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THE NUMERICAL SOLUTIONS TO THE MODEL OF PRIMARY 

INFECTION BY HIV 

 

ABSTRACT 

 

The local stability and the behaviors of the solution to the standard models of 

virus dynamics of primary HIV infection (Phillips, 1996) and the extended target-cell 

limited model which include infected cell depletion by immune effector cells 

(Stafford et al., 2000) are studied. If the basic reproduction number is smaller than 1, 

the virus is cleared and the disease dies out; if it is greater than 1, then the virus 

persists in the host, solutions approaches a chronic disease steady state. The results 

are supported by some experimental data which are given in Burg, D., et al., (2009). 

 
Keywords: Human Immunodeficiency virus (HIV), Primary Infection, Viral 

Dynamics, Immune Control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

v 

 

HIV’DEKİ TEMEL ENFEKSİYON MODELİNİN SAYISAL ÇÖZÜMLERİ 

 

ÖZ 

 

Virüs dinamiklerinin standart modellerinden temel HIV enfeksiyonu modeli 

(Phillips, 1996) ve enfeksiyonlu hücrelerin, bağışıklık efektör hücreleri tarafından 

azaltılmasını içeren, genişletilmiş sınırlı hedef hücre modelinin (Stafford et al., 2000) 

çözümlerinin davranışları ve bölgesel kararlılıkları çalışılmıştır. Eğer temel üretim 

sayısı 1’den büyük ise virüs temizlenir ve hastalık yok olur, eğer bu sayı 1’den küçük 

ise virüs konakçıda kalmaya devam eder ve çözümler kronik hastalık dengesine gelir. 

Sonuçlar, Burg, D. ve arkadaşlarının 2009 yılı yayınındaki bazı deneysel verilerle 

desteklenmektedir.  

 

Anahtar Sözcükler: İnsan bağışıklık yetmezlik virüsü (HIV), Temel enfeksiyon, 

Virüs dinamikleri, Bağışıklık kontrolü.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction 

 

Primary human immunodeficiency virus (HIV) infection begins with exposure of 

the host to the virus and establishment of productive infection. Primary infection 

kinetics are characterized by the exponential increase in the number of virus  

particles in peripheral blood, reaching a peak followed by a spontaneous decline to 

the steady state level, which is often referred to as the viral setpoint (Kaufmann et al., 

1998; Lindback et al., 2000). There is a corresponding decrease of the peripheral 

CD4+ T lymphocyte count from the initial steady state to a minimum which then 

increases to a new equilibrium that is lower than the preinfection value (Fauci, 1993). 

The subsequent chronic long-term stage is asymptomatic generally for a period of 

years. Immune system hyperactivation leads to its own destruction and culminates in 

acquired immunodeficiency syndrome (AIDS) (Mellors et al., 1996; Regoes et al., 

2002) and immune activation (Deeks et al., 2004) at the setpoint have been shown to 

be predictors of disease evolution and progression to AIDS. Thus, it is clear that 

events during primary infection bear heavily on virus-host interactions, antiviral 

immune responses and pathogenesis (Centlivre et al., 2007). 

  

HIV is able to lyse HIV-infected CD4+ T cells in vitro (Somasundaran and 

Robinson, 1987) and mathematical modeling of primary HIV kinetics has indicated 

that the control of infection may be attributed to viral-induced cytopathicity as well 

as to the availability of susceptible T cells (also known as the 'target-cell-limited' 

model) (Phillips, 1996). Stafford and his friends (2000) modified the target-cell-

limited model by including a delayed immune response to predict viral kinetics 

beyond the transient viral peak.  

 

Experimental studies have correlated the control of HIV during primary infection 

to the immune response (Koup et al., 1994). For example, CD8+ T cell depletion 

experiments in macaques abrogate the post-peak decline in viral load (Schmitz et al., 



2 

 

 

 

1999). Also, high levels of HIV-specific CD8+ T cell frequencies were correlated 

with control of viral replication at early stages of infection in humans (Wilson et al., 

2000).  

 

In this thesis, we study the steady states and their local stability for the target-cell-

limited model (Phillips, 1996) 

,

,

,

dT
s dT VT

dt

dI
VT I

dt

dV
pI cV

dt

β

β δ

= − −

= −

= −

                                                    (1.1.1) 

and the extended the target-cell-limited model ( Burg et al., 2009) which is given by 

(1.1.2)-(1.1.5) by incorporating a term for the loss of infected cells that is dependent 

upon the infected cell frequency via a saturation function, which allows for the 

possible early control of the virus by cell-mediated immune response during the viral 

transient peak. 

,
dT

s dT VT
dt

β= − −                                                    (1.1.2) 

          0( ) ,
dI

VT d k E I
dt

β α= − +                                           (1.1.3) 

,
dV

pI cV
dt

= −                                                            (1.1.4) 

  .
E E

dE I
a d E

dt Iθ
= −

+
                                                 (1.1.5) 

                                           

We show that the extended model can account for the varied HIV profiles during 

primary infection without the assumption of a delayed immune response against HIV 

infection after peak viremia. 

