DOKUZ EYLUL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED
SCIENCES

DICTIONARY-BASED EFFECTIVE AND
EFFICIENT TURKISH LEMMATIZER

by
Mert CIVRIZ

September, 2011
IZMIiR

DICTIONARY-BASED EFFECTIVE AND
EFFICIENT TURKISH LEMMATIZER

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of Dokuz Eyliil University In
Partial Fulfillment of the Requirements for the Degree of Master of Science in

Computer Engineering, Computer Engineering Program

by
Mert CIVRIZ

September, 2011
IZMIiR

M.S¢ THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “DICTIONARY-BASED EFFECTIVE AND
EFFICIENT TURKISH LEMMATIZER” completed by MERT CIVRiZ under
supervision of ASSIST. PROF. DR. ADIL ALPKOCAK and we certify that in our

opinion it is fully adequate, in scope and in quality, as a thesis for the degree of

Master of Science.

dodUdad.
As Lbul e Al

Supervisor

Asﬁ. P/o@(, bic@ RI\CAUT /CL ;5;[H‘&‘g’)sf &S Nowale !&:\—%y

(Jury Member) (Jury Member)

\V/
Prof.Dr. Mustaf%)SABUNCU
Director

Graduate School of Natural and Applied Sciences

il

ACKNOWLEDGMENTS

I would like to thank to my thesis advisor Assist. Prof. Dr. Adil Alpkogak for his
help, suggestions, patience and systematic guidance throughout the all formation

phases of this thesis.

Furthermore, | would like to thank to Aslan Tiirk for his motivations, advices and

help through my graduate school years.

And my special thanks go to my family; the most valuable asset of my life; for all

their support, patience and happiness they gave me throughout my life.

Mert Civriz

DICTIONARY-BASED EFFECTIVE AND EFFICIENT TURKISH
LEMMATIZER

ABSTRACT

In this thesis, we present a new Turkish lemmatizer that runs on the GPU and
investigate its accuracy and performance. Turkish is an agglutinative language, with
a rich morphological structure, contains homographic and inflectional word forms
which are lowering the accuracy of stemmers. Thus, in Turkish information retrieval
systems, the ability to lemmatize Turkish words efficiently and effectively is
important. Our study aims at developing a fast dictionary based lemmatizing

approach for indexing and searching documents in Turkish.

Recent introduction of CUDA (Compute Unified Device Architecture) libraries
for high performance computing on graphic processing units (GPUs) by NVIDIA has
increased the trend to use GPUs as general purpose performance environment
(GPGPU). Today researchers started to exploit GPU’s high computational capability
through CUDA in many applicative contexts requiring intensive use of
computational resources such as molecular dynamics, fluid dynamics, cryptology,
computer vision, astrophysics and genetics.(e.g. Manavski and Valle, 2008) CUDA
can be used also in the information retrieval because of its massively workload. Our
program, achieves a speedup of as much as 90 times on a recent GPU (NVIDIA
GeForce GT240M) over the equivalent CPU-bound version, ultimately with the use
of parallelized execution of lemmatization algorithm using a data structure inspired
from “Radix Trie”. Here, we present evaluation results of our string lemmatizing
kernels for use in CUDA, which executes parallelized lemmatizing for a test set of
query strings. We compared our lemmatization algorithm running on GPU with the
serial CPU bound version, and explored issues associated with efficient use of GPU

resources with eight different algorithms.

Keywords: Information Retrieval, Turkish Information Retrieval, Lemmatizer,
CUDA, GPGPU, Parallel Programming

SOZLUK TABANLI ETKIN VE VERIMLI TURKCE GOVDELEYICi

(0Y/

Bu ¢alismada, GPU {izerinde ¢alisan bir Tiirk¢e govdeleyici algoritmasi gelistirdik
ve daha sonra bu algoritmanin performansint ve verimliligini arastirdik. Tiirkce
sondan eklemeli ve zengin morfolojik yapiya sahip bir dil olarak essesli ve yapisal
degiskinlige ugrayabilen kelimeleri igerdigi i¢in sozliik kullanmadan sadece kurallar
tanimlanarak govdeleme yapilmasi zahmetli ve verimsiz olacaktir. Bu yiizden Tiirkge
bilgi getirim sistemlerinde, Tiirkge kelimelerin etkin ve verimli bir sekilde sozliik
tabanli govdelenmesi dnemlidir. Bu ¢alismamiz Tiirk¢e dokiimanlarin indekslenmesi

ve aranmasi amaciyla sozliik tabanli hizli bir gévdeleyici gelistirmeyi amagliyor.

Yiiksek performansli programlama amaciyla Nvidia tarafindan tanmitilmis, grafik
programlama iiniteleri iizerinde c¢alisan ve hala gelistirilmekte olan CUDA
kiitiiphanesi grafik programlama {initelerinin, grafik programlamanin disinda genel
amagh performans ortami olarak kullanilmasi egilimini arttirdi. Bugiinlerde,
aragtirmacilar hesaplama kaynaklarinin yogun olarak kullanilmasini gerektiren
molekiiler dinamikler, akigkan dinamikleri, kriptoloji, goriintii isleme, astrofizik ve
genetik gibi bir ¢cok alanda CUDA ile grafik programlama iinitlerinin yliksek
hesaplama kabiliyetinden yararlanmaya bagladi.(Manavski ve Valle, 2008 gibi)
CUDA Dhilgi getirim islemlerinin dogasinda olan biiyiik is yikleri igin de
kullanilabilir. Bizim programimiz GPU iizerinde (NVIDIA GeForce GT240M)
“Radix Trie” veri yapist mantigiyla gelistirilen govdeleyici algoritmasinin paralel
calisirilmast ile CPU {izerinde c¢alisan seri versiyonuna gore, 90 kata kadar
performans artis1 sagladi. Bu tezde, kelime govdeleyici algoritmalarimizin test
kelime seti tizerinde calistirarak elde ettigimiz sonuglar1 gosteriyoruz. GPU {izerinde
calisan govdeleyici algoritmamizi CPU fizerinde calisan versiyonuyla karsilastirdik
ve GPU kaynaklarini nasil daha verimli kullanilabilecegimizi sekiz farkli

algoritmayla arastirdik.

Anahtar Sozciikler: Bilgi Erisimi, Tiirk¢e Bilgi Erisimi, Govdeleyici, CUDA,
GPGPU, Paralel Programlama

CONTENTS

Page

M.Sc. THESIS EXAMINATION RESULT FORM. ..ot i
ACKNOWLED GMENTS ..ot iii
A B S T R A C T e ettt e e e e e e —— iv
(@)20 TSSO URRRRSRR v
CHAPTER ONE - INTRODUCTION ...t 1
L1 INEEOTUCTION ettt e e e e e e e ettt e e e e e e e ee e e eeeeeeans 1
CHAPTER TWO - LEMMATIZATION ..o e aa e 4
P20 I <1 0] 0 T 4
2.1.1 Difference between stem and [8MMa........oeeens 4

2.2 LBIMIMATIZATION ...ttt e e e e e e e e eeeeeeeeeeeeeeeeeeeeeneenens 5
2.3 TUIKISN LeMMALIZATION ..ot e e e eeeeeeeenees 5
2.3.1 Morphological Structure of Turkish Wordscccccevviiiieeie e, 5

2.3.2 Structure Of DICLIONAIYcccveivieieiiccieeie et 8

2.3.3 Data StruCtUre SEIECTIONooee et 10

2.3.4 Lemmatization AlGOrithmcccooooiiiiiiiiiiee e 19
CHAPTER THREE - GPU AND GPGPU.... .ot 26
B L BPU e ————— e ——————— 26
3.1.1 GPU AFCHIECIUIE ..o, 28

B2 GBPGPU ..o e 32
CHAPTER FOUR = CUDA oottt e e e e ettt e e e e e e e s vnsiaraeeeeaeeaas 33

Vi

4.1 CUDA OVEIVIEW ...t e e e e e e e e e e e e nns 33

4.2 CUDA Programming Modelcooiiiiiiiiiieee e 34
4.2.1 CUDA KEIMEIS......ooiiiiiiiiiiiiieieieie st 34
4.2.2 Thread MOGEL........cooiiiiiiiecc e 36
4.2.3 MeMOIY MOGEIocuviiiiieciee e s 39

4.2.3.1 Global MEMOIY ..o s 41
4.2.3.2 LOCAI MEMOIY....cueeiiicie ittt 41
4.2.3.3 Shared MEMOIYcciviieiiee et 42
4.2.3.4 REGISTEIS. ...ttt 42
4.2.3.5 CoNStant MEMOIY.......cooiiiiiiieiie et 42
4.2.3.6 TEXIUIE MEIMOIYvviiiiiiieiiie ettt 43

4.3 CUDA Optimization Strategyccccvveveeieeieieesie e s ese e seese e s sre e 43

4.3.1 Instruction ThroUughpUL.........c.coveiiiiie e 43
4.3.1.1 ArithmetiC INStrUCLIONSccveveiieiiieie e 43
4.3.1.2 Control FIOW INSTIUCLIONScoveiviiiiiiiieieieiee e 44
4.3.1.3 Memory INStIUCLIONS.........ccviieiicie e 44

4.3.2 Memory BandWidth ..o 45
4.3.2.1 Data Transfers between Host and Device..........ccccoovvvverviieinerinnne 46
4.3.2.2 Global MemOry ACCESSEScoeiiriiriiiiieieieiee et 46
4.3.2.3 LOCAI MEMOIY....ccoeeivicieitieee ettt 47
4.3.2.4 ConStant MEIMOIY.......cocuiiiiiieiiie et 47
4.3.2.5 TeXIUrE MEMOIY ...ooiiiiiiiiieie et 47
4.3.2.6 Shared MEMOIYcccouiiiiiieerese e 47
4.3.2.7 REGISIEIS....veeieeiie ettt re e sre e 48

4.3.3 OCCUPANCY .eeiuvvreiiiieiieiesieeesteeessbeeessbeesssbeesssbeesssseessssessssseessneesnseeesnseeens 48

CHAPTER FIVE - LEMMATIZATION ON GPU ..o, 50

5.1 Lemmatization Algorithm on CUDA ... 50
5.1.1 Redesigning StrUCTUIE........ccueiiiiireeiese e 50
5.1.2 OCCUPANCY ...ttt ettt ettt et sb ettt nne s 56

vii

CHAPTER SIX - EVALUATION ..ot 59

6.1 Test Data and Measurement Method............ccocovviiiniiiene e, 59
6.1.1 TESEDALA......cciiiiiieieeee s 59

6.1.2 MEASUIEIMENT. ...ttt ettt ettt 59

6.2 Evaluation of Lemmatizer ACCUIACYccccuririeieieieieie et 60
6.2.1 Precision at N dOCUMENTSorueiiiieriiiiiesieeeee e 66

6.2.2 Precision — Recall AVEragesSccccveieiieiieeie e 67

6.2.3 Map, GMap and RPIEC.......ccuiiiiiierieiisiisie e 68

B.2.4 BPIET ..o 69

6.3 Evaluation of Lemmatizer Performance..........ccccuvvvereneneieneseseseeeree e, 70
6.3.1 PAraMETEIS. ...ccieiiiieiee et 70

6.3.2 MELNOAS ...t 71

B.3.3 RESUILS ..ottt nre s 71
CHAPTER SEVEN - CONCLUSION AND FUTURE WORKccccoveiennnn. 76
REFERENGQGES.c oottt e e e nae e 79
APPENDICES ...ttt 83

viii

CHAPTER ONE
INTRODUCTION

1.1 Introduction

With dramatic expand of Internet technology, computer users generating new data
for their requirements on the web so online data that the information retrieval based
on is increasing rapidly. Along with these growth; information retrieval deals on
large-scale documents that are created for different purposes in many different
languages by numerous users. Information retrieval (IR) works for classifying,
indexing and searching on this huge amount of data. As the necessity of this, various
approaches are applied to address this issue for indexing, retrieval and ranking, some
of them are kept secret due to commercial benefits. Stemming and lemmatizing
methods are only some of these approaches. In addition to these approaches, more
specific, language dependent methods are required to improve results. For this
purpose the major points of a language that differ from others must be determined. In
particular, for Turkish, we come up with the differences of Turkish Alphabet and the
grammar structure for suffixes. Word structures can grow to an unmanageable size
because Turkish morphology is very complex and more over there are many
exceptional cases in Turkish. From the point of the differences of Turkish

Morphology, a lemmatizer is a need for accurate IR programs.

Lemmatizers play a significant role in information retrieval (Frakes &
Baeza-Yates, 1992). The ability to lemmatize words efficiently and effectively is
thus important. Lemmatization is used in the IR for listing all the morphological
variants of a word. Usually, this is done by looking up a list of related words in a
dictionary. This kind of lemmatization is computationally simpler, since almost all
the work is done off-line in compiling the dictionary of morphological variants.
Lemmatization is another normalization technique where for each inflected word
form in a document or request, its basic form, the lemma, is identified. The benefits
of lemmatization are the same as in stemming. In addition, when basic word forms
are used, the searcher may match an exact search key to an exact index key. Such

accuracy is not possible with truncated, ambiguous stems.

Within the field of internet technology and growing online data there is an
increasing demand for faster ways to solve a variety of information retrieval and
natural language processing problems, for some of which Compute Unified Device
Architecture (CUDA) might be the right answer due to its scalable programming
model. CUDA is still relatively new and evolving rapidly and with its each new
release the computational abilities of the devices grow and it becomes easier to

exploit their computational power.

Graphics Programming Units (GPUs) differ from general-purpose
microprocessors in their design for utilizing the Single Instruction Multiple Data
(SIMD) paradigm. Due to the inherent parallelism of graphic programming, GPUs
adopted multicore architectures long before regular processors evolved to such a
design. As a result, today GPUs consist of many small computation cores that
support a higher number of floating-point operations per second. Originally designed
to accelerate computer graphics applications through massive on-chip parallelism,
GPUs have evolved into powerful platforms for more general purposes of compute-
intensive tasks, called as GPGPU (General Purpose Graphic Programming Unit).
Given their extremely high workload, information retrieval provides a very
interesting potential application domain for GPUs. NVIDIA’s launch of the CUDA
with its simple but effective programming model has resulted in the adoption of
GPUs by a diversity of domains. The NVIDIA CUDA programming model takes its
power from this simplicity, much in contrast to the previous approaches of GPGPU
environments. With CUDA, programmers no longer have to master graphics specific
knowledge, before being able to efficiently program GPUs. It has been demonstrated
that CUDA can significantly speed-up many computationally intensive applications
from domains such as scientific computation, physics, molecular dynamics

simulation, genetics, imaging and the finance sector.

In this thesis, we introduce a Turkish lemmatizer works on GPGPU through
NVIDIA’s CUDA. Building an efficient IR lemmatizer for GPUs is a non-trivial task
due to the branching and diverging nature of lemmatizing algorithm and hardware
constraints provided by the GPU. We outline and discuss a general architecture of

our lemmatizer and later we present our studies on GPU-based version of lemmatizer

with different performance optimization techniques. Finally, we compare CPU-
bound and GPU-bound versions of our algorithm and make a performance analysis.

This thesis is divided into seven chapters. The next chapter, chapter two, reviews
lemmatization process briefly and in addition to that explains our data structure
selection phases and implementation of lemmatizing algorithms in detail.

Chapter three introduces the GPU and GPGPU architecture and illustrates how
they work. It is important to know development environment to use it efficiently.

Chapter four identifies CUDA, its programming model and abstractions, and also

required works to achieve higher speed up rate.

Chapter five gives information about our studies of parallelization and redesigning

of algorithm in order to achieve an efficient lemmatizer on GPU.

Chapter six is about experiments and results on a selected dataset in two sub-
chapters. In first part, we looked at accuracy of our lemmatizer and later we

measured performance of it.

Finally last chapter, chapter seven, discusses results, concludes and gives a look to

possible future research studies.

CHAPTER TWO
LEMMATIZATION

2.1 Lemma

In linguistics, a lemma (from the Greek noun “lémma”, “headword”) is the
“dictionary form” or “canonical form” of a set of words. More specifically, a lemma
is the canonical form of a lexeme where lexeme refers to the set of all the forms that
have the same meaning, and lemma refers to the particular form that is chosen as
base form to represent the lexeme. In information retrieval, this unit is usually also
the citation form or headword by which it is indexed. Lemmas have special

significance in highly inflected and agglutinative language such as Turkish.

In a dictionary-based lemmatizer, a lemma can be seen as the headword of a

dictionary entry. Where, a dictionary entry consists of two parts:

e the lemma,

e the information of the lemma.

2.1.1 Difference between stem and lemma

In computational linguistics, a stem is the part of the word that never changes
even when morphologically inflected, whilst a lemma is the base form of the word.
For example, with a “fixed prefix truncate by 4 characters” stemmer extracts stem as
“boyn” from the word “boynu” where the lemma is “boyun”. During searching, the
retrieval system using this stemmer most probably return documents related to
“boynuz” (horn) since they will share the same stem “boyn”. In linguistic analysis,
the stem is defined more generally as the analyzed base form from which all

inflected forms can be formed.

2.2 Lemmatization

Lemmatization is the process of determining the lemma for a given word, so
different inflected forms of a word can be analyzed as a single item.
Lemmatization is the process which creates the set of lemmas of a lexical database. It
Is conceived as starting from text-words found in a corpus and leading to lemmas

heading dictionary entries.

Lemmatization is related to stemming but unlike stemming, which operates only
on a single word at a time, lemmatization operates on the full text and therefore can
discriminate between words that have different meanings depending on part of
speech. On the other hand, stemmer operates on a single word without knowledge of
the context that chops off the ends of words, and often includes the removal of
derivational affixes. Therefore stemmers cannot discriminate between words, which
have different meanings depending on part of speech. However, stemmers are
typically easier to implement and run faster, and the reduced accuracy may not
matter for some applications. The goal of both stemming and lemmatization is to
reduce inflectional forms and sometimes derivationally related forms of a word to a

common base form.

In our case, dictionary-based lemmatizer, lemmatization usually refers to doing
things properly with the use of a vocabulary and morphological analysis of words,
normally aiming to remove inflectional endings only and to return the base or

dictionary form of a word, which is corresponding to the lemma.

2.3 Turkish Lemmatization

2.3.1 Morphological Structure of Turkish Words

Stemming and lemmatizing is an essential task for indexing and information
retrieval purposes in agglutinative languages. Turkish is also an agglutinative

language, which has a rich morphological structure. Words are usually composed of

http://www.christianlehmann.eu/ling/ling_meth/ling_description/lexicography/database.html

a stem and of at least two or three affixes appended to it. And this is why it is usually
harder analyze a Turkish text.

In linguistics, a morpheme is the smallest meaningful component of a word and
morphology is analysis and description of the structure of morphemes. Morphology
Is also interested in how morphemes can be combined to form words. For example if
we analyze the word “tezim” (“my thesis” in English) we see that it has two units.
One of them is main meaning of word. In this example “tez” is the main meaning of
the word. This morpheme is called stem; and the remaining morpheme which is “im”

in this example is called as affix.

In Turkish, there are two kinds of processes to combine morphemes to form
words: inflection and derivation. Word structures are formed by affixations of

derivational and inflectional suffixes to stems.
Inflectional process is adding grammatical affixes to word stem. It doesn’t change
the class of word. Unlike English nouns, which have only two kinds of inflection

(plural and possessive); there are more kinds of inflectional affixes in Turkish.

