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COMPARING COINTEGRATION TEST IN PRESENCE OF STRUCTURAL
BREAKS

ABSTRACT

Cointegration analysis is a method developed for revealing whether there is a long
term linear relation between more than one time series. Structural breaks may occur
in the data generating processes of the time series due to reasons such as policy

change, financial crisis and natural disasters.

Not including the structural breaks into the analysis, in time series analysis, may
cause the unit root and cointegration tests to give incorrect results. These results
decrease the power of the test used. The widely used Dickey-Fuller unit root test and
Engle-Granger and Johansen Cointegration tests may have erroneous results since
they investigate the unit root and long term relation without considering structural

breaks.

The study gives brief information on the Zivot and Andrews and Perron (1989)
unit root tests and Gregory-Hansen (G-H) cointegration test, which have been
developed to avoid the incorrect results. A comparison of Engle-Granger (E-G) test,
which investigates long term relations without taking structural breaks into
consideration, and Gregory-Hansen test, which does the same taking the breaks into

consideration, is conducted.

For this comparison the data generating process was conducted by Monte-Carlo
simulation using the MATLAB (R2009a) software. Each data pair, produced for the
cointegration tests, were repeated 10000 times and results for both tests were

obtained and presented in tables.

Keywords : Cointegration, Unit Root, Structural Break, Engle- Granger Test,

Gregory-Hansen Test
v



YAPISAL KIRILMANIN VARLIGI DURUMUNDA ESBUTUNLESME
TESTLERININ KARSILASTIRILMASI

(074

Esbiitiinlesme analizi, birden fazla seri arasinda uzun dénemli dogrusal bir iliski
olup olmadigini ortaya ¢ikarmak icin gelistirilmig bir yontemdir. Zaman serilerinin
veri liretim stireclerinde, politika degisikligi, finansal krizler, dogal afetler gibi bir¢ok

nedenden dolay1 yapisal degisimler meydana gelebilmektedir

Zaman serisi analizlerinde yapisal kirilmalarin analize dahil edilmemesi birim kok
ve esbiitiinlesme testlerinin sonu¢larin hatali ¢ikmasina neden olabilmektedir. Bu
sonuglar ise kullanilan testin giiclinii azaltmaktadir. Yaygin kullanilan Dickey-Fuller
birim kok testi, Engle- Granger ve Johansen Esbiitiinlesme testleri kirtlmalar1 dikkate
almadan birim kokii ve uzun donemli iligskiyi arastirdiklari i¢in sonuclar1 hatali

olabilmektedir.

Calismada bu sorunun giderilebilmesi igin gelistirilmis Zivot and Andrews,
Perron (1989) birim kok testleri ile Gregory- Hansen (G-H) esbiitiinlesme testi
hakkinda bilgi verilmistir. Yapisal kirilmalar1 dikkate almayan Engle- Granger (E-G)
testi ile yapisal kirilmalar1 dikkate alarak uzun donemli iligkiyi arastiran Gregory-

Hansen testlerinin karsilastirilmasi yapilmistir.

Bu karsilasgtirma i¢in Monte-Carlo simulasyonu ile MATLAB (R2009a) programi
kullanilarak veri tiretimi yapilmistir. Esbiitiinlesme testleri i¢in tiretilen her bir veri
c¢ifti 10000 kez tekrarlanarak her iki test icin de sonuclar elde edilmis ve tablolarla

gosterilmistir.

Anahtar Sozciikler: Egbiitiinlesme, Birim K&k, Yapisal Kirilma, Engle- Granger
Testi, Gregory-Hansen Testi
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CHAPTER ONE

INTRODUCTION

Time series analysis is useful technique for identifying the nature of the
phenomenon representing by the sequences of observation. The aim of the time

series analysis is extrapolate the identified pattern to predict future events.

While time series analysis may depend on single variable analysis, modeling and
analysis can also be performed on more than one series together. This analyis is
called the multivariate time series in the literature. One of the multivariate time series
analysis is the cointegration analysis. Cointegration analysis is a method developed
to reveal whether there is a long term linear correlation between time series. In this
method, first a linear model between two or more nonstationary series is constructed.
Then, referring to the stationarty feature of error terms produced by this model, it is

decided whether the series are cointegrated or not.

In order to determine the cointegrated correlation between the series, various test

according to the features of the series have been developed.

The first chapter gives information on the Engle-Granger and Johansen tests, two of
widely used cointegration test. Engle-Granger test tries to reveal the cointegrated
structure of the series with respect to the stationarity feature of the error terms of a
linear combination between two nonstationary time series. If the error terms obtained
from the linear combination are stationary then the series are cointegrated. Although,
there are various methods for the stationarity test of the error terms, generally the

Dickey-Fuller unit root test is used.

The other cointegration test mentioned in the study is the Johansen cointegration
test. In this method, the cointegration correlation between the series is determined by
the Maximum Likelihood Estimation (MLE) approach.

Instead of the cause-effect relation built between variables in Engle — Granger

method, a vector-autoregressive model (VAR) is formed in this method.



With this feature it is possible to test whether more than two series are cointegrated

or not, at the same time.

There are two test statistics to determine the number of the cointegration vectors
between the series for the Johansen method which can test the cointegrated structure

between more than two series. These are trace and maximum eigenvalue tests.

In the second chapter, the characteristic features of the structural breaks, the
factors causing the breaks, their effects on the unit root and cointegration tests are
examined. Structural changes may occur in the data generating processes of the time
series due to reasons such as policy change, financial crisis and natural disasters.
These changes in the series, without any exact definition, are generally called as the
structural change in the model parameters. Structural breaks may occur in the
intercepts or/and the trends of the series. The existence of the outlier observations
may cause various problems such as biases and inconsistent estimation results,
biased parameter estimation, poor predictions and modelling of a linear model as a
non-linear model. Therefore, the effects of outlier observations should be included in

the model while analyzing the series.

The widely used ADF and Philips — Perron (PP) unit root tests, which are used for
checking the stationarity hypothesis, and the Engle — Granger and Johansen
Cointegration approaches, which investigate the long term equilibrium relation, are
methods that do not take the possible structural breaks in the series into
consideration. Therefore, using these tests on series with structural breaks may yield
the aforementioned problems. In order to avoid these problems, unit root and

cointegration tests take the structural breaks into consideration.

In the second chapter of the study, Perron (1989), Unit Root Test, Zivot and Andrews
Unit Root Test and Gregory-Hansen (1996) Cointegration Test among these test are

mentioned.



Perron (1989) test, one of the unit root tests that considers the structural break is a
test method in which the break point in the series is known as an external information

and it is based on the hypothesis that there is only one structural break in the series.

The knowledge of the break point enables the addition of these shocks into the
model as dummy variables. Perron (1989) test investigates the existence of the break
in three different models. Another test applied on the time series with structural
breaks is the Zivot and Andrews test. Zivot and Andrews (1992), differently from the
Perron (1989) test, developed a test which considers the break period internally. The
information, models and hypotheses of these two tests are given in the second

chapter.

One of the cointegration tests which are used in the presence of a structural break
is the Gregory-Hansen (1996) test. Gregory — Hansen (1996) test investigates the

determination of structural breaks in long term relation under three different models

These models are the level shift (C) which expresses the break in the intercept of the
series, the level shift with trend (C/T) which expresses the break in the intercept with
a trend and the Regime Shift (C/S) model which expresses the break both in the
intercept and the slope of the series. In Gregory- Hansen tests, the Dickey-Fuller are

Philips-Perron test statistics used for the analysis of the break.

In chapter four, the power comparison of Engle-Granger and Gregory-Hansen

tests using a Monte-Carlo Simulation is done.

For this comparison the data production is conducted using the MATLAB (R2009a)
software. The series are generated for the three different models according to the
Gregory-Hansen test procedure as break in the intercept, break in the intercept with
trend, and break in both the slope and the intercept. The data are generated from the
autoregressive AR(1) process with a sample size of 50, 100, 200 and with the
$=0.1, $=0.5 and ¢ =0.9 parameters.



Since it is thought that the magnitude of the break in the series would have effect
on the power of the test, the performances of the test with break magnitudes of 1, 5
and 10. Similarly, the breaks’ occurring in different regions of the series are thought
to affect on the power of the tests, the breaks are applied in the first quarter (0.257),
second quarter (0.507) and the third quarter (0.757) and the power comparison
between the Engle- Granger and Gregory — Hansen (1996) is performed.

Chapter Five, the last chapter of the study presents a general comparison of the
Engle-Granger and Gregory-Hansen tests on the series obtained after the data
generation. In this chapter, the effects of variables such as break magnitude, break
point and the values of AR(1) variable, on the power values of the tests are

presented.



CHAPTER TWO

UNIT ROOT AND COINTEGRATION TESTS

A time series is simply defined as sequences of measurements that follow non-
random orders. A time series is a set of observation X;, each successive value
represents consecutive measurement takes at equally spaced time intervals. The basic
nature of a time series is that its observation is dependent or correlated, hence
statistical methods are not applicable because of independent assumption. Time
series analysis is useful technique for identifying the nature of the phenomenon
representing by the sequences of observation. The aim of the time series analysis is

extrapolate the identified pattern to predict future events.

Time series analysis may depend on univariate analysis or an analysis and a
modeling can be conducted by considering more than one time series together. This
method is called, in the literature, as vector or multivariate time series analysis.
Multivariate time series analysis is used not only to analyze only one series, but also

to analyze the cross-relations between series.

One of the time series analysis is the cointegration analysis. The cointegration
analysis is a method developed to reveal whether there is a long term linear
correlation between series. In this model, first a linear model is built between two or
more non-stationary series. The series are determined as cointegrated or not
depending on whether or not the error terms produced by the model have the
property of stationarity. The error terms’ being stationary — or not including unit root

— indicates that the series are cointegrated, otherwise the series are not cointegrated.

Cointegration analysis enables the inclusion of the original values of the series
which are not stationary, but which become stationary when their differences of the
same degree are calculated. Thus, the possible errors of obtaining difference
operations during the analysis are prevented and the statistically significant relations

between the series are revealed.



Various tests have been developed in order to determine the cointegrated
correlations between the series. The most widely used ones, among these tests, are

the Engle — Granger (1987) and the Johansen (1988) cointegration tests.

1.1 Engle — Granger Cointegration Test

One of the most widely used tests for determining the long term correlations
between time series is the Engle — Granger cointegration test. The basic approach in
Engle — Granger method is the error terms of a linear combination between two non-

stationary time series having the property of stationarity.
Y, =X, +uy (1)

A general model that can be built between two series can be presented as in

equation (1). In this model the dependent variable Y; , the independent variable X ‘s

and the error term ¥, , which is random, is presented. In order to variables in the

model to be cointegrated, it is both assumed that the difference of both variables are

obtained (I(1) distributed) and at the same time the error term is non-differenced (I1(0)

distributed). In other words, the error term is u, ~ IN(0, o).

