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FUZZY ENTROPY AND ITS APPLICATIONS 
 

ABSTRACT 

 

          Fuzzy logic is based on fuzzy sets. In the classical approach, an element either 

is or is not the element of the set. On the other hand, in the fuzzy approach, each 

element has a degree of membership to a set.   

 

     Fuzzy entropy is used to express the mathematical values of the fuzziness of 

fuzzy sets. The concept of entropy, the basic subject of information theory and 

telecommunications, is a measure of fuzziness in fuzzy sets.  

 

     This study encompasses two applications of fuzzy entropy in the field of image 

processing, which depend on Shannon’s entropy and distance concept.  

 

      The first application is the enhancement of the cell count method. It is known that 

the cell count method of medical doctors requires extreme attention and takes too 

much time. In addition, it is known that this situation induces count errors due to 

doctors’ workload and leads to loss of time. Consequently, some scientific studies 

are needed for cell counting. This study aims to use the segmentation method for 

clear vision in cell counting from histopathological images. The fuzzy entropy 

method is used in the segmentation process. Before the segmentation process, the 

images were cleared by removing the noise from the image and a better image for 

cell count was provided. In the segmentation process, a better threshold value is 

obtained compared to the previous works, by using generalized fuzzy entropy and 

Shannon’s entropy. In this study, the results of fuzzy entropy and Shannon’s entropy 

methods used in cell count application are compared as well.  

 

     The second application in this study uses the generalized fuzzy entropy method to 

remove the noise on an image. The noise on the human face image is reduced with 

the cost function obtained depending on the method of fuzzy entropy. It is aimed to 

contribute to the studies in the field of health by obtaining better results with this 

method in the clarification of images particularly such as MR, ECG and ultrasound. 
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BULANIK  ENTROPİ VE UYGULAMALARI 

 

ÖZ 

 

 

Bulanık mantığın temeli bulanık kümelere dayanır. Klasik yaklaşımda bir eleman ya 

kümenin elemanıdır ya da değildir. Bulanık yaklaşımda ise her bir  elemanın bir  

kümeye üyelik derecesi söz konusudur.  

 

     Bulanık entropi bulanık kümelerin bulanıklığının matematiksel değerlerini ifade 

etmede kullanılır. Bilgi teorisinin ve telekomünikasyonun temel konusu olan entropi 

kavramı bulanık kümelerde bulanıklığın bir ölçümüdür.  

 

     Bu çalışmada, Shannon ve distance yöntemlerine dayandırılarak ifade edilen 

bulanık entropi çeşitleri ve görüntü işleme üzerine iki uygulama yer almaktadır. 

 

      Birinci uygulamada amaç hücre sayma metodu geliştirilmesidir. Tıp doktorlarının 

hücre sayma yöntemlerinin çok fazla dikkat gerektirdiği ve oldukça zaman aldığı 

bilinmektedir. Ayrıca bu durum doktorların iş yükünü artırmakta ve hatalı sayımlara 

neden olmaktadır. Bu nedenle hücre sayma işlemleri için yeni bilimsel çalışmalara 

ihtiyaç duyulmaktadır. Bu çalışmada, histapolojik görüntülerdeki hücre sayısını 

bulmak için bölütleme yöntemi kullanılmaktadır. Bölütleme işleminden önce, 

görüntü üzerindeki gürültünün giderilerek hücre sayımı için daha net bir görüntü elde 

edilmektedir.  Shannon ve genelleştirilmiş bulanık entropi yöntemleri ile önceki 

çalışmalara göre daha iyi bölütleme değeri elde edilmektedir. Shannon ve 

genelleştirilimiş bulanık entropi yöntemleri ile hastalıklı dokulardaki hücre sayma 

işlemi sonuçları karşılaştırılmaktadır.  

 

     Tezdeki ikinci uygulama genelleştirilmiş bulanık entropinin görüntü üzerindeki 

gürültünün giderilmesi üzerine bir uygulamasıdır. Bulanık entropi yöntemine 

dayanarak elde edilen maliyet fonksiyonu ile insan yüzü görüntüsü üzerindeki 

gürültünün azaltılması gerçekleştirilmektedir. Özellikle MR, EKG, ultrason vb. 
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görüntülerin netleştirilmesinde bu yöntemle daha iyi sonuçlar elde edilerek sağlık 

alanındaki çalışmalara katkı sağlaması amaçlanmaktadır. 

 

Anahtar kelimeler: Bulanık mantık, entropi, bulanık entropi, genelleştirilmiş bulanık 

entropi, görüntü işleme, gürültü giderme. 
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CHAPTER ONE 

 

INTRODUCTION 

 

     Fuzzy logic is based on fuzzy sets. In the classical approach, an element either is 

or is not the element of the set. However, in the fuzzy approach, each element has a 

degree of membership to the set.   

 

     Fuzzy entropy is used to express the mathematical values of the fuzziness of 

fuzzy sets. The concept of entropy, the basic subject of information theory and 

telecommunications, is a measure of fuzziness in fuzzy sets.   

 

     The examination of systems containing ambiguity gained a new dimension after 

fuzzy logic and the fuzzy set theory, which used the rules of this logic, had been 

developed by Lotfi A. Zadeh and published in his original manuscript dated 1965 

(Zadeh, 1965). The use of Fuzzy Logic recently reached its peak after the intense use 

in Japanese products in the 1980s. Nowadays it is possible to run across fuzzy logic 

applications in almost every area.  

 

      The measurement of the degree of fuzziness in fuzzy sets is an important step for 

applied areas. Entropy methods are used to conduct goal-driven calculations by 

processing the data that have been transformed into a fuzzy structure. Fuzzy logic 

and the most important indicator of fuzziness, entropy, have recently been used in 

various scientific studies.  

 

      The concept of entropy was introduced by Boltzman at the end of the 19
th

 century 

as a measurement of the irregularity of an ideal gas in a closed container. Information 

Theory, on the other hand, emerged during the resolution of problems pertaining to 

telecommunications during the 1940s. The purpose of information theory is to 

investigate the rules related to the acquisition, transfer, processing and storage of 

information. The randomness phenomenon in information transfer has made the use 

of statistical methods inevitable in the investigation of these processes. Information 
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theory, further developed by Shannon (1965), tries to explain the amount of 

information in a data set and its regularity. Multitude and diversity of information 

indicate that the entropy of the data will be low (Klir and Yuan, 2000). 

      Entropy will be used together with the concept of information. It was previously 

mentioned that the Information Theory aimed to investigate the quantitative laws 

related to the acquisition, transfer, processing and storage of information. Before the 

definition of information, the definition of entropy, which is also called statistical 

entropy and which can be defined as the measure of diversity over the probability 

distributions, will be elaborated.  

  In order to transfer information, it should be appropriately encoded. This 

information should be transferred using the minimum number of symbols. If the 

condition of a material system is exactly known, the transferred information about 

this system is not of such great significance. However, there should be a condition to 

measure how valuable the information about a system under any random and 

unknown condition is. This is called the “instability degree” of a system. The 

instability degree of a system is dependent not only on the number of possible 

conditions but also on the probabilities of that system to be under one of those 

conditions. If all information in the system is at the same level and has the same 

probability, the entropy of the system is maximum.  

   

  In this study, the distance between fuzzy sets and the entropy method are used 

to calculate the degree of fuzziness of a system.  The study discusses the most used 

entropy methods in the literature. Entropy methods based on fuzzy entropy, 

generalized fuzzy entropy and Shannon‟s entropy are elaborated in the study. The 

study, then, touches upon how fuzzy entropy is used in applications including 

different methods and techniques of image processing. Some of these applications 

are summarized below. 

 

  H.D. Cheng and Huijuan Xu (2001) argue that the fuzzy set theory yields better 

results in image processing than the other methods. It can be seen that a clearer 

image is obtained in mammography images by increasing the concentration and 
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segmenting the image into required areas using the fuzzy entropy method (Cheng 

and Xu, 2001). 

 

  Üstüntaş et al. defined an expert system, attempting on a new approach different 

from the previous statistical problem resolution methods in image mapping 

algorithms. In their study, they proposed a fuzzy logic based image mapping 

algorithm. The study is a photogrammetric application of fuzzy logic. A software 

program, together with a fuzzy algorithm, was devised to map an image and the 

control points defining the model on that image. The fuzzy logic algorithm defines 

the appropriateness of the topological and geometrical features of the target. The 

program seeks for the target near the approximate coordinates and makes the 

decision of the most appropriate point to start marking. In order for this method to 

work, the approximate orientation elements of the image should be known and the 

images evaluated should be overlapping (Üstüntaş et al., 2006).  

