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ROBUST SCALE ESTIMATORS IN STATISTICAL QUALITY CONTROL: 

ROBUST CONTROL CHARTS 

ABSTRACT 

 

Control Charts are one of the most powerful tools used to detect aberrant behavior 

in industrial processes. A valid performance measure for a control chart is the 

average run length (ARL); which is the expected number of runs to get an out of 

control signal. The usual Shewart S Control Charts’ performance in controlling the 

process standard deviation is based on the fundamental assumption of normality, 

which is a rarely consistent one in practice. 

Robust estimators are of vital importance in Statistics in order to estimate 

population parameters independent of the data distribution. “Median Absolute 

Deviation” (MAD), Sn, and Qn are such estimators for population standard 

deviation. 

The aim of this study is to observe performance of Shewart S-Chart for heavy 

tailed symmetric distributions and propose alternative robust control charts that 

perform better. Such qualified charts are proposed, whose control limits are obtained 

by using bootstrap methodology. Monte Carlo simulation study is performed to 

simulate their performances under normal and non-normal distributions. 

 The findings of the study assert an equal-power design to the use of Shewart S 

Chart. More importantly, although the proposed design’s false alarm probability 

(PFA) is slightly more under normal distribution, its PFA is much less than that of 

Shewart S Chart for heavy tailed symmetric distributions. This design employs the 

simultaneous use of Sn Chart and Qn Chart. 

 Cauchy model is an important model in specific applications of Electrical 

Engineering and Physics. Shewart S chart does not work in a Cauchy model and 
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another design is proposed for this model. This second design makes simultaneous 

use of MAD and Qn Charts. 

Keywords: Statistical quality control, control charts, heavy tailed distributions, 

Cauchy model, robust estimators, Median Absolute Deviation, Sn, Qn , average run 

length, bootstrap method. 
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İSTATİSTİKSEL KALİTE KONTROLÜNDE DAYANIKLI  

ÖLÇEK KESTİRİCİLERİ: 

DAYANIKLI KONTROL GRAFİKLERİ 

ÖZ 

 

Kontrol Grafikleri, endüstriyel süreçlerde istenmeyen sapmaların tespitinde 

kullanılan en güçlü araçlardandır. Kontrol grafiklerinin geçerli performans 

ölçütlerinden birisi, üretimin kontrol dışında olduğu sinyalinin alınması için gereken 

ardışık örneklem adedinin beklenen değeri olan, ortalama tekrar uzunluğudur. Klasik 

Shewart S Kontrol Grafiğinin kitle standart sapmasının kontrolü için performansı, 

temelde normallik varsayımına dayanır ki; bu varsayım, pratikte nadiren tutarlıdır.  

Dayanıklı tahmin ediciler, İstatistik için, kitle parametresinin veri dağılımından 

bağımsız olarak tahmin edilmesinde çok önemli bir yere sahiptir. “Ortanca Mutlak 

Sapması” (MAD), Sn ve Qn, kitle standart sapmasının dayanıklı tahmin edicilerinden 

bazılarıdır.  

Bu çalışmanın amacı, Shewart S Grafiğinin performansını ağır kuyruklu 

dağılımlar için gözlemlemek ve daha iyi performansa sahip olan, dayanıklı kontrol 

grafikleri önermektir. Kontrol limitleri bootstrap yöntemi ile belirlenen, bu özellikte 

grafikler önerilmiştir.  Önerilen grafiklerin performansları, normal dağılan ve normal 

dağılmayan kitleler için, Monte Carlo benzetim çalışması yaparak karşılaştırılmıştır. 

 Çalışmanın bulguları, Shewart S Grafiği’nin normal dağılım altında kullanımı ile 

eş-güçlü olan bir tasarım öne sürer. Daha da önemlisi, önerilen tasarımın yanlış uyarı 

olasılığının normal dağılım için S grafiğininkinden biraz daha yüksek olsa da, ağır 

kuyruklu dağılımlar için bu olasılığın S grafiğininkinden çok daha düşük olmasıdır. 

Bu tasarım, Sn ve Qn grafiklerinin eş zamanlı kullanılmasıyla oluşturulmuştur. 