In order to determine the existence of the linear correlation between the series
Engle — Granger proposed a procedure comprising of two steps.
According to this procedure, first a linear equation (ordinary least squares, OLS) is
built and the parameter estimations are obtained by using the least square method. As
the second step the unit root test is applied on the error terms obtained from the
model. In order to determine whether the error terms are stationary or not, the

Dickey-Fuller test is widely used.



1.1.1 Dickey-Fuller Test

The Dickey — Fuller test which analyzes whether any series included has unit root
or not, gives information about whether the series are cointegrated or not, since a
similar operation is applied on the error term in cointegration analysis. As the error
terms obtained from the linear correlation between the series, under cointegration
investigation, can be modeled with their lagged values, Dickey — Fuller test can be

applied on this data.

Before conducting the Dickey — Fuller analysis for determining whether the error
terms obtained from the linear model of the two series under cointegration
investigation, the procedure of Dickey — Fuller test will be briefly explained.

In Engle - Granger Cointegration test, the Dickey-Fuller test unit root test of the Y

and X series with the assumption I(1) can be performed as below:

Consider the simplest imaginable AR(1) model,

X, =9 X, +e, @)

where e, is white noise with variance 1. When ¢1 =1, this model has a unit root and

becomes a random walk process. If X (.1 1s subtracted from each variable in

equation (2), equation (3) will be as follows:
AX = (¢ _1)Xt—1 +e, (3)

Thus, in order to test the null hypothesis of a unit root, we can simply test the

hypothesis that the coefficient of X (-1 in equation (3) is simply equal to 0. The

hypotheses which are relevant to Dickey - Fuller are as follows:
Hy:p=0  p=(4-1)

H,:p<0



Test statistic is

A

__ ¢

$=0 =

SE()

t

where ¢3 is the least squares estimate and SE( 43) is the usual standard error estimate.

The test is a one-sided and lower tailed test.

The obvious way to test the unit root hypothesis is to use the ¢ statistic for the
hypothesis (¢, —1)= 0 in equation (3). In fact, this statistic is called as 7 statistic,
not as ¢ statistic, because, its distribution is not the same as that of an ordinary ¢

statistic, even asymptotically.

fr)

|_, oiih
_2.861 —1.941

I I :
1.0 0.0 1.0 2.0 3.0 4.0

—6.0 =50

Figure 1 Asymptotic densities of Dickey-Fuller 7 tests

The asymptotic densities of the 7, 7, and 7, , statistics are shown in Figure 1.

For comparison, the standard normal density is also shown. The differences between

it and the three Dickey-Fuller 7 distributions are skewed and peaked.



The critical values for one-tail tests at the .05 level based on the Dickey-Fuller
distributions are also marked on the figure. These critical values become greater than

normal distribution.

Dickey and Fuller (1981) consider three different regression equations that can be

used to test for the presence of a unit root:

AX, =¢X, , +e, )
AX, =a+¢X,  +e, (5)
AX, =a+¢X,  + pPt+e, (6)

The difference between the three regression equations concerns the presence of

the deterministic elements « and ¢ . The first one is a pure random walk model, the

second one involves an intercept or drift term, and the third one includes both a drift

and linear time trend.

The unit root can be tested by ¢ =0 parameter in all the regression equation. The
test involves estimating one of the equations above using OLS in order to obtain the

estimated value of ¢ and associated standard error. Comparing the results of #-

statistic with the appropriate value which is reported in the Dickey-Fuller tables and,

it can be determined whether to reject the null hypothesis ¢=0.

The critical values of the #-statistics depend on whether an intercept and time
trend is included in the regression equation. In Monte Carlo study, Dickey and Fuller

detained that the critical values for ¢=0 depend on the form of the regression and

sample size.

Dickey and Fuller (1981), Said and Dickey (1984), Phillips and Perron (1988) and

others improved the Dickey Fuller test when e, was not white noise. This test is

called the “Augmented” Dickey Fuller test. Hence regression equations are:
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k
AX[ = ¢Xz—1 + Zé;AXt—i+l te @)
i=1
k
AX,=a+¢X,  +) SAX, , +e, ®
i=1
k
AX,=a+¢X,  +Bt+) SAX, ., +e, )

i=l1

The statistics are called as 7, 7, and z_ used for equations (4),(5),(6)

respectively. Summary of Dickey - Fuller test process is shown in Table 1.

Table 1: Summary of Dickey — Fuller Tests for n=100

Test Critical values for 95% and 99%

Model Hypothesis Statistic Confidence Intervals
AX, =¢X, | +e&, $=0 T -1.95 and -2.60
AX,=a+¢X,  +e¢, $=0 Ty -2.89 and -3.51
a=0
given
$=0 Tou 2.54 and 3.22
a=¢=0 F 4.71 and 6.70
AX,=a+¢X,  +fi+e, | ¢=0 T, -3.45 and -4.04
a=0
given
$=0 Ty 3.11 and 3.78
p=0
given
$=0 Tpe 2.79 and 3.53
¢p=5=0 F, 6.49 and 8.73
a=¢=p=0| F, 4.88 and 6.50
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The allz, 7,and 7, statistics are used to test the hypotheses ¢=0. Dickey and
Fuller (1981) provide three additional F-statistics (F,F,,F,) to test joint
hypotheses on the coefficient. With (5) or (8), the null hypothesis ¢=a =0 is tested
using the F, statistics. Including a time trend in the regression- so that (6) or (9) is
estimated- the joint hypotheses a = ¢ = 8 =01is tested using the F, statistics and the

joint hypotheses ¢= =0 is tested using the F, statistics.

The F,F,,F, statistics are constructed in exactly the same way as ordinary F-tests

arc:

F* [RSS (restricted ) — RSS (unrestricted)]/ r

I RSS(unrestricted ) /(T — k)

where RSS (sums of the squares residuals for restricted models) and RSS (the

unrestricted sums of the squares residuals) models.

r = number of restrictions

T = total observations

k = number of parameters in the unrestricted model
T-k = degrees of freedom in the unrestricted model

The Dickey-Fuller test procedure can also be applied for the error term of the

model. If the error term U, is expressed with delay as below, the existence of unit

root is performed depending on the statistical significance of O .

Dickey-Fuller test applied to a series of any of the above process can also be

applied to the model error term. If the error term U, expressed below, presence of

structural breaks analyses depend on significance O .
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If the error term U, is leave alone in equation (1), the equation converts

intout; =Y, — X .. The error term is modeled with lagged values; the equation
t t

can be expressed as below:
Au, = pu te

The hypotheses for these test are;

H 0 - P= 0 means that U, has unit root. In other words, X ; and Yt are not

cointegrated.

H | P F 0 means that U, has not unit root. In other words, X ; and Y, are

cointegrated.

T =" is in the form of test statistics for these hypotheses. The critical values for

S

Yol

this test statistics are compared to the values produced by Dickey-Fuller instead of
the standard ¢ table. In a similar way, a modeling can be performed with the
Augmented Dickey — Fuller test which is obtained by adding the & delayed values of

the error terms to the model.

k
Aut =pu,_ + zél 'Bz'A”t—i +e;

The unit root hypotheses and the critical values of the Augmented Dickey — Fuller
(ADF) test are the same with the general model.
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1.2 The Estimation of Engle-Granger Cointegration Vector in Two Dimensional
Vector Autoregressive Processes VAR (2)

It is possible to separate any non-stationary series into its stationary and non-
stationary parts via the equalities that can be formed using the cointegration vector
components. If it is possible to handle a non-stationary vector autoregressive time
series of the first degree with two dimensions to estimate the cointegration vector.
Let U; represents a unit rooted series, and S; represents a stationary series; it can be

expressed the equation as below:

The equation can be expressed as equation (10) when the required transformations

are performed on the series.

23 23
Y—=X =la,—a, |5
a, ’ a ’ (10)

Beginning from equation (10), as equation (1) can be expressed as a function of S;
(3

a4,

series, the system comes to a stationary state. In this equation, knowing the S=

proportion is sufficient for obtaining the cointegration equation (Akdi, 2003).

Let
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N

1 n
=D XY, =azlau§Uf +O,( / )

n 4

and

I < 2 2 c 2

— D> X = U +0
1’12; t allgl t p()/\/;)

result as

S Xy,

Ao _ 4y 1

n - +0 /

fo=t =0,V
1=l

If O % term is neglected, the stationary series
p( \/;) g ry
o a
Z, =Y -p,X =(ayU,+ay,S,)- ai(a”U, +a,S,)=CS,
1
is obtained where C represents a constant (Akdi 2003).

The regression equation, according to these results, indicates the

(=5, ,1)' cointegration vector.

1.3 Engle — Granger Cointegration Test in VAR (p) (p>2)

Although Engle— Granger Cointegration test is widely used, its area of use is
limited due to some constraints. As this test has the property of “unique solution”, it

can analyze the cointegration of only two series. For exemplifying this situation;
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Let X ¢ Y, s th s Z ¢ series be I(1); when the V linear transformation of

V=W -aoX -a) -aZ

is considered as having only one linear cointegrated structure; the components’

having separate cointegration relations disrupts the cointegrated structure of V. Let

V1 be defined as below having a cointegration relation between VVt and X ¢

V=W, -BX,

It is obvious that the error terms obtained from this regression are stationary.

Similarly let V2 cointegration between Yt and Z ¢ and Y defined as below:
V,=Y,-p,Z,
In this equation, it can be said that the error terms are stationary. When the V series

comprising of V1 and V2 series are considered again, it is seen that both Vl and

V2 series are 1(0); and therefore, it poses a great problem in defining the V Series
(Kadilar,2000).
Due to such constraints of Engle— Granger analysis, Johansen method has been

developed to perform the cointegration analyses of more than two series.

1.4 Johansen Cointegration Test

Another common method used in revealing the cointegrated structure between
time series is the Johansen cointegration test. In this method, the cointegration
correlation between the series is determined by the Maximum Likelihood Estimation
(MLE) approach. Instead of the cause-effect relation built between variables in

Engle— Granger method, a vector-autoregressive model (VAR) is formed in this
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method. With this feature it is possible to test whether more than two series are

cointegrated or not, at the same time.

The aim of the Johansen approach is to determine the cointegrated vector number
and to find the MLE estimation of the with respect to parameters of the cointegrated

vector.

Johansen method makes use of the eigen-value of the parameters matrix, in order to

determine whether the series are cointegrated.

Let a first degree VAR(1) be given in equation (11).

