

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

ROBUST TWO SAMPLE TESTS APPLICATIONS

BY USING STATISTICAL PROGRAMING

LANGUAGE R

by

Mustafa BİNAR

September, 2011

İZMİR

ROBUST TWO SAMPLE TESTS APPLICATIONS

BY USING STATISTICAL PROGRAMING

LANGUAGE R

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Master of Science in

Statistics, Statistics Program

by

Mustafa BİNAR

September,2011

İZMİR

iii

ACKNOWLEDGMENTS

I would like to firstly express my deep gratitude to my supervisor Ass. Prof. Dr.

Abdullah Fırat ÖZDEMİR and Dr. Engin YILDIZTEPE due to inform me with his

own informations about R statistical programming language and robustness in

statistics.

I would like to thank my father Suat BİNAR, my mother Seyhun BİNAR and my

sister Fatma Nur BİNAR for continuous moral and material support and motivating

comments throughout this research.

 Mustafa BİNAR

iv

ROBUST TWO SAMPLE TESTS APPLICATIONS BY USING

STATISTICAL PROGRAMMING LANGUAGE R

ABSTRACT

There are various statistical tests used for performing statistical inferences in the

recent statistics literature. The software and algorithms developed for these statistical

tests help the researcher in making inferences. These software programs are

generally called statistical software. Current statistical software can easily perform

many classical statistical tests. However, further studies on these software programs

are needed and some novel software and algorithms have been tried to be developed

since the current programs are inadequate for the newly developed statistical

methods against some hypothesis violations. In this study, the R programming

language, which has been widely used especially in academic studies, is mentioned.

R, which was designed especially for data processing, computation, graphical display

and statistical methods, is a programming language that has been developed by the

contributions of researchers from various places in the world since 1997, which is

accessable free of charge. In the application chapter of the study, a R function is

written for the B square test with one-step M-estimator and bootstrap-t method and a

simulation study is conducted for various two independent samples tests. And the

results of the simulation are discussed in detail.

Keywords: R programming language, statistical software development, robust tests,

robustness

v

İSTATİSTİKSEL PROGRAMLAMA DİLİ R İLE DAYANIKLI İKİ

ÖRNEKLEM TESTLERİ UYGULAMALARI

ÖZ

Günümüz istatistik literateratüründe, istatistiksel çıkarımların yapılabilmesi için

kullanılan birçok istatistiksel test vardır. Bu istatistiksel testler için geliştirilen

yazılım ve algoritmalar da çıkarsamalarda kullanılmak üzere araştırmacıya yardımcı

olmaktadır. Bu yazılımlara genel olarak istatistiksel yazılımlar denmektedir.

Günümüz istatistiksel yazılımları birçok klasik istatistiksel testi kolaylıkla

yapabilmektedir. Fakat, bazı varsayım ihlallerine karşı yeni geliştirilen istatistiksel

yöntemler için yetersiz olmaları ve literatürde bulunan yazılımların ücretli

olmalarından dolayı yeni bir takım çalışmalara gereksinim duyulmuş, yeni yazılımlar

ve algoritmalar geliştirilmeye çalışılmıştır. Bu çalışmada, son yıllarda özellikle

akademik çalışmalarda yaygın olarak kullanılan R programlama dilinden

bahsedilmiştir. Özellikle veri işleme, hesaplama, grafiksel gösterim ve istatistiksel

yöntemler için tasarlanan R, 1997 yılından bugüne dünyanın farklı yerlerindeki

araştırmacıların katkıları ile geliştirilmiş ve ücretsiz olarak ulaşılabilen bir

programlama dilidir. Çalışmanın uygulama bölümünde ise tek-adım M-tahmincisi ile

hesaplanan B kare testi ve bootstrap-t metodu için R fonksiyonu yazılmış ve bazı

bağımsız iki örneklem testleri için benzetim çalışması yapılmıştır. Bu benzetim

çalışmasının sonuçlarına değinilmiştir.

Anahtar Sözcükler: R programlama dili, istatistiksel yazılım geliştirme, dayanıklı

testler, dayanıklılık

vi

CONTENTS

 Page

M.Sc THESIS EXAMINATION RESULT FORM ... ii

ACKNOWLEDGMENTS .. iii

ABSTRACT .. iv

ÖZ .. v

CHAPTER ONE - INTRODUCTION ... 1

1.1 Introduction To R ... 1

1.2 Facilities Of The R Environment ... 2

1.3 Getting Help ... 3

CHAPTER TWO - OBJECTS IN R .. 5

2.1 Vectors ... 6

2.1.1 Numerical Vectors And Assignment .. 7

2.1.2 Logical Vectors And Assignment ... 8

2.1.3 Character Vectors And Assignment .. 9

2.2 Matrices and Arrays ... 11

2.3 Lists .. 13

2.4 Data Frames ... 14

2.5 Functions .. 16

2.6 NULL Object ... 16

2.7 Environments ... 17

2.8 Classes .. 18

CHAPTER THREE - FUNCTIONS AND GRAPHICAL PROCEDURES 20

3.1 Recalling A Built-in Function In R .. 21

3.2 Writing Functions... 23

3.3 Conditional And Repetitive Statements ... 25

3.3.1 Conditional Statements ... 25

vii

3.3.2 Repetitive Statements .. 27

3.3.2.1 The for Loop .. 27

3.3.2.2 The while And repeat Loop ... 28

3.4 Simulation In R Programming Language .. 31

3.4.1 Simulation Tools In R Programming Language 31

3.4.2 The Bootstrap Resampling Method .. 32

3.5 Graphical Functions In R ... 33

3.5.1 Arguments Of The High Level Graphical Functions 33

3.5.2 Low Level Graphical Functions .. 34

3.5.3 High Level Graphical Functions ... 35

3.5.3.1 Bar Charts And Dot Charts .. 36

3.5.3.2 Pie Charts ... 37

3.5.3.3 Histograms ... 38

3.5.3.4 Box Plot .. 39

3.5.3.5 Scatter Plot ... 40

3.5.3.6 Q-Q Norm .. 41

3.6 Special Argument “…” .. 43

CHAPTER FOUR - AN APPLICATION WITH R: B
2
 TEST WITH ONE-

STEP M ESTIMATOR AND BOOTSTRAP-T METHOD 46

4.1 M-Estimators And One-Step M-Estimator .. 46

4.2 Estimating The Standard Error Of m̂ ... 48

4.3
2B

Test With One-Step M-Estimator And Bootstrap-t Method..................... 50

4.4 Yuen‟s Test ... 53

4.5 Design Of The Simulation Study ... 54

4.6 Simulation Results ... 55

CHAPTER FIVE - CONCLUSIONS ... 58

REFERENCES ... 61

viii

APPENDIX ... 63

1

CHAPTER ONE

 INTRODUCTION

Statistics is a discipline which comprises of all methods used for collecting,

summarizing and analyzing the data, making inferences from these data. In practice,

researchers need some software in order to make inferences easily and in a rapid

way. These softwares are generally called, in the statistics literature, as statistical

software or statistical software packages.

There are many programs in the statistical software literature. Most of these

software packages include nearly all of the classical statistical methods. However,

these software packages‟ being inadequate for the new methods in statistics, or

having high prices gave rise to the need for new software. “R” statistical

programming language is a statistical software development environment, which was

developed to satisfy this need and its user group has been increasing continuously.

1.1 Introduction To R

R language was first written by Ross Ihaka and Robert Gentleman from Auckland

University Statistics Department, in New Zealand. Later, a group comprising of

various researchers from all over the world, continued to develop R language and

this group was named “R Core Team” in 1997.

Two programming languages were influential in the design of R language. These

were the S language developed by Becker, Chamber and Wilks, and the Scheme

language developed by Sussman. R is similar to the S language in appearance, but

close to Scheme in terms of syntaxis and semantics. The first version of S was

completed in 1976 (R Core Team, 2009). It was a programming language developed

as an alternative to FORTRAN, the preferred programming language in statistical

calculations in that period. In 1988, S-PLUS was introduced after improving S

language. S-PLUS is now being marketed by a software company named TIBCO,

and its licence belongs to this company. S-PLUS software being expensive for

2

academic research and education, Ross Ihaka and Robert Gentleman, two

statisticians from New Zealand, developed the R programming language in pursuit of

new software. The codes of R were released under General Public Licence-GPL in

1995, and the first version developed by the “core team, assembled in a short time,

was released on 29th of February, 2000 (R Core Team, 2009).

R statistical programming language was designed for data manipulation,

calculation and graphical display. Applications to be used for the newly developed

data analysis methods can easily be written in R, since it is under GPL and it has the

related packages built-in. The command line syntax of R is bears resemblance to C

language. At the same time, it is a functional programming language. Therefore, it

has some functions facilitating the code writing for statisticians and mathematicians.

It has some special functions a statistician can use in data analysis and graphical

display.

R and S-PLUS languages have similar command lines. Most of the codes written

in any of these languages can be implemented in the other. Both of them produce

successful data analysis results. However, R is an opensource code and can be

accessed by a researcher anywhere in the world.

It is possible, in R language, to use many methods developed recently in addition

to classical statistical analysis methods and graphical tools. R can be easily obtained

via internet and is free of charge.

1.2 Facilities Of The R Environment

R language has objects in different types for an efficient data manipulation. The

most significant features of R language can be summarized as below:

- It has different object types for efficient data analysis and storage.