 Cauchy modeli, Elektrik Mühendisliği, ve Fizikte birtakım özgül uygulamalar için 

önemli bir modeldir. Shewart S Grafiği Cauchy modeli için sonuç vermez ve bu 
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model için de yeni bir tasarım önerilmiştir. Bu yeni tasarım da, MAD ve Qn 

grafiklerinin eş zamanlı kullanılmasına karşılık gelmektedir. 

Anahtar Kelimeler: İstatistiksel kalite kontrolü, kontrol grafikleri, ağır kuyruklu 

dağılımlar, Cauchy modeli, dayanıklı tahmin ediciler, Ortanca Mutlak Sapması Sn, 

Qn, ortalama tekrar uzunluğu, bootstrap yöntemi. 
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CHAPTER ONE  

INTRODUCTION 

To start with, I want to make “the first aphorism of Hippocrates” remembered:  

“[The] art is long, 

Life is short, 

Crisis fleeting, 

Experiment perilous, 

Judgement difficult….” 

(Hippocrates, 400 BC) 

To be accustomed to thinking judgement as a single variable function of 

observations and the dependence on the truth of feelings about observations make 

judgement easy in daily life. However, this is not the case and judgement is a 

difficult task as Hippocrates asserts. A better, or let’s say more reliable model for 

judgement may be considering it as a bivariate function of observations and 

assumptions. 

To handle the discussion in a different manner, I replace judgement with 

inference, observation with data set, and function with estimator. Considering the 

assumptions on distribution of the data set forms the essence of my thesis’ subject. 

That’s what I would write: 

“Population is infinite, 

Sample size is small,  

Life is random, 

Experience memoriless, 

Inference difficult...” 
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The ability in statistical thinking improves the quality of inferences made. 

Moreover, qualified inferences yield a general control over the future. 

For that reason, I think that Control is a natural instinct rather than a technique to 

maximize profit. In fact, Quality makes life easier and magnificent, and Statistics is 

the unique tool to perform Quality Control.  

Besides being a professional art of living, Statistical Quality Control has a wide 

range of applications in industrial processes. The mean and standard deviation of 

products must be controlled so as to standardize the production. By this way, the 

product quality is improved and production costs are minimized.  

Control Charts are one of the most powerful tools used to detect aberrant behavior 

in industrial processes. The usual Shewart Control Charts’ efficiency is based on the 

fundamental assumption of normality.  

However, normality assumption is rarely consistent in practice. In general, we 

essentially want to control the process mean and the process standard deviation, 

independent from the data distribution. In order to monitor these parameters, it is 

important to advance the control charts based on robust statistics, because these 

statistics are expected to be more resistant to moderate changes in the underlying 

process distribution. 

The usual performance measures for a control chart are false alarm probability; 

which is the probability of getting an out of control signal when the process is in 

control, and probability to miss; which is the probability of failure in detecting the 

case that process is out of control. Based on these probabilities, average run length 

(ARL); which is the expected number of runs to get an out of control signal, is of 

great importance. The aim of this thesis study is to determine this performance 

measure for normal and non-normal symmetric distributions and compare the 
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performance of usual “Shewart S Control Chart” and proposed “Robust Scale 

Control Charts.” 

In general, a production process is desired to perform with its specified value. 

However, even if the process is designed perfectly, there exists a natural variability 

due to unavoidable causes. Then, the specified value becomes the mean value of the 

produced items’ measures. Moreover, this natural variability results in a need to 

determine the standard deviation of the process, and is often called a “stable system 

of chance causes.” A process that is operating with only chance causes of variation is 

said to be in statistical control (Montgomery, 2009). 

On the other hand, the sources of variability that are not part of the chance cause 

pattern are referred as “assignable causes of variation.” A process that is operating in 

the presence of assignable cause(s) is said to be an out of control process 

(Montgomery, 2009). 

Control charts are statistical tools that are used to monitor the system and to detect 

the assignable cause when an out of control signal is observed. Basically, a control 

chart is a confidence interval whose limits are determined assuming that the process 

is in control. For this purpose, a random sample is selected from the process 

periodically, and the realization of the relevant statistics is used to decide between: 

                             

                                 

In fact since this hypothesis testing is made at the end of each period, the test 

statistics can be viewed as a discrete time stochastic process. Additionally, “the 

significance,” and “the power of the test” are of great importance especially in terms 

of the reduction of long term costs that occur by false alarms and misses.  
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Obviously, the relevant statistics for the estimation of the population mean is a 

location statistics and that of standard deviation is a dispersion statistics. Under the 

assumption that the data follows a normal distribution, from statistical theory, sample 

mean and sample variance are the uniformly minimum variance unbiased estimators 

for population mean and population variance respectively. 

