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A STUDY ON LIVER VESSEL SEGMENTATION 

 
ABSTRACT 

 

Vessel segmentation is a key process for visualization, diagnosis and 

quantification of different segments of the medical images obtained by Computed 

Tomography (CT), Computed Tomography Angiography (CTA), multi-phase CT, 

multi-detector CT, Magnetic Resonance (MR), Magnetic Resonance Angiography 

(MRA) and other medical imaging techniques devoted particularly to vessels. This 

thesis gives an overview on liver vessel segmentation methods applied to the images 

obtained by any medical imaging technique. Cerebral vessel and retinal vessel 

segmentation methods are also studied in the thesis since the segmentation methods 

used have some common properties to the once for liver and so they are applicable to 

the liver vessel segmentation case. 

Liver segmentation is a necessary step for liver transplantation and also for 

diagnosing liver tumors. There are many approaches for liver segmentation. One of 

them employs liver vessel segmentation as a tool for identifying different parts and 

tissues of the liver. This thesis focuses on the liver vessel segmentation methods 

which can ultimately be used for liver transplantation and for liver tumor diagnosis. 

The body of the thesis covers liver anatomy, computed tomography angiography 

and medical image segmentation firstly to give a necessary background and then an 

overview on liver vessel segmentation methods. The thesis also presents a set of 

segmentation methods which are not previously used but can be used well for liver 

vessel segmentation.  

The vessel segmentation is realized based on 1) pattern recognition, 2) image 

processing, 3) optimization, 4) graph analysis, and 5) partial differential equation 

models. The methods in the pattern recognition group can further be classified into 

the following sub-groups in terms of the features used: 1) intensity based methods, 2) 

textural based methods, and 3) geometric based methods. The classification of the 

methods in the pattern recognition group can also be done in terms of the classifiers 
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used as: 1) knowledge based methods, 2) unsupervised (clustering) based methods, 

3) machine learning methods including Artificial Neural Networks (ANNs) and 

Support Vector Machines (SVMs), 4) probabilistic methods, and 5) hybrid methods. 

On the other hand, image processing based segmentation methods can be categorized 

into subgroups based on topological, morphological and intensity-spatial 

information. 

This thesis presents the known segmentation methods and vessel segmentation 

methods in particular as keeping in mind the above classifications. 

Keywords: vessel segmentation, vessel extraction, liver vessel segmentation. 
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KARACİĞER DAMAR BÖLÜTLEME ÜZERİNE BİR ÇALIŞMA 

 
ÖZ 

Damar bölütleme; Bilgisayarlı Tomografi Anjiyografi (BTA), Manyetik Rezonans 

Anjiyografi (MRA) ve özel olarak damar görüntülemeye adanmış tıbbi görüntüleme 

teknikleriyle elde edilmiş tıbbi görüntülerin farklı bölütlerinin görüntülenmesi, 

tanılanması ve nicemlenmesinde anahtar bir süreçtir. Bu tez, BTA görüntülerine 

uygulanan karaciğer damar bölütleme yöntemleri üzerine genel bir bakış 

sunmaktadır. Karaciğer için verilen yöntemlerle ortak özellikleri olması ve karaciğer 

damar bölütlemeye uygulanabilirlikleri dolayısıyla beyin ve göz damar bölütleme 

yöntemleri de tezde incelenmiştir. 

Karaciğerin bölütlenmesi, karaciğer nakli ve karaciğer tümörlerinin 

tanılanmasında gerekli bir adımdır. Karaciğer bölütlenmesi için bilimsel yazında 

birçok yaklaşım vardır. Bunlardan birisi karaciğerin farklı bölümlerini ve dokularını 

tanılamak için karaciğer damar bölütlemeyi bir araç olarak kullanır. Bu tez sonuç 

olarak karaciğer nakli ve karaciğer tümörlerinin tanılanmasında kullanılabilecek 

karaciğer damar bölütleme yöntemlerine odaklanmıştır. 

Tez, öncelikle karaciğer anatomisi, bilgisayarlı tomografi anjiyografi ve tıbbi 

görüntü bölütlemeyi gerekli temel bilgiyi vermek üzere kapsar ve ardından karaciğer 

damar bölütleme yöntemleri üzerine genel bir bakış verir. Tez ayrıca karaciğer damar 

bölütleme için daha önce kullanılmamış ama kullanılabilecek olan genel bölütleme 

yöntemlerini de vermektedir. 

Damar bölütleme için bilimsel yazında geliştirilen yöntemler 1) örüntü tanıma, 2) 

görüntü işleme, 3) optimizasyon, 4) çizgi analizi ve 5) kısmi türevli denklem 

modellerine dayalı olarak beş farklı kategoriye ayrıştırılabilir. Örüntü tanıma grubu 

içerisine giren yöntemler kullanılan öz niteliklere dayalı olarak aşağıdaki alt gruplara 

ayrılırlar: 1) gözelerin gri düzey şiddetine bağlı yöntemler, 2) doku tabanlı 

yöntemler, ve 3) geometrik yöntemler. Örüntü tanıma grubundaki yöntemler 

kullanılan sınıflandırıcıya bağlı olarak da aşağıdaki gibi gruplandırılabilirler: 1) bilgi 

tabanlı yöntemler, 2) eğiticisiz (öbekleme) tabanlı yöntemler, 3) Yapay Sinir Ağları 
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ve Destek Vektör Makinelerini içeren makine öğrenme yöntemleri, 4) olasılıksal 

yöntemler ve 5) karma yöntemler. Diğer yandan, görüntü işlemeye dayalı bölütleme 

yöntemleri topolojik, morfolojik ve gözelerin gri düzey şiddeti-uzamsal bilgiye 

dayalı olarak alt gruplara ayrılabilir. 

Bu tez bilinen bölütleme yöntemlerini ve özelde damar bölütleme yöntemlerini 

yukarıdaki sınıflamaları göz önüne alarak sunmaktadır. 

Keywords: damar bölütleme, damar çıkarımı, karaciğer damar bölütleme. 
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CHAPTER ONE 

INTRODUCTION 

 

Liver vessel segmentation is used for determining the structure of the liver before 

transplantation and also for the locations of liver tumors. Liver vessel segmentation 

is usually implemented on images obtained by Computed Tomography (CT), 

Computed Tomography Angiography (CTA), multi-phase CT, multi-detector CT, 

Magnetic Resonance (MR) and Magnetic Resonance Angiography (MRA). Since the 

vascular anatomy of the liver is quite complex, then the liver vessel segmentation is 

still an open research area. There are many methods developed in the literature for 

vessel segmentation in liver, brain, eyes and other organs. A part of the segmentation 

methods which are not previously used for liver vessel segmentation can well be 

applied for liver vessel segmentation. Considering this fact, this thesis covers not 

only the liver vessel segmentation methods but also the other vessel segmentation 

methods. 

The vessel segmentation is realized based on 1) pattern recognition, 2) image 

processing, 3) optimization, 4) graph analysis, and 5) partial differential equation 

models. The pattern recognition approach consists of a feature extraction stage and a 

classification stage applied on the extracted features usually after some 

transformations. The methods in the pattern recognition group can be classified into 

the following sub-groups in terms of the features used: 1) intensity based methods, 2) 

textural based methods, and 3) geometric based methods. The classification of the 

methods in the pattern recognition group can also be done in terms of the classifiers 

used as: 1) knowledge based methods, 2) unsupervised (clustering) based methods, 

3) machine learning methods including Artificial Neural Networks (ANNs) and 

Support Vector Machines (SVMs), 4) probabilistic methods, and 5) hybrid methods. 

On the other hand, image processing based segmentation methods can be categorized 

into subgroups based on topological, morphological and intensity-spatial 

information. 
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The main purposes of the thesis is to review the methods developed in the 

literature for vessel segmentation in liver and also the approaches which are used for 

vessels segmentation in vasculatures of brain, eyes, and other organs, and to classify 

them according to classification types which are given and explained in chapters 

four. A part of these segmentation methods, which are not previously used for liver 

vessel segmentation, can be applied for liver vessels. The methods, which are 

reviewed in the following parts of the thesis, are classified according to 

aforementioned classification groups. The proposed classification groups for 

segmentation are different from the previously used ones in the literature. 

This thesis can be used as a resource in studies on liver vessel examinations. The 

liver vessel segmentation methods are collected in the thesis. For the experts, who 

study on detecting tumor in liver, visualization of liver, segmenting vasculature in 

liver and etc., it can be useful as a resource in the extractions of the vessel trees. 

For vessel segmentation, several different classifications which are quite different 

from the above classifications are given in the literature (Freiman et al., 2009; Kirbas 

& Quek, 2003; Lesage et al., 2009). The liver vessel segmentation methods, which 

are described in the sequel, can be a member of more than one group given above 

classifications. 

 Soler in (Soler et al., 1998) proposes a vessel segmentation method based on a 

histogram analysis, so it can be categorized as a pattern recognition type 

(probabilistic) method employing intensity feature and simple thresholding classifier. 

Local minima in histogram are used to define threshold parameters. The image is 

filtered for improving the contrast rendering before determining the thresholds. Then, 

the thresholded images are used to obtain the vessel structure (Soler, 1998). The 

method is applicable for liver vessel segmentation as a special case since it is valid 

for any kind of vessel system. 

 Dokladal et al. proposes a 3D topological based method for liver vessels 

extraction method in (Dokladal et al., 1999a). The efficiency of the method is 

examined on a raw X-Ray tomography image without applying any transformation. 

The method is based on a point-wise reconstruction to preserve the homotopy. The 
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vessel tree system is obtained at a desired level of detail by adjusting a parameter 

which controls the level of light intensity. The method can be classified as a 

topological and morphological image processing based method. It is based on the 

hypothesis that the resulting object is simply connected, contains no holes and no 

cavities. The vessels are reconstructed in the following iterative way: Add simple 

points preserving the topology by considering their luminosity. Where, a simple 

point is defined as a point such that its deletion does not change the topology of the 

object. The method starts with a marker point that needs to be determined manually 

by an expert or by another image processing algorithm. Then, the object is grown in 

an iterative way as adding simple points next to the marker if the gray level of the 

considered point satisfies to the given stopping criterion. This method is reported to 

be superior to the histogram based method by Soler et al. (Soler et al., 1998). with 

the ability of giving thinner and much richer in vessel system which is also 

topologically correct, i.e. it does not contain any holes or cavities. 

 Dokladal et al. proposes in (Dokladal et al., 1999b) a thinning algorithm for 

extraction of liver vessels. The result of thinning is a skeleton centered in the object 

according to its luminosity. The proposed thinning algorithm ensures that the 

skeleton is topologically correct. 

 Hanh et al. proposes in (Hanh et al., 2001) a high quality vessel visualization and 

interaction technique for liver surgery planning. It provides to identify liver vascular 

structure from radiological data including CT and MR data. The method employs a 

sequence of image processing steps for deriving a symbolic model of vascular 

structure which reflects the branching pattern and also the diameter of the vessels. 

These symbolic models are visualized by concatenating truncated cones which are 

smoothly blended at branching points. This method aims to recognize the 

morphology and branching pattern of vascular systems as well as the basic spatial 

relations between vessels and other anatomic structures. The objectives of this work 

is i) to reconstruct a symbolic vascular model, ii) to visualize the reconstructed 

vascular model by emphasizing the topological and geometrical information as well 

as depth relations, and iii) to provide interaction techniques to explore these 

visualizations. Vessels are segmented using a fast region-growing algorithm adapted 
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to the thin and branching vessels. So, it can be categorized as an image processing 

based vessel segmentation method. Herein, the used region growing algorithm starts 

with a user defined seed point and runs to accumulate all high-intensity voxels which 

are above a chosen threshold. The segmented image is further processed for 

obtaining a skeleton of the vessel system by applying morphologic operations such 

as thinning which preserve the topology and control small side-branches. The vessels 

are displayed as tubes after skeletonization for visualization purpose.  

 Doherty et al. (Doherty et al., 2002) proposes a method for 3D visualization of 

tumors and vessels for liver. For making the diagnostic and planning the surgery, 

Computed Tomography (CT) scans are used. Their objective is to find the number of 

tumors, their sizes and the physical and spatial relationship between the tumors and 

the main blood vessels. Blood vessels and liver tissue show similar contrast on the 

CT scans. The visualizations are being created using OpenDX and MATLAB. The 

data are received in the form of DICOM files and converted to the TIFF format. The 

images are cropped and histogram equalized, before being used in the visualization, 

in order to reduce the image to a convenient size and optimize the contrast. 

Isosurfaces, which are 3D analogue to contour lines, represent surfaces of equal 

density, are used in order to visualize the liver, tumor and blood vessels in 3D. The 

non-uniqueness of intensity values lacks to differentiate features using isosurfaces 

representing specific densities, as the rib cage obscures the internal organs. In order 

to solve this problem, Doherty et al. attempt to find a way of isolating the liver from 

the image by using a mask for each slice, consisting of ones in the selected section 

(the liver) and zeros everywhere else. The segmentation of liver is implemented by 

this masking operation in a semi-automatic way. Doherty et al. use an isosurface 

method to display the vein structures by using thresholding applied on several slices 

to find the density values. In order to visualize the tumors, which has the same 

density as the outer liver tissue, Doherty et al. specify a subset of data, or sub-

volume, around the tumour and created an isosurface for this sub-volume, 

superimposing it on the same axes as the veins. The liver vessel segmentation 

method used by Doherty et al. can be categorized as a pattern recognition type 

(probabilistic) method employing intensity feature and simple thresholding classifier. 
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 Saitoh et al. proposes in (Saitoh et al., 2002) segmentation of liver region through 

vessels on multi-phase CT. The segmentation of the liver region is primarily based 

on mathematical morphology and thresholding techniques. Saitoh et al. presents an 

automatic method for segmenting the liver region from third phase abdominal CT. 

