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MODELING OF THE AGING PROCESS IN STRESS-STRENGTH MODELS 

ABSTRACT 

 

     Modeling of the aging process of a component or a system can be performed in 

various ways. The reliability function is one of the helpful tools commonly used for 

such modeling. Under specified conditions, the reliability of a component or a 

system can be defined as the probability that an item will perform satisfactorily, for a 

given period time. An important method for improving the reliability of a system is 

to build redundancy into it. A common structure of redundancy is the k-out-of-n 

system. Both parallel and series systems are special cases of the k-out-of-n system. A 

series system is equivalent to a 1-out-of-n system while a parallel system is 

equivalent to an n-out-of-n system. 

 

     In this thesis, the reliability of parallel, series and k-out-of-n: F systems with 

exchangeable components in the stress-strength model are considered. It is assumed 

that a random stress common to all the components in the system level. Applications 

of obtained results to illustrate the reliability for the system consisting of three 

components using the multivariate FGM and multivariate Marshall-Olkin 

distributions are given. Also, examples for the series and parallel systems are 

presented with some bivariate distributions.  

 

Keywords: Reliability, stress-strength model, parallel system, series system, k-out-

of-n system, exchangeable components.  
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STRES-DAYANIKLILIK MODELLERİNDE YAŞLANMA SÜRECİNİN 

MODELLENMESİ 

ÖZ 

 

     Bir bileşenin ya da bir sistemin yaşlanma sürecinin modellenmesi çeşitli yollarla 

gerçekleştirilebilir. Güvenilirlik fonksiyonu böyle bir modelleme için başlıca 

kullanılan araçlardan biridir. Belirlenmiş şartlarda, verilmiş bir zaman süresi içinde, 

bir sistemin ya da bir bileşenin güvenilirliği, bir parçanın kifayetli bir şekilde çalışma 

olasılığıdır. Bir sistemin güvenilirliğini geliştirmek için önemli bir yöntem, sisteme 

yedekleme yapılmasıdır. Yedeklemenin başlıca yapısı n’den-k-tane sistemidir. 

Paralel ve seri sistemlerin her ikisi de n’den-k-tane sisteminin özel durumlarıdır. 

Paralel sistem n’den-n-tane sistemine eşit iken, seri sistem n’den-1-tane sistemine 

eşittir. 

 

     Bu tezde, stres-dayanıklılık modelinde, paralel, seri ve birbiri yerine geçebilen 

bileşenlere sahip n’den-k-tane: F sistemin güvenilirliği üzerinde duruldu. Rassal bir 

stresin, sistem düzeyinde tüm bileşenler için ortak olduğu varsayıldı. Çok değişkenli 

Farlie-Gumbel-Morgenstern ve çok değişkenli Marshall-Olkin dağılımları 

kullanılarak üç bileşenden oluşan bir sistemin güvenilirliğini incelemek için elde 

edilen sonuçları verildi. Ayrıca, paralel ve seri sistemler için bazı iki değişkenli 

dağılımlar ile örnekler sunuldu.  

 

Anahtar kelimeler: Güvenilirlik, paralel sistem, seri sistem, n’den-k-tane sistemi, 

birbiri yerine geçebilen bileşenler. 
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1 

CHAPTER ONE 

INTRODUCTION 

 

People are continuously under stress, and not always have the strength to 

overcome it. Nowadays the stress-strength relationship is used in many branches of 

science such as engineering, psychology, medicine, pedagogy, pharmaceutical 

industry, etc. In the reliability theory, the stress-strength model is generally interested 

in the reliability of a component with strength X, which is under the random stress Y. 

When it is assumed that X and Y are independent random variables, then the 

component fails if the stress exceeds the strength of the component, i.e. X<Y. There 

are numerous papers on the reliability of a component in stress-strength models 

which has been generally concerned with the probability P(X>Y). One can see for 

more details Kotz et al. (2003). 

 

     The stress-strength model originated not in a parametric but rather in a 

nonparametric set-up in the works of Wilcoxon (1945), Mann & Whitney (1947). 

They introduced a statistic to compare two random variables X and Y which describe 

results of two treatments. They also pointed out the connection between the 

hypothesis   FX = FY and P(X < Y) = 1/2.  