 

 Wen-Bing Tao et al. attain the best segmentation pixel values by segmenting the 

image into three areas using fuzzy entropy. They grouped the pixels of the image as 

the dark area, gray area and bright area and calculated the values that yielded the 

maximum entropy in total out of the entropies of these three areas (Tao et al., 2003). 

 

     Adel Fatemi uses a more efficient entropy method by making use of the 

membership degrees in fuzzy sets based on Shannon‟s entropy, instead of De Luca 

and Termini‟s entropy, which uses the probabilistic values of the pixels in image 

processing (Fatemi, 2011).  

 

     Chen et al. use the entropy method effectively in EMG signal analysis for feature 

extraction and classification of the signals (Chen et al., 2007). 

 

      E. Pasha et al. use the fuzzy entropy method to obtain the coefficients of linear 

equations. Instead of the most widely used coefficient obtaining methods in the 

literature, namely the least squares method and the approach which minimizes the 
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fuzzy coefficients matrix, Pasha et al. obtain the most appropriate coefficients by the 

fuzzy entropy method (Pasha et al., 2007). 

 

     In this study image analysis will be conducted using the fuzzy entropy methods. 

Firstly, the pixel matrices forming the image are made fuzzy through the S_function 

that transforms them into fuzzy sets and 8 neighbor pixel mean method. The new 

fuzzy matrix is segmented with the fuzzy entropy methods. Similarly, the cost 

function based on the fuzzy entropy methods is used to remove the noise on the 

image. While the examinations of cell images and cell counts in medicine are 

performed manually, the doctors declared that the process is exhaustive, error-prone 

and time-consuming. With the methods devised in this study, it is seen that the best 

segmentation of the cell images and thus a clearer view of the cells can be obtained.  

 

     Image segmentation has many application areas. In medicine, it is used to monitor 

atherosclerosis and ruptures in the vein by Gamma and X rays and to detect the 

diseased cells in tissue samples from patients; in industry, it is used to find missing 

elements and to detect disconnection between electrical circuit lines; in meteorology, 

it is used to interpret the satellite photographs and for weather forecasts and to 

monitor warming phenomenon due to the hole in the ozone layer by using special 

coloring processes (Kara et al., 2003). 

 

     Toroman and Türkoğlu worked on the cell count process using the extraction of 

the required patterns from the image with the image segmentation process. The most 

important feature of the process of counting the required cells in an image after 

transferring them into digital medium is its speed. The cell count procedure, which is 

normally conducted by experts in a couple of hours, takes a few minutes for a 

computer. Toroman and Türkoğlu argue that this time-saving enables the doctor to 

make decisions more rapidly and thus enable him/her to do more examinations 

(Toraman and Türkoğlu, 2006). 
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      This thesis comprises six chapters, including the introduction. In Chapter Two, 

fuzzy logic is defined in general. Entropy is discussed in the next chapter, whereas 

Fuzzy Entropy is discussed in Chapter Four. As the main focus of this study is the 

application, the methods will be briefly reviewed.  

 

 In Chapter Five, two applications are presented. In the first application, cell 

count procedure is performed using the fuzzy entropy method in image processing on 

the tissue images obtained in an engineering laboratory. The second application 

performs an image denoising procedure using the cost function with the fuzzy 

entropy method. In both of the applications, the best segmentation value is obtained 

by transforming the pixels of the images into fuzzy values with S-function and 

appropriate entropy methods. In the cell count procedure, the processing of the 

images and the enhancement of cell images are performed at first hand. The removal 

of noise on the image, differentiation of the adherent cell and rounding of the cell 

walls are some of the preliminary stages. Likewise, denoising, the transformation of 

the pixels of the image into fuzzy sets and the removal of noise after forming a cost 

function with entropy methods are carried out in the other application.  

 

     In the last chapter, the results of the applications are presented and the fuzzy 

entropy applications in this study are discussed. Regarding the results obtained in the 

study, it is thought that these applications can be of help for the decision makers in 

„„counting cells in a tissue image” and “denoising”.  
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  CHAPTER TWO 

 

FUZZY LOGIC 

 

 

     Fuzzy Logic can be defined as a function that relates the truth of a proposition to 

other propositions, to values in a set involving an infinite number of truth values 

between absolute true and absolute false, or to the [0, 1] real number range. This 

definition is an outcome of the first work by L. Zadeh on fuzzy sets. Fuzzy Logic is a 

way of approximate reasoning. Fuzzy Logic’s having different truth values which are 

represented with different adjectival degrees (or numerically with values between 

[0,1]) has brought along the truth tables. However the certainty of these tables is not 

absolute. But they have approximate estimation rules as a distinctive feature (Baykal 

and Beyan, 2004). 

 
    The human brain interprets imprecise and incomplete sensory information 

provided by perceptive organs. Fuzzy set theory provides a systematic calculus to 

deal with such information linguistically, and it performs numerical computation by 

using linguistic labels stipulated by membership functions (Jang et al., 1997). 

 

     For example, A classical set in Eq.(2.1) is with a crisp boundary and classical set 

of real numbers greater than can 175 be expressed as  

 

         A= 175x                                                                 (2.1) 

 

where the clear, unambiguous boundary is 175; such that, if x is greater than this 

number, then x belongs to the set A; otherwise x does not belong to the set. Although 

classical sets are suitable for various applications and have proven to be an important 

tool for mathematics and computer science, they do not reflect the nature of human 

concepts, and thoughts, which tend to be abstract and imprecise. As an illustration, a 

set of tall persons can be expressed numerically as a collection of persons whose 

height is more than 175 ft; this the set denoted in Eq. (2.1); if A= “tall person’’ and 

x= “height’’. Yet this is a natural and inadequate way of representing the usual 

concept of “tall person’’. For one thing, the person, but not a person 174 ft tall. This 
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distinction is intuitively unreasonable. The flaw comes from the sharp transition 

between inclusion and exclusion in a set. 

 

     In contract to classical set, a fuzzy set, as the name implies, is a set without a crisp 

boundary. That is, the transition from “belong to set’’ to “not belong to a set’’ is 

gradual, and this smooth transition is characterized by membership functions that 

give fuzzy sets flexibility in modeling commonly used linguistic expression, such as 

“the water is hood’’ or “the temperature is high’’. As Zadeh pointed out in 1965 in 

his seminal paper entitled  “Fuzzy Set’’, such imprecisely defined sets or classes 

“play an important role in human thinking, particularly in the domains of pattern 

recognition, communication of information, and abstraction’’. Note that the fuzziness 

does not come from the randomness of the constituent members of the sets, but from 

uncertain and imprecise nature of abstract thoughts and concepts (Jang et al., 1997). 

 

2.1 Basic Definitions and Terminology 

 

      X is a space of objects and x is an element of X. A classical set A, A   X, is 

defined as a collection of element sort objects x   X, such that each x can either 

belongs or not belongs to the set A. By defining a characteristic function for each 

element x in X, it can be represent a classical set A by a set of ordered pairs (x, 0) or 

(x, 1), which indicates x X , respectively. 

 

     Unlike the aforementioned need conventional set, a fuzzy set expresses the 

degree to which an element belongs to a set. Hence the characteristic function of a 

fuzzy set is allowed to have values between 0 and 1, which denotes the degree of 

membership of an element in a given set. 

 

2.1.1 Fuzzy sets and membership functions 

 

     If X is a collection of objects denoted generically by x, then a fuzzy set A in X is 

defined as a set of ordered pairs in Eq. (2.2), 
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     XxxxA A  :)(,(                                              (2.2) 

 

where )(xA is called the Membership Function (MF) for the fuzzy set A. The MF 

maps each element of X to a membership grade (or membership value) between 0 

and 1. 

 

     For simplicity of notation in Eq. (2.3), we now introduce an alternative way of 

denoting a fuzzy set A can be denoted as 

                                                                                           

 

,( ) /   if   X is a collection of discrete objects

( ) / ,   if   X is a continuous space usually the real line R

i
A i ix X

A
X

x x
A

x x









 





               (2.3)  

 

Example 2.2   Fuzzy sets with a discrete ordered universe  

 

     X = {0, 1, 2, 3, 4, 5, 6} be the set of numbers of children a family may choose to 

have. Then the fuzzy set A = “sensible number of children in a family” may be 

described as follows: 

 

              A= {(0,0.1), (1,0.3), (2,0.7), (3, 1), (4, 0.7), (5, 0.3), (6, 0.1)} 

 

here we have a discrete ordered universe X; the MF fort he fuzzy set A is shown in 

Figure 2.1 (a). Again, the membership grades of this fuzzy set are obviously 

subjective measures. 