- It has operators and mathematical functions required for performing

operations on arrays and matrices.

3

- It includes the functions required for descriptive statistics and classical

statistical methods.

- It has graphic functions which are efficient and can be defined in detail.

- The functions written for novel methods can easily be distributed using

packages.

- It is still being imporved and supported by the R core team.

- It can be obtained free of charge.

R language bears resemblance to C language in terms of the syntax of the

commands. But R is a functional programming language. This feature facilitates the

statistical modeling and graphical display.

R programming language can be rapidly updated for newly developed methods,

and the packages written for these new methods can be easily imported.

1.3 Getting Help

There are three types of help in R language. These are; the help menu under the R

tools section, electronic user‟s manuals, and the r-project.org website. The electronic

user‟s manuals can be accessed from the Manuals section under the help menu, and

the documentation section in the following internet address: www.r-project.org.

One of the help features in R is the access to help about the functions in R. This

help topic can be accessed in two ways. First one is the code written in the command

line of R, and the other one is the functional help under the help menu. For instance,

if arithmetic mean is at issue and the arguments required for this are not known, a

functional help can be accessed by entering the code below into the command line.

The other way of getting such help is using the help menu.

>?mean

or

>help(mean)

4

The subject based search in order to find the function to be used can be performed

with the “help.search” function. For instance, in order to find a function on data

input, the command

>help.search(“data input”) can be used (R Core Team, 2009).

In the second and third chapters of this study the R programming language is

introduced in many aspects. In Chapter Two object structure, the use of matrices and

arrays, and examples regarding these are presented. In Chapter Three, the function

concept of R, the graphical properties, and the control and loop structures are

explained.

In Chapter Four, a simulation application is performed using a R function written

for the use of the method developed for comparing independent groups with one-step

M-estimator and bootstrap-t method (Özdemir & Kurt, 2006). In the last chapter the

results of the simulation are evaluated.

5

CHAPTER TWO

 OBJECTS IN R

R programming language is an object-oriented language as many other

programming languages today. Object-oriented programming languages cannot

provide direct access to the data stored in the memory. Therefore, another option is

needed in order to access the data stored by R. This option is called the objects. The

object of R may be symbols or variables.

In R, the objects also have the structure which facilitates performing operations on

the data. For instance, an operation which needs loops can be performed, in R, by

functions that operate on matrices or arrays in an easy and efficient way. As one

could understand, matrices, arrays and functions are, too, objects for storing data in

R. For example about this issue in R; let x_examp vector be a variable comprising

only of numbers, the ls() function in R returns the objects present in the environment.

If the example below is examined, it can be seen that x_examp variable is an object.

>x_examp<-1:4

>ls(pattern= “x_examp”)

[1] “x_examp”

As it can be seen in the example, x_examp variable is listed as an object. If the

argument between quotation marks is not added to the argument in the ls() function,

all objects present in R global environment would be listed. Some widely used

objects in R and their return values are presented in Table 2.1.

Table 2.1 Return type of objects

Objects Return type

"Vectors" A vector

"matrices and arrays” A matrix or array

6

Table 2.1 (Continue)

"list"

a list object

"data frames"

a data frame

"functions"

A function

"NULL"

A NULL object

"environment"

an environment

"Classes"

A class

R does not have only these types of objects. There are other object types also.

However, only these types‟ objects are mentioned in this study.

2.1 Vectors

Vectors are one of the most important objects in R. In this object type, each data is

placed in their cell. The data in the vector can be accessed via an index operator. For

instance, a data in the 5
th

 cell of x vector can be accessed as such:

>x<-1:5

>x[5]

[1] 5

As it is seen in the example above, the [] operator written to the right of the

variable is the vector index operator of R. There are six types of vectors in R. These

vector types, their logical return values and their data storage modes are given in

Table 2.2. These vector types can be categorized into three groups generally, and

these are widely used in statistical calculations. The vector types used are as below:

7

- Numeric Vectors and Value Assignment

- Logical Vectors and Value Assignment

- Character Vectors and Value Assignment

Table 2. 2 The modes and storage modes for the different vector types

type mode storage.mode

Logical logical logical

Integer numeric integer

Double numeric double

Complex complex complex

Character character character

Raw raw raw

It is, of course, an important problem that how the data would be entered into

these vector types mentioned above. The solution to this problem is given in

subsections of this chapter.

2.1.1 Numerical Vectors And Assignment

The numerical vectors in R language are vectors in which only numbers are

placed. The data can be assignmented into this vector type in a few different ways.

The assignment can be performed using the “c()” function. An example is given

below on how the c() function is used in R, and how the data is assignmented to the

vector using the function. Let x vector be a numerical vector;

>x<-c(1,4,3,5) or

>c(1,4,3,5)->x

8

Both situations are valid for R programming language. Using the code above, 1, 4,

3 and 5 are transferred to the data list of x vector.

If the data to be entered into x vector is a sequential array, R provides

convenience. This convenience is presented below.

If the value to be entered in x vector is a sequence, R provides a convenience for

this matter. This situation is shown in the example below:

>x<-1:5 or x<-seq(5)

>1:5->x or seq(5)->x

Numeric vectors are a type of vector which is significant for researches studying

computational sciences such as statistics and mathematics; because R has some

functions which facilitate the operations on vectors. sum(), mean(), etc. functions can

be given as examples to this function type.

2.1.2 Logical Vectors And Assignment

Logical vectors are important and useful vector type in R. This vector type can

only have two values. These values are “TRUE” and “FALSE”. In R, “TRUE” value

equals to 1 numerically, and “FALSE” equals to 0. In logical vectors, just as in

numerical vectors, the data can be added with “c()” function. Below is an example:

>x<-c(T,F,T) or

>c(T,F,T)->x

In R, logical vectors are generally used to compare one or more variables. If the

return value is 0 or FALSE for a vector at the end of the comparison, it means that

the compared values are not overlapping.

9

While entering “TRUE” or “FALSE” values into logical vectors “T” or “F” values

can also be used. However, in R, “T” and “F” arguments may be different objects so

they can include different values. In such a condition the data entered into the logical

vector will not be “TRUE” or “FALSE” (R Core Team, 2009).

2.1.3 Character Vectors And Assignment

Another vector type in R is the character vectors. This vector type may include a

string as well as any character of the string. There are several ways to enter data into

this vector. One of them is again the “c()” function. Let x vector be a character

vector:

>x<-c(“a”, “b”, “c”) or x<-c(„a‟, „b‟, „c‟)

> c(“a”, “b”, “c”)->x or c(„a‟, „b‟, „c‟)->x

Single quote or doble quote character may be used while entering data into

character vector. “c()” function is not compulsory for entering data into the vector.

Entering the string will be enough. Single quotes or double quotes should be used

while performing this action.

>x<-“abc” or x<-„abc‟

> “abc”->x or „abc‟->x

Generally speaking, one should avoid using single quotes while entering data into

character vectors. Double quotes are more useful for the researcher for avoiding

errors.

There are some mathematical operators in R which can operate on vectors. These

operators are given in Table 2.3.

10

Table 2. 3 The mathmatical operators

+: (plus) Operator of plus (addition)

-: (subtraction) Operator of subtraction

*: (multiplication) Operator of multiplication

/: (division) Operator of division

^: (power) Operator of power

%/% Whole number division

%% Modular arithmetic

%in% Matching operator

Using the operators in the table, it is possible to carry out operations on vectors,

without using the loops. In order to explain the operators in more detail, the

examples below are given. Here, let x, y and t be numerical vectors;

(+) operator:

>x<-c(1,5,6) and

>y<-c(8,5,4)

>t<-x+y

> t

[1] 9 10 10

%in% operator:

>x %in% y

>FALSE TRUE FALSE

The command line usage of the (+) operator is valid for all other operators which

are not illustrated here. As it is seen, the results were obtained without using loop

commands for the vector sums.

11

2.2 Matrices and Arrays

One of the most important objects of the R programming language is the arrays.

As it is for the vectors, there are three types of arrays. These are;

- Numerical Arrays

- Logical Arrays

- Character Arrays

These arrays have the same features with vectors. The data transfer into these

arrays is done using the “c()” function or the other methods mentioned for vectors.

There is a relationship between vectors, arrays and matrices. This relationship is

shown in Figure 2.1.

Figure 2.1 Relation between arrays, vectors and matrices.

The most important property that distinguishes arrays from vectors is that vectors

do not have a dimension but arrays may have one or more dimensions (Crawley,

2007). This difference will be understood well in R environment. Let x be a vector,

and xd be an array with dimension;

>x<-1:5

>xd<-array(1:5, dim=c(1,5))

Vectors Arrays

Additional to dimension

More dimensional

arrays

Two dimensional

arrays(Matrices)

12

x and xd are now two vectors with the same value. However, the difference of xd

vector is understood as below:

>is.array(x)

[1] FALSE

If the same situation is applied to xd

>is.array(xd)

[1] TRUE

The difference between arrays and vectors are shown above. A vector cannot be

seen as an array, but array may become vectors. Therefore, operators which can

operate on vectors may also operate on arrays.

Another important object in R is the matrices. In mathematics, matrices are

defined as two dimensional arrays. The data in each row and column of the matrices

are in the same storage mode (R Core Team, 2009). In other words, it is not possible

for a data to be logical, and another to be character. All the data is either character or

logical.