 

     In the area of stress-strength models, there has been a large amount of work as 

regards estimation of the reliability R=P(X>Y) when X and Y are independent 

random variables belonging to the same univariate family of distribution. The 

algebraic form R has been worked out for the majority of the well-known 

distributions in their standard forms. These include normal, Pareto, exponential, 

Gumbel, Weibull, Laplace distributions. In the literature, Johnson (1988) has studied 

estimation of R and has given lots of example about this probability of stress-strength 

models. Enis & Geisser (1971), Beg & Singh (1979) have studied estimation of R for 

Pareto distribution. Nadarajah (2003, 2004), Nadarajah & Kotz (2003) have also 

studied most of distributions about R. Rezaei et al. (2010) have studied estimation of 

R for generalized Pareto distribution. 
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     In this chapter, we will give a brief introduction to stress-strength models and will 

present the literature review.  

 

1.1 The Stress-Strength Model 

 

     In the context of reliability, the stress-strength model describes the life of a 

component which has a random strength X and is subjected to random stress Y.  The 

component fails at the instant that the stress applied to it exceeds the strength and the 

component will function satisfactorily whenever X>Y. Thus R=P(X>Y) is a measure 

of component reliability. 

        

     The most prominent examples for applications of ( )P X Y> are presented in 

Johnson's (1988) survey article. These examples which are related to the engineering 

and medicine applications are as follows: 

 

     Rocket Engines: Consider a stress random variable Y which represents the 

maximal chamber pressure generated by ignition of a solid propellant. X is assumed 

to be the strength of the rocket chamber so that ( )P X Y>  is simply a probability of 

successful firing of an engine.  

   

     Two-Treatment Comparisons: There is a close relation between Wilcoxon-type 

tests and the ( )P X Y>  models. Wilcoxon (1945) provides results of the fly spray 

tests on two preparations in terms of the percentage of the mortality. He compares 

the percent killed in the sample A versus the percent killed in the sample B (each 

involving 8 observations) concluding by means of this test that sample B provides a 

lower percent; thus preparation B should be considered less effective.  

 

     Response Models: A certain unit- be a receptor in a human eye or ear or any other 

organ operates only if it is stimulated by source of random magnitude Y and the 

stimulus exceeds specific a lower threshold for that unit. In this case P (unit function) 

is equivalent to the familiar ( )P X Y< , a stress-strength relationship.      
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     Shaft Example: If X represents the diameter of a shaft and Y represents the 

diameter of a bearing that is to be mounted on the shaft, then R is the probability that 

the bearing fits without interference. 

  

     Mechanical Systems: Let Y and X are the remission times of two chemicals when 

they are administered two kinds of mechanical system. Inferences about R present a 

comparison of the effectiveness of the chemicals. 

 

     Pyrotechnic Example: If Y represents the distance of pyrotechnic igniter from its 

adjacent pellet and X represents its ignition distance, then R is the probability that the 

igniter succeeds to bridge the gap in the pyrotechnic chain.  

 

     Military Example: In military warfare, R could be interpreted as the probability 

that a given round of ammunition will penetrate its target.  

 

1.2 The Reliability of a Stress-Strength Model 

 
     Let X, 0x > , be the strength of a component which is subjected to the stress Y, 

y>0 and X and Y be two independent random variables with cumulative distribution 

functions (CDF) ( )F x  and ( )G y , respectively.  

 

     The reliability of a stress strength model was defined by Johnson (1988) as  

 

          

∫

∫
∞

∞

=

=>=>=

0

0

)()(

)()()(

ydGyF

dyygyYYXPYXPR

 (1.1) 

where )(1)( xFxF −=  is the survival function of X. 
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     Some applications for the reliability of a stress-strength model are given in the 

following examples with exponential, Pareto, normal, Laplace, Gumbel and Weibull 

distributions. 

   

     Example 1.1 (Exponential Model): The exponential distribution is a commonly 

used distribution in reliability engineering. The amount of time or distance between 

occurrences of random events like the length of time between emergency arrivals at a 

hospital, the length of time between breakdowns of manufacturing equipment can 

often be described by the exponential distribution. It is often used to describe the 

failure process of electronic equipment. It has also been used as a model for lifetimes 

of various things. The exponential distribution is used to describe units that have a 

constant failure rate. This follows as well from the memoryless property. In 

reliability terms it means that current or future reliability properties of an operating 

piece of equipment do not change with time and do not depend on the amount of 

operating time (see for more details, McClave et al., 2009). 

 

     The CDF of the exponential distribution is: 

 

          ),exp(1)( xxF λ−−=                      (1.2) 

 

where 0>x  and the parameter .0>λ  
 

     Let the strength X and the stress Y be independent exponential random variables. 