For example the word “arabalar” (“cars” in English) can be broken down into

morphemes as follows:

‘Garaba,, + “-lar”

where the +’s indicate morpheme boundaries. Here “araba” (“car” in English)

and “arabalar” are both nouns.
Derivational process is simply an affix addition to a word stem which will change
the meaning and in some cases the class of the stem. For example when we break the

word “gozIlik” (“eye glasses” in English) into morphemes:

“g629’ + CG_Iﬁk”

the affix “-lik” is a derivational morpheme. It changes the meaning of the word
while it doesn’t change the class of stem. The words “g6z” (“eye” in English) and

“gozIliikk” are both nouns.

Some derivational affixes can change both words meaning and class. For example

when we look at morphemes of the word “dgretmen” (“teacher” in English):

“égret” + ‘C_men,’

the affix “-men” is a derivational morpheme in the word “6gret” (“to teach” in
English). It changes both the meaning of the word and class of the stem. The word

“Ogretmen” is a noun while the word “6gret” is a verb.

There are two main classes for Turkish roots. These classes are nominal and
verbal. Morphemes added to a root word can convert the word from a nominal to a
verbal structure (vice versa) or can create adverbial constructs. Under some
circumstances vowels in the roots and morphemes may be deleted depending on the
affix (vowel deletion / haplology). Similarly consonants in the roots words or in the
affixed morphemes may get through some modifications and may sometimes be

deleted. These two rules are presented below:

e Last consonant alteration

If last letter of a word or suffix is a stop consonant (siireksiz sert sessiz), and a
suffix that starts with a vowel is appended to that word, last letter changes (voicing).

Changes are p-b, ¢-c, k-g, t-d, g-g.

Some last consonant alteration examples are : kitap—kitab-a, pabu¢—pabuc-u,

cocuk—cocug-a, hasat—hasad-i, garp—garbi

And with some suffixes: elma-cik—elma-cig-i, yap-acak—yap-acag-im

When a word ends with “nk”, then “k” changes to “g” instead of “g”:

cenk—ceng-e, celenk—¢eleng-i

For some loan words, g-g change occurs: psikolog—psikolog-a

e Vowel deletion (vowel ellipsis or haplology)

Last vowel before the last consonant drops in some words when a suffix starting
with a vowel is appended: agiz—agz-a, burun—burn-um, zehir—zehr-e,

nakit—nakd-e, liituf—Ulitf-un

Also some verbs obeys this rule: kavur—kavr-ul

2.3.2 Structure Of Dictionary

The dictionary we have used for our work is “Biiyiik Tiirk¢e Sozliik” (Grand
Turkish Dictionary), the one that is published by TDK (Turkish Language
Association) and it is open to public via internet (http://tdkterim.gov.tr/bts/). This
dictionary lists the senses along with their definitions and example sentences that are

provided for some senses.

“Biiyiik Tiirkce Sozlik” consists different kinds of dictionaries like science
terms, art terms, sports terms, place names, regional dialects, etc. A typical entry
from this dictionary for the word “tez” (has two meanings : 1.fast 2.thesis) is given
below in Figure 2.1:

(1) 1. Cabuk olan, siiratli. 2. Siiratli bir bi¢gimde.

Giincel Tiirkce Sozliik

(I1) 1. Sav. 2. Universitelerde 6grencilerin veya 6gretim {iyelerinin hazirlayip bazen
bir sinav kurulu 6niinde savunduklar1 bilimsel eser: “Tezini mitolojiden hazirlayan
gozliiklii bir delikanli.” - H. Taner.

Giincel Tiirkce Sozliik

Figure 2.1 Dictionary entry for query word “tez”

http://tdkterim.gov.tr/bts/

The entry in the dictionary has the following information:

(11) . (sense number) / 2. (subsense) / Universitelerde dgrencilerin veya dgretim
tiyelerinin hazirlayip bazen bir sinav kurulu oniinde savunduklar1 bilimsel eser
(definition) / “Tezini mitolojiden hazirlayan gozliiklii bir delikanli.” (example
sentence) / - H. Taner. (citation) / Giincel Tiirk¢e Sozliik (dictionary type)

As is seen, in Turkish, a word commonly has more than one meaning. In order to
work efficiently we parsed and analyzed all the entries on “Biiyiik Tiirkge Sozliik”
then inserted them into a database table. Later the dictionary in the database is used
for word (lemma) and sense enumeration of it for standardization. More specifically,
we parsed and inserted the information on previous entry of dictionary (on Figure

2.1) into database as follows:

Table 2.1 Representation of dictionary on database table

ID OrderNo | Word | Meaning Dictionary
Type
342864 | 311713 tez Cabuk olan, siiratli. Giincel
Tiirkce
Sozlik
342865 | 311713 tez Siiratli bir bigimde. Glincel
Tiirkce
Sozliik
342867 | 311713 tez Sav. Giincel
Tiirkge
Sozlik
342868 | 311713 tez Universitelerde dgrencilerin veya | Giincel
Ogretim tiyelerinin hazirlayip Tiirkge
bazen bir sinav kurulu 6niinde Sozlik
savunduklar1 bilimsel eser

Here it can be seen that “tez” has four meanings (on Table 2.1) in database while
the entry is divided into two meanings in “Biiyiik Tiirkge Sozlik” (Figure 2.1). While
constructing the database we parsed all meanings into separate records with having
different “ID” but having same “OrderNo” on identical lemma. Thus, we can access

to and use lemma’s all different meanings with only its “OrderNo” field and can

10

select appropriate meaning for use of word sense disambiguation algorithms via its

unique “ID”.

2.3.3 Data Structure Selection

When we were thinking for the best possible data structure that is suitable for our

needs; our design goals were:

e The data structure should support prefix searching.

e The data structure should store thousands of entries with a low space
complexity (must be suitable with the architecture constraints of GPU
discussed on Chapter Three).

e The data structure should be able to store prefixes with variable lengths in
each node.

e The data structure should be fast (because we seek through thousands of
words in dictionary).

e Look-up method of data structure should not be data dependent and recursive
(must be suitable with constraints of CUDA detailed on Section 4.1).

e The data structure should be suitable with Turkish language’s rich
agglutinative structure.

e The data structure should be suitable with our finite state machine
implementation discussed on Section 2.6.

After a little survey we decided on trie structure which is suitable for our
requirements because the way tries are space efficient since nodes are shared
between keys with common prefixes, facilitates longest-prefix matching, and also
can be seen as a deterministic finite automaton with regard to its manner of work

pattern.

Tries (name comes from reTRIEval trees) are tree-based structures where each

node represents a part of the key. A trie is an ordered tree structure that is used to

11

store a collection of the keys, which are usually strings. All the descendants of a node

have a common prefix of the string associated with that node.

Table 2.2 A sample list of Turkish words

Words
Dogmak Dokunak
Dogum Dokunag
Doku Dokunma
Dokuma Dokunmak
Dokumaci Dokunmatik
Dokumak Dokunulmaz

For instance, a trie would store the list of Turkish words presented in Table 2.2 as

follows:
o
L&
m u
B -
a m m
1
Lk g
e Lk |

e

Figure 2.2 Visual representation of the words' settlement on trie in Table 2.2.

12

There are several variants of the trie data structure, one of the most efficient being
the PATRICIA (Practical Algorithm To Retrieve Information Coded In

Alphanumeric) trie, which is also known as “Radix” trie (Morrison, 1968).

The main characteristic of the radix trie is the way it eliminates unnecessary nodes
by grouping the sequences of keys whenever possible. Each node with only one child
is merged with its child. The result is that every internal node has at least two
children. Unlike in regular tries, edges can be labeled with sequences of characters as
well as single characters. This makes them much more efficient for sets of strings
that share long prefixes.

Using a Radix trie, the words in Table 2.2 would be inserted as Figure 2.3 below:

=) .
ENEE)
e

(o] k

Figure 2.3 Radix Trie allocation for given set of words

Radix tries can be constructed time affiliated to the length of the corpus, and
provide exact matching of a query in time proportional to the length of the query,

independent of the size of the corpus.

Basically, radix trie is a compact data structure that can give you the longest
prefix of an entry key in O(N) steps (in the worst case), with N the length of the

longest prefix.

13

For instance, the look-up method used with radix trie, taking the following
Turkish word “dokunmatik™ as argument retrieves the object highlighted in the

Figure 2.4 below:

S m—
‘ mak ‘ um ma
‘ c1 ‘ k a

g‘k‘k

ulmaz

Figure 2.4 Look-up of {dokunmatik} in PATRICIA Trie

We first designed our structure as a digital radix trie that holds keys on external
nodes and binary representation of characters on trie but then; to adopt the rules
haplology (vowel deletion) and consonant alteration we implemented the trie to work

on characters instead of binary numbers.

In order to prepare our dictionary for selected structure, we stored the parsed and
analyzed lemmas (dictionary entries) and their extracted features from their
information in the database into a XML like formatted file, which would be helpful
for designing our structure. Because XML style annotation increases readability and

allows manual addition to corpus with simple text editors or code snippets.

We have divided the information on the database records into two XML files. One
to hold meanings of lemmas named as “Dictionary Data XML” and the other one
named as “Trie Data XML” to hold headwords of the lemmas, thinking the fact that
our lemmatizer doesn’t need meanings of words for its purpose. The structure of the

“Dictionary Data XML” can be seen below in Figure 2.5.

14

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<root>

<RECORD ID="342864" orderno="311713" meaning="tez"
anlam="Cabuk olan, stratli." type="Gluncel Tiurkce Sozluk"/>
<RECORD ID="342865" orderno="311713" meaning="tez"
meaning="Slratli bir bicimde." type="Gilincel Turkce Sozluk"/>
<RECORD ID="342867" orderno="311713" word="tez"
meaning="Sav." type="Glncel Tiurkce S&zluk"/>

<RECORD ID="342868" orderno="311713"

word="tez" meaning="Universitelerde &grencilerin veya
6gretim tyelerinin hazirlayip bazen bir sinav kurulu

6ntinde savunduklari bilimsel eser" type="Glincel

Turkce So6zluk"/>

</root>

Figure 2.5 Representation of word “tez” in Dictionary Data XML

More elaborately, in “Dictionary Data XML”, ”word” stands for lemma itself
(“word” field in database) and the “ID” field in the XML corresponds to the
lemma’s “ID” on database table and likewise “orderno” corresponds to “OrderNo”
in the database and finally “type” represents dictionary type (“DictionaryType ” field
in database). The “ID” field differs on each record but “orderno” field stays same on
identical lemma (word) which is conceptually parallel with the database table

formation.

The structure of the XML file which provides lemmas (can be seen in Figure 2.6)
for lemmatizer contains prefix information and basic level morphological analysis of
the words. If a word has a corresponding meaning in the dictionary or is a common
prefix of more than one word in the dictionary; it is stored as a separate node. Here if
a node has a corresponding meaning in “Dictionary Data XML” it’s “orderno”

15

property stored as “Data” property of node in “Trie Data XML”. Similarly, if a node
is available for a consonant alteration; the alteration affix had been saved into
“ConsAlterKey” property. ”MasterData” and “MasterKey” were added in order to
hold the verb meaning and verb version respectively for the cases that a lemma has
more than one meaning. We simply unify these two versions into one lemma but
separate meanings. For example, assuming the analyzing / parsing procedure meets
with word “oymak”, the procedure will save the meaning of “oy” (“vote” in English
and is a noun) into “Data” property, the meaning of “oy (mak)” (“to drill” in English
and is verb) into “MasterData” property and the suffix “mak” into “MasterKey”.
Finally “VowelDeletion” was added to hold the information that if a node is
available for haplology or in other words, can be skippable in order to search its sub
nodes. The consonant alteration keys and vowel deletion datas are not added
manually. These properties added automatically via an algorithm by analyzing all of
the lemma’s morphemes on “Trie Data XML” file’s constructing time. The resulting
corpus is 14.31MB and has 137372 nodes. The structure of XML can be seen below:

16

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<root>

<t ConsAlterKey="" MasterKey="" VowelDeletion="0" Data=""

MasterData="">

<e ConsAlterKey="" MasterKey="mek" VowelDeletion="0"

Data="306029" MasterData="308662">

<z ConsAlterKey=""
MasterKey="mak" VowelDeletion="0"

Data="311713" MasterData="" />

</e>

</t>

</root>

Figure 2.6 Representation of word "tez" in “Trie Data XML”

After we formed our XML files, we defined our trie nodes with regard to XML
formation. Each property of a XML node has a corresponding property on our trie

node definition which are presented below:

e Key: This property holds actual key of node. (This property of node

corresponds to “name” property of XML node)

e ConsAlterKey: This property holds the consonant alteration key of node’s
“key”. This node will be null if key is not suitable for consonant alteration but

will store the replacement key on other case. For example if key is “k” this

17

[Pl

property will be “g” or “g” with regard to parent node. If parent node’s key
ends with “n” then “ConsAlterKey” will be “g” otherwise “g”. (This property
of node corresponds to “ConsAlterKey” property on XML node)

MasterKey: This property doesn’t actually necessary for lemmatizing process
but we need it when we use our lemmatizer on word sense disambiguation or
query / document expansion (finding an appropriate synonym of word)
purposes. Can be ”mak” or “mek” depending on prefix on parent node. (This

property of node corresponds to “MasterKey” property on XML node)

Data: This property holds dictionary order of the word. Like “MasterKey”
this is only required when we need to get lemma’s meaning from dictionary
and work on it. We use this property to decide whether the node’s key
corresponds to a lemma when added to its prefixes. (This property of node

corresponds to “Data” property on XML node)

MasterData: Considering the fact that in Turkish a word can be used both as
a verb and a noun this property holds verb meaning of some words having
more than one meaning. For example: “oymak” has two meanings.
“tribe/clan” (noun) and “to drill” (verb) so Data holds noun meaning and
“MasterData” holds verb meaning. (This property of node corresponds to

“MasterData” property on XML node)

VowelDeletion: This property holds a boolean variable stating the node’s key
is suitable for haplology. (This property of node corresponds to
“VowelDeletion” property on XML node)

Children: This property holds a pointer of node’s children.

ChildCount: This property holds count of children of node.

So regard to this structure, the words on Table 2.2 settles to trie as follows:

18

Table 2.3 Representation of the words in Table 2.2 on our structure.

ConsAlter Master Vowel Data Master Children
Key Deletion Data
0 Do - - - - - 1,3
1 Do-g - mak - - 97914 2
2 Do-g-um - - 1 98331 - -
3 Do-ku - mak - 98598 98661 4,6
4 Do-ku-ma - - - 98651 - 5
5 Do-ku-ma-c1 - - - 98654 - -
6 Do-ku-n = mak - - 98722 7,10
7 Do-ku-n-a - - - - - 8,9
8 Do-ku-n-a-k g - - 98675 - -
9 Do-ku-n-a-¢ c - - 98669 - -
10 Do-ku-n-ma - - - 98710 - -

And a visual presentation of trie for an explicit view is shown below:

do

P — 1 -
§ ku
M.Data: 97914 Data:98598
M.Data:98661
N — : Y,
I \ , '
um ma n
V.Deletion:1 Data:98651 M.Data :98722
Data:98331 I =
- . S —
Data:98654 Data:98710
.—l—\
k ®
Data:98675 Data:98669

4

Figure 2.7 Our trie allocation of dictionary words shown in Table 2.3.

19

2.3.4 Lemmatization Algorithm

In Turkish, the suffixes are affixed to the stem according to definite ordering
rules. The agglutinative and rule-based nature of word formations in Turkish allows
modeling of the morphological structure of language in Finite State Machines
(FSMs). In Figure 2.8 there is a finite state machine expressing the ordering rules of
these suffixes based on our algorithm with a list of Turkish words in Table 2.4. The
double circles on nodes represent the accept states of the FSM. A character on an arc
indicates which suffix causes a state transition. And “any” on an arc represents the
rest of the characters that is not indicated by any arc from current state. If there are
multiple characters on an arc, all of the suffixes defined by those characters can
cause that state transition. While traversing the FSM by consuming suffixes in each

transition, reaching to an accepting state means that a possible stem is reached.

Table 2.4 A sample list of Turkish words

Words
Dogmak Dokumak
Dogum Dokunak
Doku Dokunag
Dokuma Dokunma
Dokumaci Dokunmak

The finite machine in brief:

e accepts the string x if it ends up in an accepting state, and

e rejects x if it does not end up in an accepting state.

20

any

consonant
alteration
Qanv

Figure 2.8 FSM representation of our lemmatizing algorithm for the words on Table 2.4.

Thus, for example if we give word “dokusu” as an input, FSM in Figure 2.8 starts
with g0, then reads the word, character by character, changing state after each
character read. When the FSM is in state q0 and reads character “d”, it enters state
gl. Then follows a route of g1— (0) —g2— (k) —g6— (u) —q7. After that it reads
“s” and doesn’t change state since there is no state bound to “s”. Same happens for
“u”. And after FSM consumes all characters; it accepts “doku” as lemma since it is
an accepting state. Transition table of FSM in Figure 2.8 is shown on Table 2.5

below:

21

Table 2.5 State transition table of FSM in Figure 2.8

d 0 g k u m a c ¢ 1 n Word

q0 jal |q0 |q0 |q0 |q0 |q0 |q0 g0 |q0 |q0 |q0O | -

ql |g0 |92 (g0 (g0 (g0 (g0 |90 (g0 [g0O (g0 (g0 |d

g2 |90 |q0 |93 |96 |90 |q0 g0 |90 |q0 |g0O |q0 |do

g3 |93 |3 |93 [ag3 |g4 |g5 |93 |93 [g3 |93 | g3 |dog
g4 |93 g3 |93 (g3 |g3 |a5 |93 |93 (g3 | g3 [g3 | dogu
g5 |95 |95 (g5 (g5 (g5 (g5 |95 (g5 (g5 (g5 (g5 | dogum
g6 |g0 g0 |q0 |90 |a7 |qO g0 (g0 [g0 |09 |dok

q7 |97 |97 |q7 |(q7 |q7 |08 g7 |97 |q7 |09 |doku
g8 |97 |97 |q7 |q7 |q7 |q7 q7 |97 |q7 |q7 | dokum

a2 |99 |99 (g9 (99 (g9 |qlo g9 (g9 (g9 |q9 | dokun

o o
= [~| B | ©
I 1o

qlo {g9 |1q9 |1q9 (99 |99 |Qq9 g9 (g9 (g9 |[q9 | dokunm

qll | 911 | g1l | gi11 (g1l | gll | gl1 | gll |(qgll | gll | gll | gl1 | dokunma

ql2 |q9 |q9 |gl4 (gl4 (g9 |q9 (g9 |gal3 |gl3 (g9 |q9 |dokuna

gl3 | q13 | 913 | g13 | q13 | g1l3 | g13 | gl3 | q13 | gl3 | 913 | 13 | dokunak

gl4 | ql4 | 914 [gl4 | qld4 | gl4 | 914 | qld4 | gl4 | ql4 | 914 | g14 | dokunag

ql5 | 915 | q15 | g15 [g15 | g15 | g15 | 15 | gl6 | g15 | g15 | g15 | dokuma

ql6 | g15 | q15 | g15 [gl5 | gl5 | g15 | g15 | gl5 | gl5 | gl7 | q15 | dokumac

ql7 | 917 | ql7 | ql7 | 9l7 | qgl7 | ql7 | ql7 |qgl7 | gl7 | gl7 | 917 | dokumaci

While we are taking the advantage of our dictionary based algorithm we did also
consider some rules for more effective and accurate lemmatization. In Turkish, when
a suffix is used, a letter may change into another one or may be discarded. For
example, the change of “p” to “b” in example of “kitap” (“book” in English) and
“kitaba” is an example of letter transformation (consonant alteration). And “burun”

“nose” in English) to “burnum” illustrates the second case since the letter u drops
(vowel deletion). Our algorithm can handle both situations with some exceptions on
the latter. Because a match is more important than transformation in our algorithm;
we simply ignore the transformation when we find a match in current node’s
children. Thus, the exceptions occur when there is a node key equals to
transformation character. For example “kayi” evolves into “kayda” with “-a” suffix,

and in the dictionary there are lemmas like “kaydirmak” and “kaydetmek” which

22

consists the “d” transformed letter after their “kay” morpheme. So when procedure
looks up for “kayda” in trie it encounters with “d” after “kay” (to slide) lemma. From
this point, the procedure doesn’t look for a transformation and continues to its path
on trie from “d” node, since there is a valid match. And it returns “kay” as lemma
because there is no child node with “a” key after “d” node (there is no lemma as

“kayda” in dictionary).

