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ON INVESTIGATION OF TOPOLOGY FORMED FROM A GIVEN
TOPOLOGY AND IDEAL

ABSTRACT

A nonempty collection of subsets of a set X which is closed under the operations
of subset and finite unions defines an ideal on X . On X, a topology named ideal

topology has been formed by using a given ideal f and topology 7. The set X is

called an ideal topological space with the ideal topology defined on X.
In this study, the relations between ideal topologies obtained by different ideals

and original topologies have been examined. Moreover the proof of some theorems

has been given with details.

Keywords: Ideal, Ideal topology, Ideal topological space.



VERILEN BiR TOPOLOJi VE IDEAL iLE OLUSTURULAN
TOPOLOJILERIN INCELENMESI

0z

Bir X kiimesinin alt kiimelerinin kalitsallik ve sonlu birlesim altinda kapalilik
Ozelliklerini saglayan alt kiimelerinin bostan farkli bir kolleksiyonu X kimesi
tizerinde bir ideal tamimlar. X kiimesi tUzerinde verilen bir 7 topolojisi ve f ideali
kullanilarak ideal topolojisi olarak adlandirilan bir topoloji olusturulmustur. X
klimesi, tizerinde tanimlanmus ideal topolojisi ile birlikte ideal topolojik uzayi olarak

adlandirilmaktadir.
Bu ¢alismada farkli ideallerden elde edilen ideal topolojileri ile orijinal topolojiler

arasindaki iliskiler incelenmistir. Ayrica bazi teoremlerin ispati detayli bir sekilde

verilmistir.

Anahtar sozcikler: Ideal, ideal topolojisi, ideal topolojik uzay1.
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

Ideals in topological spaces have been taken into consideration since 1930. The
tittle of an ideal in general topology was considered by Kuratowski (1966) and
Vaidyanathaswamy (1960). Hayashi (1964), defined and studied the notions of dense
in itself sets and perfect subsets in ideal topological spaces. The definition of the
topology in terms of its derived sets was given by Hayashi, following Hashimoto
(1952) and Freud (1958), and also independently by Martin (1961). Samuel (1975)
made an extensive research into properties of these topologies without any limited
conditions on an ideal 1. Furthermore, Hashimoto (1976) examined the relation
between the set of the first category and the null sets by introducing the *-topology
to T,-space. According to some others, topological ideals have been significant
requirements for general topologists. Jankovic & Hamlet (1990) defined the concept

of I-open set thanks to local function which was given by Vaidyanathaswamy
(1945).

In this research, the studies of Jankovic & Hamlet (1990) were basically

considered to be able to obtain ideal topologies with different ideals.



CHAPTER TWO
IDEAL TOPOLOGICAL SPACES

Ideal topological spaces are the structures which have been studied for a long

time. Many studies have been made on thisissue as of today.

In this chapter, some known definitions are reminded initially, and the concept of
ideal, which is the non empty family of subsets of a set, is defined and some ideal
examples are given. ldeal topologies are obtained in two different ways by using the
given ideals in a topological space. First, they are obtained by using a new defined
closure operator, then by a defined base.

Here, some thorems on the subject are noted and some unproved given theorems

are proved.
2.1 Basic Definitions

Some definitions used in this study are given as follows. (Kuratowski, 1966)
1. In order that p € Aitis necessary and sufficient that each open neighbourhood
E of p satisfiestheinequality AN E = &. We may write cl (A) for A.

2. p is an accumulation point of the set A if pe A—{p}. The st A’ of

accumulation points of A is called the derived set of A. p € A® iff each open
neighbourhood E of p satisfies An(E—{p})=@.

3. A point p is an isolated point of the set A, if pe A—A”; in other words, if
3U e N(p) suchthat U n A={p}.

4. A point p is said to be a condensation point of the set A, if every open
neighbourhood of p contains an uncountable set of points of A. The set of

condensation points of A will be denoted by cond(A) .

5. The boundary of aset A istheset A= AN (X - A)= An(A°).



10.

11.

12.

13.

14.

15.
16.

Theinterior of aset A istheset int(A)= A =X —(X—A):((AC))C

A isadense set, if A= X.

A isaboundary set if its complement isdense, i.eif X — A= X.

A is a nowhere dense set if its closure is a boundary set, i.e. if (X —Z) = X.

Thus A isanowhere dense set if iz@.

A set is said to be of the first category (meager set), if it is the union of a
countable sequence of nowhere dense sets.

A set composed exclusively of isolated points is said to be discrete, that is,
Ac X iscaled discreteif is(A) = A where is(A) isthe set of all isolated points
of A.

A set A issaid to be closed discrete iff the derived set of A is empty set, i.e
A=,

A set A is said to be dense in itsdlf, if A contains no isolated points, i.e. if
Ac A,

A set A issaid to be a scattered set if it contains no dense in itself non-empty
subset. Every isolated set is scattered.

If A isclosed and denseinitself, it issaid to be a perfect set.

A family B of open setsis called a (open) base of the space if each open set can
be represented as the union of elements of a subfamily of B.

2.2 The Local Function of a set

In this part, the definition of ideal and some idea examples are given.

Furthermore, the local function of a set is defined and some properties of this

function are noted.

Given a space (X,7r) and a point xe X, N(x) will denote the open

neighbourhood system at x, that is, N(x)={U :U er andxeU} .



Definition 2.2.1 (Jankovic & Hamlet, 1990) A nonempty collection f of subsets of

aset X issadtobeanidea on X, if it satisfies the following two conditions:
(i) Aef and Bc A= Bef (heredity).

(ii) Acf and Be f = AuBe f  (finite additivity).
From (i), D e f foreachidea f.

Example 2.2.2 Some important ideals in a topological space ( X,z) are given by the

followings:
fing ={}

f, ={Ac X|Aisfinite subset of X }

f. ={Ac X|Ais countable subset of X |

fy ={Ag X| Ais closed discrete subset of X}
f,={Ac X|Aisnowhere dense subset of X |
f :{Ag X| A is meager set}

f, = P(X) where P(X) isapower set of X.

Let’s show that some of these collections areidealson X . Before showing f,, is

anidea on X, we will give the following remark.

Remark 2.2.3 Let (X,7) betopologica spaceand Ac X . A isclosed and discrete
iff A'=0,

Proof. Let A be closed and discrete subset of X . Suppose that there exists xe X
suchthat xe A’,

xe A= VU e N(x),(U-{x})n A= @,

Ac X isclosed = A= A= A c A= xec A (Sincex:a A")

Ac X isdiscrete = (A z,) isadiscrete subspace

=>Vye A,{y} €T,



= Vye A A-{y} is r,- closed
= Vye A A-{y} isz-closed (SinceAc X isclosed)
=Vye A X—(A-{y})=(X-A)U{y}er
=U =(X-A)u{x} is an open set containing x such that
(U-{x})nA=@. This contradictsto xe A*. Thus, A" = 2.
To prove the converse assume A’ =@. This implies that A=AUA'=AUD=A

Thus, A isclosed and A? =@ aso impliesthat vxe A, xe A, that is, xeis (A).
Each point of A isanisolated point of A. So A isclosed and discrete set. u

From above remark,
fo ={Ac X |Aisclosed discrete subset ofx}z{Ag X | A° :®}. Let's show
that f, isanidea on X:
(i) Let Aef, and BC A.
Acf, = A =0
Bc A= B'c A’
—-B'=g
Thus, Be f,.
(i) Let ABe f.
ABef,=> A" =B"=Q
=(AUB)' = A UB®
=gud=0.
Thus, AUBEe f,.

From (i) and (ii), f, isanideal on X.

Let’s show that the collection f, :{Ag X|K:®} isanidea on X.

(i) Let Aef and B A



Acf = A=

n

Z:@

w|°
IN

Bc A=
—=B=U
Thus,Be f..

(i) Let ABef, .

ABef = A=B=0

(X-A) =(X-A)=X-A (X-B) =(X-B)=X-B

=X -@=X. =X -F=X.
So (X—-A) and (X -B) aredensein (X,7).
(X—-A) isdensein (X,r) impliesthat fordl V ez (V£J), VN (X-A) = .
Let W=V n(X-A), thenWer.
Since (X —-B) isdensein (X,z),then W (X -B) = Q.
B#(X-B) "W=(X-B) nVn(X-Ay
= (X=A) N(X-B) |~V
=[(X-A)n(X-B)] nV
=[X-(AUB)| "V, WWer(V=0Q).

So [ X —(AUB)] isdensein (X,7), that is,

[X-(AUB)] =X =] X ~(AUB)]=x
:{X—m}:x

:>ACJB=@
= (AUB)e f,.



Thus, f, isanideal on X.

Finally, we show that the collection f, isan o -ideal on X . Before this, we give

the definition of o -ideal.

Definition 2.2.4 (Jankovic & Hamlet, 1990) Let (X,7) be a topological space and
f beanidea on X.Then f issaidtobe o -idedl if the statement

“VneN, I, ef=[]I, ef”issaisfied.

neN

Firstly, let us show that the collection f, ={Ac X|Aismeager set} is an

ideal on X . We know that if A is meager set then A is of the first category. Then

Ac| JA suchthat A =3, VieN.

ion
So fm={AgX | Ac| JA where ﬁ:@,w EN}.
o
(i) Let Aef andBc A
Ae f,= Ac| JA suchthat i:@,w eN.

ieN

Bc AandAc| JA=Bc|JAsuchthat A=2,VieN.
ieN ieN

Thus,Be f,..
(i) Let A, Bef,,.

Since A Be f,, then Ac| JA where A= and Bc | B, where B, =&
ieN jeN
foradl i, j.Thus,

NISTS

ieN jeN

-J(AuB,)

keN



Vi,jeN, A= and B, =F=VkeN, A =Fand B =. Let k eN.
j Ko

Since A =B, =@ and f, is an ided on X, then A UB, =@. Choosing

arbitrary k, e N impliesthat vkeN, A UB, = . So AuBe f_. From (i) and

(i), wegetthat f isanideal on X.

Finaly, let us show that f, isa o-idea. Thus, wetake | e f_, foral neN.

vneN, I, ef,=>VneN, I, c(JA, whee A, =D forall i.

ieN

juanU(UA,nJ=UA,n WhereA%n:Q, vi,n.

neN neN \ieN

:>U|nefm.

neN

So f,, isan o -ideal.