Then the reliability of a component in stress-strength model can be expressed by 

 

          

,

))(exp(

)exp()exp()()(

21

2

2
0

12

22
0

1
0

λλ
λ

λλλ

λλλ

+
=









+−=

−−==

∫

∫∫
∞

∞∞

dyy

dyyyydGyFR

 (1.3) 
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where ),exp()( 1xxF λ−=  )exp(1)( 2 yyG λ−−= , 1 2, 0λ λ > and x, y>0.  

 

     Since  'R   exists and is positive, we conclude that  R  is increasing on  ],0[ ∞   at 

every level of  λ2 . This result can also be seen from Figure 1.1. 

  

 

Figure 1.1 Reliability curves of the component for exponential distribution 

  

     Example 1.2 (Pareto Model): Pareto distribution is one of importance in both 

engineering and economics and serves as the most popular model of income 

distribution. Its applications include using in the analysis of extreme events, in the 

modeling of large insurance claims, as a failure time distribution in reliability studies 

and in any situation in which the exponential distribution might be used but in which 

some robustness is required against heavier tailed or lighter tailed alternatives. It is 

also well known that this distribution has decreasing failure rate property.  
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     Consider the case for which the strength of a component X and the stress Y are 

independent generalized Pareto random variables with the CDF’s, respectively  

 

         
αλ −+−= )1(1)( xxF   

         ,)1(1)( βλ −+−= yyG  (1.4) 
                                                                                               

where for x, y>0, λ>0, α>0 and β>0. Here α and β are the shape and λ scale 

parameters, respectively.  

 

     Then, the reliability of a stress-strength model is:      

 

          

.

})1(1{)1(

)()(

0

)1(

0

βα
β

λλαλ βα

+
=

+−+=

=

∫

∫
∞

−+−

∞

dyyy

ydGyFR

                       (1.5)                                                                                 

    

     Example 1.3 (Normal Model): The normal distribution is a basic distribution of 

statistics. Due to Central Limit Theorem, the distribution is popular. However 

reliability analysts have seldom used the normal distribution. Because its support is 

the real line; the normal distribution is also symmetric, whereas failure times tend to 

exhibit a skewed distribution. This distribution is an appropriate model for practical 

engineering situations. For example it can be used as a distribution of diameters of 

manufactured shafts (see, Hamada et al., 2008, p. 106). 

        

     If X and Y are independent normal distributed random variables with the means 

1 2,µ µ   and the variances 2 2
1 2,σ σ , respectively. Kotz et al. (2003) have given that Y-

X is a normal variable with the mean 2 1µ µ−  and the variance 2 2
1 2σ σ+ , 

 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V0M-4WXHBTT-1&_mathId=mml62&_user=691192&_cdi=5650&_pii=S0378375809002432&_rdoc=1&_issn=03783758&_acct=C000038578&_version=1&_userid=691192&md5=407fe2239aa91a6176bec47a01796b78
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V0M-4WXHBTT-1&_mathId=mml63&_user=691192&_cdi=5650&_pii=S0378375809002432&_rdoc=1&_issn=03783758&_acct=C000038578&_version=1&_userid=691192&md5=66fdae0647473b8faa6029209ea1f141
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V0M-4WXHBTT-1&_mathId=mml64&_user=691192&_cdi=5650&_pii=S0378375809002432&_rdoc=1&_issn=03783758&_acct=C000038578&_version=1&_userid=691192&md5=7cf5ba9105d977bf099ebe0941563919
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2 1
2 2

1 2

( ) ( 0)P X Y P Y X F µ µ

σ σ

 − < = − > =
 + 

,                                               (1.6) 

where  ∫
∞−

−=
z

x dxezF 2/2

2
1)(
π  

is the CDF of the standard normal distribution. 

      

     Example 1.4 (Standard Laplace Model):  In probability theory and statistics, 

the Laplace distribution is a continuous probability distribution named after Pierre-

Simon Laplace. It has been commonly used as an alternative to the normal 

distribution. It has been used in the areas of astronomy, biological and environmental 

sciences, engineering sciences, finance, inventory management and quality control.      