 

This thesis is organized as follows: In Chapter 2, the structure of HIV and the 

connection between HIV and AIDS is given briefly. In Section 3.1, a mathematical 

model of the population dynamics of early HIV infection is formulated which 

ignores the immune response. In Section 3.2, we study the local stability of the 



3 

 

 

 

target-cell limited model by linearization technique and we also investigate the 

dynamical behaviors of the solution by reducing the model to a 2-D system. It is 

observed that the threshold value (or the basic reproduction number) governs 

whether the disease dies out or not. In Section 3.3, we discuss the behavior of 

solutions of the model by using the implicit trapezoid method by giving the 

numerical simulations for different values of loss rate constant of infected cells. In 

Section 4.1, the target-cell-limited model is extended to include immune response. In 

Section 4.2, the stability of steady states of the extended target-cell limited model is 

examined by reducing it to the 2-D system. The numerical simulations of the 

extended system for different threshold values are given in Section 4.3.  
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CHAPTER TWO 

BIOLOGY OF HIV 

 

2.1 Biology of HIV 

 

Human Immunodeficiency Virus (HIV) infection, which ultimately leads to 

Acquired Immune Deficiency Syndrome (AIDS), is one of the most serious and 

widespread of human diseases. At the end of the twentieth century, it was estimated 

that 50 million people have been infected by HIV, 15 million had died from AIDS, 

and 35 million are currently infected (Nowak and May, 2000). 

 

 

                            Figure 2.1 Structure of HIV (Sciencemuseum, 2011) 

 

HIV infects cells in the immune system and the central nervous system. The main 

type of cell that HIV infects is the T helper lymphocyte. These cells play a crucial 

role in the immune system, by coordinating the actions of other immune system cells. 

A large reduction in the number of T helper cells seriously weakens the immune 

system. HIV infects the T helper cell because it has the protein CD4 on its surface, 

which HIV uses to attach itself to the cell before gaining entry. This is why the T 
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helper cell is sometimes referred to as a CD4+ lymphocyte. Once it has found its way 

into a cell, HIV produces new copies of itself, which can then go on to infect other 

cells. Over time, HIV infection leads to a severe reduction in the number of T helper 

cells available to help fight disease. The process usually takes several years. 

 

 

        Figure 2.2 HIV and T lymphocyte with their receptors (Biyoloji dün- 

        yası, 2011) 

                 

The process of an HIV infection is as follows. Firstly, HIV enters the body, and 

cells with CD4 receptors become its targets, inside which it makes a DNA copy of its 

viral RNA in the presence of the enzyme reverse transcriptase (RT). After that, HIV 

falls into the class of so-called retroviruses. Retroviruses are RNA (ribonucleic acid) 

viruses, and to replicate (duplicate) they must make a DNA (deoxyribonucleic acid) 

copy of their RNA. It is the DNA genes that allow the virus to replicate. After 

infecting a cell, HIV uses an enzyme called reverse transcriptase to convert its RNA 

into DNA (deoxyribonucleic acid) and then proceeds to replicate itself using the 

cell's machinery. Then the viral DNA is inserted into the DNA of the T cell, 

following that the T cell produces viral particles to infect other infected T cells. 

Finally, the body will be susceptible to opportunistic infections due to the loss of 

humoral and cellular immune function. (Yang, Y., & Xiao, Y. ) 
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                Figure 2.3 HIV replication cycle (National institute of allergy and infectious  

                diseases, 2011) 

  

Like all viruses, HIV can replicate only inside cells, commandeering the cell's 

machinery to reproduce. Only HIV and other retroviruses, however, once inside a 

cell, use an enzyme called reverse transcriptase to convert their RNA into DNA, 

which can be incorporated into the host cell's genes. Within the retrovirus family, 

HIV belongs to a subgroup known as lentiviruses, or "slow" viruses. Lentiviruses are 

known for having a long time period between initial infection and the beginning of 

serious symptoms. This is why there are many people who are unaware of their HIV 

infection, and unfortunately, can spread the virus to others. 
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2.1.1 The HIV-AIDS Connection 

 

AIDS was first recognized in 1981 and has since become a major worldwide 

pandemic. Abundant evidence indicates that AIDS is caused by HIV, or the human 

immunodeficiency virus, which was discovered in 1983. By leading to the 

destruction and/or functional impairment of cells of the immune system, notably 

CD4+ T cells, HIV progressively destroys the body's ability to fight infections and 

certain cancers. AIDS is the final stage of HIV infection. A person infected with HIV 

is diagnosed with AIDS when he or she has one or more opportunistic infections, 

such as pneumonia or tuberculosis, and has a dangerously low number of CD4+ T 

cells (less than 200 cells per cubic millimeter of blood). 