X, =4X,  +e, t=12.3,..,n (11)

In the VAR(1) model above while €; terms represent the error terms which are the

variance covariance matrix 2 , the matrix 4 shows the parameter matrix of kx/

dimensions.

e, error term has the following features:

!
E(ez) =0, E(etet) =X and E(€t€;+h) =0
Considering that VAR (1) model is a first degree stationary series, the stationary

system will be as below when X (—1 1s subtracted from both sides of the equation for

enabling the stationarity of the system,

AX,=(A-DX,  +e,.

If expression (A -1 ) is taken as 77 , VAR(1) model turns into equation (12)

AX,=7X, | +e, (12)
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Johansen approach tries to determine the cointegration correlation between the

rank of 7. If 7 = aﬁ’ , and B is a non-single matrix, an infinite number of

and f# vectors can be obtained, since it is possible to write7 = BB~ .
Therefore, Johansen approach builds tests on the rank of 7 matrix instead of the

estimation of f vector (Akdi,2003).

r, the rank of the 7 matrix; assuming the number of variables as k
if 7=k then the series is stationary.
if ¥=0 then the series is not stationary. There is not any cointegration.

if 0 <r <k then the series is cointegrated.

Then, 77 = 0!,3 ' equation can be expressed. Here, ,B indicates the cointegration

vector while ¢ is called the adjustment coefficient. Here, the ¢¢ matrix shows the

adjustment rate of the deviation of variables from long term equilibrium. Therefore,

while X series is not stationary, and provided that AX,is stationary, the linear

combination indicated with ,B'X, are stationary, considering 77 = af’ . BX :

which has a stationary structure is a cointegrated process.

Under the light of this information, the aim of Johansen method is to reveal the
cointegration structure as a result of estimating 4 and 7 parameter matrices. The

estimation of 4 matrix with OLS method can be shown as below:

X, =AX,_ +e t=123,..n

1

A= ZXtXt’—l ZXz—lX;—l
=1 t=1

In order to find the cointegration structure, it is not necessary to know A4 matrix. The

series can be separated into its stationary and non-stationary components by solving

JT matrix with the expression 7 = (A -1/ ) (Akdi, 2003).
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The estimation of /7 matrix can be performed by Maximum Likelihood Estimation

method. Under the assumptions of X, = 0 and the normal distribution of the error

terms, when ‘2‘ shows the determinant of 2 matrix, the likelihood function can be

expressed as:

1 I & e
- (272_)11/2‘2‘1/2 exXp _Ezl(AXt _HXt—l) 2 I(AXt _HXz—l)

Here, the maximum likelihood estimator of 77 can be expressed as;

-1
7= |:Z AX,XI']:”:Z Aththl:| = SOlSl_ll
=1

t=l1

And the MLE estimator of 2 matrix can be shown as,

& 1< A A ' A Ay
z, :;Z(AXt_”“Xz—l)(AXt_”Xt—J =Sy — 75,7

t=1

The hypothesis to be tested is H,:7 = @f'. Here 7 matrix is a matrix of
kxk dimensions and r rank, ¢ and # matrices are of kxr dimensions. In the

context of A, null hypothesis, the likelihood function is:

U, P)= X _% iA)(t —ofX, )z (AX, —afX, )}

(27z_)n/ 2

21/2

A maximization process should be conducted in the likelihood function above. This

process is performed in two steps. First, ' is kept as a constant and the maximum
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likelihood estimator of ¢ is obtained. For this the equation AX P 05,3 ')(t_l te,

can be used; and the result

t=1

o= S x| | S|

= [ﬂ’Sllﬂ]_] [:B’Sw ]

can be obtained.

As it can be seen, the likelihood function ﬂ is a function of 2 . The maximum

likelihood estimator of [ can be obtained by placing this value in the likelihood

function. In order to do this, let ¥ = AX ;T CZ,B Xl_l and Z(,B ) indicates the

variance — covariance matrix of ,B ,

exg{— g tracdY(Y'Y)'Y' )} = exg{— g tracd(Y'Y)" Y'Y)}

ol
P 2

In the context of these information, the likelihood function can be expressed as:

1

5]
14 - —€Xp| ———
2(8) 2

(272_)}1/{/2
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In other words, the maximization of the likelihood function depends on the

2(B)

nl/2
minimization of

Thus, the problem turns into
- . -1
min[S()| = min[S,, S, A5, B) " BS:

In order to determine the number of cointegration vectors in Johansen method, the
two different test statistics are used. These are Trace test and Maximum Eigen-Value

Tests. Brief information on these tests are provided below.

1.4.1 Trace Test

Trace test hypotheses are constructed as below assuming 7, shows the maximum

number of cointegration vector:

H,:r<r,

H :r>r,

The rank of 77 matrix being » means that there are » numbers of linearly independent
cointegration correlation. Therefore, H 0.7 <7 o hypothesis means the test of the
null hypothesis of “there are at most #, linearly independent cointegration

correlation” versus the | + ¥ > ¥y alternative hypothesis. In order to do this, let

the test statistics of the likelihood proportion ﬂ,l. indicate the eigen-value of 7T

matrix;
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A |1/2
max (@, f) 5,
LR: - f = A |n/2
max (@.f) |3,
r n/2

ﬁ@_ji) . o
=| S =[_H 1(1—/1,-)}
1}0(1—11.)

Here, the values of the test statistics

k
ﬁ’trace =-n z ln(l - }’z) (13)

i=r,+1
are compared to the critical value in Johansen (1988). If these values are greater than

the critical value, H, 0o T < , or H o - I = I, null hypotheses are rejected. Under

these circumstances, r cointegrated vectors can be defined. The process is continued

until H, o 1s not rejected and the number of cointegrated vectors is obtained. Here,

k — 7,  canonical correlations, assuming /1r0+1 > /1r0+2 >..> ﬂp , are used

(Akdi 2003).

As it can be seen in the equation (13), if A equals to zero, the value of the test is

higher. Therefore, it is easy to reject H 0-

1.4.2 Maximum Eigen-Value Test

Maximum Eigen-Value test, on the other hand, determines the number of the

cointegration vectors by testing the 7, empty hypothesis against 5, +1 alternative

hypothesis. The hypotheses are;
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H,:r=r,
H :r=r+l1

and the test statistic 1s

ﬂ’max =-n hl(l - l}’o‘l“l)

where T is the sample size and 2,- is the ith largest canonical correlation.

The values in Johansen (1990) are used for critical values, since the limit

distributions of these test statistics are different from standard distributions.



CHAPTER THREE
UNIT ROOT AND COINTEGRATION TESTS

IN PRESENCE OF STRUCTURAL BREAKS

In a time series, outlier observations, which are placed away from other
observations and/or which cause changes in the realization of the series, affect
significantly the analysis of the series. The existence of the outlier observations may
cause various problems such as biases and inconsistent estimation results, biased
parameter estimation, poor predictions and modeling of a linear model as a non-
linear model. Therefore, the effects of outlier observations should be included in the

model while analyzing the series.

The structural breaks which cause the interruption of the series and/or long termed
changes in their trends are expressed as outlier observations. Structural changes may
occur in the data generating processes of time series due to policy changes, financial
crises and natural disasters. These changes in the series, without any exact definition,

are generally called as the change in the model parameters.

The widely used ADF and Philips — Perron (PP) unit root tests, which are used for
testing the stationarity hypothesis, and the Engle — Granger and Johansen
Cointegration approaches, which investigate the long term equilibrium relation, are
methods that do not take the possible structural breaks in the series into
consideration. Therefore, using these tests on series with structural breaks may yield

the aforementioned problems.

23
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3.1 Unit Root Tests Developed in Presence of Structural Breaks

If there is a structural break in the time series used in stationarity analysis; and the
unit root analysis is conducted without considering the break, the unit root result of

the series can be unreliable. These results decreases the power of the test used.

Thus, in order to attain correct results in unit root analysis, Perron (1989),
Christiano (1992), Banarjee, Lumsdaine and Stock (1992), Zivot and Andrews
(1992), Perron and Vogelsang (1992), Lee and Strazicich, and Bai — Perron and
Perron (1997) tests which take structural breaks in time series into consideration, are

used.

In this study, Perron (1989) test and Zivot and Andrews (1992) test are explained.

3.1.1 Perron (1989) Unit Root Test

Perron (1989) developed a new test method in which the break point in the series
is known as external information and which are based on the hypotheses that there is
only one structural break. Knowledge of the break point enables the inclusion of
these shocks into to model as dummy variables. Such inclusion of the break into the
model as a dummy variable does not express the models which are built for the
variables representing the series, but it is used to remove the effects of the shocks in

the series, only.

Perron (1989) examined the unit root analysis on three different models. Of these
models, Model A is constructed by taking a structural change in the level (intercept)
of the series into consideration, Model B, a structural change in the slope of the
series; and Model C, taking into consideration the structural changes both in the level
and the slope of the series. The hypotheses for Perron (1989) test can be expressed as

below:
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H,: There is a stochastic trend in the series. Series is not stationary.

Hj: There is a deterministic trend in the series. The series is stationary with a break in

the trend.

The H, null hypotheses which vary with respect to the structural break being in

different parameters of the series can be presented as below:

MODEL A Y, = u+dD(TB), +7Y,_, +e, (14)
MODELB Y = +7Y,  +(u, —1,)DU, +e¢, (15)
MODELC Y, =y, +Y _ +dD(TB), + (1, — 14,)DU, +e¢, (16)

In the models above let T be 1<T,; <T and indicate the time of break, the

variables are defines as below:

l, t=T,+1 I, t>7,
D(TB), = DU, =
0, otherwise 0, otherwise

The alternative hypotheses of the models are as below:

MODEL A Y, = u + ft +(u, — 1) DU, + e, (17)
MODELBY, =y + Bt +(f, — 5,)DT, +e, (18)
MODEL C Y, = ut, + fit +(u, — 14 )DU, + (B, = B)DT, +e, (19)

In the alternative hypotheses of models above, let Tz be 1 < T < T and indicate the

time of break dummy variables are defined as following.
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t—=T,, t>T, t, t>T1,
DT = DT, =

0, otherwise 0, otherwise

I, t>T,

DU, =

t
0, otherwise

The null hypothesis of Model A shows that the structural break caused a change in
the intercept of the trend line via an external shock. The dD(TB) expression in the
equation takes the value 1 for the first period after the break time, and takes the value
0 for other period. When the alternative hypothesis is examined, DU, in the model is
a dummy variable which takes the value 0 until the time of break, and which takes
the value 1 for the periods after it; and (g, — 4,) expression is the difference the

structural change caused in the trend function.

The null hypothesis of Model B shows that the structural break caused a change in

the slope of the trend line via an external shock. In the alternative hypothesis, the

dummy variable of slope coefficient DT " takes the values 1,2,3,...T if there is an

increase in the slope of the trend after the time of break, takes the value 0 in other

otherwise. (,82 - ﬂl) expression in the hypothesis indicates the difference in the

slope of trend function caused by the structural change.