 

     Nadarajah (2004) has studied the reliability of a component when the strength X 

and the stress Y are independent standard Laplace random variables with CDF’s as 

below: 
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where , ,x y−∞ < < ∞ −∞ < < ∞  the location parameter 1 2,θ θ−∞ < < ∞ −∞ < < ∞  and 

the scale parameter 0, 21 >ϕϕ . Then, the reliability of the component for ,21 θθ ≤  

     

           
.exp

)(2
exp

)(2 2

21
2
2

2
1

2
2

1

21
2
2

2
1

2
1

1 






 −
−

−






 −
−

=
ϕ
θθ

ϕϕ
ϕ

ϕ
θθ

ϕϕ
ϕ

R
                    

(1.7) 

 

     Since  '
1'R   exists and is positive, we conclude that  1R   is increasing on  ],[ ∞−∞   

at every level of  1θ . This result can also be seen from Figure 1.2. 

http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Probability_distribution
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Figure 1.2 Reliability curves of the component for Laplace distribution with ,21 θθ ≤

.8.0,01.0 21 == ϕϕ  

 

     The reliability of the component for ,21 θθ >  

     

         
.exp

)(2
exp

)(2
1

2

12
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2
1

2
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2

2
1

2
1

2 






 −
−
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+=
ϕ
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ϕ

ϕ
θθ
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ϕ

R                   (1.8)                 

 

     Since  '
2'R   exists and is positive, we conclude that  2R   is increasing on  ],[ ∞−∞

at every level of  2θ . This result can also be seen from Figure 1.3. 
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 Figure 1.3 Reliability curves of the component for Laplace distribution with 

,21 θθ > .8.0,01.0 21 == ϕϕ       

     

     Example 1.5 (Gumbel Model): In probability theory and statistics, the Gumbel 

distribution is used to model for predicting the chance that an extreme earthquake, 

flood or other natural disaster will occur. It has also been used for fire protection and 

insurance problems, modeling of extremely high temperatures and the prediction 

high return levels of wind speeds relevant for the design of civil engineering 

structures. It should also be a good model for the distribution of maxima over fixed 

periods.  

 

     For the Gumbel distribution, the CDF of X and the CDF of Y are defined as: 

 

http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Statistics
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where ,x y−∞ ≤ ≤ ∞ −∞ ≤ ≤ ∞  , respectively.       

 

     Nadarajah (2003) has given the reliability of the component in the stress-strength 

setup for Gumbel distribution as below: 
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(1.9) 

 

Substituting ),/exp( 1σyz −=  it can be reduced to 
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In the particular case 1 2σ σ= , the above integral can be obtained as below 
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σ
µR              (1.11) 

 

     Since  'R   exists and is positive, we conclude that  R   is increasing on  ],0[ ∞   at 

every level of  1µ . This result can also be seen from Figure 1.4. 
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              Figure 1.4 Reliability curves of the component for Gumbel distribution with .521 ==σσ  

 

     Example 1.6 (Weibull Model): The Weibull distribution is named after the 

Swedish physicist Waloddi Weibull, who in 1939 used it to represent the distribution 

of the breaking strength of materials and in 1951 for a variety of other applications. 

Applications of this distribution include modeling of failure strengths of load-sharing 

systems and window glasses, predicting the diameter of crops for growth and yield 

modeling purposes etc. Because of its tractability and flexibility, it is the most 

frequently used lifetime model in the reliability literature. As for the exponential 

distribution, many software packages implement classical statistical methods for the 

Weibull distribution (see, Hamada et al., 2008, p. 97). 

 

     When we assume that the strength X and the stress Y are Weibull distributed, the 

CDF’s of these random variables are as follows for ,01 >α  ,02 >α  01 >θ  and 

.02 >θ  
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     ( ){ }1
1/exp1)( αθxxF −−=   and ( ){ }2

2/exp1)( αθyyG −−= .                          (1.12) 

 

     The reliability of the Weibull stress-strength model is: 
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For common shape parameter )( 21 ααα =  for stress and strength random variables, 

we may denote the reliability function 
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(1.14) 

 

The transformation y uα =  and 1y dy duαα − =  gives the following result 
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     Since  R   exists and is positive, we conclude that  R   is increasing on  ],0[ ∞   at 

every level of  1θ . This result can also be seen from Figure 1.5. 
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             Figure 1.5 Reliability curves of the component for Weibull distribution ).2.0( =α  
 

1.3 Thesis Organization 

 
     It is assumed throughout the thesis that the stress and strengths are independent 

random variables and a random stress common to all the components. Organization 

of this thesis is as follows:  

 

     In Chapter two, the reliability of parallel and series systems are studied in the case 

of independent and identically distributed (IID) components with a common stress. 