In order to generate a matrix object in R, the matrix() function is used. The

arguments of this matrix() function are as below:

>matrix(data, nrow, ncol, byrow=TRUE,…)

In this function “…” is a special argument and this will be dealt with in functions

section. The generation of a numerical matrix is presented below:

>dat<-matrix(c(1:36),nrow=4, ncol=9, byrow=T)

> dat

13

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1 2 3 4 5 6 7 8 9

[2,] 10 11 12 13 14 15 16 17 18

[3,] 19 20 21 22 23 24 25 26 27

[4,] 28 29 30 31 32 33 34 35 36

In mathematics, matrices have some properties. These properties are maintained

in R too. Some of these properties are matrix multiplication, transpose, eigenvalue

and eigenvector, etc. The matrix multiplication operator in R is “%*%”. The

transpose operation in matrices is carried out with the “t()” function. Eigenvalues or

eigenvectors are found with the “eigen()” function. The determinant of the matrix is

found with the “det()” function.

The points to take into consideration matrix operation are explained here. Let A

be a matrix of n × y dimensions. In this case, in order to carry out A%*%B, B matrix

should be of y × z dimension. In order to eigen() function to operate, the matrix‟

being a square matrix is compulsory. This situation is valid for the “det()” function.

2.3 Lists

One of the most widely used object types in R is the lists. Lists are objects which

comprise of the elements of a known object and the object itself. At the same time

lists are a special vector type. In R, lists can store data. A simple example on this

property is;

> mylist <-list(first=c(1,3,5),second=c(“one”, “three”, “five”),

third=matrix(1:6,3))

In this way, the elements of the object called mylist includes all arguments and

values of the list() function. As it can be seen from this example, mylist object is a

list object which can store data.

14

2.4 Data Frames

Another important object type in R is the data frames. Data frames are another

means of storing data in R. Data frames works like matrices. The results of the

operations are placed into a data frame‟s rows. In the columns, on the other hand, the

arguments of the operation are placed. If a data frame is required in R, it is generated

by data.frame() function. A generating data frame can be understood with the

example below.

>df<-data.frame(isim=c(“ali”,“yeşim”,“murat",

“hakan”,“gülay”),yas=c(21,20,22,21,19),

bol=c(“tarih”,“fizik”,“mat”,“kim”,“ist”),puan=c(93,78,88,91,90))

> df

 isim yas bol puan

1 ali 21 tarih 93

2 yeşim 20 fizik 78

3 murat 22 mat 88

4 hakan 21 kim 91

5 gülay 19 ist 90

The data frames in R are not used only in this way. The data frames mostly used

in research are the ones which are read from external files. In order these data to be

read the read.table() function is required in R. With this function, data from a data

file in any directory of the computer can be transferred into R environment as data

frame.

This function can read data from the file extensions below:

- *.dat file extension

- *.txt file extension

15

The data read from the files with these file extensions are now a data frame in R.

With these data, the result inference can be carried out using the related operators

and functions. Let us extablish the issue with an example. Let there be a data file

under the name of “dat.txt” in C section of the computer, and let the data in this file

be as below:

x_var y_var

5 10

8 15

9 17

10 25

The code should be entered into the command line in order to read this file:

>dat<-read.table(“C:/dat.txt”, header=T)

> dat

 x_var y_var

1 5 10

2 8 15

3 9 17

4 10 25

If the “header” argument in read.table() function is not TRUE, this function would

not return the headers x_var and y_var. Instead, R would assing names to these

variables. If the dat object, from which the data is transferred, it would be seen that

this object is a data frame.

>is.data.frame(dat)

[1] TRUE

As it can be seen from the result above, dat object is a data frame. Therefore, the

functions required for the inference can be used as it was mentioned before. For

16

instance, if the summarizing statistics of these two variables, taken as data, are

wanted to be calculated, the summary() function is needed.

>summary(dat)

 x_var y_var

 Min. : 5.00 Min. :10.00

 1st Qu.: 7.25 1st Qu.:13.75

 Median : 8.50 Median :16.00

 Mean : 8.00 Mean :16.75

 3rd Qu.: 9.25 3rd Qu.:19.00

 Max. :10.00 Max. :25.00

2.5 Functions

Functions are also important objects in R programming language. Manipulations

can be made on functions. They have four basic components:

- Function name

- “function” statement

- Arguments

- Body

Functions will be discussed in detail in following chapters.

2.6 NULL Object

NULL object is generally used for vectors. For a vector, NULL means that the

vector does not have any data in it; sayingly, the vector has a length of zero. There

are two types of functions in the usage of NULL object. The first one is the as.null(),

used for rendering the vector “null”. The second one, is.null(), returns a logical value

for the vector. The usage of NULL object is exemplified below:

17

>x<-as.null(x)

>is.null(x)

[1] TRUE

2.7 Environments

Another R object is the “environments”. R work area is a global environment. The

objects in this global environment are called the global objects. There is a global

object example below. If x object is entered in the global environment,

>x<-1.00034^3

Here x is a global object, and can be used anywhere in R. R also has functional

environments. The objects in this environment are called local or functional objects,

and they are only valid in the environments they are in. Functional objects can be

placed in the arguments and body components of the function.

>envr<-function(x) x^2

Examining the example above, x is a functional object, and can only be used in

this function. This x object cannot be used in another environment. The content of

the envr function is a functional environment. If x object is not defined elsewhere in

the global environment, the “can not find symbol” error message is returned when x

is entered into the command line. The distinction between global and functional

environments are given below with a broad example.

>z <- 5

>func1<- function(xx) {

z <- 10

z^2 + func2(xx)

}

>func2 <- function(xx) {

18

xx * z

}

First of all, the code segment is written in the command line of R. As it can be

seen, z object appears in both global and functional, func1 and func2, environments.

However, z objects take the value in the environment it appears. In other words, it

has the value of 5 for global environment, the value of 10 for func1 environment, and

again the global value of 5 in func2, since any value is not assigned to z in func2

environment. Therefore, when the code is run as func2(2), the result below is

obtained:

>func2(2)

[1] 110

2.8 Classes

In R language, classes are also objects. The class object is returned in R user

interface as return type. In order to see which class an object or a variable belongs,

there is a class() function in R. Classes may return different classes for the different

objects present in R. For instance, the return type for data frames is “data frame”, for

linear models “lm”, and for matrices “matrix”. For an example about this issue in R;

>x<-0; x<-as.matrix(x)

>class(x)

[1] “matrix”

As it can be seen in the example above, x object belongs to the matrix class. Put

another way, x object has the features of the matrices. Therefore, this object can be

assigned the values necessary for matrices, and with these values the result inference

can be carried out using operators which operate on matrices.

About objects in R can be finally said that objects limited here. R language has

more object types; i.e., pairlist, factors, dot dot dot object, etc. For other object types,

19

CRAN or documents about R (Crawley, Dalgaard, Braun & Murdoch, …) are good

reference materials.

20

CHAPTER THREE

 FUNCTIONS AND GRAPHICAL PROCEDURES

In this chapter the functions in R and some graphical tools will be explained.

Functions are one of the most important objects of R. With this object type,

researchers may perform data manipulation more easily. For instance, R has many

facilitating functions which can operate on matrices and arrays. Making inferences

has become easy with these functions. In fact, many operations and data analyses are

conducted by recalling functions in R. For instance, log(x) is the recall of a function

in R, which is required for obtaining the logarithm of the elements of an object.

There are some prerequisites for recalling a built-in function in R. Functions have

some certain format, and while recalling a function, this format should be taken into

consideration. For instance, plot(x,y). Here plot() function is recalled with its

arguments and this recall is compatible with the format of the function. Here x and y

are vectors.

R statistical programming language has many effective and useful functions for

statisticians and mathematicians. These functions can be used efficiently in data

analyses by writing them into the command line. Some functions that are useful in

data analysis and their meaning are presented in Table 3.1.

Table 3.1 Some mathmatical and statistical functions in R

Operation Meaning

max(x) maximum value in x

min(x) minimum value in x

sum(x) total of all the values in x

mean(x) arithmetic average of the values in x

21

Table 3.1 (Continue)

median(x) median value in x

range(x) vector of min x and max_ x

var(x) sample variance of x

cor(x,y) correlation between vectors x and y

sort(x) a sorted version of x

rank(x) vector of the ranks of the values in x

order(x) an integer vector containing the

permutation to sort x into ascending order

quantile(x) vector containing the minimum, lower

quartile, median, upper quartile, and

maximum of x

cumsum(x) vector containing the sum of all of the

elements up to that point

cumprod(x) vector containing the product of all of the

elements up to that point

history() displays previous commands used

is.na() returns TRUE if vectors have na

length() number of elements in a vector or of a list

print() prints a single R object

(R Core Team, 2009)

3.1 Recalling A Built-in Function In R

Recalling a built-in function in R commandline is an important subject. R

programming language is case sensitive, since it is an object-oriented language. In

other words X and x are different objects in R. As it can be understood from this, a

22

function called “abc” can be written in 8 different ways. Therefore, in order to run

the required function correctly, the function‟s name and its arguments should be

written properly into the command line. The running of the abc function with its

arguments is presented below:

>abc<-function(arg_1, arg_2) { body }

The abc function is given above. Recall of the function in R command line is

given below:

>abc(value of arg_1, value of arg_2)

The abc function above does not have any other recall type. Put another way,

when this function is recalled as Abc or ABC, and if there is not any function with

these names, R would return this error message: “can not find function”.