   

Example 2.3   Fuzzy sets with a continuous universe  

 

     X = R be the set of possible ages for human beings. Then the fuzzy set B= “about 

50 years old” may be expressed as 

 

     XxxxB B  :)(,(   

. 
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where   
4)

10

50
(1

1
)(





x

xB . This is illustrated in Figure 2.1 (b). 

 

 

  Figure 2.1 (a) A = “sensible number of children in a family”; (b) B = “about 50 years old.” 

 

Example 2.5 Linguistic variables and linguistic values 

 

     Suppose that X= “age.” Then we can define fuzzy sets “young,” “middle aged” 

and “old” that are characterized by MF’s )(),( xx middleagedold   and )(xold  

respectively. Just as a variable can assume various values, a linguistic variable “Age” 

can assume different linguistic values, such as “young” “middle aged” and “old” in 

this case. If   “age” assumes the value of “young” then we have the expression “age 

is young” and so forth for other values. Typical MF’s for these linguistic values are 

displayed in Figure 2.2, where the universe of discourse X is totally covered by the 

MF’s and the transition from one MF to another is smooth and gradual.  

 

     Some of the most important concept of fuzzy sets are the concept of the support 

of a fuzzy set A of all points x in X such that )(xA 0  in Eq. (2. 4), 

 

                                          support(A)= 0)(: xx A ,                                             (2.4) 

 

the core of a fuzzy set A is the set of all points x in X such that 1)( xA  in Eq.(2.5), 
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                                                    ( ) : ( ) 1Acore A x x  .                                     (2.5) 
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Figure 2.2 Typical MF’s of linguistic values “young” “middle aged” and “old.” 

 

     A fuzzy set A is normal if its core nonempty. In other words, we can always find a 

point Xx  such that 1)( xA .  

 

     A crossover point of a fuzzy set A is a point Xx  at which 5.0)( xA  in Eq. 

(2.6), 

 

          5.0)(:)(  xxAcrossower A .                                          (2.6) 

 

     A fuzzy set whose support is a single point Xx  with ( ) 1A x  is called fuzzy 

singleton (Jang et al., 1997). 

  

     Other concepts of fuzzy set are concepts of support, the -cut or -level set of a 

fuzzy set A is a crisp set defined in Eq. (2.7). 

 

                                    )(: xxA A                                                            (2.7) 
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      Strong -cut or strong -level set are defined similarly in Eq. (2. 8). 

 

   )(:' xxA A                                                              (2.8) 

 

     Using the notation for a level set, we can express the support and core of a fuzzy 

set A as 

                                      

                                         '

0)( AAsupport    

                                    

                                          1( )core A A  

respectively. 

 

2.2 Set -Theoretic Operations 

 

     Union, intersection and complement are the most basic operations on classical 

sets. Corresponding to the ordinary set operations of union, intersection and 

complement, fuzzy sets have similar operations, which were initially defined in 

Zadeh’s seminal paper (Zadeh, 1965). 

 

     If set A is a subset of B in classical approach, it is denoted by  BA . Set A and 

B are fuzzy sets, and A is a subset of B if and only if )()( xx BA    in Eq. (2.9) or 

B is a subset of A in Eq. (2.10), 

 

                                    )()( xxBA BA                                                        (2.9) 

 

                                    ( ) ( )A BA B x x                                                       (2.10)  

 

     The union and intersection of two fuzzy sets A and B are a fuzzy set 1C , 2C  

respectively, written as BAC 1 , BAC 2  whose MFs are related to those A 

and B in Eq. (2.1) and (2.2). 
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                              ))(),(max()(
1

xxx BAC  )()( xx BA                          (2.11) 

 

                             ))(),(min()(
2

xxx BAC  )()( xx BA                            (2.12) 

      

     The complement of fuzzy set A, denoted by A  ( A , NOT A), is defined as below 

(Lee, 2005) 

                                                    )(1)( xx AA
  . 

 

     The Yager's complement function and operation. The well-known complement 

operators in Eq. (2. 13) (Baykal, 2004). 

 

                                 ww

w aaC

1

)1()(   and ww

A
A

xx

1

))(1()(                      (2.13) 

 

      A and B be fuzzy sets in X and Y, respectively. The Cartesian product of A and 

B, denoted by AxB, is a fuzzy set in the product space XxY with the membership 

function, 

( , ) min( ( ), ( ))AxB A Bx y x y   . 

 

2.3 Membership Function Formulation and Parametrization 

 

     A triangular MF and trapezoidal MF are best known and both of them have been 

used extensively, especially in real time implementation. They can be formulated in 

Eq. (2.14) and Eq. (2.15) as (Jang et al., 1997) 

 

 

























x        c                      ,  0

cxb                  , 
b-c

x-c

bxa                  , 
a-b

a-x

a  x                    , 0

),,,( cbaxtriangler                                            (2.14) 
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where the parameters a, b, c ( a < b < c ) determine the x coordinates of the three 

corners of the underlying triangular MF. 

  





























x        d                      ,  0

dxc                 ,
c-d

x-d

cxb                       , 1

bxa                  , 
a-b

a-x

a   x                    , 0

),,,,( dcbaxtrapezoid                                        (2.15) 

 

where the parameters a, b, c, d ( a < b < c < d ) determine the x coordinates of the 

three corners of the underlying trapezoidal MF in Eq. (2.15). Both triangular and 

trapezoidal MFs are composed of straight line segments; they are not smooth at the 

corner points specified by the parameters. In the following, other types of MFs are 

defined by smooth and nonlinear functions such as Gaussian, Generalized bell etc. A 

Gaussian MF is specified by two parameters {c,σ }; c represent the MFs center and σ 

determines the MFs width as in Eq. (2. 16). 

 

                                                   
2)(

2

1

),,( 
cx

ecxgaussian




                               (2. 16) 

 

     A generalized bell is specified by three parameters {a, b, c} as in Eq. (2. 17) 

 

                                             
b

a

cx
cbaxbell

2||1

1
),,,(




                                    (2. 17) 

where the parameter b is usually positive. Center is adjusted by c, width of the MF is 

changed by a, and b is used to control to slopes at the crossover points in Figure 2.4. 

Because of these two MFs, Gaussian and generalized bell, are becoming increasingly 

popular for specifying fuzzy sets. Gaussian functions are well known in probability 

and statistics (Jang et al., 1997). 
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                                                (a) Changing 'a'                                                       (b) Changing 'b' 
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                                                (c) Changing 'c'                                                       (d) Changing 'a' and 'b' 
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Figure 2.4 The effects of changing parameters in bell MFs: (a) changing parameters a; (b) 

changing parameters b; (c) changing parameters c; (d) changing a and b simultaneously but 

keeping their ratio constant. 

 

     Since the fuzzy entropy will be used in the study, firstly the fuzzy logic was 

summarized in this chapter. The next chapter will discuss the theoretical background 

of the concept of entropy.  

 

 



16 

 

CHAPTER THREE 

            ENTROPY 

 

      Entropy is the measure of the uncertainty of a system. In defining entropy, 

thermodynamics, statistical physics theory and the information theory definitions are 

the most widely used ones. In this study, the definitions other than the information 

theory definition are discarded since this study defines entropy in terms of 

information theory.  

 

3.1 Defining Entropy 

 

Entropy is a value which increases as the level of irregularity increases. Therefore 

it is directly proportional to irregularity. Let us explain entropy with an example: It 

can be said that the entropy of the earth increases every day. The earth has been 

losing its order since the first day of its formation and the possibility for the earth to 

return the order in the first day decreases day by day. Thus, since the direction of 

time is considered as the direction of the increase in entropy, we can replace 

information with entropy. We perceive the direction of time flow as the decrease 

direction of the information in the system. In other words, as the probability 

decreases or the irregularity increases the information will decrease.  

