

parent node with the aim of proceeding through second route. But this will slow up

the procedure a little bit and also will increase data dependency which is the most

significant case to be avoided in parallel computing. So, in order to add this

mechanism may be obliged to change the whole structure of procedure. Furthermore,

our lemmatizer is working on only single words the lemmatizing process can be

improved to handle phrases. Also the lemmatizer returns words meanings from

dictionary which makes it perfect sub-tool for word sense disambiguation (WSD)

programs. With our lemmatizer and a parallel WSD algorithm to select most

appropriate lemma may result to a higher accuracy.

Also as the device memory, registers and shared memory increase, additional

amounts of data can be processed in parallel. It is expected that future versions of

CUDA and future NVIDIA devices will offer increased performance. To take

advantage of performance increases with these developments, the structure of

algorithm can be changed and variables can be placed on faster memories as an

additional effort.

79

REFERENCES

Altingovde, I.S., Ozcan, R., Ocalan, H.C., Can, F., Ulusoy, Ö. (2007). Large-scale

cluster-based retrieval experiments on Turkish texts. In Procedings of the 30th

annual international ACM SIGIR conference on Research and development in

information retrieval (ACM SIGIR '07), 891-892.

Buckley, C., & Voorhees, E.M. (2004). Retrieval evaluation with incomplete

information. In Procedings of the 27th annual international ACM SIGIR

conference on Research and development in information retrieval (ACM SIGIR

'04), 25–32.

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval (1st ed).

NY: Addison-Wesley Professional.

Can, F., Kocberber S., Balcik, E., Kaynak, C., Ocalan, H.C., Vursavas O.M.

(2008). Information retrieval on Turkish texts. JASIST, 59 (3), 407-421.

Can, F., Kocberber S., Balcik, E., Kaynak, C., Ocalan, H.C., Vursavas O.M. (2006).

First large-scale information retrieval experiments on turkish texts. In Procedings

of the 29th annual international ACM SIGIR conference on Research and

development in information retrieval (ACM SIGIR '06), 627 – 628.

Frakes, W.B., & Baeza-Yates, R. (1992). Information retrieval: agorithms and data

structures. Englewood Cliffs, NJ: Prentice Hall.

Glaskowsky P. N. (September, 2009). NVIDIA’s Fermi: The First Complete GPU

Computing Architecture. Retrieved January 20, 2011, from

http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_NVIDIA

's_Fermi-The_First_Complete_GPU_Architecture.pdf.

http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Fazli%20Can
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Seyit%20Kocberber
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Erman%20Balcik
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Cihan%20Kaynak
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Huseyin%20Cagdas%20Ocalan
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Onur%20M.%20Vursavas
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Onur%20M.%20Vursavas
http://www.arnetminer.org/viewpub.do?pid=957772
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Fazli%20Can
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Seyit%20Kocberber
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Erman%20Balcik
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Cihan%20Kaynak
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Huseyin%20Cagdas%20Ocalan
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Onur%20M.%20Vursavas
http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_NVIDIA's_Fermi-The_First_Complete_GPU_Architecture.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_NVIDIA's_Fermi-The_First_Complete_GPU_Architecture.pdf

80

Korenius, T., Laurikkala, J., Jarvelin, K., & Juhola, M. (2004). Stemming and

lemmatization in the clustering of finnish text documents. Proceedings of the 13th

ACM International Conference on Information and Knowledge Management

(ACM CIKM '04), 625 - 633

Kettunen, K., Kunttu, T., & Jarvelin, K. (2005). To stem or lemmatize a highly

inflectional language in a probabilistic IR environment?. Journal of

Documentation, 61 (4), 476–496.

Kirk, D.B., & Hwu, W.W. (2011). Programming massively parallel processors a

hands-on approach. Burlington: Morgan Kaufmann.

Manavski, S.A., Valle G. (2008). CUDA compatible GPU cards as efficient

hardware accelerators for Smith-Waterman sequence alignment. BMC

Bioinformatics, 9 (2), 10+.

Manning, C.D., Raghavan, P., & Schütze, H. (2008). Introduction to Information

Retrieval. Cambridge: Cambridge University Press.

Morrison, D.R. (1968). Practical Algorithm to Retrieve Information Coded in

Alphanumeric. JACM, 15 (4), 514 – 534.

NVIDIA Corporation. (2009). NVIDIA’s next generation CUDA compute

architecture Fermi v1.1. Retrieved June 09, 2011, from

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compu

te_Architecture_Whitepaper.pdf.

NVIDIA Corporation. (November, 2010). NVIDIA CUDA programming guide

version 3.2. Retrieved November 22, 2010, from

http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUD

A_C_Programming_Guide.pdf.

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf

81

NVIDIA Corporation. (August, 2010). NVIDIA CUDA C best practices guide

version 3.2. Retrieved November 22, 2010, from

http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUD

A_C_Best_Practices_Guide.pdf.

NVIDIA Corporation. (October, 2010). Compute visual profiler user guide.

Retrieved November 22, 2010, from

http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/Visua

lProfiler/Compute_Visual_Profiler_User_Guide.pdf.

Nvidia Corporation (June, 2009). Specifications of Geforce GT240M GPU. Retrieved

August 13, 2011 from

http://www.nvidia.com/object/product_geforce_gt_240m_us.html.

Sanders, J., & Kandrot, E. (2011). CUDA by example : an introduction to general-

purpose GPU programming. Boston: Addison-Wesley.

Sanderson, M., & Zobel, J. (2005). Information retrieval system evaluation: Effort,

sensitivity, and reliability. In Proceedings of the 28th International ACM SIGIR

Conference on Research and Development in Information Retrieval (ACM SIGIR

'05), 162–169.

Schatz, M.C., Trapnell, C., Delcher, A.L., Varshney, A. (2007). High-throughput

sequence alignment using Graphics Processing Units. BMC Bioinformatics, 8 (1),

474+.