In summary, when user wants to lemmatize a word with our lemmatizer,
lemmatization procedure starts searching characters of word from left to right and
seeks them through in trie nodes. If a node key matches with current character or
character sequence, then procedure checks whether the node has its “Data” or
“MasterData” (has a meaning in dictionary) properties are occupied which determine
the accepting states of our implementation. This process continues until the query has
no more suffixes left to search; and at the end, latest lemma (accepting state) is
returned as an output. Here is a pseudo code for simplified CPU-based version of our

algorithm (Figure 2.9).

PROCEDURE LemmatizeWord (Trie, token, lemma)

CurrentNode = Root of Trie;

Buffer= array of 21 characters (longest Turkish word’s length)

MatchIndex= -1;
MatchLength=0;
HaplologyIndex=-1;

WHILE CurrentNode NOT NULL DO

IF CurrentNode HAS NOT any children
THEN RETURN;

ENDIF

MatchIndex = -1;
MatchLength = 0;
HaplologyIndex = -1;

FOR position = 0 TO ChildCount of CurrentNode DO

CurrentChild = Node at position of CurrentNode’s Children

CurrentKey = Key of CurrentChild;
CurrentConsKey = ConsonantAlterKey of CurrentChild;

23

We look that if current node’s key or consonant alteration key, and token

has a common prefix by a simple string compare algorithm
1 CommonPrefixLength = GetCommonPrefix (CurrentKey,
LCurrentConsKey,token);

If we have a match then we break loop and proceed to second part of

algorithm

| IF CommonPrefixLength > MatchLength
| THEN

I MatchLength = CommonPrefixLength;
1 MatchIndex = position;

: BREAK LOOP;

If there is no match we look if current node is suitable for haplology
through its preprocessed Haplology property but we dont break loop
because a match is more important than a haplology and succeeding nodes

may contain a common prefix

: THEN :
| IF HaplologyIndex < 0 |
I THEN [
I HaplologyIndex = position; 1
I ENDIF I
I ENDIF :

24

If we don’t have a match (MatchIndex equals to its initial wvalue), we
look if there is a haplology. If HaplologyIndex bigger than its initial
value we move our pointer to current node’s child node at haplology index
and concatenate its key to the buffer. Otherwise it means we have reached
the latest lemma, so we just assign buffer vrb. to lemma vrb. and return.

I IF MatchIndex == -1 I
I THEN :
I IF HaplologyIndex > -1 I
: THEN I
: CurrentNode = Node at HaplologyIndex of CurrentNode’s Childrenj
I CurrentKey = Key of CurrentNode; |
[Buffer = Concatenate CurrentKey to Buffer; I
| ENDIF 1
| ELSE !
I THEN :
I IF Lemma IS NULL :
: THEN :
I Lemma = Buffer;

I ENDIF |
| RETURN; |
LENDIE _ o o e :

If we have a match, the procedure continues from here.And firstly we
delete common prefix from token.
TokenLength = length of token;

L token= substring of token from Matchlength to Tokenlength; _ _ _ _ !
Later we move the pointer to the child node at MatchIndex of current
node’s children and concatenate current node’s key to the buffer.

I CurrentNode = Node at MatchIndex of CurrentNode’s Children I

I CurrentKey = Key of CurrentNode; |

| Buffer = Concatenate CurrentKey to Buffer; I

I CurrentData = Data of CurrentNode; |

: CurrentMasterData = MasterData of CurrentNode; |

And finally we look if current node has a corresponding meaning in the
dictionary.If current node’s Data or MasterData properties are not NULL
it means we have an accept state and a possible lemma.So we assign buffer
to lemma variable.
| IF CurrentData IS NOT NULL OR CurrentMasterData IS NOT NULL |
THEN

|
|
| Lemma = Buffer; I
|

If all the characters in word is consumed then quit and return with
latest lemma.

=
I

ENDWHILE
ENDPROCEDURE

(b)

Figure 2.9 (a) is the first part and (b) is the second part of the pseudo code of the CPU-bound version
of lemmatizing algoritm

25

For example when we want to lemmatize token “tezim”; the lemmatizing
procedure detailed with pseudocode on Figure 2.9 will follow the steps shown below
on Table 2.6:

Table 2.6 Steps taken while lemmatizing word "tezim"

Step | Buffer | Current | Lemma | Token | Current Current Master
Key Data Data

1 - root - tezim - -

2 - t - tezim - -

3 t - ezim - -

4 e - ezim 306029 30862
5 te e te zim - -

6 te z te zim 311713 -

7 tez z tez im - -

8 tez No tez im - -

match

The procedure starts to search “tezim” on trie (Step 1). The first match happens
at the node which has “t” key (Step 2). Following this match the key (“t”) is
concatenated to buffer and is deleted from token which lefts token equal to “ezim”.
Then the procedure looks if the current node has its “Data” property occupied.
Current node (“t”) has no data property so procedure continues to search “ezim”
through the child nodes of it (Step 3). The next match comes up at node “e” (child of
node with key “t”) (Step 4). Here node with key “e” has its “Data” property (“te” has
a meaning in dictionary) not null. So, key “e” is concatenated to buffer and then the
content of buffer is assigned to lemma. Later procedure starts to search the resulting
token “zim” through child nodes (Step 5). When the procedure comes at node with
key “z” a match happens; and because “z” has a valid “Data” property the steps done
at node “e” are repeated for node “z” and these left token as “im” (Step 6 and 7).
The token “im” has no match with the child nodes of “z”, so lemma and buffer
doesn’t change and procedure returns the lemma as “tez” along with the dictionary

meaning as “311713” which is the last accepting state (Step 8).

CHAPTER THREE
GPU AND GPGPU

3.1GPU

A graphics processing unit or GPU is a processor attached to a graphics card
dedicated to calculating floating point operations. GPU has evolved into a highly
parallel, multithreaded; many core processor with tremendous computational power
and very high memory bandwidth, as illustrated by Figure 3.1.

1400

1200 Ti2
1000 =@-=NVIDIA GPU GT200
«=@=|ntel CPU /.'
&
3 800

o G80
L 600

400

Westmere
200

re ! !
22.09.2002 04.02.2004 18.06.2005 31.10.2006 14.03.2008 27.07.2009

(@)

T12
180 l.
160 | =E=NVIDIA GPU 200
=@=|ntel CPU

0 = T T T T
22.09.2002 04.02.2004 18.06.2005 31.10.2006 14.03.2008 27.07.2009
(b)
Figure 3.1 Floating-point operations per second (a) and memory bandwidths of the CPU and GPU
(b) (NVIDIA Corporation, November 2010).

26

27

The reason behind the divergence in floating-point capability (FLOPS) between
the CPU and the GPU is that the CPU evolved to be good at any problem whether it
is parallel or not and performs best when small pieces of data are processed in a
complex, but sequential way. This lets the CPU to utilize the many transistors used
for caching, branch prediction and instruction level parallelism. On the other hand
the GPU is specialized for compute intensive, highly parallel workloads (massively
data parallel problems) to work efficiently and therefore designed such that more
transistors are devoted to data processing rather than data caching and flow control,

as schematically illustrated by Figure 3.2.

Control ALU ALU

ALU ALU

CPU GPU

Figure 3.2 The GPU devotes more transistors to Data Processing (NVIDIA Corporation,
November 2010)/

More specifically, the GPU is designed to address problems that can be expressed
as data parallel computations, since the program works in SIMD fashion, with high
arithmetic intensity. Also there is a lower requirement for sophisticated flow control
and, the program is executed on many data elements and has high arithmetic
intensity, the memory access latency can be hidden with calculations instead of big

data caches.

CPU’s execution units can support a limited number of concurrent threads. Today
servers with four quad-core processors can run only 16 threads concurrently (32 if
the CPUs support Hyper Threading). On the other hand GPUs can support from 768
to more than 30000 active threads (NVIDIA Corporation, August 2010).

28

In addition that above, CPU threads are heavyweight entities. The operating
system must swap threads’ state (on and off) on CPU execution channels to provide
multithreading (e.g. round - robin). Thus; context switching is slow and expensive.
On the contrary threads running on GPUs are extremely lightweight. Because all
active threads have their own separate memory registers, so no swapping of registers
or state need occur between GPU threads.

Both the host system and the device have their own random access memory
(RAM). On the host system, RAM is generally equally accessible to all code. On the
device, RAM is divided virtually and physically into different types, each of which

has a special purpose and fulfills different needs.

Another important difference between a CPU and a typical GPU is the memory
bandwidth. Because of simpler memory models and no requirements from legacy
operating systems, the GPU can support more than 180 GB/s of memory bandwidth,
while the bandwidth of CPUs is around 20 GB/s (in Figure 3.1.b).

3.1.1 GPU Architecture

The GPU is a many core processor containing an array of streaming
multiprocessors (SMs). A SM contains an array of streaming processors (SP), along
with two more processors called special function units (SFUs). Each SFU has four
floating point (FP) multiply units which are used for transcendental operations (e.g.
sin, cosine) and interpolation. There’s a MT issue unit that dispatches instructions to
all of the SPs and SFUs in the group. In addition to the processor cores in a SM,
there's a very small instruction cache, a read only data cache and a 16KB read/write
shared memory (NVIDIA Corporation, November 2010). The units can be seen in

Figure 3.3 below.

29

Streaming
Multiprocessor (SM)

Figure 3.3 Streaming Multiprocessor
(Shimpi & Wilson, 2008)

A streaming processor (SP) is a fully pipelined, single-issue, in-order
microprocessor, built with two arithmetic logic units (ALU) and a floating point unit
(FPU) (Figure 3.4). But a SP doesn’t have any cache, so it’s not particularly great at
anything other than computing tons of mathematical operations (Shimpi & Wilson,
2008).

Streaming Processor (SP)

Y Ve oV Y

Figure 3.4 Streaming Processor (Shimpi & Wilson, 2008)

30

Each SM manages multithread allocating and scheduling as well as handling
divergence through an instruction scheduling unit (MT issue). SM maps each thread
to an SP for execution where each thread maintains its own register state. After this
point threads have all the resources they need to run, threads can launch and execute
basically for free. So all the SPs in a SM execute their threads in lock-step, according
to the order of instructions issued by the scheduler. The SM creates and manages

threads in bundles called as warps (NVIDIA Corporation, November 2010).

SM instruction
scheduler

Time
Streaming

Multiprocessor (SM)

Warp 3, instruction 60

llllllllilllllll

Warp 3, instruction 61

| |
IRRRIRAIRARAR Ay

IEEEEEI[I

Figure 3.5 Scheduling of warps on SM (Shimpi & Wilson, 2008)

A warp is the smallest unit of scheduling within each SM. In SIMT fashion,
threads are assembled into groups of 32 called “warps” which are simultaneously
executed on different SPs at hardware level. Threads in warps share the control logic

(i.e. the current instruction). Thus, every thread within a warp must be executing the

31

same instruction but different warps built from threads executing the same program
can follow completely independent paths down the code. This means that branch
granularity is 32 threads; every warp are allowed to can branch independently of all
others (divergence), but if one or more threads within a warp branch in a different
direction than the rest then every single thread in that warp must execute both code
paths. Resolving divergence is also automatically handled by the hardware. The GPU
achieves efficiency by splitting its work-load into multiple warps and multiplexing
many warps onto the same SM (Figure 3.5). When a warp that is scheduled attempts
to execute an instruction whose operands are not ready (e.g. an incomplete memory
load), the SM switches context to another warp that is ready to execute, thereby
hiding the latency of slow operations such as memory loads. Each SM can have 32

warps in work at the same time (NVIDIA Corporation, November 2010).

CUDA Core

Figure 3.6 Nvidia Fermi GPUs’ architecture (NVIDIA Corporation, 2009)

32

To sum it up, a CUDA compatible GPU architecture is shown above in Figure
3.6. In NVIDIA’s CUDA compatible Fermi GPU architecture, a SM is made up of
two SIMD 16-way units. Each SIMD 16-way has 16 SPs, thus a SM in Fermi has 32
SPs or 32 CUDA cores and 64KB shared memory (NVIDIA Corporation, 2009).

3.2 GPGPU

General purpose graphics processing units (GPGPU) offers new opportunities for
the information retrieval community. GPUs are highly optimized towards the types
of operations needed in graphics, but GPU vendors have recently started to allow
researchers to exploit their computing power for other types of applications. Modern
GPUs offer large numbers of computing cores (48 cores in NVIDIA GeForce
GT240M, 512 Cores in NVIDIA Fermi) that can perform many operations in
parallel, plus a very high memory bandwidth (memory throughput) that allows
processing of large amounts of data (NVIDIA Corporation, November 2010).
However, to be efficient, computations need to the carefully structured to conform
the programming model offered by the GPU, which is a data-parallel model
reminiscent of the massively parallel SIMD (single instruction multiple data) fashion.
Recently, GPU vendors have started to offer better support for general-purpose
computation on GPUs. One major vendor of GPUs, NVIDIA, recently introduced the
Compute Unified Device Architecture (CUDA), a new hardware and software

architecture that simplifies GPU programming.

CHAPTER FOUR
CUDA

4.1 CUDA Overview

CUDA (Compute Unified Device Architecture) is a general-purpose hardware
interface designed to let programmers exploit NVIDIA graphics hardware for general
purposes instead of graphics programming. CUDA provides a programming model
and well defined programming abstracts (e.g. memory model, thread model) that are
consistent between all CUDA devices. The programming model describes how
parallel code is written, launched and executed on a device via defining model a
virtual model of GPU architecture allowing users a direct access to corresponding
hardware. Thread model presents a thread hierarchy on how threads works and the
memory model defines the different types of memories that are available to a CUDA

program.

The functional paradigm of CUDA views the GPU as a coprocessor to the CPU.
The GPUs supporting this language also facilitate scattered (arbitrary addresses)
memory transactions in GPU which are essential for GPUs to operate as a general-

purpose computational machine.

CUDA has several advantages (NVIDIA Corporation, November 2010) over
traditional computation models on GPUs (GPGPU):

e Code can read/write from and to arbitrary addresses in memory (scattered
transaction).

o A fastshared memory region that can be shared amongst threads which
enables higher bandwidths.

« Faster read / write operations from and to the GPU

o Full support for integer and bitwise operations.

33

34

But those advantages come with some limitations (NVIDIA Corporation,
November 2010) presented below:

o CUDA does not allow recursions and function pointers.

o Transferring the data between the CPU and the GPU is slow due to the bus
bandwidth and latency.

e The SIMD execution model becomes a significant limitation for any divergent
task (i.e. divergent branches in the code).

o CUDA isonly available on NVIDIA GPU’s.

4.2 CUDA Programming Model

The programming model most commonly used when programming a GPU is
based on the stream programming model. In the stream programming model, input to
and output from a computation comes in the form of streams. A stream is a collection
of homogeneous data elements on which some operation, called a kernel, is to be
performed, and the operation on one element is independent of the other elements in

the stream.

In CUDA programming model there are three key abstractions which are a
hierarchy of thread groups, shared memories, and barrier synchronization. These
abstractions guide the programmer to partition the problem into sub problems that
can be solved independently in parallel, and then into finer pieces that can be solved
cooperatively in parallel. Each sub-problem can be scheduled to be solved on any of
the available processor cores: A compiled CUDA program can therefore execute on
any number of processor cores, and only the runtime system needs to know the

physical processor count.
4.2.1 CUDA Kernels
In CUDA, GPU is modeled as a collection of streaming multiprocessors (SM)

which work in Single Program Multiple Data (SPMD) fashion. With regard to this

model, programmer writes a kernel and then the programming model generates lots

35

of threads that execute the same kernel, each working on a different set of data in
parallel (NVIDIA Corporation, November 2010). A CUDA kernel is a function that

is executed on a large set of data elements, shown in Figure 4.1

Thread ID
Of112)314]|5]16] 7|8

int tid = threadIdx.x;
c[tid] = a[tid] + b[tid];

Figure 4.1 Kernel Execution

In this model, the programmer writes two separate kernels for a GPGPU
application: code for the GPU kernel and the code for the CPU kernel. The CPU

kernel must proceed through five general stages:

1. Allocate necessary input and output data space in GPU memory.

2. Transfer input data from host (CPU) memory to the GPU.

3. Call the GPU kernel wait until GPU kernel finishes its work. GPU kernel is
executed parallel in each core.

4. Transfer the output data back to host memory from the GPU’s memory.

5. Free allocated data space from GPU memory.

In brief, the GPU kernel is a sequence of instructions that directs each GPU thread
to perform necessary operations on a unique data element in cause of the concurrent

execution of all GPU threads in a SIMD (single-instruction, multiple-data) workflow.

These kernels are dynamically dispatched and executed in bundles of threads on
SIMD multiprocessors. At any given clock cycle, each processor executes the
identical kernel instruction on a thread bundle, but each thread operates on distinct
data.

36

4.2.2 Thread Model

There are two important differences between GPU threads and CPU threads. First,
there is no cost to create and destroy threads on the GPU. Additionally, GPU
multiprocessors perform context switches between thread bundles (analogous to
process switching between processes on a CPU) with zero latency. Both of these
factors enable the GPU to provide its thread-level parallelism with very low
overhead.

The CUDA programming model organizes threads into a three-level hierarchy as
shown in Figure 4.2. At the highest level of the hierarchy is the grid. A grid is a two
dimensional array of thread blocks, and thread blocks are in turn three dimensional

arrays of threads.

Device

Grid 1

Block Block Block
(0, 0) (1,0) (2, 0)

Block Block | Block
(0, 1) (1,1) (2,1)

Block (1, 1)

Figure 4.2 Hierarchy of threads in CUDA (NVIDIA Corporation,
November 2010)

37

For convenience, threadldx variable on CUDA is a built- in 3-component vector,
so that threads can be identified via this variable. This provides a natural way to map
data on memory and invoke computation across the elements in a domain such as a
vector, matrix, or volume. There is a limit to the number of threads per block, since
all threads of a block are expected to reside on the same processor core and must
share the limited memory resources of that core. On current GPUs, a thread block
may contain up to 1024 threads (NVIDIA Corporation, November 2010).

Blocks are organized into a one-dimensional or two-dimensional grid of thread
blocks as illustrated by Figure 4.3. The number of thread blocks in a grid is usually
defined by the size of the data being processed due to the limitation to the number of

threads per block.