Example 2.2.5 Let (X,7) be any topological space and Ac X, then the collection
f(A)={Bg X|Bc A} isanideal on X . Indeed;
(i) Let Be f(A) andCcB.
Be f(A) andCc Bimplythaa Bc Aand C c B.
Thus, C = A Thismeansthat Ce f (A).
(i) Let B,Ce f(A).
B,Ce f (A) impliesthat Bc Aand Cc A
ThenBuCc A Thus, BUCe f(A).

From (i) and (ii), we see that f(A) isanideal on X .

Example2.2.6 If f and f, aretwo ideals on a given topological space (X,7), then

f.vf,and f, A f, areasoidealson this space.



Let'sshowthat f,v f,={l,Ul,|l,ef,andl, e f,} isanidea on X.

(i)

(i1)

Let Ae f,v f, and BC A.

Ae f, v f, impliesthat 31, € f, and 31, € f, suchthat A=1, Ul,.

Bc A=l,ul,=3J,cl,and3J,c |, suchtha B=J,UJ,.
Jclhheffandd,cl,ef,=J ef andd, e f,=B=J,ul,ef v T,
Let A Bef,v i, If AuB=J, then AuB=J=udef Vvf,.

If A=@ andB=Q, then AUB=Bef,v f,

If B=JandA=J, thenAuB=Aef, v f,. Assume that both A and B are

non empty subsets.

AzxZandAe f, v i,=3l,ef and3l, e f, suchthat A=, Ul,
BxdandBe f,v f,=3J,ef and3J, e f, suchthat B=J, UJ,. Fromthis,
AuB=(l,ul,)u(J,UI,)

=(lLbud)u(l,ud,) suchthat (I,vJd)ef, and (I,Ud,)€ef,
Thus AuBe f v f,.

From (i) and (ii), f,v f, isanideal on X .

Now we show that the collection f, A f,={I,n1,|I, fiandl, e f,} is an ideal

on X.

(i)

(if)

Let Ac fAf,andBc A.

Ae f A f, impliesthat 31, € f, and 31, € f, such that A=I, N 1,.

Bc A impliesthat Bc I, nl,c1,. Wehave Be f, since Bc |, and |, € f,.
Bc A aso impliesthat Bcl,nl,c1,. We have Be f, since Bc |, and
l,ef,. SoBe f Af,.

Let ABe f A f,.If AUB=@, then AUB=O "D e f A f,.

If A=@ andB=J, then AUB=Be f A f,.

If B=J and A=, then AuB=Ae f A f,. Assume that both A and B are

nonempty subsets.
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AxZandAe f A f,=3l, e f and3l, e f, suchthat A=l, N1,.

BxZdandBe fAf,=3J,ef and3J, e f, suchthat B=J, " J,. Then
AUB=(1,n1,)u(3,nd,)=[(I,n1,)ud [n[(1;n1,)ud,]

=(1,ud)N(1,ud)N(Lud,)N(l,ud,)c(l,ud)N(1,ud,).

K3 i, v, <%, < %,
Since (1,uJd,)N(1,ud,)efiaf, and AUBc(l,UJ)N(1,Ud,), we get
AuBef,Af, by(i).

So f,Af,isanidea on X.

Definition 2.2.7 (Jankovic & Hamlet, 1990) Let (X,7) be a space with an idedl f

on X and Ac X. Then A*(f,r):{XE X|VU e N(x), AnU ¢ f} is called the

local function of A withrespectto f and 7.

We may write A(f) simply A" for A'(f,r). From definition 2.2.7,

xe A'(f,7) impliesthat“ VU e N(x), Un A= " .

Example 2.2.8 Let (X,7) be any topological space and let f beanideal on X. If

| e f,then
I"={xe X|YU eN(x), Unl g f}
g{XeX|‘v’U eN(x), I ¢ f}=®.

Thus, I"' =&.

Example2.2.9 Let (X,7) beaspacewiththeideals f,, ={&} and f, =P(X).We
have A" ({@})=Aand A" (P(X))=, for every Ac X. Indeed;
A ({@})={xe X|YU e N(x),U N Ag {T}}

={xe X|YU e N(x),UnAzD} =A
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A (P(X))={xe X|vU e N(x),U nAg P(X)}

{xe X|vU e N(x),UnAz X}|=2.

Theorem 2.2.10 (Jankovic & Hamlet, 1990) Let (X,7) be a space with ideals
f,and f, on X, andlet A and B be subsetsof X . Then

(8 AcB= A cB,

b) fcf,=A(f,)cA (),

(© A =d(A)cc(A) (A isaclosed subset of cl (A)),

@ (A) A,

(e) (AUB) =A"UB,

(f) A-B =(A-B) -B' c(A-B),

(@ Uer=UNA =UnUNA) c(UnA), and

(h) (Aul) =A"=(A-1) where | belongsto an arbitrary ideal on X .

Pr oof .

(@ We will show that “ if AcB, then A AcB* ”. LetAcB and xe A", then

xe A =>VU eN(x),UnAg f
= VU eN(x),UnBegf
= xeB.
Since x isarbitrary, A" B’.
(b) Let f,c f, and xe A"(f,) .Wemust show that xe A"( f,).
xe A'(f,)= VU eN(x),UnAg f,
= VU eN(x),UnAgf,

= xe A'(f,).
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(c) Firstly, we prove that A" is closed. So we must show that X — A" is open. Let
xe X — A", thatis, xg A".
x¢ A"=3U e N(x) suchthat U n Ae f.

Assumethat U N A" = for U e N(x).
UnA =D forUeN(x)=3ye X suchthatyeU n A’

= yeUandyeA.
Since U € N(y) andye A", then U nAg f. This contradicts to U n Ae f. Thus,
UNnA =g, for UeN(x). Then xeU g(A")C for U e N(x). This shows that
(A*)c isan open set. And so A" isclosed, that is, ¢l (A") = A".
Finally, we provethat A" A, forany Ac X .
Let xe X—A. It's clear that X — Ae N(x). Since (X—K)mA:Q and Oef,
then xg A". So X —Ac X— A", ie, A" A forany Ac X.

We may also prove it in another way:

Let xe A'. This implies that for al UeN(x), UnAgf. Since Jef,

UNA=J. Thismeansthat xe A Since X is arbitrary, then we say that A" c A.

A c A and A isclosed= A" = A" c A, that is, A’ :cI(A*)ch(A).

(d) By (c), A'c A, forall Ac X.Let C=A" beasubsetof X ,then

c gE:(A")* g(A*): A" (Since A" is closed)
=(A) A

(e) Let'sshowthat (AUB) =A UB".

Since Ac AUB and Bc AU B, then A'c(AUB) and B'c(AUB)" from (a).

So A'UB'c(AUB). (6h)
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We show that (AUB) c A'UB". Let xg A"UB’, that is, xg A" and x¢B".
Thus, 3U, € N(x) such that U,nAe f and 3U, e N(x) such that U,nBe f.
LetV =U, U,. Then
VN (AUB)=(U,nU,)n(AUB)

=(U,nU,nA)u(U;nU,NB).
Since U,nAef and U nU,nAcU,nA, then U, nU,nAe f. And similarly,
since U,nBe f andU,nU,nBcU,nB, thenU,n"U,nBe f. Thus, we have
(U,nU,nA)U(U,nU,NB)=V N (AUB)ef.
Since Ve N(x) andV n(AUB)e f, thenxe (AUB)' .
So (AUB) cA'UB". 2
By (1) and (2), wehave (AUB) =A" UB".
(f) We will show that A"—B"=(A-B) —B" c(A-B) . Firstly, let's show that
A -B'c(A-B). Let xeA'-B" and we assume that xe¢(A-B). Since
x¢(A-B)", then 3V, e N(x) such that V; n(A-B)e f . Also, 3V, e N(x) such
tha V,nBef since xg¢B'. Let U=V,nV,. We know UeN(x) and
Un(A-B)=(V,nV,)n(A-B)cV,n(A-B)e f =UN(A-B)ef
UnB=(V,nV,)nBcV,nBe f=UnBe f.Then
[Un(A-B)]u[lUnB]=Un(AUB)=(UnA)U(UnB)e f=UNnAef
where U eN(x). Thus, xg A". This contradicts to xe A'—B". Therefore,
xe(A-B), then we have A -B'c(A-B). Now we will prove that
(A-B")=(A-B) -B".
A -B < (A-B) impliesthat | A'~B" |-B"c(A-B) -B".

Thus, (A'-B')c(A-B) -B". 3)
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Let xe(A-B) —B". Then for al UeN(x),Un(A-B)e f andxeB’. Since
Un(A-B)cUNA and Un(A-B)g f, then UnAg f. This implies that
xe A". S0 xe A"-B".
From this, we have (A-B) —-B" c A" - B". (4
By (3) and (4), weget (A-B) -B'=A"-B".
We can show the relation (4) in thisway:
(A-B) -B' ={xe X|xe(A-B) andxe B'|

={xe X|vU e N(x),Un(A-B)g f andx¢ B'}

c{xeX|VYU eN(x),UnAg f andxg B}

={xe X|xe A" andx¢ B'}

=A-B".
Thus, (A- B)* —~B" < A"—B". Since the inverse of this relation is clear, we say that
(A-B) -B'=A-B".
(9) We will show that for Uez, UnA =UN(UNA) c(UnA). For this we

take an arbitrary openset U ez andxeU m A",
xeUNA = xeU andxe A"

= xeU and VV e N(x), VN Ag f.

Since UNV eN(x) and xe A", (UNV)nAg f. Thus, VN(UnA)e f for all
V e N(x). Thisimpliesthat xe(UNA).SoUNA c(UnA).

xeUNA" impliesthat xeU and xe (U nA)", then xeU n(U N A)".

So UnA cUn(UnNA). (5)
Let xeUn(UnNA). This implies tha xeU and xe(UnA). Since
(UNA) c A", then xe A".So xeU N A",

Fromthis, weget U n(U nA) cU N A" (6)



15

By (5) and (6), wehave U N(UNA) =UNA".
(h) Now we prove that for an arbitrary element |1 which is taken from an ideal f,
(AUl) =A =(A-1)".
Let'sshow that (Aul) = A" for arbitrary | € . By (€),
(Aul) =AUl
=AUZ (SinceVlef, | =0)
=A.
Finally, we show that (A—1)" = A" for an arbitrary | € f.
Since A—1 c A, then
(A-1) cA. (7)

By (f), (A—1) oA -I"

SN,
=A".
Thus, (A-1) oA (8
By (7) and (8), we obtain (A-1) = A", n

2.3 Kuratowski Closure Oper ator

In this part, a new Kuratowski closure operator is given followed from Jankovic &

Hamlet (1990) and some properties of this operator are emphasized.