First, blood vessels in the liver are extracted with a threshold. To separate two 

regions whose intensity levels are close, Saitoh et al. proposes a functional method 

by employing blood vessel streams. Herein, the liver is considered as a region 

governed solely by the portal vein and liver vein. These veins and their tributary 

streams are identified firstly, and then it is decided that the liver region is in their 

vicinity and also that any area far from their location is definitely not a part of the 

liver. Based on this technique, Saitoh et al. trace first the main vein (vena cava), a 

branch to leading to the liver, and then extract the blood vessels of the liver. Finally 

by applying a morphological dilation operation to the blood vessels, it can be roughly 

identify the liver region from which the final region is identified by thresholding. 

The method by Saitoh et al. can be considered as a hybrid method which is a 

combination of the mathematical morphology image processing method and the 

pattern recognition type method employing intensity feature and simple thresholding 

classifier. 

 Eidheim et al. proposes in (Eidheim et al., 2004) an automatic liver vessel 

segmentation method in MR and CT images. Eidheim et al. use matched filters to 

emphasize blood vessels and entropy-based thresholding to segment the vessels. 

Vessel interconnections are extracted and exported to a graph structure. Genetic 

algorithms are then used to search globally for the most likely graph based on a set of 

fitness functions. The presented method, which is used also clinically (Eidheim et al., 

2004), can be categorized as a hybrid method which is a combination of image 

processing method, i.e. matched filter, and the pattern recognition type method 

employing a transformed intensity feature, i.e. entropy, and simple thresholding 

classifier. 

 Saitoh et al. proposes in (Saitoh et al., 2004) an automatic segmentation method 

for liver region based on extracted blood vessels. Saitoh et al. use four-phase CT 

images with resolutions as high as 1 mm. The first-, second-, third-, and fourth-phase 
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CT images correspond to before dye injection, the early stage, the full stage, and the 

wash-out stage of the injected dye. These CT data provide useful information for 

diagnosing hepatic cancer. The blood vessel stream in the first- and third-phase CTs 

is used for segmenting the liver region by tracing the portal vein and then the hepatic 

vein. The thresholding operation is used for separating blood vessels from liver soft 

tissue. The stomach and spleen regions are segmented by 3D morphological 

operations which are erosion and dilation. The segmented liver blood vessel region is 

enlarged by morphological dilation operation for obtaining an approximate liver 

region and then the liver region is extracted by thresholding. The presented method 

can be categorized as a hybrid method which is a combination of a morphological 

(image processing) method and the pattern recognition type method employing 

intensity feature and simple thresholding classifier. The main characteristic of the 

developed liver segmentation method relies on extracting the portal vein and then the 

hepatic vein in the first stage. 

 Charnoz et al. propose in (Charnoz et al., 2005) a robust method for the design of 

vascular tree matching which is also applied on liver. Charnoz et al. applies the 

method for intra-patient hepatic vascular system registration. The method exploits a 

segmented vascular system obtained by CT-scan images available from the Visible 

Man (The Visible Human Project). Skeletons are computed from the segmented 

vascular systems and then are represented as an oriented tree. The orientation 

symbolizes blood circulation flow. Nodes represent bifurcations and edges 

correspond to vessels between two bifurcations. Some geometric vessel attributes, 

i.e. 3D positions, radius, vessel path, are also used. The tree matching algorithm finds 

common bifurcations (nodes) and vessels (edges). Starting from the tree root, edges 

and nodes are iteratively matched. The algorithm is applied on a synthetic database 

containing various cases. The used segmentation method can be categorized as a 

skeletonization (image processing) method. The resulting skeleton is represented as a 

tree such that the operations implemented on the tree provide the targeted robustness 

against to topological modifications due to segmentation failures and against 

deformations. 
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 Saitoh et al. propose in (Saitoh et al., 2005) a method for diagnosis of liver cancer 

based on three-dimensional hepatic blood vessel regions extracted by threshold 

processing. High-resolution multi-slice CT images are used in the diagnosis. The 

liver entrance is located by tracing the blood vessels from the abdominal aorta. The 

hepatic vessel region is extracted as: A temporary threshold is determined near the 

liver entrance, and the structure of the blood vessel is analyzed by adjusting the 

threshold from the temporary value in order to determine the optimal threshold. The 

thinning operation is applied to the blood vessel in order to construct a directed graph 

for representing vessel system. The existence of a loop is considered as a sign of 

choosing a low threshold causing over extraction of the blood vessel region. The 

cancer detection procedure is as follows. Cancers are found firstly in the extracted 

blood vessel region, and then from the rest region (Saitoh et al., 2005). The presented 

method can be categorized as a pattern recognition type method employing intensity 

feature and simple thresholding classifier. The main characteristic of the developed 

liver segmentation method relies on locating the liver entrance by tracing the blood 

vessels from the abdominal aorta. 

 Schmugge et al. propose in (Schmugge et al., 2006) a robust vessel segmentation 

method for intravital microscopy (IVM) images which enable capturing temporal 

changes of blood flow and vessel structure in vivo. Schmugge et al. propose a 

Bridging Vessel Snake (BVS) algorithm to segment a network of vessels, especially 

ones with less sharp boundaries. The method segments the vessels with varying 

diameter while imposing the structure of vessels by utilizing a ribbon snake and 

adding energies of width and region. The initial network of vessels is obtained by the 

skeletonization corresponding to mostly sharper vessels. The sharp vessels are 

considered as vessels of higher confidence and then new bridges among them are 

constructed by hypothesizing “less sharp” vessels. The method is useful for 

achieving accurate biological analysis of blood vessels regulation within liver and 

also within other organs, so for microvasculature reconstruction necessary for red 

blood cells flow distribution regulation analysis.  The used segmentation method can 

be categorized as a skeletonization (image processing) method. The resulting 

skeleton is enlarged by BVS algorithm to obtain the network of vessels including the 

ones with less sharp boundaries. 
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 Erdt et al. propose in (Erdt et al., 2008) a technique for fully automatic hepatic 

vessel segmentation employing graphics hardware. The technique presented 

enhances and extracts quickly the vascular system of the liver from CT images. The 

developed system consists of i) vessel enhancement on the Graphics Processing Unit 

(GPU), ii) automatic vessel segmentation in the enhanced images and iii) an option 

to verify and refine the segmentation results. The segmentation quality is assessed on 

20 clinical datasets of varying contrast quality and acquisition phase. Erdt et al. 

reports that graphics hardware realization of the automatic segmentation provides 

reliable and fast extraction of the hepatic vascular system, so constitutes a beneficial 

technique for oncologic surgery planning. 

 Fei & Park, 2008 propose in (Fei & Park, 2008) an automatic liver vessel 

segmentation approach based on level set method for diagnosis and treatment of the 

hepatic disease. A flexible initialization for the level set function is implemented by 

segmenting the liver automatically using morphological filtering and an improved 

Otsu’s thresholding based on calculating the minimum within class variance 

corresponding to the classes of pixels each side of the threshold. The used 

morphological operators are performed in the following three phases: i) Removing 

surrounding tissues using morphological filtering, obtaining a binary image by the 

improved Otsu’s threshold method and tracking the location of liver, ii) Binary 

image of the liver where 1’s represent the tracked location image and liver boundary, 

and iii) Segmentation liver from the source image using the binary image of the liver. 

The segmented liver boundary is used as the level set initialization in the level set 

method used for the automatic segmentation of the liver blood vessels. Since the 

level set method used for liver vessels is a partial differential based method and its 

initialization is realized by using morphologic filtering and Otsu’s thresholding, then 

the method by Fei & Park can be considered as a hybrid method. 

 Homann et al. propose in (Homann et al., 2008) a vasculature segmentation 

method for CT liver images based on graph cuts and graph-based analysis. The 

method segments vessels using 3D graph-cuts by the utilization of probabilistic 

intensity information and surface smoothness as constraints. A semi-automatic 

graph-based technique is then employed to efficiently separate the hepatic vessel 
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systems. The resulting vascular segmentation is assessed on 6 liver CT datasets in 

comparison to a manual segmentation and found reasonable in terms of robustness 

against to parameter choices. The basic idea of the proposed graph-cut method is to 

represent the image as a graph such that every voxel corresponds to a node. The 

edge-set consists of links connecting neighboring voxels and links connecting all 

voxels to the source and sink voxels. The goal is to find the optimal cut which 

separates the graph into two sub-sets. Where, the cost to be minimized is the sum of 

the weights of the cut edges which are calculated in terms of the differences of 

intensity values corresponding to neighboring voxels and the intensity probabilities. 

The method starts with performing anisotropic diffusion on the segmented liver as a 

pre-segmentation step. A graph cuts segmentation method is employed to detect 

vessels, and then the vasculature sub-trees are identified using skeletonization 

followed by a graph-based analysis. The anisotropic diffusion is a partial differential 

equation based method used in the pre-segmentation phase in order to reduce image 

noise while retaining significant parts of the image content, typically edges, lines and 

other details. On the other hand, skeletonization and then the graph analysis 

described above are used for obtaining liver vasculature system. So, the method by 

Homann et al. can be considered as a hybrid method. 

 Kawajiri et al. propose in (Kawajiri et al., 2008) an automated segmentation 

method for hepatic vessels in non-contrast CT images. The method first applies an 

enhancement and then extraction operation on hepatic vessels. The enhancement is 

performed by histogram transformation based on a Gaussian function and also multi-

scale line filtering based on eigenvalues of a Hessian matrix. The candidates of 

hepatic vessels are then extracted by a thresholding method applied on the enhanced 

histogram. Small connected regions in the resulting images are removed since they 

could not belong to the hepatic vessels. The results obtained for two normal-liver 

cases one of which is obtained for plain CT images and the other for contrast-

enhanced CT images of the same patient are compared for evaluating of the 

performance of the method. It is concluded by Kawajiri et al. that the method could 

enhance and segment the hepatic vessel regions even in plain CT images. Since the 

enhancement is implemented by thresholding applied on a transformed intensity 

histogram and also by a Hessian based filter, and the vessel extraction is realized 
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again by thresholding applied on an enhanced histogram, then the method can be 

considered as a hybrid liver vessel segmentation method combining histogram based 

pattern recognition methods with an image processing method. 

 Doğan et al. propose in (Doğan et al., 2009) a method for extraction of the liver 

vessels from abdominal CTA images by a Hessian based vessel filter. The method 

possesses a labeling procedure for the main vessels applied after the extraction of the 

liver vessels. In contrast to the other Hessian filter based liver vessel segmentation 

methods, the method is capable of extracting all of the liver vessels not a part of 

them. The method can be considered as an image processing based liver vessel 

segmentation method.  

 Freiman et al. propose in (Freiman et al., 2009) a variational method for liver 

vessel segmentation and visualization in abdominal CTA images. The segmentation 

problem is posed as a functional minimization within a variational calculus 

framework. Where, the functional incorporates a geometrical measure for vesselness 

and also properties for vessel surfaces. The functional does indeed correspond to the 

distance between the desired segmented image and the original image. The Euler-

Lagrange equations are solved by using conjugate gradients algorithm in order to 

find the minimum of the functional. The method is superior to the Hessian based 

methods in the detection of bifurcations and complex vessel structures as a 

consequence of the possibility of incorporating a surface term into the functional. 

The simulation results, which are compared to the results obtained by Hessian based 

method and also to the evaluations by an expert radiologist on eight abdominal CTA 

clinical datasets, show that the method is suitable for the automatic segmentation and 

visualization of the liver vessels. The method by Freiman et al. is an optimization 

based method formulized in the variational calculus framework. 

 Kaftan et al. propose in (Kaftan et al., 2009) a two-stage method for fully 

automatic segmentation of venous vascular structures in liver CT images. The 

method is useful for surgical planning of oncological resections and living liver 

donations. The developed hepatic vessel segmentation method is implemented in two 

stages. The core vessel components are detected and delineated firstly. Then, smaller 
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vessel branches are segmented by a robust vessel tracking technique based on a 

medialness filter. In the first phase, major vessels are segmented using a globally 

optimal graph-cuts algorithm in combination with foreground and background seed 

detection. In the second stage, a tracking algorithm is applied locally in the areas of 

smaller vessels. The method is evaluated on contrast-enhanced liver CT images 

obtained from clinical routine and is reported promising. The method can be 

considered as a hybrid method employing image processing and graph analysis. 

 Seo & Park propose in (Seo & Park, 2009) a method for automatic segmentation 

of hepatic vessels in abdominal multiple detector CT images. Hepatic vessels are 

useful in estimating the volumes of the left and right hepatic lobes, integral for 

maximizing the safety of the donor and the recipient during living donor liver 

transplantation. The segmentation is implemented in the following steps: i) canny 

edge detection for determining the location of the hepatic vessel, ii) extraction of 

hepatic vessel candidates by threshold filtering around the detected edge, iii) addition 

of true negatives, defined as hepatic vessel pixels, except for the extracted vessels, as 

the brightness of these pixels is less than the threshold, according to the pre and post 

section connections, and iv) removal of false positives, defined as small connected 

regions smaller than nine voxels without connections to pre or post sections. The 

method by Seo & Park can be considered as a hybrid method implementing image 

processing and histogram based thresholding operations. 

 Chi et al. propose in (Chi et al., 2010) a method for segmenting liver vasculature 

in contrast enhanced CT images by using context-based voting. The liver vasculature 

segmentation is implemented by first extracting vessel context from input image, and 

then votes on vessel structures. Herein, the liver is extracted using Model-based 

Image Understanding Environment (MIUE) (http://www.liversuite.com/). The liver 

scan is next processed to be isotropic. The method is reported to be able of 

conducting full vessel segmentation and recognition of multiple vasculatures 

effectively. The vessel context describes context information of a voxel related to 

vessel properties, such as intensity, saliency, direction and connectivity. Voxels are 

grouped to liver vasculatures hierarchically based on vessel context. They are first 

grouped locally into vessel branches with the advantage of a vessel junction 
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measurement, and then grouped globally into vasculatures, which is implemented 

using a multiple feature point voting mechanism. The proposed method is evaluated 

on ten clinical CT datasets. Since the method by Chi et al. employs a vessel context 

based voting for segmentation and for identification liver vasculatures by using 

region based features, such as shape and intensity, then, it can be considered as a 

pattern recognition type liver vessel segmentation method. 