 

A healthy, uninfected person usually has 800 to 1.200 CD4+ T cells per cubic 

millimeter (mm3) of blood. During untreated HIV infection, the number of these cells 

in a person's blood progressively declines. When the CD4+ T cell count falls below 

200/mm3, a person becomes particularly vulnerable to the opportunistic infections 

and cancers that typify AIDS, the end stage of HIV disease. People with AIDS often 

suffer infections of the lungs, intestinal tract, brain, eyes, and other organs, as well as 

debilitating weight loss, diarrhea, neurologic conditions, and cancers such as 

Kaposi's sarcoma and certain types of lymphomas. 

 

HIV infection can generally be broken down into four distinct stages: primary 

infection, clinically asymptomatic stage, symptomatic HIV infection, and 

progression from HIV to AIDS. But we only be interested in modeling the primary 

infection stage. 
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CHAPTER THREE 

TARGET-CELL-LIMITED MODEL  

 

3.1 Structure of the Target-Cell-Limited Model 

 

Many mathematical models have been formulated on basic that govern the spread 

of a virus within an individual. These models have been used to determine the impact 

of the virus on the immune system and to test the responsiveness of the immune 

system function known as helper T cells (specifically, CD4+ T cells). The helper T 

cells are responsible for enhancing the production of antibodies by B cells. T cells 

and B cells are produced in the bone marrow (B=bone), but T cells migrate to the 

thymus (T=thymus), where they mature.  

 

The basic model for T cell and virus dynamics is a system of three differential 

equations representing the interrelated changes over time in the concentration of 

target cells (T ), infected cells ( I ) and serum viral (V ) (Phillips, 1996). An 

important feature of this model is that it ignores the reaction of the immune system. 

This model also neglects virus mutations. In this model it is assumed that target cells 

(uninfected CD4+ T cells) are produced by the immune system at a constant rate s , 

and they become infected at a rate VTβ  after they have encountered free virus, so 

we obtain 

dT
s dT VT

dt
β= − − ,                                                 (3.1.1) 

where d  is the per capita  death rate of target cells T , and  

dI
VT I

dt
β δ= − ,                                                    (3.1.2)    

where δ  is the per capita death rate of infected cells I . 

 

    Each infected cell is taken over by the virus and the virus produces, on the 

average, N  free virus particles, where 1N � . The rate of production of free viral 

particles from one infected cell is p Nδ= , and it leads 
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dV
pI cV

dt
= − ,                                                    (3.1.3) 

where c  is the per capita death rate of infected cells V .  

 

By combining all of these we have the following system of differential equations 

which is called target-cell-limited model: 

,

,

,

dT
s dT VT

dt

dI
VT I

dt

dV
pI cV

dt

β

β δ

= − −

= −

= −

                                                  (1.1.1) 

where 0(0)T T= , 0(0)I I=  and 0(0)V V=  such that 0 0T > , 0 0I =  and 0 0V > . All 

parameter values s , d , β , δ , p , c  of the model are assumed non-negative. 

 

 

      Figure 3.1 Diagram of the model 
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Table 3.1 The meaning of the parameters in the model (1.1.1) 

Symbol Interpretation 

s  Constant influx rate of target cells 

d  The target cell loss rate constant 

β  The target cell infection rate constant 

δ  Loss rate constant of infected cells 

p  Viral production rate constant 

c  Virus clearance rate constant 

 

A healthy human adult has about 610  CD4+ T cells per milliliter of blood or 310  

per microliter (mm3) (Nowak and May, 2000). The units of T , I , V  are number of 

cells or particles per milliliter of blood, and time is measured in days. For example, 

the units of s  are the number of cells per milliliter produced per day, cells/mL/day. 

The units of β  are mL/RNA/day, and the units of d  and δ  are mL/day. This model 

presents the primary phase of HIV which is seen in preliminary weeks, but 

progression to AIDS takes years. 

 

3.2 Stability Analysis  

 

We discuss a first-order autonomous system of differential equations of the form 

 ( )
dU

F U
dt

= ,                                                   (3.2.1) 

where 

( )1,..., ,
T

nU u u=  

1 1 1( ) ( ( ,..., ),..., ( ,..., ))T

n n nF U f u u f u u= , 

and F does not depend explicitly on .t  
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Definition 3.2.1 An equilibrium solution (steady-state solution, fixed point, or 

critical point) of the differential system (3.2.1) is a constant solution *
U  satisfying 

*( ) 0.F U =  

 

Theorem 3.2.1 Let *
U  be an equilibrium point for the first order autonomous system 

(3.2.1). If all of the eigenvalues of the Jacobian matrix *( )F U′  have negative real 

part, then *
U  is asymptotically stable. If, on the other hand, *( )F U′  has one or more 

eigenvalues with positive real part, then *
U  is an unstable equilibrium. 