Teorem 2.2.10 clearly shows that the local function *: P(X)— P(X) satisfies
the following axioms:

1) o =0

(2 (AUB) =A'UB’

(3) A" C A
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Now let’s show that the operator cl”: P(X)— P(X) definedas cl"(A)= AU A’

is a Kuratowski closure operator. Before giving the definition of this operator, let’'s

remember how Kuratowski build a topological structure.

Definition 2.3.1 (Kuratowski, 1966) A topological space isaset X and a function
(called closure) assigning to each set Ac X aset Ac X satisfying the following

four axioms:

Axiom1l. AUB=AUB.
Axiom?2. Ac A
Axiom3. @ =,

Axiom4. A=A

If, moreover, the following axiom is satisfied:
Axiom 5. (p) = (p) wherepe X,
the spaceis called a T, -space.

From above definition, Kuratowski closure operator is a function assigning to

each st Ac X aset a(A) c X satisfying the following four axioms (Kuratowski
closure axioms) :

Axiom1 a(AUB)=a(A)Ua(B).

Axiom 2. Ac a(A).

Axiom 3. a () =.

Axiom 4. a(a(A))=a(A). And

R ={Ac X|a(A) = A} isacollection of closed sets for atopology on X .

Lemma 232 (Jankovic & Hamlet, 1990) If d:P(X)— P(X) is a function
satisfying
(1) d(2)=2,

() d(AUB)=d(A)ud(B), and
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@ d(d(A)cd(a)
then o :P(X)— P(X) defined by a(A)=Aud(A) is a Kuratowski closure
operator on P(X) where d does not necessarily coincide with the derived set

operator in the generated topology.

Proof.
Axiom 1. a(AUB)=(AUB)Ud(AUB)=(AUB)Ud(A)Ud(B) = a(A) Ua(B).
Axiom2. Ac AUd(A) = a(A).

Axiom3. a(J)=dud(D)=1.

Axiom4. a(a(A))=a(Aud(A))
=(Aud(A))ud(Aud(A)
=(Aud(A))u(d(A)ud(d(A))
— AUd(A)
=a(A).

The local function =: P(X)— P(X) satisfies the axioms ((1), (2), (3)) similar
to the function d:P(X)— P(X), which is used while defining Kuraratowski
closure operator, this gives that the operator cl*:P(X)— P(X) defined as
cd"(A)=AUA" is a Kuratowski closure operator. Also, the collection
{Ac X|d"(A)= A} is a collection of closed sets for a topology on X . However,

the topology from which we obtain the closed ones via this new closure operator is

the ideal topology r( f ) , Where the topology 7 isthe original topology on X, and
the collection f isanideal on X . The obtained topology z‘( f) can be given as
z"(f) or z*. The topological space (X,7) with agivenideal f is called an ided

topological space. This new space is shown as (X,z,f) (or (X,z(f)) or
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(X,r*(f))). Since the operator cl* is a closure operator in (X,z(f)), then

Ac Xisz(f)-closed < cl"(A)=A< X-Aer(f) forany Ac X.

So theideal topology 7( f) obtained by agivenideal f and agiven topology 7
on X isdefined as
r(f)={X-AcX|d"(A)=A}.

Also, the operator cl”:P(X)— P(X), which is Kuratowski closure operator,
can be shown as A= AU A". Some properties of this operator are given by the
following theorem: (We can also use the representation A in place of cI*(A).)
Theorem 2.3.3 (Hayashi, 1964) Let the subsets A, B < X begiven, then
(1) AcB= AcB,

(20 AuB=AUB,

(3) AcA

4 A=A and

(5) D=0.

Proof. By lemma 2.3.2, we know that the operator cl”:P(X)— P(X) defined as

cl*(A)= AUA" is a Kuratowski closure operator. Thus, this operator satisfies
Kuratowski closure axioms. Because of this, it's enough to check that the condition
“Ac B= Ac B” holdsfor any A Bc X .Butwewill proveall.
(1) A=AUA.

B=BUB.

Ac B impliesthat A" ¢ B".

SinceAc Band A" c B, then AUA" c BUB". So AC B.
(2) AUB=(AUB)U(AUB)

=(AUB)U(A"UB") =(AUA)U(BUB')=AUB.



19

() A=AUA D A= ACA
(4 A=d’(c’(A))
=c"(AUA)
(AR ) (AR
-(AUA) (A A7)
=AUA" (SinceA” c A')
~d"(A)
- A
Consequence of the condition (4) isthat z(f)=[z(f)](f)

(5) D=0uUD"
:@l .

We must always assumethat X ¢ f . If X e f,foral Ac X, Aef and then

f isequal to P(X). Now let us give some basic examples.

Example 2.34 If (X,7) is any topological space, then 7(f,,)=7 and z(f,) is
discrete topology where f,, ={&} and f, = P(X). Actualy;

..o ={2} = We showed that A" ({2} ) = A, VAC X

7(fg) =7 ={Ac X|d" (X - A)=X - A}

{Ag X|(X=A)U(X - A) =X - Al

>

A)U(X - A) =X - Al

=(X—A)}

m

(A
{Ac X
{

|Aer}
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Thus, 7(f,y) =7 where f, ={3}.
fy = P(X)= We showed that A" (P(X))=3,VAc X.

r(fy)=7" ={Ac X|d"(X-A)=X- A}

Ac X|(X = A)U(X - A) =(X - A)l

{
{Ac X|(X-A)u@=(X-A)}
{Ac X|(X-A)=(X-A)}.

Fromthis, z(f,) isadiscrete topology where f, = P( X).

Example 2.3.5 If we take the topology r whose base is B:{{Zn—l 2n}: neN}

and take the ideal f, on N, then A'(f, )= for all AcN. Therefore 7(f,) is

discrete.

Weassumethat A (f,)=@, forany AcN.If A'(f, )=, then 3xe N such that
xe A'(f,). This implies that for al UeN(x), UnAgf,. Since
{xx+1} o {x-1x} eBcr, then {x,x+1} or{x-1x eN(x). xeA(f,) and
{xx+1} o {x-Lx} eN(x) imply that {x,x+1}nAg f, (cr {(x-1L,X}nAg ff)
where xe N. Thus, {x,x+1} N A(ar {x—1x} N A) is not finite subset of N, which
isa contradiction. So A’ (f, )=, foral Ac N. Then

o' (A)=AUA(f,)

=Aud
= A, foral AcN. And

r(f)=r"={UcX|d"(X-U)=X-U}

={Uc X|X-U=X-U}. Thus, (N,r(ff)) is a discrete space. -
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As aresult of above examples, if f =P(X), then z(f) is a discrete topology.

But it is not necessary that the ideal f is equal to P(X) in order that the ideal

topology which isformed from theideal f isadiscrete topology.

Theorem 2.3.6 Let (X,7) be any topological space with a given idedl f . If the
ideal f has the property that {x} e f for each xe X, then the ideal topological
space (X,7(f)) is T,-space.

Proof. Let f beanideal on X which hasthe property that {x} e f for each xe X .

From example 2.2.8, for each xeX,{x}ef implies that {x}"=@. Then

ol ({x})={x}. Thismeansthat {x} is ( f)-closed. Thus, (X,7(f)) is T,-space. m
2.4 The Base of Ideal Topology

Now, here afamily is defined by using a given topology and ideal on X . Also, it
is shown that this family is a topological basis on X . Furthermore, it is found out
that the topology which is generated by this family coincide with the ideal topology.
Later, the proof of some theorems are noted by using the basis of ideal topology.
Additionally, it is concluded that the ideal topologies, which are formed from a given
topology (or a given ideal) and two given ideals (or two given topologies) in the
same space, are comparable within themselves while these two ideals (or these two

topologies) can be compared within themselves.

Let X be anon empty set and let 7, f be a given topology and ideal on X,
respectively. The non empty collection of subsets of X which is defined as
B(f.7)={V-1|Verandl e f} isabase for any topology on X. (We will simply

write # when no ambiguity is present). Indeed;
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i) Since r isatopology on X ,then X er. f isanidea on X, then Je f. By
definition of g, X-@=Xep. Thus | J(V,-1,)=X where V, er and

o

|, ef,fordl a.
ii) Let B, and B, betwo setsin £, then
BNB,=JorBnNB, =Y.
If BNB,=J, then BB, ef.
If B,nB,=9, then B, "B, can be written as a union of sets which belong to
£ on an empty indexing set.
Let BB, where B, B, /.
B, € f impliesthat 3V, ez and 31, € f suchthat B, =V, —|,.
B, € f impliesthat 3V, e 7 and 3l, € f suchthat B, =V, —1,. Then
BNB,=M-1)n(V,-1,)
=(Vin (1)) N (Ve (1,)9))
=V, V) N ((1)° N (1,)°%)
=,V )N, ul,)*
=\V,"V,)-(l,ul,) where (V,nV,) ez and (I,Ul,)ef.
So BNB,ecf.
It's clear that £ isabase for any topology on X, and the topology generated by S
is z,,thatis,

7, :{U(VQ—IQ)NQ erandl, e f, foral a}.

a

Lemma 24.1 Let 7 and f be a given topology and ideal on a non empty set X,
respectively. The ideal topology z(f) formed from a given topology and ideal isthe

same as with the topology which is generated by the collection

Tp
p={V-1|Verandl € f}.
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Proof. We know that 7(f) ={U < X |clI"(X-U)=X-U}. Let U e7(f) and xeU.
Uer(f) iff X-U is z(f)-closed iff cl*(X-U)=X-U. This implies that
(X-U)'cX-U, then UcX-(X-U)". Therefore xeU implies that
xe X —(X-=U)". Fromthis, xg (X -U)". Since x¢ (X -U)", then 3V er (xeV)
such that V(X -U) e f. Thus, there exists | € f suchthat V(X -U)=1.Then
Vn(X-U)n() =9, tha is, (V-I1)n(X-U)=< implies that (V-1)cU.
Then xe(V—-1)cU such that (V-1)e . Since VxeU, 3B € such that

xeB cU, thenU = J B, thatis U ez,
Bep

Therefore, 7(f)cz,. 9
Let Ver, and XxeV.Since g isabasefor z,,then 3Ger and 3Z € f such that
xeG-ZcV.Thenwehave GN(Z)° cV . Thisimpliesthat GN(Z2)° N (V)° =.
So (GN(V)')cZandZ e f. Since f isanideal on X , then (G (V)°) e f. Hence
(GN(X-V))ef suchthat xeGer.Then xg(X-V)",and xe X - (X -V)". So
Ve X—(X-V) and (X-V) < (X-V). Thismeansthat (X -V) is z(f)-closed.
Thus, V € z(f) .