 Esneault et al. propose in (Esneault et al., 2010) a fully automatic method for liver 

vessel segmentation by using a hybrid geometrical moments and graph cuts in CT 

preoperative images. The method introduces a 3D geometrical moment-based 

detector of cylindrical shapes within the minimum-cut/maximum-flow energy 

minimization framework. It exploits a data term as a constraint into the widely used 

Boykov’s graph cuts algorithm to automate the segmentation. The method is 

evaluated on a synthetic dataset. The method by Esneault et al. can be classified as a 

hybrid method combining pattern recognition and graph analysis methods. Where, 

the geometrical moments are used as features in the pattern recognition.  

 Friman et al. propose in (Friman et al., 2010) a multiple hypothesis template 

tracking method for small 3D liver vessel structures. The method leads to low 

contrast passages to be traversed and an improved tracking performance in low 

contrast areas, and also a novel mathematical vessel template model providing an 

accurate vessel centerline extraction. The proposed tubular tracking algorithm is 

realized by applying 3D template matching which is based on matched filter 

approach of image processing. The template is an image patch containing an 

idealized vessel segment which is parameterized by a radius, a center location, and a 

direction. The used modular vessel template model is incorporated with a dedicated 

fitting procedure. The employed multiple hypothesis tracking for vessels, which is 

well established technique of signal processing and control areas, considers several 

possible trajectories or hypotheses simultaneously. The tracking is reported as fast 

enough for an interactive segmentation. The method is applied for segmenting both 

the liver arteries in CT angiography data and the coronary arteries in thirty-two CT 

cardiac angiography data sets in the Rotterdam coronary artery algorithm evaluation 
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framework. The method by Friman et al. can be classified as an image processing 

and pattern recognition based hybrid method.  

  The thesis is planned as follows. Chapter two gives a background on liver 

anatomy and imaging modalities for liver. Chapter three presents a brief review on 

general medical image segmentation methods with a special emphasis on vessel 

segmentation. The liver vessel segmentation, which is the main subject of the thesis, 

is reviewed in detail in Chapter four. The conclusions are given in Chapter five. 
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CHAPTER TWO 

LIVER ANATOMY AND IMAGING MODALITIES FOR LIVER 

 

This chapter presents a description of liver anatomy and imaging techniques used 

for liver vessel segmentation. 

2.1 Liver Anatomy 

The liver is the largest gland in human. It is located on the right side of the 

abdominal cavity (Anthea et al., 1993; Selver, 2010). Considering surface features, 

the liver can be divided into four lobes each of which has unequal size and shape. 

The liver has two blood supplies. One of them is the hepatic artery carrying blood 

from aorta. The other is the hepatic portal vein carrying blood from small intestine. 

Herein, hepatic word, which is originated from Greek word “hēpar”, refers to liver. 

These two blood vessel systems branch into capillaries leading to lobules made up of 

millions of hepatic (metabolic) cells which further constitute the lobes of the liver. A 

vein passes through the centre of each lobule and then joins to the hepatic vein for 

carrying blood out of the liver. Ducts, veins and arteries taking place on the surface 

of the lobules carry fluids, i.e. bile and blood, into and from these lobules. 

As depicted in Figure 2.1, the bile duct, hepatic portal vein, and hepatic artery are 

partitioned into left and right branches which constitute the functional left and right 

lobes of the liver. These functional lobes are actually separated by a plane passing 

the middle hepatic vein, the gallbladder fossa and the inferior vena cava. 

Furthermore, the right hepatic vein partitions the right lobe into an anterior and a 

posterior segment while the left hepatic vein partitions the left lobe into the medial 

and lateral segments. On the other hand, the fissure of the ligamentum teres further 

partitions the medial segment, i.e. quadrate lobe, and lateral segment. Couinaud 

system, which is also called as French system, (Couinaud, 1999) partitions the 

functional lobes into a total of eight sub-segments by a transverse plane through the 

bifurcation of the main portal vein.  
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Figure 2.1 Liver anatomy and vasculature. (Moore et al., 1999). 

2.2 Imaging Modalities used for Liver Vessel Segmentation  

 In the literature (Soler et al., 1998; Dokladal et al., 1999a; Dokladal et al., 1999b; 

Hanh et al., 2001; Doherty et al., 2002; Saitoh et al., 2002; Eidheim et al., 2004; 

Saitoh et al., 2004; Charnoz et al., 2005; Saitoh et al., 2005; Schmugge et al., 2006; 

Erdt et al., 2008; Fei & Park, 2008; Homann et al., 2008; Kawajiri et al., 2008; 

Doğan et al., 2009; Freiman et al., 2009; Kaftan et al., 2009; Seo & Park, 2009; Chi 

et al., 2010; Esneault et al., 2010; Friman et al., 2010), there are several different 

types of imaging techniques used for the liver vessel segmentation. CT, CTA, multi-

phase CT, multi-detector CTA, MR and MRA are among these techniques. These 

techniques are briefly described below.  

2.2.1 Computed Tomography (CT) 

X-ray CT, which is usually called as CT, is a medical imaging technique typically 

requiring X-ray tube, detector and microcomputer (Herman, 2009). X-ray CT is 
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based on ionizing radiation. X-ray sensors, which are placed at the opposite to an X-

ray source rotating around the object, are used to produce X-ray slice data. A form of 

tomographic reconstruction is used to processes the scan data in a digital way for 

producing a series of cross-sectional digital images. 

Image pixels are displayed based on the mean attenuation of the tissue(s). Where, 

Hounsfield scale is used as a standard ranging from +3071 representing the most 

attenuating to -1024 representing the least attenuating. For instance, water has an 

attenuation of 0 Hounsfield units, air is -1000 HU, and cancellous bone is around 

+400 HU.  

2.2.2 Computed Tomography Angiography (CTA) 

 CT angiography (CTA) is a computed tomography technique. In order to produce 

detailed images of blood vessels and tissues, this technique is required to inject a 

contrast material into a peripheral vein (CT Angiography, (n.d.), March 13, 2011, 

http://www.radiologyinfo.org/en/info.cfm?pg=angioct#part_one). Injection of the 

contrast material to the bloodstream makes the blood vessels appear bright white. CT 

angiography is used to examine blood vessels especially in brain, kidneys, pelvis, 

legs, lungs, heart, neck and abdomen. It provides to capture of highly detailed 

vascular systems. 

2.2.3 Multi-Detector Computed Tomography 

 Multi-Detector Computed Tomography (MDCT) is also called as multi-slice CT. 

It is used to obtain multiple slices in a single rotation. Thinner slices, which yield 

higher resolution, are obtained in a shorter period of time in multi-detector CT. It 

provides more detail and additional views. Multi-Detector CT can delineate anatomic 

structures in the abdomen (Lee et al., 2010). Multi-Detector CT uses a higher 

radiation dose as compared to single-detector CT. 

2.2.4 Multi-Phase Computed Tomography 

 Conventional CTA, which is also called as single-phase CTA, is acquired during a 

short interval in the arterial phase. In contrast, multi-phase CTA images contain data 
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related to the different time instances. Multi-phase CTA is reconstructed from raw 

data of thin-section perfusion CT which is used to generate parametric maps of blood 

flows. Multi-phase CTA is superior to single-phase CTA since it provides better 

vascular enhancement while having comparable image quality. However, the 

radiation dose of multi-phase CTA is higher than the dose of the conventional single-

phase CTA (Yang et al., 2008). It should be noted that the radiation dose can be 

reduced by choosing large sampling interval.  

2.2.5 Magnetic Resonance Imaging 

 In contrast to CT, Magnetic Resonance Imaging (MRI) technique is not based on 

ionizing radiation. MRI employs a magnetic field to align the magnetic moments of 

the protons with the direction of the field and employs a radio frequency transmitter 

for producing a varying field to change the alignment. The generated magnetic field 

gradients force nuclei of the atoms of the body tissues to rotate at different speeds. 

The protons resonate at a frequency depending on the strength of the produced 

magnetic field. The protons are returned back to their original lower-energy spin-

down state when the field is absent. In order to understand the spinning mechanism, 

consider a hydrogen dipole which has a single high spin and a single low spin. 

Dipole and field have the same direction for low spin state while the opposite for 

high spin case. The energy difference, which is released as a photon, is detected by 

the scanner as an electromagnetic signal. This mechanism together with the fact that 

the protons in different tissues return to their rest states at different rates explains 

how to construct the MR images. Spin density, T1 and T2 relaxation times, flow and 

spectral shifts are used to construct images (Hendee & Morgan, 1984).  3D positions 

of the released photons are detected by using additional fields produced by gradient 

coils such that inverse Fourier transform is applied to the measured signal to extract 

position information hidden in the position dependent frequency spectrum. 

 MRI scans usually contain 5–20 sequences of images. Two basic sequences are 

given the sequel (Magnetic Resonance Imaging, (n.d.), May 22, 2011, 

http://en.wikipedia.org/wiki/Magnetic_resonance_imaging). 
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 T1 Sequence: T1 sequence, which is also called as T1-weighted sequence, is 

obtained from a gradient echo sequence with a short Echo Time (ET) and with a 

short Repetition Time (TR). T1 sequences provide good contrast especially between 

fat and water such that fats are displayed as bright while water as dark. For liver 

applications, TR is hold sufficiently long to cover the entire liver in one pass with a 

good signal to noise ratio. In phase ET, choosing short TE minimizes magnetic 

susceptibility effects and permits a one breath scan to cover the entire liver. 

 T2 Sequence: T2 sequences, which are also called as T2 weighted sequences, are 

typically obtained from a spin echo sequence with long ET and long TR. T2 

sequences display tissues, which are rich in water or other fluids, as bright and fatty 

tissues as dark. T2 sequences are especially useful to distinguish pathologic tissues 

from normal tissues. Fast spin echo combined with fat suppression is quite common 

T2 sequence used for liver MRI applications (Liver Imaging, (n.d.), May 22, 2011, 

http://www.mr-tip.com/serv1.php?type=db1&dbs=Liver%20Imaging). 

 MRI provides a better contrast between different soft tissues and better spatial 

resolution as compared to CT. In compare to CT and Ultra Sound (US), MRI is 

known to be more sensitive and accurate especially for detection and characterization 

of focal lesions in liver. A basic liver MR protocol, which consists of T2, inversion 

recovery and T1 sequences, requires 3-4 pulse sequences lasting normally twenty 

minutes (Earls, 2002). 

2.2.6 Magnetic Resonance Angiography 

 Magnetic Resonance Angiography (MRA) requires a specific contrast agent to be 

injected intravenously for enhancing the appearance of blood vessels. In addition to 

non-specific ones such as paramagnetic contrast agent “gadolinium”, liver-specific 

contrast agents are also available (Earls, 2002; Liver Imaging, (n.d.), May 22, 2011, 

http://www.mr-tip.com/serv1.php?type=db1&dbs=Liver%20Imaging; Magnetic 

Resonance Imaging, (n.d.), May 22, 2011, http://en.wikipedia.org/wiki/-

Magnetic_resonance_imaging;). 
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CHAPTER THREE 

MEDICAL IMAGE SEGMENTATION 

 

 Image segmentation aims to change the representation of an image in order to 

have a representation which is simple to be analyzed in an efficient way and more 

informative providing a higher recognition success. Image segmentation can be 

defined as the process of labeling every pixel in an image based on their visual 

characteristics such as intensity, color or texture (Shapiro & Stockman, 2001).  

 Medical image segmentation is the process of partitioning a medical image into 

several subsegments which are sets of pixels corresponding to certain anatomical 

structures, i.e. the organs such as brain, eye, lung, liver, heart, blood vessels, and 

normal and abnormal tissues. This chapter presents a review on semi-automated and 

fully automated methods for the segmentation of medical images.  

 Segmentation methods assist doctors in evaluating the medical images and/or 

automate many radiodiagnostic-medical recognition tasks. Quantification of tissue 

volumes, abnormal tissue diagnosis, localization of pathology, extraction of 

anatomical structures and partial volume correction are among the medical tasks 

where image segmentation (Bankman, 2009; Fitzpatrick & Sonka, 2000; Pham et al., 

1999). 

 Medical image segmentation methods differ from the generic segmentation 

methods with their application-specific nature. They usually incorporate prior 

knowledge about the anatomical structures aimed to be segmented. A part of the 

methods available in the literature is based on the generic segmentation methods. 

However, it can be said that a specific medical segmentation problem generally 

requires a specific solution provided by a specific segmentation method. 

 The success of a segmentation method depends mainly on the anatomic structure 

to be segmented, the used imaging modality, partial volume effect, noise, artifacts 

and motion in the scan and also the patient. The segmentation of an organ-tissue 

requires different methods, techniques or modalities from the ones required for 
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another organ-tissue. On the other hand, similar organs-tissues, such as tubular vessel 

structures of liver, brain or retina, require similar segmentation methods, techniques 

and modalities. This explains why this chapter presenting general medical image 

segmentation methods is included in the thesis whose focus is on the liver vessel 

segmentation.  

 Selection of the best segmentation method for a specific medical segmentation 

problem is a quite difficult problem (Pham et al., 1999). However, the performances 

of the available medical segmentation methods give an idea how to choose an 

acceptable segmentation method for a particular medical segmentation problem. To 

serve this purpose, this chapter is devoted to present the available medical image 

segmentation methods and the vessel segmentation methods of cerebral, retinal and 

other organs. 

3.1 Overview for Medical Image Segmentation 

Several different segmentation approaches are available in the medical image 

segmentation literature. The medical image segmentation is realized based on 1) 

pattern recognition, 2) image processing, 3) optimization, 4) graph analysis, and 5) 

partial differential equation models. The methods in the pattern recognition group 

can be further classified into the following sub-groups in terms of the features used: 

1) intensity based methods, 2) textural based methods, and 3) geometric based 

methods. The classification of the methods in the pattern recognition group can also 

be done in terms of the classifiers used as: 1) knowledge based methods, 2) 

unsupervised (clustering) based methods, 3) machine learning methods including 

Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), 4) 

probabilistic methods, and 5) hybrid methods. On the other hand, image processing 

based segmentation methods can be categorized into subgroups based on topological, 

morphological and intensity-spatial information.  