Let us give an example to one of the built-in functions mentioned in Table 3.1.

The functions in this table are built-in functions of R. For instance, mean() function

is a function that calculates the arithmetic mean and a function in which a compatible

argument may added. The example is below:

>mean(rnorm(100))

Here, rnorm() function, too, is a built-in one. With the function above, a sample of

100 units is generated from the standart normal distribution, and the arithmetic mean

of this sample is calculated with mean() function. As a different argument, trimming

percentile argument can also be added to the mean() function.

>mean(rnorm(100), tr=0.2)

23

As it can be seen in the example above, the trimming ratio is designated with “tr”

argument in R.

3.2 Writing Functions

R language is a functional programming language. This programming language

has many built-in functions other than the ones given in Table 3.1. However, each

researcher should develop original functions and use these functions in data analysis.

The elements required for writing a function are presented below:

>function_name<-function (arg1, arg2, …, argn){body}

As it can be seen in the example, in order to create a function in R, four basic

elements should be paid attention.

First of them is the name of the function. Name of the function is a function

element required to recall that function. As it was mentioned before, R is case

sensitive. Therefore, this issue should be considered. In other words, function_name

element and Function_Name element are different from each other.

The second element of the function is the “function” statement. While defining a

function in R, this keyword is used, as it can be seen in the example above.

The third element of a function is the “arguments” part. If there are arguments to

be used in the functions, these arguments are written between brackets after the

“function” statement. If there is a default value for one of these arguments, this value

is assignmented into the argument in the arguments part.

The fourth element of a function is the body. The commands to be used in the

function are placed in this section. Generally, this section is written between two

braces (“{body}”). If the function has a code comprising of one single line, the use

of these two braces is not necessary.

24

Lastly, in this part is performed an example R code including the defining of a

function and the recalling the defined function.

With the function written below, the two sample t-test is performed. The basic

elements of this function are indicated in the example. The vectors necessary for the

function to run are entered.

>x<-c(5,6,8,2,3,5); y<-c(8,9,4,5,6,1)

> twosam <- function(x1, x2) {

n1 <- length(x1); n2 <- length(x2)

xb1 <- mean(x1); xb2 <- mean(x2)

s1 <- var(x1); s2 <- var(x2)

s <- ((n1-1)*s1 + (n2-1)*s2)/(n1+n2-2)

tst <- (xb1 - xb2)/sqrt(s*(1/n1 + 1/n2))

tst

}

The name of the function above is “twosam”. The argument of this function are

“x1” and “x2”. The objects and the operation used in the environment of the

function, namely in the body of the function, are presented too. This function returns

the test statistics “tst” as a result. The code below is needed in order to recall this

function in R global environment.

> tstat <- twosam(x,y); tstat

With the code above, “twosam” function conducts the two sample t-test using the

vectors defined above. The result is then transferred to the tstat object, created in R

global environment. Later, the “tstat” object is recalled in global environment and the

result is presented in the screen.

Body

Function_name Argument lists

25

3.3 Conditional And Repetitive Statements

Generally, conditional and repetitive statements are required when writing a

program in a programming language. R programming language too has some

conditional and repetitive statements. These statements are used frequently while a

researcher writes a function. This section mentions the conditional statements first,

and then the repetitive statements.

 3.3.1 Conditional Statements

The conditional statement in R language is generally the “if” keyword.

Conditional statement is generally used to compare one or more conditions in

functions. The working mechanism of this statement is generally the returning of the

result, in case some certain condition is met, as TRUE and than running the codes in

this conditional statement. Generally, if a single line code is written when the

condition is met, the codes are not written in the curly braces (“{ body }”). Below,

the working mechanism of this statement is presented:

program section A

 if (condition) B

D

The code presented schematically above is the application style of a condition in

the program sections. Program sections comprise of A, B, and D. Section A and D

are not conditional, but the running of section B depends on whether the “if

(condition)” is TRUE or not. If the return value of the condition is “FALSE” B

section would not run and D section would run.

“if” keyword is genereally used in a single way. However, sometimes there can be

another condition when the first condition is not met. In order to add an extra

condition the keyword “else” is used. The use of this keyword is given below:

26

program section A

 if (condition) B else C

D

Program sections comprise of four sections. These are A, B, C and D sections. A

and D are nonconditional sections. B and C sections, in which the “if” and “else”

statements are used, are conditional sections. In cases where “if” condition is not

realized, the section with “else” condition would run.

There are some operators for the use of conditional statement. These are called the

logical and comparison operators. Table 3.2 presents these operators and their

meanings.

Table 3. 2 The comparison and logical operators for if conditonal statement

 Operators Meaning

L
o
g
ic

al

& Logical “and”

| Logical “or”

! Logical “not”

&& Logical “and”

|| Logical “or”

C
o
m

p
ar

is
o
n

< Less than

> Greater than

== Equal to

<= Less than and equal to

>=
Greater than and equal

to

!= Not equal to

Here & and && or | and || are the same operators, and perform the same logical

comparisons. However, while & and | operators compare a single cell in a vector

versus cells in the other vector, && and || operators compare the whole elements in

the vectors (R Core Team, 2009).

27

3.3.2 Repetitive Statements

While writing codes in programming language, sometimes, some operations are

needed to be written many times. In such conditions, some repetitive statements are

added to the programming languages in order to facilitate the programmer‟s job.

These statements are generally called loops. Loops help the programmer to perform

the jobs repeatedly in a specific number of times. The general working principles of

loops are presented below:

program section A

loop B

C

order of execution A B B ...B C

As it can be seen in the mechanism above, loops do not include any conditions as

conditional statements. In the example above there are three program sections. These

are A, B and C. A and C sections do not include any loops. However, B section has a

loop. A programming language using such a loop runs the operation in B and then

starts performing the operation in C.

The mechanism above shows the running of a loop in R. There are three different

loops in R programming language. These are;

- for loop

- While loop

- Repeat loop (Braun & Murdoch, 2007)

3.3.2.1 The for Loop

The “for” loop is the loop command, that enables the same operations to be

performed with a sequence, which is defined specifically. The structure of a “for”

loop is presented below.

28

for (loopvariable in sequence) expression1

Here, the loopvariable is the variable required to enable the loop. This variable

increases or decreases in the sequence and controls the progression. At the same

time, it controls the end of the loop, when the end of the sequence is reached.

Sequences may be increasing or decreasing arrays. Here, the important point is that

the sequence should include sequential values such as 1, 2, 3, …, 10. An example on

the use of a “for” loop is given below:

 > for (i in 1:4) print(i) or >for (i in 4:1) print(i)

[1] 1 [1] 4

[1] 2 [1] 3

[1] 3 [1] 2

[1] 4 [1] 1

In the example above the loopvariable is i, and 1:4 and 4:1 are the sequences.

3.3.2.2 The while And repeat Loop

R programming language has two other loop statements except for “for” loop.

These are the loops performed with while and repeat keywords.

“While” loop includes a condition differently from “for” loop. Using this

condition it creates a loop. However, “while” loop controls this condition in the body

section of the loop. The working mechanism of a “while” loop is presented below:

while (condition) { (control of the condition) expr}

If a while loop is set during program writing, the operations in the body section

would continue until the condition is returned “FALSE”. If the condition is not

controlled in the body, an infinite loop would be formed. This is explained in the

example below:

29

>i<-0

>while (i<5) print(i)

The loop above is an infinite loop, because it is not controlled anywhere in the

code.

>i<-0

>while (i<5) {

 i<-i+1

print(i)

}

In this loop, on the other hand, the result will be displayed as 2, 3, 4 and 5.

Another loop can be created in R, apart from while and for, with the repeat

keyword. Repeat loop, similar to while loop, requires control in the body section.

There is a small difference between repeat loop and while loop in terms of the

position of the condition. The working mechanism of repeat loop is given below:

repeat {expr

(condition) break}

As it can be seen in the example above, differently from while loop, in repeat loop

the conditional statement places in body part. For this condition another keyword,

“break”, should be used. If the keyword “break” is not used, an infinite loop would

be created. The example above for the while loop can be written for repat loop as

below:

>i<-0

>repeat {

i<- i+1

print(i)

30

if (i==5) break}

Below is an example of using while loop and repeat loop in a function. The

factors of a number are found in this example.

fac<-function(x) { fac<-function(x) {

f <- 1 f <- 1

t <- x t <- x

while(t>1) { repeat {

f <- f*t if (t<2) break

t <- t-1 } f <- f*t

return(f) } t <- t-1 }

 return(f) }

If in this part is writed a function that performs inference with twosam function

mentioned before, the “if” keyword should be used. Below is an example that

performs inference with twosam function:

> twosam <- function(x1, x2, alpha=0.05) {

n1 <- length(x1); n2 <- length(x2)

xb1 <- mean(x1); xb2 <- mean(x2)

s1 <- var(x1); s2 <- var(x2)

s <- ((n1-1)*s1 + (n2-1)*s2)/(n1+n2-2)

tst <- (xb1 - xb2)/sqrt(s*(1/n1 + 1/n2))

crit_point<-qt(1-alpha/2,n1+n2-2)

if (abs(tst) > crit_point) {

print(“ null hypothesis is rejected”)

} else { print(“null hypothesis is not rejected”)}

}

In order to perform the inference in the R command line, a code similar to the one

below would be sufficient:

31

> twosam(rnorm(15),rnorm(15,mean=2))

[1] "null hypothesis is rejected"

3.4 Simulation In R Programming Language

Simulation study is one of the most frequently used research and inference

methods in applied sciences. Conducting simulation studies manually takes too much

time. Therefore, software packages or programming languages try to offer help to

researchers. R programming language has functions and packages which facilitates

the researcher in simulation studies.