Fromthis, 7, < z(f). (20)

By (9) and (10), weobtain z(f)=7,. [

Result 2.4.2 Let (X,7) be any topological space and f be an ideal on X. The

collection g={V -1 |V erandl € f} isabasefortheidea topology z(f) .

Example 243 Let X ={a,b,¢}, r={X,8{a {ab} {a,c} ad f={T{a}}.
Let’sfind the ideal topology 7(f) using two distinct ways:
First way: We know that the collection
p={V-I|Verandl e f}
={X.2.{a} {a,b}.{a,c}.{b,c} {0} {c}}
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is a base for z(f). Since for al xe X, {x} € < z(f), then z(f) is a discrete

topology.
Second way: P(X)={d, X {a}{b}.{c} {a b} {ac} {b,c}}.

T =0=d(@)=0=>X-T=Xer(f).

X ={b,gd = d"(X)=X = X -X = e(f).

Let usfind{a}";

acUer=U=XorU ={a} orU ={a,b} or U ={a,c}
>Un{a ={alef=ag{a}’

beUer=U =X orU ={a,b}
s>Un{a}={atef=>be{a}’

ceUer=U=XorU ={a,c}
=sUn{a}={a}ef=ce{a}.

So{a}" =9.

{a}" =0 =d"({a})={a} = X -{a} ={b,c} e z(f) .

Let usfind {b}";

acUer=U=XorU ={a} orU ={a,b} or U ={a,c}
>Un{b={bloUn{b}=F=ae¢{b}” (Snedef)

beUer=U=XorU ={ab}
=>Un{b}={b} ¢ f =>be{b}

ceUer=U=XoU={ac}
>Un{b={lfoUn{b}=F=ce{b}” (Snedef).

So {b}" ={b}.

{b}" ={b} = cI"({b}) ={b} = X —{b} ={a,c} e z(f).

Let usfind{c}";

acUer=U=XorU ={a} orU ={a,b} or U ={a,c}
>Un{d={cdoln{cd=F=ag{c" (Snedef)

beUer=U=XorU ={a,b}

>Un{c={cdolUn{c=0=be{c}” (SneTef)



ceUer=U=XoU={ac}
=Un{cd={c¢f=ce{cd.

So{c}" ={c}.

{d" ={ad =cd"{})={ct = X-A{c} ={a,bt ez(f).

Let usfind{a,b}";

acUer=U=XorU ={a} orU ={a,b} or U ={a,c}

—Un{ab ={ab} o U~{ab={a=ael{ah’

beUer=U =X orU ={a,b}
=Un{ab} ={a,b} ¢ f =>be{a b}’

ceUer=U=XorU ={a,c}

—Un{ab ={ab} o U~{ab}={a) =ce{a b

So {a,b}" ={b} .

{a,b}" ={b} = cl"({a,b}) ={a,b} = X —{a,b} ={c} e z(f) .
Let usfind{a,c}";

acUer=U=XorU ={a} orU ={a,b} or U ={a,c}

=U n{a,c} ={a,c} o U ~{a,c}={a} = a¢{a,c}’

beUer=U=XorU={ab}

=U n{a,c} ={a,c} o U {a,c} ={a} = be{a,c"

ceUer=U=XoU={ac}
=Un{a,c ={a,ct¢f=ce{ac}.
So {a,c¢}" ={c}.
{a,c}" ={ct =>d"({ac})={ac = X—-{act={b} ez(f).
Let usfind {b,c}";
acUer=U=XorU ={a} orU ={a,b} or U ={a,c}

=U n{b,c} ={b,c} or J or{b} or {c} = a¢{b,c}"

beUer=U =X orU ={a,b}
=U n{b,c} ={b,c} 0 U n{b,c} ={b} = be{b,c}"
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ceUer=U=XoU={ac
=U n{b,c} ={b,c} o U n{b,c} ={c} = ce{b,c}".
So {b,c}" ={b,c} .
{b.c}" ={b,c} =c"({b,c}) ={b,c} = X —{b,c} ={a} e 7(f).
We know that z(f) ={U < X |cl" (X -U)=X-U}. Fromthis
7(f) ={X,2.{a} .{b} ,{c} {a,b} ,{a c}.{b,c}} isadiscrete topology.

The following theorem shows that the ideal topologies obtained by two given
ideals in the same space are comparabl e within themsel ves while these two ideals can

be compared within themselves.

Theorem 2.4.4 (Jankovic & Hamlet, 1990) Let (X,z) be any topological space and
let f,, f, betwoidealson X .If f, < f,,then z(f,) < 7(f,).
Pr oof.

First way: Let f, < f, and U e z(f,). Since U € z(f,), then U has arepresentation

asU=J(V,-1,)whereV,erandl, e f, foral a.If f,cf, and |, &f,, then
l,ef,foral a.SoU=]J(V,-1,)er(f,). Since the subset U is arbitrary, then

2(f) ce(f,).

Second way: Let f,, f, betwo idealson X with f, < f, and let the collections
A=V, ~1, IV, ez andl, e .}

B(f7)={V. -1,V erandl, ef,} be basesfor (f,) and z(f,), respectively.
To prove z(f,) < z(f,), we must show that for al Be B(f,,7r) and for all xe B,
3B e B(f,,7) suchthat xe B < B.

Let Be f(f,,7r) andxeB. This implies that 3V, ez and 31,6 e f, such that
B=V,-1,, then xeV, —-I, where V,er and I ,ef,. Let §,cl,. Since
6 cl,ef, ad f,cf,, then I ,,6 €f,. Since f, is an ideal on X, then

(I,v6,)€f,.
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xe(V,-1,)=>xeV, andxe(l,))"
= xeV, andxel,
=xeV_ andxe¢d, (Sinced, cl,)
=xeV, andxe (I, ub,).
ThenxeV, —-(1,v0,)c(V,-1,) whereV, er and (I, U8,) e f, Thus, we have

B =[V,-(I,v8,)]eB(f, 7) suchthat xe B = B.So 7(f,) cz(f,). u

Corollary 2.4.5 Let (X,z) be any topological space and let f be agiven ideal on
X, then 7 < z(f).

Proof. Let f be any ideal on X. Since f,, ={<} < f, then by theorem 2.4.3
o(fing) c2(f) . thatis, 7 = z(f). =

The following theorem shows that the ideal topologies formed from a given ideal

f and two given topologies in the same space are comparable within themselves

while these two topol ogies can be compared within themselves.

Theorem 2.4.6 Let 7,, 7, be two topologies on anon empty set X . If 7, c7,, then
7,(f) < 7,(f) foragivenidea f on X.

Proof. We assume xe A'(f,z,) for any Ac X and let xeU e7,.If 7, c 7, and
xeU ez, then xeU er,. Since xe A'(f,z,), UnAgf. Thus, for any U e,
with xeU wehave U nAg f. Thisimpliesthat xe A'(f,z,). Since x isarbitrary,
A(f,z,)c A(f,7), VAcC X.

A(f,r,) = A(f.r) = AUA(f,z,) c AUA(f.7,), that is, A(f,z,) < Alf.z,).

So 7(f) = 7,(f). n

Theorem 2.4.7 (Jankovic & Hamlet, 1990) Let (X,z(f)) be any ideal topological

spaceand Ac X . Thenforal Ac X, AY < A? where A" isthe derived set of A
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in the ideal topological space (X,z(f)) and A” is the derived set of A in the
topological space (X,7).

Proof. Since 7 < z(f) , then A" < A” for any Ac X . Indeed;
xe A" implies that for all U ez(f) with xeU, (U —{x})mA;t@, then for al
Ver with xeV, (V-{¥)nA=J. Thisimpliesthat xe A’, andso A" < A" for

any Ac X. [

Theorem 2.4.8 (Jankovic & Hamlet, 1990) Let (X,7) be any topological space and

let f beagivenidea on X ,then xe A* iff xed"(A-{x}) forany Ac X.

Pr oof.

(=) Let xe A” and we assume that 3G e N(x) suchthat Gn(A-{x}) e f. This
implies that 31 e f such that GN(A-{x})=1. Thus, [GN(A-{X)]nI°=D
where Ger and | e f. Then (G-1)n(A-{x})=2 where xe(G-1)e B c(f).
So xe A". We get a contradiction. Thus, for al Ge N(x), GN(A—{x})¢ f, that
is, xe (A-{x) , then xecl" (A—{x}).

(<) Let xec"(A—{¥}). Then xe(A-{x})". This means that for al U e N(x),
Un(A-{x})ef. Weassumethat T n(A-{x})=@ for T ez(f) with xeT . Since
xeTer(f), then IGer and 3IZef such thaa xeG-ZcT. Since
(G-Z2)n(A-{x}) =T (A-{x)=93, then (G-Z)n(A-{x})=D. This implies
that GN(A—{x})cZef. Since f isanideal on X, then GN(A-{x})e f where
Ger (xeG), thatis, Ge N(x). Thus, xe(A—{x}) . From this, xgcl’(A-{x3}).
This contradicts to X€C|*(A—{X}). So for al Ter(f) with xeT,

TN(A-{x})=@,thatis, xe A" . Thisends the proof. .

By using this theorem, we obtain the following relation:
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xe A” if and only if xed’(A—{x) if and only if xe(A—{x)", and aso

xe (A—{x})" impliesthat xe A". Thus A" — A" foral Ac X .

Theorem 2.4.9 (Jankovic & Hamlet, 1990) Let (X,7) be any topological space and

let f be agiven ideal on X. If {x} ef for each xe X, then A" = A" for all
Ac X.
Proof. Let f be agivenideal on X and {x} € f for each xe X, then for any
Ac X,

xe A < xe(A-{x) (vXe X%} e f impliesthat (A—{x}) = A*)
o xed (A—{x})

o xe AT,

Thus, A" = AY foral Ac X. n

Theorem 2.4.10 Let (X,7) be topological space and let f be an ideal on X. If
{x} e f foreach xe X, then A'(f)c A, foral Ac X .