In Chapter three, the reliability of the k-out-of-n system is introduced with IID as 

well as exchangeable components in the stress-strength setup. In addition to the 

generalized expressions for the system reliability, specific case models such as 

multivariate FGM and multivariate Marshall-Olkin under the exponential distributed 
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stress Y are also presented in this chapter. Finally, conclusions are discussed in 

Chapter four. 
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CHAPTER TWO 

THE RELIABILITY OF PARALLEL AND SERIES SYSTEMS WITH 

INDEPENDENT COMPONENTS IN A STRESS-STRENGTH MODEL 

 

The lifetime of a system is determined by its components and structure. Most of 

the systems formed in the real life, are parallel and series systems.  

 

 2.1 The Reliability of a Parallel System  

 

     A parallel system works if and only if at least one component works. It fails if all 

components are failed. Parallel systems are the most commonly used systems for 

redundancy. When only one of the components is essential, the others are said to be 

redundant components. The purpose of using a parallel structure is to increase the 

system reliability through redundancy. The form of a parallel system is given in 

Figure 2.1. 

 

 

                                          Figure 2.1 A parallel system with n components 

 

     The reliability of parallel system is widely used in the aerospace industry and 

generally used in mission critical systems. Other applications include the computer 
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hard drive systems, brake systems and support cables in bridges. A typical example 

of reliability of the parallel system is an aircraft whose two independent active 

engines enable it to fly normally when at least one engine is functioning successfully. 

 

     Consider a parallel system consisting of n components with lifetimes 

.,...,, 21 nXXX  The lifetime of a parallel system is equal to the longest lifetime 

among the lifetimes of all components. The parallel system can last as long as the 

best component in the system. If we assume that nXXX ,...,, 21 are ordered that is

nnnn XXX ::2:1 ... <<< , the lifetime of the system depends on the nnX : . 

      

     The reliability function of the parallel system with independent components is 

given by for t>0, 

 

          .)(1)(
1

: ∏
=

−=
n

i
inn tFtR                                                                                      (2.1)  

 

     This can be easily verified as: 
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 (2.2) 

                           

      In the literature, Barlow & Proschan (1975), Kuo & Zuo (2003) have mentioned 

on the reliability of the parallel system in their books. 
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         Figure 2.2 The reliability of a parallel system as function of the system size n for the  

         survival probability of the component is 0.5. 

 

  Figure 2.2 shows the relationship between the reliability of a parallel system and the 

number of components. From Figure 2.2, we have the following results: 

 

1. The reliability of a parallel system approaches 1 as n goes to infinity. We can 

always achieve very high system reliability through redundancy. 

 

2. As the system size increases, the amount of improvement in the system 

reliability by each additional component becomes smaller.  

 

2.2 The Reliability of a Parallel System under a Common Stress 

 

     Let nXXX ,...,, 21  be the independent strengths of the components. We assume 

that the random variable Y is the common stress and it is independent of 

nXXX ,...,, 21 . We also assume that nnnn XXX ::2:1 ... <<<  are the ordered strengths 

of the components.  

     The reliability of the parallel system under a common stress can be expressed as: 
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     Dewanji & Rao (2001) have studied on the reliability of the parallel system in the 

stress-strength setup. One example of the reliability of the parallel system is that two 

electric bulbs with different voltage capacity in a room. Here the strength of two 

electric bulbs is the maximum voltage allowable. If the voltage in the current is less 

than the maximum of the strengths of the two electric bulbs, then there will be light 

in the room and the reliability is the probability that there is light in the room 

(Hanagal, 1996, p. 14). 

 

     Example 2.1: Consider 1X  and 2X  are IID exponential variables with parameter 

01 >λ  and Y is an independent exponential common stress with the parameter

02 >λ . Then the system reliability is expressed by 
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         Since  '
2:2' )( YR   exists and is positive, we conclude that  YR 2:2'   is increasing on  

],0[ ∞   at every level of  2λ . This result can also be seen from Figure 2.3. 
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               Figure 2.3 Reliability curves of the parallel system for exponential distribution   

 

2.3  The Reliability of a Series System  

 
     A series system is a configuration such that, if any one of the system components 

fails, the entire system fails. The form of a series system is given in Figure 2.4 

 

 

                                              Figure 2.4 Series system with n components 
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     Consider a series system consisting of n components with lifetimes .,...,, 21 nXXX  

If we assume that nXXX ,...,, 21 are ordered that is nnnn XXX ::2:1 ... <<< , the 

lifetime of the system depends on the nX :1 . 

 

     The reliability function of the series system with independent components is 

given by for t>0, 
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2.4  The Reliability of a Series System under a Common Stress 

 

     In the literature, some researchers have studied on reliability of the series system. 

Chandra (1975) has estimated the reliability of series system with common stress. 