Grid

Block (0,0) | Block (1,0) Block (2, 0)

Block (0, 1)}° Block (1,1) “Block (2, 1)

/4
P

Block (1, 1)

Figure 4.3 Grid of Thread Blocks (NVIDIA Corporation,
November 2010)

38

A kernel is executed by a grid (as illustrated on Figure 4.4). The size of the grid
and the thread-blocks are determined by the programmer, according to the size of the
data being operated on and to the complexity of the algorithm, at kernel launch time.
While threads from different blocks operate independently; threads in a thread block
can share data through shared memory and synchronize their execution. Each thread-
block in a grid has its own unique identifier and each thread has a unique identifier
within a block. Using a combination of block-id and thread-id, it is possible to
distinguish each individual thread running on the entire device. Only a single grid of
thread blocks can be launched on the GPU at once, and the hardware limits on the

number of thread blocks and threads vary across different GPU architectures.

Host Device
Grid 1
Kernel » Block Block Block
1 0,00 (1,00 (2,0
Block.” Block ' Block
0,4 (1,1) (2,1)
./ Grid2
Kernel [> [".|
2 | ‘-.
~ 2 | |
Block (1, 1)

Figure 4.4 Kernel execution and thread model (NVIDIA
Corporation, November 2010)

4.2.3 Memory Model

Thread

39

. Per-thread local

§ .

Thread Block |

memory

Per-block shared

iR

Memaory

TYYY

Grid 0
Block (0, 0) | Block (1, 0) | Block (2, 0)
—
Block (0, 1) | Block (1, 1) Block (2, 1)
Grid 1
Global memory
Block (0, 0) Block (1, 0)
Block {0, 1) Block {1, 1)
e ——
Block (0, 2) Block (1, 2)

Figure 4.5 Memory hierarchy (NVIDIA Corporation, November 2010)

CUDA threads may access data from multiple memory spaces during their

execution as illustrated by Figure 4.5. Each thread has private local memory. Also

each thread block has shared memory visible to all threads of the block and with the

same lifetime as the block. All threads have access to the same global memory.

There are also two additional read-only memory spaces accessible by all threads; the

constant and texture memory spaces.

40

The global, shared, constant and texture memory spaces are optimized for

different memory usages. Appropriate use of these memory spaces can have

significant performance implications for CUDA applications. The performance

characteristics and restrictions of memory spaces are shown on Table 4.1 below:

Table 4.1 Memory accessibility and latency - *Cached only on devices of compute capability 2.x
(NVIDIA Corporation, August 2010)

Memory Location Cached Access Scope Lifetime Penalty
on/off chip
Register On n/a R/W 1 thread Thread 1x
Local Off No* R/W 1 thread Thread 100x
Shared On n/a R/W All threads | Block 1x
in block
Global Off No* R/W All threads | Host 100x
+ host allocation
Constant | Off Yes R All threads | Host 1x
+ host allocation
Texture Off Yes R All threads | Host 1x
+ host allocation

With respect to Table 4.1 local and global memories are located off-chip and

accessing to these spaces are 100 times slower. On the other hand, although they are

located off-chip; accessing constant and texture memory spaces are faster due to

caching. Another point from this table is accessibility of memory spaces by threads.

According to the Table 4.1 each thread can:

e Read/Write per-thread registers

e Read/Write per-thread local memory
e Read/Write per-block shared memory

e Read/Write per-grid global memory

e Read only per-grid constant memory

e Read only per-grid texture memory

Accessibility of memory spaces are shown in Figure 4.6 below.

41

(Device) Grid

Block (0, 0) Block (1, 0)

Rl

Thread (0,0) Thread (1,0) Thread (0, 0) Thread (1, 0)

h h

Host

Figure 4.6 Memory Access (NVIDIA Corporation, November 2010)

4.2.3.1 Global memory

Global memory is accessible from either the host or device threads and has the
lifetime of the application. Potentially 100x slower than register or shared memory
because the global memory resides off-chip and space is not cached, so it is
important to follow the right access pattern to get maximum memory bandwidth

which has a direct impact to performance.
4.2.3.2 Local Memory
Local memory is only accessible by the threads and has the lifetime of the thread.

Actually, local memory is a memory abstraction that implies "local in the scope of

each thread"”. It resides in global memory that is allocated by the compiler and

42

delivers the same performance as any other global memory region which is 100x

slower than register or shared memory.

The variables placed by the compiler to local memory are, arrays which are not
indexed with constant quantities, large structures that would consume too much

register space and any variable if the kernel uses more registers than available.

4.2.3.3 Shared memory

Shared memory is accessible by any thread of the block from which it was created
and has the lifetime of the block. Because it is on-chip, the shared memory space is
much faster than the local and global memory spaces. In fact, for all threads of a
warp, accessing the shared memory can be as fast as a register when there are no
bank conflicts or when reading from the same address. Threads belonging to the

same thread block can co-operate with each other, by using shared memory.

4.2.3.4 Registers

Registers are only accessible by threads and have a same lifetime with the thread.
They are the fastest form of memory on the multi-processor. Simple scalar variables

are placed into registers.

4.2.3.5 Constant Memory

Constant memory is accessible from either the host or device threads and has the
lifetime of the application. The constant memory space is cached so a read from
constant memory costs one memory read from device memory only on a cache miss.
For all threads of a warp, reading from the constant cache is as fast as reading from a

register as long as all threads read the same address.

43

4.2.3.6 Texture Memory

Texture memory is accessible from either the host or device threads and has the
lifetime of the application. The texture memory space is cached so a texture sampling
costs one memory read from device memory only on a cache miss. Texture memory
also offers different addressing modes, as well as data filtering, for some specific

data formats.

4.3 CUDA Optimization Strategy

Many type of approaches that can be used to optimize performance on GPU, but

especial for CUDA, there are three types of optimization strategy:

e Optimization of instruction usage to achieve maximum instruction throughput

e Optimization of memory usage to achieve maximum memory throughput

e Optimization of parallel execution to achieve maximum utilization

4.3.1 Instruction Throughput

To maximize instruction throughput the programmer should:

e Minimize the use of arithmetic instructions with low throughput, for example
single-precision instead of double-precision
e Minimize divergent warps caused by control flow instructions.

e Reduce the number of instructions

4.3.1.1 Arithmetic Instructions

A multiprocessor takes 8 clock cycles for single-precision 32 bit floating-point
add, multiply, and multiply-add, integer add, bitwise operations, compare and type
conversion instructions on GPU’s with compute capability 1.x (NVIDIA
Corporation, August 2010).

44

Integer division and modulo operation are particularly more expensive and should

be avoided if possible or replaced with bitwise operations whenever possible

GPU’s with compute capability 1.3 has only one double precision floating point
unit (FPU) per multiprocessor (SM), is shared by all the threads on SM, whereas
there are 8 single precision FPUs. So sinf(x), cosf(x), tanf(x), sincosf(x) and other
double precision operations deliver 8x worse performance than with single precision
(NVIDIA Corporation, August 2010).

4.3.1.2 Control Flow Instructions

Threads within a warp execute the same instruction. Thus, in case of flow control
instructions (if, switch, do, for, while), threads in a warp may follow different
execution paths (divergence) causing significant decline on the effective instruction
throughput. In this situation hardware serializes the different executions paths,
increasing the total number of instructions executed for this warp. So, if we have two
divergent paths within a warp, the two will be serialized, entire warp executing both.
When all the different execution paths have completed, the threads converge back to
the same execution path. That is where the performance penalty comes from, if flow
diverges within a warp. To obtain best performance in cases where the control flow
depends on the thread ID, the controlling condition should be written so as to

minimize the number of divergent warps (NVIDIA Corporation, August 2010).

4.3.1.3 Memory Instructions

When accessing local or global memory, there are 400 to 600 clock cycles of
memory latency. Much of this global memory latency can be hidden by the thread
scheduler if there are sufficient arithmetic intensity (independent arithmetic
instructions that can be issued) while waiting for the global memory access to
complete (NVIDIA Corporation, August 2010).

45

4.3.2 Memory Bandwidth

GPUs offer high bandwidth throughput. With respect to memory resources, each
GPU multiprocessor contains a set of dedicated registers, a store of read-only
constant and texture cache, and a small amount of shared memory. These memory
types are shared between the individual processors of a multiprocessor. In addition to
these memory types, threads evaluated by a processor may also access the GPU’s
larger, and comparatively slower, global memory. Therefore, programmers should be
careful while designing algorithm and organizing memory accesses because wrong
usage of these memory spaces directly affects the performance. The access time
penalties of different memory spaces are shown on Table 4.2.

Table 4.2 Access time penalties of different memory spaces on GPU (NVIDIA Corporation, August
2010)

Memory Penalty
register 1x
local 100x
shared 1x
global 100x
constant 1x

The first step in maximizing overall memory throughput for the application is to
minimize data transfers with low bandwidth by minimizing data transfers between
the host and the device. Since off-chip device memories are of much higher latency
and lower bandwidth than on-chip memory, memory accesses to them should be

minimized.
Shared memory can be seen as a user-managed cache. A typical programming
pattern is to cache data coming from device memory into shared memory; in other

words, to have each thread of a block:

e Load data from device memory to shared memory

46

e Synchronize with all the other threads of the block so that each thread can
safely read shared memory locations that were written by different threads

e Process the data in shared memory

e Synchronize again if necessary to make sure that shared memory has been
updated with the results

e Write the results back to device memory

4.3.2.1 Data Transfers between Host and Device

Because of the overhead associated with each transfer, instead of transferring
small portions of data separately, batching many small transfers into a single large

transfer always performs better.

4.3.2.2 Global Memory Accesses

The task of effectively hiding the global memory access latency and managing the
memory hierarchy is very crucial for obtaining maximal performance from the GPU.

The global memory space is not cached, so it is all the more important to follow
the right access pattern to get maximum memory bandwidth, especially given how
costly accesses to device memory are.

First, the device is capable of accessing device memory via 32, 64, or 128 byte
memory transactions (NVIDIA Corporation, August 2010). When a warp executes
an instruction that accesses global memory, it unites the memory accesses of the
threads within the warp into one or more of these memory transactions, depending on
the size of the word accessed by each thread. So the structure layout on device
memory must be aligned to their size (or multiple of their size) in order to achieve
memory transactions without latency. Because, global memory bandwidth is used
most efficiently when the simultaneous memory accesses by threads in a half-warp

can be coalesced into a single memory transaction. Coalescing can be maximized by

47

redesigning structure to most optimal access patterns and using data types that meet
the size and alignment.

4.3.2.3 Local Memory

Like the global memory space, the local memory space is not cached, so accesses
to local memory are as expensive as accesses to global memory and are subject to the

same requirements for memory coalescing as described at Section 4.3.2.2.

4.3.2.4 Constant Memory

The constant memory is placed off-chip but space is cached so a read from
constant memory costs one memory read from device memory only on a cache miss,

otherwise it just costs as one read from its cache.

4.3.2.5 Texture Memory

The texture memory space is placed off-chip but space is cached so a texture fetch
costs one memory read from device memory only on a cache miss, otherwise it just

costs one read from the its cache.

4.3.2.6 Shared Memory

The shared memory space is much faster than the local and global memory
spaces. In fact, for all threads of a warp accessing the shared memory is as fast as
accessing a register as long as there are no bank conflicts between the threads, as
detailed below.

Shared memory is divided into equally-sized memory modules, called banks,
which can be accessed simultaneously. So, any memory transaction request made of
n addresses that fall in n distinct memory banks can be serviced simultaneously,

yielding an effective bandwidth that is n times as high as the bandwidth of a single

48

module. It is therefore important to understand how memory addresses map to
memory banks in order to schedule the memory requests so as to minimize bank

conflicts.

4.3.2.7 Registers

Generally, accessing a register has no latency since it doesn’t require an extra
clock cycle, but delays may occur due to register read-after-write dependencies and

register memory bank conflicts.

4.3.3 Occupancy

One of the key challenges in algorithmic design for GPGPUs is to keep all
processing elements busy. In other words, to ensure high utilization (occupancy) of
resources and provide more parallel work is dispatched than the stream processors
available. Using latency-hiding techniques, a processor waiting on a memory
accessing can thus simply switch context to another dispatched work unit which has

load its necessary data from memory.

The multiprocessor occupancy is the ratio of active warps to the maximum
number of warps supported on a multiprocessor of the GPU. Maximizing the
occupancy can help to cover latency during global memory loads. The occupancy is
determined by the amount of shared memory and registers used by each thread block.
Because of this, programmers need to choose the size of thread blocks with care in
order to maximize occupancy. Each multiprocessor on the device has a set of N
registers available for use by CUDA program threads. These registers are a shared
resource that is allocated among the thread blocks executing on a multiprocessor.
The CUDA compiler attempts to minimize register usage to maximize the number of
thread blocks that can be active in the machine simultaneously. If a program tries to
launch a kernel for which the registers used per thread times the thread block size is

greater than N, the launch will fail.

49

It is important to note that two key resources of the SM, namely the shared
memory and the register file, are shared by the thread-blocks that are concurrently
active on the SM. For example, if each SM has 16KB of shared memory and each
thread-block requires 8KB of shared memory, then no more than 2 thread blocks can

be concurrently scheduled on the SM, as it is seen in Figure 4.7.

Register Shared Memory Register Shared Memory
Usage Usage Usage Usage

TB 1
TB O

(@ (b)

Figure 4.7 GPU Resources are not utilized properly.

From Figure 4.7, in (a) we are wasting the available shared memory space and
there is only 3 thread block can be concurrently active because of heavily register
usage. We should move some variables from registers to shared memory to balance
resource usage. Similarly in (b) resources wasted because of high shared memory
usage and we should reduce shared memory usage by threads in order to increase

occupancy.

CHAPTER FIVE
LEMMATIZATION ON GPU

5.1 Lemmatization Algorithm on CUDA

While working on CUDA the methods applied to the development should include

the following:

1)
2)
3)
4)
5)

Minimize data transfer with global memory

Work on faster accessible memory units

Accessing of global memory should be coalesced as much as possible
Avoid branch divergence within a CUDA warp

Use resources of GPU efficiently to avoid limitations of hardware

In order to work efficient under these constraints, we had to change our trie

structure. While we were optimizing our code through CUDA our guidelines were:

1)
2)
3)
4)
5)

6)

Get rid of pointers. Working with pointers on GPU is not efficient.

Minimize memory read/writes.

Minimize divergent (if-else, for, while) blocks.

Minimize memory usage of variables.

Do load/store works on faster memory units and later store result in slower
units.

Reduce instructions and complexity as possible.

5.1.1 Redesigning Structure

First of all we changed our trie structure to node array (namely, array of structs)

in order to get rid of pointers. Instead of storing each child’s pointer in parent node

we stored the child’s index at node array. And we inserted our nodes on array by

traversing tree with two different approaches, breadth-first and pre-order traversal

basis, in the cause of memory access coalescing (discussed in Section 4.3.2.2).

50

After that we changed our look-up algorithm with regard to the changes in structure.

The previous and latter structures can be seen in Figure 5.1.

Key

Data

Key

Data

Data

Figure 5.1 (a) Trie Structure. (b) Array of nodes structure with nodes placed via breadth-first

(©)

Data Data Data
(@

Key 1 Key 2 Key 3 Key 4 Key 5 Key 6
Data 1 Data 2 Data 3 Data 4 Data 5 Data 6
(b)

Key 1 Key 2 Key 4 Key 5 Key 3 Key 6
Data 1 Data 2 Data 4 Data 5 Data 3 Data 6

W ~~— v

traversal on trie. (c) Array of nodes structure with nodes placed via pre-order traversal on trie.

52

Arrays of structures (AOS) keep things nicely organized but are generally bad for
performance in data parallel computation. When the structure is laid out in memory,
the compiler will produce interleaved data, in the sense that all the structures will be
contiguous but there will be a constant offset between a structure instance and the
same element of the following instance. This offset particularly depends on the
structure definition. To make sure SIMD operations can work efficiently on data,
they shall be allocated in continuous memory space. So the best bet for performance

is to design software around structures of arrays (SOA).

In GPU, global memory is accessed in chunks depending on to memory bus. If we
don’t use whole chunk the bandwidth is wasted (NVIDIA Corporation, August
2010). If we look at the memory layout in global memory, the AOS layout would
have all the node’s contents together, whereas in the SOA layout we would have all
the keys (required data) together in RAM. So in theory, the SOA layout would be
better performing because when we access the key data, we will get more data in

chunk since size of key is smaller than whole struct.

For example; assuming a chunk size of 32 bytes and we have 16 nodes where a
node consists a key with 2 bytes and a data with 2 bytes; if the AOS algorithm would
want to access key of node 1, and then to the key of node 9; this request will cause a
chunk miss, causing the processor to fetch in node 9 into the chunk by a second read.
On the other hand with SOA algorithm, all 16 keys can be read into chunk by one
read, providing a performance boost.

53

Key 1 Key 2 Key 4 Key 5 Key 3 Key 6
W ~—_ ¥

Data 1 Data 2 Data 4 Data 5 Data 3 Data 6
~— 7 S~V

Figure 5.2 Node (struct) of arrays structure

AOS is also faster when all the data in the chunks are aligned to multiples of
32/64/128 bytes but becomes slower when it does not. The takeaway from all this is
the layout of our data affects the running speed by a large amount, but it’s also
important to write small tests to validate whether SOA or AOS better. In our case
SOA performed better than AOS. The results are written on evaluation part, Section
6.2 of the thesis.

To decide which structure performs best we developed 9 different version of our

lemmatizer each is working with distinct structure:

e Sequential algorithm with tree struct

A sequential, CPU-based version of our lemmatizer which uses a radix trie.

e Parallel array of structs algorithm

A data parallel version of our algorithm which uses a struct array instead of trie.
But look-up algorithm is similar to radix search. This algorithm uses 12 registers, 42
bytes local memory and 48 bytes shared memory on GPU with 256 threads per
block.

54

e Parallel arrays algorithm

A data parallel version of our algorithm which uses separate arrays instead of
struct array. We defined each property of struct as a separate array. Look-up
algorithm is similar. This algorithm uses 15 registers, 42 bytes local memory and 96

bytes shared memory on GPU with 256 threads per block.

e Parallel struct of arrays algorithm

A data parallel version of our algorithm which uses a structure of arrays instead
of an array of structures. We defined each property of struct as a separate array in 1
unique struct. Look-up algorithm is similar. This algorithm uses 15 registers, and 42

bytes local memory 48 bytes shared memory on GPU with 256 threads per block.

e Parallel array of structs algorithm with compact (smaller) nodes

A data parallel version of our algorithm which uses a struct array instead of trie.
But this time structs are smaller because we removed Data, MasterData, MasterKey
due to fact that they are not necessary for lemmatizing.(these properties was added to
structs for WSD and query/document expansion purposes). Look-up algorithm is
similar to radix search. This algorithm uses 13 registers, 42 bytes local memory and
48 bytes shared memory on GPU with 256 threads per block.

e Parallel arrays algorithm with compact (smaller) arrays

A data parallel version of our algorithm which uses a struct array instead of trie.
Data, MasterData and MasterKey arrays are removed. Look-up algorithm is similar
to radix search. This algorithm uses 15 registers, 42 bytes local memory and 88 bytes
shared memory on GPU with 256 threads per block.