 

 Proof: Hoggatt, V.E., Jr., and Lind, D.A., (1969). 

 

We now consider an 3 3× first-order autonomous system 

1
1 1 2 3

2
2 1 2 3

3
3 1 2 3

( , , ),

( , , ),

( , , ).

du
f u u u

dt

du
f u u u

dt

du
f u u u

dt

=

=

=

                                                (3.2.2) 

In order to understand what happens to solutions of the system (3.2.2) near an 

equilibrium point 1 1 1( , , )T I V  which satisfies  

1 1 1( , , ) 0if T I V =   for  1,2,3i = ,                                (3.2.3) 

we linearize the system near the equilibrium point. We introduce new variables 

1 1u T T= − ,   2 1u I I= − ,   3 1u V V= −                                        (3.2.4) 

that move the equilibrium point to the origin. If T , I  and V  are close to the 

equilibrium point 1 1 1( , , )T I V , then 1u , 2u  and 3u  are close to 0.  Using (3.2.4), the 

system written in terms of 1u , 2u , 3u  is given as: 

1
1 1 1 2 1 3 1

2
2 1 1 2 1 3 1

3
3 1 1 2 1 3 1

( , , ),

( , , ),

( , , ).

du
f u T u I u V

dt

du
f u T u I u V

dt

du
f u T u I u V

dt

= + + +

= + + +

= + + +
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We assume that 1f , 2f , 3f  are continuous and have continuous partial derivatives in 

some domain 3D ⊂ �  containing the equilibrium point. By Taylor expansion about 

the point 1 1 1( , , )T I V , we write 1f , 2f , 3f  in the form  

1 1 1
1 1 1 2 1 3 1 1 1 1 1 1 2 3

2 2 2
2 1 1 2 1 3 1 2 1 1 1 1 2 3

3 3 3
3 1 1 2 1 3 1 3 1 1 1 1 2 3

( , , ) ( , , ) ...

( , , ) ( , , ) ...

( , , ) ( , , ) ...,

f f f
f u T u I u V f T I V u u u

T I V

f f f
f u T u I u V f T I V u u u

T I V

f f f
f u T u I u V f T I V u u u

T I V

∂ ∂ ∂
+ + + = + + + +

∂ ∂ ∂

∂ ∂ ∂
+ + + = + + + +

∂ ∂ ∂

∂ ∂ ∂
+ + + = + + + +

∂ ∂ ∂

 

where ''…'' are terms of higher order in 1u , 2u , 3.u  If 1u , 2u  and 3u  are sufficiently 

small we would expect that we can ignore the higher order terms, and using (3.2.3) 

we write the linearized system at the equilibrium point 1 1 1( , , )T I V  as: 

dU
JU

dt
= , 

where 

( )1 2 3, ,
T

U u u u=  

and J  is the Jacobian matrix evaluated at 1 1 1( , , )T I V  

1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 2 1 1 1 2 1 1 1

3 1 1 1 3 1 1 1 3 1 1 1

( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )
.

( , , ) ( , , ) ( , , )

f T I V f T I V f T I V

T I V

f T I V f T I V f T I V
J

T I V

f T I V f T I V f T I V

T I V

∂ ∂ ∂ 
 ∂ ∂ ∂
 

∂ ∂ ∂ =
 ∂ ∂ ∂
 

∂ ∂ ∂ 
 

∂ ∂ ∂ 

 

We use this linearized system to study the behavior of solutions of the nonlinear 

system near 1 1 1( , , ).T I V  As always, the derivative of a nonlinear function provides 

only a local approximation. Hence the solutions of the linearized system are close to 

solutions of the nonlinear system only near the equilibrium point. How close to the 

equilibrium point we must be for the linear approximation to be any good depends on 

the size of the nonlinear terms. 
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We can find the equilibrium points of the system (1.1.1) by setting the right-hand 

sides of the equations to zero and solving for T , I , .V  The equilibrium points are  

1 1 1( , , ) ( , , ),
c s cd ps d

T I V
p p c

δ

β δ β δ β
= − −  

 and  

( )2 2 2( , , ) / ,0,0 .T I V s d=  

Of these, only the point  

( , , ),
c s cd ps d

p p c

δ

β δ β δ β
− −  

where  

1

c
T

p

δ

β
= ,  1

s cd
I

pδ β
= − ,  1

ps d
V

cδ β
= −  

has all three coordinates nonzero, so the target cells, infected cells and virus can 

coexist in equilibrium at these concentrations. The Jacobian matrix J  for this system 

at 1 1 1( , , )T I V  is 

0

.