Hanagal (2003) estimated the reliability of series system with n components using 

gamma, Weibull and Pareto distributions. 

 

     Assuming that Xi’s are IID and they are independent of the common stress Y, the 

reliability of the series system under a common stress can be expressed by: 
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    Example 2.2: Consider 1X  and 2X  are IID exponential random variables with the 

parameter 01 >λ  and Y is an exponential common stress with the parameter 02 >λ . 

Then the reliability of the two-component series system is 
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     Since  '
2:1' )( YR   exists and is positive, we conclude that  YR 2:1'   is increasing on  

],0[ ∞   at every level of  2λ . This result can also be seen from Figure 2.5. 

     

 

Figure 2.5 Reliability curves of the series system for exponential 

distribution
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CHAPTER THREE 

THE RELIABILITY of a k-OUT-OF-n SYSTEM in a STRESS-STRENGTH 

MODEL 

 

3.1 Introduction 

     Many technical systems or subsystems have the k-out-of-n structure. A system 

fails if and only if at least k of the n components fails is called a k-out-of-n: F 

system. A system works if and only if at least k of the n components work is called a 

k-out-of-n: G system. Based on these two definitions, a k-out-of-n: F system is 

equivalent to an n-k+1-out-of-n: G system. Both parallel and series system are 

special cases of the k-out-of-n system. A series system is equivalent to a 1-out-of-n: 

F system while a parallel system is equivalent to an n-out-of-n: F system. 

 

     There are many papers related to the k-out-of-n system. Barlow & Heidtmann 

(1984) have presented methods to get expressions for reliability methods. Sarhan & 

Abouammoh (2001) have investigated the reliability of nonrepairable k-out-of-n 

systems with nonidentical components subjected to independent and common shocks 

and the relationship between the failure rate of the system and that of its components. 

Basu & El Mawaziny (1978) estimated the reliability of k-out-of-n structures in the 

independent exponential case. Boland & Proschan (1983), Høyland & Rausand 

(1994) have also studied k-out-of-n systems.  

 

   Practical examples of k-out-of-n systems are, e.g., an aircraft with four engines 

which will not crash if at least two out of its four engines remain functioning 

(Cramer & Kamps (1996)), a car with a V8 engine will be driven if only four 

cylinders fire, or satellite which will have enough power to send signals if not more 

than four out of its ten batteries are discharged. In the case of automobile with four 

tires, for example, usually one additional spare tire is equipped on the vehicle. Thus, 

the vehicle can be driven as long as at least 4-out-of-5 tires are in good condition       

( Kuo & Zuo, 2003).       
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                                                    Figure 3.1 A 2-out-of-4 configuration 

 

      The form of a 2-out-of-4 system is given in Figure 3.1. It shows that when at least 

two components work, the system is operational and at least three components fail, 

the system is failed. 

 

     When n components are IID in a k-out-of-n: G system, the number of working 

components follows the binomial distribution with parameter n and p. Thus, we have 

 

         
,)( jnj qp

j
n

workcomponentsjexactlyP −








=

 
kj ,...0=                       (3.1) 

 

where  p is reliability of each component when all components are IID and q=1-p. 

     

     The reliability of the system is equal to the probability that the number of working 

components is greater than or equal to k: 
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where k is the minimum number of components that must work for the k-out-of-n: G. 

 

     When the components in a k-out-of-n: F system is IID, the reliability function of 

the system can be expressed as: 
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     Example 3.1: Consider a 2-out-of-3: F system with three independent and 

exponentially distributed components with the parameter .0>λ  The reliability of the 

2-out-of-3: F system is 
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3.2 The Reliability of a k-out-of-n System with Independent Components under 

a Common Stress 

 

     
In the statistical approach to the stress-strength model, in some considerations 

depend on the assumption that the component strengths are independent and 

identically distributed for k-out-of-n systems. Bhattacharyya & Johnson (1974) have 

studied on k-out-of-n systems consisting of identical components and independent 

common stress under parametric model of exponential distributions. 