55

e Parallel struct of arrays algorithm with compact (smaller) nodes with

compact (smaller) nodes inserted from trie via pre-order traversal basis

A data parallel version of our algorithm which uses a structure of arrays instead of
an array of structures. We defined each property of struct as a separate array in 1
unique struct but removed Data, MasterData and MasterKey properties. Look-up
algorithm is similar. This algorithm uses 15 registers, 42 bytes local memory and 48
bytes shared memory on GPU with 256 threads per block.

e Parallel struct of arrays algorithm with compact (smaller) nodes inserted

from trie via pre-order traversal basis and also exploits shared memory

A data parallel version of our algorithm which uses a structure of arrays instead of
an array of structures. We defined each property of struct as a separate array in 1
unique struct but removed Data, MasterData and MasterKey properties. In addition;
we also carried some variables into shared memory in order to reduce global memory
read/writes. Look-up algorithm is similar. This algorithm uses 16 registers, 21 bytes
local memory and 3888 bytes shared memory on GPU with 256 threads per block.

e Parallel struct of arrays algorithm with compact (smaller) nodes inserted
from trie via breadth-first traversal basis and also exploits shared

memory

A data parallel version of our algorithm which uses a structure of arrays instead of
an array of structures. But this time, we preferred placing structs on array from trie
via breadth-first basis. This approach visits the elements level-by-level. So we
inserted all the nodes on current level of trie before we proceeded to sub levels. With
this algorithm, the only difference is layout of dictionary on memory. We defined
each property of struct as a separate array in 1 unique struct but removed Data,
MasterData and MasterKey properties. In addition; we also carried some variables

into shared memory in order to reduce global memory read/writes. Look-up

56

algorithm is similar. This algorithm uses 16 registers, 21 bytes local memory and
3888 bytes shared memory on GPU with 256 threads per block.

5.1.2 Occupancy

In our algorithm, trie needs 12.31MB space which can only reside on global
memory of GPU. So we had to achieve coalesced accessing and warp occupancy as
much as possible to hide latency of memory transactions. In order to achieve an
occupancy ratio of 1, we redesigned our algorithm regard to GPU specifications (can
be seen on Appendix 2). The specifications of our GPU as follows:

e Total global memory : 947 MB

e Shared memory per processor : 16 KB

o Warp size 1 32

e Max. threads per block : 512

e Total constant memory 164 KB

e Clock rate : 1210000KHz
e Multiprocessors on device .6

e Multicores on each processor . 8

e Max count of threads in each processor 1024

e Max count of register 16384

Regard to this specifications we should keep shared memory usage by each thread
block under 16KB considering the fact that each multi-processor has 16KB shared
memory unit. Also there is a limit of 16384 registers per multiprocessor. So we
should organize our shared memory, register and thread usage considering these

limitations to prevent performance comedown.

Our kernel uses 16 Registers per each thread. So we can map maximum of
16384/16 = 1024 threads on a multiprocessor without decreasing warp occupancy. If
we select our thread number per block 256 then we will have 1024/256=4 blocks of
threads each needs 256*16=4096 registers. To fit in 4 blocks of threads in a

57

multiprocessor without reducing occupancy ratio; we should limit our shared
memory usage on each block to maximum of 4KB (since 4KB * 4 block = 16 KB)
and on each thread to 4KB / 256 =16 bytes. So in final analysis, considering our
kernel uses 16 registers per thread if we select our thread number per block 256 we
should use 16 bytes of shared memory per thread or 4KB of total to achieve full warp

occupancy.

Our resource usage and occupancy measurements can be seen on Figure 5.3,

Figure 5.4 and Figure 5.5.

Varying Block Size Our Block Size
256

e o
e

I

0 T T T T T T T
16 80 144 208 272 336 400 464

Threads Per Block

N w
I N
}

4

Multiprocessor
Warp Occupancy
(Y
(o)

(e0]

Figure 5.3 Selected threads per block to achieve full occupancy. Red triangle shows our Block

size
OurRegister \/grying Register Count
Count 16
32 +
>
= O
5% 24 so0e
[oX
83 \
© o
20O 16 900000000009
= o
: S
=2 \
8 SOOI
O T T T T T T T T T T T T T T T
o BN o] = = N N N w w B S B a1 a1 D (o]
N (o2} o N (o] N » o S oo N » o B
Registers Per Thread

Figure 5.4 Optimized register usage of kernel to achieve full occupancy. Red triangle shows our

register usage per thread.

w
N
|

Our Shared
Memory Usage
3888

Varying Shared Memory Usage

N
N

A\

Multiprocessor
Warp Occupancy
=
[o)]

4
L J
L 2
L 2
L J
»/0
4

L 2
L 4
*
L 4
*
*

o]

L 2
L 4
*
L 4
*
*

L 4
*

ZTS
¥20T
9€SGT
8Y0¢ 1
09S¢ 1
2L0€ 1
¥8G€
960V -
809V -
0CTS
€98
Yr19
9599 -
89T/ 1
0897 -
26718 1
0.8
9T¢Z6 -
8216 -

0t20T A
¢S/0T A
79¢TT |
9L/TT A

Shared Memory Per Block

88¢¢T A
008¢T A
CTEET A
28T |
9EEVT
88T
09€ST A
C/L8ST A
78€9T

58

Figure 5.5 Optimized shared memory usage to achieve full occupancy. Red triangle shows our

register usage

per thread.

These figures tell us that we have full utilization of resources and achieve a warp

occupancy ratio of 1. We could also use 512 threads per block and get full occupancy

(32 threads) but in order to do that we should lower the shared memory usage by

threads. Because if we increase thread count without limiting their shared memory

usage we will have a shared memory overflow which causes a performance decline.

CHAPTER SIX
EVALUATION

6.1 Test Data and Measurement Method
6.1.1 Test Data
To measure our lemmatizer’s accuracy and performance we have used the

recently constructed Milliyet dataset (the news articles and columns of 5 years, 2001—

2005, from the Turkish daily newspaper Milliyet (http://www.milliyet.com.tr)) for

Turkish along with the TREC-style query and relevance judgments set
(Can, Kocberber, Balcik, Kaynak, Ocalan, & Vursavas, 2008). The dataset includes
408,305 documents which contains 95.5 million words (each document contains 234
words on the average), with 72 ad-hoc queries and 33 assessors. The query set
provided as a set of words that describes a user information need with three fields:
topic (a few words), description (one or two sentences), and narrative (more
explanation). We used the queries on the description field in our tests which includes
72 queries consisting 936 words with 13 terms average and 1.74 stop words, on

average (queries can be seen at Appendix 5).
6.1.2 Measurement

Precision and recall are the common evaluation measures in information retrieval.

Most of the other measures are derived from them.

a) Recall is the measure of the ability of a system to present all relevant items.

Number of relevant items retrieved

Recall =
Number of relevant items in collection

b) Precision is the measure of the ability of a system to present only relevant

items.

59

http://www.milliyet.com.tr/
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Fazli%20Can
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Seyit%20Kocberber
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Erman%20Balcik
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Cihan%20Kaynak
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Huseyin%20Cagdas%20Ocalan

60

Number of relevant items retrieved

Precision =
Total number of items retrieved

Where, retrieved is number of documents retrieved by a search of query and

relevant is total possible relevant documents within a given query.

Retrieval tasks whose results are a ranked list of documents can be evaluated by
the trec_eval program. “trec_eval” was written by Chris Buckley (It is available from
the TREC website at http://trec.nist.gov/trec_eval). We used the trec_eval package

version 8.1 for obtaining the effectiveness measures. An evaluation report for a run
evaluated by “trec_eval” gives a report with the measurements following (trec_eval

output can be seen at Appendix 1):

Table 6.1 Trec_eval measurement types

Name Description
num_ret Total number of documents retrieved over all queries
num_rel Total number of relevant documents over all queries
num_rel_ret Total number of relevant documents retrieved over all queries
map Mean Average Precision (MAP)
gm_map Average Precision. Geometric Mean,
g_score=log(MAX(map,.00001))
Rprec R-Precision (Precision after R (= num-rel for topic) documents
retrieved)
bpref Binary Preference, top R judged nonrel
recip_rank Reciprical rank of top relevant document
iprec@recall_N Interpolated Recall - Precision Averages at N recall
P@N Precision after N docs retrieved

6.2 Evaluation of Lemmatizer Accuracy

Firstly we wanted to see how accurate our lemmatizer on a small set. To achieve
this task, we manually lemmatized words on queries provided by dataset (72 Queries,
936 words) via “Biiyiik Tiirkge Sozlik” (Turkish Language Association’s Grand
Dictionary) in order to create base lemmas for measurement. After that we applied

http://trec.nist.gov/trec_eval

61

our lemmatizer on same query set. Then we compared the base lemmas with our

lemmatizer’s output for each query. Table 6.2 shows a small fraction of the output,

the rest of this table can be seen at Appendix 6.

Table 6.2 Lemmatization of query set

Query Lemmatized Query Accuracy | Summary

Kus gribi nedir, nasil bulasir, | kus grip bulas belirti soru | 100%

belirtileri nelerdir sorularina | cevap olabil dokiiman

cevap olabilecek dokiimanlar.

Tirkiye’'nin Avrupa Birligi’ne | tirkiye avrupa birlik tam | 90.91% The lemma of “ele”

tam {yelik siirecinde Kibris | tiyelik siire¢ kibris sorun ele must be “el” (hand)

sorununu ele alan bir dokiiman. alan dokiiman but our lemmatizer
returns “ele”+
“(mek)” (to eliminate)
And the lemma of
“alan”” must be
6‘a173+ 6‘(mak)7? (to
take) But our
lemmatizer return
“alan”(region)

Tirkiye’de {niversiteye giris | tiirkiye tiniversite giris sinav | 100%

sinavinin ~ gengler iizerindeki | gen¢ etki gen¢ kamuoyu

etkileri, genglerin ve | smav diisiin

kamuoyunun bu sinav igin

disiindiikleri.

Giliney Asya’y1 26 Aralik 2004°te | giiney asya 26 aralik 2004 | 100%

vuran biiyiikk Tsunami facias1 ve | vur biiylik tsunami facia

bu facianin sonuglari. facia sonug

Mavi akimin ulusal enerji | mavi akim wulusal enerji | 100%

politikamizdaki yeri, ekonomik | politika yer ekonomik

maliyeti maliyet

Biiyik bir bolimii deprem | biiyiikk boliim deprem bolge | 100%

bolgesi olan Tiirkiye'de deprem | ol tiirkiye deprem &nce alin

Oncesi alinan tedbirler nelerdir? tedbir

Tiirk Silahli Kuvvetleri ile PKK | tiirk silahli kuvvet pkk arasi | 100%

arasinda
catismalar

meydana gelen

meydan gelen ¢atisma

62

The queries consist of total 936 words. Eliminating stop words from queries lefts

us 786 words and our lemmatizer’s total accuracy is with 764 correct lemmas equals

to %97.201 (764 correct lemmas / 786 words).

Of course this evaluation was not sufficient enough to make a decision about our
lemmatizer’s effectiveness. SO we decided to build an information retrieval (IR)

system and observe our lemmatizer’s impact on retrieval process.

While creating our test environment, we didn’t want to deal with the development
of an IR system from scratch; so instead, we used “Lucene” which is an open
source IR software library, created by Doug Cutting (It is available at

http://lucene.apache.org/java/docs/index.html). Because “Lucene” offers users full

text indexing and searching capability along with:

e ranked searching (best results returned first)

e Many query types: phrase queries, wildcard queries, proximity queries, range
queries etc.

o fielded searching (e.g., title, author, contents)

e sorting by any field

e multiple-index searching with merged results

e simultaneous update and searching

After we dealed with IR system development problem via “Lucene”; we
compared the effects of three different approaches on (Turkish) IR effectiveness on

“Lucene”:

a) NS: The abbreviation stands for no stemming. This approach uses all words as
an indexing term. The retrieval performance of this approach provides a

baseline for comparison.

b) FPT5: The abbreviation stands for fixed prefix truncation by length of 5

characters. We simply truncate the words and use the first 5 characters of each

http://lucene.apache.org/java/docs/index.html

63

word as its stem; words with less than 5 characters are used as a stem with no
truncation. We used this fixed prefix stemmer because it had shown before

that it produces good results on Turkish language (Can & others., 2008).

c) LDB: This abbreviation stands for our dictionary based lemmatizer.

In this study, we also used a stop words list (stop words list can be seen on
Appendix 3) consists of the most frequent words of Turkish language, and some
manually added words. Then we applied FPT5 stemmer to these words. So in final
case, we generated a stop word list composed of 5 character-length words (our stop
words list can be seen on Appendix 4). Later, we used this stop word list to eliminate
words, before applying the stemmers to them. For this purpose, we first used the
FPT5 stemmer to find the appropriate stem, and then we searched the stemmed word

in the stop word list.

The indexing information on “Lucene” with different stemmers, using the stop

word list, is shown in Table 6.3.

Table 6.3 The indexes created for search engine

NS FPT5 LDB Gain % | Gain % | Gain % of
of FPT5|of LDB|LDB over
over NS | over NS FPT5

Indexed 1679002 | 283365 | 69099 83.12% 95.88% 75.61%
Term
Count

Index Size | 1584MB | 1357MB | 1004MB | 14.33% | 36.62% 26.01%

From table, it means that FPT5 and LDB provide 14.33% and 36.62%,
respectively, storage efficiency with respect to NS. The storage size of the index

builded with LDB is the most efficient among others.

To encapsulate, our evaluation process can be summarized as follows. First we
constructed three different indexes via three different options (listed above) applied
to indexing process respectively. Then we applied selected option on the queries in

the same way. After that we ran each of the queries on the system using the index

64

that is created with same option as the query stemmed, and then with the information
returned by system, we created a TREC-style output by using the first 1000 results
returned. This output allows us to measure the results in “trec_eval ”. Thus, finally,
we measured the IR effectiveness of these three stemming approaches with
“trec_eval” program and compared them. The measurement results are below on
Table 6.4:

65

Table 6.4 Trec_eval measurement results.

NS FPTS LDB % of % of
LDB - NS LDB -
increase FPT5
increase

num_ret 72000 72000 72000 - -

num_rel 7510 7510 7510 - -
num_rel_ret 4136 4870 5424 31.14 11.38
map 0.1904 | 0.2288 0.2941 54.46 28.54
gm_map 0.0771 0.1148 0.2063 167.57 79.70
Rprec 0.2352 0.2728 0.3356 42.69 23.02

bpref 0.3406 | 0.4036 0.4144 21.67 2.68

recip_rank 0.5701 0.6688 0.7899 38.55 18.11
P@5 0.4333 | 0.5278 0.6139 41.68 16.31
P@10 0.4125 | 0.4847 0.5667 37.38 16.92
P@15 0.4093 | 0.4630 0.5481 33.91 18.38
P@20 0.3882 0.4375 0.5188 33.64 18.58
P@30 0.3560 | 0.3981 0.4796 34.72 20.47
P@100 0.2332 0.2737 0.3300 41.51 20.57
P@200 0.1670 | 0.1976 0.2302 37.84 16.50
P@500 0.0955 0.1123 0.1283 34.35 14.25
P@1000 0.0574 0.0676 0.0753 31.18 11.39
iprec@recall_0.00 0.6273 0.7130 0.8214 30.94 15.20
iprec@recall_0.10 0.3764 | 0.4515 0.5863 55.77 29.86
iprec@recall_0.20 0.3058 | 0.3684 0.4913 60.66 33.36
iprec@recall_0.30 0.2527 0.3131 0.4112 62.72 31.33
iprec@recall_0.40 0.2139 0.2538 0.3422 59.98 34.83
iprec@recall_0.50 0.1741 0.2120 0.2749 57.90 29.67
iprec@recall_0.60 0.1328 | 0.1697 0.2137 60.92 25.93
iprec@recall_0.70 0.1020 | 0.1260 0.1653 62.06 31.19
iprec@recall_0.80 0.0691 0.0824 0.1103 59.62 33.86
iprec@recall_0.90 0.0433 0.0388 0.0455 5.08 17.27
iprec@recall_1.00 0.0073 | 0.0012 0.0116 58.90 866.67

66

To give a judgment on which is the best of these stemming approaches, we should
consider the precision — recall average, bpref, GM_MAP, MAP, P@10, and P@20

values on Table 6.4.

6.2.1 Precision at N documents

0,7

=0—NS =8—=FPT5 LDB

05
04 ’\0—0&\\
03

0.2 \\
0,1 \

P@5 P@10 P@15 P@20 P@30 P@100 P@200 P@500 P@1000
P(N) : P @ Top N ranked retrived documents

Precision

Figure 6.1 Visual presentation of precision at top N ranked retrieved documents

Precision at the top N documents, commonly 10 and 20 documents (P@10,
P@20), are preferred measure because of their simplicity and intuitiveness. The
precision computed after a given number of documents have been retrieved reflects

the actual measured system performance as a user might see it.

P@10 and P@20 values of LDB are about 17% and 18.5% higher than that of
FPTS5, also about 37% and 33.5% higher than that of NS. Due to these observations,
our lemmatizer provides better results for first 20 results which are the results which

an ordinary user will commonly look only at them.

67

6.2.2 Precision — Recall Averages

0,9

=0—NS =—FPT5 LDB
0,8

0,7

0,6
0,5 \\\
0,4

0,3

Precision

0,1

0 T T T T T T T T T _\;‘_I

0.00 010 020 030 040 050 060 070 080 0.90 1.00
Recall

Figure 6.2 Visual presentation of interpolated precision - recall averages

The precision - recall graph (Figure 6.2) is created using the 11 cutoff values from
the precision at recall level averages on Table 6.4. Characteristically these graphs
slope downward from left to right, enforcing the notion that as more relevant
documents are retrieved (recall increases); the more non-relevant documents are

retrieved (precision decreases).

This graph is the most commonly used method for comparing systems. Curves
closest to the upper right-hand corner of the graph (where recall and precision are
maximized) indicate the best performance. The plots of different stemmers are
plotted on the same graph and it can be clearly seen that LDB is superior to both

other approaches.

68

6.2.3 Map, Gmap and Rprec

=N mEPT =LDB
0,35 S >

0,3

0,25

0,2

Precision

0,1

0,05

gm_map map Rprec

Figure 6.3 Visual representations of gm_map, map and Rprec values

MAP is the mean of the average precision value that reflects the performance over
all relevant documents. The measure is not an average of the precision at standard
recall levels. Rather, it is the average of the precision value obtained after each
relevant document is retrieved. MAP is considered as a more reliable measure for
effectiveness (Buckley & Voorhees, 2004; Sanderson & Zobel, 2005).

In terms of MAP measure, the performance of LBD is 28.54% better than FPT5’s
performance and has an increase of 54.46% than that of NS. According to the MAP
results, FPT5 is obviously dropping behind LDB.

The geometric mean average precision (GMAP) measures improvements for low-
performing queries. GMAP is the geometric mean of per-query average precision, in
contrast with MAP which is the arithmetic mean. If a run doubles the average
precision for topic A from 0.03 to 0.06, while decreasing topic B from 0.3 to 0.27,
the arithmetic mean is unchanged, but the geometric mean will show an

improvement.

69

GMAP measures show us that LBD is 79.70% better than FPT5 and 167.57% than
NS. Again, LDB is the best effective option.

R-Precision is the precision after R documents have been retrieved, where R is the
number of relevant documents for the query. It trivializes the exact ranking of the
retrieved relevant documents, which can be particularly useful in TREC where there
are large numbers of relevant documents. LBD outpaces FPT5 and NS on this

measure with 23.02% and 43.62%, respectively.

