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ON INVESTIGATION OF TOPOLOGY FORMED FROM A GIVEN 

TOPOLOGY AND IDEAL 

 

 

ABSTRACT 

 

 

A nonempty collection of subsets of a set X  which is closed under the operations 

of subset and finite unions defines an ideal on X . On X , a topology named ideal 

topology has been formed by using a given ideal f  and  topology τ . The set X  is 

called an ideal topological space with the ideal topology defined on .X  

     

In this study, the relations between ideal topologies obtained by different ideals 

and original topologies have been examined. Moreover the proof of some theorems 

has been given with details. 

 

 

Keywords : Ideal, Ideal topology, Ideal topological space. 
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VERİLEN BİR TOPOLOJİ VE İDEAL İLE OLUŞTURULAN 

TOPOLOJİLERİN İNCELENMESİ 

 

 

ÖZ 

 

 

Bir X  kümesinin alt kümelerinin kalıtsallık ve sonlu birleşim altında kapalılık 

özelliklerini sağlayan alt kümelerinin boştan farklı bir kolleksiyonu X  kümesi 

üzerinde bir ideal tanımlar. X  kümesi üzerinde verilen bir τ  topolojisi ve f  ideali 

kullanılarak ideal topolojisi olarak adlandırılan bir topoloji oluşturulmuştur. X  

kümesi, üzerinde tanımlanmış ideal topolojisi ile birlikte ideal topolojik uzayı olarak 

adlandırılmaktadır. 

 

Bu çalışmada farklı ideallerden elde edilen ideal topolojileri ile orijinal topolojiler 

arasındaki ilişkiler incelenmiştir. Ayrıca bazı teoremlerin ispatı detaylı bir şekilde 

verilmiştir. 

 

 

Anahtar sözcükler: İdeal, İdeal topolojisi, İdeal topolojik uzayı. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction 

 

Ideals in topological spaces have been taken into consideration since 1930. The 

tittle of an ideal in general topology was considered by Kuratowski (1966) and 

Vaidyanathaswamy (1960). Hayashi (1964), defined and studied the notions of dense 

in itself sets and perfect subsets in ideal topological spaces. The definition of the 

topology in terms of its derived sets was given by Hayashi, following Hashimoto 

(1952) and Freud (1958), and also independently by Martin (1961). Samuel (1975) 

made an extensive research into properties of these topologies without any limited 

conditions on an ideal Ι . Furthermore, Hashimoto (1976) examined the relation 

between the set of the first category and the null sets by introducing the ∗ -topology 

to 1-spaceT . According to some others, topological ideals have been significant 

requirements for general topologists. Jankovic & Hamlet (1990) defined the concept 

of Ι -open set thanks to local function which was given by Vaidyanathaswamy 

(1945). 

  

    In this research, the studies of Jankovic & Hamlet (1990) were basically 

considered to be able to obtain ideal topologies with different ideals.  



2 
 

CHAPTER TWO 

IDEAL TOPOLOGICAL SPACES 

 

 Ideal topological spaces are the structures which have been studied for a long 

time. Many studies have been made on this issue as of today. 

    

In this chapter, some known definitions are reminded initially, and the concept of 

ideal, which is the non empty family of subsets of a set, is defined and some ideal 

examples are given. Ideal topologies are obtained in two different ways by using the 

given ideals in a topological space. First, they are obtained by using a new defined 

closure operator, then by a defined base. 

 

    Here, some thorems on the subject are noted and some unproved given theorems 

are proved. 

 

2.1 Basic Definitions 

 

 Some definitions used in this study are given as follows. (Kuratowski, 1966) 

1. In order that p ∈ A  it is necessary and sufficient that each open neighbourhood 

E  of p  satisfies the inequality .A E∩ ≠∅  We may write ( )cl A  for A . 

2. p  is an accumulation point of the set A  if { }p A p∈ − . The set dA  of   

Aaccumulation points of  is called the derived set of A . p dA∈  iff each open 

neighbourhood  E  of p  satisfies { }( )A E p∩ − ≠ ∅ . 

3. A point p  is an isolated point of the set A , if dp A A∈ − ; in other words, if 

( )U N p∃ ∈  such that { }U A p∩ = . 

4. A point p  is said to be a condensation point of the set A , if every open 

neighbourhood of p  contains an uncountable set of points of A . The set of 

condensation points of A  will be denoted by ( )cond A .  

5. The boundary of a set A   is the set ( ) ( )cA A X A A A∂ = ∩ − = ∩ . 
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6. The interior of a set A   is the set ( ) ( ) ( )( )int
c

cA A X X A A= = − − =  

7. A  is a dense set, if .A X=  

8. A  is a boundary set if its complement is dense, i.e if .X A X− =  

9. A  is a nowhere dense set if its closure is a boundary set, i.e. if ( ) .X A X− =

Thus A  is a nowhere dense set if .A =∅


 

10. A set is said to be of the first category (meager set), if it is the union of a 

countable sequence of nowhere dense sets. 

11. A set composed exclusively of isolated points is said to be discrete, that is, 

A X⊆  is called discrete if ( )is A A=  where ( )is A  is the set of all isolated points 

of A . 

12. A set A   is said to be closed discrete iff the derived set of A  is empty set, i.e 

.dA =∅  

13. A set A  is said to be dense in itself, if A  contains no isolated points, i.e. if 
dA A⊆ . 

14. A set A  is said to be a scattered set if it contains no dense in itself non-empty 

subset. Every isolated set is scattered. 

15. If A  is closed and dense in itself, it is said to be a perfect set.   

16. A family Β  of open sets is called a (open) base of the space if each open set can 

be represented as the union of elements of a subfamily of Β . 

 

2.2 The Local Function of a set 

 

 In this part, the definition of ideal and some ideal examples are given. 

Furthermore, the local function of a set is defined and some properties of this 

function are noted. 

 

 Given a space ( ),X τ  and a point ,x X∈  ( )N x  will denote the open  

neighbourhood system at x , that is, ( ) { }:  and N x U U x Uτ= ∈ ∈ . 
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Definition 2.2.1 (Jankovic & Hamlet, 1990) A nonempty collection f  of subsets of 

a set X  is said to be an ideal on X , if it satisfies the following two conditions: 

(i) A f∈  and B A B f⊆ ⇒ ∈         (heredity). 

(ii) A f∈  and B f A B f∈ ⇒ ∪ ∈     (finite additivity). 

From (i), f∅∈  for each ideal f . 

  

Example 2.2.2 Some important ideals in a topological space ( ),X τ  are given by the 

followings: 

{ }indf = ∅  

{ } is finite subset of ff A X A X= ⊆  

{ } is countable subset of cf A X A X= ⊆  

{ } is closed discrete subset of cdf A X A X= ⊆  

{ } is nowhere dense subset of nf A X A X= ⊆  

{ } is meager setmf A X A= ⊆
 

( ) where ( ) is a power set of .df P X P X X=
 

 

 Let’s show that some of these collections are ideals on X . Before showing cdf   is 

an ideal on X , we will give the following remark. 

 

Remark 2.2.3 Let ( ),X τ  be topological space and A X⊆ . A  is closed and discrete 

iff dA =∅ . 

Proof. Let A  be closed and discrete subset of X . Suppose that there exists x X∈  

such that dx A∈ . 

( ) { }( ), ,dx A U N x U x A∈ ⇒∀ ∈ − ∩ ≠∅  

( ) is closed  Since d dA X A A A A x A x A⊆ ⇒ = ⇒ ⊆ ⇒ ∈ ∈  

( ) is discrete , AA X A τ⊆ ⇒   is a discrete subspace 

  { }, Ay A y τ⇒∀ ∈ ∈  
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  { },  is - closedAy A A y τ⇒∀ ∈ −  

   { },  is - closed   (Since  is closed)y A A y A Xτ⇒∀ ∈ − ⊆  

  { }( ) ( ),  { }y A X A y X A y τ⇒∀ ∈ − − = − ∪ ∈  

  ( ) { }U X A x⇒ = − ∪  is an open set containing x  such that 

{ }( ) .U x A− ∩ =∅  This contradicts to dx A∈ . Thus, .dA =∅  

To prove the converse assume .dA =∅  This implies that .dA A A A A= ∪ = ∪∅ =  

Thus, A  is closed and dA =∅  also implies that ,x A∀ ∈ ,dx A∉  that is, is ( ).x A∈  
Each point of A  is an isolated point of A . So A  is closed and discrete set. ■ 

 

From above remark,

{ } { }ƒ   is closed discrete subset of   .d
cd A X A X A X A= ⊆ = ⊆ =∅  Let’s show 

that ƒcd   is an ideal on X : 

(i) Let cdA f∈  and B A⊆ . 

 
d

cdA f A∈ ⇒ =∅  

 
d dB A B A⊆ ⇒ ⊆  

 
dB⇒ =∅  

 Thus, .cdB f∈  

(ii) Let , .cdA B f∈  

 , d d
cdA B f A B∈ ⇒ = =∅  

 ( )d d dA B A B⇒ ∪ = ∪  

 .=∅∪∅ =∅  

 Thus, .cdA B f∪ ∈  
From (i) and (ii), cdf  is an ideal on X . 

 

 Let’s show that the collection nf A X A
 

= ⊆ =∅ 
 



 is an ideal on X . 

(i) Let nA f∈  and .B A⊆  



6 
 

nA f A∈ ⇒ =∅


 

B A B A⊆ ⇒ ⊆ =∅
 

 

  B⇒ =∅


 
 Thus, .nB f∈  

(ii) Let , nA B f∈ . 

, nA B f A B∈ ⇒ = =∅
 

 

( ) ( )X A X A X A− = − = −


                ( ) ( )X B X B X B− = − = −


  

 X= −∅ = .X  X= −∅ = .X    

So ( )X A− 

 and ( )X B−   are dense in ( ),X τ . 

( )X A−    is dense in ( ) ( ) ( ),  implies that for all ,  .X V V V X Aτ τ∈ ≠ ∅ ∩ − ≠ ∅  

Let ( )W V X A= ∩ −  , then W τ∈ .  

Since ( )X B−   is dense in ( ),X τ , then ( )W X B∩ − ≠ ∅ . 

( ) ( ) ( )X B W X B V X A∅ ≠ − ∩ = − ∩ ∩ −    

 
( ) ( )X A X B V = − ∩ − ∩ 

   

( ) ( )X A X B V= − ∩ − ∩  


 

( ) ( ),  .X A B V V Vτ= − ∪ ∩ ∀ ∈ ≠∅  


 

So ( )X A B− ∪  


 is dense in ( ),X τ , that is,  

( )( ) ( )X A B X X A B X − ∪ = ⇒ − ∪ =    


 

  
X A B X
 

⇒ − ∪ = 
 



 

  A B⇒ ∪ =∅


 

  ( ) .nA B f⇒ ∪ ∈   
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Thus, nf  is an ideal on X . 

 

Finally, we show that the collection mf  is an σ -ideal on X . Before this, we give 

the definition of σ -ideal. 

  

Definition 2.2.4 (Jankovic & Hamlet, 1990) Let ( ),X τ  be a topological space and 

f  be an ideal on X . Then f  is said to be σ -ideal if the statement 

“ ,  n n
n

n I f I f
∈

∀ ∈ ∈ ⇒ ∈






” is satisfied. 

 

 Firstly, let us show that the collection { } is meager setmf A X A= ⊆
 
is an 

ideal on X . We know that if A  is meager set then A  is of the first category. Then 

 such that , .i i
i

A A A i
∈

⊆ =∅ ∀ ∈








 

So    where , .m i i
i

f A X A A A i
∈

 
= ⊆ ⊆ =∅ ∀ ∈ 
 









 

(i) Let  and .mA f B A∈ ⊆  

 such that , .m i i
i

A f A A A i
∈

∈ ⇒ ⊆ =∅ ∀ ∈








 

 and i i
i i

B A A A B A
∈ ∈

⊆ ⊆ ⇒ ⊆
 

 

such that , .iA i=∅ ∀ ∈


  

Thus, .mB f∈   

(ii) Let ,  mA B f∈ . 

Since ,  ,mA B f∈  then i
i

A A
∈

⊆




 where iA =∅


 and j
j

B B
∈

⊆




 where jB =∅


 

for all ,i j . Thus, 

i j
i j

A B A B
∈ ∈

  
∪ ⊆ ∪  

    

 

 

( ).k k
k

A B
∈

= ∪
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, ,   and ,  and .i j k ki j A B k A B∀ ∈ =∅ =∅⇒∀ ∈ =∅ =∅
   

   Let 0k ∈ . 

Since 
0 0k kA B= =∅
 

 and nf  is an ideal on X , then 
0 0k kA B∪ =∅


. Choosing 

arbitrary 0k ∈  implies that k∀ ∈ , k kA B∪ =∅


. So mA B f∪ ∈ . From (i) and 

(ii), we get that mf  is an ideal on X . 

 

 Finally, let us show that mf   is a σ -ideal. Thus, we take ,  for all n mI f n∈ ∈ .

, ,,  ƒ ,   where n m n i n i n
i

n I n I A A
∈

∀ ∈ ∈ ⇒∀ ∈ ⊆ =∅




 



, for all i . 

  ,n i n
n n i

I A
∈ ∈ ∈

 
⇒ ⊆  

   

   , ,
,

 where ,  , .i n i n
i n

A A i n= =∅ ∀




 

  ƒ  .n m
n

I
∈

⇒ ∈




 

So mƒ  is an σ -ideal. 

  

Example 2.2.5 Let ( ),X τ  be any topological space and ,A X⊆  then the collection

( ) { }f A B X B A= ⊆ ⊆
  
is an ideal on X . Indeed; 

(i) Let ( )  and B f A C B∈ ⊆ .  

 ( )  and  imply that  and .B f A C B B A C B∈ ⊆ ⊆ ⊆  

Thus, . This means thatC A⊆  ( ).C f A∈  

(ii) Let ( ),B C f A∈ . 

 ( ),  implies that  and .B C f A B A C A∈ ⊆ ⊆  

Then .B C A∪ ⊆  ( )Thus, .B C f A∪ ∈  

From (i) and (ii), we see that ( )f A  is an ideal on X  . 

  

Example 2.2.6 If 1f  and 2f  are two ideals on a given topological space ( , )X τ , then

1 2ƒ ƒ∨  and 1 2ƒ ƒ∧  are also ideals on this space. 
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Let’s show that 1 2 1 2 1 1 2 2ƒ ƒ { | ƒ  and ƒ }I I I I∨ = ∪ ∈ ∈  is an ideal on X . 

(i) Let 1 2A f f∈ ∨   and B A⊆ . 

1 2 1 1 2 2 1 2 implies that  and  such that .A f f I f I f A I I∈ ∨ ∃ ∈ ∃ ∈ = ∪  

1 2 1 1 2 2 1 2 and such that .B A I I J I J I B J J⊆ = ∪ ⇒ ∃ ⊆ ∃ ⊆ = ∪  

1 1 1 2 2 2 1 1 2 2 1 2 1 2 and  and .J I f J I f J f J f B J J f f⊆ ∈ ⊆ ∈ ⇒ ∈ ∈ ⇒ = ∪ ∈ ∨  
(ii) Let 1 2,  A B f f∈ ∨ . If A B∪ =∅ , then 1 2ƒ ƒA B∪ =∅ =∅∪∅∈ ∨ . 

If 1 2 and ,  then ƒ ƒ .A B A B B=∅ ≠ ∅ ∪ = ∈ ∨   

If 1 2 and ,  then ƒ ƒB A A B A=∅ ≠ ∅ ∪ = ∈ ∨ . Assume that both A  and B  are 

non empty subsets. 