This subsection does not cover the entire literature; instead it is aimed to describe 

main medical segmentation approaches. A part of the methods used in the literature 

actually combines more than one approach in order to increase the success of the 

segmentation. Several general surveys on image segmentation exist in the literature 
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(Fitzpatrick & Sonka, 2000; Pham et al., 1999; Zhang et al., 2008; Cárdenes et al., 

2009; Hu et al., 2009; Wirjadi, 2007). 

3.1.1 Pattern Recognition Approaches 

The pattern recognition approaches involve with a feature extraction stage and a 

classification stage applied on the extracted features usually after some 

transformations. The pattern recognition approaches can be classified into the 

following sub-groups in terms of the features used: 1) intensity based methods, 2) 

textural based methods, and 3) geometric based methods. The classification of the 

methods in the pattern recognition group can also be done in terms of the classifiers 

used as: 1) knowledge based methods, 2) unsupervised (clustering) based methods, 

3) machine learning methods including Artificial Neural Networks (ANNs) and 

Support Vector Machines (SVMs), 4) probabilistic methods, and 5) hybrid methods. 

A part of these pattern recognition approaches is given in the following sub-sections 

for the sake of brevity. 

3.1.1.1 Thresholding Approach 

Thresholding approach can be classified as segmentation method based on 

histogram analysis, so they can be categorized as pattern recognition type 

(probabilistic) methods employing intensity feature and simple thresholding 

classifier. Thresholding transform images into a binary one based on pixel intensities. 

Figure 3.1.a shows the histogram of an image that possesses three apparent classes. 

The thresholding is the determination of an intensity value, called the threshold, such 

that the pixels having the intensity level above this threshold belong to one class 

while the others belong to the complement of this class. As seen from Figure 3.1.a, 

multi-class case needs multi-thresholding procedure which can be performed by 

finding the bottoms of the valleys in the histogram (Pham et al, 2000). Thresholds 

can also be determined by the maximum entropy method, Otsu's method based on 

maximum variance between classes, and k-means clustering (Segmentation (Image 

Processing), (n.d.), May 24, 2011, http://en.wikipedia.org/wiki/Segmentation_-

(image_processing)#cite_note-computervision-0). 
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Figure 3.1 Thresholding and region growing: a) a histogram possessing three apparent classes, b) 

illustration of region growing, c) classification in a 2D feature space (Pham et al., 2000). 

Thresholding is the simplest yet efficient segmentation method especially for 

images having good contrast between the pixel classes belonging to two different 

anatomical structures.  

3.1.1.2 Clustering Approach 

Clustering methods used in medical segmentation partition a data set, for instance 

a set of pixels’ intensity vectors, into clusters each of which corresponds to a class 

representing an anatomical structure. After this design phase, sample vectors are 

assigned to clusters based on minimum distance away from the cluster centers. In 

this sense, clustering approach resembles to the classifier approach given next 

subsection. However, clustering process is unsupervised, not requiring class labels 

for sample vectors in the design phase in contrast to the “supervised” classifier 

approroaches given in the next subsection.  

K-means, fuzzy c-means, and Expectation-Maximization (EM) are among the 

most common clustering algorithms used for segmentation purposes (Pham et al, 

2000). The K-means clustering clusters data in an iterative way into k clusters by 

computing cluster means from the already assigned data at each step and then 

assigning newly considered data based on these means. So, eventually it provides a 

mean intensity for each class and the segmentation is realized by assigning the 

closest mean to each image pixel. The fuzzy c-means algorithm allows a soft 

segmentation. k-Nearest Neighbor (k-NN) algorithm can also be categorized as a 
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clustering algorithm. In contrast to k-means algorithm, k-NN is a non-parametric 

method which does not assume a distribution for the data. k-NN assigns an (pixel) 

intensity to a specific class if the majority of k closest (pixel) intensity belongs to that 

class.  

EM algorithm assumes a Gaussian mixture model for the conditional probability 

density function of pixel intensity data. It consequently computes the posterior 

probabilities and maximum likelihood estimates of the means, covariances and 

mixing coefficients. In contrast to other “fully unsupervised” clustering algorithms, 

EM algorithm requires an initial segmentation or, equivalently, initial parameters. 

So, the success of EM highly depends on the initialization and it requires more 

computational time. Clustering based segmentation methods do not directly 

incorporate spatial information, so they are sensitive to noise and intensity 

inhomogeneities. However, they are preferred for their fast computation feature 

(Pham et al, 2000). 

3.1.1.3 Probabilistic Classifiers 

 Classifiers can, indeed, be classified into deterministic and probabilistic 

classifiers. Artificial Neural Networks (ANNs), which will be described in the next 

subsection, are among the deterministic classifiers. Maximum-likelihood or Bayes 

classifiers are examples for probabilistic classifiers which assume a mixture of 

probability distributions, usually Gaussion, for pixel intensities. 

In both of deterministic and probabilistic classifiers, original image is transformed 

into a feature space such that the labels of the features are known.  A common 

feature space in the image segmentation applications is the space of pixel intensities. 

Image histogram is an example for one dimensional feature space (See Figure 3.1.a) 

where thresholding can be used as the simplest classifier. As depicted in Figure 3.1.c, 

a two class classifier applied on a two or more dimensional feature space provide a 

separation surface.  

Classifiers are supervised methods since, in the training-design phase, they use 

class labels which can be obtained by a manual segmentation. Most of the classifier 
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based image segmentation methods do not incorporate spatial information (Pham et 

al, 2000).  

3.1.1.4 Machine Learning Approaches (ANNs, SVMs) 

Artificial Neural Networks (ANNs) are networks of simple processing elements, 

called as neurons inspired by biological neurons. ANNs can be deterministic or 

probabilistic, algebraic or dynamical, trainable in a supervised or unsupervised way 

but they are always nonlinear and parallel networks of neurons whose synaptic 

connection weights are the parameters storing information learned in the training 

phase.  

Algebraic deterministic ANNs such as Multi-Layer Perceptron (MLP), Radial 

Basis Function Network (RBFN), are the ones used as classifiers trained in a 

supervised way. Such ANNs constitute semi-parametric methods since not only the 

connection weights, i.e. parameters, but also the number of neurons and also network 

topologies are also adaptable.   

ANN classifiers are used for image segmentation by considering pixel intensity 

features as inputs to the ANN and exploting an initial segmentation in the training 

phase. Due to their flexibility of constructing different topological architectures and 

their capability of combining different kind of features, ANNs are also suited to 

incoroparate spatial information (Haykin, 1999; Pham et al., 2000). 

ANNs, which are simulated in digital computers, can be considered as machine 

learning methods which cover a diverse field of methods for designing (computer) 

models of classification, regression and clustering based on learning from data. 

Support Vector Machines (SVMs) which are developed by Vapnik (Haykin, 1999) 

originally for decision making and then extended to solve general classification, 

regression and clustering problems, become the most popular machine learning 

approach in the last decade.  

SVMs transform a given classification problem into a high dimensional space 

where the problem becomes a linear separation defined by a hyperplane. The optimal 
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separating hyperplane found in the transformed space, which is, indeed, the range 

space of a nonlinear mapping, is determined not by all sample data but a subset of 

data vectors, called as support vectors. This property provides a sparse representation 

SVMs, so good generalization ability. 

Choosing different types of classification error measures, i.e. loss functions, and 

different types norms for linear weights defining optimal hyperplane provide 

different types of SVMs each of which has its own advantageous and 

disadvantageous in obtaining a classification which is robust against to noise and 

outliers (Karal, 2011). SVMs, with their good generalization abilities and so 

robustness, are quite promising for obtaining robust medical image segmentation. 

3.1.2 Image Processing Based Segmentation Approaches 

Image processing based segmentation methods can be categorized into subgroups 

based on topological, morphological and intensity-spatial information. 

3.1.2.1 Region Growing Approach 

Region growing approach can be classified as topological and also intensity-

spatial information based image processing segmentation approach since the regions 

are constructed from some seed pixels by considering their spatial connectivity. On 

the other hand, region growing can be classified as a pattern recognition approach 

since the pixels are assigned to the growing region depending upon their similarity to 

the region pixels in terms of the intensity features. 

Region growing aims to extract sub-regions of the image which are homogenous 

with respect to a feature such as intensity or edges (Segmentation (Image 

Processing), (n.d.), May 24, 2011, http://en.wikipedia.org/wiki/Segmentation_-

(image_processing)#cite_note-computervision-0). The simplest region growing, 

which can be called as seeded region growing, starts with a set of seed points which 

might be selected manually based on prior knowledge or by employing an automated 

method in the initial stage. Then, the procedure includes all pixels around the initial 

seeds if they have the sufficiently close intensity value with the initial seeds. The 
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difference between the intensity of a candidate pixel and the mean intensity of the 

already determined part of the region is taken as the similarity measure. The 

procedure continues by treating a pixel, which is already included by the region, as 

an initial seed. An example for region growing is illustrated in Figure 3.1.b where a 

single region is wanted to be extracted. 

Region growing is particularly useful for extracting small and relatively simple 

structures such as tumors and lesions. Region growing is not robust against to noise 

and artifacts. So, originally simply connected regions can be extracted by the region 

growing as having holes or being disconnected. On the other hand, originally 

disconnected regions can be extracted as connected. This disadvantage of the region 

growing is usually overcomed by a homotopic approach which ensures to preserve 

the topology between the initial and extracted regions.  

3.1.2.2 Markov Random Field Models 

Markov Random Field (MRF) is a statistical model which assumes a strong 

correlation among the intensities of neighboring pixels. So, it is well suited to 

incorporate spatial interactions among image pixels (Pham et al., 2000).  

MRF assumption is also exploited in clustering based segmentation methods with 

a Bayesian prior model. In such methods, the segmentation is performed by the 

maximization of a posteriori probabilities for the given medical image usually with a 

global global optimization technique.  

The main difficulty in MRF based segmentation methods is the selection of 

optimal strength of spatial interactions which may result in an oversmooth 

segmentation loosing of important structural details in one hand, or a subsmooth 

segmentation casuing many artifacts.  
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3.1.3 Partial Differential Equation Based Segmentation Approaches 

Partial differential equations are well suited to model space-time evolution of 

dynamical behaviors such as wavefront evolution, deformation and diffusion.  

Discretization of a specific partial differential equation system with respect to spatial 

coordinates (and also to time) provides models for representing a specific digital 

image processing task. Deformable models and level set image segmentation 

methods described in the following subsections are two popular examples of partial 

differential equations based medical image segmentation.       

3.1.3.1 Deformable Models 

Deformable models used for medical image segmentation are model based 

techniques where the models are defined by partial differential equations (McInerney 

& Terzopoulos, 1996, 1999; Pham et al., 2000). The partial differential equations 

defining deformable model is, indeed, Euler-Lagrange equation whose solution 

minimizes a functional. Where, the functional represents the energy of a parametric 

contour in the two-dimensional image plane. In this sense, the deformable model is 

also an optimization method solved in the variational calculus framework.  

The boundaries of regions to be segmented are determined by first placing the 

contour near the desired boundary and then by applying deformation under the 

influence of internal and external forces. Internal forces are used for keeping the 

contour smooth throughout the deformation. External forces are used for driving the 

contour toward the intensity extrema, edges, and other desired image features of 

interest which are computed from the image, for instance as the gradient of the edge 

map.  

Deformable models produce closed and smooth boundaries for regions to be 

segmented, so providing robustness against to noise and spurious edges. However, 

they require manual interaction to choose an initial model and there is a difficulty in 

determining appropriate parameters.  
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3.1.3.2 Level Set Method 

In level set method, a partial differential equation system is used to define the 

propagation of a contour which eventually settled down to the actual contour 

corresponding to the lowest level of a cost function. Where, the cost represents the 

image processing task addressed and imposes certain smoothness constraints 

(Segmentation (Image Processing), (n.d.), May 24, 2011, http://en.wikipedia.org/-

wiki/Segmentation_(image_processing)#cite_note-computervision-0). 

The level set method is developed by Osher and Sethian for front propagation in 

modeling ocean waves and burning flames (Sethian, 1999.). Malladi extends its 

application area to medical imaging including segmentation (Malladi, et al., 1995). 

3.2 Vessel Segmentation 

Vessel segmentation is a difficult problem. Because, vascular trees can have 

complex structures and blood vessels are usually covered by other organs. 

Furthermore, manual segmentation for the images generated by imaging modalities, 

such as CTA and MRA, is a tedious process taking even hours. 

Many vessel segmentation methods are developed in the literature (Freiman et al., 

2009; Kirbas & Quek, 2003; Lesage et al., 2009) which are different from the others 

in terms of the anatomical structures that they targeted and in terms of the 

segmentation approaches that they exploited. This subsection presents vessel 

segmentation methods applied to abdominal, cerebral and retinal organs in order to 

have a unified framework together with the liver vessel segmentation methods which 

is reviewed in the next chapter. As explained before, a part of the segmentation 

approaches for the vessels and tubular objects other than liver have similar 

characteristics with the liver vessel segmentation. 

3.2.1 Abdominal Vessel Segmentation Approaches 

The segmentation of organs and vasculatures in the abdominal region is a very 

hard problem due to their complex and highly overlapping structures.  
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Chen et al. propose in (Chen et al., 2000) an automatic method developed for 

segmentation of abdominal CT images for virtual colonoscopy in order to prepare a 

bowel using a low-residue diet. A contrast solution is used for enhancing the image 

intensities of residual colonic materials. The method applies a multistage 

segmentation approach consisting of a vector quantization technique for a low-level 

image classification and a region-growing strategy for a high-level feature extraction.  

Komatsu et al. propose in (Komatsu et al., 2006) a temporal subtraction method in 

CT images to detect the blood vessels on the abdominal. The proposed method is 

applied to a set of high-resolution helical computed tomography images.  