Proof. Let {x} e f for each xe X and assume yg¢ A’ where ye X and Ac X.
ye A" impliesthat 3U e N(y) suchthat (U —-{y})nA=&. ThenU nAc{y}ef.

Since f isanidea on X, then U nAc f. Therefore ye A'(f). Then A" (f) ¢ A°
foradl Ac X if {x} e f, foreachxe X. [

From theorem 2.4.9 and theorem 2.4.10, if {x} e f for each xe X, then the
following relation holdsfor all Ac X :

AT = A(f)c A,

Example 2.4.11 Let (X,7) be a discrete space and let f, ={Ac X |Z:®} be a
givenideal on X . Wetake B={x}, then



30

B (f.)={yeX|vU eN(y)UnBef}

={ye X|VU € N(y),m;t@}

={%.
B ={x‘ ={ye X |VU e N(y),(U ~{y})n{x} =T} = .
So we see that B*(f,) ={x} « @ =B for any subset B. From this example, if the
ideal f does not have the property that {x} € f for each xe X, then we cannot say
that A"(f)c A°, foral Ac X.

From above theorems, we have the following relationsfor all Ac X :
(i) A'cA,
(i) xeA” iff xecd"(A-{x),
(i) A" c A,
(iv) If {x} e f foreach xe X, then A" = A",

(v) If {x}ef foreach xe X, then A" (f) c A°.

Corollary 2.4.12 (Jankovic & Hamlet, 1990) Let (X,z(f)) be any ideal topological
spacewhere f isanideal on X . If l ef,then | =&,
Proof. Let f be anidea on X and | € f. From example 2.2.8, |* =J. Since

¥ <1" =@, then |¥ =@. -

Theorem 2.4.13 (Jankovic & Hamlet, 1990) Let (X,7r) be a space with f, and f,
idealson X, and Ac X, then

&) A(finf)=A(f)UA(f,)

b) A'(fv fo.1) = A (fur(f )N A (Fo.7(FL)

Pr oof .

&) A (fyAf,)={xeX|VU eNO)U NAg f, A f,)
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={xe X|VU e N(x),UnAgf,orUnAgf,}
={xe X|VU e N(X),U nAg f,} u{xe X|VU e N(X),U " Ag f,}
=A(fVUA(f,).
b) Let xe A'(f,.7(f)) N A'(f,.7(f,)) . then xe A'(f,z(f,)) and xe A'(f,,z(f,)).
We assume that 3V ez with xeV such that VA€ f, v f,. By the definition of
fivf,, 3B ef, and 3B, e f, suchthat VN A=B, UB,.
(i) Let xeB, and x¢ B,.
xe B, impliesthat xe B, UB, =V A
VAA=BUB =V nA-{}=(BUB)-{}cBUB,
=[VAA-{%]-B,cB,
=[[(V A AN ]n(B) | (B) =2.
Then [V N A) -B,]n({x UB,) =@. Thisimplies that
[(VAA)-B,]c{¥UB =B ef,. Then [V A) -B,]< f,.
Since xe(V-B,)ez(f,) and [(V-B,)nA]ef,, then xe A'(f,,7(f,)). This

Isacontradiction.
(i) Let xe B, and x¢ B,. Similarly it can be shown that x¢ A*(f,,7(f,)) - Thuswe

get contradiction.
(iii) Let xe B, and xe B,.
We take B,=B —{x}, then x¢B, and B,c B ef,. Thus, x¢B,ef, and
xeB,ef,.
xe B, impliesthat xe B UB, =V A
VAA=BUB,=(VnA-{¥=(BUB)-{%
=(B,UB,)N{x*
=(B.n{x°)u(B,N{¥°)
< (BA0Y) B,
=(B,~{})UB,=B,UB,.
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Thus, (VA -{x} < B,UB,.
VA% cB,UB,=[VNA-{x]-B,cB,
=[[V AN ] (B) |N(B) =2
=[V-B)nAlc{x}UB,=B,<f,
This implies that [(V —B;)nAle f, where (V-B,)ez(f,) and xe(V-B,).
Thus, xe A'(f,,z(f,)), whichisa contradiction.
(iv) Let xg B, and x¢ B,. Then
VAA=BUB,=(VnA-BcB,ef,ad (VA -B,cBef,
=V -B)nAef,and (V-B)NAef,
where xe (V —B) e 7(f,) and xe (V - B,) € 7(f,)
= xg A'(f,,7(f,) and xe A (f,,7(f,))
= x& A (f,,7(F)) N A (Fo2(F.)).
This contradictsto xe A"(f,,7(f,)) N A (f,,7(f,))-
From (i), (ii), (iii) and (iv), we get al contradiction. Thus, for al V e r with xeV,

VnAgf,vf,, tha is, xeA(f,vf,7). Snce x is arbitrary, then

A(fpr(FDNA(foe(f)) S A(fLv fa1). (11)

Conversdly, let's show that A'(f,v f,.7) < A(f,.z(f,)) " A(f,,z(f,). Let
xe A (f,,7(f,)) . Thisimplies that 3U € z(f,) with xeU suchthat (U nA) e f,.
Since xeU ez(f,), then 3U ez and 3V e f, suchthat xeU -V cU. Thenwe
have U -V )nAcU nAef, Since f, isanideal on X, then (U -V)nAcf,
where U ez and V e f,. Thus, 3l ef, suchthat (U -V )~ A=1. This implies
tht U nAcV ul whereV ef,andl ef,, By the definition of f,vf,,
UnNAcV ulef,vf, Since f,vf, isanidead on X, then U nAef,Vvf,
where xeU' e 7. Fromthis, xe A'(f, v f,,7). Thus, A (f,v f,.7) < A (f..7(f,))-

Similarly it can be shown that A" (f,v f,,7) < A'(f,,7(f,)) -
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Thus, weget A'(f, v f,,7) € A(f.7(F)) A (f,.7(f) (12)

By (11) and (12), wehave  A'(f,v f,,7) = A'(f.7(f)) N A (fo2(f). u

Corollary 2.4.14 (Jankovic & Hamlet, 1990) Let (X,7) be any topological space

andlet f beanideal on X .Then z(f)=[z(f)](f),thatis, " =z".

Proof. Let Ac X and let f beanideal on X .
A(f.r)=A(fvf.o)=A(f. (DA 2(f) = A(f.z(f)).

A (f,7) = A (f,7(F) = AUA(f,7) = AUA(f,7(f)), then A=A for al Ac X.
Thus, z(f) =[z(f)](f). thatis, 7 =7". m

Theorem 2.4.15 (Jankovic & Hamlet, 1990) Let (X,z) be a space with the ideals
f,and f, on X, then

@ z(f,v f2) =[z(f)](F2) =[z(f)](f.)

(b) z(f,v fo) =7(f)vz(f,)

© z(finfr) =z(f)nz(fy).

Proof.
(@ LetVer(f,vf,).

Ver(f,vf,)=V=J(G,-6,) where G,er and 6,ef,vf, for adl «.
0, ef,vf,impliestha 3Z e f, and 3Z e f, suchthat 9, =Z,wZ, fordl «.
v=U(G,-0,)=UJ|6.~(2,vZ,)| where G, ez and Z,UZ, ef,v f,, then
v={J[(G,-2,)-2,] where(G,-Z,)ez(f)) and Z, e f,. So V e[z(f)](f,).

Thisimpliesthat 7(f,v f,) < [7(f1)](f,)- (13)

Similarly V canbewrittenasV:U[(Ga—Z;)—Za] where (G, -Z,)ez(f,) and

Z,ef,.S0V e[z(f,)](f,) thenwe have

(f,v f2) < [7(F)](f.)- (14)
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Let U E[T(fl)](fZ)
Uel(f)](f)=U=J(G,-Z,) where G,ez(f,) and Z,ef, for dl «.

Va, G, er(f)=G,=J(H, -1, ) where H, ez and I, <f, for al i. Thus,

u-U (@-2)-U[[UtH. 1) [z U (. -oz)

a i a,i

where H, er and (1, UZ,)ef,vf,. Thisimpliesthat U e 7(f, v f,).

So [r(f)](f) ce(fiv f2). (15)
By (13) and (15), weget z(f,v f,) =[7(f)](f.).

Similarly it can be shown that z(f, v f,) =[7(f,)](f,) using (14).

(b) Since z(f,vf,)=[z(f)](f,) and z(f)=rvy(f) where y is indiscrete

topology, then z(f,v f,)=7(f)) vy (f,)=(rvw(f))vy(f,)=7(f)ve(f,). The
equation“ z(f) =z vy (f)” will be shown in theorem 2.5.2.4.

(©) LetU er(fynf,).

Uer(fl/\fz)DU:U(Ga—Za) where G, er and Z ef, Af,, for dl «a.

Since f,Arf,cf,and f,Af,cf, thenZ ef, andZ e f, Thus, Uez(f,) and
U ez(f,). Thisimpliesthat U e z(f,) nz(f,) , then we get

(fu A f) ce(f)ne(f,). (16)
Let Ver(f)nz(f,) and xeV. Then xeV ez(f,) and xeV ez(f,). Since
xeV and V ez(f,), then 3G e7r and 3Z € f, such that xeG —-Z <cV. And
xeV er(f,) implies that 3G,er and 3Z,ef, such tha xeG,-Z,cV.
xeG,—-Z, cV = (G,-Z)N (V)" =@. Then

G N(Z)' V) =3.

XeG,-Z,cV=(G,-Z,)n (V)" =J. Then

G,N(Z,)'N(V) =0.
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Thus, (G, N (Z))° " (V)°) (G, N (Z,)° N (V)°)=@. From this,

V) (6N (@2)°)u(Gn(Z)) =2,

V) | (6. (@))uG,) (6N @) ) v @))|-2,

V)N (G UG)N((Z) UG, )N (G u(Z,))n((2) v (Z,))=2.

This implies that  (V)°N(GUG)NG,NG N((Z) U(Z,))=@, an
V)N (G,NG)N(Z,nZ,)=B. Then xe(G,NG)-(Z,nZ,)cV where
(G,nG)er and (Z,nZ,) e f,Af,. Fromthis, V ez(f, A f,).

Sowehave r(f)e(f,)ce(fAfy). (17)
By (16) and (17), weobtain z(f, A f,) =7(f,)nz(f,). [

2.5 Topologiesfrom different I deals

In this part, ideal topologies obtained by some given ideals are emphasized and
some theorems related to these ideals are investigated.