1 2 1 1 2 2 1 2 and  and  such that  =A A f f I f I f A I I≠ ∅ ∈ ∨ ⇒ ∃ ∈ ∃ ∈ ∪  

1 2 1 1 2 2 1 2 and  and  such that  .B B f f J f J f B J J≠ ∅ ∈ ∨ ⇒ ∃ ∈ ∃ ∈ = ∪  From this, 

1 2 1 2( ) ( )A B I I J J∪ = ∪ ∪ ∪  

  1 1 2 2( ) ( )I J I J= ∪ ∪ ∪  such that 1 1 1( ) ƒI J∪ ∈  and 2 2 2( ) ƒ .I J∪ ∈  

Thus 1 2.A B f f∪ ∈ ∨  

From (i) and (ii),   1 2f f∨  is an ideal on X . 

 

 Now we show that the collection { }1 2 1 2 1 1 2 2and f f I I I f I f∧ = ∩ ∈ ∈
 
is an ideal 

on X . 

(i) Let 1 2 and A f f B A∈ ∧ ⊆ . 

 1 2 1 1 2 2 1 2 implies that  and  such that = .A f f I f I f A I I∈ ∧ ∃ ∈ ∃ ∈ ∩  
B A⊆  implies that 1 2 1.B I I I⊆ ∩ ⊆  We have 1B f∈  since 1B I⊆  and 1 1.I f∈        

B A⊆  also implies that 1 2 2.B I I I⊆ ∩ ⊆  We have 2B f∈  since 2B I⊆  and 

2 2.I f∈  So 1 2B f f∈ ∧ . 
(ii) Let 1 2,A B f f∈ ∧ . If 1 2,  then A B A B f f∪ =∅ ∪ =∅∩∅∈ ∧ .  

If 1 2 and ,  then =A B A B B f f=∅ ≠ ∅ ∪ ∈ ∧ . 
If 1 2 and ,  then =B A A B A f f=∅ ≠ ∅ ∪ ∈ ∧ . Assume that both A  and B  are 

nonempty subsets.  
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 1 2 1 1 2 2 1 2 and  and  such that  = .A A f f I f I f A I I≠ ∅ ∈ ∧ ⇒ ∃ ∈ ∃ ∈ ∩    

 1 2 1 1 2 2 1 2 and  and  such that  . ThenB B f f J f J f B J J≠ ∅ ∈ ∧ ⇒ ∃ ∈ ∃ ∈ = ∩  

( ) ( ) ( ) ( )1 2 1 2 1 2 1 1 2 2A B I I J J I I J I I J∪ = ∩ ∪ ∩ = ∩ ∪ ∩ ∩ ∪        

  
( ) ( ) ( ) ( ) ( ) ( )

1 1 2 1 2 2 1 2

1 1 2 1 1 2 2 2 1 1 2 2 .
f f f f f f f f

I J I J I J I J I J I J
∈ ∈ ∨ ∈ ∨ ∈ ∈ ∈

= ∪ ∩ ∪ ∩ ∪ ∩ ∪ ⊆ ∪ ∩ ∪
     

 

Since ( ) ( )1 1 2 2 1 2I J I J f f∪ ∩ ∪ ∈ ∧  and ( ) ( )1 1 2 2A B I J I J∪ ⊆ ∪ ∩ ∪ , we get

1 2ƒ ƒA B∪ ∈ ∧   by (i). 

So 1 2ƒ ƒ∧  is an ideal on X . 

 

Definition 2.2.7 (Jankovic & Hamlet, 1990) Let ( ),X τ  be a space with an ideal f  

on X  and A X⊆ . Then ( ) ( ){ }, ,  A f x X U N x A U fτ∗ = ∈ ∀ ∈ ∩ ∉
 
is called the 

local function of A  with respect to f  and τ . 

 

 We may write ( )A f∗  simply A∗  for ( ),A f τ∗ . From definition 2.2.7, 

( ),x A f τ∗∈  implies that “ ( ) ,  U N x U A∀ ∈ ∩ ≠∅ ” . 

 

Example 2.2.8 Let ( ),X τ  be any topological space and let f  be an ideal on X . If 

, thenI f∈  

( ){ },  I x X U N x U I f∗ = ∈ ∀ ∈ ∩ ∉
   

 

 ( ){ },  .x X U N x I f⊆ ∈ ∀ ∈ ∉ =∅    

Thus, .∗Ι = ∅  
 

Example 2.2.9 Let ( ),X τ  be a space with the ideals { }indf = ∅  and ( )df P X= . We 

have { }( ) ( )( ) and ,  for every .A A A P X A X∗ ∗∅ = =∅ ⊆  Indeed; 

{ }( ) ( ) { }{ },A x X U N x U A∗ ∅ = ∈ ∀ ∈ ∩ ∉ ∅  

 ( ){ },x X U N x U A= ∈ ∀ ∈ ∩ ≠∅ A=
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( )( ) ( ) ( ){ },A P X x X U N x U A P X∗ = ∈ ∀ ∈ ∩ ∉  

( ){ }, .x X U N x U A X= ∈ ∀ ∈ ∩ ⊄ =∅
 

 

Theorem 2.2.10 (Jankovic & Hamlet, 1990) Let ( ),X τ  be a space with ideals

1 2 and  f f  on ,X  and let A  and B  be subsets of X . Then  

(a) ,A B A B∗ ∗⊆ ⇒ ⊆  

(b) ( ) ( )1 2 2 1 ,f f A f A f∗ ∗⊆ ⇒ ⊆  

(c) ( ) ( ) ( )( )   is a closed subset of ,A cl A cl A A cl A∗ ∗ ∗= ⊆  

(d) ( ) ,A A
∗∗ ∗⊆  

(e) ( ) ,A B A B∗ ∗ ∗∪ = ∪  

(f) ( ) ( ) ,A B A B B A B∗ ∗∗ ∗ ∗− = − − ⊆ −  

(g) ( ) ( ) ,  andU U A U U A U Aτ ∗ ∗∗∈ ⇒ ∩ = ∩ ∩ ⊆ ∩  

(h) ( ) ( )A I A A I∗ ∗∗∪ = = −  where I  belongs to an arbitrary ideal on X . 

Proof. 

(a) We will show that “ if ,A B⊆  then A B∗ ∗⊆  ”. Let A B⊆  and ,x A∗∈  then

( ) ,x A U N x U A f∗∈ ⇒∀ ∈ ∩ ∉  

  ( ) ,U N x U B f⇒∀ ∈ ∩ ∉  

  .x B∗⇒ ∈  

Since x  is arbitrary, A B∗ ∗⊆ . 

(b) Let 1 2f f⊆  and ( )2x A f∗∈ .We must show that ( )1x A f∗∈ . 

( ) ( )2 2,x A f U N x U A f∗∈ ⇒∀ ∈ ∩ ∉  

     ( ) 1,U N x U A f⇒∀ ∈ ∩ ∉  

     ( )1 .x A f∗⇒ ∈  

So ( ) ( )2 1A f A f∗ ∗⊆ . 
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(c) Firstly, we prove that A∗  is closed. So we must show that X A∗−  is open. Let 

x X A∗∈ − , that is, x A∗∉ . 

( )  such that .x A U N x U A f∗∉ ⇒ ∃ ∈ ∩ ∈  

Assume that ( ) for .U A U N x∗∩ ≠ ∅ ∈  

( ) for  such that U A U N x y X y U A∗ ∗∩ ≠ ∅ ∈ ⇒ ∃ ∈ ∈ ∩  

 and . y U y A∗⇒ ∈ ∈  
Since ( )  and U N y y A∗∈ ∈ , then .U A f∩ ∉  This contradicts to .U A f∩ ∈  Thus, 

U A∗∩ =∅ , for ( )U N x∈ . Then ( ) ( )c
 for .x U A U N x∗∈ ⊆ ∈

 
This shows that 

( )c
A∗  is an open set. And so A∗  is closed, that is, ( ) .cl A A∗ ∗=  

Finally, we prove that A A∗ ⊆  , for any A X⊆ . 

Let x X A∈ − . It’s clear that ( )X A N x− ∈ . Since ( )X A A− ∩ =∅  and f∅∈ , 

then .x A∗∉  So ,  . ,    for any .X A X A i e A A A X∗ ∗− ⊆ − ⊆ ⊆  

We may also prove it in another way: 

Let x A∗∈ . This implies that for all ( ) ,  U N x U A f∈ ∩ ∉ . Since ,f∅∈  

U A∩ ≠∅ . This means that .x A∈  Since x  is arbitrary, then we say that A A∗ ⊆ .

A A∗ ⊆   and A∗  is closed A A A∗ ∗⇒ = ⊆ , that is, ( ) ( ).A cl A cl A∗ ∗= ⊆  

(d) By (c), A A∗ ⊆ , for all A X⊆ . Let C A∗=  be a subset of X , then  

  ( ) ( )    (Since  is closed)C C A A A A
∗∗ ∗ ∗ ∗ ∗⊆ ⇒ ⊆ =  

 ( )A A
∗∗ ∗⇒ ⊆ . 

(e) Let’s show that ( )A B A B∗ ∗ ∗∪ = ∪ . 

Since  and ,A A B B A B⊆ ∪ ⊆ ∪  then ( )A A B ∗∗ ⊆ ∪  and ( )B A B ∗∗ ⊆ ∪   from (a). 

So   ( ) .A B A B ∗∗ ∗∪ ⊆ ∪   (1) 
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We show that ( )A B A B∗ ∗ ∗∪ ⊆ ∪ . Let ,x A B∗ ∗∉ ∪  that is, x A∗∉  and .x B∗∉  

Thus, ( )1U N x∃ ∈  such that 1U A f∩ ∈  and ( )2U N x∃ ∈  such that 2 .U B f∩ ∈

1 2Let . ThenV U U= ∩  

( ) ( ) ( )1 2V A B U U A B∩ ∪ = ∩ ∩ ∪  

  ( ) ( )1 2 1 2 .U U A U U B= ∩ ∩ ∪ ∩ ∩  

Since 1U A f∩ ∈  and 1 2 1U U A U A∩ ∩ ⊆ ∩ , then 1 2U U A f∩ ∩ ∈ . And similarly, 

since 2 1 2 2 1 2 and ,  then .U B f U U B U B U U B f∩ ∈ ∩ ∩ ⊆ ∩ ∩ ∩ ∈  Thus, we have

( ) ( ) ( )1 2 1 2U U A U U B V A B f∩ ∩ ∪ ∩ ∩ = ∩ ∪ ∈ . 

Since ( ) ( ) ( ) and ,  then .V N x V A B f x A B ∗∈ ∩ ∪ ∈ ∉ ∪  

So   ( ) .A B A B∗ ∗ ∗∪ ⊆ ∪   (2)  

By (1) and (2), we have   ( ) .A B A B∗ ∗ ∗∪ = ∪  

(f) We will show that ( ) ( ) .A B A B B A B∗ ∗∗ ∗ ∗− = − − ⊆ −  Firstly, let’s show that 

( )A B A B ∗∗ ∗− ⊆ − . Let x A B∗ ∗∈ −  and we assume that ( )x A B ∗∉ − . Since 

( )x A B ∗∉ − , then ( )1V N x∃ ∈  such that ( )1V A B f∩ − ∈ . Also, ( )2V N x∃ ∈  such 

that 2V B f∩ ∈  since x B∗∉ . Let 1 2.U V V= ∩  We know ( )U N x∈  and

( ) ( ) ( ) ( )1 2 1( )U A B V V A B V A B f U A B f∩ − = ∩ ∩ − ⊆ ∩ − ∈ ⇒ ∩ − ∈  

( )1 2 2 . ThenU B V V B V B f U B f∩ = ∩ ∩ ⊆ ∩ ∈ ⇒ ∩ ∈  

( ) [ ] ( ) ( ) ( )U A B U B U A B U A U B f U A f∩ − ∪ ∩ = ∩ ∪ = ∩ ∪ ∩ ∈ ⇒ ∩ ∈    

where ( ).U N x∈  Thus, x A∗∉ . This contradicts to x A B∗ ∗∈ − . Therefore, 

( ) ,x A B ∗∈ −  then we have ( ) .A B A B ∗∗ ∗− ⊆ −  Now we will prove that 

( ) ( ) .A B A B B∗∗ ∗ ∗− = − −                  
                                                                                                                                                                                                    

( ) ( ) implies that .A B A B A B B A B B∗ ∗∗ ∗ ∗ ∗ ∗ ∗ − ⊆ − − − ⊆ − −   

( ) ( )Thus,   .A B A B B∗∗ ∗ ∗− ⊆ − −  (3) 
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Let ( )x A B B∗ ∗∈ − − . Then for all ( ) ( ),  and .U N x U A B f x B∗∈ ∩ − ∉ ∉  Since 

( )U A B U A∩ − ⊆ ∩  and ( )U A B f∩ − ∉ , then .U A f∩ ∉  This implies that 

x A∗∈ . So .x A B∗ ∗∈ −  

From this, we have ( ) .A B B A B∗ ∗ ∗ ∗− − ⊆ −  (4) 

By (3) and (4), we get   ( )A B B A B∗ ∗ ∗ ∗− − = − . 

We can show the relation (4) in this way: 

( ) ( ){ } and A B B x X x A B x B∗ ∗∗ ∗− − = ∈ ∈ − ∉  

   ( ) ( ){ },  and x X U N x U A B f x B∗= ∈ ∀ ∈ ∩ − ∉ ∉  

( ){ },  and x X U N x U A f x B∗⊆ ∈ ∀ ∈ ∩ ∉ ∉          

{ } and x X x A x B∗ ∗= ∈ ∈ ∉  

    .A B∗ ∗= −  

Thus, ( ) .A B B A B∗ ∗ ∗ ∗− − ⊆ −  Since the inverse of this relation is clear, we say that 

( ) .A B B A B∗ ∗ ∗ ∗− − = −  

(g) We will show that for ( ) ( ),  .U U A U U A U Aτ ∗ ∗∗∈ ∩ = ∩ ∩ ⊆ ∩  For this we 

take an arbitrary open set  and .U x U Aτ ∗∈ ∈ ∩  

 and x U A x U x A∗ ∗∈ ∩ ⇒ ∈ ∈  

   ( ) and ,  .x U V N x V A f⇒ ∈ ∀ ∈ ∩ ∉  

Since ( )U V N x∩ ∈  and x A∗∈ , ( )U V A f∩ ∩ ∉ . Thus, ( )V U A f∩ ∩ ∉  for all 

( ).V N x∈  This implies that ( )x U A ∗∈ ∩ . So ( )U A U A ∗∗∩ ⊆ ∩ .  

x U A∗∈ ∩   implies that x U∈  and ( )x U A ∗∈ ∩ , then ( ) .x U U A ∗∈ ∩ ∩   

So   ( ) .U A U U A ∗∗∩ ⊆ ∩ ∩  (5) 

Let ( ) .x U U A ∗∈ ∩ ∩  This implies that x U∈  and ( ) .x U A ∗∈ ∩  Since 

( )U A A∗ ∗∩ ⊆ , then x A∗∈ . So x U A∗∈ ∩ .  

From this, we get ( ) .U U A U A∗ ∗∩ ∩ ⊆ ∩  (6) 
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By (5) and (6), we have   ( )U U A U A∗ ∗∩ ∩ = ∩ . 

(h)  Now we prove that for an arbitrary element I  which is taken from an ideal ,f

( ) ( ) .A I A A I∗ ∗∗∪ = = −  

Let’s show that ( )A I A∗ ∗∪ =  for arbitrary .I f∈  By (e),  

( )A I A I∗ ∗ ∗∪ = ∪  

 A∗= ∪∅    ( )Since ,  I f I ∗∀ ∈ =∅  

  .A∗=  

Finally, we show that ( )A I A∗ ∗− =  for an arbitrary .I f∈  

Since A I A− ⊆ , then  

( ) .A I A∗ ∗− ⊆  (7) 

( )By (f), A I A I∗ ∗ ∗− ⊇ −  

=A∗ −∅   

= .A∗
 

Thus,   ( )A I A∗ ∗− ⊇ . (8) 

By (7) and (8), we obtain   ( )A I A∗ ∗− = . ■ 

 

2.3 Kuratowski Closure Operator 

 

 In this part, a new Kuratowski closure operator is given followed from Jankovic & 

Hamlet (1990) and some properties of this operator are emphasized. 