A pitfall of the statistics sample mean and sample variance is that their efficiency 

is highly dependent on the underlying assumption. To obtain more efficient 

estimates, robust methods are frequently used when the underlying assumption is 

violated. Robust methods offer operative alternatives to the traditional statistical 

methods which yield greater statistical power and efficiency when the underlying 

assumptions are not satisfied. In this study, a search for robust scale estimators to use 

in Statistical Quality Control will be presented. 

To control the process variability, process standard deviation is mostly monitored 

by Shewart S-control chart or Shewart R-control chart, which use sample standard 

deviation and sample range, respectively. The theory under the formulation of these 

charts is based upon normality assumption and, hence, their performances are 

expected to be very good if the data fits to a normal distribution. Central Limit 

Theorem does not support their performances for non-normal case because most of 

the industrial processes do not permit large sample sizes and actual distributions of 

the data may have heavy tails or may be highly skewed. That is the reason to include 

a search for some robust estimators of scale. Specifically, the estimators that will be 

studied are “Median Absolute Deviation” (MAD), Sn,and Qn. Parallel to the goal of 

the study, robust scale charts alternative to Shewart S-Chart will be proposed and 

their control limits will be constructed. 

As stated previously, ARL is the expected number of samples to take an out of 

control signal. When the process is in control, it is desired to obtain large run lengths, 

since an out of control signal will be a false alarm and when a shift occurs in the 

process, a small value of run length is desired because we want to detect the out of 

control case as soon as possible. Considering the probabilities for the two cases; run 
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length is a geometric random variable, whose parameter is    when the process is in 

control and is     when the process is out of control. 

My story begins with an introduction to Statistical Quality Control. This will be 

the theoretical background and Control Chart examples using simulated data. At first, 

data will follow a Gaussian (Normal) Distribution. To ensure the reliability of the 

study and the simulations, the simulated run length values will be compared with 

their theoretical expected values. 

Next, I will base my research on answering the following question: “What if the 

data does not fit a normal distribution?” For this purpose, the run length performance 

of Shewart S-Chart will be simulated for some heavy tailed symmetric distributions. 

In particular, the Non-Gaussian distributions used in this study are: Logistic, 

Laplace, and Cauchy distributions. Including the Gaussian distribution, these four 

distributions constitute a good set in the sense that they scale from slight to strong in 

terms of heaviness of tail characteristics. The poor performance of Shewart S-Chart 

for Non-Gaussian distributions strongly supports the need for the research of 

alternative robust scale control charts. 

Before searching control limits of robust scale control charts, a formal definition 

of robustness will be presented. Some location and scale estimators will be compared 

with respect to basic characteristics of robustness. Although the subject of the study 

is scale estimation, starting with location estimation will be complementary.  

Influence function of an estimator is very important for understanding its 

robustness. Basically, it reflects the effect of an additional data to the estimator. 

Although being efficient for Gaussian distribution, sample mean is non-robust for its 

influence function is unbounded. I will represent the empirical influence function of 

mean, with those of some robust location estimators, which are median and trimmed 

mean, using a simulated data. These aim to enable a comparison so that it will be 

easier to express the concepts of breakdown point and gross error sensitivity. 
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A similar pattern will be followed for the scale estimation counterpart. The 

efficient estimator “sample standard deviation” has an unbounded influence function 

and those of MAD, Sn, and Qn are all bounded. All these three estimators are highly 

robust since they have highest possible breakdown point, which is 50%. However, 

their efficiency and gross error sensitivity under Gaussian distribution change, Qn 

being the most efficient (of these three) and MAD having the lowest possible gross 

error sensitivity. This is a wonderful motivation for me, to go behind. 

Control limits for Shewart S-Chart are based on the standard error of sample 

standard deviation, which can be formulated by the help of Chi-square distribution. 

Alternatively, one can use “Variance Control Chart” with a direct use of Chi-square 

distribution in order to gain the advantage of having a constant (not a function of 

sample size) false alarm probability. 