0

ps c

c p

ps c

c d p

p c

β δ

δ

β δ
δ

δ

 
− − 
 
 

− −
 
 −
 
 

 

The characteristic polynomial of the matrix is  

3 2
1 2 3( )p a a aλ λ λ λ= + + +  ,                                             (3.2.5) 

where 

1

p s
a c

c

β
δ

δ
= + + ,  2

ps ps
a

c

β β

δ
= + ,  3 .a ps cdβ δ= −  

For a system consisting of more than two differential equations, local asymptotic 

stability depends on the Routh-Hurwitz criteria described in Theorem 3.2.1 

(Gantmacher, 1964). The stability criteria depend on the eigenvalues of the Jacobian 

matrix evaluated at 1 1 1( , , )T I V . If all of the eigenvalues are negative or have negative 

real parts, then the equilibrium is locally asymptotically stable. The eigenvalues are 

determined by finding the roots of the characteristic equation, but characteristic 
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equation (3.2.5) of the target-cell-limited model is a cubic equation and it is difficult 

to derive the expression of eigenvalues from the equation, but the Routh-Hurwitz 

criteria can be applied to show local asymptotic stability. 

 

Theorem 3.2.1 (Routh-Hurwitz Criteria)  

Given the polynomial, 

1
1 1( ) ...n n

n np a a aλ λ λ λ−

−= + + + +  ,  

where the coefficients 
ia  are real constants, 1,..., ,i n=  define the n  Hurwitz 

matrices using the coefficients ia  of the characteristic polynomial: 

1 1( ),H a=   1
2

3 2

1
,

a
H

a a

 
=  
 

  
1

3 3 2 1

5 4 3

1 0

,

a

H a a a

a a a

 
 

=  
 
 

 

and 

1

3 2 1

5 4 3 2

1 0 0 0

1 0

0

0 0 0 0

n

n

a

a a a

H a a a a

a

 
 
 
 =
 
 
 
 

…

…

…

� � � � … �

…

, 

where 0ja =  if j n> . All of the roots of the polynomial ( )p λ  are negative or have 

negative real parts iff the determinants of all Hurwitz matrices are positive: 

det 0jH > , 1,..., .j n=  

 

Proof: (Gantmacher, 1964). 

 

When 3n = , the Routh-Hourwitz criteria simplify to  

det 1 1 0H a= > , 

det 2H 1 2 3 0a a a= − > , 

det 3H = 2
1 2 3 3 0a a a a− >  

or 

1 0,a >  1 2 3 ,a a a>  3 0a >  .                                              (3.2.6) 
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For polynomial of degree 3, ( )p λ  given in (3.2.5), we get 

1

ps
a c

c

β
δ

δ
= + + , 

2

ps ps
a

c

β β

δ
= + , 

3a ps cdβ δ= − . 

They must satisfy the conditions (3.2.6) to have locally asymptotic stable equilibrium 

point 1 1 1( , , )T I V . Since all parameters in system (1.1.1) are positive, the conditions 

1 0a >  and 1 2 3a a a>  are satisfied as follows: 

0
ps

c
c

β
δ

δ
+ + > , 

2 1 1
1

c ps
ps cd

c c c

δ β
β δ

δ δ δ

   
+ + + + > −   

   
. 

The last condition 3 0a >  gives 0.ps cdβ δ− >  Hence the polynomial (3.2.5) has 

roots which are all negative or have negative real parts for 0 1
ps

R
cd

β

δ
= > , that is, the 

equilibrium point  

, ,
c ps cd ps cd

p p c

δ β δ β δ

β δβ δβ

 − −
 
 

 

is locally asymptotically stable. If 0 1R <  then,  

0ps cdβ δ− <  

which is not possible since the number of infected cells and viruses cannot be 

negative, hence there is no infected cells or virus in blood, that is, virus is cleared and 

disease dies out. If, however, 0 1R >  then the virus persists in the host, solutions 

approaches a chronic disease steady state. Thus, 0 ,R  is a threshold parameter for the 

model. The basic reproduction number, denoted 0 ,R  is “the expected number of 

secondary cases produced, in a completely susceptible population, by a typical 

infective individual.” If 0 1,R <  then on average an infected individual produces less 

than one new infected individual over the course of its infectious period, and the 

infection cannot grow. Conversely, if 0 1,R >  then each infected individual produces, 

on average, more than one new infection, and the disease can invade the population. 
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We said that the characteristic equation (3.2.5) of the target-cell limited model is a 

cubic equation and it is difficult to derive the expression of eigenvalues from the 

equation. So, in order to investigate the dynamical behaviors when the solution 

converges to a steady state, we first reduce the model to a 2-dimensional system.  

 

Human immunodeficiency virus (HIV) is always working at maximal capacity 

(compared to the other cells), so it may approach a steady state very quickly. After 

this transitional period, its concentration V may be considered as constant, i.e., 

0.
dV

dt
=  Since this variable is still involved in the complex system, this state is 

considered as quasi-steady state. The condition (Nowak et al., 1997) 

0
dV

dt
=   that is,    

pI
V

c
=  

is called the quasi-steady-state assumption and allows one to replace the differential 

equation for the change of  V   by an algebraic equation describing how V  depends 

on the other variables of the system. Hence the system (1.1.1) can be simplified to  

( ) ,

( ) ,

dT
s d I T

dt

dI
T I

dt

β

β δ

′= − +

′= −

                                                 (3.2.7) 

where 
p

c

β
β ′ = . 