 

     The information required for all the possible states of a system to be known 

equals to the entropy of that system. The transition of a system from an ordered, 

organized and planned structure to an unordered, disorganized and unplanned state 

increases the entropy of that system. Therefore, information is considered as the 

reverse-entropy. One may wonder what kind of relation entropy, as a concept mostly 

encountered in thermodynamics, has with information theory. This relation is not an 

intuitional one, but it depends wholly on mathematical proofs. However, the two 

kinds of entropy have some differences. A chemist or a refrigeration engineer divides 

energy to temperature to express the thermodynamic entropy. However, for a 

communications engineer using the Shannon entropy, entropy is in the form of bits, 

and more importantly it is without any dimensions. The difference emerges from a 
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transformation. If, in a system, randomness is at the maximum or the probabilities of 

the messages at the information source for selection are equal, the entropy of that 

information source is at maximum.  

     

     In Shannon's theory information is equaled to fuzziness. Information theory deals 

with communication and is a completely statistical theory. C. E. Shannon’s (1965) 

work titled “A Mathematical Theory of Communication" is considered as the origin 

of the theory. According to Shannon the information source is a person or a device 

that produces messages, with a statistical feature. Information is measured in terms 

of unpredictability or information value for the receiver. As it was mentioned before, 

information removes the uncertainty the receiver experiences. According to the 

theory, the emergence of a situation (creation of a message) of p probability at the 

source, is an information formation of 
p

1
log 2 . Here the reason for logarithmic base 

2 is related to the selection of the unit. If we are to define entropy; it is the average 

amount of information (Cover and Thomas, 2006).  

 

     The information entropy of the X discrete random variable, which can obtain the 

values {x1...xn} is calculated with the equation in Eq. (3. 1). 

 

          



n

1i

i2i )p(x)logp(xH(X)                                                   (3.1)           

                                       

If X random variable is a continuous variable, entropy is calculated with Eq. (3.2) 

(Shannon, 1948). 

 

          




 )dxf(xlog)f(xH(X) i2i
                                                  (3.2)       
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   This examines the entropy calculations for discrete and continuous random 

variables with one example for each.  

 

      An individual is asked to think of a number between 1 and 16. The example tries 

to obtain the correct answer by asking yes/no questions (2-tuple answer) If the 

number of question attempts to reach the result is calculated with Shannon Eq. (3. 1); 

 

bit.  4          

)2log
16

1
16(          

(1/16)log
16

1
..(1/16)....log

16

1
(1/16)log

16

1
H(X)

)p(x)logp(xH(X)

4

2

16

1

222

16

1i

i2i



















i
  

 

    This means that the answer can be found by asking an average of 4 questions.  

 

     The easiest logarithmic value in the calculations is generally the log2 (p) value. 

Therefore, this base is preferred mostly in calculating entropy and inofrmation value 

in the literature.  

 

     The four inferences below could be made about entropy as per the probability of 

different conditions;  

 

     First, any information cannot emerge with the realization of a condition with an 

emergence probability of 1. Under these circumstances entropy value is 0. For 

instance, when a loaded dice with 4 on each faces is tossed, it is known that number 

that 4 will come up each toss. This toss does not change our knowledge.  

 

      The second inference is that when the possible states of a system increase, its 

entropy value also increases.  

 

     Thirdly, emergence of a least probable state creates more information compared 

to the more probable one. For instance, instead of knowing that the sides of a coin 
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after a flip will be heads or tails, estimating the 6 numbers in a lottery draw will 

include vast amounts of information.  

      

     As the fourth inference, it can be concluded that the estimation of the results gets 

harder as the entropy of a system increases. The power of estimation will decrease as 

the fuzziness increases.  

 

As another example, when X ~U(a,b), 

 

1 1
( ) ( )ln ( ) ln ln ln ln

X

b

x
D a

b a
H X

b a b a
f x f x dx x dx x

x




 
       

  . 

 

     Similarly, if X ~N(0, 2

X ) then, 
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





 












 
 
 
 

 

      

   

 

 

  

 

     Entropy has six features presented below: 

     1) Nonstorage 

     2) Static 

     3) Statistically independent  

     4) Continuous 

     5) Symmetrical 

     6) Summable. 

 

 

 

 

. 
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 3.2 Entropy Types 

 

      Different entropies can be calculated depending on the situations at hand. In this 

section some of the entropy types will be explained.  

 

  3.2.1 Joint Entropy 

    

     If the X discrete random variable with the values  n1 x,......,x  and the Y discrete 

random variable with the values  m1 y,......,y  have a jointed probability distribution 

p(X=x i , Y=y
j
), the joint entropy of the X and Y random variables is calculated as in 

in Eq. (3.3). 

 

                  H(X,Y) = -  ij
p(X=x i , Y=y )j log p( X=x i , Y=y)                     (3.3) 

 

     When the random variables are continuous the joint entropy value is calculated as 

in Eq. (3. 4). 

 

                  H(X, Y) =-  ij
f(x i ,y )j logf(x i ,y j )dxdy                                          (3.4) 

 

     Joint entropy is also called the common information measure.  

 

  3.2.2 Conditional Entropy 

    

    Let X and Y are random variables with combined probability distribution. The 

measurement of fuzziness in X variable, when the values of Y are given, is the 

conditional entropy dependent on Y variable. Knowing Y always decreases the 

fuzziness of X. It is shown as H(X|Y). In calculating the conditional entropy of X 

depending on Y the Eq. (3.5) is used for discrete variables, and Eq. (3.6) is used for 

continuous variables (Oruç et al., 2009). 
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                  H(X|Y)=  i j i jp(x |y ).log p(x |y )                                                     (3.5) 

 

                  H(X|Y)=  i j i jf(x |y ).log f(x |y )  dxdy                                                  (3.6) 

 

 

 3.2.3  Relative Entropy 

      

    Relative entropy is a measure that shows the similarity between two probability 

distributions. In the literature it is also known as the Kullback-Leibler distance and is 

shown as D(p||q). It is calculated in Eq (3.7) for discrete variables and in Eq. (3. 8) 

for continuous variables. 

 

D(p||q)=
Xx q(x)

p(x)
p(x)log                                                                         (3.7) 

 

D(p||q)= dx
g(x)

f(x)
f(x)log

Xx




                                                                    (3.8) 

 

If the distributions examined are similar, the difference between D(p||q) and 

D(q||p) is smaller (Cover, 2006). 

 

     This chapter covered the theoretical framework for entropy, since fuzzy entropy 

will be used in the study. The next chapter will touch upon how fuzzy logic and 

entropy will be used together and it will explain the fuzzy entropy methods as a 

means to calculate the degree of fuzziness.  
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CHAPTER FOUR 

 

FUZZY ENTROPY 

 

 
      Fuzziness is one of the universal attributes of human thinking and objective 

things. Fuzzy set theory is one of the efficient means of researching and processing 

fuzzy phenomena in real world. It is the fuzzy sets that may describe fuzzy objects 

effectively so that fuzzy sets play more and more important functions in system 

modeling and system design. Therefore, the quantitative analysis of fuzziness in a 

fuzzy set is an important problem. Entropy is an important concept in Shannon 

information, in which entropy is a kind of measurement for describing the degree of 

no restrain of stochastic vectors. Fuzzy set theory makes use of entropy to measure 

the degree of fuzziness in a fuzzy set, which is called fuzzy entropy. Fuzzy entropy is 

the measurement of fuzziness in a fuzzy set, and thus has especial important position 

in fuzzy systems, such as fuzzy pattern recognition systems, fuzzy neural network 

systems, fuzzy knowledge base systems, fuzzy decision making systems, fuzzy 

control systems and fuzzy management information systems (Min, 1998). 

 

     The Shannon’s entropy and the distance between fuzzy sets methods are used to 

measure the fuzziness of the fuzzy sets. The most widely used methods Fuzzy 

entropy and generalized fuzzy entropy are elaborated below.  

 

4.1 Fuzzy Entropy 

 

     According to information theory the entropy of a system is a measure of the 

amount of information of the system. 

      ix , i= (1……N) be the possible outputs from source A with the 

probability )( ixP . Entropy is defined as in Eq. (4.1),       

 

                                     
1

( , ) ( ) log ( )
N

nonfuzzy i i

i

H A P P x P x


                                     (4.1) 

                                                      



 

 

23 

 

 where, 1)(
1




N

i

ixP . 

 

       The subscript “nonfuzzy” is used to distinguish from the fuzzy entropy. Large 

entropy implies a larger amount of information. Using the Lagrange multiplier 

method is defined as in Eq. (4.2). 