 

Teorem 2.2.10 clearly shows that the local function ( ) ( ): P X P X∗ →   satisfies 

the following axioms: 

(1) ∗∅ =∅  

(2) ( )A B A B∗ ∗ ∗∪ = ∪  

(3) .A A∗∗ ∗⊆  
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 Now let’s show that the operator ( ) ( ):cl P X P X∗ →  defined as ( )cl A A A∗ ∗= ∪  

is a Kuratowski closure operator. Before giving the definition of this operator, let’s 

remember how Kuratowski build a topological structure.  

 

Definition 2.3.1 (Kuratowski, 1966) A topological space is a set X  and a function 

(called closure) assigning to each set A X⊆  a set A X⊆  satisfying the following 

four axioms: 

Axiom 1.  .A B A B∪ = ∪  

Axiom 2. .A A⊆  

Axiom 3. .∅ =∅  

Axiom 4. .A A=  

If, moreover, the following axiom is satisfied: 

Axiom 5. ( ) ( ) where ,p p p X= ∈  

1the space is called a -space.T  

 

 From above definition, Kuratowski closure operator is a function assigning to 

each set A X⊆  a set  ( )A Xα ⊆  satisfying the following four axioms (Kuratowski 

closure axioms) : 

( )Axiom 1. ( ) ( ).A B A Bα α α∪ = ∪  

Axiom 2. ( ).A Aα⊆  

( )Axiom 3. .α ∅ =∅   

( )Axiom 4. ( ) ( ). AndA Aα α α=       

{ }( )A X A Aαℜ = ⊆ =   is a collection of closed sets for a topology on X . 

 

Lemma 2.3.2 (Jankovic & Hamlet, 1990) If ( ) ( ):d P X P X→  is a function 

satisfying 

(1) ( ) ,d ∅ =∅  

(2) ( ) ( ) ( ) ,  andd A B d A d B∪ = ∪  
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(3) ( )( ) ( )d d A d A⊆  

then ( ) ( ): P X P Xα →  defined by ( )( )A A d Aα = ∪  is a Kuratowski closure 

operator on ( )P X  where d  does not necessarily coincide with the derived set 

operator in the generated topology. 

Proof.  

Axiom 1. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).A B A B d A B A B d A d B A Bα α α∪ = ∪ ∪ ∪ = ∪ ∪ ∪ = ∪  

Axiom 2. ( ) ( ).A A d A Aα⊆ ∪ =  

Axiom 3. ( ) ( ) .dα ∅ =∅∪ ∅ =∅  

Axiom 4. ( ) ( )( ) ( )A A d Aα α α= ∪  

   ( ) ( )( ) ( )A d A d A d A= ∪ ∪ ∪  

   ( ) ( )( )( ) ( ) ( )A d A d A d d A= ∪ ∪ ∪  

   ( )A d A= ∪  

   ( ).Aα=  ■ 

 

The local function ( ) ( ): P X P X∗ →  satisfies the axioms ( )(1), (2), (3)  similar 

to the function ( ) ( ):d P X P X→ , which is used while defining Kuraratowski 

closure operator, this gives that the operator ( ) ( ):cl P X P X∗ →  defined as 

( )cl A A A∗ ∗= ∪  is a Kuratowski closure operator. Also, the collection 

( ){ }A X cl A A∗⊆ =
 
is a collection of closed sets for a topology on X . However, 

the topology from which we obtain the closed ones via this new closure operator is 

the ideal topology ( )fτ , where the topology τ  is the original topology on X , and 

the collection f  is an ideal on X . The obtained topology ( )fτ  can be given as 

( )fτ ∗  or τ ∗ . The topological space ( ),X τ  with a given ideal f  is called an ideal 

topological space. This new space is shown as ( ), ,X fτ  ( )( )(or ,X fτ  or 
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( )( )),X fτ ∗ . Since the operator cl∗  is a closure operator in ( )( ),X fτ , then

( ) ( ) is -closed A X f cl A Aτ ∗⊆ ⇔ = ( )  for any .X A f A Xτ⇔ − ∈ ⊆  
 

So the ideal topology ( )fτ  obtained by a given ideal f  and a given topology τ   

on X  is defined as 

( ) ( ){ }.f X A X cl A Aτ ∗= − ⊆ =
 

 

Also, the operator ( ) ( ):cl P X P X∗ → , which is Kuratowski closure operator, 

can be shown as A A A∗= ∪ . Some properties of this operator are given by the 

following theorem: (We  can also use the representation A  in place of ( ) ).cl A∗

Theorem 2.3.3 (Hayashi, 1964) Let the subsets ,A B X⊆  be given, then  

(1)  ,A B A B⊆ ⇒ ⊆  

(2)   ,A B A B∪ = ∪  

(3) ,A A⊆  

(4)  ,  andA A=  

(5)  .∅ =∅  

Proof. By lemma 2.3.2, we know that the operator ( ) ( ):cl P X P X∗ →  defined as  

( )cl A A A∗ ∗= ∪  is a Kuratowski closure operator. Thus, this operator satisfies 

Kuratowski closure axioms. Because of this, it’s enough to check that the condition

 “A B A B⊆ ⇒ ⊆ ” holds for any ,A B X⊆ . But we will prove all.    

(1)  .A A A∗= ∪  

 .B B B= ∪   

  implies that .A B A B∗ ∗⊆ ⊆  

 Since  and , then . So .A B A B A A B B A B∗ ∗ ∗ ∗⊆ ⊆ ∪ ⊆ ∪ ⊆  

(2)  ( ) ( )A B A B A B ∗∪ = ∪ ∪ ∪  

  ( ) ( )A B A B∗ ∗= ∪ ∪ ∪ ( ) ( )  .A A B B A B∗ ∗= ∪ ∪ ∪ = ∪  



19 
 

(3)  .A A A A A A∗= ∪ ⊇ ⇒ ⊆  

(4)  ( )( )A cl cl A∗ ∗=  

 ( )cl A A∗ ∗= ∪  

 ( ) ( )A A A A
∗∗ ∗= ∪ ∪ ∪  

 ( ) ( )A A A A∗ ∗ ∗∗= ∪ ∪ ∪  

 ( )   Since A A A A∗ ∗∗ ∗= ∪ ⊆  

 ( )cl A∗=  

 .A=  

Consequence of the condition (4) is that ( ) ( ) ( ).f f fτ τ=     

(5)  ∗∅ =∅∪∅  

   .=∅  ■  

 

We must always assume that X f∉ . If X f∈ , for all A X⊆ , A f∈  and then 

f  is equal to ( )P X . Now let us give some basic examples. 

 

Example 2.3.4 If ( ),X τ  is any topological space, then ( )indfτ τ=  and ( )dfτ  is 

discrete topology where { }indf = ∅  and ( ). Actually;df P X=  

( ){ } We showed that { } ,indf A A A X∗= ∅ ⇒ ∅ = ∀ ⊆ . 

( ) ( ){ }indf A X cl X A X Aτ τ ∗ ∗= = ⊆ − = −  

                 ( ) ( ){ }A X X A X A X A∗= ⊆ − ∪ − = −  

    ( ) ( ){ }A X X A X A X A= ⊆ − ∪ − = −  

    ( ) ( ){ }A X X A X A= ⊆ − = −  

    { }A X A τ= ⊆ ∈  

    .τ=  



20 
 

Thus, ( )indfτ τ=  where { }.indf = ∅  

( )df P X= ⇒We showed that ( )( ) , .A P X A X∗ = ∅ ∀ ⊆  

( ) ( ){ }df A X cl X A X Aτ τ ∗ ∗= = ⊆ − = −  

    ( ) ( ) ( ){ }A X X A X A X A∗= ⊆ − ∪ − = −  

    ( ) ( ){ }A X X A X A= ⊆ − ∪∅ = −  

    ( ) ( ){ }.A X X A X A= ⊆ − = −  

From this, ( )( )  is a discrete topology where  .d df f P Xτ =  
 

Example 2.3.5 If we take the topology τ  whose base is { }{ }2 1,  2 :n n nΒ = − ∈  

and take the ideal ff  on  , then ( )fA f∗ = ∅  for all A⊆  . Therefore ( )ffτ  is 

discrete. 

We assume that ( )fA f∗ ≠ ∅ , for any A⊆  . If ( )fA f∗ ≠ ∅ , then x∃ ∈  such that 

( ).fx A f∗∈  This implies that for all ( ) ,U N x∈  .fU A f∩ ∉  Since 

{ }, 1  or  { 1, } ,x x x x τ+ − ∈Β ⊆  { } ( )then , 1  or { 1, } .x x x x N x+ − ∈  ( )fx A f∗∈
 

and 

{ } ( ), 1  or  { 1, }x x x x N x+ − ∈  imply that { } ( ), 1 or { 1, }f fx x A f x x A f+ ∩ ∉ − ∩ ∉  

where .x∈  Thus, { } ( ), 1 or { 1, }x x A x x A+ ∩ − ∩  is not finite subset of ,  which 

is a contradiction. So ( ) ,fA f∗ = ∅
 
for all A⊆  . Then 

( ) ( )fcl A A A f∗ ∗= ∪  

        A= ∪∅  

        A= , for all .A⊆   And  

( ) ( ){ }ff U X cl X U X Uτ τ ∗ ∗= = ⊆ − = −  

      { }.U X X U X U= ⊆ − = −
 
Thus, ( )( ), ffτ  is a discrete space. ■ 
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As a result of above examples, if ( )f P X= , then ( )fτ  is a discrete topology. 

But it is not necessary that the ideal f  is equal to ( )P X  in order that the ideal 

topology which is formed from the ideal f  is a discrete topology. 

 

Theorem 2.3.6 Let ( ),X τ  be any topological space with a given ideal f . If the 

ideal f  has the property that { }x f∈  for each x X∈ , then the ideal topological 

space ( )( ),X fτ  is 1-spaceT . 

Proof. Let f  be an ideal on X  which has the property that { }x f∈  for each x X∈ . 

From example 2.2.8, for each ,x X∈ { }x f∈  implies that { }x ∗ = ∅ . Then 

{ }( ) { }.cl x x∗ =  This means that { }x  is ( ) -closed.fτ  Thus, ( )( ),X fτ  is 1-space.T  ■ 

 

2.4 The Base of Ideal Topology 

 

Now, here a family is defined by using a given topology and ideal on X . Also, it 

is shown that this family is a topological basis on X . Furthermore, it is found out 

that the topology which is generated by this family coincide with the ideal topology. 

Later, the proof of some theorems are noted by using the basis of ideal topology. 

Additionally, it is concluded that the ideal topologies, which are formed from a given 

topology (or a given ideal) and two given ideals (or two given topologies) in the 

same space, are comparable within themselves while these two ideals (or these two 

topologies) can be compared within themselves.  

 

     Let X  be a non empty set and let τ , ƒ  be a given topology and ideal on X , 

respectively. The non empty collection of subsets of X  which is defined as 

( )ƒ, { |  and ƒ}V I V Iβ τ τ= − ∈ ∈  is a base for any topology on .X  (We will simply 

write β  when no ambiguity is present). Indeed; 
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i) Since τ  is a topology on X , then X τ∈ . ƒ   is an ideal on X , then ƒ.∅∈  By 

definition of β , X X β−∅ = ∈ . Thus ( )V I Xα α
α

− =


 where Vα τ∈  and 

ƒIα ∈ , for all α . 

ii) Let 1B   and 2B  be two sets in β , then  

1 2 1 2 or .B B B B∩ =∅ ∩ ≠∅  

If 1 2B B∩ =∅ ,  then 1 2B B β∩ ∈ . 

If 1 2B B∩ =∅ , then 1 2B B∩  can be written as a union of sets which belong to 

β  on an empty indexing set. 

Let  1 2B B∩ ≠∅  where 1B , 2B β∈ . 

1 1 1 1 1 1 implies that  and ƒ such that .B V I B V Iβ τ∈ ∃ ∈ ∃ ∈ = −  

2 2 2 2 2 2 implies that  and ƒ such that .B V I B V Iβ τ∈ ∃ ∈ ∃ ∈ = −  Then 

1 2B B∩ = 1 1 2 2( ) ( )V I V I− ∩ −  

  = ( ) ( )1 1 2 2( ) ( ( ) )c cV I V I∩ ∩ ∩  

  ( )1 2 1 2( ) ( ) ( )c cV V I I= ∩ ∩ ∩  

 1 2 1 2( ) ( )cV V I I= ∩ ∩ ∪  

  1 2 1 2( ) ( )V V I I= ∩ − ∪  where 1 2( )V V τ∩ ∈  and 1 2( ) ƒI I∪ ∈ . 

  So 1 2B B β∩ ∈ . 

It’s clear that β  is a base for any topology on X , and the topology generated by β  

is βτ , that is,  

( ) |  and ƒ,  for all .V I V Iβ α α α α
α

τ τ α 
= − ∈ ∈ 
 


 

 

Lemma 2.4.1 Let τ  and f  be a given topology and ideal on a non empty set ,X

respectively. The ideal topology (ƒ)τ  formed from a given topology and ideal is the 

same as with the topology βτ  which is generated by the collection 

{ |  and ƒ}.V I V Iβ τ= − ∈ ∈  
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Proof. We know that (ƒ)τ { | ( ) }.U X cl X U X U∗= ⊆ − = −  Let (ƒ)U τ∈  and .x U∈  

(ƒ)U τ∈  iff X U−  is (ƒ)-closedτ  iff ( )cl X U X U∗ − = − . This implies that 

( )X U X U∗− ⊆ − , then ( ) .U X X U ∗⊆ − −  Therefore x U∈  implies that 

( )x X X U ∗∈ − − . From this, ( ) .x X U ∗∉ −  Since ( )x X U ∗∉ − , then  ( )V x Vτ∃ ∈ ∈

such that ( ) ƒ.V X U∩ − ∈  Thus, there exists ƒ such that ( ) . ThenI V X U I∈ ∩ − =

( ) ( ) ,cV X U I∩ − ∩ =∅  that is, ( ) ( )V I X U− ∩ − =∅  implies that ( ) .V I U− ⊆

Then ( )x V I U∈ − ⊆  such that ( ) .V I β− ∈  Since ,  ix U B β∀ ∈ ∃ ∈  such that 

,ix B U∈ ⊆ then U , that is, .
i

i
B

B U β
β

τ
∈

= ∈
  

Therefore,   (ƒ) βτ τ⊆ . (9) 

Let  V βτ∈  and x V∈ . Since β   is a base for βτ , then G τ∃ ∈  and  ƒZ∃ ∈  such that  

x G Z V∈ − ⊆ . Then we have ( )cG Z V∩ ⊆ . This implies that ( ) ( ) .c cG Z V∩ ∩ =∅  

So ( )( )  and ƒ.cG V Z Z∩ ⊆ ∈  Since ƒ  is an ideal on X , then ( )( ) ƒ.cG V∩ ∈
 
Hence 

( )( ) ƒG X V∩ − ∈  such that x G τ∈ ∈ . Then ( )x X V ∗∉ − , and ( ) .x X X V ∗∈ − −  So

( )V X X V ∗⊆ − −  and ( ) ( )X V X V∗− ⊆ − . This means that ( )X V−  is (ƒ)-closed.τ

Thus, (ƒ)V τ∈ .  

From this,   (ƒ).βτ τ⊆  (10) 

By (9) and (10), we obtain   (ƒ) βτ τ= . ■ 

 

Result 2.4.2 Let ( ),X τ  be any topological space and f  be an ideal on X . The 

collection { |  and ƒ}V I V Iβ τ= − ∈ ∈   is a base for the ideal topology (ƒ)τ . 

 

Example 2.4.3 Let { , , }X a b c= , { , ,{ },{ , },{ , }}X a a b a cτ = ∅  and ƒ { ,{ }}a= ∅ . 