Solak, A., & Can, F. (1994). Effects of stemming on Turkish text retrieval. In

Proceedings of the 9th International Symposium on Computer and Information

Sciences, 49–56.

Shimpi A.L., & Wilson D. (June 16, 2008). NVIDIA's 1.4 Billion Transistor GPU: GT200

Arrives as the GeForce GTX 280 & 260. Retrieved December 16, 2010 from

http://www.anandtech.com/show/2549/2.

http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/VisualProfiler/Compute_Visual_Profiler_User_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/VisualProfiler/Compute_Visual_Profiler_User_Guide.pdf
http://www.anandtech.com/show/2549/2

82

Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos, E.P. & Ioannidis, S.,

(2008). Gnort: High Performance Network Intrusion Detection Using Graphics

Processors. Lecture Notes in Computer Science, 5230, 116 – 134.

83

APPENDIX 1

Table A. 1 Evaluation measures of trec_eval program

Name Description

num_ret Total number of documents retrieved over all queries

num_rel Total number of relevant documents over all queries

num_rel_ret Total number of relevant documents retrieved over all queries

map Mean Average Precision (MAP)

gm_map Average Precision. Geometric Mean,

q_score=log(MAX(map,.00001))

Rprec R-Precision (Precision after R (= num-rel for topic) documents

retrieved)

bpref Binary Preference, top R judged nonrel

recip_rank Reciprical rank of top relevant document

iprec@recall_0.00 Interpolated Recall - Precision Averages at 0.00 recall

iprec@recall_0.10 Interpolated Recall - Precision Averages at 0.10 recall

iprec@recall_0.20 Interpolated Recall - Precision Averages at 0.20 recall

iprec@recall_0.30 Interpolated Recall - Precision Averages at 0.30 recall

iprec@recall_0.40 Interpolated Recall - Precision Averages at 0.40 recall

iprec@recall_0.50 Interpolated Recall - Precision Averages at 0.50 recall

iprec@recall_0.60 Interpolated Recall - Precision Averages at 0.60 recall

iprec@recall_0.70 Interpolated Recall - Precision Averages at 0.70 recall

iprec@recall_0.80 Interpolated Recall - Precision Averages at 0.80 recall

iprec@recall_0.90 Interpolated Recall - Precision Averages at 0.90 recall

iprec@recall_1.00 Interpolated Recall - Precision Averages at 1.00 recall

P@5 Precision after 5 docs retrieved

P@10 Precision after 10 docs retrieved

P@15 Precision after 15 docs retrieved

P@20 Precision after 20 docs retrieved

P@30 Precision after 30 docs retrieved

P@100 Precision after 100 docs retrieved

P@200 Precision after 200 docs retrieved

P@500 Precision after 500 docs retrieved

P@1000 Precision after 1000 docs retrieved

84

APPENDIX 2

Table A. 2 Specifications of NVIDIA GeForce GT240M GPU (NVIDIA Corporation, June 2009)

Model GeForce GT 240M

Year
June 15, 2009

Code name GT216

Fab (nm) 40

Businterface
PCIe 2.0 x16

Memory max (MiB) 1024

Clock speed

Core (MHz)
550

Shader (MHz)
1210

Memory (MHz)
1600

Config core 48:16:08

Memory

Bandwidth max (GB/s) 25.6

Bus type GDDR3

Bus width (bit) 128

Graphics library support

(version)

DirectX 10.1

OpenGL
3.3

GFLOPs (MADD/MUL) 174

TDP (Watts) 23

85

APPENDIX 3

Table A. 3 Stop words list

Stop Words

a bunu hem mu s vb

acaba bunun henüz mü sana var

altı burada hep n sekiz veya

ama bütün hepsi nasıl sen veyahut

ancak c hepsine ne senden y

artık ç hepsini ne kadar seni ya

asla çoğu her ne zaman senin ya da

aslında çoğuna her biri neden siz yani

az çoğunu herkes nedir sizden yedi

b çok herkese neler size yerine

bana çünkü herkesi nerde sizi yine

bazen d hiç nerede sizin yoksa

bazı da hiç kimse nereden sonra z

bazıları daha hiçbiri nereye ş zaten

bazısı de hiçbirine nesi şayet zira

belki değil hiçbirini neyse şey

ben demek ı niçin şeyden

beni diğer i niye şeye

benim diğeri için o şeyi

beş diğerleri içinde on şeyler

bile diye iki ona şimdi

bir dokuz ile ondan şöyle

birçoğu dolayı ise onlar şu

birçok dört işte onlara şuna

birçokları e j onlardan şunda

biri elbette k onların şundan

birisi en kaç onların şunlar

birkaç f kadar onu şunu

birkaçı fakat kendi onun şunun

birşey falan kendine orada t

birşeyi felan kendini oysa tabi

biz filan ki oysaki tamam

bize g kim ö tüm

bizi gene kime öbürü tümü

bizim gibi kimi ön u

böyle ğ kimin önce ü

böylece h kimisi ötürü üç

bu hâlâ l öyle üzere

buna hangisi m p üzerine

bunda hani madem r v

bundan hatta mı rağmen ve

86

APPENDIX 4

Table A. 4 Our stop words list. (We applied fixed prefix truncate by 5 to words on Appendix 3)

Stop Words

a ç ı on şuna

acaba çoğu i ona şunda

altı çoğun için ondan şunla

ama çok iki onlar şunu

ancak çünkü ile onu şunun

artık d ise onun t

asla da işte orada tabi

aslın daha j oysa tamam

az de k oysak tüm

b değil kaç ö tümü

bana demek kadar öbürü u

bazen diğer kendi ön ü

bazı diye ki önce üç

bazıl dokuz kim ötürü üzere

bazıs dolay kime öyle üzeri

belki dört kimi p v

ben e kimin r ve

beni elbet kimis rağme vb

benim en l s var

beş f m sana veya

bile fakat madem sekiz veyah

bir falan mı sen y

birço felan mi sende ya

biri filan midir seni yani

biris g mu senin yedi

birka gene mudur siz yerin

birşe gibi mü sizden yine

biz ğ n size yoksa

bize h nasıl sizi z

bizi hâlâ ne sizin zaten

bizim hangi neden sonra zira

böyle hani nedir ş

bu hatta neler şayet

buna hem nerde şey

bunda henüz nered şeyde

bunla hep nerey şeye

bunu hepsi nesi şeyi

bunun her neyse şeyle

burad herke niçin şimdi

bütün hiç niye şöyle

c hiçbi o şu

87

APPENDIX 5

Table A. 5 Queries in the dataset.We used the queries in the “description” column.