A simulation study can be divided into three phases:

- Obtaining the data to be simulated

- Determining and the analysis of the quantities the researcher is

interested in (determining the rejection area, estimation of parameters,

model estimation, etc.)

- Results from the first two phases and the interpretation of these

results.

This section will explain how the data required for the simulation could be

obtained in R programming language.

3.4.1 Simulation Tools In R Programming Language

One of the most important topics in R for a statistician or a researcher is the use of

the simulation tools in R. R programming language has some tools for performing

simulation research easily. For instance, the generation of the distribution from

which the sample would be selected can be performed very easily in R. R can

generate data from almost all statistical distributions. This issue is explained in detail

in the following section.

32

Prefix the name given here by „d‟ for the density, „p‟ for the CDF, „q‟ for the

quantile function and „r‟ for simulation (random deviates). The first argument is x for

dxxx, q for pxxx, p for qxxx and n for rxxx (except for rhyper and rwilcox, for which

it is nn). In not quite all cases is the non-centrality parameter ncp are currently

available: see the on-line help for details (R Core Team, 2009, p.39).

Depending on the explanations above, if researcher is to generate data from a

uniform distribution, the code below should be examined:

>runif(n=15, min=2, max=5)

With this code segment 15 data set with 2 as minimum value and 5 as maximum

value is derived. The arguments of the runif() functions are n which is the size of the

sample, min and max values.

3.4.2 The Bootstrap Resampling Method

Deriving samples from a population is an important issue in simulation. The

following paragraph the bootsrap resampling method is explained.

One practical alternative, known as the bootstrap, is to treat the original sample of

values as a stand-in for the population and to resample from it repeatedly, with

replacement, computing the desired estimate each time (Good, 2006, p.21).

Below are the codes required for deriving a sample using the bootsrap sampling

method in R:

> bootsamp<-function(){

x<-rnorm(2000,5,2)

for (i in 1:100){

samplex<-matrix(sample(x,20*599,replace=T),nrow=599)

}}

33

In this example, there is a population with a mean of 5 and standard deviation of 2

with normal distribution. From this population, 599 samples of size 20 are derived by

replacement. This deriving operation is repeated 100 times with a “for” loop and 100

bootsrap resampled samples are obtained. The sample derivation operation in the

example above is performed by assigning “TRUE” value to the replace argument via

the function below. The sample() function in R is given below without changing the

default values.

>sample(x, size, replace=FALSE)

With the function above a sample of “size” size is derived from the population x

without replacing.

3.5 Graphical Functions In R

It was mentioned before that R programming language has many built-in

functions. Most of the built-in functions in this language are graphical. R language

has many graphical tools. Not all of them are mentioned in this study, but these

graphical tools limited to the confines of this study.

The graphical tools of R language comprises of two different function groups.

These are called high-level and low-level functions (Murrel, 2006). R programming

language has some arguments to increase the competence of high-level functions in

analyses.

3.5.1 Arguments Of The High Level Graphical Functions

The arguments of the high-level functions used in R are given in Table 3.3.

Table 3. 3 Arguments of the high level graphical procedures

axes=FALSE: Suppresses generation of axes—The default, axes=TRUE, means

include axes.

34

Table 3. 3 (Continue)

log="x"

log="y"

log="xy" Causes the x, y or both axes to be logarithmic. This will work for

many, but not all, types of plot.

type= The type argument controls the type of plot produced, as follows:

type="p" Plot individual points (the default)

type="l" Plot lines

type="b" Plot points connected by lines (both)

type="o" Plot points overlaid by lines

type="h" Plot vertical lines from points to the zero axis (high-density)

type="s"

type="S" Step-function plots. In the first form, the top of the vertical

defines the point; in the second, the bottom.

type="n" No plotting at all. However axes are still drawn (by default) and

the coordinate system is set up according to the data. Ideal for creating plots with

subsequent low-level graphics functions.

xlab=string

ylab=string: Axis labels for the x and y axes. Use these arguments to change the

default labels, usually the names of the objects used in the call to the high-level

plotting function.

main=string Figure title, placed at the top of the plot in a large font.

sub=string Sub-title, placed just below the x-axis in a smaller font.

These arguments are frequently used in high-level functions. They are informing

arguments which inform the researcher in the course of his/her study.

3.5.2 Low Level Graphical Functions

In some cases, high-level functions can not be fully explanatory. In such cases,

low-level functions are used to give extra information after the use of high-level

35

functions. For instance, low-level functions such as points, lines, texts, etc. can be

used in such cases. Table 3.4 presents some of the low-level functions of R language.

Table 3. 4 Some low level graphical functions

points(x, y),lines(x, y): Adds points or connected lines to the current plot. plot()‟s

type argument can also be passed to these functions (and defaults to "p" for points()

and "l" for lines().)

text(x, y, labels, ...): Add text to a plot at points given by x, y. Normally labels is an

integer or character vector in which case labels[i] is plotted at point (x[i], y[i]). The

default is 1:length(x). Note: This function is often used in the sequence

polygon(x, y, ...): Draws a polygon defined by the ordered vertices in (x,y) and

(optionally) shade it in with hatch lines, or fill it if the graphics device allows the

filling of figures.

title(main, sub): Adds a title main to the top of the current plot in a large font

and (optionally) a sub-title sub at the bottom in a smaller font.

segments(x0, y0, x1, y1, ...): draws line segments

arrows(x0, y0, x1, y1, ...): draws arrows

symbols(x, y, ...): draws circles, squares, thermometers, etc.

3.5.3 High Level Graphical Functions

R programming language has high-level graphical functions to enable the

researcher to see which properties the data have in statistical analyses. These

procedures in R language are originated from the Sussman‟s Scheme language (R

Core Team, 2009). Table 3.5 below presents the graphical procedures frequently

used in statistical research.

Table 3. 5 High level graphical functions of R programming language

plot(x) plot of the values of x (on the y-axis) ordered on the x-axis

plot(x, y) bivariate plot of x (on the x-axis) and y (on the y-axis)

pie(x) circular pie-chart

36

Table 3.5 (Continue)

boxplot(x) “box-and-whiskers” plot

dotchart(x) if x is a data frame, plots a Cleveland dot plot (stacked

plots line-by-line and column-by-column)

hist(x) histogram of the frequencies of x

barplot(x) histogram of the values of x

qqnorm(x) quantiles of x with respect to the values expected under

a normal law

R also has many high-level functions not present in the table above. Help about

these functions can be obtained from the R website on the internet.

3.5.3.1 Bar Charts And Dot Charts

Bar charts are the statistical graphics in which each data range is represented with

a bar. If the data set at hand is a cluster data set, the bar chart is quite efficient. This

function has some arguments which can compare each set with another set or the

elements in the set with each other. There is an example below about barchart and its

graphical displaying is given in Figure 3.1.

>aa<-matrix(c(1:24),nrow=4);barplot(aa,beside=T,main= “example of barplot”)

Figure 3. 1 Bar chart for example

37

At the results in Figure 3.1, due to “beside” argument taking “TRUE” value, a in-

set drawing is present in the graphic. At the same time, a main title is given to the

graphic with the high-level function argument “main”.

The dotchart can be used as an alternative to barchart. It is a graphical displaying

which draws dots on a simple scale using the data. The graphical displaying of the aa

matrix above is given in dotchart in Figure 3.2.

>dotchart(aa, main=“example of dotchart”)

Figure 3. 2 Dot chart for example

Barchart has a histogram displaying, while dotchart has a pointwise one.

3.5.3.2 Pie Charts

Pie charts are used to show the proportion of each value to the whole. The code

below shows how a pie chart is generated in R.

38

>pie.gra<- c(0.11, 0.3, 0.3, 0.10, 0.04, 0.12);names(pie.gra) <- c("Banana",

"Cherry", "Apple", "Cococa", "Other", "Vanilla"); pie(pie.gra,main="Pie chart for

example")

Figure 3. 3 Pie chart of R programming language

3.5.3.3 Histograms

Histograms are barcharts that display the distribution of an individual measure

taken from a part or a process. It is also called the frequency distribution, since it

shows the frequency of a value with the length of the bar. Histogram is a graphical

tool frequently used by statisticians in data analysis. Below is the function in R to

draw a histogram:

>hist(x,…)

For instance:

>x<-rnorm(100);hist(x)

Histogram is a specialized version of the barchart which shows the distribution of

the frequency of the numbers in the data. Each bar includes the frequency of the

values which are defined at a certain range in the data.

39

Figure 3. 4The histogram of R programming language

3.5.3.4 Box Plot

Box plot depends on summarizing graphically the 5-tuple representation prepared

for the data in terms of the related variable. Especially, it is used to summarize the

data in terms of the central position, spread, skewness and kurtosis and to define the

skewed values. These five values are given below:

- Xmin: minimum of the sample “minimum observation value”

- Q1: Quarter “first of lowerquarter”

- Xmed: Median “median or mean of sequential data”

- Q3 : Quarter “third or upper quarter”

- Xmaks: maximum of sample “maximum observation value”

Box plot can be used as an alternative to histogram graphic. A box-plot example

is given below:

>d<-rnorm(1000,5,2)

>boxplot(d)

40

Figure 3. 5Box plot of R programming language

3.5.3.5 Scatter Plot

Scatter plot graphic is a graphical tool that shows the distribution of the data set in

dots. It is a frequently used method in statistical data analyses. Below is the scatter

plot function in R:

>plot(x,…)

The example below shows how the scatter plot function is used in R. At the same

time an argument is added to the function.