Let’s find the ideal topology (ƒ)τ  using two distinct ways: 

First way: We know that the collection 

{ |  and ƒ}V I V Iβ τ= − ∈ ∈  

     ={ , ,{ },{ , },{ , },{ , },{ },{ }}X a a b a c b c b c∅  
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is a base for (ƒ)τ . Since for all x X∈ , { } (ƒ),x β τ∈ ⊆  then (ƒ)τ  is a discrete 

topology. 

Second way:  ( ) { , ,{ },{ },{ },{ , },{ , },{ , }}P X X a b c a b a c b c= ∅ . 

( ) (ƒ)cl X X τ∗ ∗∅ =∅⇒ ∅ =∅⇒ −∅ = ∈ . 

{ , } ( ) (ƒ)X b c cl X X X X τ∗ ∗= ⇒ = ⇒ − =∅∈ . 

Let us find { } ;a ∗  

 or { } or { , } or { , }a U U X U a U a b U a cτ∈ ∈ ⇒ = = = =  

  { } { } ƒ { }U a a a a ∗⇒ ∩ = ∈ ⇒ ∉  

 or { , }b U U X U a bτ∈ ∈ ⇒ = =  

  { } { } ƒ { }U a a b a ∗⇒ ∩ = ∈ ⇒ ∉   

 or { , }c U U X U a cτ∈ ∈ ⇒ = =  

  { } { } ƒ { } .U a a c a ∗⇒ ∩ = ∈ ⇒ ∉  

So { }a ∗ = ∅ . 

{ }a ∗ = ∅ ({ }) { } { } { , } (ƒ)cl a a X a b c τ∗⇒ = ⇒ − = ∈ . 

Let us find { } ;b ∗  

 or { } or { , } or { , }a U U X U a U a b U a cτ∈ ∈ ⇒ = = = =  

  { } { } o r { } { }    (Sin ce ƒ)U b b U b a b ∗⇒ ∩ = ∩ =∅⇒ ∉ ∅∈  

 or { , }b U U X U a bτ∈ ∈ ⇒ = =  

  { } { } ƒ { }U b b b b ∗⇒ ∩ = ∉ ⇒ ∈  

 or { , }c U U X U a cτ∈ ∈ ⇒ = =  

  { } { } o r { } { }    (Sin ce ƒ)U b b U b c b ∗⇒ ∩ = ∩ =∅⇒ ∉ ∅∈ . 

So { } { }b b∗ = . 

{ } { }b b∗ = ({ }) { } { } { , } (ƒ)cl b b X b a c τ∗⇒ = ⇒ − = ∈ . 

Let us find { } ;c ∗  

 or { } or { , } or { , }a U U X U a U a b U a cτ∈ ∈ ⇒ = = = =  

  { } { } o r { } { }    (Sin ce ƒ)U c c U c a c ∗⇒ ∩ = ∩ =∅⇒ ∉ ∅∈  

  or { , }b U U X U a bτ∈ ∈ ⇒ = =  

 { } { } o r { } { }    (Sin ce ƒ)U c c U c b c ∗⇒ ∩ = ∩ =∅⇒ ∉ ∅∈  



25 
 

 

  { } { } ƒ { } .U c c c c ∗⇒ ∩ = ∉ ⇒ ∈  

So { } { }c c∗ = . 

{ } { }c c∗ = ({ }) { } { } { , } (ƒ)cl c c X c a b τ∗⇒ = ⇒ − = ∈ . 

Let us find { , } ;a b ∗  

 or { } or { , } or { , }a U U X U a U a b U a cτ∈ ∈ ⇒ = = = =  

  { , } { , } o r { , } { } { , }    (Sin ce { } ƒ)U a b a b U a b a a a b a∗⇒ ∩ = ∩ = ⇒ ∉ ∈  

 or { , }b U U X U a bτ∈ ∈ ⇒ = =  

  { , } { , } ƒ { , }U a b a b b a b ∗⇒ ∩ = ∉ ⇒ ∈     

 or { , }c U U X U a cτ∈ ∈ ⇒ = =  

  { , } { , } o r { , } { } { , }    (Sin ce { } ƒ).U a b a b U a b a c a b a∗⇒ ∩ = ∩ = ⇒ ∉ ∈  

So { , } { }a b b∗ = . 

{ , } { }a b b∗ = ({ , }) { , } { , } { } (ƒ)cl a b a b X a b c τ∗⇒ = ⇒ − = ∈ . 

Let us find { , } ;a c ∗  

 or { } or { , } or { , }a U U X U a U a b U a cτ∈ ∈ ⇒ = = = =  

  { , } { , } o r { , } { } { , }    (Sin ce { } ƒ)U a c a c U a c a a a c a∗⇒ ∩ = ∩ = ⇒ ∉ ∈

 or { , }b U U X U a bτ∈ ∈ ⇒ = =  

  { , } { , } o r { , } { } { , }    (Sin ce { } ƒ)U a c a c U a c a b a c a∗⇒ ∩ = ∩ = ⇒ ∉ ∈  

 or { , }c U U X U a cτ∈ ∈ ⇒ = =  

  { , } { , } ƒ { , } .U a c a c c a c ∗⇒ ∩ = ∉ ⇒ ∈  

So  { , } { }a c c∗ = . 

{ , } { }a c c∗ = ({ , }) { , } { , } { } (ƒ)cl a c a c X a c b τ∗⇒ = ⇒ − = ∈ . 

Let us find { , } ;b c ∗  

 or { } or { , } or { , }a U U X U a U a b U a cτ∈ ∈ ⇒ = = = =  

  { , } { , } or  or {b} or {c} { , }    (Since ƒ)U b c b c a b c ∗⇒ ∩ = ∅ ⇒ ∉ ∅∈  

 or { , }b U U X U a bτ∈ ∈ ⇒ = =  

  { , } { , } o r { , } { } { , }U b c b c U b c b b b c ∗⇒ ∩ = ∩ = ⇒ ∈  

 or { , }c U U X U a cτ∈ ∈ ⇒ = =
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 or { , }c U U X U a cτ∈ ∈ ⇒ = =  

  { , } { , } o r { , } { } { , } .U b c b c U b c c c b c ∗⇒ ∩ = ∩ = ⇒ ∈   

So { , } { , }b c b c∗ = . 

{ , } { , }b c b c∗ = ({ , }) { , } { , } { } (ƒ)cl b c b c X b c a τ∗⇒ = ⇒ − = ∈ . 

We know that (ƒ)τ { | ( ) }U X cl X U X U∗= ⊆ − = − . From this 

(ƒ)τ ={ , ,{ },{ },{ },{ , },{ , },{ , }}X a b c a b a c b c∅  is a discrete topology.  

 

    The following theorem shows that the ideal topologies obtained by two given 

ideals in the same space are comparable within themselves while these two ideals can 

be compared within themselves.   

 

Theorem 2.4.4 (Jankovic & Hamlet, 1990) Let ( , )X τ  be any topological space and 

let 1 2ƒ ,  ƒ  be two ideals on X . If 1 2ƒ ƒ⊆ , then 1 2(ƒ ) (ƒ )τ τ⊆ . 

Proof. 

First way: Let 1 2ƒ ƒ⊆  and 1(ƒ )U τ∈ . Since 1(ƒ )U τ∈ , then U  has a representation 

as ( ) 1 where  and ƒ ,  for all U V I V Iα α α α
α

τ α= − ∈ ∈


. If 1 2ƒ ƒ⊆  and 1ƒIα ∈ , then 

2ƒ  for all Iα α∈ . So ( ) 2(ƒ )U V Iα α
α

τ= − ∈


. Since the subset U  is arbitrary, then 

1 2(ƒ ) (ƒ )τ τ⊆ . 

Second way: Let 1 2ƒ ,  ƒ  be two ideals on X  with 1 2ƒ ƒ⊆  and let the collections

1 1(ƒ , ) { |  and ƒ }V I V Iα α α αβ τ τ= − ∈ ∈  

' ' ' '
2 2(ƒ , ) { |  and ƒ }V I V I

α αα αβ τ τ= − ∈ ∈   be bases for 1 2(ƒ ) and (ƒ )τ τ , respectively. 

To prove 1 2(ƒ ) (ƒ )τ τ⊆ , we must show that for all 1(ƒ , )B β τ∈  and for all ,x B∈

'
2(ƒ , )B β τ∃ ∈  such that 'x B B∈ ⊆ . 

Let 1(ƒ , ) and B x Bβ τ∈ ∈ . This implies that Vα τ∃ ∈  and 1ƒIα∃ ∈  such that 

= ,B V Iα α−  then x V Iα α∈ −  where Vα τ∈  and 1ƒIα ∈ . Let Iα αθ ⊆ . Since 

1ƒIα αθ ⊆ ∈  and 1 2ƒ ƒ⊆ , then 2, ƒIα αθ ∈ . Since 2ƒ  is an ideal on X , then 

2( ) ƒIα αθ∪ ∈ .  
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( )  and ( )cx V I x V x Iα α α α∈ − ⇒ ∈ ∈  

   and x V x Iα α⇒ ∈ ∉  

 and x V xα αθ⇒ ∈ ∉     (Since Iα αθ ⊆  ) 

 and ( ).x V x Iα α αθ⇒ ∈ ∉ ∪  
Then ( ) ( )x V I V Iα α α α αθ∈ − ∪ ⊆ −  where Vα τ∈  and 2( ) ƒ .Iα αθ∪ ∈  Thus, we have 

[ ]'
2( ) (ƒ , )B V Iα α αθ β τ= − ∪ ∈  such that 'x B B∈ ⊆ . So 1 2(ƒ ) (ƒ )τ τ⊆ . ■ 

 

Corollary 2.4.5 Let ( ),X τ  be any topological space and let f  be a given ideal on 

X , then (ƒ).τ τ⊆  

Proof.  Let f  be any ideal on X . Since ƒ { } ƒind = ∅ ⊆ , then by theorem 2.4.3 

(ƒ ) (ƒ)indτ τ⊆ , that is, (ƒ).τ τ⊆   ■ 

 

 The following theorem shows that the ideal topologies formed from a given ideal 

f  and two given topologies in the same space are comparable within themselves 

while these two topologies can be compared within themselves. 

 

Theorem 2.4.6 Let 1 2,  τ τ  be two topologies on a non empty set X . If  1 2τ τ⊆ , then 

1 2(ƒ) (ƒ)τ τ⊆  for a given ideal ƒ  on X . 

Proof. We assume 2(ƒ, )x A τ∗∈  for  any A X⊆  and  let 1x U τ∈ ∈ . If 1 2τ τ⊆  and 

1x U τ∈ ∈ , then 2 .x U τ∈ ∈  Since 2(ƒ, )x A τ∗∈ , ƒU A∩ ∉ . Thus, for any 1U τ∈  

with x U∈  we have ƒU A∩ ∉ . This implies that 1(ƒ, ).x A τ∗∈  Since x  is arbitrary, 

2 1(ƒ, ) (ƒ, )A Aτ τ∗ ∗⊆ , A X∀ ⊆ . 

2 1(ƒ, ) (ƒ, )A Aτ τ∗ ∗⊆ ⇒ 2 1(ƒ, ) (ƒ, )A A A Aτ τ∗ ∗∪ ⊆ ∪ , that is,  

2 1(ƒ, ) (ƒ, ).A Aτ τ⊆  

1 2So   (ƒ) (ƒ).τ τ⊆   ■ 

 

Theorem 2.4.7 (Jankovic & Hamlet, 1990) Let ( , (ƒ))X τ  be any ideal topological 

space and A X⊆ . Then for all A X⊆ , d dA A
∗

⊆  where dA
∗

 is the derived set of A
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in the ideal topological space ( , (ƒ))X τ  and dA  is the derived set of A  in the 

topological space ( , )X τ . 

Proof. Since (ƒ)τ τ⊆ , then d dA A
∗

⊆  for any A X⊆ . Indeed;  

dx A
∗

∈  implies that for all (ƒ)U τ∈  with ,x U∈  ( ){ }U x A− ∩ ≠ ∅ , then for all

V τ∈  with ,x V∈  ( ){ }V x A− ∩ ≠ ∅ . This implies that ,dx A∈  and so d dA A
∗

⊆  for 

any .A X⊆  ■ 

 

Theorem 2.4.8 (Jankovic & Hamlet, 1990) Let ( ),X τ  be any topological space and 

let f  be a given ideal on X , then dx A
∗

∈   iff  ( { })x cl A x∗∈ −  for any A X⊆ . 

Proof.  

( )⇒  Let dx A
∗

∈  and we assume that ( )( ) such that { } ƒ.G N x G A x∃ ∈ ∩ − ∈  This 

implies that ƒI∃ ∈  such that ( ){ }G A x I∩ − = . Thus,
 ( ) c{ }G A x I∩ − ∩ =∅    

where G τ∈  and ƒI ∈ . Then ( )( ) { }G I A x− ∩ − =∅  where ( ) (ƒ).x G I β τ∈ − ∈ ⊆  

So .dx A
∗

∉  We get a contradiction. Thus, for all ( )( ),  { } ƒG N x G A x∈ ∩ − ∉ , that 

is, ( ){ }x A x ∗∈ − , then ( ){ }x cl A x∗∈ − . 

( )⇐  Let ( ){ }x cl A x∗∈ − . Then ( ){ }x A x ∗∈ − . This means that for all ( )U N x∈ , 

( ){ } ƒ.U A x∩ − ∉  We assume that ( ){ }T A x∩ − =∅  for (ƒ)T τ∈  with x T∈ . Since 

(ƒ)x T τ∈ ∈ , then G τ∃ ∈  and ƒZ∃ ∈  such that x G Z T∈ − ⊆ . Since

( ) ( )( ) { } { }G Z A x T A x− ∩ − ⊆ ∩ − =∅ , then ( )( ) { } .G Z A x− ∩ − =∅  This implies 

that ( ){ } ƒ.G A x Z∩ − ⊆ ∈  Since ƒ  is an ideal on X , then ( ){ } ƒG A x∩ − ∈  where 

 ( ),G x Gτ∈ ∈  that is, ( )G N x∈ . Thus, ( ){ } .x A x ∗∉ −  From this, ( ){ } .x cl A x∗∉ −  

This contradicts to ( ){ }x cl A x∗∈ − . So for all (ƒ)T τ∈  with ,x T∈  

( ){ }T A x∩ − ≠ ∅ , that is, dx A
∗

∈ . This ends the proof. ■ 

By using this theorem, we obtain the following relation: 
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dx A
∗

∈  if and only if ( { })x cl A x∗∈ −  if and only if ( { })x A x ∗∈ − , and also 

( { })x A x ∗∈ −  implies that .x A∗∈  Thus dA A
∗ ∗⊆  for all A X⊆ . 

 

Theorem 2.4.9 (Jankovic & Hamlet, 1990) Let ( ),X τ  be any topological space and 

let f  be a given ideal on X . If { } ƒx ∈  for each ,x X∈  then dA A
∗ ∗=  for all 

.A X⊆  
Proof. Let f  be a given ideal on X  and { } ƒx ∈  for each ,x X∈  then for any 

,A X⊆   

x A∗∈ ( ){ }x A x ∗⇔ ∈ −     ( )( ),{ }  implies that { }x X x f A x A∗ ∗∀ ∈ ∈ − =  

  ( ){ }x cl A x∗⇔ ∈ −  

 .dx A
∗

⇔ ∈   

Thus, dA A
∗∗ =  for all A X⊆ . ■ 

 

Theorem 2.4.10 Let ( , )X τ  be topological space and let ƒ  be an ideal on X . If  

{ } ƒx ∈  for each ,x X∈  then (ƒ) dA A∗ ⊆ , for all A X⊆ . 

Proof. Let { } ƒx ∈  for each x X∈  and assume dy A∉  where  and .y X A X∈ ⊆

dy A∉  implies that ( )( ) such that { } .U N y U y A∃ ∈ − ∩ =∅  Then { } ƒU A y∩ ⊆ ∈ . 