QueryID Topic Description

235 Kuş Gribi Kuş gribi nedir, nasıl bulaşır, belirtileri nelerdir sorularına

cevap olabilecek dokümanlar.

238 Kıbrıs Sorunu Türkiye’nin Avrupa Birliği’ne tam üyelik sürecinde Kıbrıs

sorununu ele alan bir doküman.

241 Üniversiteye giriş sınavı Türkiye’de üniversiteye giriş sınavının gençler üzerindeki

etkileri, gençlerin ve kamuoyunun bu sınav için

düşündükleri.

243 Tsunami Güney Asya’yı 26 Aralık 2004’te vuran büyük Tsunami

faciası ve bu facianın sonuçları.

244 Mavi Akım Doğalgaz

Projesi

Mavi akımın ulusal enerji politikamızdaki yeri, ekonomik

maliyeti

258 Deprem Tedbir Önlem Büyük bir bölümü deprem bölgesi olan Türkiye'de deprem

öncesi alınan tedbirler nelerdir

265 Türkiye PKK çatışmaları Türk Silahlı Kuvvetleri ile PKK arasında meydana gelen

çatışmalar

270 Film Festivalleri Türkiye’ de gerçekleştirilen film festivalleri ve bu

festivallerde ödül alan sanatçılar.

271 Bedelli askerlik

uygulaması

Askerlik hizmetinin bedelli olarak yapılmasının Türk

kamuoyu üzerindeki etkileri, ilgili makamların söz konusu

uygulama hakkındaki görüşleri.

278 Stresle Başa Çıkma

Yolları

Günlük hayatımızı birçok yönden olumsuz etkileyen stresle

nasıl mücadele edebiliriz

282 Şampiyonlar Ligi Futbol Avrupa Şampiyonlar ligi 2004-2005 sezonu

mücadelesi

283 17 Ağustos Depremi 17 Ağustos Depreminin Türkiye üzerindeki sosyal ve

ekonomik etkileri

284 Türkiye'de internet

kullanımı

Son yıllarda bilişim teknolojisinin gelişmesiyle internet

kullanımının artması, kullanıcı profili, kullanım amaçları.

288 Amerika Irak işgal

demokrasi petrol

Amerika'nın Irak operasyonu demokrasi adına yapılmış bir

hareket midir yoksa petrol için yapılan bir işgal midir?

289 Türkiye'de futbol şikesi Şikenin Türk futbolundaki yeri, etkisi, yarattığı sonuçlar, bu

konuda alınan tedbirler, verilen cezalar, uzman görüşleri.

294 Fadıl Akgündüz Fadıl Akgündüz'ün milletvekili olamayacağına ilişkin

88

yapılan itirazlar.

295 İşsizlik sorunu Türkiye'de işsizlik sorununun bireylerin ruhsal sağlığı

üzerindeki olumsuz etkileri, işsizliğin toplumsal ve

ekonomik sonuçları.

296 2005 F1 Türkiye Grand

Prix

Formula 1'de 2005 sezonun 14'üncü yarışı Türkiye Grand

Prix'sini rakamlarla anlatan bir doküman.

298 Ekonomik kriz Türkiye'de ekonomik krize neden olan olaylar.

300 Nuri Bilge Ceylan Nuri Bilge Ceylan sinemasının Türk sinemasına etkileri

301 Türkiye'de meydana

gelen depremler

Türkiye'de meydana gelen depremlerin insanlar üzerindeki

etkileri ve bu depremlere karşı alınan önlemler.

302 ABD-Irak Savaşı ABD ve İngiltere'nin Irak'a yönelik başlattığı saldırının

ardından tarafların kayıplarını açıklayan bir doküman.

304 Hakan Şükür'ün milli

takım kadrosuna

alınmaması

Ersun Yanal Hakan Şükür'ü A milli futbol takımı kadrosuna

dahil etmeme kararı doğru mu yanlış mı Ersun Yanal haklı

mı haksız mı

305 Avrupa Birliği, Türkiye

ve insan hakları

Türkiye'nin Avrupa Birliği'ne (AB) uyum sürecinde insan

haklarıyla ilgili yaptığı yenilikler, çıkardığı kanunlar

306 Turizm Son yıllarda Türk turizmindeki gelişmeler

307 Türkiye’deki sokak

çocukları

Türkiye’deki özellikle İstanbul’daki sokak çocuklarıyla ilgili

olarak yapılan çalışmalar, bu çocukların sokak çocuğu olma

nedenleri, parçalanmış ailelerin bu olaya etkileri, bu

çocukların sayıları, olayın toplumsal etkileri, bu çocukların

işlediği suçlar.

308 Türk filmleri ve sineması Son yıllarda büyük sıçrama yaptığı söylenen Türk

sinemasında yeni parlayan isimler, en kayda değer filmler,

eski ustaların bu konudaki katkıları.

311 Pakistan Depremi Pakistan’da 8 Ekim’de meydana gelen büyük deprem ve bu

depremin sonuçları

324 Sanat ödülleri Türkiye'de edebiyat, müzik, resim, sinema gibi sanat

dallarında verilmiş ödüller.

339 Avrupa Birliği Fonları Avrupa Birliği tarafından Türkiye'de, kamuya ve özel

sektöre ait her alandaki proje ve programlar için ayrılan

fonlar, geri ödemeli veya hibeli krediler.