A method by Babin et al. proposes segmentation and determination of the length 

measurements of blood vessels in 3D abdominal MRI images (Babin et al., 2009). 

The method does not require contrast-enhanced images for segmentation. The 

approach exploits skeletonization, graph construction and shortest path estimation to 

measure the length of vessels. 

An automatic segmentation method by Bashar et al. is proposed for abdominal 

vessels obtained from contrasted CT images (Bashar et al., 2010). In the initial phase, 

initial vessel and bone image are obtained by using multi-thresholding technique. 

First threshold is computed by discriminant analysis applied on a reduced CT 

volume. Second threshold is determined by finding the first local minimum in the 

histogram of the reduced CT data. In the second phase, larger vessels such as aorta 

are segmented by 3D region growing applied on the preprocessed CT volume. This 

image is subtracted from the initial bone and vessel image to obtain a new binary 

image without larger vessels. An experiment wiith ten cases of contrasted CT images 

demonstrates the potential of the proposed method on the segmentation of especially 

thinner vessels. 

3.2.2 Cerebral Vessel Segmentation Approaches 

The vascular system of human brain is a very complex 3D anatomical structure. 

3D visualization of blood vessels by different imaging modalities for segmentation 

purposes is a very active research area. The segmentation of the brain vacular 
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systems consists of the following four main steps i) preprocessing of digital images 

scanned, ii) extrating a skeleton for vascular system to have structural  description, 

iii) matching images obtained at different sequence and time, and iv) 3D 

reconstruction and display (Cui et al., 2009). Segmentation of the cerebral vessel is 

used for visualization and also for diagnosing diseases. 

Luo & Jin and Luo & Zhong present a review on cerebral vessel structure 

segmentation for 3D quantification and visualization of MRA images (Luo & Jin, 

2005; Luo & Zhong, 2005). 

 A method by Lee et al. presents a reconstruction process for 3D cerebral vessel 

tree from a pair of Digital Subtraction Angiograms (DSAs) (Lee et al., 1996). Two 

different thresholding operations, one of which is local and the other is global, are 

used to segment the vessels from the background. After these operations, thinning is 

applied to obtain a skeleton for representing the structure of the vessel system. 

Krissian et al. propose in (Krissian et al., 1998) an approach for segmenting 

vessels in 3D angiography images obtained from the brain. The method is based on a 

vessel model and employs a multiscale analysis for extracting the vessel network 

surrounding an aneurysm. The method determines points of interest around the 

vessel center in terms of the conditions imposed on the eigenvalues of the Hessian 

matrix. 

Hirano & Hata propose in (Hirano & Hata, 2000) an approach for segmentation of 

blood vessels in CTA image exploiting fuzzy logic. In the initial phase, the method 

obtaines a rough image by combining raw and difference images. The difference 

image is obtained by applying Laplacian filter. The venae and artery are segmented 

by fuzzy inference for obtaining the rough image. The method applies region 

growing for extracting Willis Ring contacted the blood vessels.  

A method by Tuduki et al. propose an automated seeded region growing 

algorithm for segmenting cerebral blood vessels in MRA images (Tuduki et al., 

2000). In the initial phase, the method applies thresholding operation on the original 

MRA image to roughly obtain sturtures of blood vessels. In the second phase, the 
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method applies thining operation for obtaining skeletons of the vessels based on the 

Euclidean distance transformation. In the final phase, the obtained skeletons are used 

as the seeds for region growing operation.  

Passat et al. propose in (Passat et al., 2005) a method for brain vessel 

segmentation based on mathematical morphology tools. The method is applied on 

Phase-Contrast MRA (PC-MRA). 

3.2.3 Retinal Vessel Segmentation Approaches 

The retina is a layer of membrane at the back of the eye. The retina is visualized 

as an image by the fundus camera. The retinal images are noisy, poorly contrasted 

and non-uniformly illuminated. They have brightness variations within the same 

image and also between different images (Vlachos & Dermatas, 2010). Extraction of 

blood vessels in retinal images is a very hard problem also due to the facts that a 

large number of vessels are very thin and the local contrast is low. 

The most accurate methods based on supervised classifiers incorporate with 

knowledge about the vessel network morphology.  

An automated method for tracing retinal vasculature and analysis of intersections 

and crossovers is developed and applied to computer-assisted laser retinal surgery 

(Akram et al., 2009; Alonso-Montes, 2008; Vlachos & Dermatas, 2010). 

In the literature, there are also methods for segmentation of retinal blood vessels 

based on i) tracing the centers of the vessels, ii) learning and classification of feature 

vectors, and iii) segmenting the vessel boundaries by using some set of filters or 

thresholds (Yedidya & Hartley, 2008). 

Lam et al. propose in (Lam et al., 2010) a multiconcavity modeling approach 

based on the regularization framework. The method works for both of healthy and 

unhealthy retinas. The concavity measures are combined together considering their 

statistical distributions for detecting vessels. 
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CHAPTER FOUR 

LIVER VESSEL SEGMENTATION 

 

Liver vessel segmentation is used for determining the structure of the liver before 

transplantation and also for the locations of liver tumors. Liver vessel segmentation 

is usually implemented on images obtained by Computed Tomography (CT), 

Computed Tomography Angiography (CTA), multi-phase CT, multi-detector CT, 

Magnetic Resonance (MR) and Magnetic Resonance Angiography (MRA). Since the 

vascular anatomy of the liver is quite complex, then the liver vessel segmentation is 

still an open research area. There are many methods developed in the literature for 

vessel segmentation for liver. These methods, which are applied for liver vessel 

segmentation, are reviewed and classified as below. 

4.1 Classification of the Liver Vessel Segmentation Approaches 

The vessel segmentation is realized based on 1) pattern recognition, 2) image 

processing, 3) optimization, 4) graph analysis, and 5) partial differential equation 

models. The pattern recognition approach consists of a feature extraction stage and a 

classification stage applied on the extracted features usually after some 

transformations. The methods in the pattern recognition group can be classified into 

the following sub-groups in terms of the features used: 1) intensity based methods, 2) 

textural based methods, and 3) geometric based methods. The classification of the 

methods in the pattern recognition group can also be done in terms of the classifiers 

used as: 1) knowledge based methods, 2) unsupervised (clustering) based methods, 

3) machine learning methods including Artificial Neural Networks (ANNs) and 

Support Vector Machines (SVMs), 4) probabilistic methods, and 5) hybrid methods. 

On the other hand, image processing based segmentation methods can be categorized 

into subgroups based on topological, morphological and intensity-spatial 

information. 
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For vessel segmentation, several different classifications which are quite different 

from the above classifications are given in the literature (Freiman et al., 2009; Kirbas 

& Quek, 2003; Lesage et al., 2009). The liver vessel segmentation methods, which 

are described in the sequel, can be a member of more than one group given above 

classifications. 

 The liver vessel segmentation methods developed in the literature are presented in 

the following subsections. 

4.2 Liver Vessel Segmentation Approaches 

 In this subsection, recent algorithms, methods and approaches of the 

segmentation, which are proposed in the literature for liver vessels and liver vessel 

trees, are reviewed. The algorithms developed by authors, who are given following 

subsections, are overviewed, and then, they are classified as a method which is 

belonged to groups mentioned above and previous chapters. 

4.2.1 The Method by Soler et al. – 98 

 Soler in (Soler et al., 1998) proposes a vessel segmentation method based on a 

histogram analysis, so it can be categorized as a pattern recognition type 

(probabilistic) method employing intensity feature and simple thresholding classifier. 

Local minima in histogram are used to define threshold parameters. The image is 

filtered for improving the contrast rendering before determining the thresholds. Then, 

the thresholded images are used to obtain the vessel structure (Soler et al., 1998). The 

 

Figure 4.1 Results of the method by Soler et al. (Soler et al., 1998). 
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method is applicable for liver vessel segmentation as a special case since it is valid 

for any kind of vessel system. 

 According to the results which are obtained from twelve patients, it is reported 

that the algorithm automatically extracts the principal branches of the portal vein, 

enabling the delimitation of anatomical segments defined in the prevalent liver 

anatomy. 

4.2.2 The Method by Dokladal et al. – 99a 

 Dokladal et al. proposes a 3D topological based method for liver vessels 

extraction method in (Dokladal et al., 1999a). The efficiency of the method is 

examined on a raw X-Ray tomography image without applying any transformation. 

The method is based on a point-wise reconstruction to preserve the homotopy. The 

vessel tree system is obtained at a desired level of detail by adjusting a parameter 

which controls the level of light intensity. The method can be classified as a 

topological and morphological image processing based method. It is based on the 

hypothesis that the resulting object is simply connected, contains no holes and no 

cavities. The vessels are reconstructed in the following iterative way: Add simple 

points preserving the topology by considering their luminosity. Where, a simple 

point is defined as a point such that its deletion does not change the topology of the 

object. The method starts with a marker point that needs to be determined manually 

by an expert or by another image processing algorithm. Then, the object is grown in 

an iterative way as adding simple points next to the marker if the gray level of the 

considered point satisfies to the given stopping criterion. This method is reported to 

be superior to the histogram based method by Soler et al. (Soler et al., 1998) with the 

ability of giving thinner and much richer in vessel system which is also topologically 

correct, i.e. it does not contain any holes or cavities. 

4.2.3 The Method by Dokladal et al. – 99b 

 Dokladal et al. proposes in (Dokladal et al., 1999b) a thinning algorithm for 

extraction of liver vessels. The result of thinning is a skeleton centered in the object 

according to its luminosity. The proposed thinning algorithm ensures that the 
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skeleton is topologically correct. The method can be classified as a topological image 

processing based method. 

 

Figure 4.1 Result of the first step of thinning, insignificant segments, and sequentially filtered 

skeleton. A) A 2D cut of an X-Ray tomography of a liver. B) Skeleton of the vessel system. C) 

Skeleton segments of low mean luminosity are shown in grey. D) Sequentially filtered skleton given 

by (B) (Dokladal et al., 1999b). 

 The results of the first step of thinning, insignificant segments, and sequentially 

filtered skeleton are seen in Figure 4.1. A 2D cut of an X-Ray tomography of a liver 

is seen in “A”. Then, in “B”; skeleton of the vessel system and in “C”; skeleton 

segments of low mean luminosity are shown in grey. Finally in “D”, sequentially 

filtered skleton given by “B” is seen (Dokladal et al., 1999b). 

 In this study, it is reported that the proposed method contributes principally a 

skeletonization method of grey-scale objects with a well sensivity controlling the 

level of detail. 

4.2.4 The Method by Hanh et al. – 01 

 Hanh et al. proposes in (Hanh et al., 2001) a high quality vessel visualization 

(HHQV) and interaction technique for liver surgery planning. It provides to identify 

liver vascular structure from radiological data including CT and MR data. The 

method employs a sequence of image processing steps for deriving a symbolic model 

of vascular structure which reflects the branching pattern and also the diameter of the 

vessels. These symbolic models are visualized by concatenating truncated cones 

which are smoothly blended at branching points. This method aims to recognize the 

morphology and branching pattern of vascular systems as well as the basic spatial 
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relations between vessels and other anatomic structures. The objectives of this work 

is i) to reconstruct a symbolic vascular model, ii) to visualize the reconstructed 

vascular model by emphasizing the topological and geometrical information as well 

as depth relations, and iii) to provide interaction techniques to explore these 

visualizations.  

 Vessels are segmented using a fast region-growing algorithm adapted to the thin 

and branching vessels. They are skeletonized with a topology-preserving thinning 

algorithm which derives an exact centerline representation and the radius at each 

voxel of the skeleton. After that, the skeleton is transformed in a directed acyclic 

graph with vertices, which are representing branchings (e.g., bifurcations or 

trifurcations), and edges, which are representing connections between them. A list, 

which is recording the vessel diameters and the skeleton voxels along edge, is kept 

for each edge. So, it can be categorized as a hybrid based vessel segmentation 

method including image processing and graph analysis. Herein, the used region 

growing algorithm starts with a user defined seed point and runs to accumulate all 

high-intensity voxels which are above a chosen threshold. The segmented image is 

further processed for obtaining a skeleton of the vessel system by applying 

morphologic operations such as thinning which preserve the topology and control 

small side-branches. The vessels are displayed as tubes after skeletonization for 

visualization purpose. 

 In the aforementioned study, the proposed method makes two important 

contributions. Firstly, skeleton and vessel diameter smoothing techniques are 

employed to create high-quality vessel visualizations in compliance with 

concatenated truncated cones. Filtering techniques depending upon the Strahler 

scheme and interaction techniques to highlight subtrees comprise the second main 

respect. These interaction techniques can enable to visualize even complex 

vasculature in a clear way. A vascular tree reconstructed from radiological data from 

a living patient can be seen in Figure 4.2 (A). The vessel diameters are color-coded 

to emphasize discontinuities, in particular, for small vessels. Smoothed diameters in 

the same vascular tree is shown in Figure 4.2 (B). The inset view reveals 

considerable differences for small vessels (Hanh et al., 2001). 
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Figure 4.2 A) A vascular tree reconstructed from radiological data from a living patient. The vessel 

diameters are color-coded to highlight discontinuities, particularly for small vessels. B) The same 

vascular tree as in ‘A)’ is shown, but with smoothed diameters (Hanh et al., 2001). 

4.2.5 The Method by Doherty et al. – 02 

 Doherty et al. (Doherty et al., 2002) proposes a method for 3D visualization of 

tumors and vessels for liver. For making the diagnostic and planning the surgery, 

Computed Tomography (CT) scans are used. Their objective is to find the number of 

tumors, their sizes and the physical and spatial relationship between the tumors and 

the main blood vessels. Blood vessels and liver tissue show similar contrast on the 

CT scans. The visualizations are being created using OpenDX and MATLAB. The 

data are received in the form of DICOM files and converted to the TIFF format. The 

images are cropped and histogram equalized, before being used in the visualization, 

in order to reduce the image to a convenient size and optimize the contrast. 