Since ƒ  is an ideal on X , then ƒU A∩ ∈ . Therefore (ƒ).y A∗∉  Then (ƒ) dA A∗ ⊆

for all A X⊆  if { } ƒ,  for each .x x X∈ ∈  ■ 

 

 From theorem 2.4.9 and theorem 2.4.10, if { } ƒx ∈  for each x X∈ , then the 

following relation holds for all A X⊆ : 

(ƒ)d dA A A
∗ ∗= ⊆ . 

 

Example 2.4.11 Let ( , )X τ  be a discrete space and let ƒ { | }n A X A= ⊆ =∅


 be a 

given ideal on X . We take { }B x= , then 
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(ƒ ) { | ( ), ƒ }n nB y X U N y U B∗ = ∈ ∀ ∈ ∩ ∉  

{ | ( ), }y X U N y U B= ∈ ∀ ∈ ∩ ≠∅


 

  ={ }.x  

( ){ }{ } | ( ), { } { }d dB x y X U N y U y x= = ∈ ∀ ∈ − ∩ ≠ ∅ .=∅  

So we see that (ƒ ) { } d
nB x B∗ = ⊄ ∅ =  for any subset B . From this example, if the 

ideal ƒ  does not have the property that { } ƒx ∈  for each x X∈ , then we cannot say 

that (ƒ) dA A∗ ⊆ , for all A X⊆ . 

 

From above theorems, we have the following relations for all A X⊆ : 

(i)  d dA A
∗

⊆ , 

(ii)  ( ) iff  { }dx A x cl A x
∗ ∗∈ ∈ − , 

(iii)  dA A
∗ ∗⊆ , 

(iv)  If { } ƒx ∈  for each ,x X∈  then dA A
∗ ∗= , 

(v)  If { } ƒx ∈  for each ,x X∈  then (ƒ) .dA A∗ ⊆  

 

Corollary 2.4.12 (Jankovic & Hamlet, 1990) Let ( ), ( )X fτ  be any ideal topological 

space where f  is an ideal on X . If ƒI ∈ , then dI
∗

= ∅ . 

Proof. Let f  be an ideal on X  and ƒ.I ∈  From example 2.2.8, .I ∗ = ∅  Since  

dI I
∗ ∗⊆ = ∅ ,  then .dI

∗

= ∅  ■ 

 

Theorem 2.4.13 (Jankovic & Hamlet, 1990) Let ( , )X τ  be a space with 1 2ƒ  and ƒ  

ideals on ,  and ,X A X⊆  then 

a) 1 2 1 2(ƒ ƒ ) (ƒ ) (ƒ ).A A A∗ ∗ ∗∧ = ∪  

b) 1 2 1 2 2 1(ƒ ƒ , ) (ƒ , (ƒ )) (ƒ , (ƒ )).A A Aτ τ τ∗ ∗ ∗∨ = ∩  

Proof.   

a) 1 2 1 2(ƒ ƒ ) { | ( ), ƒ ƒ }A x X U N x U A∗ ∧ = ∈ ∀ ∈ ∩ ∉ ∧      
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 1 2{ | ( ), ƒ  or ƒ }x X U N x U A U A= ∈ ∀ ∈ ∩ ∉ ∩ ∉                          

1 2{ | ( ), ƒ } { | ( ), ƒ }x X U N x U A x X U N x U A= ∈ ∀ ∈ ∩ ∉ ∪ ∈ ∀ ∈ ∩ ∉  

1 2(ƒ ) (ƒ )A A∗ ∗= ∪ . 

b) Let 1 2 2 1(ƒ , (ƒ )) (ƒ , (ƒ ))x A Aτ τ∗ ∗∈ ∩ , then 1 2(ƒ , (ƒ ))x A τ∗∈  and 2 1(ƒ , (ƒ )).x A τ∗∈

We assume that V τ∃ ∈  with x V∈  such that 1 2ƒ ƒV A∩ ∈ ∨ . By the definition of 

1 2ƒ ƒ∨ , 1 1ƒB∃ ∈  and 2 2ƒB∃ ∈  such that 1 2.V A B B∩ = ∪  

(i) Let 1x B∈  and 2x B∉ . 

 1x B∈  1 2implies that .x B B V A∈ ∪ = ∩  

 1 2V A B B∩ = ∪ 1 2 1 2( ) { } ( ) { }V A x B B x B B⇒ ∩ − = ∪ − ⊆ ∪  

[ ] 2 1( ) { }V A x B B⇒ ∩ − − ⊆  

2 1( ) { } ( ) ( ) .c c cV A x B B  ⇒ ∩ ∩ ∩ ∩ =∅    

 Then [ ] ( )2 1( ) { } .cV A B x B∩ − ∩ ∪ =∅  This implies that  

 [ ]2 1 1 1( ) { } ƒ .V A B x B B∩ − ⊆ ∪ = ∈  Then [ ]2 1( ) ƒV A B∩ − ∈ .  

Since ( )2 2(ƒ )x V B τ∈ − ∈  and [ ]2 1( ) ƒV B A− ∩ ∈ , then 1 2(ƒ , (ƒ )).x A τ∗∉  This 

is a contradiction.  
(ii)  Let 2x B∈  and 1x B∉ . Similarly it can be shown that 2 1(ƒ , (ƒ ))x A τ∗∉ . Thus we 

get contradiction. 

(iii) Let 1x B∈  and 2x B∈ .  

We take 3 1 { }B B x= − , then 3x B∉  and 3 1 1ƒB B⊆ ∈ . Thus, 3 1ƒx B∉ ∈  and 

2 2ƒx B∈ ∈ . 

2x B∈  1 2implies that .x B B V A∈ ∪ = ∩  

1 2V A B B∩ = ∪ 1 2( ) { } ( ) { }V A x B B x⇒ ∩ − = ∪ −  

 1 2( ) { }cB B x= ∪ ∩  

 ( ) ( )1 2{ } { }c cB x B x= ∩ ∪ ∩  

 ( )1 2{ }cB x B⊆ ∩ ∪  

 ( )1 2{ }B x B= − ∪ 3 2.B B= ∪  
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Thus, 3 2( ) { } .V A x B B∩ − ⊆ ∪  

3 2( ) { }V A x B B∩ − ⊆ ∪ [ ] 3 2( ) { }V A x B B⇒ ∩ − − ⊆  

 3 2( ) { } ( ) ( )c c cV A x B B  ⇒ ∩ ∩ ∩ ∩ =∅    

 [ ]3 2 2 2( ) { } ƒ .V B A x B B⇒ − ∩ ⊆ ∪ = ∈  

This implies that [ ]3 2( ) ƒV B A− ∩ ∈  where 3 1( ) (ƒ )V B τ− ∈  and 3( )x V B∈ − . 

Thus, 2 1(ƒ , (ƒ )),x A τ∗∉  which is a contradiction. 

(iv) Let 1x B∉  and 2x B∉ . Then 

1 2V A B B∩ = ∪ 1 2 2 2 1 1( ) ƒ  and  ( ) ƒV A B B V A B B⇒ ∩ − ⊆ ∈ ∩ − ⊆ ∈  

 1 2 2 1( ) ƒ  and  ( ) ƒV B A V B A⇒ − ∩ ∈ − ∩ ∈   
where 1 1 2 2( ) (ƒ ) and  ( ) (ƒ )x V B x V Bτ τ∈ − ∈ ∈ − ∈             

 ⇒ 2 1 1 2(ƒ , (ƒ )) and  (ƒ , (ƒ ))x A x Aτ τ∗ ∗∉ ∉  

 2 1 1 2(ƒ , (ƒ )) (ƒ , (ƒ )).x A Aτ τ∗ ∗⇒ ∉ ∩  

This contradicts to 1 2 2 1(ƒ , (ƒ )) (ƒ , (ƒ )).x A Aτ τ∗ ∗∈ ∩  

From (i), (ii), (iii) and (iv), we get all contradiction. Thus, for all V τ∈  with ,x V∈

1 2ƒ ƒV A∩ ∉ ∨ , that is, 1 2(ƒ ƒ , )x A τ∗∈ ∨ . Since x  is arbitrary, then 

1 2 2 1 1 2(ƒ , (ƒ )) (ƒ , (ƒ )) (ƒ ƒ , )A A Aτ τ τ∗ ∗ ∗∩ ⊆ ∨ . (11) 

 

Conversely, let’s show that 1 2 1 2 2 1(ƒ ƒ , ) (ƒ , (ƒ )) (ƒ , (ƒ ))A A Aτ τ τ∗ ∗ ∗∨ ⊆ ∩ . Let 

1 2(ƒ , (ƒ ))x A τ∗∉ . This implies that 2(ƒ )U τ∃ ∈  with x U∈  such that 1( ) ƒU A∩ ∈ . 

Since 2(ƒ )x U τ∈ ∈ , then 'U τ∃ ∈  and '
2ƒV∃ ∈  such that ' ' .x U V U∈ − ⊆  Then we 

have ' '
1( ) ƒ .U V A U A− ∩ ⊆ ∩ ∈  Since 1ƒ  is an ideal on X , then ' '

1( ) ƒU V A− ∩ ∈  

where 'U τ∈  and '
2ƒ .V ∈  Thus, 1ƒI∃ ∈  such that ' '( )U V A I− ∩ = . This implies 

that ' ' '
2 1 where ƒ  and ƒ .U A V I V I∩ ⊆ ∪ ∈ ∈  By the definition of 1 2ƒ ƒ∨ , 

' '
1 2ƒ ƒ .U A V I∩ ⊆ ∪ ∈ ∨  Since 1 2ƒ ƒ∨  is an ideal on X , then '

1 2ƒ ƒU A∩ ∈ ∨  

where ' .x U τ∈ ∈  From this, 1 2(ƒ ƒ , ).x A τ∗∉ ∨  Thus,  1 2 1 2(ƒ ƒ , ) (ƒ , (ƒ ))A Aτ τ∗ ∗∨ ⊆ .  

Similarly it can be shown that 1 2 2 1(ƒ ƒ , ) (ƒ , (ƒ ))A Aτ τ∗ ∗∨ ⊆ .  
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Thus, we get 1 2 1 2 2 1(ƒ ƒ , ) (ƒ , (ƒ )) (ƒ , (ƒ )).A A Aτ τ τ∗ ∗ ∗∨ ⊆ ∩  (12) 
By (11) and (12), we have   1 2 1 2 2 1(ƒ ƒ , ) (ƒ , (ƒ )) (ƒ , (ƒ ))A A Aτ τ τ∗ ∗ ∗∨ = ∩ . ■ 

 

Corollary 2.4.14 (Jankovic & Hamlet, 1990) Let ( ),X τ  be any topological space 

and let f  be an ideal on X . Then [ ](ƒ) (ƒ) (ƒ)τ τ= , that is, .τ τ∗ ∗∗=  

Proof. Let A X⊆  and  let f  be an ideal on X .

(ƒ, ) (ƒ ƒ, ) (ƒ, (ƒ)) (ƒ, (ƒ))A A A Aτ τ τ τ∗ ∗ ∗ ∗= ∨ = ∩ (ƒ, (ƒ)).A τ∗=  

(ƒ, ) (ƒ, (ƒ))A Aτ τ∗ ∗=  

(ƒ, ) (ƒ, (ƒ)),  then A A A A A Aτ τ∗ ∗⇒ ∪ = ∪ =  for all A X⊆ . 

Thus, [ ](ƒ) (ƒ) (ƒ)τ τ= , that is, .τ τ∗ ∗∗=  ■ 

 

Theorem 2.4.15 (Jankovic & Hamlet, 1990) Let ( , )X τ  be a space with the ideals

1 2ƒ  and ƒ  on X , then 

(a) [ ] [ ]1 2 1 2 2 1(ƒ ƒ ) (ƒ ) (ƒ ) (ƒ ) (ƒ )τ τ τ∨ = =  

(b) 1 2 1 2(ƒ ƒ ) (ƒ ) (ƒ )τ τ τ∨ = ∨  

(c) 1 2 1 2(ƒ ƒ ) (ƒ ) (ƒ ).τ τ τ∧ = ∩  
Proof.  

(a)  Let 1 2(ƒ ƒ )V τ∈ ∨ . 

( )1 2(ƒ ƒ )V V Gα α
α

τ θ∈ ∨ ⇒ = −


 where Gα τ∈  and 1 2ƒ ƒαθ ∈ ∨  for all α .

1 2ƒ ƒαθ ∈ ∨  implies that 1ƒZα∃ ∈  and '
2ƒZα∃ ∈  such that 'Z Zα α αθ = ∪  for all α .

( ) ( )'V G G Z Zα α α α α
α α

θ  = − = − ∪  

 where Gα τ∈  and '
1 2ƒ ƒZ Zα α∪ ∈ ∨ , then

( ) 'V G Z Zα α α
α

 = − − 

  where ( ) 1(ƒ )G Zα α τ− ∈  and '
2ƒ .Zα ∈  So [ ]1 2(ƒ ) (ƒ )V τ∈ . 

This implies that   [ ]1 2 1 2(ƒ ƒ ) (ƒ ) (ƒ ).τ τ∨ ⊆  (13) 

Similarly V  can be written as ( )'V G Z Zα α α
α

 = − − 

 where ( )'
2(ƒ )G Zα α τ− ∈  and 

1ƒZα ∈ . So [ ]2 1(ƒ ) (ƒ )V τ∈ , then we have 

[ ]1 2 2 1(ƒ ƒ ) (ƒ ) (ƒ ).τ τ∨ ⊆  (14) 
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Let [ ]1 2(ƒ ) (ƒ )U τ∈ . 

[ ] ( )1 2(ƒ ) (ƒ )  U U G Zα α
α

τ∈ ⇒ = −


 where 1(ƒ )Gα τ∈  and 2 ƒZα ∈  for all α .

( )1,  (ƒ )
i i

i

G G H Iα α α αα τ∀ ∈ ⇒ = −


 where 
i

Hα τ∈  and 1ƒ
i

Iα ∈  for all i . Thus, 

( ) ( ) ( )( )
,

 =  
i i i i

i i

U G Z H I Z H I Zα α α α α α α α
α α α

  
= − = − − − ∪  

  
  

                                                                                     
 

where 
i

Hα τ∈   and  ( ) 1 2ƒ ƒ
i

I Zα α∪ ∈ ∨ . This implies that 1 2(ƒ ƒ )U τ∈ ∨ .  

So   [ ]1 2 1 2(ƒ ) (ƒ ) (ƒ ƒ ).τ τ⊆ ∨  (15) 

By (13) and (15), we get   [ ]1 2 1 2(ƒ ƒ ) (ƒ ) (ƒ )τ τ∨ = . 

Similarly it can be shown that [ ]1 2 2 1(ƒ ƒ ) (ƒ ) (ƒ )τ τ∨ =  using (14). 

(b) Since [ ]1 2 1 2(ƒ ƒ ) (ƒ ) (ƒ )τ τ∨ =  and (ƒ) (ƒ)τ τ ψ= ∨  where ψ  is indiscrete 

topology, then ( )1 2 1 2 1 2 1 2(ƒ ƒ ) (ƒ ) (ƒ ) (ƒ ) (ƒ ) (ƒ ) (ƒ )τ τ ψ τ ψ ψ τ τ∨ = ∨ = ∨ ∨ = ∨ . The 

equation “ (ƒ) (ƒ)τ τ ψ= ∨ ” will be shown in theorem 2.5.2.4. 

(c)  Let 1 2(ƒ ƒ )U τ∈ ∧ . 

1 2(ƒ ƒ )U τ∈ ∧ ( )U G Zα α
α

⇒ = −


 where Gα τ∈  and 1 2ƒ ƒZα ∈ ∧ , for all α .