2.5.1 The Ideal f,

f; isanideal which contains all finite subsets of aset X, that is,

fi={Ac X|Aisafinite subset of X}.

In example 2.3.5, we have showed that the ideal topology can be discrete topol ogy
when the ideal is different from P(X). The following example also shows that the

ideal topology can be discrete topology when f = P(X) by using the base of ideal
topology.

Example25.1.1Let X=N and 7 ={&,N}U{L...,n} |[neN},

f+ ={Ac N|Aisafinite subset of N}, then z(f,) isadiscrete topology. Actually;



36

{3 G} ={B e (/)
{123 -{L ={Z ez(f)

{L..nt—{1...n=-B ={n} e z(f,)

Repeating this, we have {n} e z(f) forall ne N. So z(f,) isadiscrete topology.

Lemma 2512 Let (X,7r) be a topological space with the idea f,, then
A(f)c A foral Ac X.

Proof. Since {x} € f, for each xe X, then A"(f,)c A’ for al Ac X . Indeed, if
we take an arbitrary subset Ac X, then we can see that A'(f,)c A’. Let
xe A'(f), then for every U eN(x), UnAgf,. Thus UNA is infinite. This
implies that (U —{x})"A=@. So xe A’. Since x is arbitrary, then A*(f )< A°

for al Ac X, but the inverse of this relation may or may not be satisfied for all
Ac X with agiven topological space (X,z) andthegivenideal f,. -

Example 2.5.1.3 Let (X,7) be an indiscrete topological space where X isinfinite

andlet f. beagivenideal on X . Thenforany Ac X,

(%) if A=J
A= XX} if A={X}
X if A hasat least one e ement which isdifferent from x

Wetake A < X whichisequal to {x,y}.So A’ = X.
A(f)={xe X|VU e N(X),UnAgf. .}

={xeX|XnA=A¢f,}
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| @ if Aisfinite

| X if Aisinfinite

A isfinite, then A'(f,)=3.S0 A'=X ¢ =A'(f,). There exists A< X such
that A « A'(f,). So we cannot say that A'(f,)=A", for all Ac X in any

topological space (X,z) withtheideal f, .

Since (X,7) isnot T,-space, we cannot say that A'(f,)= A foral Ac X.We
will show that if (X,z) is a T,-space, then A'(f,)=A" for al Ac X. In the

previous studies, to be able to satisfy the existence of this equation, T,-space has

been taken.

We know that p isan accumulation point of theset A if pe A—{p}.So pe A’
iff each open neighbourhood E of p satisfies An(E—{p}) =< . Ina T,-space, the
statement “ AN (E—{p}) =" can bereplaced by the condition* AN E isinfinite” .

Thismeansthat A" = A'(f,),VAc X if (X,z) isa T,-space.

Let's show that A’  A'(f,) for all Ac X where (X,7) is a T,-space. Let

pe A’. We assume that E is an open neighbourhood of p such that ANE is
finite. Then AN(E—{p}) is dso finite and An(E-{p}) is closed. So

E—-[ An(E—{p})] isan open set containing p.

Let B=E-[ An(E-{p})], then

AN (B-{pH)= An((E-[An(E-{p)])-{R})
= An(En(A UE U p})){p
=(ANE)((ANE) W{p}|~{p}*

=([(ANE) N (AN EYX JU[(ANE) A{ ) ~{ P}
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=(@U[(ANE)n{p}])~{p}*°
=(ANE)n@ =@ for any Be N(p). This contradicts that pe A’.

Thus, for al Ee N(p), AnE isinfinite, that is, pe A'(f,). Then we say that

A’ c A'(f,) for al Ac X. The inverse of this relation is aways true. So the
statement “ AN (E—{p}) # 3" can be replaced by the condition “ AN E isinfinite” ,

that is, A° = A'(f,) foral Ac X if (X,z) is T,-space.

Theorem 2.5.1.4 (Jankovic & Hamlet, 1990) Let (X,z) be topological space, then
the following equivalences hold:

A(f.)=A"\VAC X iff z=1(f,) iff (X,7) isT,-space.
Proof. Assume that 7 =z(f,). Then A" = A” for every Ac X . Since {x} e f, for

each xe X, then A" = A'(f,). Therefore A'(f,)=A’,YAc X. To prove the
converse assume that A'(f.)=A" for every Ac X, then AUA'(f,)=AUA’.
Thus, cl”(A)=cl(A). Thisimpliesthat z(f,)=7.

Thus, A'(f.)=A"VAc X iff z=z(f,). (18)
Now we assume that (X,z) is T,-space, then we have A'(f,) = A’,VAc X. Hence,
AUA(f)=AUA", that is, c*(A)=cl(A). This implies that z(f)=r.
Conversely we assume that 7(f,;) =7

(f)=r=>(f)ct

=VUer(f;)Uer
Sincefor each xe X, X ={x} e z(f ), then X —{x} e 7. And so { %} is r-closed. This
means that (X,7) is T,-space.
So r=z(f,) iff (X,7) isT,-space. (29
By (18) and (19), we conclude that  A'(f,) = A", VAc X iff (X,r) is T,-space.

This compl etes the proof. [
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Example 2.5.1.5 Let (X,y) be an indiscrete topological space and f, be a given
ideal on X . Then theideal topology w(f,) isfinitecomplement topology.

Let Ac X.Thenit'seasly check that

A*(p):{x i-f Agf,

@ if Aef,

w(f:)={U c X]cd"(X-U)=X-U}
={U = X[(X-U) c X-U}
={Uc X|(X-U)ef, orX-U=X}
={U < X |[(X =U) isfinite} W{J}.

So yw(f,) isafinite complement topology.

2.5.2 The Ideal f,

f. isanideal which contains all countable subsets of aset X, that is,

f.={Ac X | Aisacountable subset of X} .

Example 25.2.1 Let f. beagivenideal on X andlet A be agiven subset of X .
Then A'(f,.) =cond(A).
A(f)={xe X|VU e N(X),UNAgf}

={xe X |VYU e N(x),U n A isuncountable}

=cond(A).

Since {x} € f, for eachxe X, then A" = A'(f.), YAc X . Thus, A" =cond(A).

In theorem 2.5.1.4, it has been shown that the following equivalences hold:

A(f)=A" VAc X & r=1(f,) & (X,7) is T,-space.

However, theorem 2.5.1.4 is not always true when an ideal f which has the

property that {x} € f for each xe X and any topological space (X,z) aregiven. In
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the following example, it was indicated that for any subset A, the equation of
“A'(f)= A" isnot satisfied when a T,-space and anideal f which has the property

that {x} € f for each xe X aregiven.

Example 25.2.2 Let (R,U) be usual space and S={1| neN} be a subset of R
n

and f_ beagivenidea on R.Then S* & S'(f.).
We know that S ={0}. So 0eS". Let OcU er. Since UnScS and S isa
countable subset of R, then U NS is also countable subset of R .
U e N(0),U NS iscountable=U € N(0), U "Se f,
= 0e S'(f.)

Thisimpliesthat S* & S*(f.).
Under the following conditions:
(i) (R,U) is T -space,
(i) VxeR{x} € f.
we showed that there exists Sc R suchthat S* ¢ S'(f,), thatis, S" = S'(f,) . Soif
(X,7) is T-space and {x} € f for each xe X, then it is not necessary that
A (f)= A", YAc X . However, if anidea f which hasthe property that {x} e f for
each xe X isgiven, then

A(f)= A", VAc X o r=7(f)= (X,7) isT,-space.
If the statement “ (X,7z) is T,-space implies that z=z(f) when {x} € f for each
Xe X.” is true, then theorem 2.5.1.4 would be true. In this case, for al Ac X,
A (f)=A". It will contradict with the example 2.5.2.2. So, if {x} e f for each
xe X, then it is not necessary that “ (X,z) is T,-space implies that 7z =7z(f)" .

Therefore, theorem 2.5.1.4 may or may not be true when {x} € f for each xe X.

Theorem 2.5.2.3 (Karagay, 1982) Let (X,z) be topologica space and 6 be a

subbase of 7, then 7 isthe coarsest topology containing o .
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From above theorem, the supremum of the set {z, |i € I} isthe topology such that
it's subbase is the family which is the union of given topologies. The topology
vy(f), which is the supremum of r and w(f), is the smallest topology
containing 7 Uy/(f). So the supremum z vy (f) of ¢ and w(f) is the topology of
which subbase isthe family 6§ =z Uy (f).

Theorem 2.5.2.4 (Jankovic & Hamlet, 1990) Let (X,z) be any topological space

and let f beanidea on X . Then z(f) =7 vw(f) where y denotes the indiscrete

topology.

Proof. We know that pg={G-Z|GerandZef} is a base for z(f),

i ={ﬂsj | J isafiniteindexing setand S; € 6, for j eJ} is a base for v (f)
jed

where s=rup(f) and B ={X-M|Meflu{d} is a base for w(f).

LetVervy(f) and xeV. Then 3V € f suchthat xeV cV.

V'e f =For afinite indexing set J,V' =[S, where S €5, for jeJ. Then

jed

V' =S, where S, e Uy (f), forjeJ,

jed
V' =S, whereS, e or S, ey (f), forjeJ.
jed

i) Let J={1..nt and S;er, for al j=1..,n where neN. Then

V=S =8n..nS, whereS, e, foral j=1..,n

xeV cV=>xe§n..n§ cV (S,..5,er=>5n..nS e7)
= xe[(§N..nS))-D]cV where [(SN..nS)-D]e S
Since 8 isabasefor z(f), then V isan element of z(f).

i) Let J={L..,n} and S ey(f), fordl j=1...n where neN. Then

V=S =8n..nS, whereS ey(f), foral j=1..,n.

jed

xeV' impliesthat xe § N..NS, whereS ey (f), foral j=1,...,n. Thus,
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xe S, where S, ey(f), foral j=1,..,n. Then
M, e f suchthatxe X-M, c S, foral j=1,...,n. Thisimplies that
Xe(X=-M)Nn(X-M,)n.n(X-M,)cSnS§n..NnS,
xeXNn(M;uM,uU..UM, ) cSNS N..NnS,,
xeX-(M;UM,u..UM_ )cSN§nN..NnS,
xeX-(M,UM,uU..UM )c §S"S N..nS =V cV,
xe[X-(M;UM,U..UM)]cV where[ X - (M, UM, U..UM,)] € S.
ThenV isan element of z(f).

iii) Let J={1,..,n} and S,S,,...,.§ erandS ,,,S .,.-- S ey(f) wheren, eN

suchthat n, <neN. Then

V' ;ﬂJSj =§nSN..Nn§, NS NS, ,N..NS, andxeV cV.
je

xeV impliesthat xe §NS,N..n§, NS ;NS ,N..NS,. Thus,

XeS

Xe$§ 21

ny+1?