We can find the equilibrium points of the 2-D system by setting the right-hand sides 

of the equations to zero and solving for T  and I . The equilibrium points are 

1 1( , ) ( , ),
s d

T I
δ

β δ β
= −

′ ′
� �  

2 2( , ) ( ,0).
s

T I
d

=� �  

The Jacobian matrix J  at the equilibrium point 1 1( , )T I� �  is given as    

0

ps

c
J

ps
d

c

β
δ

δ
β

δ

 
− − 

=  
 − 
 

 .                                                (3.2.8) 
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The characteristic polynomial of the Jacobian matrix is 

2( ) .
ps ps cd

p
c c

β β δ
λ λ λ

δ

−
= + +  

Solving ( ) 0p λ = , we find the eigenvalues which are given by 

1,2

( / )

2

ps cβ δ
λ

− ± ∆
= , 

where 

2( ) 4( )
ps ps cd

c c

β β δ

δ

−
∆ = −  

and real part of 1,2λ  are negative when 0∆ < . Hence linearized system of (1.1.1) has 

complex eigenvalues 

a ibλ = ± , 

where 

2

ps
a

c

β

δ
= − , 

2
1

4
2

ps ps cd
b

c c

β β δ

δ

−   
= −   

   
. 

Since 0,a <  all of the eigenvalues of the Jacobian matrix (3.2.8) are complex 

numbers with negative real parts. In this case, origin is called spiral sink for the 

linear system, that is, the solutions spiral toward to origin as t → ∞ . The solution 

curves which are sketched in the phase plane are shown in Figure 3.2. For the 

nonlinear system, solutions that start near the equilibrium point 1 1( , ) ( , )T I T I= � �  

approach it as t → ∞ . Hence we say that 1 1( , )T I� �  is a spiral sink. 
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                         Figure 3.2 Example phase plane for spiral sink 

 

We can write ∆  in terms of 0

s
R

d

β

δ

′
= , that is, 

 

2

2
0 0

4

( 4 4 ).

ps ps cd

c c

d dR R

β β δ

δ

δ δ

−   
∆ = −   

   

= − +

 

If 0∆ <  then  

2
0 0( 4 4 ) 0dR Rδ δ− + <  

and 

( )

( )

0,1

0,2

2
( ) ,

2
( ) .

R d
d

R d
d

δ δ δ

δ δ δ

= + −

= − −

 

The sign of inside  the square root is positive and making sign table we have; 

( ) ( )0

2 2
( ) ( )d R d

d d
δ δ δ δ δ δ− − < < + − . 
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Since the death rate of target cells d  is much smaller than ,δ  the left side of the 

above inequality can be approximated by 2( (0))f ′− , where 2( ) .f x xδ δ= −  The 

right side can be approximated by 
4

d

δ
, s.t. 

( )
2 4

( .d
d d

δ
δ δ δ+ − ≈  

Therefore, 0∆ <  is approximately equivalent to the inequality 0

4
1 R

d

δ
< < . The 

above inequality holds in the case of chronic infection, since d  is relatively small 

compared with δ . Thus we claim that 0∆ <  in the target-cell-limited model. 

 

3.3 The Application of Implicit Trapezoid Rule  

 

In this section, we investigate the behavior of solutions of the target-cell-limited 

model by using the implicit trapezoid method which is A-stable. The advantage of an 

A-stable method is that the parasitic solutions will always decay, regardless of the 

step size. Hence they can be used to solve stiff systems. 

The Implicit Trapezoid method is given by 

[ ]1 1( ) ( ) ,
2i i i i

h
Y Y F Y F Y+ += + +   0,1,2,..., ,i n=                                (3.3.1)  

where  

, ( )

T s dT VT

Y I F Y VT I

V pI cV

β

β δ

− −   
   

= = −   
   −   

 

on the grid 

 

{ : ,i it t ihΩ = =  0,1,...,i n=  , max }
t

h
n

= . 

Thus we obtain ( 1)n +  algebraic non-linear equations for the ( 1)n +  unknowns. For 

this reason we next consider the application of Newton’s method to (3.3.1). The 

recursion of Newton’s method for the system ( ) 0G z =  is defined by  
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 [ ]
1

1 ( ) ( )k k k kz z G z G z
−

+
′= − , 

where ( )G z′  is the Jacobian matrix. By using the above consideration, we obtain that  

1
1 ( ) ( )i i i iY Y hJ Y F Y

−
+ = + ,   0,1, 2,...,i n= ,                                   (3.3.2) 

where 

( ) ( )
2i i

h
J Y I F Y′= −  

and I  is 3 3×  identity matrix. 