 

                       )(AF 



N

i

i

N

i

ii xPxPxP
11

)1)(()(log)(                                  (4.2)     

 

     The maximum of  ),( PAH nonfuzzy  can be found in Eq. (4.3). 

 

                             01)(log
)(

)(





i

i

xP
xP

AF
                                                 (4.3) 

 

     1)(  exP i  for )...1( Ni   is obtained From in Eq. (4.3). ),( PAH nonfuzzy  will 

reach the maximum when 
N

xPxPxP N

1
)(...)()( 21   of set  an data can be 

viewed as information source A with the intensities as the possible outputs. The 

histogram distribution can be viewed as probability )( ixP  in fact Eq. (4.1) describes 

the entropy in the ordinary domain. What measure of fuzziness need is entropy that 

can measure the amount of information for set in the fuzzy domain (Chen, 1997). 

 

4.1.1 Fuzzy Entropy Based on Shannon Function 

 

     Many definitions of fuzzy entropy are studied. Most of them incorporate the 

membership A  with the probabilities P in the measure of fuzzy entropy. In order to 

measure the information amount of a fuzzy set. Zadeh suggests a definition about the 

entropy of a fuzzy set that takes both probabilities and memberships of elements into 

consideration. A be a fuzzy set with membership function A are the possible outputs 

from source A with the probability )( ixP  in Eq. (4.4). 
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   



N

i

iiiAfuzzy xPxPxAH
1

)(log)()()(                                 (4.4) 

 

     The difference between in Eq. (4.1) and in Eq. (4.4) is the term )( iA x  which 

serves as a weighted multiplier in Eq. (4.4). Therefore Zadeh’s fuzzy entropy in Eq. 

(4.4) is also called weighted entropy.  

 

     Kaufman defined the entropy of a fuzzy set A as in Eq. (4.5), 

 

 





N

i

iAiANAAA xx
N

xxxH
1

21 ))(ln()(
)ln(

1
))(),...,(),((                    (4.5) 

 

where, )( iA x  is defined as 





N

i

iA

iA

iA

x

x
x

1

)(

)(
)(




 . 

 

     It took the probabilities of membership )( iA x  in the fuzzy domain instead of the 

probabilities of elements )( ixP  in ordinary domain for the calculation of fuzzy 

entropy (Chen, 1997). 

 

      Deluca and Termini proposed a quite different definition of the entropy of a 

fuzzy set A. This entropy based on Shannon function has a no probabilistic feature 

and is defined as in Eq. (4.6), 

 

   



N

i

iAn xS
N

AH
1

))((
2log

1
)(                                              (4.6) 

 

where nS  is the Shannon’s function for fuzzy set as in Eq. (4.7). 

 

 ))(1ln())(1())(ln()())(( iAiAiAiAiAn xxxxxS                  (4.7) 
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4.1.2 Fuzzy Entropy Based on Distance 

 

     Support A is a fuzzy set on discourse  nuuuU ,...,, 21 , the membership vector of 

A is T

naaaA ),...,,( 21 , here ]1,0[)(  iAi ua  , then the fuzzy entropy or classic 

fuzzy entropy based on distance of A as in Eq. (4. 8), 

 

                                             



n

i

iAid ua
n

AH
1

|)(|
2

)( 0                                     (4. 8)   

 

where 0A  is a crisp set with minimal distance to A , the feature function of 0A  as in 

Eq. (4.9). 

 

                                                









5.0a    1

5.0a    0
)(

i

0

i

iA
u                                           (4. 9) 

 

     Fuzzy entropies have following properties: 

1) Nonnegative; 0)( AH  

2) Certainty; if A crisp set, then 0)( AH  

3) Maximally; when i  
2

1
ia )(AH  maximize and 1)( AH  

4) Symmetry; )()( cAHAH  , then here cA  is a complement set of  A, and then 

)(1)( uu AAc     

      5) If when   )()(,
2

1
)( uuAH AB   , and when )()(,

2

1
)( uuAH AB    

for u , then )()( BHAH   (Min and Sen, 1998). 

             

4.2 Generalized Fuzzy Entropy 

 

     Although fuzzy entropy based on Shannon function and fuzzy entropy based on 

distance have different formats, they have some same features. In order to apply 
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fuzzy entropy effectively in fuzzy systems, a kind of generalized format of fuzzy 

entropy is presented as in Eq. (4.10), 

 

                                                     



n

i

ii ahwAH
1

)()(                                           (4.10) 

 

where,  1
1




n

i

iw . 

 

It can be seen that fuzzy entropy is practically the weighting sum of some nonlinear 

functions of membership vector of a fuzzy set. Different weighting coefficients iw , 

and different function )( iah may result in different computing formats for fuzzy 

entropy (Min and Sen, 1998). 

 

4.2.1 Generalized Fuzzy Entropy Based on Shannon Function 

 

     Shannon entropy, among the fuzzy entropy types, is entropy defined dependently 

to the Shannon function. Generalized fuzzy entropy based Shannon function is 

defined as given in Eq. (4.11)  

 

1

( ) ( ( ))
n

A i

i

H A w h x


                                           (4.11) 

 

 where,  Shannon function is  )1ln()1(ln)( iiiii aaaaah  .                   

Different weighting coefficients w , and different function )( iah may result in 

different computing formats for fuzzy entropy. 
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 4.2.2  Generalized Fuzzy Entropy Based on Distance  

 

      Support A is a fuzzy set on discourse  nuuuU ,...,, 21 , the membership vector 

of A is T

naaaA ),...,,( 21 , here ]1,0[)(  iAi ua  , generalized fuzzy entropy based 

on distance of A as in Eq. (4.12) 

 

                                     
1

( ) ( )
n

i

i

H A w h a


                                                    (4.12) 

 

where,
2

w
n

 ,  0A  is a common set with minimal distance to A  in Eq. (4.9) and 

|)(|)( 0 iAii uaah  . 

 

Different weighting coefficients w , and different function )( iah may result in 

different computing formats for fuzzy entropy. 

 

     It is necessary to note that from the generalized format of fuzzy entropy, in order 

to constructed practical and effective fuzzy system, the key task is to select 

appropriate weight coefficients and transform functions. In other words, the guidance 

of generalized fuzzy entropy, different entropy may be constructed for different 

problems, and thus better system characteristic may be obtained. For example, in 

constructing fuzzy learning system for forward neural networks and self-organizing 

feature mapping networks, kind of fuzzy entropy is presented and used to laming 

criterion, and thus obtain better learning effect (Min and Sen, 1998). 

 

4.2.3 Generalized Fuzzy Entropy Based on Yager’s Complementary Operator  

 

     )(xA , is the membership level of each x element of the fuzzy subset A of 

universal set X. In case the membership level of each x element in set A is 0.5, the 

entropy of A takes its highest value. In this study F(X) defines the fuzzy sets 
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designated on the universal sets X; P(X) defines the crisp sets designated on the 

universal sets X. 

 

      The complementary operator c(x) =1-x has only a transition point of value x=0.5. 

This operator is the most widely used operator in fuzzy sets and their applications. 

The rules of the generalized fuzzy entropy’s complementary operator  

c:[0,1] [0,1] can be listed as below: 

1)  c (0)=1 and c(1)=0, 

2) for  a, b [0, 1]; if a ≤ b then c(a) ≥c(b), 

3)  c is a continuous function, 

4)  c (c(x))=x. 

 

     The complementary function defined by Yager is given in Eq. (4.13) in case  

of   0<w<1.  

1/( ) (1 )w w

wc x x                                                     (4.13) 

 

      In case of w=1, Yager’s complementary operator becomes the fuzzy entropy 

operator.Yager’s complementary operator, in case of m(0,1), has only one 

transition point 
w

m
2

1
 . The generalized fuzzy entropy function,  RxFem )(  

has four conditions: 

 

1) if 0)( Aem  then )x(PA . 

2)  if A=[m]  then )(Aem  takes the greatest value. 

3)  if A
*
, is a sharpening set of set A, in case mxA )(  it becomes  

)()(* xx AA
  , and in case  m)x(A   it becomes )()(* xx AA

  . 

4) )()( AeAe m

c

m
m  . 
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   For a fuzzy set A defined in a limited set X, Kohen entropy given in Eq. (4.14), 

Kasko entropy in Eq.  (4.15), Tanimoto entropy in Eq.  (4.16) and Yager’s entropy in 

Eq.  (4.17) is used in generalized fuzzy entropy computations (Kasko, 1986). 
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)()( mcc AAMAe                                                          (4.16) 
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Here it is defined as 



n

i

iA xAM
1

)()(  .   