 

     Let the random variables nXXX ,...,, 21  independent components and Y is a 

common stress. The reliability of a k-out–of-n: F system is: 

 



25 
 

 
 

          

]

[ ]

[ ] .0,0),()()(1

)()()(11

,...,,1[

01

0

21:

>>−







=

−







−=

−−+−=

−
∞

+−=

∞
−

=

∫∑

∫∑

yxydGyFyF
i
n

ydGyFyF
i
n

YexceedXXXofknleastatPR

ini
n

kni

iin
n

ki

n
Y

nk

 (3.5) 

                

     Example 3.2: Consider a 2-out-of-4: F system consisting of IID exponential 

distributed components with the parameter λ>0 and independent common stress with 

the parameter α>0. The reliability of 2-out-of-4: F system is: 
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     Since  '
4:2' )( YR   exists and is positive, we conclude that  YR 4:2'   is increasing on  

],0[ ∞   at every level of  α . This result can also be seen from Figure 3.2. 
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              3.2 Reliability curves of the 2-out-of-4: F system for exponential distribution with IID  

              case. 

 

3.3 The Reliability of a k-out-of-n System with Exchangeable Components 

under a Common Stress 

 

     When the random vector is exchangeable, the components should be similar in the 

same environment and the IID case is also included, but they affect one another 

within the system. Systems with exchangeable components have been studied in the 

literature as Bassan & Spizzichino (2005), Navarro & Rychlik (2007), Navarro & 

Balakrishnan (2010), Eryılmaz (2011). 

      

     Let us consider a system with n  exchangeable components whose strengths are 

represented by a random vector nXXX ,,, 21  . We assume that the random vector  

nXXX ,,, 21   is exchangeable for each n , if the joint distribution 



27 
 

 
 

 

         ),,,(),,( )(1)1(11 nnnn xXxXPxXxXP ≤≤=≤≤ ππ                                (3.7) 

 

for any finite permutation )(,),1( nππ   of the indices { }.,,2,1 n  Then the joint 

survival function is represented as  

 

          ).,,,(),,,( 221121 nnn xXxXxXPxxxF >>>= X                                  (3.8) 

 

     The survival function of the k -out-of- n : F  system with exchangeable strengths 

with )()( xFxXP i =≤  is given by 

 

          

),,(
1

)1(

),,(
1
1

)1(1

)()(

1

1

::





i

kni
n

kni

i

ki
n

ki

nknk

ttF
i
n

kn
i

ttF
i
n

k
i

tXPtF

















−
−

−=

















−
−

−−=

>=

−+−

+−=

−

=

∑

∑                    (3.9)  

  

for which ),),,(max(),,( 1 tXXPttF i
i

≤= 
),),,(min(),,( 1 tXXPttF i

i

>=   

ni ≤≤1 , (David & Nagaraja, 2003).  

 

     Navarro et al. (2006) have shown that )(: tF nk  with exchangeable lifetimes is the 

generalized mixture of series and parallel systems. 

 

     Lemma 1 (Navarro et al., 2006): If (X1,…, Xn) is exchangeable random vector, 

then  
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This expression can be also written for series system as 
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In a similar way for parallel system can be written as: 
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     Let us consider a k-out-of-n: F system with n exchangeable strengths and the 

strength of each component is subjected to a common random stress Y. Let also the 

random stress be independent of the random vector of the strengths. 

 

     Lemma 2: If  nXXX ,,, 21    are exchangeable strengths, the reliability of the k-

out-of-n: F system denoted by Y
nkR :  under the stress Y is 
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where )(yGY  is the distribution function of the stress Y for 0>y . 

 

     Proof: From (3.13), we have 
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Then the proof follows noting that )( :: YXPR nk
Y

nk >= .                                        (3.14)    

        

     The results are illustrated for the 2-out-of-3: F system consisting of multivariate 

Marshall-Olkin and multivariate FGM distributions in Example 3.3 and 3.4.  

 

     Example 3.3: Let 321 ,, XXX  have Marshall-Olkin multivariate exponential 

distribution with the joint survival function 
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where 0,0 >> iix λ   and  00 ≥λ  (see, Kotz et al., 2000). 

 

     The reliability of the 2-out-of-3: F system consisting of three components each 

have exponential ( 1λ , 2λ , 3λ  ) marginals with the exponential stress Y  with the 

parameter α  is given by from Lemma 2: 
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When we assume 321 λλλ == , then we have 
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     Since  '
3:2' )( YR   exists and is positive, we conclude that  YR 3:2'   is increasing on  
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],0[ ∞  , at every level of  α . This result can also be seen from Figure 3.3. 

  

 
 

                Figure 3.3 Reliability curves of the 2-out-of-3 system for Marshall & Olkin  

                multivariate exponential distribution ( 5.00 =λ ). 

 

     Example 3.4: Let  321 ,, XXX  have an exchangeable FGM distribution with the 

joint survival function  
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where 0>ix  and α  is the common dependence parameter (see, Kotz et al. (1997)). 