The second order convergence property of Implicit Trapezoid method does not 

change. The observed orders ( )iord h  are computed using the formulas  

    /2
1

/2 /4

( ) log / log 2,h h

h h

T T
ord h

T T

 −
=  

− 
 

/2
2

/2 /4

( ) log / log 2,h h

h h

I I
ord h

I I

 −
=  

− 
 

/2
3

/2 /4

( ) log / log 2,h h

h h

V V
ord h

V V

 −
=  

− 
 

where /4hT , /2hT , hT , / 4hI , / 2hI , hI , / 4hV , / 2hV , hV  are approximate solutions that are 

computed by / 4h , / 2h  and h  respectively. They are given in the Table 3.2. 

 

Table 3.2 Order of the method for T, I, V . 

1( )ord h  2 ( )ord h  3( )ord h  

2.01908 2.00104 2.01268 

 

Solving (3.3.2) by using Mathematica, for different infected cell death rates 

(0.1) ,kδ =   0,1,2,...,10k =  

and using parameter values 0 0I =  cells/mL, 6
0 10V −=  RNA copies/mL, 

210d
−= /day, 4

0 10T =  cells/mL, 0s dT=  cells/mL/day, 3c = /day, 61.3 10β −= ×  

mL/RNA/day, 310p =  RNA copies/cell/day , we have the following simulations 

which show behavior of solutions T , I , V  approximately. 
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Figure 3.3 Logarithm of number of target cells T with base 10, in 250 days for different infected cell 

death rates (0.1) ,kδ =  1,2,...,10k =  

 

 

Figure 3.4 Logarithm of number of infected cells I with base 10, in 250 days for different infected cell 

death rates (0.1) ,kδ =  1,2,...,10k =  
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Figure 3.5 Logarithm of number of viruses V  with base 10, in 250 days for different infected  

cell death rates (0.1) ,kδ =  1,2,...,10k =  

  

As it seems in last figure, for a large value of ,δ  the target-cell-limited model 

predicts that viral load reaches the steady state through damped oscillations. When δ  

decreases, oscillations become less apparent, but the viral load steady state is 

considerably increased. 
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CHAPTER FOUR 

EXTENDED MODEL 

 

4.1 Extended Model With Immune Control   

 

We extend the target-cell-limited model (1.1.1) to include infected cell depletion 

by immune effector cells, ( ),E t  with a depletion rate 0 .k EI  The extended model is 

then: 

dT
s dT VT

dt
β= − −                                                    (1.1.2) 

          0( )
dI

VT d k E I
dt

β α= − +                                           (1.1.3) 

dV
pI cV

dt
= −                                                            (1.1.4) 

  
E E

dE I
a d E

dt Iθ
= −

+
                                                 (1.1.5) 

where E represents effector cells (e.g., CD8+ T cells) that are stimulated with a rate 

constant 
Ea , in a saturation dependent function of the level of infected cells I  with a 

half-maximal stimulation threshold ,θ  and are lost with a rate constant .Ed  The term 

dIα  in equation (1.1.3) represents direct viral cytopathicity above normal target 

death rate d when 1,α >  or the absence of a viral cytopathic effect when 1.α =  

However, since data on the number of effector cells is not available, there are a large 

number of parameters that cannot be currently estimated. Therefore, we simplify the 

model in equations (1.1.2)-(1.1.5) by using a quasi-steady state approximation over 

equation (1.1.5), assuming that the dynamics of effector cell stimulation is faster than 

the time course of acute HIV resolution (about 1 month). This derives a model 

similar to the target-cell-limited model, see equations (1.1.1): 

  

dT
s dT VT

dt

dI I
VT d k I

dt I

dV
pI cV

dt

β

β α
θ

= − −

 
= − + 

+ 

= −

                                           (4.1.1)  
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with only the difference being that the productively infected cell death rate is 

dependent on the infected cell concentration. The infected cell death rate constant in 

the target-cell-limited model, δ  (eqn. (3.1.2)), is replaced with 

( ) / ( )I d kI Iδ α θ= + +  (Burg, 2006). The saturation function, / ( )kI I θ+  where 

0 /E Ek k a d=  (eqns. (1.1.3)-(1.1.5)) fluctuates between 0 (before infection) to a 

maximum value ( k ) of activity potential mimicking the loss of infected cells induced 

by an immune response stimulated by infected cells. Of note, the target-cell-limited 

model is a special case of the extended model where 0k =  or 0θ =  and hence 

( ) .I constδ =  By using implicit trapezoid method, numerical simulations of the 

extended model with different values of θ  are shown in Figures 4.1- 4.3. 