 

       The next section, the applications of fuzzy entropy will be explained                                      
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CHAPTER FIVE 

 

APPLICATIONS 

 

     In this chapter, image processing via fuzzy entropy methods will be primarily 

discussed. This chapter includes the cell count method and image denoising 

applications performed with these methods, and the results of these applications.  

 

5.1 Image Processing With Fuzzy Entropy 

 

     Gonzales and Woods (2001) define image (or picture) as a representation of an 

object. As for image processing, it is the body of techniques to obtain an image out 

of a particular image. The image processing techniques are used to enable humans or 

computers to perceive or interpret an image. Image processing has been developed to 

solve three main problem pertaining images. These are; 

 digitalizing, encoding and storing an image to ease data transfer, 

 image enrichment and enhancement, 

 and, image segmentation which is the first step of machine reading 

(Gonzales and Woods, 2008). 

 

Q is the set of gray pixels, xyq is the pixel value of the terms (x, y) of set Q. The 

brightness value of term (x, y) in pixel set Q an example in Figure 5.1, is expressed 

as ( )Q xyq  in fuzzy set. 

 

 , ( )    xy Q xyQ q q
, 

0 1xyq L    and 0 ( ) 1Q xyq 
.
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                          Figure 5.1 An example of set Q  histogram 

 

In this study, the fuzzy sets of the gray levels are generated using the S-function 

given in Eq. (5. 1).  
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                      (5. 1) 

 

 

Here the values x are the elements of gray pixel values set. The shape parameters 

of the S-function is defined as a, b and c. b value is a point between a and c. The 

fuzzy set defined using the S-function, reaches its greatest value with the pixel with a 

value of 0.5. While in fuzzy entropy, the maximum entropy is achieved via the pixel 

with membership level of 0.5; in generalized entropy the maximum entropy can be 

achieved via different membership levels (Pal et al., 2000). 

 

     Using fuzzy entropy method, the segmentation pixel value is given as below in 

Eq. (5. 2) and Eq. (5.4). 
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0         q(x,y) T
g(x,y)=

1          q(x,y) T     




                                          (5.2) 

 

     Here, if 5.0)( tQ  then T=t. 

     The segmentation method depending on generalized fuzzy entropy is represented 

as m value depending on Yager complementary operator in Eq. (4.13). 

 

       In Eq.(5.2), if m)t(Q  then T=t. T=t is the best segmentation pixel value. For 

the best segmentation, the complementary operator w=1 of Yager’s complementary 

function is computed as c(x)=1-x. Here, when 0<m<1 and 0<w<∞ , there is a 

cohesion of 
mm

m xc 22 loglog

1

)1(





  
 in Eq. (4. 13) is found between the parameters m 

and w as 
m

w
2log

1
  . 

 

In image segmentation process using Shannon entropy depending on t pixel 

segmentation value is formulated in Eq. (5.3). 
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Here pi value is defined as the probability of i. pixel to exist and, 
1

( )
t

i

i

p t p


 . 

The best segmentation t value is found using the mathematical method defined in Eq. 

(5. 4). 

 

                                        ))(max( tHArgt                                                     (5.4) 

 

In this study, in the generalized fuzzy entropy computations, Yager’s 

complementary operator is used. Kohen entropy given in Eq. (4. 14), Kasko entropy 



 

 

33 

in Eq. (4. 15), Tanimoto entropy in Eq. (4. 16) and Yager’s entropy in Eq. (4. 17) is 

used in generalized fuzzy entropy computations for image processing (Yeniyayla and 

Kuruoğlu, 2010-I). 

 

5.2  Application I: Cell Count 

 

Obtaining the requested areas in the image more clearly can be administered via 

the best segmentation value obtained using the image processing techniques 

summarized above. The unwanted areas in the image are segmented as background 

and removed. Through this process working on the required areas of the image 

becomes easier. As the first application, the most appropriate segmentation values 

are obtained from the cell images processed by the Shannon entropy and generalized 

fuzzy entropy method, discussed above. The segmentation and cell count process for 

the segmented cell images are explained in steps. Cell count process using 

generalized fuzzy entropy and Shannon entropy methods are performed in six stages.  

 

First one of these is obtaining good images of cells. Histopathology is an area 

that examines the microscopy of the lesions which develop in the natural structure of 

tissues and organs. The histopathologic images are taken from the Dokuz Eylül 

University, Department of Electronic Engineering laboratories. The resolution values 

of the images are 2288x1712 pixels at 72 dpi.’s. The resolution being high enables 

the segmentation process to be performed more successfully. All the operations 

during the application are performed with program in Appendix 1 using MATLAB 

7.1. 

 

As for the second phase, it is the conversion of color images to the grayscale 

mode. The color images are converted into grayscale levels using different image 

processing techniques.  

 

      In the third phase, the noise reduction process is applied, if there is noise on the 

image, thus providing a sharper image. 
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The fourth phase is about finding the best segmentation value. It is the most 

important and comprehensive phase in this study. First, the matrix of the pixel values 

of the grayscale image is obtained. Each term of the matrix showing the obtained 

pixel values is blurred using the S-function in Eq. (5. 1). In blurring process the 

values of (a, b, c), which are the parameters of S-function give the pixel values; a is 

the minimum pixel value, c is the maximum pixel value and b is the midpoint value 

between a and c. The complement set of the fuzzy set is obtained using Yager’s 

complementary operator in Eq. (4. 13). In order to find the segmentation value in 

fuzzy entropy, the pixel with membership level of 0.5 is taken as the segmentation 

value. However, this method seems weak compared to generalized fuzzy entropy 

method. Instead, the m value, of Yager’s complementary function, corresponding 

highest entropy level between 0 and 1 is computed. Later, the pixel value 

corresponding to the m value is found. This is the most appropriate segmentation 

value t in Eq. (5. 3). Thus, the images of cells are segmented and converted into 

black and white images (Yeniyayla and Kuruoğlu, 2010-II). 

 

      Similarly, in segmentation with Shannon entropy, first the probability values of 

the gray pixels are computed and the best t segmentation value is found using the 

formulas given in Eq. (5. 4) and (5. 5). 

 

     The fifth phase is the closing phase. With this process, the cells in the segmented 

images are made more prominent. However, there may be some unwanted traces in 

the images as well as distortions around the cell boundaries. With the closing phase, 

these unwanted traces are removed and the cell boundaries are made more oval.  

 

     The sixth and the last phase is the cell count phase. With the counting of 

independent segments, the number of the cells is found. 

 

     The shapes of the applications performed using generalized fuzzy entropy and 

Shannon entropy are given comparatively in Figures 2, 3 and 4 . 
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a) b) 

 

 

c) 

 

Figure 5.2 a) Colored tissue cells, b) Cell image, segmented according to Shannon entropy,  

           c) Cell image, segmented according to generalized fuzzy entropy  (Image no: 1). 
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                                      a)                                                    b) 

 

 

                                

                                                                c)  

 

Figure 5.3 a) Grayscale bacteria image, b) Image segmented according to Shannon entropy, 

c) Image segmented according to generalized fuzzy entropy (Image no:2). 
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                           a)                                                                     b)        

 

 

                                                

                                                                                c)   

 

Figure 5.4 a) Color tissue cell, b) Cell image, segmented according to Shannon entropy,   

c) Cell image, segmented according to generalized fuzzy entropy (Image no: 3). 
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Table 5.1 Values computed using Shannon entropy and generalized fuzzy entropy. 

 

 

 

Image 

no 

Obtained 

by doctors 

Shannon Entropy 
Generalized Fuzzy 

Entropy 

Segmentation 

pixel value 
Cell count 

Segmentation 

pixel value 
Cell count 

1 350  109 354 106 374 

2 55  101      57 105 63 

3 370  106 370 130 352 

 

 

  According to the values given in Table 5.1, the same values are obtained in both 

methods for image no:1. For other images, different values are obtained.  Results 

95% similar to the doctors’ results, performed by manual count, are obtained. It is 

known that manual count processes are quite exhausting and time consuming. Also, 

the generalization of the results, obtained by counting a segment, to a cell image, 

which does not distribute homogenous, can yield erroneous outputs. While this study 

conducts the count process over the whole of the tissue, it is possible to obtain error-

free results without generalizations. However, automatic count process, being unable 

to fully discriminate cells, which are adherent to each other in the images, can cause 

incomplete counting. In the following sections this problem will be tried to be 

avoided using image processing techniques and different algorithms.  