1 2 1 1 2 2 1 2Since ƒ ƒ ƒ  and ƒ ƒ ƒ ,  then ƒ  and ƒ .Z Zα α∧ ⊆ ∧ ⊆ ∈ ∈  Thus, 1(ƒ )U τ∈  and 

2(ƒ )U τ∈ . This implies that 1 2(ƒ ) (ƒ )U τ τ∈ ∩ , then we get  

1 2 1 2(ƒ ƒ ) (ƒ ) (ƒ )τ τ τ∧ ⊆ ∩ . (16) 

Let 1 2(ƒ ) (ƒ )V τ τ∈ ∩  and x V∈ . Then 1(ƒ )x V τ∈ ∈  and 2(ƒ )x V τ∈ ∈ . Since 

x V∈  and 1(ƒ )V τ∈ , then 1G τ∃ ∈  and 1 1ƒZ∃ ∈  such that 1 1 .x G Z V∈ − ⊆  And 

2(ƒ )x V τ∈ ∈  implies that 2G τ∃ ∈  and 2 2ƒZ∃ ∈  such that 2 2 .x G Z V∈ − ⊆

1 1 1 1( ) ( ) . Thencx G Z V G Z V∈ − ⊆ ⇒ − ∩ =∅  

1 1( ) ( ) .c cG Z V∩ ∩ =∅   

2 2 2 2( ) ( ) . Thencx G Z V G Z V∈ − ⊆ ⇒ − ∩ =∅  

2 2( ) ( ) .c cG Z V∩ ∩ =∅  
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Thus, ( ) ( )1 1 2 2( ) ( ) ( ) ( ) .c c c cG Z V G Z V∩ ∩ ∪ ∩ ∩ =∅  From this, 
  

( ) ( )1 1 2 2( ) ( ) ( ) ,c c cV G Z G Z ∩ ∩ ∪ ∩ =∅   

( )( ) ( )( )1 1 2 1 1 2( ) ( ) ( ) ( ) ,c c c cV G Z G G Z Z ∩ ∩ ∪ ∩ ∩ ∪ =∅   

( ) ( ) ( )1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) .c c c c cV G G Z G G Z Z Z∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪ =∅
 

This implies that ( )1 2 2 1 1 2( ) ( ) ( ) ( ) ,      an dc c cV G G G G Z Z∩ ∪ ∩ ∩ ∩ ∪ =∅

2 1 1 2( ) ( ) ( ) .c cV G G Z Z∩ ∩ ∩ ∩ =∅  Then 2 1 1 2( ) ( )x G G Z Z V∈ ∩ − ∩ ⊆  where

2 1( )G G τ∩ ∈  and 1 2 1 2( ) ƒ ƒZ Z∩ ∈ ∧ . From this, 1 2(ƒ ƒ ).V τ∈ ∧   

So we have   1 2 1 2(ƒ ) (ƒ ) (ƒ ƒ )τ τ τ∩ ⊆ ∧ . (17) 

By (16) and (17), we obtain   1 2 1 2(ƒ ƒ ) (ƒ ) (ƒ )τ τ τ∧ = ∩ . ■ 

 

2.5 Topologies from different Ideals 

 

 In this part, ideal topologies obtained by some given ideals are emphasized and 

some theorems related to these ideals are investigated. 

 

2.5.1 The Ideal fƒ  
 

 fƒ  is an ideal which contains all finite subsets of a set X , that is, 

fƒ ={ }|  is a finite subset of A X A X⊆ . 

 

 In example 2.3.5, we have showed that the ideal topology can be discrete topology 

when the ideal is different from ( )P X . The following example also shows that the 

ideal topology can be discrete topology when ( )P Xƒ ≠  by using the base of  ideal 

topology. 

 

Example 2.5.1.1 Let  X =   and { } { }, {1,..., } |n nτ = ∅ ∪ ∈  , 

fƒ { }|  is a finite subset of A A= ⊆   , then ( )ffτ  is a discrete topology. Actually; 
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{1} { } {1}− ∅ = ∈ (ƒ )fτ  

{1, 2} {1} {2} (ƒ )fτ− = ∈  

. 

. 

. 

{1,..., } {1,..., 1} { } (ƒ )fn n n τ− − = ∈  

. 

. 

.  

Repeating this, we have { } (ƒ )fn τ∈  for all n∈ . So (ƒ )fτ  is a discrete topology. 

 

Lemma 2.5.1.2 Let ( , )X τ  be a topological space with the ideal fƒ , then 

(ƒ ) d
fA A∗ ⊆  for all A X⊆ . 

Proof. Since { } ƒ fx ∈  for each ,x X∈  then (ƒ ) d
fA A∗ ⊆  for all A X⊆ . Indeed, if 

we take an arbitrary subset A X⊆ , then we can see that (ƒ ) d
fA A∗ ⊆ . Let 

(ƒ )fx A∗∈ , then for every ( )U N x∈ , fU A∩ ∉ƒ . Thus U A∩  is infinite. This 

implies that ( { }) .U x A− ∩ ≠ ∅  So .dx A∈  Since x  is arbitrary, then (ƒ ) d
fA A∗ ⊆  

for all A X⊆ , but the inverse of this relation may or may not be satisfied for all 

A X⊆  with a given topological space ( , )X τ  and the given ideal ƒ .f  ■ 

 

Example 2.5.1.3 Let ( , )X τ  be an indiscrete topological space where X  is infinite 

and let ƒ f  be a given ideal on X . Then for any A X⊆ , 

             if     
 { }   if    { }
             if     has at least one element which is different from 

d

A
A X x A x

X A x

∅ =∅
= − =



 

We take A X⊆  which is equal to { , }x y . So dA X= . 

(ƒ )fA∗ = { | ( ), ƒ }fx X U N x U A∈ ∀ ∈ ∩ ∉  

 ={ | ƒ }fx X X A A∈ ∩ = ∉  
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                =
     if     is finite
     if     is infinite

A
X A
∅




 

A  is finite, then (ƒ )fA∗ = ∅ . So dA X= ⊄∅ (ƒ )fA∗= . There exists A X⊆  such 

that dA ⊄ (ƒ )fA∗ . So we cannot say that (ƒ ) d
fA A∗ = , for all A X⊆   in any 

topological space ( , )X τ  with the ideal ƒ f . 

 

Since ( , )X τ  is not 1-spaceT , we cannot say that (ƒ ) d
fA A∗ =  for all A X⊆ . We 

will show that if ( , )X τ  is a 1-spaceT , then (ƒ ) d
fA A∗ =  for all A X⊆ . In the 

previous studies, to be able to satisfy the existence of this equation, 1-spaceT  has 

been taken.  

 

We know that p  is an accumulation point of the set A  if { }p A p∈ − . So dp A∈

iff each open neighbourhood E  of p  satisfies ( { })A E p∩ − ≠ ∅ . In a 1-spaceT , the 

statement “ ( { })A E p∩ − ≠ ∅ ” can be replaced by the condition “ A E∩  is infinite” . 

This means that (ƒ ),d
fA A A X∗= ∀ ⊆   if ( , )X τ  is a 1-spaceT .  

 

Let’s show that (ƒ )d
fA A∗⊆  for all A X⊆  where ( , )X τ  is a 1-spaceT . Let 

dp A∈ . We assume that E  is an open neighbourhood of  p such that A E∩  is 

finite. Then ( ){ }A E p∩ −  is also finite and ( ){ }A E p∩ −  is closed. So 

( ){ }E A E p− ∩ −    
 is an open set containing . p  

Let ( ){ } ,B E A E p= − ∩ −    then 

( ) ( )( )( ){ } { } { }A B p A E A E p p∩ − = ∩ − ∩ − −    

( )( ){ } { }c c cA E A E p p= ∩ ∩ ∪ ∪ ∩  

( ) ( )( ){ } { }c cA E A E p p= ∩ ∩ ∩ ∪ ∩  

[ ]( )( ) ( ) ( ) { } { }c cA E A E A E p p = ∩ ∩ ∩ ∪ ∩ ∩ ∩   



38 
 

= [ ]( )( ) { } { }cA E p p∅∪ ∩ ∩ ∩  

= ( )A E∩ ∩∅ =∅  for any B∈ ( )N p . This contradicts that dp A∈ . 

Thus, for all ( ),   is infiniteE N p A E∈ ∩ , that is, (ƒ )fp A∗∈ . Then we say that 

(ƒ )d
fA A∗⊆  for all A X⊆ . The inverse of this relation is always true. So the 

statement “ ( { })A E p∩ − ≠ ∅ ” can be replaced by the condition “ A E∩  is infinite” , 

that is, (ƒ )d
fA A∗=  for all A X⊆  if ( , )X τ  is 1-spaceT .  

 

Theorem 2.5.1.4 (Jankovic & Hamlet, 1990) Let ( , )X τ  be topological space, then 

the following equivalences hold: 

(ƒ ) ,d
fA A A X∗ = ∀ ⊆   iff  (ƒ )fτ τ=   iff  ( , )X τ  is 1-space.T  

Proof. Assume that (ƒ ).fτ τ=  Then d dA A
∗

=  for every A X⊆ . Since { } ƒ fx ∈  for 

each ,x X∈  then (ƒ )d
fA A

∗ ∗= . Therefore (ƒ ) , .d
fA A A X∗ = ∀ ⊆  To prove the 

converse assume that (ƒ ) d
fA A∗ =  for every ,A X⊆  then (ƒ ) d

fA A A A∗∪ = ∪ . 

Thus, ( ) ( )cl A cl A∗ = . This implies that (ƒ )fτ τ= .  

Thus,   (ƒ ) ,d
fA A A X∗ = ∀ ⊆   iff  (ƒ ).fτ τ=  (18) 

Now we assume that ( , )X τ  is 1-spaceT , then we have (ƒ ) , .d
fA A A X∗ = ∀ ⊆  Hence, 

(ƒ ) d
fA A A A∗∪ = ∪ , that is, ( ) ( )cl A cl A∗ = . This implies that (ƒ ) .fτ τ=

Conversely we assume that (ƒ )fτ τ= . 

(ƒ )fτ τ= (ƒ )fτ τ⇒ ⊆  

(ƒ ),fU Uτ τ⇒∀ ∈ ∈  

Since for each , { } (ƒ ),  then { }fx X X x X xτ τ∈ − ∈ − ∈ . And so { }  -closedx is τ . This 

means that ( , )X τ  is 1-spaceT .  

So   (ƒ )fτ τ=   iff  ( , )X τ  is 1-space.T  (19) 

By (18) and (19), we conclude that   (ƒ ) ,d
fA A A X∗ = ∀ ⊆   iff  ( , )X τ  is 1-spaceT . 

This completes the proof. ■ 
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Example 2.5.1.5 Let ( , )X ψ  be an indiscrete topological space and ƒ f  be a given 

ideal on X . Then the ideal topology  (ƒ )fψ   is finite complement topology. 

Let  A X⊆ . Then it’s easily check that 

     if    ƒ
(ƒ )

     if    ƒ
f

f
f

X A
A

A
∗

∉=  ∅ ∈
 

(ƒ ) { | ( ) }f U X cl X U X Uψ ∗= ⊆ − = −  

={ | ( ) }U X X U X U∗⊆ − ⊆ −  

={ | ( ) ƒ  or }fU X X U X U X⊆ − ∈ − =  

={ | ( ) is finite} { }.U X X U⊆ − ∪ ∅  

So (ƒ )fψ  is a finite complement topology. 

 

2.5.2 The Ideal cƒ  
 

 ƒc  is an ideal which contains all countable subsets of a set X , that is,  
ƒc ={ |  is a countable subset of }.A X A X⊆  
 

Example 2.5.2.1 Let ƒc  be a given ideal on X  and let A  be a given subset of X . 

Then (ƒ ) ( ).cA cond A∗ =  

(ƒ )cA∗ = { | ( ), ƒ }cx X U N x U A∈ ∀ ∈ ∩ ∉  

 ={ | ( ),  is uncountable}x X U N x U A∈ ∀ ∈ ∩  

 ( ).cond A=  

Since { } ƒ  for each ,cx x X∈ ∈  then (ƒ )d
cA A

∗ ∗= , A X∀ ⊆ . Thus, ( )dA cond A
∗

= . 

 

In theorem 2.5.1.4, it has been shown that the following equivalences hold: 
(ƒ ) ,d

fA A∗ = A X∀ ⊆ ⇔ (ƒ )fτ τ= ⇔ ( , )X τ  is 1-space.T  

 

However, theorem 2.5.1.4 is not always true when an ideal ƒ  which has the 

property that { } ƒx ∈  for each x X∈  and any topological space ( , )X τ  are given. In 
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the following example, it was indicated that for any subset ,A  the equation of

“ (ƒ) ”dA A∗ =  is not satisfied when a 1-spaceT  and an ideal ƒ  which has the property 

that { } ƒx ∈  for each x X∈  are given. 

 

Example 2.5.2.2 Let ( , )U  be usual space and 1  S n
n

 = ∈ 
 



 
be a subset of   

and ƒc  be a given ideal on  . Then (ƒ )d
cS S ∗⊄ . 

We know that {0}dS = . So 0 dS∈ . Let 0 U τ∈ ∈ . Since U S S∩ ⊆  and S  is a 

countable subset of  , then U S∩  is also countable subset of  . 

(0),U N∈ U S∩  is countable (0),  ƒcU N U S⇒ ∈ ∩ ∈  

  ⇒ 0 (ƒ ).cS ∗∉  

This implies that (ƒ )d
cS S ∗⊄ . 

Under the following conditions: 

(i) ( , )U  is 1-space,T  

(ii) ,{ } ƒcx x∀ ∈ ∈  

we showed that there exists S ⊆   such that (ƒ )d
cS S ∗⊄ , that is, (ƒ )d

cS S ∗≠ . So if 

( , )X τ  is 1-spaceT  and { } ƒx ∈  for each ,x X∈  then it is not necessary that 

(ƒ) ,dA A A X∗ = ∀ ⊆ . However, if an ideal ƒ  which has the property that { } ƒx ∈  for 

each x X∈  is given, then  

(ƒ) ,dA A∗ = A X∀ ⊆ 1(ƒ) ( , ) is -spaceX Tτ τ τ⇔ = ⇒ . 

If the statement “ ( , )X τ  is 1-spaceT  implies that (ƒ)τ τ=  when { } ƒx ∈  for each

x X∈ .” is true, then theorem 2.5.1.4 would be true. In this case, for all A X⊆ , 

(ƒ) dA A∗ = . It will contradict with the example 2.5.2.2. So, if { } ƒx ∈  for each 

,x X∈  then it is not necessary that “ ( , )X τ  is 1-spaceT  implies that (ƒ)τ τ= ” . 

Therefore, theorem 2.5.1.4 may or may not be true when { } ƒx ∈  for each .x X∈  

 

Theorem 2.5.2.3 (Karaçay, 1982) Let ( , )X τ  be topological space and δ  be a 

subbase of τ , then τ  is the coarsest topology containing δ . 
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From above theorem, the supremum of  the set { | }i i Iτ ∈  is the topology such that 

it’s subbase is the family which is the union of given topologies. The topology 

(ƒ),τ ψ∨  which is the supremum of τ  and (ƒ),ψ  is the smallest topology 

containing (ƒ)τ ψ∪ . So the supremum (ƒ)τ ψ∨  of τ  and (ƒ)ψ  is the topology of 

which subbase is the family (ƒ)δ τ ψ= ∪ . 

 

Theorem 2.5.2.4 (Jankovic & Hamlet, 1990) Let ( , )X τ  be any topological space 

and let ƒ  be an ideal on X . Then (ƒ) (ƒ)τ τ ψ= ∨  where ψ  denotes the indiscrete 

topology. 

Proof. We know that { |  and ƒ}G Z G Zβ τ= − ∈ ∈  is a base for (ƒ)τ , 

' |  is a finite indexing set and ,  for j j
j J

S J S j Jβ δ
∈

  = ∈ ∈ 
  


 is a base for (ƒ)τ ψ∨

where (ƒ)δ τ ψ= ∪  and '' { | ƒ} { }X M Mβ = − ∈ ∪ ∅  is a base for (ƒ)ψ . 