The hypotheses defined for Model C are in the form of a combination of Model A
and Model B. When Model C is examined, it is assumed that the structural break

caused a change in both the intercept and the slope of the trend line.

The ADF test method can be used for the Perron (1989) procedure test statistics. In
this respect, in order to test stationarity about the trend function of any Y, series,

equation (20) below is used.



k
Y= li+ ft+ar  + GAY, +¢

i=1
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(20)

When the Perron (1989) test models are taken in this context, the models turn into:

Y

o k
Q' +6'DU + Bt +d"D(TB), +a"'Y, + Y EAY, +¢,
i=1

k
Y, =i’ +60°DU, + B+ 7°DT +a"Y  + Y EAY,  +é

— 1 t
i=1

k

Y, = +0°DU+ [+ DT+d IXTB), +&°Y, + D GAY,, +¢,

t [2
=l

The parameter constraints for the models are as below;
MODEL A: a’=1, p*=0, 6°=0
MODEL B: a’=1, p%=0, 6°=0

MODEL C: a“=1, =0, 6°=0

21)

(22)

(23)

Under the light of this information, the Perron (1989) test procedure is conducted

through the following steps.

Step 1

Detrended series is obtained. The error terms of these models are shown as Uy

Step 2

The modeling of the error terms with their past values can be expressed as below:

Au, = pu, , +e,
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The unit root test is applied, under the assumption of €, ~ N(0,57) Here the
distribution of 2 will depend on the ratio of the time of break. This ratio shows the
ratio of the number of observations prior to the break to the total number of breaks

and expressed as A. ﬂ:T ]% ratio is also used to find the critical values in the table.
Hypotheses are expressed as follows;

H :p=0

H:p#0

and the test statistics is calculated by the following equation.

S pindicates the standard error of the parameters. H, hypothesis means that the

detrend operation did not convert the series to stationary, therefore the series has unit
root; the alternative hypothesis, on the other hand, means that the detrend operation
did make the series stationary. The series, analyzed based on these results, is

stationary with the structural break around the trend,
Step 3

The diagnostic control of the model, obtained in step two, is performed. If there is an
autocorrelation in the error terms of the model, the equation below is obtained by

adding the lagged terms.

k
Aut =pu,_ +i§1ﬂl.Aut_i +e;
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Step 4

In the last step, the test statistics on the significance of Ois calculated. This test

statistics is compared to the Perron (1989) test’s critical values, and it is decided
whether or not the null hypothesis could be rejected. If the test statistics is absolute

greater than the Perron (1989) critical value, H, hypothesis is rejected.

One of the important assumptions of Perron (1989) test is the prior information
about the break time period. However, in practice, generally the time of the structural
change is not known. In addition, determining the break time as a false prior
knowledge may cause the results of the test become incorrect. Numerous test have
been developed to remove these errors and to determine the time of break internally.
Some of these studies are Christiona(1992), Banarjee Lumsdaine and Stock
(1992),Perron and Vogelsang (1992), Perron (1997), Zivot and Andrews (1992). This

study gives brief information on Zivot and Andrews test.

3.1.2 Zivot and Andrews Unit Root Test

One of the most widely used unit root test in presence of a structural break is the
Zivot and Andrews test. As mentioned above, the Perron (1989) test includes the
time of break into the model externally. Zivot and Andrews (1992), on the other
hand, developed a test that includes the time of the break internally.

Zivot and Andrews (1992) test which takes the possible structural break into
consideration allows, as in Perron (1989) test, only a single structural break in the
trend function. Zivot and Andrews (1992) performed the unit root test on three

different models.

Model A, of these models, allows a change in the level (intercept) of the series;

Model B allows a change in the slope of the series; Model C allows change in both
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the level and the slope of the series. The hypothesis for Zivot and Andrews (1992)

test can be expressed as below;
H,: There is unit root in the series.
H;: The series is stationary with a structural break in the trend.

Zivot and Andrews (1992) expressed the H, null hypothesis for the three model of
Perron (1989) test in equations (17) — (19) as below

H, Y =u+Y  +e, (24)

Alternative hypotheses with comparison to the null hypothesis above are formed as

below:

Y =i’ +0'DU D)+ ft+ 'Y +e

t
Y, ="+ B’t+7" DI (D) +a"Y,  +e,
Y, = 2° +0°DU, () + Bt + DT, (M) + @Y, +e,

While DU, (2) and DT *(/i) represent the breaks in the constant and slope,

respectively, of the trend line, €, indicates the error term.

If the models built for the Zivot and Andrews (1992) hypothesis test are adapted to
the ADF test procedure using equation (20), as in Perron (1989) test, the models turn

into forms as below;

k
Y, ="' +0'DUA)+ Bt +a"Y,, + D GAY, , +¢,

J=1

k
Y, =i+ Bt+7°DT (D) +a"Y  + D TAY, , +¢,

t
J=1
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R n n n k
Y = 4 +0°DU () + ft+ DT (W) +a“Y +Z CCAY, +é,

t
Jj=1

While DU,(i) andD];*(ﬂ) represent the breaks in the constant and slope,

respectively, of the trend line, €, indicates the error term.

The dummy variables are defined as below:

L t>T |t Ty, t>T
DU.(})= DT/ (M) =

0, otherwise 0, otherwise

As seen in equation (24), while the null hypothesis includes a unit root, the
alternative hypotheses indicate that the series has a trend-stationary with a break in
an unknown point. Model A of the alternative hypotheses shows that the change is in
the intercept of the model with an unknown break point, model B shows that the
change is in the slope of the model with an unknown break point; and the
combination of these two models, Model C shows that shows that the change is in

both the intercept and the slope of the model with an unknown break point.

Differently from Perron (1989) test, the break point I which is not included in
the models is determined internally in Zivot and Andrews test. In this step, for the
estimation of the break time, each time period is taken as the possible break time and
(T-2) regressions is obtained with the OLS method until ¢t=2,...,(7T-2). After this
process is applied for all observation values, the value which is the minimum for the

¢ statistics of & , which is the coefficient of Y,_l variable, is selected as the break

point.
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The ¢ statistics obtained is compared to the critical values prepared by Zivot and
Andrews (1992). If the test statistics is greater than the critical values as an absolute
value, H, hypothesis is rejected. A series, analyzed according to this result, is

stationary with a break on the trend line.

Zivot and Andrews (1992) imposed a constraint such as A being between 0./5T
and 0.85T due to the approaching the asymptotic distribution of test statistics to the

infinity when the extreme of the series are included.

Zivot and Andrews acknowledged this constraint acceptable with respect to the
size of the sample and comparison of test’s power. Under the light of these
information, the possible location of break (the beginning or the end of the series)

affects the power of the test.

3.2 Cointegration Test in Presence of Structural Break

The presence of structural breaks in time series revealed that the time series
showed a great tendency to be non-stationary in terms of unit root test results in the
unit root analysis. In order to avoid these problems, many tests have been developed
in the literature. In series with a break in their unit roots, the analysis should be
performed by taking the possible breaks into consideration. The exclusion of the
structural breaks from the analysis can yield incorrect results, since it causes the
cointegration parameters to get different values between periods. The widely used
Engle — Granger and Johansen cointegration tests may give incorrect results since

they investigate long term relations without considering breaks.

In this context, using tests which investigate the cointegration relations by
considering structural breaks will give efficient results in detection the cointegration
relation. The widely used cointegration test involving structural breaks are Hansen

(1992), Quintos and Phillips (1993), Gregory — Hansen (1996) and Hatemi — J tests.
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3.2.1 Gregory — Hansen (1996) Cointegration Test

One of the most widely used cointegration tests in presence of a structural break is
Gregory — Hansen (1996). This test is similar to the Engle — Granger cointegration
method. The breaks are tried to be determined by adding dummy variables to the
Engle - Granger method. Gregory — Hansen (1996) test can be thought as a sequel to
Zivot and Andrews (1992) test. In this context, Gregory - Hansen test, as Zivot and
Andrews test, investigates only one single break. However, while Zivot and Andrews
test tries to determine the break in the series, Gregory — Hansen test tries to

determine the break in the error terms of the cointegrated relation.

Gregory — Hansen (1996) test investigates the determination of structural breaks

in long term relation under three different models.
The hypotheses tested for all models are below:
H,: There is not any cointegration between the series.
Hj: There is cointegration between the series.
MODEL A
Y=u+up,+a’ X, +e t=12,..,n
This model has been developed to determine the break in the constant term which is
also expressed as Level Shift (C), in the literature. In Model A, 4 indicates the

constant term before the break, £4, the change in the constant term in during the

T . . . g
structural break, & the coefficient of the independent variable, and @, indicates

the dummy variable which reflects the break effect on the model.

In the equation above, the analyses are conducted with the assumption that the value

T .
of & 1s constant.
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Model B
Y=+, +pt+a’' X, +e t=12,..,n

This model has been developed to determine the break in the constant term of series

with trend, which is also named as Level Shift with trend (C/T). In Model B,

differently from the previous model a trend variable such as Pt is included to the

model.

MODEL C
T T
Y=u+pep, +o X, +a, X,p, +e t=12,..,n

In Model C, which is expressed as Regime Shift (C/S ) in the literature, £4 and £, is
T
the same with the break in constant model. While ¢&; shows the slope coefficient

T
before the break, ¥,  shows the change in the slope coefficient after the break.

Model C is different from Model B, because this model does not any trend variable.

The dummy variable @, which is included in the model for the determination of the

structural break can be defined as below

1, t>[nr]

D =
1 0, t<[nr]

Here, n represents the number of observations, while T is a coefficient which shows
the break period between (0.15T, 0.85T) and takes the value of 0 or 1.

As the break time is not known previously, all data is analyzed as possible break

time and the smallest one is determined as the break time.
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The error terms (élf) obtained by alternative ways are estimated by OLS method.

These error terms depend on the selection of break time 7 .The first-order

autocorrelation coefficients of these error terms can be expressed as below:

n—1 A
Z(en‘eHlT - /12')
A K _ t—l
pl n—1
~2
€

t=1

Where A is estimate of a weighted sum of autocovariances.

Using this equation the Phillips test statistics can be written as below:

Z,(r)=n(p; -1

Z,(r)=(p. -1)/3, $.=67/2 8.

Gregory —Hansen (1996) test makes use of the Augmented Dickey Fuller (ADF )

statistics in order to determine the structural break.