.XeS§, where§ ;S ;... S, ew(f). Then
dM, € f suchthat xe X-M, c S, i=n,+1Ln,+2,...,n, that is,
XE(X_MnOﬂ)gsn(ﬁl’ XE(X_MnOJrZ)gSnO+2"“’ XE(X_Mn)gSn
M

where M .M, e f.Then

np+1? np+21°"

Xe§,XeS,,...,Xe Sb,Xe(X—Mn0+1),Xe(X—sz),...,Xe(X—Mn) implies
xe§NSN..n§ N(X-M_ )Nn(X-M_,)n..n(X-M)cV cV,
xe§NSN..n§ N(X-M_  )N(X-M,,)"..n(X-M)cV,
xe(§N§nN..n§ )NM, ;UM ,U..UM )V,
xe(§NS,N..nS)-M, ;UM ,U..UM )cV

UM

where (SN S,N..n§ )erand (M U...uUM,) e f. Thus,

np+1 ny+2

xe[(§NS,M..n§)-(M, ,UM, ,U..UM,)|cV

where [(SlmSZm...m S)-M_ v Mno+2u...uMn)]e,b’.

From this, V isan element of z(f).
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By i), ii), iii), weget v (f)<z(f). (20)
Let'sshow that z(f) c v (f).

Let Uez(f) and xeU. Then 3Ger and 3Zef such that xeG-ZcU.
Zefimpliestha X -Ze B cw(f). Then X-Zew(f)cruw(f). From this,
X-Zeruy(f).

Gercrup(f) impliestha G ez U (f).

Then X —Z,Geruy(f)=4.Bythedefinitionof g, (X-2Z)nGej .

XxeG-ZcU thenxeGN(X-Z)cU whereGN (X -2Z)e f. This implies that

Uervi(f).
Thus, z(f)czvy(f). (21)
By (20) and (21), weobtain z(f) =z vw(f). [

Example 2.5.2.5 Let (X,w) be an indiscrete topological space with the given ideal
f.- Thentheideal topology y(f.) iscountable complement topology. Actually;
Let Ac X . Thenit'sclear that

@ if Aecf,

NUJ:{X it Agf,

o

p(f)={U c X|c"(X-U)=X-U}
={U = X[(X-U) c X-U}
={Uc X|(X-U)ef. o X-U=X}
={U < X [(X -U) is countable} U{J}

Is a countable complement topol ogy.

Example 2.5.2.6 Let (X,7) be topological space and f. be a given ideal on X,
then z(f.) =7z vy (f.) where y isindiscrete topology on X .
If we take the ideal f, in theorem 2.5.2.4, then we have z(f.)=7vy(f.). It's

shown in the following:
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We know that p={G-Z|GerandZef} is a base for z(f.),

B :{ﬂsj | J isafiniteindexing set and S, 5, for eJ} is a base for zvy(f,)

jed
where s =ruw(f,.).
Let Vervy(f.)andxeV, then 3V € B suchthatxeV cV.

V'e B implies that for afiniteindexing set J,V =("S, where S, €5 for jeJ,

jed

then V' =[S, whereS e ruy/(f,), forjeJ,

jed

V' =S, whereS, er or S, ey(f,), forjeJ.

jed
i) Let J={L..nt and S er,fordlj=1..,n whee neN, then

V=S =8n..nS, whereS, e, foral j=1,..,n

jed
xeV cV=>xe§n..n§ cV (S,..5,er=>5n..nS e7)
=xe[(§n..n§)-Y]cV where[(§SN..nS)-L] e p
Since g isabasefor z(f.), thenV isan elemen of z(f.).
i) Let J={L..nt and S ey(f),fordl j=1..,n where neN, then

V=S =Sn..nS, whereS ey/(f,), foral j=1..,n.

jed
xeV impliesthat xe §N..NS, where S ey(f,), foral j=1,..,n. Then
xe S, where S, ey (f,), foral j=1..,n. Snce w(f.) is cocountable
topology, then X S, is countablefor al j=1,...,n. Thus,
(X-5)u(X-S)u..u(X-S,) iscountable, that is,
X-(§nSnN..nS)=X-V iscountable. This implies that X-V is

countable.
Let UeN(x). Since UNn(X-V)c(X-V) and X-V is countable, then

U N (X -V) isalso countable, then U N (X -V) e f.. Thus, xe (X -V)". This

implies that xeX-(X-V)". From thiss VcX-(X-V)". Since
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(X-V) c(X-V), then (X-V)isz(f,)-closed. Therefore, V is open in
z(f.) -

iii) Let J={1..n and §,S,...§ erandS .S, ., S ey(f.) Wwhere
n, € Nsuchthatn,<neN. We can easly show that Vez(f.) as in the
theorem 2.5.2.4.

so rvy(f)cr(f,). (22)

Let'sshow that z(f.) czvw(f.).

Let U ez(f.) and xeU ,then 3Gerand3Z e f_ suchthatxeG-Z cU .

Zef, impliestha X -Zey(f.)cruy(f.). Then X-Z eruw(f.).

Gercruy(f.) impliestha Geruy(f.).

Thus X -Z,Geruy(f,.)=0.

X-Z,Geruy(f,) =0 impliesthat (X -Z)nGe S.

SincexeG-Z cU, thenxeGN(X-Z)cU whereGN(X-2Z)e S.

Thisimpliesthat U e 7 v i (f.), then z(f.) iscoarser than z vy (f.), that is,
t(f)crvw(f.). (23)

By (22) and (23), weget 7(f,) =7 vy (f.). .

2.5.3 The ideal f

fa 1s afamily of al closed discrete subsets of a set X which is defined as

fa={ACX |A"=0}.

Lemma 2.5.3.1 (Jankovic & Hamlet, 1990) Let (X,z) be atopological space with
thegivenideal f_.Then A’ c A'(f,,),foral Ac X.

Proof. Let Ac X andxe A, Thisimpliesthat U n(A-{x})= @ foral U e N(X).
Since VAU e N(x) for al VeN(x) and xe A’, then (VnU)N(A-{x})=D.

And s0 VN[(UNA)-{x3]=3, for al VeN(x). Fromthis, xe (U n A)?, that is,
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UnA*#3. Thus, UNAgf, foralUeN(x). This means that xe A'(f,,) -
Since x isarbitrary, then A’ < A'(f,) foral Ac X. »
A A(fy) VA X = AUA c AUA(f,,), thatis, Ac A

= A=A, VAc X . Therefore (f ,) = 7.
As aresult of this lemma, the ideal topology z(f.,) is aways equal to the original

topology 7.

Example 25.3.2 Let (X,7r) be an indiscrete space where X has at least two
different elements and f_, be a given ideal on X. Take A={x}, forxe X. Then
A'(fy) 2 A, Indeed;
A’ ={x% =X -{x =D .Fromthis, {x} ¢ f,, foreach xe X. And
A (fe) =" ={ye X|VYU eN(y), U{x% ¢ f}

={ye X|Xn{x={x & f4}

= X.
Thus, A'(f)=X & X-{x} =A".

From this example, the statement “ A"(f,) = A", VAc X" isnot alwaystrue.

Theorem 2.5.3.3 (Jankovic & Hamlet, 1990) Let (X,7z) be any topologica space
and f, be agivenided on X, then (X,r)isT,-space iff A(f,)=A" for al
Ac X.

Proof. (<) Let A'(f) = A fordl Ac X, thenfor each xe X, {x}" ={x}". There

are four cases:

) xe{} if{xefy,

i) yzxandye{x}" if{x}f, andforal U eN(y),xeU

i) xe{x" if{xef

iv) y=xandyeg{x}" if 3U € N(y) suchthat xeU and{x} € f, or if U e N(y)

suchthat xgU.
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Since xz{x}‘, then {x}* = X —{xX} . Then there are two cases:
a y=zxandye{x®ifforalUeN(y),xeU
b) y=xandye{x}‘if 3U e N(y) suchthat xeU .
vxe X, {% ={x* = xe{x}* impliesthat x ¢ {x}"

={% € oy

= X ~{% e7(f.)
Since z(f)=7, then X —{x} e . And therefore {x} is r-closed. This means that
(X,7) is T,-space.
(=) Let (X,7) beT,-space. Then for every xe X, {x} isz-closed. And since
xe{x}?, then xeis({x}). Hence {X} isdiscrete setin (X,z). And so {x} isclosed
and discrete set in (X,7), thatis, {x} € f, for every xe X.
We know that A" < A'(f,) for adl Ac X. Thus, we need only show that
A(fa) S A". Let xe A'(f,), for Ac X. Then for dl UeN(X)UNAgf,.
Assume that there exists V € N(x) such that (V —{x})nA=J.
3V e N(x) suchthat (V-{x})nA=0 =V n{X} )N A=,

=>VnAc{xef,

Thisimpliesthat V n Ae f,. Hence, x ¢ A'(f ), Which is a contradiction. Thus, for
dl VeN(x), V-{x)NA=J, thatis, xe A’. Then A"(f,,)c A", fordl Ac X.

Sincetheinverse of thisrelation is dwaystrue, then A'(f,)=A’ fordl Ac X. =

Lemma 2.5.3.4 (Jankovic & Hamlet, 1990) Let (X,z) be any topological space and
let f beagivenideal on X.If | € f,then | isclosed and discrete set in the ideal

topological space (X, z(f)).

Proof. Since 1" is empty for every | in f, then 1¥ =&. So | is closed and

discrete setin ( X,z(f)), from the remark 2.2.3. ]
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Corollary 2.5.3.5 (Jankovic & Hamlet, 1990) Let (X,7) be atopologica space, then
theideal f, isthelargestideal on X with the property z(f)=7.

Proof. Let f be anidea on X which satisfying z(f) =z . From lemma 2.5.3.4, we
know that every | e f is closed and discrete in (X,z(f)). Since z(f)=r, then
every | e f isclosed and discretein (X,7). Thismeansthat | € f_, for every | in
f. Thus, for every ideal f with the property z(f)=7,wehave f < f_,. Thisshows

that f isthelargest ideal with the property 7(f,)=7. ]

Theorem 2.5.3.6 (Jankovic & Hamlet, 1990) Let (X,r) be topologica space with a
givenidea f.Then z(f)=r iffevery| e f isclosed in (X, 7).