Isosurfaces, which are 3D analogue to contour lines, represent surfaces of equal 

density, are used in order to visualize the liver, tumor and blood vessels in 3D. The 

non-uniqueness of intensity values lacks to differentiate features using isosurfaces 

representing specific densities, as the rib cage obscures the internal organs. In order 

to solve this problem, Doherty et al. attempt to find a way of isolating the liver from 

the image by using a mask for each slice, consisting of ones in the selected section 

(the liver) and zeros everywhere else. The segmentation of liver is implemented by 

this masking operation in a semi-automatic way. Doherty et al. use an isosurface 
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method to display the vein structures by using thresholding applied on several slices 

to find the density values. In order to visualize the tumors, which has the same 

density as the outer liver tissue; Doherty et al. specify a subset of data, or sub-

volume, around the tumour and created an isosurface for this sub-volume, 

superimposing it on the same axes as the veins. The liver vessel segmentation 

method used by Doherty et al. can be categorized as a pattern recognition type 

(probabilistic) method employing intensity feature and simple thresholding classifier.  

 Initial progress is made in extraction of the tumor and vessels and visualization in 

a perspective. This process is accomplished by using similar methods, in both 

MATLAB and OpenDX. So as to examine the spatial relations of the tumor to the 

main blood vessels in the liver, efficient 3D models, which can be rotated and 

viewed from different angles, are constructed and are helpful in assisting the 

surgeon. In spite of the fact that manually creating a mask for each CT slice to 

extract the liver is necessary, there is, however, less human interaction involved in 

this method than it is needed for the current techniques employed in radiology.  

 

Figure 4.3 Different views of the major blood vessels with respect to the tumor, obtained using 

MATLAB (Doherty et al., 2002). 
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 The visualisation of the liver and the vessels using isosurfaces relying on density 

values is therefore faster and more accurate than the selection processes involved in 

creating the images currently used by the surgeon (Doherty et al., 2002). 

 In visualizing the spatial relations between the liver, main blood vessels and 

tumor, succesful consequences are achieved via applying a mask on each CT slice to 

isolate the liver and using isosurfaces. Nevertheless, as to perfect to the approach, it 

is required to test this technique on several datasets. Notwithstanding the fact that the 

masking technique used here to isolate the liver is time-consuming, the rest of the 

procedure is automatic and based on selecting the density values with respect to the 

tumor and the vessels. In respect that the boundaries between organs are not well 

defined in many of the image slices, there is currently no way of segmenting the liver 

automatically. 

4.2.6 The Method by Saitoh et al. – 02 

 Saitoh et al. proposes in (Saitoh et al., 2002) segmentation of liver region through 

vessels on multi-phase CT. The segmentation of the liver region is primarily based 

on mathematical morphology and thresholding techniques. Saitoh et al. presents an 

automatic method for segmenting the liver region from third phase abdominal CT. 

First, blood vessels in the liver are extracted with a threshold. To separate two 

regions whose intensity levels are close, Saitoh et al. proposes a functional method 

by employing blood vessel streams. Herein, the liver is considered as a region 

governed solely by the portal vein and liver vein. These veins and their tributary 

streams are identified firstly, and then it is decided that the liver region is in their 

vicinity and also that any area far from their location is definitely not a part of the 

liver. Based on this technique, Saitoh et al. trace first the main vein (vena cava), a 

branch to leading to the liver, and then extract the blood vessels of the liver. Finally 

by applying a morphological dilation operation to the blood vessels, it can be roughly 

identify the liver region from which the final region is identified by thresholding. 

The method by Saitoh et al. can be considered as a hybrid method which is a 

combination of the mathematical morphology image processing method and the 
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pattern recognition type method employing intensity feature and simple thresholding 

classifier. 

 In this approach, the whole vein from the first branch of the major vein is 

regarded as belonging to the liver. The method involves the vein after the top of the 

arc, for the portal vein which forms an arc in the close vicinity of the liver. 

Consequently, the new method presented by Saitoh et al. segments the liver region, 

which utilizes the blood vessel tracing. The area extended from the recognized 

vessels is the liver region. This region enables to remove abutting organs employing 

morphological perations. For eight CT data, experiments are carried out and as 

results of these studies, there is perfect agreement between the automatically detected 

and manually detected area. 

4.2.7 The Method by Eidheim et al. – 04 

 Eidheim et al. proposes in (Eidheim et al., 2004) an automatic liver vessel 

segmentation method in MR and CT images. Eidheim et al. use matched filters to 

emphasize blood vessels and entropy-based thresholding to segment the vessels. 

Vessel interconnections are extracted and exported to a graph structure. Genetic 

algorithms are then used to search globally for the most likely graph based on a set of 

fitness functions. The presented method, which is used also clinically (Eidheim et al., 

2004), can be categorized as a hybrid method which is a combination of image 

processing method, i.e. matched filter, and the pattern recognition type method 

employing a transformed intensity feature, i.e. entropy, and simple thresholding 

classifier. 

 The proposed approach is used to three CT image sequences of the liver. The 

outcomes of 3D vessel graph demonstrate the structure of the vessels within the liver 

in Figure 4.4. A vessel structure is found through using the global search mechanism, 

and improbable vessel structures, as -that is- vessel loops, are resolved in a reliable 

manner. The reliability of the consequences is verified by inspection by radiologists 

and surgeons. The preprocessing and initialisation steps are computationally simple, 

whereas the global search using genetic algorithms is computationally demanding. 
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This is on account of the large search space resulting from a detailed vessel graph 

and a good number of fitness functions (Eidheim et al., 2004). 

 

 

 

 

 

Figure 4.4 A visualised vessel graph with one 

continuous branch marked green. In our 

application, the liver contour and CT slices are 

visualised for verification (Eidheim et al., 2004). 

 The aforementioned method is developed as an application for automatically 

finding the most possible connectivities of vessels in the liver. Nonetheless, the 

masks are utilized exclude the vena cava. Noise in the CT images as well as lack of 

interconnections through the vena cava can bring about isolated vessel segments that 

should otherwise have been connected. Rendering the vessel structure of the liver in 

3D images based on the interconnections is a simple task. 

4.2.8 The Method by Saitoh et al. – 04 

 Saitoh et al. proposes in (Saitoh et al., 2004) an automatic segmentation method 

for liver region based on extracted blood vessels. Saitoh et al. use four-phase CT 

images with resolutions as high as 1 mm. The first-, second-, third-, and fourth-phase 

CT images correspond to before dye injection, the early stage, the full stage, and the 

wash-out stage of the injected dye. These CT data provide useful information for 

diagnosing hepatic cancer. The blood vessel stream in the first- and third-phase CTs 

is used for segmenting the liver region by tracing the portal vein and then the hepatic 

vein. The thresholding operation is used for separating blood vessels from liver soft 

tissue. The stomach and spleen regions are segmented by 3D morphological 
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operations which are erosion and dilation. The segmented liver blood vessel region is 

enlarged by morphological dilation operation for obtaining an approximate liver 

region and then the liver region is extracted by thresholding. The presented method 

can be categorized as a hybrid method which is a combination of a morphological 

(image processing) method and the pattern recognition type method employing 

intensity feature and simple thresholding classifier. The main characteristic of the 

developed liver segmentation method relies on extracting the portal vein and then the 

hepatic vein in the first stage. 

 Figure 4.5 Extracted results of blood vessels (Saitoh et al., 2004). 

 From this study, it is inferred that segmentation of the liver region on CT images 

is considered as a difficult task owing to the fact that there are such touching or 

adjoining organs as the stomach and spleen. The proposed method exploits the 

function of hepatic blood flows rather than the shape alone. Adjoining organs which 

the blood does not flow to are separated using this property. The final liver region is 

accurately determined with a threshold. The method is applied to eight CT datasets 

and it is found that 95% of the resulting boundaries agreed well with those identified 

manually. 

 

 



43 

 

4.2.9 The Method by Charnoz et al. – 05 

 Charnoz et al. propose in (Charnoz et al., 2005) a robust method for the design of 

vascular tree matching which is also applied on liver. Charnoz et al. applies the 

method for intra-patient hepatic vascular system registration. The method exploits a 

segmented vascular system obtained by CT-scan images available from the Visible 

Man (The Visible Human Project). Skeletons are computed from the segmented 

vascular systems and then are represented as an oriented tree. The orientation 

symbolizes blood circulation flow. Nodes represent bifurcations and edges 

correspond to vessels between two bifurcations. Some geometric vessel attributes, 

i.e. 3D positions, radius, vessel path, are also used. The tree matching algorithm finds 

common bifurcations (nodes) and vessels (edges). Starting from the tree root, edges 

and nodes are iteratively matched. The algorithm is applied on a synthetic database 

containing various cases. The used segmentation method can be categorized as a 

skeletonization (image processing) method. The resulting skeleton is represented as a 

tree such that the operations implemented on the tree provide the targeted robustness 

against to topological modifications due to segmentation failures and against 

deformations. 

Figure 4.6 The visible Man’s portal vascular system is randomly pruned to loose 

approximately 20%, 30% and 40% of length in both trees. Lost branches appear in green 

(Charnoz et al., 2005). 

 The aim of this study is to present the design of the original new robust method to 

match liver vessels between two CT/NRI acquisitions. The proposed method is well 

adapted, fast and robust on a complex vascular system. 
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4.2.10 The Method by Saitoh et al. – 05 

 Saitoh et al. propose in (Saitoh et al., 2005) a method for diagnosis of liver cancer 

based on three-dimensional hepatic blood vessel regions extracted by threshold 

processing. High-resolution multi-slice CT images are used in the diagnosis. The 

liver entrance is located by tracing the blood vessels from the abdominal aorta. The 

hepatic vessel region is extracted as: A temporary threshold is determined near the 

liver entrance, and the structure of the blood vessel is analyzed by adjusting the 

threshold from the temporary value in order to determine the optimal threshold. The 

thinning operation is applied to the blood vessel in order to construct a directed graph 

for representing vessel system. The existence of a loop is considered as a sign of 

choosing a low threshold causing over extraction of the blood vessel region. The 

cancer detection procedure is as follows. Cancers are found firstly in the extracted 

blood vessel region, and then from the rest region (Saitoh et al., 2005). The presented 

method can be categorized as a pattern recognition type method employing intensity 

feature and simple thresholding classifier. The main characteristic of the developed 

liver segmentation method relies on locating the liver entrance by tracing the blood 

vessels from the abdominal aorta. 

 

 

 

 

Figure 4.7 A) Extracted blood vessel and B) result of thinning 

algorithm (Saitoh et al., 2005). 

 Structural analysis of the blood vessel is performed in accordance with the basis 

of the 3D structure. An algorithm is proposed in which the optimal threshold is 

determined on the basis of the number of loops, improving the accuracy of extraction 

of the blood vessel region from the liver in CT images. 
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 The study under consideration shows that the proposed approach is beneficial in 

detecting liver cancer on the basis of the derived blood vessel region, and a two-stage 

method is therefore proposed for detecting liver cancer. The detection of cancer is 

attempted in CT images of seven cases, including cases of early stage cancer. The 

cancer detection rate is 100%, with an inaccuarate detection rate of 30%, pointing the 

effectiveness of the proposed method. 

4.2.11 The Method by Schmugge et al. – 06 

 Schmugge et al. propose in (Schmugge et al., 2006) a robust vessel segmentation 

method for intravital microscopy (IVM) images which enable capturing temporal 

changes of blood flow and vessel structure in vivo. Schmugge et al. propose a 

Bridging Vessel Snake (BVS) algorithm to segment a network of vessels, especially 

ones with less sharp boundaries. The method segments the vessels with varying 

diameter while imposing the structure of vessels by utilizing a ribbon snake and 

adding energies of width and region. The initial network of vessels is obtained by the 

skeletonization corresponding to mostly sharper vessels. The sharp vessels are 

considered as vessels of higher confidence and then new bridges among them are 

constructed by hypothesizing “less sharp” vessels. The method is useful for 

achieving accurate biological analysis of blood vessels regulation within liver and 

also within other organs, so for microvasculature reconstruction necessary for red 

blood cells flow distribution regulation analysis.  The used segmentation method can 

be categorized as a skeletonization (image processing) method. The resulting 

skeleton is enlarged by BVS algorithm to obtain the network of vessels including the 

ones with less sharp boundaries. 

 This study presents a method to extraction of a vasculature system in intravital 

microscopy images. For improving performance of segmentation, in particular, on 

vessels with lower sharpness boundaries, a new method of bridging vessel snake is 

proposed. This study presents a method to extraction of a vasculature system in 

intravital microscopy images. For improving performance of segmentation, in 

particular, on vessels with lower sharpness boundaries, a new method of bridging 

vessel snake is proposed. 
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Figure 4.8 Overview of the Algorithm. (Top-left) one frame 

of the input sequence. (Top-right) pre-processed. (Bottom- 

left) binary output of segmentation. (Bottom-right) 

delineation of segmented boundaries of sharper vessels 

through skeletonization initialization (red) and less sharp 

vessels through bridging (green) (Schmugge et al., 2006). 

 The consequenes show that the algorithm improved the region under ROC curve 

up to 20% in dataset with low sharpness level (CLP) and increased the maximum 

achievable TPF by 23% with a minimal increase in FPF. 

4.2.12 The Method by Erdt et al. – 08 

 Erdt et al. propose in (Erdt et al., 2008) a technique for fully automatic hepatic 

vessel segmentation employing graphics hardware. The technique presented 

enhances and extracts quickly the vascular system of the liver from CT images. The 

developed system consists of i) vessel enhancement on the Graphics Processing Unit 

(GPU), ii) automatic vessel segmentation in the enhanced images and iii) an option 

to verify and refine the segmentation results. The proposed segmentation method can 

be categorized as a image processing method. The segmentation quality is assessed 

on twenty clinical datasets of varying contrast quality and acquisition phase. Erdt et 



47 

 

al. reports that graphics hardware realization of the automatic segmentation provides 

reliable and fast extraction of the hepatic vascular system, so constitutes a beneficial 

technique for oncologic surgery planning. 