 

4.2 Steady States And Stability Results 

 

The dynamical behavior of the model (4.1.1) as the viral load approaches the 

steady state is determined by the eigenvalues of the system (λ ), which are 

determined by the cubic equation 3 2
1 2 3 0.a a aλ λ λ+ + + =  Since the cubic system of 

equations is complex, it is difficult to derive the eigenvalues or display the phase-

plane/nullclines analysis using the 3-D equations. Therefore, assuming a rapid time 

scale for the free virus dynamics, /V pI c≈  (Spouge et al., 1996; Nowak et al., 

1997), we simplify equations in (4.1.1) as follows: 

 
( ) ,

( ) ,

dT
s d I T

dt

dI I
T d k I

dt I

β

β α
θ

′= − +

′= − −
+

  

where /p cβ β′ = . For the 2-D system there exists an uninfected steady state which 

is defined by ( 0, 0T I> = ): 

1 1( , ) ( ,0).
s

T I
d

=  

The infected steady state is determined by a quadratic equation 

 2 0AI BI C+ + = , 

where 
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2

2

( ),

,

( ) .

A d k

B d s d kd

C d s

β α

α β α θβ

α β θ

′= +

′ ′= − + +

′= −

 

We define a new parameter, 2/ ( )s dσ β α′=  which is the same as the basic 

reproductive ratio defined in the target-cell-limited model except that δ  is replaced 

here with dα . When 1,σ <  we have 0,C >  thus, 0.B >  In this case, the infected 

steady state does not exist. When 1,σ >  we have 0,C <  thus, 2 4 0.B AC− >  In this 

case, there exists a unique infected steady state 2( )I  irrespective of the sign of B: 

2

2

4

2

B B AC
I

A

− + −
=  

and the corresponding target cell steady state is 

 2

2

s
T

d Iβ
=

′+
. 

The characteristic equation of the uninfected steady state is given by 

2 2( ) 0,
s

d d d s
d

β
ζ α α β

′
′+ + − + − =  

where ζ  is the eigenvalue. There are two solutions for the eigenvalue: 

 
1

2

,

( 1) .

d

s
d d

d

ζ

β
ζ α σ α

= −

′
= − = −

 

Therefore, if 1σ < , then only the uninfected steady state exists and it is locally 

asymptotically stable. If 1,σ >  the infection-free steady state is not stable. For the 

infected steady state 2 2 2

2

( , ) ( , )
s

T I I
d Iβ

=
′+

, the corresponding characteristic 

equation is 

2 0,λ µλ ν+ + =  

where  

 

2
2 2

2

22
2 2 22

2

,
( )

( ) ( ) .
( )

I
d I k

I

I
d I k I T

I

µ β θ
θ

ν β θ β
θ

′= + +
+

′ ′= + +
+

                              (4.2.1) 
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It is clear that 0µ >  and 0,ν >  thus, the infected steady state 2 2( , )T I  is locally 

asymptotically stable whenever it exists (i.e., when 1σ > ). 

 

4.3 Numerical Simulation 

 

In this section, we investigate the behavior of solutions of the extended model by 

using the implicit trapezoid method which is A-stable. By using Mathematica with 

different values of 3 ,kθ =  0,1,2,...,10k =  and using the same parameter values as in 

Figures 3.3-3.5 and 1α =  and 1k = /day, we have the following simulations which 

shows behavior of solutions T , I , V  approximately. 0θ =  is a special case 

representing the target-cell-limited model. 

 

 

Figure 4.1 Logarithm of number of target cells T with base 10, in 250 days for different infected cell 

death rates 3 ,kθ = 0,1,...,10.k =  
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Figure 4.2 Logarithm of number of infected cells I with base 10, in 250 days for different infected cell 

death rates 3 ,kθ = 0,1,...,10.k =  

  

 

Figure 4.3 Logarithm of number of viruses V  with base 10, in 250 days for different infected cell 

death rates 3 ,kθ = 0,1,...,10.k =  When θ  is small, viral load reaches the steady state through 

frequent damped oscillations. When θ  increases, the oscillations become less apparent, with only a 

slight increase of the predicted viral load.  
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In order to display fewer oscillations during the approach to the steady state one 

needs to obtain a higher value for µ . Increases in parameter θ  can accomplish this 

without changing other parameters. Decreasing δ  in the target-cell-limited model 

can also diminish the oscillations but it induces a considerably higher viral load 

steady state. Although we cannot compare the increases in the steady state viral load 

directly since not all parameters in the models are the same, we show that the steady 

state viral load in the target-cell-limited model is sensitive to changes in ,δ  whereas 

the steady state viral load in our model is not sensitive to changes in θ . This allows 

us to dampen the oscillation (increase θ ) an simultaneously not to increase the 

steady state viral load level significantly.  
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CHAPTER FIVE 

CONCLUSION 

 

We have shown that a simple target-cell-limited model can be modified to include  

infected cell depletion by immune effector cells. Two models have been proposed 

here, and results agree with observed data and evidence in the literature. Though 

much research must be done to determine the complete dynamic of AIDS, simple 

models such as these may help to further the understanding of the pathogenesis of 

HIV. 
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