Proof. Let z(f)=7z and | e f. Then X -1 ez(f). Since z(f)=r, then X -1 e7.
Thus, | is z-closed, then every | € f isclosed in (X,7). Conversely assume that
every | e f isclosedin (X,7) andlet V e z(f).

Ver(f)=V=J(G,-Z,)whereG,er and Z, € f, Va,
V=J(G,n(Z,)°) whereG, ez and Z, is r-closed,
V=J(G,n(z,)°)whereG, n(Z,)°er. And so V e z. This shows that z(f) is

coarser then 7. Thus, z(f)=r. [

From theorem 2.5.3.6, we can say that z(f ) =7 and from corollary 2.5.3.5, we
can also say that f, isthe largest ideal with the property z(f.4) =7 . We conclude
that f, isthelargestidea on X with the property z(f,) =7 and f, , ={J} isthe

smallest ideal on X with the property z(f, ) =7.
2.5.4 The Defined Ideal f(A) for asubset A € X

Let (X,7) beany topological space and f(A) beanidea on X which defines for

agiven subset Ac X . Now we obtain new topologies by using thisideal.
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Example 2.5.4.1 Let (X,7) be an indiscrete topological space and pe X . Then the
ideal topology r(f(x —{ p})) is the particular point topology where f(X —{p}) is
an ideal which definesfor X —{p} < X, that is;
f(X-{p)={Ac X|Ac X-{p}}

={AcX|pe A
Let Ac X . Then
A (F(X={p}))={xe X|VU eN(X),UAgf(X-{p})}

={xe X|Ag f(X-{p}H}

X if peA
o if peA

7(f(X—{p}))={U = X |c"(X-U)=X-U}
={U = X[(X-U) = (X-U)}
={Uc X|peg(X-U)or(X-U)=X}
={U c X[ peU}u{d}
So z(f(X—{p})) isthe particular point topology.
(Given a point pe X, the collection z(p)={U < X|peU}u{} is caled the

particular point topology on X.)

Example 2.5.4.2 Let 7(p) bethe particular point topology onaset X where pe X
and X ={p}. Then the ideal topology obtained by the given topology z(p) and the
givenideal f(X—{p}) isequa totheoriginal topology. Actually;

Let Ac X.Then

A (f(X—{p}))={xeX|VU eN(X),UAgf(X-{p})}

X if peA
g if pgA

2(P)(F(X~{p})={U < X|eI"(X~U) = X -U}
={U = X |[(X-U) = X-U}
={Uc X|pg(X-U)orX-U=X}
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={U c X|peU}{c}
Thus, the ideal topology is equal to the origina topology while the given ideal is
different from {} .

(X #{p} impliesthat Jy = p suchthat ye X. Thus{y} e f(X —{p})={<} )

2.5.5 The ideal f,

Let (X,7) beany topological spaceand f,={Ac X |Z=@} be agivenideal on

X . Now let’s show that A"(f,) = A for any subset A in the ideal topological space

(X,z(f,)). Before showing this, we will give following theorem.

Theorem 2.5.5.1 (Kuratowski, 1966) Let (X,z) be any topological space. If U is
open, then U nAcU N A, for every Ac X .

Proof. U nA=An(X-X-U)=AnX (X —u)°

=A-(X-U)
c A-(X-U)=ANnU. -
From this theorem, if U isopen, then U nAcU N A for every Ac X.. (24)

Let’sshow that Ac A'(f,) forany Ac X.

Let xe A(f,). This implies that 3U e N(x) such that U nAef,, that is,

UNA=J. From (24), UNnAcUNA=2. Then U A=, for any U e N(X).

This meansthat, x¢ A Since X is arbitrary, then

Ac A'(f,) forany Ac X . (25)

Now we will show that A"(f ) c A, for any Ac X . Let x ¢ A. And we assume that

foral UeN(x), UnAgf,. Thenfor all U e N(x), UnA isnot nowhere dense
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set. We know that B < X isanowhere dense set, if its closure is a boundary set, i.e.

if X—-B=X (Kuratowski, 1966). Thus, if for all U e N(x), U A isnot nowhere

dense set, then U N A isnot boundary set. Also B isaboundary set iff B< X —B

or, iff Bc X-B (Kuratowski, 1966). Thus, if for al U e N(x), UNA is not

boundary set, thenU nAz X-U N A

VU eN(X),UNnAzX-UNA= YU e N(X), UmAcz(U mAj

=>VUeNX, UnANU (QWA);&@.

Since F#UNANUNA cUNA, then UnA=D for al UeN(x). This

contradicts to x¢ A. Thus, 3V e N(x) such that V~Aef,, that is, xe A(f,).

Thenwesay that A°(f,) < A, forany Ac X . (26)

By (25) and (26), weobtain  A'(f,)= A, forany Ac X. n

Now we will show that z(f,) =7 where

e ={u c XU g(U°)°} —{U c X |U is a-open} .

Let X —U ez(f,). Thisimpliesthat U*(f,)cU, U cU.So U is a-closed. Then
X-U er“.
Fromthis, z(f,)cz”. (27)

Let X -V er®. Thisimpliesthat V is a-closed, V<V, V*(f,)cV . Thus, V is
7(f,)-closed. Because of this, X -V € z(f,).
Then % cz(f,). (28)

By (27) and (28), wehave z(f,)=7". u
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So the ideal topology z(f,) which formed from a given topology r and the given

ideal f isthetopology “,thatis, r < z* =z(f,).

Example 2.5.5.2 Let (X,7) be an indiscrete topological space and f, be a given
ideal on X .Forany &= Ac X,
A(f,)={xe X|VU eNX,UNAzf}

={xeX|Aef}

=X (Sinceforal F=Ac X, A=X=QJ)

el

(f,)={U c X |d"(X -U) = X —U}
={U c X[(X-U) c X-U}
={U c X [(X-U)=X or (X -U) =0}
={UcX|U=@orU=X}={T,X} =r.

Example 2.5.5.3 Let (X,7) be a discrete topological space and let f_ . be a given
ideal. Forany Ac X,
A(f,)={xeX|VUeNX,UNAzf,}

={xe X |VU e N(x),U N A=}
={xe X |VYU e N(x),U n A=}

> >l

Since each subset of X is both open and closed, then A= A for any Ac X . Thus,

A(f,)= A

2(f) ={U < X |dl* (X ~U) = X ~U}
={U < X |(X-U)U(X-U) = (X-U)}
={U < X [(X =U)U(X -U) = (X -U)}.



Then z(f,) isadiscrete topology.
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Example25.5.4 Let 7={U c X | X -U isfinite} u{&} beagiven topology and let

f, beagivenidea on X where X isinfiniteset. Thenforany Ac X,

- A if Aisfinite
| X if Aisinfinite

S_[A it Aisfinite
X if Aisinfinite

Let’s show that A"(f,) = A, forany Ac X.

(i) Let Ac X be afinite subset of X. Then U nAc A is dso finite, for all

U e N(x). Thus, UnA=UnA. From this, U nA=(UNA)

so A(f,)={xe X|VU eN(x),UnAgf,}

{Xe X |VU e N(x),U mA;t@}

If A isfinite, then A'(f,)=A.

(i) Let Ac X bean infinite subset of X . If U e N(x), then U N

{XEX|VU eN(X)UNA =2}

=UNnA. And

AcUnNA for

an infinitesubset A of X .So U mZ\gu N A. Since A isan infinite subset of

X,thenU X cU N A. Fromthis, xeU cU nA. Thus, U nA=J, that is,

UnAgf, . Since we take arbitrary U e N(X),

then for al U eN(X),

UnAgf,, that is, xe A'(f,). Because of choosing arbitrary xe X, then

A'(f,) =X where A isaninfinite subset of X . Thus, A'(f,)= X =A if Ais

an infinite subset of X .



From (i) and (ii), A*(fn)=i foral Ac X.
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CHAPTER THREE

CONCLUSION

It is possible to construct a topological structure in different ways. We have used
Kuratowski’s method for this aim. With this method, we have obtained a topology
named ideal topology. It has been seen that ideal topologies are finer than origina
ones. It was concluded that this would be an advantage related to the continuity of
functions and also some mathematical studies. Since the number of continuous

functions on the space is increasing as the topological structureis getting finer.

55



56

REFERENCES

Freud, G. (1958). A contribution to the set of Cantor Bendixon. Acta Math. Hung. , 9
(3-4), 333-336.

Hashimoto, H. (1952). On some local properties on spaces. Math. Japonicae, I,
127-134.

Hashimoto, H. (1976). On the =-topology and its applications. Fund. Math. , 91,
5-10.

Hayashi, E. (1964). Topologies defined by local properties. Math. Annalen, 156,
205-215.

Jankovic, D., & Hamlet, T. R. (1990). New topologies from old via ideals. Amer.
Math. Montly, 97(4), 295-310.

Karacay, T. (1982). Genel Topoloji. Trabzon: KTU Yayinlar1.

Khan, M., & Noiri, T. (2010). On gl-closed sets in ideal topological spaces. Journal
of Advanced Studiesin Topology, 1, 29-33.

Kuratowski, K. (1966). Topology. New York & London: Academic Press.

Martin, N. F. G. (1961). Generalised condensation points. Duke Math. J. , 28,
507-514.

Rajamani, M., Inthumathi, V., & Krishnaprakash, S. (2010). Expansion of open sets
in ideal topological spaces. Journal of Advanced Sudiesin Topology, 1, 23-28.

Samuels, P. (1975). A topology formed from a given topoology and ideal. J. London
Math. Soc. , 10(2), 409-416.



57

Vaidyanathaswamy, R. (1945). The localisation theory in set topology. Proc.
Indian Acad. ci. , 20, 51-61.

Vaidyanathaswamy, R. (1960). Set Topology. New York: Chelsa Publishing
Company.



	1DIS Kapak setenay.pdf
	2İC KAPAK setenay
	S25C-111062214140
	4ACKNOWLEDGEMENT SETENAY
	5ABSTRACT SETENAY
	6oz  SETENAY
	7CONTENTS
	8introduction
	9CHAPTER_TWO_1._sayfa
	9z ikinci sayfadan_itibaren29
	conclusion
	9zz references