342 Futbolda şike Futbolda şike söylentileri, yorumlar ve kanıtlar

343 milletvekili

dokunulmazlığı

Milletvekilleri meclis kararı olmadan yargılanamaz,

soruşturmaya tabii tutulamaz.

344 2001 Erkekler Avrupa milli takımı sporcularının turnuva süresindeki ve turnuva

89

Basketbol Şampiyonası sonrasındaki düşünceleri, onlarla yapılan röportajlar ve

takımdaki son haberler

347 2002 Dünya Kupası Türk Milli Takımı’nın 3. olduğu 2002 Dünya Kupası

348 bilişim eğitimi ve

projeleri

Türkiye'de yapılan bilişim eğitimi ve bilişim projeleri, bu

eğitimin ve projelerin kaliteleri ve sanayiye katkıları

349 Global ısınma Global ısınmanın dünya iklimine olumsuz etkileri nelerdir,

bu etkileri azaltmak veya yok etmek için neler yapmalıyız?

350 Türkiye'de mortgage Mortgage'in nasıl işleyeceği, Türkiye'ye yararları ve mevcut

kredi sistemleri üzerindeki oluşturacağı etki. Kamuoyunun

mortgage'den beklentileri.

352 ABD Afganistan Savaşı ABD'nin Afganistan'a yaptığı operasyonda Türkiye’nin

rolünü açıklayan bir doküman.

360 Yüzüklerin Efendisi-

Kralın Dönüşü

11 dalda ödül alan Yüzüklerin Efendisi-Kralın Dönüşü

filminin başarısını anlatan bir doküman.

362 Beyin Göçü Türkiye'de yetişen akademik olarak başarılı öğrencilerin

üniversite veya sonrasındaki bilimsel çalışmaları için yurt

dışını tercih etmeleri

366 aile kadın şiddet Aile içinde kadına karşı uygulanan şiddetin alkol ve

parasızlık gibi sebepler dışında ne gibi sebepleri vardır

Kadına şiddet daha çok hangi tür toplumlarda görülmektedir

Çocuk gelişimine etkileri nelerdir

367 sporcuların doping

yapması

Sporcuların doping yapması yarışma veya müsabakalarda

fiziksel dayanıklıklarını artırmak için kullanımı yasak olan

performans artırıcı maddeleri kullanmasıdır.

368 ozon tabakasındaki delik Ozon tabakası dünyaya uzaydan gelen ultraviyole ışınları

süzen bir filtredir. Bu filtrede oluşan delik cilt kanseri

vakalarında artışa neden olmaktadır.

373 Rusya'da okul baskını Kuzey Osetya’da yüzlerce kişinin rehin tutulduğu okul

binasına Rus güçleri tarafından düzenlenen operasyon.

374 İstanbul'da bombalı

saldırı

İstanbul'da 15 Kasım 2003 tarihinde, Kuledibi'ndeki Neve

Şalom ve Şişli'deki Betyaakov Sinagogu yakınlarında saat

09.30'da meydana gelen patlamalar.

377 Sakıp Sabancı'nın vefatı Sakıp Sabancı'nın 10 Nisan 2004 saat 05.55 sıralarında vefat

etmesiyle ilgili dokümanlar.

378 Ecevit Sezer çatışması MGK toplantısında Cumhurbaşkanı Sezer’in Başbakan

Ecevit’e anayasayı fırlatmasıyla gelişen olaylar.

90

382 Kıbrıs Türk üniversiteleri Kıbrıs’ta açılan yeni üniversitelerin ve burada okuyan

öğrencilerin sorunları, nasıl öğrenci aldıkları, denklik,

kalacak yurt, öğretim üyesi bulma konusunda yaşanan

sorunlar.

383 Türkiye'de 2003 yılında

turizm

Türkiye'ye 2003'te gelen turist sayısı ve dağılımı, illerdeki

turizm durumu, turizmin ekonomiye katkısı,

406 Türkiye'nin Nükleer

santral çalışmaları

Türkiye'nin Nükleer santral çalışmaları, nükleer santral

projeleri

411 hızlı tren kazası hızlı tren kazasının nedenleri ve alınan önlemler

412 YÖK'ün

Üniversitelerimiz

üzerindeki etkisi

Yüksek Öğretim Kurulu, YÖK'ün kuruluşu,

üniversitelerimiz üzerindeki olumlu olumsuz etkileri,

eleştirilen yönleri, YÖK hükümet ilişkileri

414 İbrahim Tatlıses’in

kadınları

İbrahim Tatlıses’in yaşadığı aşklar ve kadınlarla ilgili

yarattığı huzursuzluklar kavgalar.

416 Parçalanmış aileler Parçalanmış aile bireylerinin yaşadığı sorunlar, özellikle bu

türden ailelerin çocuklarının ve kadınlarının durumları.

417 Aile içi şiddet Aile bireyleri arasında yaşanan şiddet olayları ve sebepleri.

Çocuklara ve kadınlara uygulanan şiddet, buna maruz

kalanların yaşadığı sorunlar.

419 Türkiye’de kanser Türkiye’de son yıllarda özellikle Karadeniz bölgesinde

arttığı düşünülen kanserli hasta sayısının Çernobil olayı ile

varsa olan ilişkisi ve bu ilişkiyi irdeleyen çalışmalar, resmi

kuruluşlar tarafından verilen istatistiklerin güvenilirliği.

421 Futbol terörü ve

holiganizm

Futbolda yaşanan şiddet olayları, bunların nedenleri ve

engellenmesi için alınacak önlemler.

423 Türkiye'de ikinci el

otomobil piyasası

Türkiye'de son yıllarda ikinci el otomobil piyasasındaki

durum, son dönemlerde piyasada yaşanan düşüşün sebep ve

sonuçları, yeni otomobil piyasasındaki yeniliklerle bağlantısı

424 Tarihi eser kaçakçılığı Türkiye'den kaçırılan tarihi eserler ve tarihi eser kaçakçılığa

karşı yapılanlar

426 Festival İnsanların eğlenmesi ve kültür paylaşımı yapabilmesi için

düzenlenen festivaller.