ADF test statistics ADF =tstat(e, )

The ADF and Phillips statistics are standard statistics that are used without any

regime changes. In Gregory —Hansen (1996) test, on the other hand, in order to reject

the hypothesis that there is not any cointegration the smallest of the 7 € 7 values is

used.
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Thus ADF and Phillips (ADFF , Z:,,Z,* ) test statistics are;

Z =infZ (1)

rel

Z =infZ/(7)

t
rel

ADF" =inf ADF(r)
el
If these test statistics calculated from the residuals, are greater than the critical
values calculated by Gregory — Hansen (1996), then the H, hypothesis is rejected. In

this case, the series can be expressed as cointegrated with the structural breaks.

Gregory — Hansen (1996) test, which analyzes the long term relations between
series considering the structural breaks, conducts the analysis by taking only one
break into consideration as in Zivot and Andrews test. This test method becomes
invalid for series involving more than one break. In such situations, tests which

consider more than one break are used.



CHAPTER FOUR

SIMULATION

Cointegration analysis is a method developed to reveal whether there is a long
term linear relation between more than one time series. In this method, first a linear
model is constructed between two or more nonstationary series. Then, it is decided
whether these series are cointegrated depending on the error terms produced by this

model being stationary or not.

Various structural changes may occur in the data generation processes of the time
series due to various reasons such policy changes, financial crises and natural
disasters. These changes which occur in the series, and which do not have a certain
definition are generally expressed as the changes in model parameters. These

changes cause structural breaks in the series.

The presence of structural breaks in time series revealed that the unit root analyses
of the series tend to result in being nonstationary. The cointegration analyses should
be conducted considering the possible breaks in series with breaks in unit root
analyses. The exclusion of structural breaks from the analyses could yield erroneous
results since they would enable the cointegration parameters to take different values
between periods. The widely used E-G and Johansen cointegration tests may have
erroneous results since they investigate the long term relation without taking the
breaks into consideration. Under such circumstances cointegration methods which
consider the structural break. One of the cointegration tests which take the structural

break is Gregory — Hansen (1996) test.

4.1 Power Comparison of E-G and G-H Tests for Models

This chapter compares the E-G and G-H tests using Monte-Carlo simulation. The

basic approach of the Engle — Granger test, which is one of the most widely used

37
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cointegration analysis tests to investigate the long term relations between time series,
is the stationary property of the error terms of a linear transformation that can be

formed between two nonstationary time series.

The general model for two time series can be expressed as below:

Y, = Xy +uy

U, , which shows the error term in this model. If U, is stationary, it indicates that

X ¢ ,and Y, series are cointegrated. The Dickey-Fuller unit root test is performed to

check whether the error terms are stationary or not.

Gregory — Hansen (1996) test, which is one of the cointegration test used in the
presence of structural breaks, tries to determine the structural break by adding some
dummy variables to the model. Gregory — Hansen (1996) test investigates the
determination of the structural breaks in the cointegration analysis in three models
such as break in intercept, break in intercept with trend and break in both slope and

intercept. The information about these models is given in chapter three.
The null and alternative hypotheses for both tests can be expressed as below:
H,: The series are not cointegrated. The error terms are nonstationary.

H;: The series are cointegrated. The error terms are stationary.

For this comparison the data production was performed using MATLAB
(R2009a) software. The series are generated for three different model as break in
intercept, break in intercept with trend and break in both slope and intercept

according to the G — H test process.

Each data pair, generated for the cointegration tests, was repeated 10000 times

and results for both tests were obtained. The data were produced from the
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autoregressive AR(1) process with 50, 100, 200 sample size and with ¢=0.1,
$=0.5,0=0.9 parameters.

Since it was thought that the magnitude of the breaks in the series could affect the
power of the tests, the performances of the tests were investigated with 1, 5 and 10
breaks’ magnitudes. Similarly, since it was also thought that the breaks’ occurring in
different positions of the series could affect the power of the tests, the breaks were
applied in the first quarter (0.257), the second quarter (0.507) and in the third quarter
(0.75T7) and the power of the E-G test and Gregory — Hansen (1996) test is compared.



4.1.1 Level Shift
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The performances of Engle — Granger (E-G) and Gregory — Hansen (G-H) tests in

the presence structural breaks which cause changes in the intercepts of the series are

presented in the below.

Table 4.1 Level shift Model

LEVEL SHIFT RESULT

Tests 1}3:)e1:.11t( Break n=50 n=100 n=200

0,1 0,5 0,9 | 01 0,5 0,9 | 01 | 05 0,9
E-G | 0.25T 1 10,9606 | 0,2256 1 1]0,4322 1 1]0,8931
G-H | 0.25T 1/0,9971|0,6402| 0,1 1]0,9975 | 0,1106 1 10,2748
E-G | 0.50T 10,9999 | 0,9309 | 0,2153 1 10,4309 1 10,8779
G-H | 0.50T 1(0,9974 | 0,665 | 0,0933 1]0,9977| 0,107 1 10,2857
E-G | 0.75T 10,9999 | 0,9478 | 0,2149 1 1]0,4259 1 10,8862
G-H | 0.75T 10,9981 | 0,6576 | 0,0939 1]0,99770,1116 1 110,2714
E-G | 0.25T 50,1713 |0,1057 | 0,1254 | 0,9395 | 0,5446 | 0,206 10,9998 | 0,5007
G-H | 0.25T 50,9998 | 0,8763 | 0,1744 1 110,1813 1 1]0,3631
E-G | 0.50T 50,0153 | 0,0223 | 0,0965 | 0,3281 | 0,0982 | 0,1382 1/0,9148 | 0,293
G-H | 0.50T 5 1]0,8934| 0,198 1 1/0,1919 1 10,3767
E-G | 0.75T 50,0326 | 0,0309 | 0,0964 | 0,5769 | 0,1747 | 0,1433 10,9804 | 0,3455
G-H | 0.75T 510,9997|0,8857 | 0,1965 1 10,1959 1 10,3601
E-G | 0.25T 10| 0,007 |0,0227 | 0,0564 | 0,0199 | 0,0293 | 0,0733 | 0,226 | 0,0886 | 0,1095
G-H | 0.25T 10 1[0,9986 | 0,6325 1 110,6178 1 10,7796
E-G | 0.50T 10| 0,0017 | 0,0072 | 0,047 | 0,0019 | 0,0051 | 0,0449 [ 0,011 | 0,0148 | 0,0397
G-H | 0.50T 10 10,9995 |0,7159 1 10,3364 1 10,7981
E-G | 0.75T 10| 0,0011 | 0,0067 | 0,0366 | 0,0017 | 0,0062 | 0,0346 | 0,017 | 0,0189 | 0,0405
G-H | 0.75T 10 10,9984 | 0,6839 1 10,6649 1 10,7927
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When one unit break is applied to the intercept of AR(1) model which is

generated with a sample size of 50, and ¢ = 0.1 , the result of E-G cointegration

test shows that all series are stationary and also cointegrated, whereas the result of
G-H test shows that 99% percent out of all series are stationary and cointegrated.
Since the autocorrelation degree is low, both tests’ powers are found almost
independent from the break point, but when the size of the break is 5 or 10, the
power of E-G test decreases dramatically. In contrast with this change, as the G-H

test is sensitive to breaks, there is not any loss in its power.

In other words, as the size of break increases the power of the E-G test to reveal the
cointegrated structure decreases. But G-H test power does not decrease in presence
of this change. The difference between two tests increases gradually. Increasing the ¢
parameter in the same sample size generally affects the power of both tests

negatively.

When the sample size is 100, it is seen that the power of the E-G and G-H tests
increases in all values of the phi parameter of AR(1). On the other hand, it can be
argued that the E-G test is more powerful when the break magnitude is 5 compared

to time when n=50.

When the sample size is 200, it is seen that the power of the E-G and G-H tests
increases in all values of the phi parameter of AR(1). It can be said that the E-G test
is more powerful when the break magnitude is 5 compared and when the sample size

1s 50 and 100.

In general, it was observed that the power E-G and G-H tests, in break in intercept
model, increased as the sample size increased, but decreased as the phi parameter
gets greater. While the power of E-G test decreases with the increasing break

magnitude, the power of G-H test increases.
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4.1.2 Level Shift with Trend

The performances of Engle — Granger (E-G) and Gregory — Hansen (G-H) tests in
the presence structural breaks which cause changes in the intercepts of the series with

trend are presented in the below.

Table 4.2 Level Shift with Trend (trend=0.1)

LEVEL SHIFT WITH TREND (Trend=0.1)

Tests ]li)re.ak Break n=50 n=100 n=200

oint 0,1 0,5 09 |01 ]| 05 0,9 0,1 | 05 | 09
E-G | 0.25T 1 1| 09689 | 02586 1 1| 04733 1 10,9058
G-H | 0.25T 1| 0,9897| 06419 0,1408 110,9977| 0,1737 1 1]0,3912
E-G | 0.50T 1| 0,9999| 09662 | 0,2603 1 1| 04844 1 1[0,9151
G-H | 0.50T 1| 0,9918| 06716 0,149 1] 0997| 0,1799 1 10,4007
E-G | 0.75T 1| 0,9999| 09613| 0,254 1 1| 04766 1 1] 0911
G-H | 0.75T 1] 0,9918| 0,6541| 0,1418 1109976 | 0,1766 1 10,3908
E-G | 0.25T 5| 0,9894| 0,7808 | 0,1924 1]0,9995| 0,3659 1 1| 0,802
G-H | 0.25T 5] 0,9971| 0,8002| 0,1884 1]0,9984| 0,2011 1 1]0,4133
E-G | 0.50T 5] 0,9962| 0,8592| 0,2265 1]0,9999| 04122 1 1]0,8412
G-H | 0.50T 5| 0,9983| 08317 0,2013 1] 0,999| 0,2051 1 10,4006
E-G | 0.75T 5| 09715 0,733 | 0,2234 10,9997 | 0,392 1 1| 0,804
G-H | 0.75T 5| 0,9982] 08139] 0,197 1]0,9996 | 0,2037 1 10,4025
E-G | 0.25T 10| 0,9088 0,444 | 0,0898 1] 0925| 0,1776 1 10,4862
G-H | 0.25T 10| 0,9999| 0,9853 | 0,4896 1 1| 04235 1 10,5817
E-G | 0.50T 10| 0,9796| 0,6739| 0,1579 1]0,9918 | 0,2767 1 10,6451
G-H | 0.50T 10| 0,9999| 0,9892 | 0,4891 1 1] 04341 1 10,5886
E-G | 0.75T 10| 0,8154| 0,3977| 0,1558 1] 0925| 02313 1 1]0,5207
G-H | 0.75T 10 1| 09887 04875 1 1| 04327 1 10,5897
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When the table presenting the breaks in the intercept of series with trend is
examined, it is seen that G-H and E-G tests reveal the series as cointegrated
significantly in all sample size as the phi parameter is 0.1. In cases when the break
magnitude is 1 and 5, and the phi parameter is defined 0.5 and 0.9, it can be said that
E-G test is more powerful than G-H test. On the other hand, when the break

magnitude is 10 the power of G-H test increases as the power of E-G test decreases.