 

5.2 Application II: Image Denoising 

 

     In this application a cost function is introduced by using the fuzzy entropy to 

choose a threshold value in image denoising problem. The results are explained with 

pilot this cost function on the some images. Images as fuzzy subsets of a plane with a 

membership degree of pixels are proportionate to their gray levels. The original, 

degraded, and restructured images as fuzzy sets A, B, and C are considered in 
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reference set X, where X is plan sheet. Image B was tried to be transformed into a 

denoised version of the image as C by an algorithm. This algorithm first finds the 

noised pixels then change them with mean of 8 neighbor pixels. However, there is a 

problem in choosing a threshold t as unexpected jumping of gray level in the 

algorithm to find the noised pixels. This threshold related to the image. A cost 

function is used to find the best threshold in every image (Yeniyayla and Kuruoğlu, 

2011).  

 

     The cost function is based on distance of the denoised image C and original image 

A. In this study, fuzzy entropy of denoised image C is added to the cost function. 

This is necessary, because when the algorithm threshold value is decreased, denoised 

image is blurred, although its distance of original image is decreased.  

 

      A be a fuzzy version of original image and C be the denoised image, fuzzy 

entropy is intruded as the sum of distance between A, C and fuzzy entropy of C, 

because in addition to distance of original image and denoised image, it should be 

considered that entropy of denoised image as blurring due to change of noised pixels 

with mean of 8 neighbor pixels in Eq. (5.7) (Şen, 2004). Euclidian distance and 

Kaufmann’s entropy are used to this goal. 

 

       C(A), the cost function of the fuzzy set A is given in Eq. (5.6); D(A,C), the 

distance between the fuzzy sets a A and C depending on the Euclidian distance is 

given in Eq. (5.4); and the entropy, with respect to Yager entropy, of the fuzzy set 

D(C) is given in Eq. (5.5) (Lee, 2005). 

 

C(A)=D(A,C)+D(C) 
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where,  

 (( , ), ( , )) : 1,...,  and j=1,...,mi j A i jA x x x x i n   is the m× n pixels fuzzy 

original image, 

 

 (( , ), ( , )) : 1,...,  and j=1,...,mi j B i jB x x x x i n   is the noised image, and 

 

 (( , ), ( , )) : 1,...,  and j=1,...,mi j C i jC x x x x i n   is denoised image by changed 

algorithm by mean of neighbors. 

 

( , )A i jx x  membership degrees is the elements of the fuzzy set A which was 

converted using S-function of the pixel matrices of the original image in Figure 5.5.  

 

  In this application it can be seen that the best segmented t value is obtained 

when the entropy value of the total cost function is minimum. In the application, first 

the noised B image is denoised by the mean of the 8 neighbor pixels in Eq. (5.7), and 

image C is obtained. Here the t value is used by 0.01 steps between 0.01 to 0.99 and 

100 C images are obtained, and the entropy of the C(A) cost function for each image 

is calculated. The t segmentation value which corresponds to the lowest entropy of 
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the cost function is accepted as the best denoising value. And the C image 

corresponding to these values is obtained as the clearest image.  

 

 

                   a). Original image                                                    b) Grayscale image 

          Figure 5.5  a)  Original image      b) Grayscale image 

 

 

                              

                                               Figure 5.6  % 0.2 noised image 

 

In  figure 5.7 images, segmented for different t values, namely denoised   

 images are presented 
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       a) t=0.5 segmented image      b) t=0.4 segmented image                                        

 

       c) t=0.3 segmented image    d) t=0.2 segmented image           

                           

 

e) t=0.1 segmented image   f) t=0.07 segmented image            
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g) t=0.05 segmented image   h) t=0.03 segmented image                                         

    

ı) t=0.02 segmented image   i) t=0.01 segmented image                                     

 

 

j) t=0.0075 segmented image   k) t=0.007 segmented image      

 

Figure 5.7 a) t=0.5 segmented image  b) t=0.4 segmented image  c) t=0.3 segmented 

image    d) t=0.2 segmented image     e) t=0.1 segmented image   f) t=0.07 segmented image  

g) t=0.05 segmented image  h) t=0.03 segmented image   ı) t=0.02 segmented image   i) 

t=0.01 segmented image     j) t=0.0075 segmented image   k) t=0.007 segmented image       
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According to the chart in Figure 5.8., the t segmentation value which corresponds 

to the minimum entropy value is approximately 0.03. The image corresponding to 

this value is presented in Figure 5.7-h. The denoised results are given for the images 

which correspond to the t values. It can be seen that there is a close correlation 

between these results and the change of entropy depending on the t value, in Figure 

5.8. The minimum entropy value in the total cost function indicates the closest 

similarity between the original image and the denoised one. It can be seen that in 

Figure 5.7-a, which corresponds to the 0.5 t value with the highest entropy value in 

Figure 5.8, the noise is at the maximum.  
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   Figure 5.8 The chart of entropy depending on t value 

 

  There are numerous algorithms in denoising. In our study it can be seen that the 

cost function method, based on fuzzy entropy methods, yields better results. The use 

of fuzzy entropy method in various areas of research and its yielding better results 

compared to well known methods are referenced in scientific studies.  
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      CHAPTER SIX   

 

                                               CONCLUSION 

 

      The results of an event or a scientific study cannot always be based on precise 

decisions in the universe we live in. Not everything we are aware of can be 

defined by mathematical concepts. The fuzzy logic approach, introduced by 

Zadeh (1965), scientifically expresses the ideas and perceptions of human beings 

and the events and objects in our universe. Calculation of the value, amount or, in 

other words, the weight of information about situations that do not have absolute 

boundaries or that cannot be mathematically categorized into any particular class 

makes the information scientifically significant. With this purpose, various fuzzy 

entropy methods have been developed. With the application of entropy in fuzzy 

sets, successful results are obtained in neural networks, machine learning, image 

processing and many other engineering areas. With the application in this study, 

cell count and image denoising processes related to image processing are 

performed.  

 

      In one of the applications in this study, the number of cells is counted using 

the generalized fuzzy entropy and Shannon’s entropy. In one image, the same 

pixel values and cell number are obtained for both methods. The obtaining of 

different values in other images will be examined in the future. The types of 

images will be increased and the possibility of different results for different image 

types will be investigated.  

 

      Automatic cell count aims at providing a faster and error-free diagnosis 

process for physicians. However, in order to perform a more efficient 

segmentation, high resolution imaging devices should be used. It is considered 

that the cell count using generalized fuzzy entropy will make a contribution to the 

diagnosis of illnesses related to the cell number, such as anemia and hepatitis.  
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      As the second application, the denoising process is performed using the 

generalized fuzzy entropy method. Cost function depending on the generalized 

fuzzy entropy is efficiently used in image denoising. In cases where the entropy 

value is lower, the best segmentation value is obtained. It is considered that the 

method developed here will yield better results in medicine and criminology.  

       

     It is aimed to contribute to the studies in the field of health by obtaining better 

results with this method in the clarification of images particularly such as MR, 

ECG and ultrasound.  
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APPENDIX 

 

Appendix 1. Program for Cell Count 

 

clear all; 
clc; 

  
%Resmi Oku. 
image=imread('yusuf2.tif'); 
figure,imshow(image) 

  

  
se = strel('disk',5); 
erodedBW = imerode(image,se); 
 figure, imshow(erodedBW) 

  
%Gray'e çevir.  
gray_image=rgb2gray(erodedBW); 

  
imshow(gray_image) 
%pixval 
impixelinfo 
%Max,min pixeli bul. 
max_pixel=max(max(gray_image)); 
min_pixel=min(min(gray_image)); 
mid_pixel=(max_pixel+min_pixel)/2; 

  
%Resmin boyutları. 
[row_number,column_number]=size(gray_image); 
S_function=zeros(row_number,column_number); 