428 Türkiye'de bayram

tatillerinde meydana

gelen trafik kazaları

Türkiye'de bayram tatillerinde meydana gelen trafik

kazalarının nedenleri, ve alınan önlemler.

432 öğrenmeyi etkileyen

faktörler

öğrenmeyi etkileyen faktörler ve etkileri, öğrenme teknikleri

91

433 Kekik otu Kekik otunun faydaları, sağlık üzerindeki etkileri

435 telif hakları Türkiye'de telif hakkı yasalarının durumu ve bu konuda

yapılan çalışmalar

437 İnternet ve toplum İnternet'in yaygınlaşması, sunulan hizmetler, toplum

üzerindeki etkileri.

442 Tarım Hayvancılık

Sorunları

Türkiye'de tarım ve hayvancılık alanında yaşanan

problemler ve bunların çözüm yolları.

444 İran'da Nükleer Enerji İran'ın nükleer enerji ile ilgili politikaları, açıklamaları,

nükleer enerji ile ilgili İran'da sürdürülen faaliyetler,

uluslararası toplumdan İran'a nükleer enerji politikaları ile

ilgili yöneltilen tepkiler veya verilen destekler

450 satranç Satrancın yazılı basında ne ölçüde yer aldığı

452 Kalıtsal Hastalıklar Genlerin insan sağlığı üzerindeki etkisi, hastalıkların kalıtsal

nedenleri.

472 hiperaktivite ve dikkat

eksikliği

hiperaktivite ve dikkat eksikliği nedir Belirtileri, teşhisi,

tedavisi nelerdir Çocukların ve yetişkinlerin günlük

yaşamına olumlu ve olumsuz etkileri nedir Hiperaktif

çocuklara öğretmen nasıl yaklaşmalı Bu çocuklara yönelik

eğitim sistemi nasıl geliştirilebilir

474 lenf kanseri Türkiye'deki lenf kanser istatistikleri

481 28 Şubat süreci 28 Şubat süreci ve Türkiye üzerindeki etkileri

92

APPENDIX 6

Table A. 6 Lemmatized queries

Query Lemmatized Query Accuracy Summary

Kuş gribi nedir, nasıl bulaşır,

belirtileri nelerdir sorularına

cevap olabilecek dokümanlar.

kuş grip bulaş belirti soru

cevap olabil doküman

100%

Türkiye’nin Avrupa Birliği’ne

tam üyelik sürecinde Kıbrıs

sorununu ele alan bir doküman.

türkiye avrupa birlik tam

üyelik süreç kıbrıs sorun ele

alan doküman

90.91% The lemma of “ele”

must be “el” (hand)

but our lemmatizer

returns “ele”+

“(mek)” (to

eliminate)

And the lemma of

“alan”’ must be

“al”+ “(mak)” (to

take) But our

lemmatizer return

“alan”(region)

Türkiye’de üniversiteye giriş

sınavının gençler üzerindeki

etkileri, gençlerin ve

kamuoyunun bu sınav için

düşündükleri.

türkiye üniversite giriş

sınav genç etki genç

kamuoyu sınav düşün

100%

Güney Asya’yı 26 Aralık

2004’te vuran büyük Tsunami

faciası ve bu facianın sonuçları.

güney asya 26 aralık 2004

vur büyük tsunami facia

facia sonuç

100%

Mavi akımın ulusal enerji

politikamızdaki yeri, ekonomik

maliyeti

mavi akım ulusal enerji

politika yer ekonomik

maliyet

100%

Büyük bir bölümü deprem

bölgesi olan Türkiye'de deprem

öncesi alınan tedbirler nelerdir?

büyük bölüm deprem bölge

ol türkiye deprem önce alın

tedbir

100%

Türk Silahlı Kuvvetleri ile PKK

arasında meydana gelen

çatışmalar

türk silahlı kuvvet pkk arası

meydan gelen çatışma

100%

Türkiye’ de gerçekleştirilen film

festivalleri ve bu festivallerde

ödül alan sanatçılar.

türkiye gerçekleştiril film

festival festival ödül alan

sanatçı

87.5% The lemma of “alan”

must be “al”+”(mak)”

(to take) But our

93

lemmatizer return

“alan”(region)

Askerlik hizmetinin bedelli

yapılmasının Türk kamuoyu

üzerindeki etkileri, ilgili

makamların söz konusu

uygulama hakkındaki görüşleri.

askerlik hizmet bedelli

yapılma türk kamuoyu etki

ilgili makam söz konu

uygulama hakkında görüş

100%

Günlük hayatımızı birçok

yönden olumsuz etkileyen

stresle nasıl mücadele

edebiliriz?

günlük hayat yön olumsuz

etkile stres mücadele ede

87.5% The lemma of “ede”

must be “et”+”(mek)”

(to do) But our

lemmatizer return

“ede”(brother)

Futbol Avrupa Şampiyonlar ligi

2004-2005 sezonu mücadelesi

futbol avrupa şampiyon lig

2004-2005 sezon mücadele

100%

17 Ağustos Depreminin Türkiye

üzerindeki sosyal ve ekonomik

etkileri

17 ağustos deprem türkiye

sosyal ekonomik etki

100%

Son yıllarda bilişim

teknolojisinin gelişmesiyle

internet kullanımının artması,

kullanıcı profili, kullanım

amaçları.

son yıl bilişim teknoloji

gelişme internet kullanım

artma kullanıcı profil

kullanım amaç

100%

Amerika'nın Irak operasyonu

demokrasi adına yapılmış bir

hareket midir yoksa petrol için

yapılan bir işgal midir?

amerika ırak operasyon

demokrasi adına yapıl

hareket petrol yapılan işgal

90% The lemma of

“yapılan” must be

“yapıl”+ “(mak)” (be

done) But our

lemmatizer return

“yapılan”+ “(mak) “

(to be settled)

Şikenin Türk futbolundaki yeri,

etkisi, yarattığı sonuçlar, bu

konuda alınan tedbirler, verilen

cezalar, uzman görüşleri.