 This method is an automatic hepatic vessel enhancement and segmentation 

approach together with a user friendly real time preview function to manually refine 

the resulting masks. A comparison with a manual region growing show the potential 

of the method to save surgery planning time while providing accurate segmentations 

at the same time. 

 

Figure 4.9 Comparison of a manual region growing segmentation with the 

automatic method (portal venous phase). A) Volume rendering of the original 

dataset, B) and C) rendered masks of region growing with different thresholds. 

D) The result of approach by Erdt et al. (Erdt et al., 2008). 

 In this study, an application on the GPU indicates that a hardware implementation 

can carry out the filter operations nearly fifteen times faster, even for larger 

neighborhoods. The overall performance can be increased by the same factor (Erdt et 
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al., 2008). The comparison of a manual region growing segmentation with the 

automatic method can be seen in Figure 4.9. Firstly, volume rendering of the original 

dataset is given in ‘A’, and then, rendered masks of region growing with different 

thresholds are seen in ‘B’ and ‘C’, finally the result of approach by Erdt et al. are 

seen in ‘D’. 

4.2.13 The Method by Fei & Park – 08 

 Fei & Park, 2008 propose in (Fei & Park, 2008) an automatic liver vessel 

segmentation approach based on level set method for diagnosis and treatment of the 

hepatic disease. A flexible initialization for the level set function is implemented by 

segmenting the liver automatically using morphological filtering and an improved 

Otsu’s thresholding based on calculating the minimum within class variance 

corresponding to the classes of pixels each side of the threshold. The used 

morphological operators are performed in the following three phases: i) Removing 

surrounding tissues using morphological filtering, obtaining a binary image by the 

improved Otsu’s threshold method and tracking the location of liver, ii) Binary 

image of the liver where 1’s represent the tracked location image and liver boundary, 

and iii) Segmentation liver from the source image using the binary image of the liver. 

The segmented liver boundary is used as the level set initialization in the level set 

method used for the automatic segmentation of the liver blood vessels. Since the 

level set method used for liver vessels is a partial differential based method and its 

initialization is realized by using morphologic filtering and Otsu’s thresholding, then 

the method by Fei & Park can be considered as a hybrid method. 

 

 

 

   Figure 4.10 3D liver blood vessels images after segmentation (Fei & Park, 2008). 

 The conclusion of this approach is that the liver is segmented using the 

morphological filtering and an improved Otsu’s threshold, then by using the liver 
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area as the flexible initialization for automatically segmenting the liver vessels by 

level-set method. 2D and 3D liver and liver blood vessels efficient visualization 

images are supplied for surgeons to diagnose and treat the hepatic diseases. 

4.2.14 The Method by Homann et al. – 08 

 Homann et al. propose in (Homann et al., 2008) a vasculature segmentation 

method for CT liver images based on graph cuts and graph-based analysis. The 

method segments vessels using 3D graph-cuts by the utilization of probabilistic 

intensity information and surface smoothness as constraints. A semi-automatic 

graph-based technique is then employed to efficiently separate the hepatic vessel 

systems. The resulting vascular segmentation is assessed on six liver CT datasets in 

comparison to a manual segmentation and found reasonable in terms of robustness 

against to parameter choices. The basic idea of the proposed graph-cut method is to 

represent the image as a graph such that every voxel corresponds to a node. The 

edge-set consists of links connecting neighboring voxels and links connecting all 

voxels to the source and sink voxels. The goal is to find the optimal cut which 

separates the graph into two sub-sets. Where, the cost to be minimized is the sum of 

the weights of the cut edges which are calculated in terms of the differences of 

intensity values corresponding to neighboring voxels and the intensity probabilities. 

The method starts with performing anisotropic diffusion on the segmented liver as a 

pre-segmentation step.  

 A graph cuts segmentation method is employed to detect vessels, and then the 

vasculature sub-trees are identified using skeletonization followed by a graph-based 

analysis. The anisotropic diffusion is a partial differential equation based method 

used in the pre-segmentation phase in order to reduce image noise while retaining 

significant parts of the image content, typically edges, lines and other details. On the 

other hand, skeletonization and then the graph analysis described above are used for 

obtaining liver vasculature system. So, the method by Homann et al. can be 

considered as a hybrid method. 
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Figure 4.11 MIC2 dataset: (left) Segmentation and (right) graph representation 

with hepatic veins (dark-blue), portal veins (light-green), and vessels not 

classified (red) (Homann et al., 2008). 

 As a result of the study, it is reported that probabilistic intensity information and 

surface smoothness are used as constraints in the proposed method and an algorithm 

is presented to separate the different hepatic vessels as well. The segmentation step 

on six datasets is evaluated and the algorithm of this study is found as robust in a 

certain parameter range. 

4.2.15 The Method by Kawajiri et al. – 08 

 Kawajiri et al. propose in (Kawajiri et al., 2008) an automated segmentation 

method for hepatic vessels in non-contrast CT images. The method first applies an 

enhancement and then extraction operation on hepatic vessels. The enhancement is 

performed by histogram transformation based on a Gaussian function and also multi-

scale line filtering based on eigenvalues of a Hessian matrix. The candidates of 

hepatic vessels are then extracted by a thresholding method applied on the enhanced 

histogram. Small connected regions in the resulting images are removed since they 

could not belong to the hepatic vessels. The results obtained for two normal-liver 

cases one of which is obtained for plain CT images and the other for contrast-

enhanced CT images of the same patient are compared for evaluating of the 

performance of the method. It is concluded by Kawajiri et al. that the method could 

enhance and segment the hepatic vessel regions even in plain CT images. Since the 

enhancement is implemented by thresholding applied on a transformed intensity 
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histogram and also by a Hessian based filter, and the vessel extraction is realized 

again by thresholding applied on an enhanced histogram, then the method can be 

considered as a hybrid liver vessel segmentation method combining histogram based 

pattern recognition methods with an image processing method. 

 Using a Gaussian-based density transformation enhances the hepatic vessels in the 

liver region are enhanced and these vessels at issue are selected by using Hessian-

based line filtering. The accuracy of the vessel extraction is assessed based on a 

quatitative comparision between the plain CT images and contrast-enhanced CT 

images from the same patient and a visual observation by a radiologist specialized on 

liver diagnosis. 

 

Figure 4.12 3-D view of the liver and hepatic-vessel tree. A) Volume rendering of contrast-enhanced 

CT images. B) Volume rendering of the hepatic vessels after the enhancement process. C) Surface 

rendering of the segmentation result for hepatic vessels (Kawajiri et al., 2008). 

 According to the proposed approach, the preliminary results indicate that even the 

density difference between hepatic vessels and other liver regions is very small in 

plain CT cases, and that most of the vessel regions can be enhanced by the proposed 

method as well as the human observer can. Nevertheless, on account of the noise in 
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CT images, many FP regions occur in the vessel identification process. It is also 

reported that this has to be improved in future works with the use of additional data 

(Kawajiri et al., 2008). 

 Deducing from the study, it is verified that the performance of the proposed 

automated hepatic-vessel identification approach is almost comparable to that of 

human observers. This result indicates the potential for extraction of liver lobes and 

liver structures (useful for the diagnosis of cirrhosis) in plain CT images. 

4.2.16 The Method by Doğan et al. – 09 

 Doğan et al. propose in (Doğan et al., 2009) a method for extraction of the liver 

vessels from abdominal CTA images by a Hessian based vessel filter. The method 

possesses a labeling procedure for the main vessels applied after the extraction of the 

liver vessels. In contrast to the other Hessian filter based liver vessel segmentation 

methods; the proposed method is capable of extracting all of the liver vessels not a 

part of them. The method can be considered as an image processing based liver 

vessel segmentation method.  

 

 

 

 

 

 

Figure 4.13 The result of vessel filter based on Hessian   

(Doğan et al., 2009). 

 In this study, it is reported that the vasculature system in the liver is extracted 

successfully in gray level in the fifteen datasets. The result of applying a labeling 
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algorithm, the vessels can label correctly in eleven datasets. The reason of which the 

four datasets are not labeled is that the main blood vessels with dye are not thin 

because of they are fully unpainted. It is reported that the software has to be designed 

such that the interface parameters can be entered by the user. In addition, because of 

the fact that segmented liver image that has no venacava, which is as the initial value 

entered to the algorithm, vasculature system does not contain venacava in the result 

of extraction algorithm. It requires the venacava to be extracted by another algorithm 

from the original images, which are not segmented, and then it has to be added the 

resulting images. 

4.2.17 The Method by Freiman et al. – 09 

 Freiman et al. propose in (Freiman et al., 2009) a variational method for liver 

vessel segmentation and visualization in abdominal CTA images. The segmentation 

problem is posed as a functional minimization within a variational calculus 

framework. Where, the functional incorporates a geometrical measure for vesselness 

and also properties for vessel surfaces. The functional does indeed correspond to the 

distance between the desired segmented image and the original image. The Euler-

Lagrange equations are solved by using conjugate gradients algorithm in order to 

find the minimum of the functional. The method is superior to the Hessian based 

methods in the detection of bifurcations and complex vessel structures as a 

consequence of the possibility of incorporating a surface term into the functional. 

The simulation results, which are compared to the results obtained by Hessian based 

method and also to the evaluations by an expert radiologist on eight abdominal CTA 

clinical datasets, show that the method is suitable for the automatic segmentation and 

visualization of the liver vessels. The method by Freiman et al. is an optimization 

based method formulized in the variational calculus framework. 

 Freiman et al. conducts two evaluation studies with an expert radiologist on 3D 

images generated from the vessels segmentations of each dataset. In the first study, 

the radiologist assesses the presence of eleven vascular bifurcations, including 

hepatic and portal venous bifurcations. The radiologist qualitatively compares the 

bifurcations segmentation of the proposed method and that of Hessian-based filter 
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method. It is defined a quantitative-qualitative visibility score indicating the quality 

of the segmentation, compared to the ideal visibility of the structures. The proposed 

approach accurately extracts 88% of the bifurcations with a visibility score of 82%, 

as compared to only 55% in the Hessian-based method with a visibility score of 33%. 

Figure 4.14 illustrates the performance of this method compared to that of Hessian-

based filter method. In the second study, the radiologist assesses the individual 

vessels visibility on the 3D segmentation images and on the original CT slices. Ten 

main liver vessels are examined in each dataset (Freiman et al., 2009). 

Figure 4.14 Example of the segmentation results obtained with the Hessian-based method and with 

the method by Freiman et al.: A-B-C) 2D axial views. The segmentation is shown superimposed 

on the original CTA slices; D-E) 3D visualization (Freiman et al., 2009). 

 In this study, it is reported that the proposed method purposes to accomplish the 

limitations of the Hessian-based methods in bifurcations, complex vessels structures, 

and pathologies by combining surface normals coupled with Hessian-based 

vesselness information into a variational framework. There are many advantages of 

the proposed method, which is fully automatic and efficient, it produces high-quality 
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segmentations, and it performs better than existing Hessian-based methods. Two 

clinical evaluation studies on eight abdominal CTA datasets by an expert radiologist 

indicate that the proposed method successfully segments liver vasculature and their 

bifurcations. 

4.2.18 The Method by Kaftan et al. – 09 

 Kaftan et al. propose in (Kaftan et al., 2009) a two-stage method for fully 

automatic segmentation of venous vascular structures in liver CT images. The 

method is useful for surgical planning of oncological resections and living liver 

donations. The developed hepatic vessel segmentation method is implemented in two 

stages. The core vessel components are detected and delineated firstly. Then, smaller 

vessel branches are segmented by a robust vessel tracking technique based on a 

medialness filter. In the first phase, major vessels are segmented using a globally 

optimal graph-cuts algorithm in combination with foreground and background seed 

detection. In the second stage, a tracking algorithm is applied locally in the areas of 

smaller vessels. The method is evaluated on contrast-enhanced liver CT images 

obtained from clinical routine and is reported as promising. The method can be 

considered as a hybrid method employing image processing and graph analysis. 

Figure 4.15 The segmentation result of the larger vessels. A) The results including the vessel 

tracking step, B) in top view. C) The final result is shown in red within the MIP anterior view of 

the segmented liver (Kaftan et al., 2009). 
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 The figures, given in Figure 4.15, are created with a slightly different parameter 

setting so that both stages can be more distinctively recognized. Generally, higher 

significance levels during the global segmentation step will create segmentation with 

a higher specificity but lower sensitivity, while lower levels will result in a more 

complete segmentation which might also contain false positives. The centerline end-

points are used for the computational more demanding vessel tracking step. Results 

including large and small vessels are finally shown in Figure 4.15 B and C in top 

view and within the MIP anterior view of the segmented liver, respectively. 

Depending on the application, the global segmentation results might already be 

sufficient (Kaftan et al., 2009). 

 As a result of the proposed approach, the system incorporates a globally optimal 

graph-cut-based segmentation with robust local vessel tracking. In intensities of 

vessels and their surroundings which may contain tumors, the approach is robust to 

variations. In addition, large and small sized vessels are acquired correctly by the 

using the proposed two-stage segmentation algorithm without excessive 

computational requirements. Besides, the vessel tracking approach can be used to 

add interactively missing branches or sub-trees via simplistically adding single seed-

points.  

4.2.19 The Method by Seo & Park – 09 

 Seo & Park propose in (Seo & Park, 2009) a method for automatic segmentation 

of hepatic vessels in abdominal multiple detector CT images. Hepatic vessels are 

useful in estimating the volumes of the left and right hepatic lobes, integral for 

maximizing the safety of the donor and the recipient during living donor liver 

transplantation. The segmentation is implemented in the following steps: i) canny 

edge detection for determining the location of the hepatic vessel, ii) extraction of 

hepatic vessel candidates by threshold filtering around the detected edge, iii) addition 

of true negatives, defined as hepatic vessel pixels, except for the extracted vessels, as 

the brightness of these pixels is less than the threshold, according to the pre and post 

section connections, and iv) removal of false positives, defined as small connected 

regions smaller than nine voxels without connections to pre or post sections. The 
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method by Seo & Park can be considered as a hybrid method implementing image 

processing and histogram based thresholding operations. 