>d<-rnorm(1000,5,2);d1<-rnorm(1000,5,2)

>plot(d,d1);lines(d,d1,col= “grey40”)

41

Figure 3. 6 Scatter plot normal versus poisson distribution

3.5.3.6 Q-Q Norm

Q-Q norm is one of the best ways that can show the researcher whether the data at

hand is distributed normally or not. The function draws the quantiles of the elements

in the sample taken against the theoretical quantiles of the normal distribution. This

function has the arguments below, in its general usage in R:

>qqnorm(x,…)

The code below can be given as an example to Q-Q norm.

>d<-rnorm(1000,5,2); qqnorm(d)

42

Figure 3.7 Q-Q plot of R programming language

The sections above tried to give examples to the high-level graphical functions of

R while providing examples to the use of the arguments. Below is an example in

which low-level and high-level functions are used together with the arguments.

Figure 3.8 General example of graphical procedure of R language

43

>x<-rnorm(50);y<-rnorm(50);plot(x,y, main="EXAMPLE", xlab="value of

x",axes=TRUE);arrows(x[2],y[2],x[5],y[5])

In the previous sections the procedures used in data analysis, such as barchar,

box-plot, etc., were mentioned. The important point here is the choice of the

graphical tools. This depends on the choices of the researcher.

3.6 Special Argument “…”

“…” argument is one of the object types in R. This argument is used mostly in

function environments, so it is mentioned in this section. The functions in which the

“…” argument is used can be added different arguments by the researcher. “…” is

used in the argument part of the functions and is added to the appropriate functions in

the body part of that function. The pairing of the function used should be paid

attention. Otherwise, an error message may return. A simple example about the usage

of this argument is given below:

>grap<-function(x,…){drw<-hist(x,…);return(drw)}

Here, “…” is added as an argument to grap function, and in the body section “…”

argument is also used in hist() function. In this case, ecamining the code below, the

“main” and “col” arguments are added to the hist() function by means of “…”

argument.

> grap(rnorm(100),main= “dot dot dot example”, col= “black”)

If the code above and Figure 3.9 below are examined, it can be seen that more

than one compatible argument may be added in the area in which this object type is

used.

44

Figure 3.9 Dot Dot Dot example of R language

When Figure 3.9 is examined, it can be seen that two arguments are added to the

hist() function by means of “…” argument. “...” object type‟s being a special object

type in R can be understood from the example above.

Lastly, this section will mention the slow operational speed of loops in R.

Therefore, they can lower the efficiency of the functions in which they are used.

However, there are some cases in which loop usage is inevitable. The examples

below are the evidence to the inefficiency of loops in R:

>dat<-rnorm(100000000) > pc<-proc.time()

> system.time(max(dat)) > max<-dat[1]

 > for (i in 2:100000000)

+ if (max<dat[i]) max<-dat[i]

> proc.time()-pc

With the codes above the operation of finding the max value in the “dat” data set.

The total wait time for the first code written in R is obtained by the system.time()

function and found 1.27 minutes. In the second code, on the other hand, the max

45

finding operation is performed using the loops and the total wait time lasts more than

7 minutes.

As it can be seen from the examples above, loops in R are not efficient, especially

in large data sets. In this case, researcher may try logical methods for comparison

and loops. Below is an example of performing logical comparison without using “if”

keyword. The sample code which founds the elements smaller than 5 in x vector is

given below:

>x<-3:8

>length(x[x<5])

The operation performed by the code above can be rewritten using the “if”

keyword, but the code above is faster in terms of operational efficiency.

46

CHAPTER FOUR

 AN APPLICATION WITH R: B
2
 TEST WITH ONE-STEP M ESTIMATOR

AND BOOTSTRAP-T METHOD

The previous chapters discussed the definition, history of R, its functions used on

arrays and matrices, and the graphical properties of this programming language. The

differences of this programming language from other languages were also

mentioned. The specific arguments and statements used in R were introduced and

examples on these were provided in order to intensify the use of these arguments,

statements and functions.

This chapter presents a statistical simulation study which uses the aforementioned

features of R and its means. The hypotheses that normal distribution and population

variance being homogeneous are prerequisites in all parametric methods that

compare two or more groups using a measure of location. However, in application

there are many cases in which these hypotheses are not met (Wilcox, 2005). In this

chapter of the study, the R function written for the B
2
 test with one-step M-estimator

and bootsrap-t method, which are influenced less from the hypothesis violations and

the resulting extreme values, is introduced. By the function written, this method is

compared to the Yuen trimmed mean test and t-test, which are used in the literature

for the same purposes, in terms of maintaining type I error on different sampling

orders.

4.1 M-Estimators And One-Step M-Estimator

When searching for a measure of location, one strategy is to use some value, say

c, that is in some sense close, on the average, to all the possible values of the random

variable X. One way of quantifying how close a value c is from all possible values of

X is in terms of its expected squared distance from c. If c intended to characterize

the typical subject under study, a natural approach is to use the value c that

minimizes  2cXE  . Viewing  2cXE  as a function of c, the value of c

47

minimizing this function is obtained by differentiating, setting the result equal to 0,

and solving for c.

Let  mX   be some function that measures the distance between X and some

unknown constant m , and let  be its derivative with respect to m . Attention is

restricted to those functions for which   mXE   , viewed as a function of m , has

a derivative.

A general approach to defining a measure of location is to take m to be the

value that minimizes  mX   . So in general, m satisfies

   0 mXE  .

When    2mm XX   ,    0 mXE  and m = , the population

mean. Various choices for  and have been proposed. Here we focus on Huber‟s

well known choice for  (Huber, 1981).

    xKKx ,min,max  (1)

A common choice for K is 1.28, the 0.9 quantile of the standard normal

distribution, and this will be used unless stated otherwise. In a given situation some

other choice might be more optimal, but K=1.28 guards against relatively large

standard errors while sacrificing very little when sampling from normal distribution.

For a detailed discussion about choosing K, see Huber (1981). Estimation of Huber‟s

M-measure of location is usually accomplished with an iterative estimation

procedure such as the Newton-Raphson method. Even with only a single iteration,

the resulting estimator has good asymptotic properties (Serfling, 1980). One iteration

of this procedure yields the one-step M-estimator

48

   

28.1

ˆ
21

1

12

2

1

iin

XiiMADN

in

ii

i

m












 , (2)

where

  6745.0MADMADN N  ,

   MXMXMXMEDMAD n  ,...,, 21

 is the median absolute deviation statistic and M is the usual median. Here 1i is the

number of observations iX such that

28.1


MADN

MX i (3)

and 2i is the number of observations iX such that

28.1


MADN

MX i (4)

A fundamental difference between the one-step M-estimator and trimmed mean is

that an M-estimator empirically determines the amount of trimming whereas a

trimmed mean is based on a predetermined amount of trimming. A seemingly

natural appeal of the one-step M-estimator is that if sampling is from a light tailed

distribution, it might be reasonable to trim very few observations or none at all. If a

distribution is skewed to the right, a natural reaction is to trim more observations

from the right versus the left tail of the empirical distribution.

M-estimators have highest possible breakdown point 0.5 which make them very

insensitive to outliers (Wilcox, 2001).

4.2 Estimating The Standard Error Of m̂

The influence function of M-estimator which measures the relative extent a small

perturbation in underlying distribution has on m , has somewhat complicated form.

It depends in part on the measure of scale used in  here this is MADN  N and

49

it‟s influence function. The influence function of
N is just the influence function of

MAD   divided by 0.6745. Let

     XsignXA

where  is the population median. Let

    XsignXB

and

   
 
 

    


 ff
f

XB
XAXC

The influence function of N is

 
 

      





ff

XC
XIF

N 6745.02
.(Wilcox, 2005)

Estimating  ixIF
N , the value of the influence function of N at ix , requires an

estimate of the probability density function  xf . Here, adaptive kernel estimator

was used. Denoting the estimate of the probability density function  xf with  xf̂

and computing

   MADMxsignxA ii ˆ ,

   ,ˆ MxsignxB ii 

   
 
 

    MADMfMADMf
Mf

xB
xAxC i

ii  ˆˆ
ˆ

ˆ
ˆˆ ,

an estimate of  ixIF
N is

 
      MADMfMADMf

xC
V i

i



ˆˆ6745.02

ˆ
.

Letting   NmXY  , the influence function of m is

 
       

  YE

YYEXIFY
XIF NN

m


 






50

Since the estimate of  ixIF
N and N is known, all that remains when estimating

 im xIF is estimating   YYE  and   YE  where   NmXY  . Set

MADN

x
y mi

i

̂
 ,

and


 


.,0

,1

otherwise

Kyif
D

i

i

Then,   YE  is estimated with





n

i

iD
n

D
1

1

Finally,   YYE  is estimated with





n

i

ii yD
n

C
1

1

The sum in this last equation is just the sum of the iy values satisfying Kyi  . The

value of the influence function of m , evaluated at ix , is estimated with

     DCVyMADNU iii   .