6.2.4 Bpref

Table 6.4 also shows the performance of NS, FPT5, and LDB in terms of bpref
and the percentage improvement provided by LDB with respect to NS and FPT5. For
easy comparison, bpref values of NS, FPT5, and LDB are shown as bar charts in
Figure 6.4.

0,45 ~
0,4 -
0,35 1
0,3 ENS

0,25 - BFPTS
02 mLDB

0,15 -
0,1 -
0,05 A

bpref

Figure 6.4 Visual representations of bpref values

The bpref or “binary preference” measure was introduced by Buckley and
Voorhees (2004) which is designed for situations where relevance judgments are

70

incomplete. Bpref computes a preference relation of whether judged relevant
documents are retrieved ahead of judged irrelevant documents (ignores the
documents not evaluated by users). Bpref and MAP are very highly correlated when
used with complete judgments. But when judgments are incomplete like the ones we
use, rankings of systems by bpref still correlate highly to the original ranking,
whereas rankings of systems by MAP do not.

In terms of bpref, LBD is better than the rest (2.68% better than FPT5, 21.67%
better than NS). The bpref values of FPT5 and LBD are close to each other; on the
other hand, P@10 and P@20 values of LBD are about 15% higher than that of FPT5.

6.3 Evaluation of Lemmatizer Performance

6.3.1 Parameters

We did a set of benchmarks on two different word sets, 100,000 words and
1,000,000 words; both are eliminated from stop words and constructed with random
words taken from random documents of Milliyet dataset (created by Can & others.,
2008).

Benchmarks were launched on the same environment which has the following

configuration:

e Windows 7 64-bit OS

e Intel T9600 2.8 GHz CPU
e 4 GBRAM

e NVIDIA GT240M

e Cuda SDK version 3.2

Before we started to run tests, we selected “threads per block™ parameter as 256
and defined “thread block count” parameter as “word count” / “threads per block” for

all kernels. Also all algorithms tested have full warp occupancy.

71

6.3.2 Methods

We subjected the one sequential CPU-bound as a reference and its eight CUDA
equivalent algorithms for benchmarking. Each test was run with both 100,000 and
1,000,000 words. The tests were conducted each utilizes different structures which

are discussed at Section 5.1.1 for evaluation:

1. LW: Uses sequential algorithm with tree struct.(acronym of Lemmatize
Word)

LWAOS: Uses parallel array of structs algorithm

LWArrays: Uses parallel arrays algorithm

LWSOA: Uses parallel struct of arrays algorithm

o B~ D

LWCompactAOS: Uses parallel array of structs algorithm with compact

nodes

6. LWCompactArrays: Uses parallel arrays algorithm with compact nodes

7. LWCompactSOA: Uses parallel struct of arrays algorithm with compact
nodes

8. LWCompactSOAShared: Uses parallel struct of arrays algorithm with
compact nodes placed via pre-order traversal basis and exploits shared
memory

9. LWCompactSOABFS: Uses parallel struct of arrays algorithm with compact

nodes placed via breadth — first traversal basis and exploits shared memory

6.3.3 Results

For our first test we prepared 100,000 words and ran each algorithm 10 times to
be sure on accuracy of results and then wrote down the obtained average time to
Table 6.5. Results of benchmarking all of methods, compared by memory bandwidth

and time consuming are summarized in Table 6.5.

The performance of each method to process 100,000 words is described in Table

6.5, where “Total Runtime” represents the time that it takes to copy the data to the

72

graphics card, call and execute the kernel, and copy the results from the graphics
card back to system memory in milliseconds. ”Bandwidth” column is rate at which
data can be read from or stored into a memory. Memory bandwidth is usually
expressed in units of bytes/second, ”Total Speed up factor” column is value of CPU-

bound kernel time divided by value of current kernel time.

Table 6.5 Results for 100,000 words

Algorithm Type Structure Total Bandwidth | Total
Runtime (GBps) Speed
in up
milliseconds factor

LW SEQ Trie 2876.633 N/A -

LWAQOS CUDA | AOS 58.809 11.41 48.92

LWArrays CUDA | Arrays 58.232 11.53 49.40

LWSOA CUDA | SOA 46.126 10.97 62.36

LWCompactAOS CUDA | AOS 53.519 11.52 5875

LWCompactArrays CUDA | Arrays 57.787 11.66 49.78

LWCompactSOA CUDA | SOA 39.075 13.18 73.62

LWCompactSOAShared | CUDA | SOA + 34.344 13.95 83.76

Shared
Memory
LWCompactSOABFS CUDA | SOA via 32.284 14.84 89.10
BFS +
Shared
Memory

The table clearly shows that the parallel algorithms outperform the sequential
implementation. The speedup values of over 48x to 90x testify sufficient efficiency

of our solution.

73

60 -

50

40

30 -

20 -

10 -

Total Runtime

B[WAQOS

® L WArrays

= LWSOA

[WCompactAOS

m [WCompactArrays

B L WCompactSOA

= LWCompactSOAShared

B LWCompactSOABFS

Figure 6.5 Visual representation of results for 100,000 words in terms of search runtime

Here, in Figure 6.5, the bar chart shows the total performance times for our eight

lemmatizing algorithms applied on 100,000 words. Side by side, these bars show

how performance is affected by structure selection and memory layout. Worth

noticing is the performance of LWCompactSOABFS implementation is the best

performing.

Later, we tested all algorithms on 1 million words set with the same methods

applied in previous tests; in order to test effects of input data size on performance.

And the results are as follows:

Table 6.6 Results for 1 million words

74

Algorithm Type | Structure Total runtime | Bandwidth | Total
in (GBps) Speed
milliseconds up

factor

LW SEQ | AOS 29076.238 N/A -

LWAOS CUDA | AOS 594.041 11.66 48.95

LWArrays CUDA | Arrays 598.227 11.39 48.60

LWSOA CUDA | SOA 475.802 10.83 61.11

LWCompactAOS CUDA | AOS 590.683 11.41 49.23

LWCompactArrays CUDA | Arrays 595.149 11.63 48.86

LWCompactSOA CUDA | SOA 391.942 13.41 74.19

LWCompactSOAShared | CUDA | SOA+ 345.192 14.15 84.23

Shared
Memory
LWCompactSOABFS CUDA | SOA via 324.315 14.86 89.65
BFS +
Shared
Memory

From the Table 6.6, we can see that there is no significant difference from the

results seen before in Table 6.5 Our data parallel algorithms outpace the sequential

implementation with enormous speed up factors.

Also our GPU bandwidth performance (memory throughput) ratio to the GPU’s
(NVIDIA GeForce GT240M) theoretical bandwidth (25.6GBps) is good which is
14.86GBps / 25.6GBps = 58% (GPU Specifications are added to Appendix 2). Ratio
must be over 50% in order to be called good and 70% is very good (NVIDIA

Corporation, August 2010).

75

600 - m | WAQOS
| WATrrays
500 -
= LWSOA
400 -
§ ® | WCompactAOS
o
% 300 ® L WCompactArrays
= 200 - B LWCompactSOA
= LWCompactSOAShared
100 -
= LWCompactSOABFS
0 1
Total Runtime

Figure 6.6 Visual representations of results for 1 million words

Apparently, LWCompactSOABFS implementation performance has turned out to
be outperforming the other implementations again. This algorithm maps naturally to
the GPU, exploiting its parallelism and cache, and this is reflected in the considerable

speed increase over a CPU version by around 90 orders of magnitude.

Another performance increase can be observed in accessing the data located in
GPU’s memory, which is accelerated using the shared memory. However, it seems
that the optimization using shared memory is significant, if we compare the
performance gain between LWCompactSOA and LWCompactSOAShared algorithms
which are sharing same structure but latter exploits shared memory; the timing
measurements show that using the shared memory optimizes the execution time by at

almost 15%.

So in brief, compared to the CPU baseline implementation, we achieved
significant speed-up factors of the CUDA kernels to the sequential kernel ranging

from 49x to 90x in our evaluations.

CHAPTER SEVEN
CONCLUSION AND FUTURE WORK

In this thesis, we presented a hardware accelerated implementation of Turkish
lemmatizing algorithm exploiting GPU devices through NVIDIA’s CUDA and
evaluation of it. The work enables researchers to easily utilize their CUDA device for
lemmatizing big chunks of words from within in C or C++ applications. Our
lemmatizer is based on CUDA, so, other cards supporting CUDA can also be used,

and our approach can be ported to other programming environments.

Our study conclusively shows that lemmatizing is essential in the implementation
of Turkish information retrieval systems. In our IR experiments, the most effective
stemming method was our lemmatizer. The performance comparison of fixed prefix
truncation (FPT5), our lemmatizer (LDB), and no stemming approaches (NS), shows
that our lemmatizer performs better than the other two in terms of all measurements.
The stemming option LDB provides 28.54% in terms of MAP; 79.70% in terms of
GMAP; 16.92% in terms of P10; 18.58% in terms of P20 and 2.68% in terms of
bpref, respectively, higher performance than that of FPT5.

But in terms of bpref, the measurements also show that FPT5 and LDB provide
comparable results (with 2.68% difference), similar to work of Can & others. (2008)
that showed for Turkish lemmatizer and a simple stemmer provide retrieval

environments with similar bpref performances.

To streamline the overall results, it is clear that LDB produced the best results
against other approaches in terms of all measurements. The FPT5 is also effective,

but not as effective as LDB.

Even though floating-point calculations are not dominating our lemmatizing
algorithm and its word processing characteristics limits the effectiveness due to non-
synchronized branching and diverging, data dependent loop bounds, we achieved a
significant speedup over the baseline algorithm on a CPU. More specifically, we

76

77

achieve up to a 90x speedup over CPU based sequential algorithm for the problem
solution on selected word sets. This work demonstrates the potential of GPUs to
accelerate even branch dominated massive word lemmatizing algorithms by carefully
selecting and redesigning data structures and selecting appropriate memory types on

hardware.

We took eight different approaches to the selection of an efficient data structure
for CUDA programming model. We used our lemmatizer to lemmatize several
different word sets and evaluated the performance of the eight parallel algorithms in
comparison to a baseline implementation running on a single CPU. Our results
showed that the parallel algorithms run significantly faster. More specifically our
fastest algorithm (LWCompactSOABFS) achieved a speedup of around 90x in
comparison to the baseline to perform lemmatization on a word set containing 1
million words. LWCompactSOABFS performs very well compared to the other
algorithms, since its layout is compatible with the SIMD computation model of
GPUs. The results confirm that; the struct of arrays implementation constructed with

breadth-first traversal from trie offers best results for our lemmatizer.

Previous works on agglutinative languages (Can & others., 2008; Kettunen,
Kunttu, & Jarvelin, 2005) show that lemmatizers are more effective than simple
fixed prefix truncate but latter is preferable because the way its low complexity and
simplicity. On the other hand , in this thesis, we show that we can exploit the gains of
lemmatization via GPGPU, which provides us a more effective and efficient

lemmatizer.

For future work there are several additional evaluations and improvements that
are of interest. The algorithms we used for our evaluation all have similar
characteristics. We may add some feedback mechanism to look up algorithm in order
to increase accuracy. Feedback mechanism should allow look up procedure to turn
back to parent node in case of the character looked up in trie is available for both
transformation and key match (discussed in Section 2.3.4) or is available for two

different haplology cases (node has both i and u narrow vowels and procedure must

78

choose one of them). Thus, if the procedure chooses wrong path it can turn back to
parent node with the aim of proceeding through second route. But this will slow up
the procedure a little bit and also will increase data dependency which is the most
significant case to be avoided in parallel computing. So, in order to add this
mechanism may be obliged to change the whole structure of procedure. Furthermore,
our lemmatizer is working on only single words the lemmatizing process can be
improved to handle phrases. Also the lemmatizer returns words meanings from
dictionary which makes it perfect sub-tool for word sense disambiguation (WSD)
programs. With our lemmatizer and a parallel WSD algorithm to select most
appropriate lemma may result to a higher accuracy.

Also as the device memory, registers and shared memory increase, additional
amounts of data can be processed in parallel. It is expected that future versions of
CUDA and future NVIDIA devices will offer increased performance. To take
advantage of performance increases with these developments, the structure of
algorithm can be changed and variables can be placed on faster memories as an

additional effort.

79

REFERENCES

Altingovde, 1.S., Ozcan, R., Ocalan, H.C., Can, F., Ulusoy, O. (2007). Large-scale
cluster-based retrieval experiments on Turkish texts. In Procedings of the 30th
annual international ACM SIGIR conference on Research and development in
information retrieval (ACM SIGIR '07), 891-892.

Buckley, C., & Voorhees, E.M. (2004). Retrieval evaluation with incomplete
information. In Procedings of the 27th annual international ACM SIGIR
conference on Research and development in information retrieval (ACM SIGIR
'04), 25-32.

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval (1st ed).
NY: Addison-Wesley Professional.

Can, F., Kocberber S., Balcik, E., Kaynak, C., Ocalan, H.C., Vursavas O.M.
(2008). Information retrieval on Turkish texts. JASIST, 59 (3), 407-421.

Can, F., Kocberber S., Balcik, E., Kaynak, C., Ocalan, H.C., Vursavas O.M. (2006).
First large-scale information retrieval experiments on turkish texts. In Procedings
of the 29th annual international ACM SIGIR conference on Research and
development in information retrieval (ACM SIGIR '06), 627 — 628.

Frakes, W.B., & Baeza-Yates, R. (1992). Information retrieval: agorithms and data

structures. Englewood Cliffs, NJ: Prentice Hall.

Glaskowsky P. N. (September, 2009). NVIDIA'’s Fermi: The First Complete GPU
Computing Architecture. Retrieved January 20, 2011, from
http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky NVIDIA
's_Fermi-The_First_Complete_GPU_Architecture.pdf.

http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Fazli%20Can
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Seyit%20Kocberber
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Erman%20Balcik
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Cihan%20Kaynak
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Huseyin%20Cagdas%20Ocalan
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Onur%20M.%20Vursavas
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Onur%20M.%20Vursavas
http://www.arnetminer.org/viewpub.do?pid=957772
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Fazli%20Can
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Seyit%20Kocberber
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Erman%20Balcik
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Cihan%20Kaynak
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Huseyin%20Cagdas%20Ocalan
http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Onur%20M.%20Vursavas
http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_NVIDIA's_Fermi-The_First_Complete_GPU_Architecture.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_NVIDIA's_Fermi-The_First_Complete_GPU_Architecture.pdf

80

Korenius, T., Laurikkala, J., Jarvelin, K., & Juhola, M. (2004). Stemming and
lemmatization in the clustering of finnish text documents. Proceedings of the 13th
ACM International Conference on Information and Knowledge Management
(ACM CIKM '04), 625 - 633

Kettunen, K., Kunttu, T., & Jarvelin, K. (2005). To stem or lemmatize a highly
inflectional language in a probabilistic IR environment?. Journal of
Documentation, 61 (4), 476-496.

Kirk, D.B., & Hwu, W.W. (2011). Programming massively parallel processors a

hands-on approach. Burlington: Morgan Kaufmann.

Manavski, S.A., Valle G. (2008). CUDA compatible GPU cards as efficient
hardware accelerators for Smith-Waterman sequence alignment. BMC
Bioinformatics, 9 (2), 10+.

Manning, C.D., Raghavan, P., & Schiitze, H. (2008). Introduction to Information
Retrieval. Cambridge: Cambridge University Press.

Morrison, D.R. (1968). Practical Algorithm to Retrieve Information Coded in
Alphanumeric. JACM, 15 (4), 514 — 534.

NVIDIA Corporation. (2009). NVIDIA’s next generation CUDA compute
architecture Fermi vl1.1. Retrieved June 009, 2011, from
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compu
te_Architecture_Whitepaper.pdf.

NVIDIA Corporation. (November, 2010). NVIDIA CUDA programming guide
version 3.2. Retrieved November 22, 2010, from
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUD
A_C_Programming_Guide.pdf.

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf

81

NVIDIA Corporation. (August, 2010). NVIDIA CUDA C best practices guide
version 3.2. Retrieved November 22, 2010, from
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUD
A_C_Best_Practices_Guide.pdf.

NVIDIA Corporation. (October, 2010). Compute visual profiler user guide.
Retrieved November 22, 2010, from
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/Visua

IProfiler/Compute_Visual_Profiler_User_Guide.pdf.

Nvidia Corporation (June, 2009). Specifications of Geforce GT240M GPU. Retrieved
August 13, 2011 from
http://www.nvidia.com/object/product_geforce_gt 240m_us.html.

Sanders, J., & Kandrot, E. (2011). CUDA by example : an introduction to general-
purpose GPU programming. Boston: Addison-Wesley.

Sanderson, M., & Zobel, J. (2005). Information retrieval system evaluation: Effort,
sensitivity, and reliability. In Proceedings of the 28th International ACM SIGIR
Conference on Research and Development in Information Retrieval (ACM SIGIR
'05), 162-1609.

Schatz, M.C., Trapnell, C., Delcher, A.L., Varshney, A. (2007). High-throughput
sequence alignment using Graphics Processing Units. BMC Bioinformatics, 8 (1),
474+,

Solak, A., & Can, F. (1994). Effects of stemming on Turkish text retrieval. In
Proceedings of the 9th International Symposium on Computer and Information
Sciences, 49-56.

Shimpi A.L., & Wilson D. (June 16, 2008). NVIDIA's 1.4 Billion Transistor GPU: GT200
Arrives as the GeForce GTX 280 & 260. Retrieved December 16, 2010 from
http://www.anandtech.com/show/2549/2.

http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/VisualProfiler/Compute_Visual_Profiler_User_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/VisualProfiler/Compute_Visual_Profiler_User_Guide.pdf
http://www.anandtech.com/show/2549/2

82

Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos, E.P. & loannidis, S.,
(2008). Gnort: High Performance Network Intrusion Detection Using Graphics

Processors. Lecture Notes in Computer Science, 5230, 116 — 134.