On the other hand, formulas for standard errors of our robust estimators do not 

exist. I tried to propose a MAD-Chart for a start, and applied two formulations, those 

of the former is similar to the S-Chart and latter to the variance chart. Since 

simulated run length performances are not satisfactory, the study continues with 

some other technique of Glorious Statistics.   

Bootstrapping is a useful method to estimate the standard error of relevant 

statistics. Moreover, bootstrapping is a brilliant method since it somehow enables the 

data to talk for itself. The last part of the thesis before the Conclusion chapter is 

devoted to the robust control chart studies using bootstrap confidence intervals. At 

this part, the run length performances are compared for the Gaussian and three Non-

Gaussian symmetric distributions.  

The results obtained are quite satisfactory to propose control designs and to advise 

for future studies. Interestingly, Sn and Qn charts present different characteristics for 

their run lengths, for the finite moment symmetric distributions. Sn performs very 

well in ARL0 but is considerably slow in detecting shifts. On the contrary, Qn has 

very low ARL1 values, which mean that it is really good in detecting the shifts, but 
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also aim to give false alarms frequently. These observations yield the idea for 

simultaneous use of Sn and Qn, whose features will be discussed in detail.  

Moreover, the corresponding proposal for Cauchy distribution, which is a 

distribution that does not have finite moments, is the simultaneous use of MAD and 

Qn control charts. The reasoning is exactly the same as the previous design. 



 
 

8 
 

CHAPTER TWO  

STATISTICAL QUALITY CONTROL: BASIC CONCEPTS 

Perfectness is something we create in our minds and we improve using 

philosophy, mathematics, or some other specific science. Our way of thinking and 

usage of language result in the perception of perfectness. To illustrate, when we call 

a leaf, we idealize “an image of a leaf” and think that leaf as a representative image 

for the thing called. 

However, nothing is perfect in nature. Neither two things nor two moments in life 

exactly matches each other. To see or understand this imperfectness, some kind of a 

numerical measurement is needed such as weight, dimension, or volume. It will 

undoubtedly be observed that any measure varies from one object to another or from 

time to time. Therefore, a specific observation within the same class of objects -say 

length of a leaf- is a random variable. 

Having identified the imperfectness that is dealt with, we need to develop some 

strategy and technique to reduce the degree of imperfectness. Here, the Glorious 

science Statistics takes the floor. He asks Pupil two questions that will get the story 

started. The former: “What is the length of the leaf you imagine?” Pupil answers, 

“That of my image is exactly 20 cm but my observations are around 20 cm.” And the 

latter: “Up to what level you will consider your observations as acceptable?” 

Pupil is a fan of nature and she loves trees. She lives in a village near a forest, in 

which there are a lot of quassia amara (bitter-wood) trees. She takes special care of 

the health of the trees and observes their leaves in her daily walks through the forest.  

Sometimes, the trees get ill and need to be pruned. When a tree becomes ill, its 

leaves show unexpected characteristics in their length. Therefore, a tree’s healthiness 

–say quality– can easily be understood from the length of its leaves. In order to
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detect the illness of a tree and the time to prune it, Pupil decided to control the length 

of the leaves of a tree. She needs to develop some methodology for this purpose. 

2.1 Location and Dispersion Charts for Gaussian Data 

Let,              is a random sample of the size n with mean  ̅, range  , and 

standard deviation  . By Central Limit Theorem (CLT), the limiting distribution of  ̅ 

is Gaussian with mean   and standard error  
√ ⁄ . Furthermore, the probability is 

    that any sample mean will fall within   

      
 

√ 
           

 

√ 
 (2.1) 

When       , confidence level     is 0.9973 and so 99.73% of the sample 

means fall within 

    

√ 
         

√ 
 (2.2) 

It is customary to use    control limits. Letting the constant    

√ 
, the upper and 

lower control limits (UCL and LCL) for  ̅       are obtained:  

         (2.3) 

         (2.4) 

(Montgomery, 2009). 

Thinking in terms of detection terminology, when the sample mean is within 

confidence interval, one may conclude that the population mean is NOT significantly 

different from      . Then, to control the mean of the process, it makes sense to 

obtain periodic samples and calculate the mean of the observations. If the sample 

mean is out of the control limits, the conclusion will be that the population mean is 
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different from    and the process is said to be out of statistical control. When this 

happens, the process mean is said to shift to a new mean    . 