Then, the squared standard error of m̂ can be estimated as follows.

 


n

i

im U
nn 1

22

1

1
̂ . (Wilcox, 2005) (5)

The computations described here are tedious so a built in R function “mestse” given

by (Wilcox, 2005) was used with the simulation study.

4.3 2B Test With One-Step M-Estimator And Bootstrap-t Method

This test uses one-step M-estimator and bootstrap-t procedure with the method

derived by Ozdemir and Kurt (2006).

51

Let jnj j
XX ,...,1 be a random sample from the jth distribution  2,1;,...,1  jni j

and let mj̂ be one-step M-estimator of group j as given in Eq (2). The squared

standard error of the sample one-step M-estimator for group j  2,1j is estimated

as in Eq (5).

 


jn

i

i

jj

mj U
nn 1

22

1

1
̂

 Let

2

2

2

1

2

ˆ

1

ˆ

1

ˆ

1

mm

mj

j








 ,

2211
ˆˆ

mmX  

and

mj

mj

j

X
T





ˆ

ˆ 


A normalizing transformation is applied to jT so that it has, approximately, a

standard normal distribution. There are several normalizing transformations for

the t statistics in the literature. Here, the method derived by Bailey (1980) is used.

Here, the transformation is

 

 

2
1

2

2
1

2
2

2
2

1ln

12

94
4

24

325
4



































j

j

c
jj

c
j

j

j
T

z

z

z








~  1,0N

where 1 jj h , 21 iinh jj  . 1i and 2i were given in Eq(3) and Eq(4)

respectively and should be calculated for each sample separately. cz is the critical

value of related significance level under standard normal distribution. The sign of

52

jz transformation is the same as jT . Then the test statistics of the proposed

method under 0H is

 

 

2

2
1

2

mj

2
1

2
2

2
2

2

1

2

1

22
ˆ

-ˆ

1ln

12

94
4

24

325
4






































































































j

mj

j

c
jj

c
j

jj

jm

X

z

z

zB












 (6)

To decide whether to accept or reject
210 : mmH   . The bootstrap-t procedure

is used with the following steps;

1. Let
**

1 ,..., jnj j
XX be a bootstrap sample of size jn generated from

jnj
j

XX ,...,1 by random sampling with replacement and set mjijij XC ̂** 

jni ,...,1 .

2. Using the mjijij XC ̂**  jni ,...,1 values just obtained compute
*ˆ
mj ,

2*ˆ
mj ,

*

j ,
*X , *

jT and

 

 

2

2
1

2

*

**

mj

2
1

2
2

2
2

2

1

2

1

22*
ˆ

-ˆ

1ln

12

94
4

24

325
4








































































































j

mj

j

c
jj

c
j

jj

jm

X

z

z

zB












3. Repeat first two steps B times, yielding
2*2*

1 ,..., mBm BB . B=599 appears to

suffice in most situations when 05.0 .

4. Put
2*2*

1 ,..., mBm BB values in ascending order, yielding    

22 **

1 ... Bmm BB  . The

 

2*

BmB values provide an estimate of the distribution of 2

mB defined in Eq (6).

53

5. Set 2Bl  , rounding to the nearest integer, let lBu  and chose  
2*

1lmB ,

 
2*

umB .

6. Reject 0H if  
2*

1

2

 lmm BB or  
2*2

umm BB  .

4.4 Yuen’s Test

Let jnj
j

XX ,...,1 be a random sample from the jth distribution  2,1;,...,1  jni j .

Yuen‟s procedure tests 210 : ttH   the hypothesis of equal population trimmed

means, using the test statistic

21

21

dd

XX
T tt

y



 (7)

assuming that the null distribution of yT is a Student‟s t distribution with a degrees

of freedom

 

   11 2
2
21

2
1

2
21






hdhd

dd
y . (8)

and

 





jj

j

gn

gi

ji
j

tj X
h

X
1

1
 (9)

is the jth sample‟s trimmed mean and       jnjj
j

XXX  ...21 represent the

ordered observations associated with the jth group. Let  jj ng  indicate that jn is

rounded down to the nearest integer and  represents the proportion of observations

that are to be trimmed in each tail of the distribution. Here,

 

 1

1 2






jj

wjj
j

hh

sn
d (10)

54

is Yuen‟s estimate of the squared standard error, where
2
wjs is the gamma-Winsorized

variance and jjj gnh 2 is the effective sample size, that is, the size after

trimming  2,1j . The gamma-Winsorized variance is calculated as follows.

  






j

n

i

wjij
j

wj YY
n

s
1

22

1

1
 (11)

where

   
   

    jgnijjgn

jgnijjgij

jgijjgij

jjjj

jjj

jj

XXifX

XXXifX

XXifXY













1

11

are the Winsorized scores and





j

n

i

ij
j

wj Y
n

Y
1

1
 (12)

is the sample Winsorized mean(Yuen, 1974).

4.5 Design Of The Simulation Study

Simulations were performed by generating observations from a g-and-h

distribution (Hoaglin,1985). This is done by generating Z from a standard normal

distribution and then computing

  

g

hZ
gZ

X
















2

exp1exp
2

.

When g = 0, this last expression is taken to be
















2
exp

2hZ
ZX .

The reason for using the g-and-h distribution is that it provides a simple method

for generating observations from a wide variety of distributions, which include

extreme departures from normality as measured by skewness and kurtosis. Because it

55

is not clear just how non-normal distributions might be in applied work, the strategy

here is to include distributions with skewness and kurtosis values that surely exceed

what can be expected in practice. For g = h = 0, X has a standard normal distribution

and for g=1, h=0 X has a lognormal distribution. When g = 0, X is symmetric. Table

4.1 shows the estimated skewness and kurtosis values corresponding to the g and h

values used in the simulations. Skewness is measured with
23

231   and

kurtosis is measured with 2
242   where  kkk XE   .

Table 4.1 Some properties of g and h distribution

g h
1̂ 2̂

0 0 0 3

0.5 0.2 10.554 200.736

0.5 0.5 102.533 20405.6

4.6 Simulation Results

The three tests were compared in terms of their ability to control the probability of

a Type I error when testing at the 0.05 level. Although the importance of a Type I

error depends on the situation, Bradley (1978) has suggested that ideally, the actual

level should be between 0.045 and 0.055 when testing at the 0.05 level. And at a

minimum the actual level should be between 0.025 and 0.075. Here the focus is on

Bradley‟s more conservative criterion that the actual level should be between 0.045

and 0.055.

All simulations were done in R with 10000 replications for each case. Regarding

the Yuen Test, both 10%, 20% and 25% trimming were used.

56

Table 4.2 gives the type I errors of the tests used in the simulations.

Table 4.2 Simulation results

Distributions
n1

n2

1

2

yuen

(0.1)

yuen

(0.2)

yuen

(0.25)
2

mB T

Dist.1:

Normal

Dist.2:

Normal

10

10

1

1
0.0445 0.0455 0.0455 0.0454 0.0476

1

4
0.0560 0.0594 0.0594 0.0458 0.0613

10

20

1

4
0.0526 0.0533 0.0562 0.0505 0.0103

4

1
0.0550 0.0607 0.0611 0.0463 0.1643

20

20

1

4
0.0468 0.0478 0.0518 0.0488 0.0549

Dist.1:

Normal

Dist.2:

g=0.5

h=0.2

10

10

1

4
0.0528 0.0492 0.0459 0.0461 0.0955

4

1
0.0526 0.0571 0.0570 0.0459 0.0606

10

20

1

4
0.0480 0.0482 0.0487 0.0464 0.0384

4

1
0.0538 0.0557 0.0560 0.0414 0.1637

20

20

1

4
0.0528 0.0485 0.0513 0.0523 0.0915

4

1
0.0529 0.0549 0.0579 0.0513 0.0545

Dist.1:

Normal

Dist.2:

g=0.5

h=0.5

10

10

1

4
0.0476 0.0537 0.0537 0.0480 0.0759

4

1
0.0475 0.0525 0.0524 0.0466 0.0584

10

20

1

4
0.0521 0.0595 0.0598 0.0486 0.0921

4

1
0.0520 0.0515 0.0514 0.0404 0.1738

20

20

1

4
0.0463 0.0493 0.0532 0.0487 0.0853

4

1
0.0478 0.0505 0.0545 0.0492 0.0529

Dist.1:

g=0.5

h=0.5

Dist.2:

g=0.5

h=0.5

10

10

1

4
0.0437 0.0407 0.0387 0.0394 0.1526

10

20

1

4
0.0438 0.0398 0.0393 0.0482 0.0778

4

1
0.0480 0.0439 0.0414 0.0447 0.2314

20

20

1

4
0.0459 0.0421 0.0433 0.0516 0.1537

In the simulation study the probability of producing type I error was calculated

generating random data for 21 different sampling orders. The sampling orders started

from the ideal conditions in which the normal distribution and homogenous variance

57

hypotheses were met, and gradually deviated from these hypotheses by using the

distributions given in Table 4.1 for skewness and kurtosis values.

58

CHAPTER FIVE

 CONCLUSIONS

This study aimed at introducing the R language, which has been used frequently

in recent academic research, and conducting an application with this language. The

strengths of this programming language are;

 Obtaining free of charge,

 Being an object-oriented programming language,

 Ease of increasing the functionality by adding different packages,

developed for different purposes,

 Having 2-D, 3-D and more dimensional developed graphic tools.