83

APPENDIX 1

Table A. 1 Evaluation measures of trec_eval program

Name Description
num_ret Total number of documents retrieved over all queries
num_rel Total number of relevant documents over all queries
num_rel_ret Total number of relevant documents retrieved over all queries
map Mean Average Precision (MAP)
gm_map Average Precision. Geometric Mean,
g_score=log(MAX(map,.00001))
Rprec R-Precision (Precision after R (= num-rel for topic) documents
retrieved)
bpref Binary Preference, top R judged nonrel
recip_rank Reciprical rank of top relevant document

iprec@recall_0.00

Interpolated Recall - Precision Averages at 0.00 recall

iprec@recall_0.10

Interpolated Recall - Precision Averages at 0.10 recall

iprec@recall_0.20

Interpolated Recall - Precision Averages at 0.20 recall

iprec@recall_0.30

Interpolated Recall - Precision Averages at 0.30 recall

iprec@recall_0.40

Interpolated Recall - Precision Averages at 0.40 recall

iprec@recall_0.50

Interpolated Recall - Precision Averages at 0.50 recall

iprec@recall_0.60

Interpolated Recall - Precision Averages at 0.60 recall

iprec@recall_0.70

Interpolated Recall - Precision Averages at 0.70 recall

iprec@recall_0.80

Interpolated Recall - Precision Averages at 0.80 recall

iprec@recall_0.90

Interpolated Recall - Precision Averages at 0.90 recall

iprec@recall_1.00

Interpolated Recall - Precision Averages at 1.00 recall

P@5 Precision after 5 docs retrieved
P@10 Precision after 10 docs retrieved
P@15 Precision after 15 docs retrieved
P@20 Precision after 20 docs retrieved
P@30 Precision after 30 docs retrieved
P@100 Precision after 100 docs retrieved
P@200 Precision after 200 docs retrieved
P@500 Precision after 500 docs retrieved

P@1000

Precision after 1000 docs retrieved

APPENDIX 2

Table A. 2 Specifications of NVIDIA GeForce GT240M GPU (NVIDIA Corporation, June 2009)

Model GeForce GT 240M
Year June 15, 2009
Code name GT216
Fab (nm) 40
Businterface
PCle 2.0 x16
Memory max (MiB) 1024
Core (MHz)
550
Clock speed Shader (MHz)
1210
Memory (MHz
v) 1600
Config core 48:16:08
Bandwidth max (GB/s) 25.6
Memory Bus type GDDR3
Bus width (bit) 128
DirectX 101
Graphics library support
(version) OpenGL
3.3
GFLOPs (MADD/MUL) 174
TDP (Watts) 23

85

APPENDIX 3

Table A. 3 Stop words list
Stop Words

a bunu hem mu S vb
acaba bunun heniiz mil sana var
altt burada hep n sekiz veya
ama biitiin hepsi nasil sen veyahut
ancak c hepsine ne senden y
artik ¢ hepsini ne kadar seni ya
asla cogu her ne zaman senin ya da
aslinda coguna her biri neden siz yani
az gogunu herkes nedir sizden yedi
b cok herkese neler size yerine
bana ¢linkti herkesi nerde Sizi yine
bazen d hi¢ nerede sizin yoksa
bazi da hi¢ kimse nereden sonra z
bazilari daha higbiri nereye S zaten
bazisi de hicbirine nesi sayet zira
belki degil hi¢birini neyse sey
ben demek 1 nigin seyden
beni diger i niye seye
benim digeri igin 0 seyi
bes digerleri icinde on seyler
bile diye iki ona simdi
bir dokuz ile ondan sOyle
bircogu dolay1 ise onlar su
bir¢ok dort iste onlara suna
bir¢oklar1 e j onlardan sunda
biri elbette k onlarin sundan
birisi en kag onlarin sunlar
birkag f kadar onu sunu
birkag1 fakat kendi onun sunun
birsey falan kendine orada t
birseyi felan kendini oysa tabi
biz filan ki oysaki tamam
bize g kim 0 tim
bizi gene kime obiiri timii
bizim gibi kimi on u
boyle g Kimin once i
boylece h Kimisi otird ¢
bu hala | oyle iizere
buna hangisi m p tizerine
bunda hani madem r \%
bundan hatta mi ragmen ve

APPENDIX 4

Table A. 4 Our stop words list. (We applied fixed prefix truncate by 5 to words on Appendix 3)

86

Stop Words
a (¢ 1 on suna
acaba cogu i ona sunda
alt1 cogun icin ondan sunla
ama ¢ok iki onlar sunu
ancak clinkii ile onu sunun
artik d ise onun t
asla da iste orada tabi
aslin daha j oysa tamam
az de Kk oysak tim
b degil kac) timii
bana demek kadar Obiirii u
bazen diger kendi on i
bazi diye ki once ii¢
bazil dokuz kim otiri lizere
bazis dolay kime oyle iizeri
belki dort kimi p v
ben e kimin r ve
beni elbet Kimis ragme vb
benim en | S var
bes f m sana veya
bile fakat madem sekiz veyah
bir falan mi1 sen y
birgo felan mi sende ya
biri filan midir seni yani
biris g mu senin yedi
birka gene mudur Siz yerin
birse gibi mii sizden yine
biz g n size yoksa
bize h nasil Sizi z
bizi hala ne sizin zaten
bizim hangi neden sonra zira
boyle hani nedir S
bu hatta neler sayet
buna hem nerde sey
bunda heniiz nered seyde
bunla hep nerey seye
bunu hepsi nesi seyi
bunun her neyse seyle
burad herke nigin simdi
biitiin hi¢ niye sOyle
c higbi 0 su

87

APPENDIX 5

Table A. 5 Queries in the dataset.We used the queries in the “description” column.

QuerylD | Topic Description

235 Kus Gribi Kus gribi nedir, nasil bulagir, belirtileri nelerdir sorularina
cevap olabilecek dokiimanlar.

238 Kibris Sorunu Tiirkiye’nin Avrupa Birligi’ne tam iiyelik siirecinde Kibris
sorununu ele alan bir dokiiman.

241 Universiteye giris sinavi Tirkiye’de Universiteye giris sinavinin gengler tizerindeki
etkileri, genclerin ve kamuoyunun bu smmav igin
diisiindiikleri.

243 Tsunami Gliney Asya’y1r 26 Aralik 2004’te vuran biiyiik Tsunami
faciasi ve bu facianin sonuglart.

244 Mavi Akim Dogalgaz | Mavi akimin ulusal enerji politikamizdaki yeri, ekonomik

Projesi maliyeti

258 Deprem Tedbir Onlem Biiyiik bir boliimii deprem bdlgesi olan Tiirkiye'de deprem
oncesi alinan tedbirler nelerdir

265 Tirkiye PKK catismalar1 | Ttrk Silahli Kuvvetleri ile PKK arasinda meydana gelen
catigsmalar

270 Film Festivalleri Tirkiye’ de gergeklestirilen film festivalleri ve bu
festivallerde 6diil alan sanatgilar.

271 Bedelli askerlik | Askerlik hizmetinin bedelli olarak yapilmasinin Tiirk

uygulamasi kamuoyu iizerindeki etkileri, ilgili makamlarin s6z konusu
uygulama hakkindaki goriisleri.

278 Stresle Basa Cikma | Giinlik hayatimizi birgok yonden olumsuz etkileyen stresle

Yollart nasil miicadele edebiliriz

282 Sampiyonlar Ligi Futbol Avrupa Sampiyonlar ligi 2004-2005 sezonu
miicadelesi

283 17 Agustos Depremi 17 Agustos Depreminin Tiirkiye iizerindeki sosyal ve
ekonomik etkileri

284 Tirkiye'de internet | Son yillarda bilisim teknolojisinin gelismesiyle internet

kullanimi kullaniminin artmasi, kullanict profili, kullanim amaglari.

288 Amerika Irak isgal | Amerika'nin Irak operasyonu demokrasi adina yapilmis bir

demokrasi petrol hareket midir yoksa petrol igin yapilan bir iggal midir?

289 Tiirkiye'de futbol sikesi Sikenin Tirk futbolundaki yeri, etkisi, yarattig1 sonuglar, bu
konuda alinan tedbirler, verilen cezalar, uzman gorisleri.

294 Fadil Akgiindiiz Fadil Akgiindiizlin milletvekili olamayacagma iligkin

88

yapilan itirazlar.

295 Issizlik sorunu Tiirkiye'de issizlik sorununun bireylerin ruhsal saglig:
tizerindeki olumsuz etkileri, issizligin toplumsal ve
ekonomik sonuglart.

296 2005 F1 Tirkiye Grand | Formula 1'de 2005 sezonun 14'incii yaris1 Tirkiye Grand

Prix Prix'sini rakamlarla anlatan bir dokiiman.

298 Ekonomik kriz Tiirkiye'de ekonomik krize neden olan olaylar.

300 Nuri Bilge Ceylan Nuri Bilge Ceylan sinemasinin Tiirk sinemasina etkileri

301 Tiirkiye'de meydana | Tiirkiye'de meydana gelen depremlerin insanlar iizerindeki
gelen depremler etkileri ve bu depremlere karsi alinan 6nlemler.

302 ABD-Irak Savas1 ABD ve Ingiltere'nin Irak'a yonelik baglattigi saldirmin

ardindan taraflarin kayiplarini agiklayan bir dokiiman.

304 Hakan Sitkiir'iin = milli | Ersun Yanal Hakan Siikiir'c A milli futbol takimi kadrosuna
takim kadrosuna | dahil etmeme karart dogru mu yanlis m1 Ersun Yanal hakli
alinmamasi mi1 haksiz m1

305 Avrupa Birligi, Tiirkiye | Tiirkiye'nin Avrupa Birligi'ne (AB) uyum siirecinde insan
ve insan haklar haklariyla ilgili yaptig1 yenilikler, ¢ikardigi kanunlar

306 Turizm Son yillarda Tiirk turizmindeki gelismeler

307 Tiirkiye’deki sokak | Tiirkiye’deki 6zellikle Istanbul’daki sokak ¢ocuklartyla ilgili
gocuklari olarak yapilan ¢aligmalar, bu g¢ocuklarin sokak ¢ocugu olma

nedenleri, pargalanmis ailelerin bu olaya etkileri, bu
¢ocuklarin sayilari, olayin toplumsal etkileri, bu ¢ocuklarin
isledigi suglar.

308 Tiirk filmleri ve sinemast | Son yillarda biiyilk sigrama yaptigi sOylenen Tiirk
sinemasinda yeni parlayan isimler, en kayda deger filmler,
eski ustalarin bu konudaki katkilar.

311 Pakistan Depremi Pakistan’da 8 Ekim’de meydana gelen biiyiik deprem ve bu
depremin sonuglari

324 Sanat odiilleri Tiirkiye'de edebiyat, miizik, resim, sinema gibi sanat
dallarinda verilmis ddiiller.

339 Avrupa Birligi Fonlar1 Avrupa Birligi tarafindan Tiirkiye'de, kamuya ve 6zel
sektore ait her alandaki proje ve programlar icin ayrilan
fonlar, geri 6demeli veya hibeli krediler.

342 Futbolda sike Futbolda sike sdylentileri, yorumlar ve kanitlar

343 milletvekili Milletvekilleri meclis karar1 olmadan yargilanamaz,
dokunulmazligi sorusturmaya tabii tutulamaz.

344 2001 Erkekler Avrupa | milli takimi sporcularmin turnuva siiresindeki ve turnuva

89

Basketbol Sampiyonasi sonrasindaki diisiinceleri, onlarla yapilan roportajlar ve
takimdaki son haberler

347 2002 Diinya Kupas1 Tiirk Milli Takimi’nin 3. oldugu 2002 Diinya Kupasi

348 bilisim egitimi ve | Tiirkiye'de yapilan bilisim egitimi ve bilisim projeleri, bu

projeleri egitimin ve projelerin kaliteleri ve sanayiye katkilar

349 Global 1sinma Global 1sinmanin diinya iklimine olumsuz etkileri nelerdir,
bu etkileri azaltmak veya yok etmek i¢in neler yapmaliy1z?

350 Tiirkiye'de mortgage Mortgage'in nasil isleyecegi, Tiirkiye'ye yararlart ve mevcut
kredi sistemleri tizerindeki olusturacag: etki. Kamuoyunun
mortgage'den beklentileri.

352 ABD Afganistan Savas1 ABD'nin Afganistan'a yapti§1 operasyonda Tiirkiye’nin
roliinii agiklayan bir dokiiman.

360 Yiiziiklerin Efendisi- | 11 dalda 6diil alan Yiiziiklerin Efendisi-Kralin Doniisii

Kralin Doniisii filminin basarisini anlatan bir dokiiman.

362 Beyin Gogii Tirkiye'de yetisen akademik olarak basarili 6grencilerin
iniversite veya sonrasindaki bilimsel ¢alismalari i¢in yurt
disimi tercih etmeleri

366 aile kadin siddet Aile icinde kadina karsi uygulanan siddetin alkol ve
parasizlik gibi sebepler disinda ne gibi sebepleri vardir
Kadina siddet daha ¢ok hangi tiir toplumlarda goriilmektedir
Cocuk gelisimine etkileri nelerdir

367 sporcularin doping | Sporcularin doping yapmasi yarigma veya miisabakalarda

yapmasi fiziksel dayanikliklarini artirmak i¢in kullanimi yasak olan
performans artirict maddeleri kullanmasidir.

368 ozon tabakasindaki delik | Ozon tabakasi diinyaya uzaydan gelen ultraviyole isinlar
stizen bir filtredir. Bu filtrede olusan delik cilt kanseri
vakalarinda artiga neden olmaktadir.

373 Rusya'da okul baskini Kuzey Osetya’da yiizlerce kisinin rehin tutuldugu okul
binasina Rus gii¢leri tarafindan diizenlenen operasyon.

374 Istanbul'da bombali | Istanbul'da 15 Kasim 2003 tarihinde, Kuledibi'ndeki Neve

saldir Salom ve Sisli'deki Betyaakov Sinagogu yakinlarinda saat
09.30'da meydana gelen patlamalar.

377 Sakip Sabanci'nin vefati Sakip Sabanci'nin 10 Nisan 2004 saat 05.55 siralarinda vefat
etmesiyle ilgili dokiimanlar.

378 Ecevit Sezer gatismasi MGK toplantisinda Cumhurbagkan1 Sezer’in Bagbakan

Ecevit’e anayasay: firlatmasiyla gelisen olaylar.

90

382 Kibris Tiirk Giniversiteleri | Kibris’ta agilan yeni {iniversitelerin ve burada okuyan
Ogrencilerin sorunlar1, nasil Ogrenci aldiklari, denklik,
kalacak yurt, Ogretim {iyesi bulma konusunda yasanan
sorunlar.

383 Tiirkiye'de 2003 yilinda | Tiirkiye'ye 2003'te gelen turist sayis1 ve dagilimi, illerdeki

turizm turizm durumu, turizmin ekonomiye katkisi,

406 Tiirkiye'nin Niikleer | Tiirkiye'nin Niikleer santral caligmalari, niikleer santral

santral ¢alismalari projeleri

411 hizli tren kazasi hizli tren kazasimin nedenleri ve alinan 6nlemler

412 YOK'iin Yiiksek Ogretim Kurulu, YOK'iin kurulusu,

Universitelerimiz universitelerimiz tizerindeki olumlu olumsuz etkileri,
iizerindeki etkisi elestirilen yonleri, YOK hiikiimet iliskileri

414 Ibrahim Tatlises’in | Ibrahim Tatlises’in yasadigi asklar ve kadnlarla ilgili

kadinlar1 yarattig1 huzursuzluklar kavgalar.

416 Pargalanmus aileler Pargalanmus aile bireylerinin yasadig1 sorunlar, 6zellikle bu
tiirden ailelerin ¢ocuklarinin ve kadmlarinin durumlart.

417 Aile i¢i siddet Aile bireyleri arasinda yasanan siddet olaylar1 ve sebepleri.
Cocuklara ve kadinlara uygulanan siddet, buna maruz
kalanlarin yasadigi sorunlar.

419 Tiirkiye’de kanser Tiirkiye’de son yillarda ozellikle Karadeniz bdlgesinde
arttigl disiiniilen kanserli hasta sayisinin Cernobil olayi ile
varsa olan iligkisi ve bu iligkiyi irdeleyen ¢alismalar, resmi
kuruluglar tarafindan verilen istatistiklerin giivenilirligi.

421 Futbol terori ve | Futbolda yasanan siddet olaylari, bunlarin nedenleri ve

holiganizm engellenmesi i¢in aliacak dnlemler.

423 Tiirkiye'de ikinci el | Tiirkiye'de son yillarda ikinci el otomobil piyasasindaki

otomobil piyasast durum, son dénemlerde piyasada yasanan diisiisiin sebep ve
sonuglari, yeni otomobil piyasasindaki yeniliklerle baglantisi

424 Tarihi eser kagakgiligi Tiirkiye'den kagirilan tarihi eserler ve tarihi eser kacakgiliga
kars1 yapilanlar

426 Festival Insanlarin eglenmesi ve kiiltiir paylasimi yapabilmesi igin
diizenlenen festivaller.

428 Tirkiye'de bayram | Tirkiye'de bayram tatillerinde meydana gelen trafik

tatillerinde meydana | kazalarinin nedenleri, ve alinan 6nlemler.
gelen trafik kazalari
432 Ogrenmeyi etkileyen | 6grenmeyi etkileyen faktorler ve etkileri, 6grenme teknikleri

faktorler

91

433 Kekik otu Kekik otunun faydalari, saglik tizerindeki etkileri

435 telif haklar1 Tiirkiye'de telif hakki yasalarinin durumu ve bu konuda
yapilan ¢alismalar

437 Internet ve toplum Internet'in yaygmlasmasi, sunulan hizmetler, toplum
tizerindeki etkileri.

442 Tarim Hayvancilik | Tiirkiye'de tarim ve hayvancilik alaninda yasanan

Sorunlar1 problemler ve bunlarin ¢6ziim yollar.

444 Iran'da Niikleer Enerji [ran'in niikleer enerji ile ilgili politikalari, agiklamalari,
niikleer enerji ile ilgili Iran'da siirdiiriilen faaliyetler,
uluslararasi toplumdan Iran'a niikleer enerji politikalar1 ile
ilgili yoneltilen tepkiler veya verilen destekler

450 satrang Satrancin yazili basinda ne 6l¢iide yer aldigi

452 Kalitsal Hastaliklar Genlerin insan saglig1 iizerindeki etkisi, hastaliklarin kalitsal
nedenleri.

472 hiperaktivite ve dikkat | hiperaktivite ve dikkat eksikligi nedir Belirtileri, teshisi,

eksikligi tedavisi nelerdir Cocuklarin ve yetigkinlerin giinliik
yagamina olumlu ve olumsuz etkileri nedir Hiperaktif
¢ocuklara 6gretmen nasil yaklagmali Bu ¢ocuklara yonelik
egitim sistemi nasil gelistirilebilir

474 lenf kanseri Tirkiye'deki lenf kanser istatistikleri

481 28 Subat siireci 28 Subat siireci ve Tiirkiye lizerindeki etkileri

Table A. 6 Lemmatized queries

APPENDIX 6

92

Query Lemmatized Query Accuracy | Summary

Kus gribi nedir, nasil bulasir, | kus grip bulas belirti soru | 100%

belirtileri nelerdir sorularina | cevap olabil dokiiman

cevap olabilecek dokiimanlar.

Tirkiye’'nin Avrupa Birligi’ne | tirkiye avrupa birlik tam | 90.91% The lemma of “ele”

tam {yelik siirecinde Kibris | tiyelik siire¢ kibris sorun gle must be “el” (hand)

sorununu ele alan bir dokiiman. | alan dokiiman but our lemmatizer
returns “ele”™+
“(mek)” (to
eliminate)
And the lemma of
“alan” must be
GGal’7+ GG(mak)” (to
take) But our
lemmatizer return
“alan”(region)

Tiirkiye’de universiteye giris | tiirkiye tniversite giris | 100%

sinavinin ~ gengler lizerindeki | simav geng etki geng

etkileri, genglerin ve | kamuoyu sinav diisiin

kamuoyunun bu smav igin

disiindiikleri.

Giliney Asya’yt 26 Aralik | giiney asya 26 aralik 2004 | 100%

2004’te vuran biiyiikk Tsunami | vur biiylik tsunami facia

faciasi ve bu facianin sonuglar1. | facia sonug

Mavi akimim ulusal enerji | mavi akim ulusal enerji | 100%

politikamizdaki yeri, ekonomik | politika yer ekonomik

maliyeti maliyet

Biiytik bir boliimii deprem | biiyiik bolim deprem bdlge | 100%

bolgesi olan Tiirkiye'de deprem | ol tiirkiye deprem once alin

Oncesi alinan tedbirler nelerdir? | tedbir

Tirk Silahli Kuvvetleri ile PKK | tiirk silahli kuvvet pkk arasi | 100%

arasinda meydana gelen | meydan gelen ¢atisma

catismalar

Tiirkiye’ de gergeklestirilen film | tiirkiye gergeklestiril film | 87.5% The lemma of “alan”

festivalleri ve bu festivallerde
6diil alan sanatgilar.

festival festival odul alan
sanatgi

must be “al”+”’(mak)”
(to take) But our

93

lemmatizer return

“alan”(region)

Askerlik hizmetinin bedelli | askerlik hizmet bedelli | 100%

yapilmasinin Tiirk kamuoyu | yapilma tiirk kamuoyu etki

tizerindeki etkileri, ilgili | ilgili makam s6z konu

makamlarin s0z konusu | uygulama hakkinda goriis

uygulama hakkindaki goriisleri.