Generally, when the trend coefficient is 0.1 (trend slope is smaller) and when a
break occurs in the intercept, there is not any statistically significant difference
between tests with 0.1 phi coefficient in reveal the cointegrated structure. The trend
in the series reduces the specificity of the breaks. Therefore, some deformation occur

in the cointegrated structure.
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On the other hand, when the break magnitude is 10, the number of the E-G

cointegrated series decreases, while the G-H test can reveal this break in significant..

Table 4.3 Level Shift with Trend (trend=0.9)

LEVEL SHIFT WITH TREND(Trend=0.9)

Tests Ili)rc?ak Break n=50 n=100 n=200

oint 0,1 0,5 0,9 0,1 0,5 09 | 01 0,5 0,9
E-G | 0.25T 1 1]0,9825| 0,2673 1 10,4878 1 1]0,9105
G-H | 0.25T 1]0,9913 | 0,7712 | 0,1502 10,9981 | 0,1839 1 1]0,3923
E-G | 0.50T 1 1]0,9842 | 0,2658 1 10,4815 1 1]0,9176
G-H | 0.50T 1] 0,9995| 0,7705 | 0,1517 10,9974 | 0,1793 1 10,4099
E-G | 0.75T 1 1]0,9811 | 0,2594 1 10,4813 1 1]09127
G-H | 0.75T 10,9993 | 0,2304 | 0,1479 10,9978 | 0,1859 1 1]0,3992
E-G | 0.25T 5| 0,9831 | 0,7068 | 0,1883 10,9981 |0,3556 1 1]0,7922
G-H | 0.25T 5]0,9994| 0,826 0,1823 10,9996 | 0,1946 1 1] 0,3949
E-G | 0.50T 5] 0,9978 | 0,8401 | 0,2236 1]0,9999 | 0,407 1 1] 0,8402
G-H | 0.50T 5(0,9991| 0,8187 | 0,1762 10,9998 | 0,1906 1 1]0,3938
E-G | 0.75T 5| 0,9893 | 0,7366 | 0,2217 10,9994 | 0,3905 1 1]0,8092
G-H | 0.75T 510,9999| 0,8253| 0,185 1]0,9988 | 0,2013 1 1| 0,4068
E-G | 0.25T 10| 0,4101 | 0,0983 | 0,0639 | 0,9888 | 0,6427 | 0,1603 10,9998 | 0,4526
G-H | 0.25T 10 1]0,9804 | 0,4558 1 1| 0,406 1 1]0,5715
E-G | 0.50T 10| 0,8171| 0,345| 0,1314| 0,9999|0,9303 | 0,258 1 1]0,6188
G-H | 0.50T 10| 0,9999 | 0,9745| 0,42 1 10,4114 1 1]0,5879
E-G | 0.75T 10| 0,515|0,1522| 0,1341 | 0,9966 | 0,7621 | 0,2185 10,9998 | 0,5037
G-H | 0.75T 10 1]0,9811] 0,4416 1 10,3999 1 10,5808
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When the table presenting the breaks in the intercept of series with trend is
examined, it is seen that G-H and E-G tests reveal the series as cointegrated

significantly in all sample size and all break magnitudes as the phi parameter is 0.1.

When the break magnitude is 1 and 5, the phi parameter is 0.5 and 0.9, and the
sample size 100 and 200, it can be said that E-G test is more powerful than G-H test.
On the other hand, when the sample size is 50,100 and the break magnitude is 10 the

power of G-H was found more powerful.

Generally, when the trend coefficient is defined as 0.9 (trend slope is high) and
when a break occurs in the intercept, there is not any statistically significance
difference between tests with 0.1 phi coefficient. The trend in the series reduces the
specificity of the breaks. Therefore, some deformation occur in the cointegrated

structure.

On the other hand, when the break magnitude is 10, the power of the E-G test
decreases, while the G-H test can reveal this break. When compared to the table in
which trend coefficient is 0.1, and when all phi coefficient and sample size is 50 it

can be said that E-G test is more powerful than the trend is 0.1.
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The performances of the cointegration tests Engle-Granger (E-G) and Gregory-

Hansen (G-H) in the presence of a structural break in both the slope and the intercept

of the series are given in the tables below.

The information on the cointegration results of the series in which the slope value

increased to 0.9 from 0.1 after the break is given in table 4.4.

Table 4.4 Regime shift (slope1=0.1, slope2=0.9)

REGIME SHIFT (trend1=0.1, trend2=0.9 )

Tests l;rt?ak Break n=50 n=100 n=200
oint 0,1 0,5 0,9 0,1 0,5 09 [01(05| 09

E-G | 0.25T 1 1| 0,9833| 0,2566 1 1] 04836| 1| 1| 0,9082
G-H | 0.25T 1| 0,9994 | 0,7724 | 0,1541 1 1101869 | 1| 1] 04127
E-G | 0.50T 1 1] 0,9856| 0,2773 1 1] 04879 1| 1| 09157
G-H | 0.50T 1| 0,9998 | 0,7752| 0,153 1 1| 0,189 1| 1] 04124
E-G | 0.75T 1 1] 0,9882| 0,2701 1 1 0484 | 1| 1] 09124
G-H | 0.75T 1| 0,9998 | 0,7494 | 0,1382 1 1101861 | 1| 1] 0,3929
E-G | 0.25T 5| 0,9917| 0,7683 | 0,1969 1 103652 1| 1| 0,806
G-H | 0.25T 5| 0,9997| 0,8392| 0,1584 1 10,2097 1| 1| 0,4108
E-G | 0.50T 5| 0,9997| 0,928 | 0,2417 1 1104403 1| 1] 0,8712
G-H | 0.50T 5| 0,999 0,8164| 0,4515 1 1] 02378 1| 1| 0,4388
E-G | 0.75T 5 1| 0,982 0,2669 1 1| 04608| 1| 1| 0,889
G-H | 0.75T 5] 0,9998 | 0,7563 0,37 1 110,2306| 1| 1] 0,4283
E-G | 0.25T 10| 0,5477| 0,1695| 0,0881 | 0,9977 | 0,7856 | 0,1722| 1| 1| 0,5018
G-H | 0.25T 10 1| 0,9721 | 0,2276 1 1104223 1| 1| 0,585
E-G | 0.50T 10| 0,9754 0,66 | 0,1709 1] 0,9967| 0,3195| 1| 1] 0,7235
G-H | 0.50T 10| 0,9999 | 0,9044 1 1 1] 04137 1| 1] 0,5962
E-G | 0.75T 10| 0,9998 | 0,9691 | 0,2336 1 110394 1| 1] 08215
G-H | 0.75T 10| 0,9979| 0,7324 1 1 1103743 1| 1] 0,5792
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Where sample size is 50, phi coefficient is 0.1 and 0.5, and the magnitude of the
break is 1 and 5, it is seen that E-G test could reveal more cointegrated structures
than G-H test. On the other hand, when the magnitude of the break is 10, the power
of G-H test is more than E-G test. With the same sample size, when phi coefficient

becomes 0.9 and break location is 0.25T the power of both test decreases.

When the sample size is 100, phi coefficient is 0.1 and 0.5, and the break point is
1 and 5, E-G and G-H tests can be argued to have a high power. On the other hand

determining the phi coefficient as 0.9 decreases the power of both tests.

Where the sample size is 200, phi coefficient is 0.1 and 0.5, and break point is 1
and 5, it can be argued that both E-G and G-H tests have high power. On the other
hand, determining the phi coefficient as 0.9 decreases the power of both tests. When
these results are compared with the one, in which the sample size is 100, it can be

said that there is a relative increase in the power of both tests.

Whatever the sample size is, if the break magnitude is taken the minimum (1), and
the phi parameter is 0.1 and break is positioned at the beginning of the series, both

tests have the same performance in catching up the cointegrated series.

When sample size is 50, the phi parameter is 0.1 both tests give similar results.
However, as the phi parameter and the sample size increase, both of tests becomes a
more powerful. In cases where the break magnitude is 10, the G-H test becomes
more powerful. The main point here is that the slope is at a low level before the
break; and although the slope after the break increased significantly as the break
magnitude increased, the E-G test is not affected from this situation as much as the

G-H test.
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The information on the cointegration results of the series with a slope value of 0.5

prior to the break and with a slope value 0.9 after it is given in table 4.5

Table 4.5 Regime shift (slope1=0.5, slope2=0.9)

REGIME SHIFT (trend1=0.5, trend2=0.9 )

Tests ll3)re.eak Break n=50 n=100 n=200
oint 0,1 0,5 0,9 0,1 0,5 0,9 0,1 | 0,5 0,9

E-G | 0.25T 1 1| 0,9853]|0,2538 1 1]0,4833 1 1(0,9104
G-H | 0.25T 1| 0,999 0,7763 0,15 1 1]0,1828 1 10,3964
E-G | 0.50T 1 1| 0,9861 ]| 0,2641 1 1]0,4838 1 10,9184
G-H | 0.50T 1]0,9996 | 0,7843|0,1483 1 1]0,1831 1 10,4062
E-G | 0.75T 1 1| 0,9882]0,2625 1 1]0,4862 1 1| 0,924
G-H | 0.75T 1]0,9992 | 0,7669 | 0,1467 1 1]0,1836 1 1]0,3985
E-G | 0.25T 5/0,9922 | 0,7388 | 0,1888 1 1]0,3566 1 10,7973
G-H | 0.25T 5109996 | 0,8235]0,1819 1 1]0,1972 1 10,4074
E-G | 0.50T 50,9991 0,905 | 0,2305 1 1|0,4227 1 1]0,8526
G-H | 0.50T 510,9997| 0,8156 | 0,1825 1 1] 0,2056 1 10,4178
E-G | 0.75T 5 1| 0,9594|0,2418 1 10,4174 1 1]0,8403
G-H | 0.75T 510,9987| 0,8046 | 0,1834 1 1]0,2158 1 10,4274
E-G | 0.25T 10| 0,4497 | 0,1174 | 0,0721|0,9946 | 0,7099 | 0,1576 1 10,4632
G-H | 0.25T 10 1| 09768 0,4515 1 1{0,4075 1 1]0,5719
E-G | 0.50T 10| 0,9487 | 0,5277 | 0,1501 1| 0,9866 | 0,2806 1 10,6622
G-H | 0.50T 10(0,9997 | 0,9317 | 0,4033 1 1| 0,393 1 10,5722
E-G | 0.75T 10]0,9998 | 0,8136 | 0,1718 1] 0,9998 | 0,2825 1 10,6348
G-H | 0.75T 10(0,9986| 0,8799| 0,4116 1 1]0,4283 1 10,5823
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Where the sample size is 50, phi coefficient is 0.1 and 0.5, and the break
magnitude is 1 and 5, it can be said that E-G test has greater success in catching up
more cointegrated structures than G-H test does. On the other hand, when the break
magnitude is 10, the power of G-H test is more than the E-G test. With the same
sample size, when the phi coefficient is 0.9, power of both tests decreases. In
addition to this result, in cases where phi coefficient is 0.9 and break magnitude is 1
and 5 E-G gives more powerful results compared to G-H test, but break magnitude

being 10 increases the power of G-H test.