Its weaknesses are;

 It is hard to learn.

 Although it has advanced data processing features, it needs to master

array and matrix operations.

 It is not suitable for working with large data files. Insufficient memory

errors may arise if files over several hundreds of megabytes are tried to

open (R Development Core Team, 2008).

 It does not have any customer support unit to deal with the problems

encountered, since it is not a commercial product.

According to Wegman and Solka SAS, which is defined as the Microsoft of the

statistical software packages, is more like a program used in corporate-scale

(Wegman & Solka, 2005). SAS is an extensive software package with application

tools that can be used in many areas, and these features make SAS one of the most

expensive software in its class. Statistical Packages for Social Sciences (SPSS) is

another statistical software package which has the power of global competition, and

it is especially used in social and educational sciences. The most basic difference

between R and the widely used statistical software packages such as SAS and SPSS

59

is that R is not a software package, but a software development environment and a

programming language that can be used for statistical calculations and graphics.

S-Plus which can be used on Windows and Unix platforms and R which can be

used on Windows, Unix, and MacOS platforms are very similar to each other, except

for their user interface, and a code written in one of them can generally be used in the

other. However, some differences in syntax rules, which seem small, are so

important that they may return different results after running the commands (Ihaka &

Gentleman, 1996). On the contrary to R, in S-Plus the data objects are stored in the

files created on the disk; therefore it is possible to recover the current environment

after a problem. In R, on the other hand, everything is stored internally and it is not

possible to recover the current environment after a problem. The most important

feature that differentiates these two languages is R‟s being free of charge.

R, which is a open source and free of charge programming language preferred by

researchers for having functions required for using the robust statistical methods, an

important discipline in statistics, and with its easily addable packages for newly

developed statistical methods, poses a powerful alternative that can meet the

requirements in statistics and mathematics education, as well as academic research,

without the need of licencing.

In the application chapter of the study, an R function for the M-estimator and

bootsrap-t method version (2

mB) of the method developed by Özdemir and Kurt

(2006) was written, and this method was compared to the Yuen Test, Student t Test

and (2

mB) tests, which are the most important robust two sample tests, in terms of

maintaining levels of type I errors, using narrow sample ranges.

Here, the type I error values for the Yuen and 2

mB tests, with 10% trimming ratio,

went out of Bradley‟s conservative criterion in 4 out of 21 orders. This number is

observed as 9 for Yuen test with 20% trimming ratio, 10 for Yuen Test with 25%

trimming ratio, and 17 for Student-t test.

60

Robust inference methods are expected to maintain the significance levels defined

by the researcher in cases where the relative hypotheses about the method are met.

When the results of the first group, in which both population distributions are

normal, are investigated, it is seen that Yuen Test with a 10% trimming ratio does not

meet this condition in 2 sampling orders.

2

mB test uses an estimator like M-estimator with a breakdown point higher than the

trimmed mean. Therefore, it is affected less from the outlier values in determining

the point where the observation values in the popularion clustered, compared to the

trimmed mean, and gives closer estimations to this clustering point. Trimmed mean

discards a fixed amount of the sample data, according to the trimming ratio, whatever

the symmetry structure of the population is. M-estimator, on the other hand, uses an

emprical outlier value determination measure. Therefore, it defines some variable

number of the data as outlier value and discards them from the right, from the left or

sometimes from both sides according to the symmetry structure of the population.

The Student-t test, developed almost 100 years ago, can not maintain the nominal

significance levels defined by the researcher, as it deviates from the normal theory

hypotheses, especially in non-balanced experiment orders(Wilcox, 2005). Therefore,

2

mB and Yuen test should be considered as alternatives for comparing two

independent groups, when these hypotheses are not met.

61

REFERENCES

Bailey, B.J.R. (1980). Accurate normalizing transformations of Student‟s t Variate.

Applied Statistics , 29, 304-306.

Bradley, J.V. (1978). Robustness? Brithish Journal of Mathematical and Statistical

Psychology, 31, 144-152.

Braun, W. J., & Murdoch, D.J. (2007). A first course in statistical programming with

R. Cambridge Uni. Press.

Crawley, M.J. (2007). The R book. Johns Willey & Sons LTD.

Dalgaard, P.(2008). Introductory statistics with R(2
th

 Ed.). Springer Science Business

Media, LLC.

Good, P.I. (2006). Resampling methods(2
th

 Ed.). Birkhäuser Boston, Springer

Science Business Media, LLC. 21

Huber, P. J. (1981). Robust statistics. New York: John Wiley And Sons.

Hoaglin, D.C., Mosteller, F., & Tukey, J.W. (1985). Exploring data tables, trends

and shapes. Newyork: Wiley

Ihaka, R., & Gentleman, R.(1996), R: A language for data analysis and graphics,

Journal of Computational and Graphical Statistics, 5(3). 299-314

Maindonald, J., & Braun, J.(2006). Data analyses and graphics using R(2
th

 Ed.).

Cambridge Uni. Press.

Murrel, P. (2006). R graphics. CRC Press.

62

Ozdemir, A.F., & Kurt.S (2006). One-way fixed effect analysis of variance under

variance heterogeneity and a solution proposal. Selcuk Journal of Applied

Mathematics, 7, 81-91

R Core Team. (2008). R language defination. Retrieved October, 25, 2009, from

http://www.r-project.org.

R Core Team. (2009). An introduction to R. Retrieved January, 25, 2010, from

http://www.r-project.org. 2, 39.

R Core Team (2009). R data import/export. Retrieved January, 25, 2010, from

http://www.r-project.org. 13.

R Core Team (2009). R internals. Retrieved January, 25, 2010, from http://www.r-

project.org.

Serfling, R.J. (1980). Approximation Theorems of Mathematical Statistics. Newyork:

Wiley

Wegman E. J., & Solka J. L. (2005). “Statistical Software for Today and Tomorrow”

in encyclopedia of statistics. John Wiley. 3.

Wilcox, R.R. (2001). Fundamentals of modern statistical methods: Substantialy

improving power and accuracy. Newyork: Springer.

Wilcox, R.R. (2005). Introduction to robust estimation and hypothesis testing(2
th

Ed.). Elsevier Academic Press.

Yuen, K.K. (1974). The two-sample trimmed t for unequal population variances.

Biometrika, 61, 165-170.

63

APPENDIX

Simulation codes for the B
2
 test with one-step M-Estimator and bootstrap-t method.

boot_t2<-function(n1=10, n2=10, mu=0, sigma1=1, sigma2=4){

sum<-0

curr<-0

stats<-as.vector(0)

for (i in 1:10000){

x<-rnorm(n1,mu,sigma1)

onex<-onestep(x)

y<-rnorm(n2,mu,sigma2)

oney<-onestep(y)

#test stat

T<-osbt2(x,y)$teststat

samplex<-matrix(sample(x,length(x)*599,replace=T),nrow=599)

sampley<-matrix(sample(y,length(y)*599,replace=T),nrow=599)

farx<-samplex-onex

fary<-sampley-oney

madxx<-apply(farx,1,mad)

madyy<-apply(fary,1,mad)

#mad control of x and y

for (i in 1:599){

if (madxx[i]==0){

dat<-gener(n1,sigma1)$x

farx[i,]<-dat

}

}

for (i in 1:599){

if (madyy[i]==0){

dat<-gener(n2,sigma2)$x

fary[i,]<-dat

64

}

}

#osbt2 test

for (i in 1:599) stats[i]<-osbt2(farx[i,],fary[i,])$teststat

stats<-sort(stats)

results<- if (T<=stats[16] || T>=stats[583]) { 1 } else { 0 }

sum<-sum+results

}

print(sum)

}

gener2<-function(x,sigma=1){

if (gener(x,sigma)$madx==0) gener(x,sigma)

}

gener<-function(nn,sigma=1){

x<-rnorm(nn,sd=sigma)

x<-x-onestep(x)

madx<-mad(x)

if (madx==0) gener2(nn,sigma)

else return(list(x=x,madx=madx))

}

osbt2<-function(x,y,k=2,alpha=0.05,bend=1.28){

##one-step m estimator ile B2t testi yapar

#s ler mestse ile hesaplandı

x<-x[!is.na(x)] # Remove any missing values in x

y<-y[!is.na(y)] # Remove any missing values in y

zc<-qnorm(alpha/2)

x2<-(x-median(x))/mad(x)

y2<-(y-median(y))/mad(y)

C<-length(x[abs(x2)>bend])

D<-length(y[abs(y2)>bend])

65

e<-c(C,D)

alist<-list(x,y)

f<-(sapply(alist,length))-e

s=sapply(alist,mestse)^2

wden=sum(1/s)

w=(1/s)/wden

yplus<-sum(w*(sapply(alist,onestep)))

tt<-((sapply(alist,onestep))-yplus)/sqrt(s)

v<-(f-1)

z<-

((4*v^2)+(5*((2*(zc^2))+3)/24))/((4*v^2)+v+(((4*(zc^2))+9)/12))*sqrt(v)*(sqrt(l

og(1+(tt^2/v))))

teststat<-sum(z^2)

crit<-qchisq(1-alpha,k-1)

bt2pvalue<-1-(pchisq(teststat,k-1))

list(p.value=bt2pvalue,teststat=teststat,crit=crit,e=e,f=f,s=s,w=w,tt=tt)

}