şike türk futbol yer etki

yarat sonuç konu alın tedbir

veril ceza uzman görüş

100%

Fadıl Akgündüz'ün milletvekili

olamayacağına ilişkin yapılan

itirazlar.

fadıl akgündüz milletvekili

ol ilişkin yapılan itiraz

85.71% The lemma of

“yapılan” must be

“yapıl”+”(mak)” (be

done) But our

lemmatizer return

“yapılan”+”(mak)”

(to be settled)

Türkiye'de işsizlik sorununun türkiye işsizlik sorun birey 100%

94

bireylerin ruhsal sağlığı

üzerindeki olumsuz etkileri,

işsizliğin toplumsal ve

ekonomik sonuçları.

ruhsal sağlık olumsuz etki

işsizlik toplumsal ekonomik

sonuç

Formula 1'de 2005 sezonun

14'üncü yarışı Türkiye Grand

Prix'sini rakamlarla anlatan bir

doküman.

form 1 2005 sezon 14 yarış

türkiye grand pr rakam

anlat doküman

91.67% “Formula” and “Prix“

are not Turkish words

and therefore they

don’t take place in

Turkish dictionary.

Lemmatizer returns

latest found lemma.

Türkiye'de ekonomik krize

neden olan olaylar.

türkiye ekonomik kriz ol

olay

100%

Nuri Bilge Ceylan sinemasının

Türk sinemasına etkileri

nuri bilge ceylan sinema

türk sinema etki

100%

Türkiye'de meydana gelen

depremlerin insanlar üzerindeki

etkileri ve bu depremlere karşı

alınan önlemler.

türkiye meydan gelen

deprem insan etki deprem

karşı alın önlem

100%

ABD ve İngiltere'nin Irak'a

yönelik başlattığı saldırının

ardından tarafların kayıplarını

açıklayan bir doküman.

abd ingiltere ırak yönelik

başlat saldırı ardı taraf

kayıp açıkla doküman

100%

Ersun Yanal Hakan Şükür'ü A

milli futbol takımı kadrosuna

dahil etmeme kararı doğru mu

yanlış mı Ersun Yanal haklı mı

haksız mı

ersun yanal hakan şükür

milli futbol takım kadro

dahil etme karar doğru

yanlış ersun yanal haklı

haksız

100%

Türkiye'nin Avrupa Birliği'ne

(AB) uyum sürecinde insan

haklarıyla ilgili yaptığı

yenilikler, çıkardığı kanunlar

türkiye avrupa birlik ab

uyum süreç insan hak ilgili

yap yenilik çıkar kanun

100%

Son yıllarda Türk turizmindeki

gelişmeler

son yıl türk turizm gelişme 100%

Türkiye’deki özellikle

İstanbul’daki sokak çocuklarıyla

ilgili yapılan çalışmalar, bu

çocukların sokak çocuğu olma

nedenleri, parçalanmış ailelerin

bu olaya etkileri, bu çocukların

sayıları, olayın toplumsal

türkiye özellikle istanbul

sokak çocuk ilgili yapılan

çalışma çocuk sokak çocuk

olma parçalan aile olay etki

çocuk sayı olay toplumsal

etki çocuk işlet suç

95.83% The lemma of

“yapılan” must be

“yapıl”+”(mak)” (be

done). But our

lemmatizer return

“yapılan”(mak) (to be

settled)

95

etkileri, bu çocukların işlediği

suçlar.

Son yıllarda büyük sıçrama

yaptığı söylenen Türk

sinemasında yeni parlayan

isimler, en kayda değer filmler,

eski ustaların bu konudaki

katkıları.

son yıl büyük sıçrama yap

söylen türk sinema yeni

parla isim kay değer film

eski usta konu katkı

94.44% The lemma of

“kayda” must be

“kayıt” (registration)

But our lemmatizer

returns “kay”+

”(mak)“ (to slide).

This problem occurs

because there are

valid entries like

“kaydırmak” and

“kaydetmek” so

lemmatizer goes to

“kayd” on trie then

can’t find any match

and returns the latest

lemma (“ kay”).

Pakistan’da 8 Ekim’de meydana

gelen büyük deprem ve bu

depremin sonuçları

pakistan 8 ekim meydan

gelen büyük deprem

deprem sonuç

100%

Türkiye'de edebiyat, müzik,

resim, sinema gibi sanat

dallarında verilmiş ödüller.

türkiye edebiyat müzik

resim sinema sanat dal veril

ödül

100%

Avrupa Birliği tarafından

Türkiye'de, kamuya ve özel

sektöre ait her alandaki proje ve

programlar için ayrılan fonlar,

geri ödemeli veya hibeli

krediler.

avrupa birlik tarafından

türkiye kamu özel sektör ait

alan proje program ayrıl fon

geri ödemeli hibe kredi

100%

Futbolda şike söylentileri,

yorumlar ve kanıtlar

futbol şike söylenti yorum

kanıt

100%

Milletvekili meclis kararı

olmadan yargılanamaz,

soruşturmaya tabii tutulamaz.

milletvekili meclis karar

olma yargılan soruşturma

tabii tutul

100%

milli takımı sporcularının

turnuva süresindeki ve turnuva

sonrasındaki düşünceleri, onlarla

yapılan röportajlar ve takımdaki

son haberler

milli takım sporcu turnuva

süresinde turnuva düşünce

yapılan röportaj takım

haber

100%

Türk Milli Takımı’nın 3. olduğu türk milli takım 3 ol 2002 100%

96

2002 Dünya Kupası dünya kupa

Türkiye'de yapılan bilişim

eğitimi ve bilişim projeleri, bu

eğitimin ve projelerin kaliteleri

ve sanayiye katkıları

türkiye yapılan bilişim

eğitim bilişim proje eğitim

proje kalite sanayi katkı

100%

Global ısınmanın dünya iklimine

olumsuz etkileri nelerdir, bu

etkileri azaltmak veya yok et

için neler yapmalıyız?