Let (ƒ)V τ ψ∈ ∨  and x V∈ .  Then ' 'V β∃ ∈   such that 'x V V∈ ⊆ . 
' 'V β∈ ⇒For a finite indexing set ' , j

j J

J V S
∈

=


 where ,jS δ∈  for  j J∈ . Then

'  where (ƒ),  for ,j j
j J

V S S j Jτ ψ
∈

= ∈ ∪ ∈


'  where  or (ƒ),  for .j j j
j J

V S S S j Jτ ψ
∈

= ∈ ∈ ∈


 

i) Let {1,..., }J n=  and jS τ∈ , for all 1,...,j n=  where n∈ . Then

 

'
1 ...  where ,  for all  1,..., .j n j

j J

V S S S S j nτ
∈

= = ∩ ∩ ∈ =


       

 '
1 1 1...    ( ,..., ... )n n nx V V x S S V S S S Sτ τ∈ ⊆ ⇒ ∈ ∩ ∩ ⊆ ∈ ⇒ ∩ ∩ ∈  

  [ ] [ ]1 1( ... )  where ( ... )n nx S S V S S β⇒ ∈ ∩ ∩ −∅ ⊆ ∩ ∩ −∅ ∈  
Since  is a base for (ƒ), thenβ τ  V  is an element of (ƒ)τ . 

ii)  Let {1,..., }J n=  and  (ƒ),jS ψ∈  for all  1,...,j n=  where n∈ . Then

'
1 j...  where S (ƒ),  for all  1,...,j n

j J

V S S S j nψ
∈

= = ∩ ∩ ∈ =


. 

'x V∈  implies that 1 j...  where S (ƒ),  for all  1,..., . Thus,nx S S j nψ∈ ∩ ∩ ∈ =  
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 where (ƒ),  for all  1,...,j jx S S j nψ∈ ∈ = . Then 

ƒ such that ,  for all  1,...,j j jM x X M S j n∃ ∈ ∈ − ⊆ = . This implies that 

1 2 1 2( ) ( ) ... ( ) ... ,n nx X M X M X M S S S∈ − ∩ − ∩ ∩ − ⊆ ∩ ∩ ∩  

1 2 1 2( ... ) ... ,c
n nx X M M M S S S∈ ∩ ∪ ∪ ∪ ⊆ ∩ ∩ ∩   

1 2 1 2( ... ) ... ,n nx X M M M S S S∈ − ∪ ∪ ∪ ⊆ ∩ ∩ ∩  

'
1 2 1 2( ... ) ... ,n nx X M M M S S S V V∈ − ∪ ∪ ∪ ⊆ ∩ ∩ ∩ = ⊆  

[ ]1 2 1 2( ... )  where [ ( ... )] .n nx X M M M V X M M M β∈ − ∪ ∪ ∪ ⊆ − ∪ ∪ ∪ ∈  
Then V  is an element of (ƒ)τ . 

iii)  Let {1,..., }J n=  and 
0 0 01 2 1 2, ,...,  and , ,..., (ƒ)n n n nS S S S S Sτ ψ+ +∈ ∈  where 0n ∈

0such that .n n≤ ∈  Then

0 0 0

' '
1 2 1 2... ...  and .j n n n n

j J

V S S S S S S S x V V+ +
∈

= = ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∈ ⊆


 
 'x V∈  implies that 

0 0 01 2 1 2... ...n n n nx S S S S S S+ +∈ ∩ ∩ ∩ ∩ ∩ ∩ ∩ . Thus, 

0 0 0 01 2 1 2, ,...,  where , ,..., (ƒ)n n n n n nx S x S x S S S S ψ+ + + +∈ ∈ ∈ ∈ . Then 

0 0ƒ such that ,  1, 2,...,i i iM x X M S i n n n∃ ∈ ∈ − ⊆ = + + , that is, 

0 0 0 01 1 2 2( ) ,  ( ) ,...,  ( )n n n n n nx X M S x X M S x X M S+ + + +∈ − ⊆ ∈ − ⊆ ∈ − ⊆  

0 01 2where , ,..., ƒn n nM M M+ + ∈ . Then                                              

 
0 0 01 2 1 2, ,..., , ( ), ( ),..., ( )n n n nx S x S x S x X M x X M x X M+ +∈ ∈ ∈ ∈ − ∈ − ∈ −  implies   

       0 0 0

'
1 2 1 2... ( ) ( ) ... ( ) ,n n n nx S S S X M X M X M V V+ +∈ ∩ ∩ ∩ ∩ − ∩ − ∩ ∩ − ⊆ ⊆   

 0 0 01 2 1 2... ( ) ( ) ... ( ) ,n n n nx S S S X M X M X M V+ +∈ ∩ ∩ ∩ ∩ − ∩ − ∩ ∩ − ⊆  

 0 0 01 2 1 2( ... ) ( ... ) ,c
n n n nx S S S M M M V+ +∈ ∩ ∩ ∩ ∩ ∪ ∪ ∪ ⊆  

0 0 01 2 1 2( ... ) ( ... )n n n nx S S S M M M V+ +∈ ∩ ∩ ∩ − ∪ ∪ ∪ ⊆    

 0 0 01 2 1 2where ( ... )  and ( ... ) ƒ. Thus,n n n nS S S M M Mτ + +∩ ∩ ∩ ∈ ∪ ∪ ∪ ∈  

0 0 01 2 1 2( ... ) ( ... )n n n nx S S S M M M V+ + ∈ ∩ ∩ ∩ − ∪ ∪ ∪ ⊆   

 0 0 01 2 1 2where ( ... ) ( ... ) .n n n nS S S M M M β+ + ∩ ∩ ∩ − ∪ ∪ ∪ ∈   

 From this,  is an element of (ƒ).V τ  
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By i),  ii), iii), we get   (ƒ) (ƒ)τ ψ τ∨ ⊆ . (20) 

Let’s show that (ƒ) (ƒ)τ τ ψ⊆ ∨ . 

Let (ƒ)U τ∈  and x U∈ . Then G τ∃ ∈  and ƒZ∃ ∈  such that x G Z U∈ − ⊆ .
''ƒ implies that (ƒ).Z X Z β ψ∈ − ∈ ⊆  Then (ƒ) (ƒ)X Z ψ τ ψ− ∈ ⊆ ∪ . From this,

(ƒ).X Z τ ψ− ∈ ∪   

(ƒ) implies that (ƒ).G Gτ τ ψ τ ψ∈ ⊆ ∪ ∈ ∪   

Then , (ƒ)X Z G τ ψ δ− ∈ ∪ = . By the definition of 'β , '( )X Z G β− ∩ ∈ . 
' then ( )  where ( ) .x G Z U x G X Z U G X Z β∈ − ⊆ ∈ ∩ − ⊆ ∩ − ∈  This implies that

(ƒ)U τ ψ∈ ∨ . 

 Thus,   (ƒ) (ƒ)τ τ ψ⊆ ∨ . (21) 

By (20) and (21), we obtain   (ƒ) (ƒ)τ τ ψ= ∨ . ■ 

 

Example 2.5.2.5 Let ( , )X ψ  be an indiscrete topological space with the given ideal

ƒc . Then the ideal topology (ƒ )cψ  is countable complement topology. Actually; 

Let A X⊆ . Then it’s clear that 

(ƒ )cA∗ =
     if    ƒ  
     if    ƒ

c

c

A
X A
∅ ∈

 ∉
 

So 

(ƒ ) { | ( ) }c U X cl X U X Uψ ∗= ⊆ − = −  

={ | ( ) }U X X U X U∗⊆ − ⊆ −   

={ | ( ) ƒ  or }cU X X U X U X⊆ − ∈ − =  

={ | ( ) is countable} { }U X X U⊆ − ∪ ∅  

is a countable complement topology. 

 

Example 2.5.2.6 Let ( , )X τ  be topological space and ƒc  be a given ideal on X , 

then (ƒ ) (ƒ )c cτ τ ψ= ∨  where ψ  is indiscrete topology on X . 

If we take the ideal ƒc  in theorem 2.5.2.4, then we have (ƒ ) (ƒ )c cτ τ ψ= ∨ . It’s 

shown in the following: 



44 
 

We know that { |  and ƒ }cG Z G Zβ τ= − ∈ ∈  is a base for (ƒ )cτ , 

' |  is a finite indexing set and ,  for j j
j J

S J S j Jβ δ
∈

  = ∈ ∈ 
  


 is a base for (ƒ )cτ ψ∨

where  (ƒ )cδ τ ψ= ∪ . 

Let (ƒ ) and cV x Vτ ψ∈ ∨ ∈ , then ' ' ' such that V x V Vβ∃ ∈ ∈ ⊆ . 

' 'V β∈  implies that for a finite indexing set ', j
j J

J V S
∈

=


 where jS δ∈  for  ,j J∈  

then '  where (ƒ ),  for ,j j c
j J

V S S j Jτ ψ
∈

= ∈ ∪ ∈


 

'  where  or (ƒ ),  for .j j j c
j J

V S S S j Jτ ψ
∈

= ∈ ∈ ∈


   

i)   Let {1,..., }J n=  and  jS τ∈ ,  for all  1,...,j n=  where n∈ , then

 '
1 ...  where ,  for all  1,..., .j n j

j J

V S S S S j nτ
∈

= = ∩ ∩ ∈ =


 

 
'

1 1 1...    ( ,..., ... )n n nx V V x S S V S S S Sτ τ∈ ⊆ ⇒ ∈ ∩ ∩ ⊆ ∈ ⇒ ∩ ∩ ∈                   

  1 1[( ... ) ]  where [( ... ) ]n nx S S V S S β⇒ ∈ ∩ ∩ −∅ ⊆ ∩ ∩ −∅ ∈                
Since  is a base for (ƒ ),  then  is an elemen of (ƒ ).c cVβ τ τ  

ii)  Let {1,..., }J n=  and  (ƒ )j cS ψ∈ ,  for all  1,...,j n=  where n∈ , then

'
1 ...  where (ƒ ),  for all  1,...,j n j c

j J

V S S S S j nψ
∈

= = ∩ ∩ ∈ =


.   

'  implies thatx V∈ 1 ... nx S S∈ ∩ ∩  where (ƒ ),  for all  1,...,j cS j nψ∈ = . Then

 where (ƒ ),  for all  1,...,j j cx S S j nψ∈ ∈ = . Since (ƒ )cψ  is cocountable 

topology, then  is countable for all  1,...,jX S j n− = . Thus, 

1 2( ) ( ) ... ( ) is countablenX S X S X S− ∪ − ∪ ∪ − , that is, 

'
1 2( ... )  is countable.nX S S S X V− ∩ ∩ ∩ = −  This implies that X V−  is 

countable. 

Let ( )U N x∈ . Since ( ) ( )U X V X V∩ − ⊆ −  and X V−  is countable, then 

( )U X V∩ −  is also countable, then ( ) ƒcU X V∩ − ∈ . Thus, ( )x X V ∗∉ − . This 

implies that ( )x X X V ∗∈ − − . From this, ( )V X X V ∗⊆ − − . Since
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( ) ( )X V X V∗− ⊆ − , then ( ) is (ƒ )-closedcX V τ− . Therefore, V  is open in 

(ƒ )cτ . 

iii)   Let {1,..., }J n=  and 
0 0 01 2 1 2, ,...,  and , ,..., (ƒ )n n n n cS S S S S Sτ ψ+ +∈ ∈  where 

0 0 such that .n n n∈ ≤ ∈   We can easily show that (ƒ )cV τ∈  as in the 

theorem 2.5.2.4. 

So   (ƒ ) (ƒ )c cτ ψ τ∨ ⊆ . (22) 

Let’s show that (ƒ ) (ƒ )c cτ τ ψ⊆ ∨ . 

Let (ƒ )cU τ∈  and x U∈ , then  and ƒ  such that cG Z x G Z Uτ∃ ∈ ∃ ∈ ∈ − ⊆ . 

ƒ  implies that (ƒ ) (ƒ )c c cZ X Z ψ τ ψ∈ − ∈ ⊆ ∪ . Then (ƒ )cX Z τ ψ− ∈ ∪ . 

(ƒ ) implies that (ƒ ).c cG Gτ τ ψ τ ψ∈ ⊆ ∪ ∈ ∪  
Thus , (ƒ ) .cX Z G τ ψ δ− ∈ ∪ =  

', (ƒ )  implies that ( ) .cX Z G X Z Gτ ψ δ β− ∈ ∪ = − ∩ ∈   
'Since ,  then ( )  where ( ) .x G Z U x G X Z U G X Z β∈ − ⊆ ∈ ∩ − ⊆ ∩ − ∈  

This implies that (ƒ ),  then (ƒ ) is coarser than (ƒ ),  that is,c c cU τ ψ τ τ ψ∈ ∨ ∨
(ƒ ) (ƒ )c cτ τ ψ⊆ ∨ . (23) 

By (22) and (23), we get   (ƒ ) (ƒ )c cτ τ ψ= ∨ . ■  

 

2.5.3 The ideal cdƒ  
 

 ƒcd  is a family of all closed discrete subsets of a set X  which is defined as

ƒ ={  |   }d
cd A X A⊆ =∅ . 

 

Lemma 2.5.3.1 (Jankovic & Hamlet, 1990) Let ( , )X τ  be a topological space with 

the given ideal ƒcd . Then (ƒ )d
cdA A∗⊆ , for all .A X⊆  

Proof. Let  and dA X x A⊆ ∈ . This implies that ( { })  for all ( )U A x U N x∩ − ≠ ∅ ∈ . 

Since ( )V U N x∩ ∈  for all ( )V N x∈  and dx A∈ , then ( ) ( { })V U A x∩ ∩ − ≠ ∅ . 

And so [( ) { }] ,V U A x∩ ∩ − ≠ ∅  for all ( ).V N x∈  From this, ( )dx U A∈ ∩ , that is, 
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( ) .dU A∩ ≠∅  Thus, ƒ  for all ( )cdU A U N x∩ ∉ ∈ . This means that (ƒ )cdx A∗∈ . 

Since x  is arbitrary, then (ƒ )d
cdA A∗⊆  for all A X⊆ . ■ 

(ƒ )d
cdA A∗⊆ , A X∀ ⊆ (ƒ )d

cdA A A A∗⇒ ∪ ⊆ ∪ , that is, A A⊆  

  ,  A A A X⇒ = ∀ ⊆ . Therefore (ƒ ) .cdτ τ=  

As a result of this lemma, the ideal topology (ƒ )cdτ  is always equal to the original 

topology τ . 

 

Example 2.5.3.2 Let ( , )X τ  be an indiscrete space where X  has at least two 

different elements and ƒcd  be a given ideal on X . Take { },  for A x x X= ∈ . Then

(ƒ ) d
cdA A∗ ⊄ . Indeed; 

{ } { }d dA x X x= = − ≠ ∅ . From this, { } ƒcdx ∉   for each .x X∈  And

(ƒ ) { } { | ( ),  { } ƒ }cd cdA x y X U N y U x∗ ∗= = ∈ ∀ ∈ ∩ ∉  

  { | { } { } ƒ }cdy X X x x= ∈ ∩ = ∉  

 = .X  

Thus, (ƒ ) { } d
cdA X X x A∗ = ⊄ − = . 

From this example, the statement “ (ƒ ) ,  d
cdA A A X∗ = ∀ ⊆ ” is not always true. 

 

Theorem 2.5.3.3 (Jankovic & Hamlet, 1990) Let ( , )X τ  be any topological space 

and ƒcd  be a given ideal on , then 1( , ) is -spaceX Tτ  iff (ƒ ) d
cdA A∗ =  for all 

A X⊆ . 

Proof. (⇐ ) Let (ƒ ) d
cdA A∗ =  for all ,A X⊆  then for each ,  { } { }dx X x x∗∈ = . There 

are four cases: 

i)     { }  if { } ƒcdx x x∗∈ ∉  

ii)  

iii) { }  if { } ƒcdx x x∗∉ ∈  
iv)  or if ( )U N y∃ ∈  

such that .x U∉  

X

 and { }  if { } ƒ  and for all ( ),  cdy x y x x U N y x U∗≠ ∈ ∉ ∈ ∈

 and { }  if ( ) such that  and { } ƒcdy x y x U N y x U x∗≠ ∉ ∃ ∈ ∈ ∈
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Since { }dx x∉ , then . Then there are two cases: 

a)  

b) . 