Ginlik hayatimizi bir¢ok | giinliik hayat yon olumsuz | 87.5% The lemma of “ede”

yonden olumsuz etkileyen | etkile stres miicadele ede must be “et”+”(mek)”

stresle nasil miicadele (to do) But our

edebiliriz? lemmatizer return
“ede”(brother)

Futbol Avrupa Sampiyonlar ligi | futbol avrupa sampiyon lig | 100%

2004-2005 sezonu miicadelesi 2004-2005 sezon miicadele

17 Agustos Depreminin Tiirkiye | 17 agustos deprem tiirkiye | 100%

tizerindeki sosyal ve ekonomik | sosyal ekonomik etki

etkileri

Son yillarda bilisim | son yil bilisim teknoloji | 100%

teknolojisinin gelismesiyle | gelisme internet kullanim

internet kullanimimin artmasi, | artma kullanici profil

kullanic1 profili, kullanim | kullanim amag

amaclari.

Amerika'nin Irak operasyonu | amerika 1rak operasyon | 90% The lemma of

demokrasi adma yapilmis bir | demokrasi adina yapil “yapilan” must be

hareket midir yoksa petrol igin | hareket petrol yapilan isgal “yapil”+ “(mak)” (be

yapilan bir isgal midir? done) But our
lemmatizer return
“yapilan”+ “(mak)
(to be settled)

Sikenin Tiirk futbolundaki yeri, | sike tiirk futbol yer etki | 100%

etkisi, yarattigi sonuglar, bu | yarat sonu¢ konu alin tedbir

konuda alinan tedbirler, verilen | veril ceza uzman goriis

cezalar, uzman gortsleri.

Fadil Akgilindiiz'in milletvekili | fadil akglindliz milletvekili | 85.71% The lemma of

olamayacagina iliskin yapilan | ol iliskin yapilan itiraz “yapilan” must be

itirazlar. “yapil”+”(mak)” (be
done) But our
lemmatizer return
“yapilan”+”’(mak)”
(to be settled)

Tiirkiye'de issizlik sorununun | tiirkiye igsizlik sorun birey | 100%

94

bireylerin ruhsal sagligt
uzerindeki olumsuz etkileri,
igsizligin toplumsal ve

ekonomik sonuglari.

ruhsal saglik olumsuz etki
issizlik toplumsal ekonomik
sonug

Formula 1'de 2005 sezonun | form 1 2005 sezon 14 yaris | 91.67% “Formula” and “Prix“

14%incti yarigt Tirkiye Grand | tiirkiye grand pr rakam are not Turkish words

Prix'sini rakamlarla anlatan bir | anlat dokiiman and therefore they

dokiiman. don’t take place in
Turkish dictionary.
Lemmatizer returns
latest found lemma.

Tiirkiye'de ekonomik krize | tiirkiye ekonomik kriz ol | 100%

neden olan olaylar. olay

Nuri Bilge Ceylan sinemasiin | nuri bilge ceylan sinema | 100%

Tiirk sinemasina etkileri tirk sinema etki

Tirkiye'de meydana gelen | tiirkiye meydan gelen | 100%

depremlerin insanlar {izerindeki | deprem insan etki deprem

etkileri ve bu depremlere karsi | karsi alin 6nlem

alinan 6nlemler.

ABD ve Iingiltere'nin Irak'a | abd ingiltere irak yonelik | 100%

yonelik baglattigi saldirinin | baglat saldir1 ardi taraf

ardindan taraflarin kayiplarini | kayip agikla dokiiman

aciklayan bir dokiiman.

Ersun Yanal Hakan Siikiir'ii A | ersun yanal hakan sikiir | 100%

milli futbol takimi kadrosuna | milli futbol takim kadro

dahil etmeme karart dogru mu | dahil etme karar dogru

yanlis m1 Ersun Yanal hakli m1 | yanlis ersun yanal hakli

haksi1z m1 haksiz

Tirkiye'nin Avrupa Birligi'ne | tiirkiye avrupa birlik ab | 100%

(AB) uyum siirecinde insan | uyum sire¢ insan hak ilgili

haklariyla ilgili yaptig1 | yap yenilik ¢ikar kanun

yenilikler, ¢ikardigi kanunlar

Son yillarda Tiirk turizmindeki | son yil tiirk turizm gelisme | 100%

geligsmeler

Tiirkiye’deki ozellikle | tirkiye oOzellikle istanbul | 95.83% The lemma of

Istanbul’daki sokak ¢ocuklariyla | sokak cocuk ilgili yapilan “yapilan” must be

ilgili yapilan c¢aligmalar, bu | calisma ¢ocuk sokak ¢ocuk “yapil”+”’(mak)” (be

cocuklarin sokak g¢ocugu olma | olma pargalan aile olay etki done). But our

nedenleri, parcalanmis ailelerin | ¢ocuk say1 olay toplumsal lemmatizer return

bu olaya etkileri, bu ¢ocuklarin

sayilari, olayin toplumsal

etki cocuk islet su¢

“yapilan”(mak) (to be
settled)

95

etkileri, bu cocuklarm isledigi
suclar.

Son yillarda biiyiik sigrama | son yil biiyiik sigrama yap | 94.44% The lemma of

yaptigi sOylenen Tirk | soylen tirk sinema yeni “kayda” must be

sinemasinda yeni parlayan | parla isim kay deger film “kay1t” (registration)

isimler, en kayda deger filmler, | eski usta konu katki

eski ustalarin bu konudaki But our lemmatizer

katkilar1. returns “kay”+
”(mak)“ (to slide).
This problem occurs
because there are
valid entries like
“kaydirmak” and
“kaydetmek” o)
lemmatizer goes to
“kayd” on trie then
can’t find any match
and returns the latest
lemma (““ kay”™).

Pakistan’da 8 Ekim’de meydana | pakistan 8 ekim meydan | 100%

gelen biiyiik deprem ve bu | gelen biiyiik deprem

depremin sonuglari deprem sonug

Tiirkiye'de edebiyat, miizik, | tirkiye edebiyat miizik | 100%

resim, sinema gibi sanat | resim sinema sanat dal veril

dallarinda verilmis odiiller. odiil

Avrupa Birligi tarafindan | avrupa birlik tarafindan | 100%

Tirkiye'de, kamuya ve 0&zel | tlirkiye kamu 6zel sektor ait

sektore ait her alandaki proje ve | alan proje program ayril fon

programlar i¢in ayrilan fonlar, | geri ddemeli hibe kredi

geri Odemeli veya hibeli

krediler.

Futbolda sike sdylentileri, | futbol sike sOylenti yorum | 100%

yorumlar ve kanitlar kanit

Milletvekili meclis karar1 | milletvekili meclis karar | 100%

olmadan yargilanamaz, | olma yargilan sorusturma

sorusturmaya tabii tutulamaz. tabii tutul

milli takim sporcularinin | milli takim sporcu turnuva | 100%

turnuva siiresindeki ve turnuva | siiresinde turnuva diisiince

sonrasindaki diigiinceleri, onlarla | yapilan roportaj takim

yapilan roportajlar ve takimdaki | haber

son haberler

Tirk Milli Takimi’nin 3. oldugu | tiirk milli takim 3 ol 2002 | 100%

96

2002 Diinya Kupast diinya kupa

Tiirkiye'de yapilan bilisim | tirkiye yapilan bilisim | 100%

egitimi ve bilisim projeleri, bu | egitim bilisim proje egitim

egitimin ve projelerin kaliteleri | proje kalite sanayi katki

ve sanayiye katkilar

Global 1sinmanin diinya iklimine | global i1sinma diinya iklim | 100%

olumsuz etkileri nelerdir, bu | olumsuz etki etki azalt yok

etkileri azaltmak veya yok et | et yapma

i¢in neler yapmaliy1z?

Mortgage'in nasil isleyecegi, | mor isle tirkiye yarar | 83.33% “Mortgage” is not a

Tiirkiye'ye yararlart ve mevcut | mevcut kredi sistem olustur Turkish word and

kredi sistemleri {izerindeki | etki kamuoyu mor beklenti doesn’t take place in

olusturacagi etki. Kamuoyunun Turkish dictionary.

mortgage‘den beklentileri. Lemmatizer returns
latest found lemma.

ABD'nin Afganistan'a yaptig1 | abd afganistan yap | 100%

operasyonda Tiirkiye’nin roliinii | operasyon tiirkiye rol acikla

aciklayan bir dokiiman. dokiiman

11 dalda 6diil alan Yiiziiklerin | 11 dal o6dil alan yiizik | 90.91% The lemma of “alan’”

Efendisi-Kralin Doniisti filminin | efendi doéniis film basar must be “al”+”(mak)

basarisini anlatan bir dokiiman. anlat dokiiman “ (to take) But our
lemmatizer returns
“alan”(region)

Tirkiye'de yetisen akademik | tirkiye yetisen akademik | 100%

basarili Ggrencilerin iiniversite | basarilt dgrenci iiniversite

veya sonrasindaki bilimsel | bilimsel ¢alisma yurt dis

caligmalari i¢in yurt digini tercih | tercih etme

etmeleri

Aile i¢ginde kadina karsi | aile i¢inde kadin karst | 95% The lemma of “alan’’

uygulanan siddetin alkol ve | uygulan siddet alkol must be “var”

parasizlik gibi sebepler digsinda | parasizlik sebep diginda (available) But our

ne gibi sebepleri yardir? Kadma | sebep vardir kadin siddet lemmatizer returns

siddet daha c¢ok hangi ftiir | tiir toplum goril c¢ocuk “vardir”+”(mak)” (

toplumlarda goriilmektedir? | gelisim etki to let a matter reach)

Cocuk gelisimine etkileri

nelerdir?

Sporcularin doping yapmasi | sporcu doping yapma | 100%

yarigsma veya miisabakalarda
fiziksel dayanikliklarini artirmak
icin kullanim1 yasak olan
performans artirict maddeleri

kullanmasidir.

yarigma miisabaka fiziksel
dayaniklik artir kullanim
yasak ol performans artiric
madde kullanma

97

Ozon tabakasi diinyaya uzaydan | ozon tabaka diinya uzay | 100%

gelen ultraviyole 1sinnlari siizen | gelen ultraviyole 1sin siizen

bir filtredir. Bu filtrede olusan | filtre filtre olus delik cilt

delik cilt kanseri vakalarinda | kanser vaka artis ol

artisa neden olmaktadir.

Kuzey Osetya’da yiizlerce | kuzey osetya yiiz kisi rehin | 100%

kisinin rehin tutuldugu okul | tutul okul bina rus gl

binasina Rus gilicleri tarafindan | tarafindan diizenlen

diizenlenen operasyon. operasyon

Istanbul'da 15 Kasim 2003 | istanbul 15 kasim 2003 | 88.89% “Salom” and

tarihinde, Kuledibi'ndeki Neve | tarih kuledibi neve sal sisli “Betyaakov “ are not

Salom ve Sisli'deki Betyaakov | bet sinagog yakin saat 09 Turkish words and

Sinagogu yakinlarinda saat | 30 meydan gelen patlama don’t take place in

09.30'da meydana gelen Turkish dictionary.

patlamalar. Lemmatizer returns
latest found lemma.

Sakip Sabanci'nin 10 Nisan 2004 | sakip sabanct 10 nisan 2004 | 100%

saat 05.55 swralarinda vefat | saat 05 55 sira vefat etme

etmesiyle ilgili dokiimanlar. ilgili dokiiman

MGK toplantisinda | mgk toplant1 | 100%

Cumhurbagkant Sezer’in | cumhurbaskani sezer

Basbakan Ecevit’e anayasayr | bagbakan ecevit anayasa

firlatmasiyla gelisen olaylar. firlatma gelisen olay

Kibris’ta acilan yeni | kibris agil yeni {niversite | 100%

iiniversitelerin ve burada okuyan | okuyan Ogrenci sorun

ogrencilerin sorunlari, nasil | 6grenci al denklik kal yurt

ogrenci aldiklari, denklik, | 6gretim iiye bulma konu

kalacak yurt, Ogretim {yesi | yasan sorun

bulma konusunda yasanan

sorunlar.

Tiirkiye'ye 2003'te gelen turist | tiirkiye 2003 gelen turist | 100%

sayist ve dagilimi, illerdeki | sayr dagilim il turizm

turizm durumu, turizmin | durum turizm ekonomi

ekonomiye katkisi, katk1

Tiirkiyenin ~ Niikleer santral | tiirkiye niikleer santral | 100%

calismalari, niikleer santral | calisma niikleer santral

projeleri proje

hizli tren kazasinin nedenleri ve | hizli tren kaza alin 6nlem 100%

alman 6nlemler

Yiiksek Ogretim Kurulu, | yiiksek 6gretim kurulu yok | 92.85% The lemma of

98

YOK'iin kurulusu, | kurulus {niversite olumlu “kurulu” must be

iiniversitelerimiz iizerindeki | olumsuz etki elestiril yon “kurul” (commision)

olumlu olumsuz etkileri, | yok hiikiimet iliski But our lemmatizer

elestirilen yonleri, YOK returns “kurulu”

hiikiimet iligkileri (installed)

[brahim Tathses’in yasadigi | ibrahim tath yasat ask | 77.78% “Tathises” is a special

agklar ve kadmlarla ilgili | kadin ilgili yarat name doesn’t have a

yarattig1 huzursuzluklar | huzursuzluk kavga specific lemma.The

kavgalar. lemma of “yasadig1™’
must be ‘“yasa” +
“(mak)” (to live) But
our lemmatizer
returns “yasat” +
“(mak)” (to keep
alive)

Parcalanmis aile bireylerinin | pargalan aile birey yasat | 90.91% .The lemma of

yasadig1 sorunlar, ozellikle bu | sorun Ozellikle tir aile “yasadig”™ must be

tiirden ailelerin ¢ocuklarimin ve | ¢ocuk kadin durum “yasa” + “(mak)” (to

kadmnlarinin durumlart. live) But our
lemmatizer returns
“yasat” + “(mak)” (to
keep alive)

Aile bireyleri arasinda yasanan | aile birey ara yasan siddet | 93.33% .The lemma of

siddet olaylar1 ve sebepleri. | olay sebep cocuk kadin “yasadig” must be

Cocuklara ve kadmlara | uygulan siddet maruz kalan “yasa” + “(mak)” (to

uygulanan siddet, buna maruz | yasat sorun live) But our

kalanlarmn yasadig sorunlar. lemmatizer returns
“yasat” + “(mak)” (to
keep alive)

Tiirkiye’de son yillarda 6zellikle | tirkiye son yil ozellikle | 96% “Cernobil” is not a

Karadeniz bolgesinde arttig1 | karadeniz bolge art diistiniil Turkish word and

diisiiniilen kanserli hasta | kanserli hasta say1 ce olay therefore doesnt take

sayisinin Cernobil olayr ile | var ol iliski iliski irdeleyen place in Turkish

varsa olan iligkisi ve bu iligkiyi | calisma resmi kurulus dictionary.

irdeleyen calismalar, resmi | tarafindan veril istatistik Lemmatizer returns

kuruluglar tarafindan verilen | glivenilirlik latest found lemma.

istatistiklerin giivenilirligi.

Futbolda yasanan siddet olaylari, | futbol yasan siddet olay | 100%

bunlarin nedenleri ve | engellenme alin 6nlem

engellenmesi igin alinacak

onlemler.

Tiirkiye'de son yillarda ikinci el | tirkiye son yil ikinci el | 100%

otomobil piyasasindaki durum,
son donemlerde piyasada

otomobil piyasa durum
donem piyasa yasan diislis

99

yasanan disiislin sebep ve

sebep sonug¢ yeni otomobil

sonuglari, yeni otomobil | piyasa yenilik baglanti

piyasasindaki yeniliklerle

baglantisi

Tiirkiye'den kagirilan tarihi | tiirkiye kacir tarih eser tarih | 100%
eserler ve tarihi eser kagakgiliga | eser kagakeilik karst

kars1 yapilanlar yapilan

Insanlarin eglenmesi ve kiiltiir | insan eglenme kiiltiir | 100%
paylasimi yapabilmesi icin | paylasim yapabilme
diizenlenen festivaller. diizenlen festival

Tiirkiye'de bayram tatillerinde | tiirkiye bayram tatil meydan | 100%
meydana gelen trafik kazalarinin | gelen trafik kaza alin 6nlem
nedenleri, ve alinan 6nlemler.

ogrenmeyi etkileyen faktorler ve | 6grenme etkile faktor etki | 100%
etkileri, 6grenme teknikleri ogrenme teknik

Kekik otunun faydalari, saglik | kekik ot fayda saglik etki 100%
tizerindeki etkileri

Tiirkiye'de telif hakki | tirkiye telif hakki yasa | 100%
yasalarinin durumu ve bu | durum konu yapilan
konuda yapilan galigmalar calisma

Internet'in yayginlagsmasi, | internet yayginlasma sunul | 100%
sunulan hizmetler, toplum | hizmet toplum etki

tizerindeki etkileri.

Tiirkiye'de tarim ve hayvancilik | tiirkiye tarim hayvancilik | 100%
alaninda yasanan problemler ve | alan yasan problem ¢6ziim
bunlarin ¢6ziim yollart. yol

Iran'in niikleer enerji ile ilgili | iran niikleer enerji ilgili | 100%
politikalart, aciklamalari, | politika aciklama niikleer
niikleer enerji ile ilgili Iran'da | enerji ilgili iran siirdiir
stirdiiriilen faaliyetler, | faaliyet uluslararasi toplum
uluslararasi toplumdan Iran'a | iran niikleer enerji politika
niikleer enerji politikalar1 ile | ilgili yonelt tepki veril

ilgili yoneltilen tepkiler veya | destek

verilen destekler

Satrancin yazili basinda ne | satrang yazili basin 6lgii yer | 100%
Olciide yer aldigt al

Genlerin insan saghgt | gen insan saglik etki | 100%

uzerindeki etkisi, hastaliklarin
kalitsal nedenleri.

hastalik kalitsal

100

hiperaktivite ve dikkat eksikligi
nedir Belirtileri, teshisi, tedavisi
nelerdir Cocuklarin ve
yetiskinlerin giinliik yasamina
olumlu ve olumsuz etkileri nedir
Hiperaktif cocuklara Ogretmen
nasil yaklagsmali Bu g¢ocuklara
yonelik egitim sistemi nasil
gelistirilebilir

hiperaktivite dikkat eksiklik
belirti teshis tedavi cocuk
yetiskin glinlik yasam
olumlu olumsuz etki
hiperaktif ¢ocuk Ogretmen
yaklasma c¢ocuk yonelik
egitim sistem gelistir

100%

Tirkiye'deki lenf kanser
istatistikleri

tirkiye lenf kanser istatistik

100%

28 Subat siireci ve Tirkiye
tizerindeki etkileri

28 subat siireg tlirkiye etki

100%

	415108
	m.sc thesis examination result form