global ısınma dünya iklim

olumsuz etki etki azalt yok

et yapma

100%

Mortgage'in nasıl işleyeceği,

Türkiye'ye yararları ve mevcut

kredi sistemleri üzerindeki

oluşturacağı etki. Kamuoyunun

mortgage'den beklentileri.

mor işle türkiye yarar

mevcut kredi sistem oluştur

etki kamuoyu mor beklenti

83.33% “Mortgage” is not a

Turkish word and

doesn’t take place in

Turkish dictionary.

Lemmatizer returns

latest found lemma.

ABD'nin Afganistan'a yaptığı

operasyonda Türkiye’nin rolünü

açıklayan bir doküman.

abd afganistan yap

operasyon türkiye rol açıkla

doküman

100%

11 dalda ödül alan Yüzüklerin

Efendisi-Kralın Dönüşü filminin

başarısını anlatan bir doküman.

11 dal ödül alan yüzük

efendi dönüş film başarı

anlat doküman

90.91% The lemma of “alan”’

must be “al”+”(mak)

“ (to take) But our

lemmatizer returns

“alan”(region)

Türkiye'de yetişen akademik

başarılı öğrencilerin üniversite

veya sonrasındaki bilimsel

çalışmaları için yurt dışını tercih

etmeleri

türkiye yetişen akademik

başarılı öğrenci üniversite

bilimsel çalışma yurt dış

tercih etme

100%

Aile içinde kadına karşı

uygulanan şiddetin alkol ve

parasızlık gibi sebepler dışında

ne gibi sebepleri vardır? Kadına

şiddet daha çok hangi tür

toplumlarda görülmektedir?

Çocuk gelişimine etkileri

nelerdir?

aile içinde kadın karşı

uygulan şiddet alkol

parasızlık sebep dışında

sebep vardır kadın şiddet

tür toplum görül çocuk

gelişim etki

95% The lemma of “alan”’

must be “var”

(available) But our

lemmatizer returns

“vardır”+”(mak)” (

to let a matter reach)

Sporcuların doping yapması

yarışma veya müsabakalarda

fiziksel dayanıklıklarını artırmak

için kullanımı yasak olan

performans artırıcı maddeleri

kullanmasıdır.

sporcu doping yapma

yarışma müsabaka fiziksel

dayanıklık artır kullanım

yasak ol performans artırıcı

madde kullanma

100%

97

Ozon tabakası dünyaya uzaydan

gelen ultraviyole ışınnları süzen

bir filtredir. Bu filtrede oluşan

delik cilt kanseri vakalarında

artışa neden olmaktadır.

ozon tabaka dünya uzay

gelen ultraviyole ışın süzen

filtre filtre oluş delik cilt

kanser vaka artış ol

100%

Kuzey Osetya’da yüzlerce

kişinin rehin tutulduğu okul

binasına Rus güçleri tarafından

düzenlenen operasyon.

kuzey osetya yüz kişi rehin

tutul okul bina rus güç

tarafından düzenlen

operasyon

100%

İstanbul'da 15 Kasım 2003

tarihinde, Kuledibi'ndeki Neve

Şalom ve Şişli'deki Betyaakov

Sinagogu yakınlarında saat

09.30'da meydana gelen

patlamalar.

istanbul 15 kasım 2003

tarih kuledibi neve şal şişli

bet sinagog yakın saat 09

30 meydan gelen patlama

88.89%

“Şalom” and

“Betyaakov “ are not

Turkish words and

don’t take place in

Turkish dictionary.

Lemmatizer returns

latest found lemma.

Sakıp Sabancı'nın 10 Nisan 2004

saat 05.55 sıralarında vefat

etmesiyle ilgili dokümanlar.

sakıp sabancı 10 nisan 2004

saat 05 55 sıra vefat etme

ilgili doküman

100%

MGK toplantısında

Cumhurbaşkanı Sezer’in

Başbakan Ecevit’e anayasayı

fırlatmasıyla gelişen olaylar.

mgk toplantı

cumhurbaşkanı sezer

başbakan ecevit anayasa

fırlatma gelişen olay

100%

Kıbrıs’ta açılan yeni

üniversitelerin ve burada okuyan

öğrencilerin sorunları, nasıl

öğrenci aldıkları, denklik,

kalacak yurt, öğretim üyesi

bulma konusunda yaşanan

sorunlar.

kıbrıs açıl yeni üniversite

okuyan öğrenci sorun

öğrenci al denklik kal yurt

öğretim üye bulma konu

yaşan sorun

100%

Türkiye'ye 2003'te gelen turist

sayısı ve dağılımı, illerdeki

turizm durumu, turizmin

ekonomiye katkısı,

türkiye 2003 gelen turist

sayı dağılım il turizm

durum turizm ekonomi

katkı

100%

Türkiye'nin Nükleer santral

çalışmaları, nükleer santral

projeleri

türkiye nükleer santral

çalışma nükleer santral

proje

100%

hızlı tren kazasının nedenleri ve

alınan önlemler

hızlı tren kaza alın önlem 100%

Yüksek Öğretim Kurulu, yüksek öğretim kurulu yök 92.85% The lemma of

98

YÖK'ün kuruluşu,

üniversitelerimiz üzerindeki

olumlu olumsuz etkileri,

eleştirilen yönleri, YÖK

hükümet ilişkileri

kuruluş üniversite olumlu

olumsuz etki eleştiril yön

yök hükümet ilişki

“kurulu”’ must be

“kurul” (commision)

But our lemmatizer

returns “kurulu”

(installed)