When sample size is 100 and 200, phi coefficient is 0.1 and 0.5, and break
magnitude is 1 and 5, it can be said that both E-G and G-H test have high power. On

the other hand, when the phi coefficient is 0.9, the power of both tests decreases.

When the results of sample size 100 and 200 are compared, it can be argued that
expansion of the sample size causes an increase in the power values of both tests.
Here the main point to be emphasized is that the power of the tests decreases as the
break magnitude increases. In addition, the G-H test is affected from the break point.
In cases when there is a middle slope before the break, and there is a strong break
and thus the trend slope becomes higher, it can be argued that G-H test has less
power than E-G test.
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The information on the cointegration results of series with a slope value 0.9

before the break and a slope value 0.1 after it is given in table 4.6.

Table 4.6 Regime shift (slope1=0.9, slope2=0.1)

REGIME SHIFT (trend1=0.9, trend2=0.1)

Tests lIS’reEak Break n=50 n=100 n=200
oint 0,1 0,5 0,9 0,1 0,5 09 [01]/05]| 09
E-G | 0.25T 1 1| 0,9812| 0,2667 1 104729 1 1| 0,9136
G-H | 0.25T 1| 0,9994 | 0,7756 | 0,1575 1/0,9991|0,1817| 1 1| 0,3971
E-G | 0.50T 1 1| 0985 0,2649 1 1]0,4864| 1 1| 0,9141
G-H | 0.50T 1| 0,999 0,7775]| 0,1453 1 110,1779| 1 1| 0,3988
E-G | 0.75T 1 1| 0,9826| 0,2575 1 1104829 1 1| 0,9096
G-H | 0.75T 1| 0,9994 | 0,7683 | 0,1475 10,9993 0,1839| 1 1| 0,3984
E-G | 0.25T 5| 0,9877| 0,7082 | 0,1925 10,9987 0,3582| 1 1| 0,7879
G-H | 0.25T 5] 0,9995| 0,8342 | 0,1792 10,9991 0,1965| 1 1| 0,399
E-G | 0.50T 5| 0,9976 | 0,8466 | 0,2177 10,9996 | 0,4077 | 1 1| 0,8445
G-H | 0.50T 5] 0,9994 | 0,8162| 0,1756 10,9988 0,1968 | 1 1| 0,4042
E-G | 0.75T 5| 0,9962 | 0,7794 | 0,2226 10,9997 0,3907 | 1 1| 0,8114
G-H | 0.75T 5] 0,9994 | 0,8291 | 0,1825 1]0,99950,2037| 1 1] 0,4117
E-G | 0.25T 10| 0,4041 | 0,1011 | 0,0701 |0,9878 | 0,6509 | 0,158 | 1 1| 0,455
G-H | 0.25T 10 1| 0,9761 | 0,4492 1 104073 1 1| 0,5769
E-G | 0.50T 10| 0,8504 | 0,3677 | 0,1392 10,9429 0,2599 | 1 1| 0,6358
G-H | 0.50T 10| 0,9999 | 0,9727 | 0,4267 1 10,3892 1 1| 0,5681
E-G | 0.75T 10| 0,7181 | 0,2111 | 0,1264 | 0,9998 | 0,8476 | 0,2141 | 1 1| 0,5168
G-H | 0.75T 10 1] 0,9749 | 0,4419 1 1104119| 1 1| 0,5735




56

ot 5 I ot 5 1 ot 5 1
[ [ 1
re e 1o
o 4 7o
o £ 3]
trp=— ¥ o= ¥ Ho— o
Fl— - 3— - o3— o
g 7 ¥
1] ] L0
g0 0 o
2] 0 0
1 1 1
6'0=1ud '00Z=u S°0=1yd ‘00Z=u T'0=I4d ‘00Z=u
ot 5 1 ot g 1 ot 5 1
o o BED
Ta L] 1860
0 0 FR60
1 3] 9860
o= ¥ W= o Hy— 2860
51— 0 FI— 0 BI— 650
L 70 2660
o ra #66'0
5o 7o 660
50 [ 2660
1 1 1
6'0=14d ‘00T=V S0=1yd ‘00T=u T'0=14d ‘00T=u
ot g 1 ot 5 1 ot 5 1
o a a
i t 1
£ o 7o
£ j] 0
o— ¥o o— ¥o = o
5I— 5o 5I— 0 i— 50
i E L
0 o poe
g0 &0 0
50 &0 0
1 1 1
6°0=1Yd ‘05=u §°0=14d ‘05=u 1°0=1ud ‘05=u

0.1)

Figure 4.6 Regime shift (slope1=0.9, slope2



57

Where the sample size is 50, phi coefficient is 0.1 and 0.5, and the break
magnitude is 1 and 5, it can be said that both E-G and G-H test have the same and
high power. On the other hand, when the break magnitude is 10, the power of G-H
test is more than the E-G test. With the same sample size, when the phi coefficient is
0.5 and 0.9, and break magnitude is 1 and 5, it is seen that E-G is more powerful than
G-H test. In addition, in cases where phi coefficient is 0.9 and break magnitude is 10

the power G-H test is more than E-G test.

In cases when the sample size is 100 and 200, phi coefficient is 0.1, 0.5, and the
break magnitude is 1 and 5, it can be said that both of test are powerful. On the other
hand, when the break magnitude is 10, and phi coefficient is 0.9, G-H is more
powerful than E-G test.

When the results of sample size 100 and sample size 200 are compared, it can be
argued that expansion of the sample size causes an increase in the power values of

both tests.
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The information on the cointegration results of series with a slope value 0.9

before the break and a slope value -0.1 after break, it is given in table 4.7.

Table 4.7 Regime shift (slope1=0.9, slope2=-0.1)

REGIME SHIFT (trend1=0.9, trend2=-0.1)

Tests ]i’;r(?ak Break n=50 n=100 n=200
oint 0,1 0,5 0,9 0,1 0,5 09 |01 |05 0,9

E-G | 0.25T 1 10,9824 | 0,2673 1 10,4715 1 1| 09111
G-H | 0.25T 1| 0,99930,7677 | 0,1498 1]0,9994 | 0,1842 1 1| 0,3969
E-G | 0.50T 1| 0,9999 |0,9839 | 0,2653 1 10,4763 1 1| 0,9093
G-H | 0.50T 1| 0,99910,7668 | 0,1519 1{0,9991 | 0,1769 1 1| 0,403
E-G | 0.75T 1| 0,9999|0,9808 | 0,259 1 1]0,4792 1 1| 0,9043
G-H | 0.75T 1| 0,99910,7667 | 0,1476 1]0,9995 | 0,1831 1 1| 0,4054
E-G | 0.25T 5| 0,982| 0,704 |0,1883 1]0,9987 | 0,3608 1 1] 0,7913
G-H | 0.25T 5| 0,99950,8256 | 0,1822 10,9994 | 0,1929 1 1| 0,4064
E-G | 0.50T 5| 0,9957| 0,8270,2222 10,9985 | 0,4071 1 1| 0,8387
G-H | 0.50T 5| 0,999|0,81810,1752 10,9998 | 0,1944 1 1] 0,3859
E-G | 0.75T 5 0,97 | 0,6831 | 0,2195 1]0,9989 | 0,3807 1 1| 0,8052
G-H | 0.75T 5| 0,99970,8221 | 0,1838 1]0,9994 | 0,1967 1 1| 0,401
E-G | 0.25T 10| 0,4139| 0,098 |0,0637 | 0,9876 | 0,6378 | 0,1622 1 1| 0,4506
G-H | 0.25T 10 1]0,9811 | 0,4564 1 10,4021 1 1] 0,5737
E-G | 0.50T 10| 0,7573 (10,3158 |0,1302 | 0,9994 | 0,9147 | 0,2561 1 1| 0,6192
G-H | 0.50T 10| 0,9999 | 0,9766 | 0,4218 1 10,3981 1 1| 0,559
E-G | 0.75T 10| 0,278 (10,0973 | 0,1301 | 0,9667 | 0,6325 | 0,201 1 1| 0492
G-H | 0.75T 10 1]0,9824 | 0,4437 1 10,4154 1 1| 0,5749
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In cases where the sample size is 50, phi coefficient is 0.1 and 0.5, and the break
magnitude is 1 and 5, it can be said that both E-G and G-H test have the same and
high power. On the other hand, when the break magnitude is 10, the power of G-H
test is more than the E-G test. With the same sample size, when the phi coefficient is
0.5 and 0.9, and break magnitude is 1 and 5, it is seen that E-G is more powerful than
G-H test. In addition, in cases where phi coefficient is 0.9, 0.5 and break magnitude

is 10 the power G-H test is more than E-G test.

In cases when the sample size is 100 and 200, phi coefficient is 0.1, and 0.5, in all
break magnitudes the power of both tests is generally high. The only process not
conforming to this result is when the sample size is 100 and the break magnitude is
10. In this kind of series, the power of E-G test is approximately 86%. In cases where
phi coefficient is 0.9, a dramatic decrease in the power of both tests was observed. In
addition to this decrease, the power values of the E-G test are greater than the G-H
test. On the other hand, an increase in the sample size causes an increase in the

power of both tests.

The main point to be emphasized here is the E-G test which is more powerful than
G-H test in cases where the slope is strong before the break and becomes weaker or
gets even negative values and when the break magnitude is weak; however as the

break magnitude increases E-G test have less power than G-H test.
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The information on the cointegration results of series with a slope value 0.1 before

the break and a slope value -0.5 after the break, it is given in table 4.8.