  
%S fonksiyonu. 
for row=1:row_number 
    for column=1:column_number 

         
        if gray_image(row,column)<=min_pixel 
            S_function(row,column)=0; 

         
        elseif min_pixel<gray_image(row,column) && 

gray_image(row,column)<=mid_pixel 
            

S_function(row,column)=(((double(gray_image(row,column))-

double(min_pixel)))^2)/((double(mid_pixel-

min_pixel))*(double(max_pixel-min_pixel))); 

         
        elseif mid_pixel<gray_image(row,column) && 

gray_image(row,column)<max_pixel 
            S_function(row,column)=1-

((((double(gray_image(row,column))-

double(max_pixel)))^2)/((double(max_pixel-

mid_pixel))*(double(max_pixel-min_pixel)))); 

         
        elseif gray_image(row,column)>=max_pixel 
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            S_function(row,column)=1; 

             
        end 
    end 
end 

  
%Complement 
complement=zeros(row_number,column_number); 

  
%Entropi. 
entropi=zeros(1,9); 

  
%Min matrix ve Max matrix. 
min_matrix=zeros(row_number,column_number); 
max_matrix=zeros(row_number,column_number); 

  
mum=1; 
for m=0.1:0.1:0.9 
    for row=1:row_number 
        for column=1:column_number   

        
            complement(row,column)=(1-(S_function(row,column))^(-

1/log2(m)))^(-log2(m)); 
            

min_matrix(row,column)=min(S_function(row,column),complement(row,c

olumn)); 
            

max_matrix(row,column)=max(S_function(row,column),complement(row,c

olumn)); 

             
        end 
    end 

     
     min_sum=sum(sum(min_matrix)); 
    max_sum=sum(sum(max_matrix)); 

   
    entropi(mum)=min_sum/2560000 
    mum=mum+1 
end 

  
%Maximum entropi. 
max_entropi=max(entropi) 

  
pixel_degeri=zeros(row_number,column_number); 

  
for row=1:row_number  
    for column=1:column_number   

              
        pixel_degeri(row,column)=abs(max_entropi-

S_function(row,column));    

         
    end   
end 

  
en_yakin_pixel_degeri=min(min(pixel_degeri)); 
pixel_no=find(pixel_degeri==en_yakin_pixel_degeri); 
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%Threshold Değeri. 
threshold_degeri=gray_image(pixel_no(1)); 

  
%Yeni Image. 
new_image=zeros(row_number,column_number); 

  
for row=1:row_number  
    for column=1:column_number   

              
        if gray_image(row,column)<=101 
        new_image(row,column)=255;    

         
        elseif gray_image(row,column)>101 
        new_image(row,column)=0; 
        end 

         
    end   
end 

  

  
figure, 
imshow(gray_image) 
figure, 
imshow(new_image) 

         
[b,num]=bwlabel(new_image,4); 
BW2 = bwareaopen(new_image, 20); 
say=bwarea(BW2) 
imshow(BW2) 
top_piksel=sum(sum(BW2)) 
disp('number of counted cells'); 
disp(num); 
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Appendix 2. Program for Image Denoising 

 

clear all; 
clc; 

  
%Resmi Oku. 
image=(imread('zulal_2.tif')); 
%dbg_print 
%figure,imshow(image) 

  
A = (rgb2gray(image)); 
A(A>200) = A(A>200)-20; 
%dbg_print 
%figure,imshow(A,[]); 

  
B = imnoise(A,'salt & pepper',0.02); 
%dbg_print 
%figure,imshow(B,[]); 

  
%%%%% calculate mu_a or S_function_B 
max_pixel=max(max(B)); 
min_pixel=min(min(B)); 
mid_pixel=(max_pixel+min_pixel)/2; 

  
%Resmin boyutları. 
[row_number,column_number]=size(B); 
S_function_B = zeros(row_number,column_number); 

  
%B nin S fonksiyonu. 
for row=1:row_number 
    for column=1:column_number 

         
        if B(row,column)<=min_pixel 
            S_function_B(row,column)=0; 

         
        elseif min_pixel<B(row,column) && B(row,column)<=mid_pixel 
            S_function_B(row,column)=(((double(B(row,column))-

double(min_pixel)))^2)/((double(mid_pixel-

min_pixel))*(double(max_pixel-min_pixel))); 

         
        elseif mid_pixel<B(row,column) && B(row,column)<max_pixel 
            S_function_B(row,column)=1-((((double(B(row,column))-

double(max_pixel)))^2)/((double(max_pixel-

mid_pixel))*(double(max_pixel-min_pixel)))); 

         
        elseif B(row,column)>=max_pixel 
            S_function_B(row,column)=1; 

             
        end 
    end 
end 

  
%%%%% calculate mu_a or S_function_A 
max_pixel=max(max(A)); 
min_pixel=min(min(A)); 
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mid_pixel=(max_pixel+min_pixel)/2; 

  
%Resmin boyutları. 
[row_number,column_number]=size(A); 
S_function_A = zeros(row_number,column_number); 

  
%B nin S fonksiyonu. 
for row=1:row_number 
    for column=1:column_number 

         
        if A(row,column)<=min_pixel 
            S_function_A(row,column)=0; 

         
        elseif min_pixel<A(row,column) && A(row,column)<=mid_pixel 
            S_function_A(row,column)=(((double(A(row,column))-

double(min_pixel)))^2)/((double(mid_pixel-

min_pixel))*(double(max_pixel-min_pixel))); 

         
        elseif mid_pixel<A(row,column) && A(row,column)<max_pixel 
            S_function_A(row,column)=1-((((double(A(row,column))-

double(max_pixel)))^2)/((double(max_pixel-

mid_pixel))*(double(max_pixel-min_pixel)))); 

         
        elseif B(row,column)>=max_pixel 
            S_function_A(row,column)=1; 

             
        end 
    end 
end 

  
%%% TODO : find C by using h = 0:0.01:0.2 
hsweep = 0.01:0.01:0.99; 
CA = zeros(length(hsweep),1); 
i=0;%deefine loop counter 
for h = hsweep, 
%dbg_print 
%imshow(S_function_B);title('s func of B'); 
%iterate counter 
i = i+1 

  
noisy_pixels = (0.5 - h) < abs(S_function_B - 0.5); 
neighborhood_of_noisy_pixels = imdilate(noisy_pixels,[ 
    1 1 1; 
    1 0 1; 
    1 1 1; 
    ]); 

  
masked_neigborhoods = S_function_B.*neighborhood_of_noisy_pixels; 
noisy_pixels_recalculated = imfilter(masked_neigborhoods,[ 
    1/8 1/8 1/8; 
    1/8 0 1/8; 
    1/8 1/8 1/8; 
]); 

  
% build C image (denoised) 
C = zeros(size(A)); 
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C(~noisy_pixels) = S_function_B(~noisy_pixels);%bozulmamış 

pikselleri al; 
C(noisy_pixels) = noisy_pixels_recalculated(noisy_pixels); 

  

  
%%%%% calculate mu_c or S_function_C 
max_pixel=max(max(C)); 
min_pixel=min(min(C)); 
mid_pixel=(max_pixel+min_pixel)/2; 

  
%Resmin boyutları. 
[row_number,column_number]=size(C); 
S_function_C = zeros(row_number,column_number); 

  
%C nin S fonksiyonu. 
for row=1:row_number 
    for column=1:column_number 

         
        if C(row,column)<=min_pixel 
            S_function_C(row,column)=0; 

         
        elseif min_pixel<C(row,column) && C(row,column)<=mid_pixel 
            S_function_C(row,column)=(((double(C(row,column))-

double(min_pixel)))^2)/((double(mid_pixel-

min_pixel))*(double(max_pixel-min_pixel))); 

         
        elseif mid_pixel<C(row,column) && C(row,column)<max_pixel 
            S_function_C(row,column)=1-((((double(C(row,column))-

double(max_pixel)))^2)/((double(max_pixel-

mid_pixel))*(double(max_pixel-min_pixel)))); 

         
        elseif C(row,column)>=max_pixel 
            S_function_C(row,column)=1; 

             
        end 
    end 
end 

  
%dbg_print 
%figure,imshow(S_function_C,[]); 

  
%%% calculate cost , warning, S_function_C is changed! 
diff_A2C_sqr = (S_function_C-S_function_A).^2; 
mask_C = S_function_C > 0.5; 
S_function_C(mask_C) = 1-S_function_C(mask_C); 
sqr_c = S_function_C.^2; 

  
CA(i) = sqrt(sum(diff_A2C_sqr(:))/(row_number*column_number)) + 

sqrt( sum(sqr_c(:))/(row_number*column_number)); 
end 
figure,plot(hsweep,CA) 
xlabel('t threshold value') 
ylabel('Entropy value') 
%figure, imshow(C); 
%  

 