  

     

   
Since (ƒ )=cdτ τ , then . And therefore { }  isx  -closedτ . This means that 

( , )X τ  is 1-space.T  

(⇒ ) Let 1( , ) be -spaceX Tτ . Then for every x X∈ , { } is -closedx τ . And since 

{ }dx x∉ , then ({ })x is x∈ . Hence { }x  is discrete set in ( , )X τ . And so { }x  is closed 

and discrete set in ( , )X τ , that is, { } ƒcdx ∈  for every .x X∈  

We know that (ƒ )d
cdA A∗⊆  for all .A X⊆  Thus, we need only show that 

(ƒ ) d
cdA A∗ ⊆ . Let (ƒ )cdx A∗∈ , for A X⊆ . Then for all ( )U N x∈ ƒcdU A∩ ∉ . 

Assume that there exists . 

 

{ } ƒcdV A x⇒ ∩ ⊆ ∈  

 which is a contradiction. Thus, for 

all ( ), ( { })V N x V x A∈ − ∩ ≠∅ , that is, dx A∈ . Then (ƒ ) d
cdA A∗ ⊆ , for all A X⊆ . 

Since the inverse of this relation is always true, then (ƒ ) d
cdA A∗ =  for all .A X⊆  ■ 

 

Lemma 2.5.3.4 (Jankovic & Hamlet, 1990) Let ( , )X τ  be any topological space and 

let ƒ  be a given ideal on X . If ƒI ∈ , then I  is closed and discrete set in the ideal 

topological space ( ), (ƒ)X τ . 

Proof. Since I ∗  is empty for every I  in ƒ , then dI
∗

= ∅ . So I  is closed and 

discrete set in ( ), (ƒ)X τ , from the remark 2.2.3. ■ 

 

{ } { }dx X x⊆ −

 and { }  if for all ( ), dy x y x U N y x U≠ ∈ ∈ ∈

 and { }  if ( ) such that dy x y x U N y x U≠ ∉ ∃ ∈ ∉

, { } { } { }  implies that { }d dx X x x x x x x∗ ∗∀ ∈ = ⇒ ∉ ∉

{ } ƒcdx⇒ ∈

{ } (ƒ )cdX x τ⇒ − ∈

{ }X x τ− ∈

( ) such that ( { })V N x V x A∈ − ∩ =∅

( ) such that ( { }) ( { } ) ,cV N x V x A V x A∃ ∈ − ∩ =∅⇒ ∩ ∩ =∅

This implies that ƒ . Hence, (ƒ ),cd cdV A x A∗∩ ∈ ∉
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Corollary 2.5.3.5 (Jankovic & Hamlet, 1990) Let ( , )X τ  be a topological space, then 

the ideal ƒcd  is the largest ideal on X  with the property (ƒ )cdτ τ= . 

Proof. Let ƒ  be an ideal on X  which satisfying (ƒ)τ τ= . From lemma 2.5.3.4, we 

know that every ƒI ∈  is closed and discrete in ( )( ), ƒX τ . Since (ƒ)τ τ= , then 

every ƒI ∈  is closed and discrete in ( , )X τ . This means that ƒcdI ∈  for every I  in 

ƒ . Thus, for every ideal ƒ  with the property (ƒ)τ τ= , we have ƒ ƒcd⊆ .  This shows 

that  ƒcd   is the largest ideal with the property (ƒ )cdτ τ= . ■ 
 

Theorem 2.5.3.6 (Jankovic & Hamlet, 1990) Let ( , )X τ  be topological space with a 

given ideal ƒ . Then (ƒ)  iff every ƒ is closed in ( , ).I Xτ τ τ= ∈  

Proof. Let (ƒ)τ τ=  and ƒI ∈ . Then (ƒ).X I τ− ∈  Since (ƒ)τ τ= , then .X I τ− ∈

Thus, I  is -closedτ , then every ƒI ∈  is closed in ( , ).X τ  Conversely assume that 

every ƒI ∈  is closed in ( , )X τ  and let (ƒ)V τ∈ . 

( )(ƒ)  where  and ƒ,  ,V V G Z G Zα α α α
α

τ τ α∈ ⇒ = − ∈ ∈ ∀


 

( )( )  where  and  is -closed,cV G Z G Zα α α α
α

τ τ= ∩ ∈


 

( )( )  where ( )c cV G Z G Zα α α α
α

τ= ∩ ∩ ∈


. And so V τ∈ . This shows that (ƒ)τ  is 

coarser then τ . Thus, (ƒ)τ τ= . ■ 

 
 

From theorem 2.5.3.6, we can say that (ƒ )cdτ τ=  and from corollary 2.5.3.5, we 

can also say that ƒcd  is the largest ideal with the property (ƒ )cdτ τ= . We conclude 

that ƒcd  is the largest ideal on X  with the property (ƒ )cdτ τ=  and ƒ { }ind = ∅  is the 

smallest ideal on X  with the property (ƒ )indτ τ= . 

 

2.5.4 The Defined Ideal ƒ(A) for a subset 𝑨 ⊆ 𝑿  
 

Let ( , )X τ  be any topological space and ƒ( )A  be an ideal on X  which defines for 

a given subset A X⊆ . Now we obtain new topologies by using this ideal. 
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Example 2.5.4.1 Let ( , )X τ  be an indiscrete topological space and p X∈ . Then the 

ideal topology ( )( )ƒ { }X pτ −  is the particular point topology where ( )ƒ { }X p−  is 

an ideal which defines for { }X p X− ⊆ , that is; 

( )ƒ { }X p− ={ | { }}A X A X p⊆ ⊆ −  

={ | }A X p A⊂ ∉  

Let A X⊆ . Then 

( )( ) ( ){ }ƒ { } | ( ), ƒ { }A X p x X U N x U A X p∗ − = ∈ ∀ ∈ ∩ ∉ −  
 { | ƒ( { })}x X A X p= ∈ ∉ −  

 

     if    
     if    
X p A

p A
∈

=  ∅ ∉  
 

( )( )ƒ { } { | ( ) }X p U X cl X U X Uτ ∗− = ⊆ − = −  

  { | ( ) ( )}U X X U X U∗= ⊆ − ⊆ −  

  
{ | ( ) or ( ) }U X p X U X U X= ⊆ ∉ − − =  

  { | } { }U X p U= ⊆ ∈ ∪ ∅  

So ( )( )ƒ { }X pτ −  is the particular point topology.  

(Given a point ,p X∈  the collection ( ) { | } { }p U X p Uτ = ⊆ ∈ ∪ ∅  is called the 

particular point topology on .X ) 

 

Example 2.5.4.2 Let ( )pτ  be the particular point topology on a set X  where p X∈  

and { }X p≠ . Then the ideal topology obtained by the given topology ( )pτ  and the 

given ideal ( )ƒ { }X p−   is equal to the original topology. Actually; 

 Let A X⊆ . Then 

( )( ) ( ){ }ƒ { } | ( ), ƒ { }A X p x X U N x U A X p∗ − = ∈ ∀ ∈ ∩ ∉ −  

  

     if     
     if    
X p A

p A
∈

=  ∅ ∉
                                          

( )( )( ) ƒ { } { | ( ) }p X p U X cl X U X Uτ ∗− = ⊆ − = −  

={ | ( ) }U X X U X U∗⊆ − ⊆ −  
={ | ( ) or }U X p X U X U X⊆ ∉ − − =  
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={ | } { }U X p U⊆ ∈ ∪ ∅  
Thus, the ideal topology is equal to the original topology while the given ideal is 

different from { }∅ .  

( { }X p≠  implies that y p∃ ≠  such that y X∈ . Thus, ( ) ){ } ƒ { } { }.y X p∈ − ≠ ∅  

 

2.5.5 The ideal nƒ   
 

Let ( , )X τ  be any topological space and ƒn { | }A X A= ⊆ =∅


 be a given ideal on 

X . Now let’s show that A


 for any subset A  in the ideal topological space 

( ), (ƒ ) .nX τ  Before showing this, we will give following theorem. 

 

Theorem 2.5.5.1 (Kuratowski, 1966) Let ( , )X τ  be any topological space. If U  is 

open, then U A U A∩ ⊆ ∩ , for every A X⊆ . 

Proof. ( )( )
c

U A A X X U A X X U∩ = ∩ − − = ∩ ∩ −
 

  ( )A X U= − −  

( )A X U⊆ − − .A U= ∩  ■ 

From this theorem, if U  is open, then U A U A∩ ⊆ ∩
 

 for every A X⊆ .  (24) 

Let’s show that (ƒ )nA A∗⊆


 for any A X⊆ . 

Let (ƒ )nx A∗∉ . This implies that ( )  such  that  ƒ ,nU N x U A∃ ∈ ∩ ∈  that is, 

U A∩ =∅


. From (24), U A U A∩ ⊆ ∩ =∅
 

. Then ,U A∩ =∅


 for any ( )U N x∈ . 

This means that, .x A∉


 Since x  is arbitrary, then 

(ƒ )nA A∗⊆


 for any A X⊆  . (25) 

Now we will show that (ƒ )nA A∗ ⊆


, for any A X⊆ . Let x A∉


. And we assume that 

for all ( )U N x∈ , ƒnU A∩ ∉ . Then for all ( )U N x∈ , U A∩  is not nowhere dense 

(ƒ )nA∗ =
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set. We know that B X⊆  is a nowhere dense set, if its closure is a boundary set, i.e. 

if X B X− =  (Kuratowski, 1966). Thus, if for all ( )U N x∈ , U A∩  is not nowhere 

dense set, then  U A∩   is not boundary set. Also B  is a boundary set iff B X B⊆ −  

or, iff B X B⊆ −  (Kuratowski, 1966). Thus, if for all ( )U N x∈ , U A∩  is not 

boundary set, then .U A X U A∩ ⊄ − ∩  

( )U N x∀ ∈ , U A X U A∩ ⊄ − ∩ ⇒ ( )U N x∀ ∈ , 
c

U A U A
 

∩ ⊄ ∩ 
 



 

⇒ ( )U N x∀ ∈ , ( ) ( ) .U A U A∩ ∩ ∩ ≠∅


          

 

Since ( ) ( )U A U A∅ ≠ ∩ ∩ ∩


U A⊆ ∩


, then U A∩


≠ ∅  for all ( )U N x∈ . This 

contradicts to x A∉


. Thus, ( )V N x∃ ∈  such that ƒnV A∩ ∈ , that is, (ƒ )nx A∗∉ . 

Then we say that (ƒ )nA A∗ ⊆


,  for any A X⊆ . (26) 

By (25) and (26), we obtain   (ƒ )nA∗ = A


, for any A X⊆ . ■ 

 

 

Now we will show that (ƒ )n
ατ τ=  where  

( ){ }|U X U Uατ = ⊆ ⊆


 { |  is -open}U X U α= ⊆ . 

Let (ƒ )nX U τ− ∈ . This implies that (ƒ )nU U∗ ⊆ , U U⊆


. So U  is -closedα . Then

.X U ατ− ∈   

From this,   (ƒ )n
ατ τ⊆ . (27) 

Let X V ατ− ∈ . This implies that V  is -closedα , V V⊆


, (ƒ )nV V∗ ⊆ . Thus, V  is 

(ƒ )-closednτ . Because of this, (ƒ )nX V τ− ∈ .  

Then   (ƒ )n
ατ τ⊆ . (28) 

By (27) and (28), we have   (ƒ )n
ατ τ= . ■  
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So the ideal topology (ƒ )nτ  which formed from a given topology τ  and the given 

ideal ƒn  is the topology ατ , that is, (ƒ ).n
ατ τ τ⊆ =  

 

Example  2.5.5.2 Let  be an indiscrete topological space and ƒn  be a given 

ideal on X . For any A X∅ ≠ ⊆ , 

(ƒ ) { | ( ), ƒ }n nA x X U N x U A∗ = ∈ ∀ ∈ ∩ ∉  

{ | ƒ }nx X A= ∈ ∉  

X=    (Since for all A X∅ ≠ ⊆ , A X= ≠ ∅


 ) 

.A=


 

(ƒ ) { | ( ) }n U X cl X U X Uτ ∗= ⊆ − = −  

 ={ | ( ) }U X X U X U∗⊆ − ⊆ −  

 ={ | ( )  or ( ) }U X X U X X U⊆ − = − =∅  
 ={ |  or }U X U U X⊆ =∅ = ={ , }X∅ .τ=  

 

Example 2.5.5.3 Let ( , )X τ  be a discrete topological space and let ƒn  be a given 

ideal. For any A X⊆ , 

(ƒ ) { | ( ), ƒ }n nA x X U N x U A∗ = ∈ ∀ ∈ ∩ ∉  

{ | ( ), }x X U N x U A= ∈ ∀ ∈ ∩ ≠∅


 

 { | ( ), }x X U N x U A= ∈ ∀ ∈ ∩ ≠∅  

A=  

 .A=  

Since each subset of X  is both open and closed, then A A=


 for any A X⊆ . Thus,

(ƒ )nA∗ = A


. 

(ƒ ) { | ( ) }n U X cl X U X Uτ ∗= ⊆ − = −  

={ | ( ) ( ) ( )}U X X U X U X U∗⊆ − ∪ − = −  

={ | ( ) ( ) ( )}U X X U X U X U⊆ − ∪ − = − . 

( , )X τ
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Then (ƒ )nτ  is a discrete topology. 

  

Example 2.5.5.4 Let { } { }|  is finiteU X X Uτ = ⊆ − ∪ ∅  be a given topology and let 

nf  be a given ideal on X  where X  is infinite set. Then for any A X⊆ , 

     if      is finite
     if     is infinite
A A

A
X A


= 
                 

 

     if     is finite
      if     is infinite
A A

A
X A


= 





 

Let’s show that (ƒ )nA A∗ =


, for any . 

(i) Let A X⊆  be a finite subset of X . Then U A A∩ ⊆  is also finite, for all 

( ).U N x∈  Thus, U A U A∩ = ∩ . From this, ( )U A U A U A∩ = ∩ = ∩




 . And 

so ( ){ }(ƒ ) | , ƒn nA x X U N x U A∗ = ∈ ∀ ∈ ∩ ∉  

  | ( ),x X U N x U A
 

= ∈ ∀ ∈ ∩ ≠∅ 
 



  

  { }| ( ),x X U N x U A= ∈ ∀ ∈ ∩ ≠∅    
 
 

  .A A= =   

 If A  is finite, then (ƒ )nA A∗ =


. 

(ii) Let A X⊆  be an infinite subset of X . If , then U A U A∩ ⊆ ∩  for 

an infinite subset A  of X . So U A U A∩ ⊆ ∩
 

. Since A  is an infinite subset of

X , then U X U A∩ ⊆ ∩


. From this, x U U A∈ ⊆ ∩


. Thus, U A∩ ≠∅


, that is, 

ƒnU A∩ ∉ . Since we take arbitrary ( )U N x∈ , then for all ( )U N x∈ , 

ƒnU A∩ ∉ , that is, (ƒ )nx A∗∈ . Because of choosing arbitrary x X∈ , then 

(ƒ )nA X∗ =  where A  is an infinite subset of X . Thus, (ƒ )nA X A∗ = =


  if A  is 

an infinite subset of X . 

A X⊆

( )U N x∈
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From (i) and (ii),   (ƒ )nA A∗ =


  for all A X⊆ . ■ 
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CHAPTER THREE 

CONCLUSION 

 

 It is possible to construct a topological structure in different ways. We have used 

Kuratowski’s method for this aim. With this method, we have obtained a topology 

named ideal topology. It has been seen that ideal topologies are finer than original 

ones. It was concluded that this would be an advantage related to the continuity of 

functions and also some mathematical studies. Since the number of continuous 

functions on the space is increasing as the topological structure is getting finer. 
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