İbrahim Tatlıses’in yaşadığı

aşklar ve kadınlarla ilgili

yarattığı huzursuzluklar

kavgalar.

ibrahim tatlı yaşat aşk

kadın ilgili yarat

huzursuzluk kavga

77.78% “Tatlıses” is a special

name doesn’t have a

specific lemma.The

lemma of “yaşadığı”’

must be “yaşa” +

“(mak)” (to live) But

our lemmatizer

returns “yaşat” +

“(mak)” (to keep

alive)

Parçalanmış aile bireylerinin

yaşadığı sorunlar, özellikle bu

türden ailelerin çocuklarının ve

kadınlarının durumları.

parçalan aile birey yaşat

sorun özellikle tür aile

çocuk kadın durum

90.91% .The lemma of

“yaşadığı”’ must be

“yaşa” + “(mak)” (to

live) But our

lemmatizer returns

“yaşat” + “(mak)” (to

keep alive)

Aile bireyleri arasında yaşanan

şiddet olayları ve sebepleri.

Çocuklara ve kadınlara

uygulanan şiddet, buna maruz

kalanların yaşadığı sorunlar.

aile birey ara yaşan şiddet

olay sebep çocuk kadın

uygulan şiddet maruz kalan

yaşat sorun

93.33% .The lemma of

“yaşadığı”’ must be

“yaşa” + “(mak)” (to

live) But our

lemmatizer returns

“yaşat” + “(mak)” (to

keep alive)

Türkiye’de son yıllarda özellikle

Karadeniz bölgesinde arttığı

düşünülen kanserli hasta

sayısının Çernobil olayı ile

varsa olan ilişkisi ve bu ilişkiyi

irdeleyen çalışmalar, resmi

kuruluşlar tarafından verilen

istatistiklerin güvenilirliği.

türkiye son yıl özellikle

karadeniz bölge art düşünül

kanserli hasta sayı çe olay

var ol ilişki ilişki irdeleyen

çalışma resmi kuruluş

tarafından veril istatistik

güvenilirlik

96%

“Çernobil” is not a

Turkish word and

therefore doesnt take

place in Turkish

dictionary.

Lemmatizer returns

latest found lemma.

Futbolda yaşanan şiddet olayları,

bunların nedenleri ve

engellenmesi için alınacak

önlemler.

futbol yaşan şiddet olay

engellenme alın önlem

100%

Türkiye'de son yıllarda ikinci el

otomobil piyasasındaki durum,

son dönemlerde piyasada

türkiye son yıl ikinci el

otomobil piyasa durum

dönem piyasa yaşan düşüş

100%

99

yaşanan düşüşün sebep ve

sonuçları, yeni otomobil

piyasasındaki yeniliklerle

bağlantısı

sebep sonuç yeni otomobil

piyasa yenilik bağlantı

Türkiye'den kaçırılan tarihi

eserler ve tarihi eser kaçakçılığa

karşı yapılanlar

türkiye kaçır tarih eser tarih

eser kaçakçılık karşı

yapılan

100%

İnsanların eğlenmesi ve kültür

paylaşımı yapabilmesi için

düzenlenen festivaller.

insan eğlenme kültür

paylaşım yapabilme

düzenlen festival

100%

Türkiye'de bayram tatillerinde

meydana gelen trafik kazalarının

nedenleri, ve alınan önlemler.

türkiye bayram tatil meydan

gelen trafik kaza alın önlem

100%

öğrenmeyi etkileyen faktörler ve

etkileri, öğrenme teknikleri

öğrenme etkile faktör etki

öğrenme teknik

100%

Kekik otunun faydaları, sağlık

üzerindeki etkileri

kekik ot fayda sağlık etki 100%

Türkiye'de telif hakkı

yasalarının durumu ve bu

konuda yapılan çalışmalar

türkiye telif hakkı yasa

durum konu yapılan

çalışma

100%

İnternet'in yaygınlaşması,

sunulan hizmetler, toplum

üzerindeki etkileri.

internet yaygınlaşma sunul

hizmet toplum etki

100%

Türkiye'de tarım ve hayvancılık

alanında yaşanan problemler ve

bunların çözüm yolları.

türkiye tarım hayvancılık

alan yaşan problem çözüm

yol

100%

İran'ın nükleer enerji ile ilgili

politikaları, açıklamaları,

nükleer enerji ile ilgili İran'da

sürdürülen faaliyetler,

uluslararası toplumdan İran'a

nükleer enerji politikaları ile

ilgili yöneltilen tepkiler veya

verilen destekler

iran nükleer enerji ilgili

politika açıklama nükleer

enerji ilgili iran sürdür

faaliyet uluslararası toplum

iran nükleer enerji politika

ilgili yönelt tepki veril

destek

100%

Satrancın yazılı basında ne

ölçüde yer aldığı

satranç yazılı basın ölçü yer

al

100%

Genlerin insan sağlığı

üzerindeki etkisi, hastalıkların

kalıtsal nedenleri.

gen insan sağlık etki

hastalık kalıtsal

100%

100

hiperaktivite ve dikkat eksikliği

nedir Belirtileri, teşhisi, tedavisi

nelerdir Çocukların ve

yetişkinlerin günlük yaşamına

olumlu ve olumsuz etkileri nedir

Hiperaktif çocuklara öğretmen

nasıl yaklaşmalı Bu çocuklara

yönelik eğitim sistemi nasıl

geliştirilebilir

hiperaktivite dikkat eksiklik

belirti teşhis tedavi çocuk

yetişkin günlük yaşam

olumlu olumsuz etki

hiperaktif çocuk öğretmen

yaklaşma çocuk yönelik

eğitim sistem geliştir

100%

Türkiye'deki lenf kanser

istatistikleri

türkiye lenf kanser istatistik 100%

28 Şubat süreci ve Türkiye

üzerindeki etkileri

28 şubat süreç türkiye etki 100%

	415108
	m.sc thesis examination result form