Table 4.8 Regime shift (slope1=0.1, slope2=-0.5)

REGIME SHIFT (trend1=0.1, trend2=-0.5)

Tests ]IS,re.ak Break n=50 n=100 n=200
oint 0,1 0,5 0,9 01 | 05 0,9 01 (05| 09

E-G | 0.25T 1 1]0,9783 | 02373 1 1| 04764 1 1| 0,9094
G-H | 0.25T 1] 0,9992(0,7339| 0,1199 1109988 | 0,1538 1 1| 03848
E-G | 0.50T 1 1]0,9833 | 0,1909 1 1| 04232 1 1| 08979
G-H | 0.50T 1] 0,9986(0,7475| 0,1116 1] 0,999| 0,1526 1 1| 03566
E-G | 0.75T 1 10,9857 | 0,2226 1 1| 04421 1| 1| 0,8968
G-H | 0.75T 1] 0,999(0,7063| 0,1211 10,9992 | 0,1506 1 1| 03559
E-G | 0.25T 5| 0,9718(0,6106| 0,1562 1/0,9986 | 0,3445 1| 1| 0,7646
G-H | 0.25T 5| 0,9977|0,6421| 0,1379 10,9979 | 0,1573 1 1| 03575
E-G | 0.50T 5| 0,9987(0,8795| 0,0888 1 1| 02287 1 1| 0,6209
G-H | 0.50T 5| 0,9973]0,6579| 0,1265 1109973 | 0,1532 1 1] 03482
E-G | 0.75T 5 1]0,9444 | 0,0871 1 1| 0,1943 1| 1| 0,5369
G-H | 0.75T 5| 09977| 0,698| 0,1705 10,9974 | 0,1922 1 1| 03859
E-G | 0.25T 10| 0,0457|0,0104 | 0,0675|0,952|0,4698 | 0,1622 1| 1| 04333
G-H | 0.25T 10| 0,9997| 0,82| 0,4397 1]0,9999 | 0,4005 1 1| 05517
E-G | 0.50T 10| 0,7348|0,2411| 0,0238 1/0,9827 | 0,0597 1| 1| 0,1619
G-H | 0.50T 10 0,99| 0,436| 03776 1]0,9968 | 0,3643 1 1| 05392
E-G | 0.75T 10| 0,99890,6075| 0,0091 1]0,9998 | 0,0157 1 1| 0,0529
G-H | 0.75T 10| 0,99240,6407 | 04221 110,9969 | 0,4008 1 1] 05631
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In cases where the sample size is 50, phi coefficient is 0.1 and 0.5, and the break
magnitude is 1 and 5, it can be said that both E-G and G-H test have the same and
high power. On the other hand, when the break magnitude is 10, the power of G-H
test is more than the E-G test. With the same sample size, when the phi coefficient is
0.5 and 0.9, and break magnitude is 1 and 5, it is seen that E-G is more powerful than
G-H test. In addition, in cases where phi coefficient is 0.9 and break magnitude is 10

the power G-H test is more than E-G test.

In cases when the sample size is 100 and 200, phi coefficient is 0.1, and 0.5, in all
break magnitudes the power of both tests is generally high. In cases where phi
coefficient is 0.9, a dramatic decrease in the power of both tests was observed. In
addition to this decrease, the power values of the E-G test are greater than the G-H
test. In addition, break magnitude is 10 the power G-H test is more than E-G test. On
the other hand, an increase in the sample size causes an increase in the power of both

tests.

Here the essential point is, when the slope before the break is weakly positive, and
it becomes a middle negative with the magnitude of the break, and when the break
magnitude is weak, E-G test is more powerful than G-H test independent from the
sample size. The power of G-H test gets greater than E-G test as the break magnitude
increases. When the results are examined with respect to break point, while an
inference for E-G test in strong breaks could not be done; for G-H test the break

occurring in the middle region of the series increases the power of the test.
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The information on the cointegration results of series with a slope value 0.5

before the break and a slope value -0.9 after the break, it is given in table 4.9.

Table 4.9 Regime shift (slope1=0.5, slope2=-0.9)

REGIME SHIFT (trend1=0.5, trend2=-0.9 )

Tests Ili)re.eak Break n=50 n=100 n=200

oint 0,1 0,5 0,9 0,1 0,5 09 |01 ] 05 0,9
E-G | 0.25T 1 1] 0,9758 | 0,2668 1 10,4766 1 1| 0091
G-H | 0.25T 1| 0998| 0,6079| 0,1491 1]0,9978 | 0,1751 1 1| 0,3899
E-G | 0.50T 1 1] 0,9751| 0,259 1 10,4798 1 1| 0,9159
G-H | 0.50T 1| 0,9984| 0,6707| 0,1443 1]0,9973 | 0,1784 1 1| 0,4012
E-G | 0.75T 1 1| 0,9737| 0,2525 1 1|0,4775 1 1| 0,9103
G-H | 0.75T 1| 0,9983| 0,3097 | 0,1418 1]0,9977 | 0,1754 1 1| 0,3956
E-G | 0.25T 5| 0,9882| 0,6107 | 0,1803 10,9931 | 0,3543 1 1| 7,8889
G-H | 0.25T 5] 0,9971| 0,5574| 0,1675 10,9947 | 0,1917 1 1| 0,3877
E-G | 0.50T 5] 0,9999 | 0,2974| 0,2053 1]0,9663 | 0,3818 1 1| 0815
G-H | 0.50T 5| 0,9968| 0,7609 | 0,167 1]0,9994 | 0,1763 1 1| 0,3684
E-G | 0.75T 5| 0,9989| 0,2092 | 0,1866 10,9353 0,3336 1 1| 0,7441
G-H | 0.75T 5| 0,999 0,821 0,1651 10,9993 | 0,1798 1 1| 0377
E-G | 0.25T 10| 0,147 0,3815| 0,0681|0,9919 | 0,574 | 0,1527 1| 0999 0,4419
G-H | 0.25T 10| 0,9981 | 0,7526| 0,0469 10,9998 | 0,4128 1 1| 0,5683
E-G | 0.50T 10| 0,7754| 0,0006 | 0,1154 10,0093 | 0,2167 1| 0867 0,5396
G-H | 0.50T 10| 0,9954 | 0,8968 | 0,4475 1 10,3975 1 1| 0,5595
E-G | 0.75T 10| 0,6191 0| 0,075 10,0009 | 0,1248 1| 0615| 03171
G-H | 0.75T 10| 0,9987 | 0,9453 | 0,4686 1 10,4093 1 1| 0,5653
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In cases where the sample size is 50, phi coefficient is 0.1 and 0.5, and the break
magnitude is 1 and 5, it can be said that both E-G and G-H test have the same and
high power. On the other hand, when the break magnitude is 10, the power of G-H
test is more than the E-G test. With the same sample size, the phi coefficient is 0.5
and 0.9, and break magnitude is 1 and 5, it is seen that E-G is more powerful than G-
H test. In addition, in cases where phi coefficient is 0.9 and break magnitude is 10

the power G-H test is more than E-G test.

In cases when the sample size is 100 and 200, phi coefficient is 0.1, and 0.5, in all
break magnitudes the power of both tests is high. The only process not conforming to
this result is when the break magnitude is 10. In this kind of series, the power of E-G
test dramatically decreases. In cases where phi coefficient is 0.9, a dramatic decrease
in the power of both tests was observed. In addition to this decrease, the power
values of the E-G test are greater than the G-H test when the break magnitude is 1
and 5. When the break magnitude is 10, the power of G-H test is powerful than E-G
test. On the other hand, an increase in the sample size causes an increase in the

power of both tests.

Here the main point is, when the slope before the break is middle positive, and it
becomes a strong negative with the magnitude of the break, and when the break
magnitude is weak, E-G test is more powerful than G-H test independent from the
sample size. The power of G-H test gets greater than E-G test as the break magnitude

increases.



CHAPTER FIVE

CONCLUSION

This study presented a power comparison of the widely used Engle-Granger and
Gregory-Hansen (1996) tests using the Monte-Carlo Simulation. For this
comparison, data generated is performed using MATLAB (R2009a) software. The
series are produced for three different models according to the Gregory-Hansen test
procedure as break in intercept, break in intercept with trend, and break in both the
slope and the intercept. The data are generated from the AR(1) procedure with a
sample size of 50, 100, 200 and with ¢=0.1, ¢ =0.5 and ¢ =0.9 parameters.

Since it is thought that break magnitude and the point in the series would have
effect on the power of the tests, break magnitudes 1, 5 and 10 and breaks points first
quarter (0.257), second quarter (0.507) and the third quarter (0.757) are applied on
the series and the power comparison between the Engle- Granger and Gregory —

Hansen tests is conducted.

According to the results obtained from the models constructed using different
break types; for the model with break in intercept, it was found that both E-G and G-
H tests had high power with small sample sizes and low break magnitude. With the
increase in the break magnitude the power of E-G test decreases while the power of
G-H test does not change since this test is sensitive to breaks. Increasing the value of
the phi parameter with the same sample size generally affects the power of both tests

negatively.

Generally, it was observed that the power of E-G and G-H tests increased as the
sample size increased, and decreased as the value of the phi parameter increased.
While the power of E-G test decreases with the increase in the break magnitude, the

power of G-H tests increases.

67
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When the results of break in intercept with trend model are investigated; in all
sample sizes and all break magnitude, when the phi parameter is defined as 0.1, E-G
and G-H tests catch up the cointegrated structure. It can be argued that the E-G test is
more powerful than G-H test when the break magnitude is 1 and 5 and the phi
parameter is 0.5 and 0.9. On the other hand, when the break magnitude is 10 the
power values of the G-H test increases while the values of E-G test decreases. In
addition to all these results, the trend in the series reduces the specificity of the
breaks. Therefore, some deformation occur in the cointegrated structure. Generally
when the trend increases the power of E-G test smaller than the G-H test powers.
Here, the main point is that while E-G test is affected from the break point, this does

not change the power of G-H test.

For the regime shift model, which expresses breaks in both the slope and the
intercept of the series, series were generated with different slope options and the
power of the tests were compared. Considering all these options, it can be argued that
the power of the tests increases as the sample size increases, and the tests have high
power when the phi parameter is 0.1, regardless of sample size. In addition, it is
observed that the power of E-G is higher than G-H test when the break magnitude is
1 and 5, and the G-H test become more powerful than E-G test with the increase in

break magnitude.

Considering all models, defining the sample size as 50, it is observed that the
power of E-G test dramatically decreases with the increase of break magnitude; on
the other hand, the power parameters of G-H tests increases. Similarly, it was
observed that the power values of the tests are high when the AR(1) parameter phi
coefficient is low (0.1, 0.5), but the values decreases with the increase in the phi
coefficient. Generally, it is found that there are decreases in the power values of E-G
test, and increases in the power values of G-H test with the increase in the break

magnitude.
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The aim of the study is not only to investigate the power of E-G and G-h tests,
two most widely used cointegration tests in the literature, with regard to the sample
size, but also to show that the power of the tests depend on the structural break point,
break magnitude, the condition that the AR(1) parameter phi having low, middle and
high autocorrelation. The most significant finding obtained at the end of the study is
revealing that G-H test overtops the E-G test by investigating breaks in different
models with various parameters such as break magnitude, break point, presence of a

trend in the series with break, and the slope degree of the trend.
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