 

Figure 4.16 A) 3D image of the hepatic vessels segmented automatically, B) 3D images of the middle 

hepatic vein and the portal vein (Seo & Park, 2009). 

 Figure 4.16 shows the 3D of the middle hepatic vein and the portal vein, which 

can be used to divide the liver into two segments, left and right lobes. 

 Deducing from this study, it is reported that there are several variations, which are 

individual variations in location, size, and shape of the organs, as well as distance 

from and connections to other tissues. These present difficulties to automated image 

processing. In angiography, variable amounts and rates of contrast medium diffusion 

leave room for error. Notwithstanding these aberrations, canny edge detection allows 

processing within a narrow range of parameters. Despite aforementioned variations 

in the intensity of the liver structure, vessel segmentation parameters and threshold 

values can be automatically determined using this proposed approach. Also, it can be 

correctly identified the middle hepatic and portal veins from an MDCT image 

without based on morphological structuring elements or manually selected seeds. 

4.2.20 The Method by Chi et al. – 10 

 Chi et al. propose in (Chi et al., 2010) a method for segmenting liver vasculature 

in contrast enhanced CT images by using context-based voting. The liver vasculature 

segmentation is implemented by first extracting vessel context from input image, and 

then votes on vessel structures. Herein, the liver is extracted using Model-based 

Image Understanding Environment (MIUE) (http://www.liversuite.com/). The liver 

scan is next processed to be isotropic. The method is reported to be able of 
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conducting full vessel segmentation and recognition of multiple vasculatures 

effectively. The vessel context describes context information of a voxel related to 

vessel properties, such as intensity, saliency, direction and connectivity. Voxels are 

grouped to liver vasculatures hierarchically based on vessel context. They are first 

grouped locally into vessel branches with the advantage of a vessel junction 

measurement, and then grouped globally into vasculatures, which is implemented 

using a multiple feature point voting mechanism. The proposed method is evaluated 

on ten clinical CT datasets. Since the method by Chi et al. employs a vessel context 

based voting for segmentation and for identification liver vasculatures by using 

region based features, such as shape and intensity, then, it can be considered as a 

pattern recognition type liver vessel segmentation method. 

 

 

 

 

 

 

 

 

 

Figure 4.17 Comparison of the results: B) Liver vasculature segmented using level set 

based method; B) results using the proposed method. C) Veins comparison the proposed 

method (red: overlap vessels, blue: over-segmented vessels; D) veins comparison with 

the proposed method (red: overlap vessels, yellow: under-segmented vessels) (Chi et al., 

2010). 
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 In this study, the proposed approach can extract and identify liver vessel system 

from contrast enhanced CT images by use of region based features. The method is 

simple yet robust to noise and effective on segmenting the vessels. The proposed 

algorithm extracts liver vessel system both locally and globally relying on 

vasculature context, which enables its coping with vasculatures of pathologic (tumor) 

volumes. For classifiying vessel branches, the algorithm is computationally efficient 

by employing multiple feature point voting mechanism (Chi et al., 2010). The 

proposed algorithm is tested on ten clinical CT datasets and the obtained results are 

promising. The third order branches of vessel trees are segmented from the low 

resolution CT scans. 

4.2.21 The Method by Esneault et al. – 10 

 Esneault et al. propose in (Esneault et al., 2010) a fully automatic method for liver 

vessel segmentation by using a hybrid geometrical moments and graph cuts in CT 

preoperative images. The method introduces a 3D geometrical moment-based 

detector of cylindrical shapes within the minimum-cut/maximum-flow energy 

minimization framework. It exploits a data term as a constraint into the widely used 

Boykov’s graph cuts algorithm to automate the segmentation. The method is 

evaluated on a synthetic dataset. The method by Esneault et al. can be classified as a 

hybrid method combining pattern recognition and graph analysis methods. Where, 

the geometrical moments are used as features in the pattern recognition. 

 

 

 

 

Figure 4.18 Comparison of the three segmentation methods. A) Region-growing. B) 

Graph cuts. C) Hybrid method. Red circles highlight the ability of the different methods 

to extract and connect a specific vascular branch (Esneault et al., 2010). 
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 It can be seen differences among the applied methods in Figure 4.18. Firstly, 

figures shows that comparison of the three segmentation methods, which are region-

growing in A, graph cuts in B and hybrid method in C. Red circles highlight the 

ability of the different methods to extract and connect a specific vascular branch in 

the figures. 

 Deducing from the study, the proposed method is relying on a graph-cuts 

technique constrained by local vessel models to take advantages of both approaches, 

which are global optimality of the graph-cuts technique and accuracy and robustness 

of the local modeling. The method is applied on synthetic data. And then, it is 

applied on several CT databases, which are acquired on different contrast medium 

diffusion phases. The acquired consequences are proved that the proposed method is 

robust and fast enough to be used in a clinical context. Furthermore, the method 

allows identifying the patient-specific vascularization surrounding a HCC. Such 

information is of vital importance for the definition of accurate and patient-adapted 

hyperthermia therapy planning. 

4.2.22 The Method by Friman et al. – 10 

 Friman et al. propose in (Friman et al., 2010) a Multiple Hypothesis template 

Tracking (MHT) method for small 3D liver vessel structures. The method leads to 

low contrast passages to be traversed and an improved tracking performance in low 

contrast areas, and also a novel mathematical vessel template model providing an 

accurate vessel centerline extraction. The proposed tubular tracking algorithm is 

realized by applying 3D template matching which is based on matched filter 

approach of image processing. The template is an image patch containing an 

idealized vessel segment which is parameterized by a radius, a center location, and a 

direction. The used modular vessel template model is incorporated with a dedicated 

fitting procedure. The employed multiple hypotheses tracking for vessels, which is 

well established technique of signal processing and control areas, considers several 

possible trajectories or hypotheses simultaneously. The tracking is reported as fast 

enough for an interactive segmentation. The method is applied for segmenting both 

the liver arteries in CT angiography data and the coronary arteries in thirty-two CT 
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cardiac angiography data sets in the Rotterdam coronary artery algorithm evaluation 

framework. The method by Friman et al. can be classified as a hybrid method 

including image processing and pattern recognition based. 

Figure 4.19 Comparison between manually and semi-automatically segmented liver arteries. A - 

H, show eight different liver artery systems (Friman et al., 2010). 

 There are significant contributions in this study. The MHT framework can be 

applied using many different vessel models. The specific vessel model introduced in 
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this work is a mathematically tractable template model that can be analytically fitted 

to the image data. A statistically motivated criterion for evaluating the model fit has 

also been derived (Friman et al., 2010). Figure 4.19 provides a comparison between 

manually and semi-automatically segmented liver vessels. Each figure, which are A 

to H, shows eight different liver vessel systems. The blue vessels show the 

centerlines of the manual segmentation. The red vessels are the result of the hybrid 

region growing and tracking approach. The centerlines are intentionally shifted 

relative to each other to facilitate visualization. 

In this study, it is reported that the proposed method achieves a high centerline 

detection accuracy using thirty-two cardiac CT angiography datasets in the 3D 

segmentation in the clinic. Furthermore, an efficient semi-automatic liver vessels 

segmentation is shown for the first time. Finally, the tracking algorithm is released as 

software which is free to provide opportunity for the future studies to use and 

comparisons. 
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CHAPTER FIVE 

CONCLUSION 

 

This thesis gives an overview on liver vessel segmentation methods which are 

proposed in the literature. The general segmentation methods and the vessel 

segmentation methods previously used for organs other than liver are also studied in 

the thesis since the segmentation methods used have some common properties to the 

once for liver and so they are applicable to the liver vessel segmentation case. This 

thesis focuses on the liver vessel segmentation methods which can ultimately be used 

for liver transplantation and for liver tumor diagnosis. 

The thesis introduces the following taxonomy for liver vessel segmentation 

methods available in the literature.  Based on this taxonomy, the liver vessel 

segmentation methods can be classified into the following groups: 1) pattern 

recognition, 2) image processing, 3) optimization, 4) graph analysis, and 5) partial 

differential equation models. The methods in the pattern recognition group can 

further be classified into the following sub-groups in terms of the features used: 1) 

intensity based methods, 2) textural based methods, and 3) geometric based methods. 

The classification of the methods in the pattern recognition group can also be done in 

terms of the classifiers used as: 1) knowledge based methods, 2) unsupervised 

(clustering) based methods, 3) Artificial Neural Networks (ANNs) supervised 

learning methods, 4) machine learning methods, 5) probabilistic methods, and 6) 

hybrid methods. On the other hand, image processing based segmentation methods 

can be categorized into subgroups based on topological, morphological and intensity-

spatial information. 

The thesis presents an overview on the known liver vessel segmentation methods 

based on the introduced taxonomy. It can be concluded that most of the methods 

developed in the literature for liver vessel segmentation are hybrid methods 

employing more than one method. It can also be concluded that the segmentation is 

realized in several steps rather than a single step. The pattern recognition based 
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methods usually exploit intensity features together with simple thresholding 

classifiers applied on a transformed histogram. 

The contribution of the thesis, it is as a resource in the matter of studies on liver 

examinations, which are about vessel segmentation in the literature. The accessible 

methods of liver vessel segmentation are collected in this thesis. For the experts, who 

study on detecting tumor in liver, visualization of liver, segmenting vasculature in 

liver and etc., it can be useful as a resource in the extractions of the vessel trees and it 

can be beneficial in terms of evaluating which method to use. 

The liver vessel segmentation is still an open field for further researching, in spite 

of the fact that there are many promising methods, algorithms, and techniques, which 

are have been developed and improved. Vessel segmentation methods comprise the 

essence of such medical image processes as radiological diagnostic systems, creating 

anatomical atlases, visualization, and multimodal image registration. It is inferred 

that the direction of future studies of liver vessel segmentation will be towards 

progressing faster, more accurate and also more automated techniques. 

Advances in radiological imaging modalities such as CT, MDCT, CTA, MR etc. 

produce high volume medical images. Fast segmentation algorithms are needed for 

processing of these obtained images from the imaging modalities. So as to minimize 

the work load, high volume of the medical image data requires more automated 

segmentation algorithms, even though expert knowledge and guidance is necessary 

in liver vessel segmentation methods. 

This thesis provides a review of current liver vessel segmentation methods, which 

are available in the literature. It has been tried to cover not only early but also recent 

literature in relation to liver vessel segmentation algorithms and techniques. The 

main purposes of the thesis are to introduce the current liver vessel segmentation 

methods and to classify them according to classification types which are given and 

explained the previous chapters. 

Finally, a table is given in Table 5.1 for general overview of the proposed 

approaches, which are reviewed in the chapter four. The table gives a comparison 
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about the features of the proposed studies. The table is presented to compare the 

methods in terms of classification type, the number of dataset and imaging 

modalities, vessel tree, and user interaction. 



Table 5.1 Comparison of the reviewed liver vessel segmentation methods. 

Proposed Method by Year Classification Type 
Dataset 

Input Type 
Dimension Vessel 

Tree 
User 

InteractionNumber Type 2D 3D 
Soler et al. – 98 1998 PTRG 12 Real N/A No Yes Yes No 
Dokladal et al. – 99a 1999 IMPR 1 Real X-RAY No Yes Yes N/A 
Dokladal et al. – 99b 1999 IMPR N/A N/A X-RAY Yes Yes Yes N/A 
Hanh et al. – 01 2001 HYBR (IMPR - GRPH) 4 Real MR N/A Yes Yes Yes 
Doherty et al. – 02 2002 PTRG 1 Real CT No Yes Yes No 
Saitoh et al. – 02 2002 HYBR (IMPR - PTRG) 8 Real MPCT N/A Yes Yes Yes 
Eidheim et al. – 04 2004 HYBR (IMPR - PTRG) 3 Real CT Yes Yes Yes Yes 
Saitoh et al. – 04 2004 HYBR (IMPR - PTRG) 8 Real MPCT N/A Yes Yes No 
Charnoz et al. – 05 2005 IMPR 20 Synthetic CT N/A Yes Yes N/A 
Saitoh et al. – 05 2005 PTRG 7 Real MPCT Yes Yes Yes Yes 
Schmugge et al. – 06 2006 IMPR 2 N/A N/A Yes N/A No Yes 
Erdt et al. – 08 2008 IMPR 20 Real CT N/A Yes Yes No 
Fei & Park – 08 2008 HYBR (PTRG - PRDF) N/A N/A MDCT Yes Yes Yes N/A 
Homann et al. – 08 2008 HYBR (PRDF - GRPH) 6 Real CT Yes Yes Yes Yes 
Kawajiri et al. – 08 2008 HYBR (PTRG - IMPR) 2 Real CT N/A Yes Yes No 
Doğan et al. – 09 2009 IMPR 15 Real CTA N/A Yes Yes N/A 
Freiman et al. – 09 2009 OPTM 8 Real CTA Yes Yes Yes No 
Kaftan et al. – 09 2009 HYBR (IMPR - GRPH) 30 Real CT N/A Yes Yes No 
Seo & Park – 09 2009 HYBR (IMPR - PTRG) 17 Real MDCT N/A Yes Yes No 
Chi et al. – 10 2010 PTRG 10 Real CT N/A Yes Yes Yes 
Esneault et al. – 10 2010 HYBR (PTRG - GRPH) 4 Real-Synthetic CT N/A Yes Yes No 
Friman et al. – 10 2010 HYBR (IMPR - PTRG) 32 Real CTA N/A Yes Yes N/A 
Pattern Recognition :PTRG X-Ray :X-Ray   
Image Processing :IMPR Magnetic Resonance :MR   
Optimization :OPTM Computed Tomography :CT   
Graph Analysis :GRPH Computed Tomography Angiography :CTA   
Partial Differential Equation :PRDF Multi-Phase Computed Tomography :MPCT   
Hybrid   :HYBR Multi-Detector Computed Tomography   :MDCT   
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