If we assume that 321 ,, XXX  have exponential marginals with common parameter 

1λ  and the stress Y is also exponential with parameter 2λ , then we have for the 
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reliability of a 2-out-of-3: F system from Lemma 2 
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where 2/10 <<α  ,  0, 21 >λλ  . 

 

     Since  '
3:2' )( YR   exists and is positive, we conclude that  YR 3:2'   is increasing on  

],0[ ∞   at every level of  2λ . This result can also be seen from Figure 3.4. 

 

 
            Figure 3.4 Reliability curves of the 2-out-of-3 system multivariate distribution   

              with exponential marginals ( 2.0=α ). 

 

     In a special case some researchers have studied about the dependent components 

in the parallel system and series system using bivariate distributions. Franco & Vivo 
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(2002) studied the classification of the generalized mixtures of two or three 

exponential distributions in parallel system. Mokhlis (2006) considered the problem 

of the estimating the reliability of a two component parallel system under four 

different stress models. Ebrahimi (1982) estimated of reliability for a series stress-

strength system using four models of series system. Hanagal (1996) obtained the 

estimation of system reliability in the series system using multivariate Pareto 

distributions. 

 

     Remark 1: A special case for nk =  is equivalent to a parallel system. In this 

case, Lemma 2 reduces to the reliability of the parallel system under the random 

stress. The reliability of the two-component parallel system which is equivalent to 2-

out-of-2: F, can be expressed as: 
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     Remark 2: A special case for 1=k  is equivalent to a series system. In this case, 

the reliability of the two-component series system which is equivalent to 1-out-of-2: 

F, can be expressed from Lemma 2 as given below: 
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     One example for the dependent case is the welding machine giving stress on both 

eyes of an operator. If the number of hours of operating the welding machine is less 

than the maximum of the strengths of two eyes, then an operator can able to work 

successfully. Here the strength of the two eyes is the maximum possible number of 

hours per day working with welding machine and the reliability is the probability that 

an operator can able to work successfully (Hanagal, 1996, p. 14). 
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     The special cases are also illustrated for 2-out-of-2: F system and 1-out-of-2: F 

system in the following examples. 

 

     Example 3.5: Let  1X  and 2X  have Marshall-Olkin bivariate exponential 

distribution with the joint survival function 

     )),,max(exp(),( 210221121 xxxxxxF λλλ −−−=X                                            (3.20) 

where 01 >x , ,02 >x 01 >λ  , 02 >λ  and .00 ≥λ   

  

     If we assume that 1X  and 2X  have exponential marginals with parameters  1λ   

and 2λ , the stress Y is also exponential with parameter α , then we have for the 

reliability of a 2-out-of-2: F system from Remark 1: 
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     Since  '
2:2' )( YR   exists and is positive, we conclude that  YR 2:2'   is increasing on  

],0[ ∞   at every level of  α . This result can also be seen from Figure 3.5. 
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             Figure 3.5 Reliability curves of the 2-out-of-2: F system for Marshall-Olkin bivarite  

             exponential distribution ( ,1.02 =λ 5.00 =λ ). 

 

     Example 3.6: Let  1X  and 2X  have Marshall-Olkin bivariate exponential 

distribution with the joint survival function 

 

     )),,max(exp(),( 210221121 xxxxxxF λλλ −−−=X                                            (3.22) 

 

where 01 >x , ,02 >x 01 >λ  , 02 >λ  and .00 ≥λ    

     If we assume that 1X  and 2X  have exponential marginals with parameters  1λ   

and 2λ  and the stress Y is also exponential with the parameter α , then we have for 

the reliability of a 1-out-of-2: F system from Remark 2  
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                   Figure 3.6 Reliability curves of the 1-out-of-2: F system for Marshall-Olkin  

                   bivarite exponential distribution ( 5.0,1.0 02 == λλ ). 

 

     Since  '
2:1' )( YR   exists and is positive, we conclude that  YR 2:1'   is increasing on  

],0[ ∞   at every level of  α . This result can also be seen from Figure 3.4. 
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CHAPTER FOUR 

CONCLUSION 

 

     There are a large amount of works as regards the reliability R=P(X>Y) when X 

and Y are independent random variables belonging to the same univariate family of 

distribution. In this thesis, we focus on the problem of determining the reliability in 

parallel, series and k-out-of-n systems consisting of n exchangeable components of 

strengths under the stress. Some examples which are satisfied with the results of 

several lifetime distribution functions are given. The reliability of systems under 

different stresses for each component can be considered for further research.   
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