Besides the location parameter of the process random variable, its dispersion 

should also be controlled. The population standard deviation   can be controlled via 

two estimators. The first one is the sample standard deviation, whose theoretical 

background is defined as follows. We know from statistical theory that when the 

distribution of the data is Gaussian, sample variance     is Uniquely Minimum 

Variance Unbiased Estimator (UMVUE) for population variance   . However,   is 

NOT an unbiased estimator for   since          . Hopefully,    is a constant 

which depend on the sample size  . Moreover, we have           √    
    and 

considering CLT by the same manner yields the following three sigma control limits: 

          √    
  (2.5) 

          √    
  (2.6) 

The following two constants are defined to reduce the formulas: 

       √    
             √    

  (2.7) 

Then, the control limits of         becomes: 

        (2.8) 

        (2.9) 

(Montgomery, 2009). 

An alternative estimator of   is the sample range  . To introduce its theoretical 

background, we need to consider the random variable      

 
 which is called the 
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Relative Range. The parameters of the distribution of    are functions of the sample 

size  . The expected value and standard deviation of   are    and   ,respectively. 

Then, we have          and                where    and      are functions 

of  . Similar to the construction of the         parameters, the following constants 

are defined: 

                        (2.10) 

Finally, control limits of         are: 

        (2.11) 

        (2.12) 

(Montgomery, 2009). 

Before continuing, I need to put a marker here to turn back, recall, and go on 

further discussions. The construction of methodology is based on two important 

assumptions. First, control limits for sample mean are based on large sample case 

using CLT. Second,   is the best estimator for   under Gaussian distribution.  

Having learned some introductory theory about Quality Control from Glorious 

Statistics, Pupil decided to apply her knowledge to control the health of quassia 

amara trees in the forest. She decided to take a random sample of only      leaves 

from each tree in order to check more trees a day. Since a healthy tree has an average 

of 20 cm length leaves, she specified     . After a research on standard deviation 

of the leaves, she set      .  

To calculate the control limits, she obtained the constant values of the charts for 

    which are as follows: 

       ;            ;        ;            ;         (2.13) 
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She calculated the corresponding control limits for the charts as follows: 

 ̅      : 

                             (2.14) 

                             (2.15) 

       : 

                        (2.16) 

                        (2.17) 

       : 

                         (2.18) 

                        (2.19) 

To learn, search, and make calculations whole day made Pupil tired and it was a 

little later than her usual sleeping hour. To be fresh and happy with each starting day, 

she got accustomed to sleeping early in her childhood. While she was falling asleep, 

she thought how Glorious is the Statistics. It was a waste of 23 years of her life to be 

unaware of this lofty wisdom. However, it was still lucky to meet him in her youth. 

In her dream, she saw Glorious Statistics as a wisdom granddaddy, but his bread was 

yellow.  

It was a beautiful morning and she felt the sunshine warming her heart. She took a 

bottle of water, a notebook, and a ruler and she went to the forest. She randomly 

selected 5 leaves from each of the 30 different quassia amara and collected the 

following data: 
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Table 2.1 Length of 5 randomly selected leaves from each of the 30 trees. Leaves data are generated 

from a Normal distribution with mean 20 and standard deviation 2.5. Their statistics mean, standard 

deviation, variance, and range are calculated at the right part of the table to construct corresponding 

control charts. Control limits are at the right bottom part of the table. Yellow shaded point is out of 

control limits. 

Leaves Data 

  LEAF         

TREE 1 2 3 4 5 MEAN STD_DEV VARIANCE RANGE 

1 18.12 18.93 17.11 20.07 19.82 18.81 1.22 1.49 2.95 
2 19.60 22.24 22.81 19.84 22.12 21.32 1.49 2.21 3.21 
3 17.13 17.15 21.27 20.72 21.11 19.48 2.14 4.59 4.14 
4 20.51 19.20 15.68 18.75 23.29 19.48 2.77 7.66 7.61 

5 20.76 19.29 15.47 22.78 17.71 19.20 2.80 7.86 7.32 
6 16.48 16.49 21.25 21.57 23.64 19.89 3.23 10.46 7.15 
7 16.17 21.42 22.72 16.49 16.45 18.65 3.16 9.97 6.55 

8 23.42 16.98 23.50 18.64 20.72 20.65 2.88 8.32 6.52 
9 22.61 19.81 22.45 17.07 18.07 20.00 2.51 6.30 5.55 

10 20.08 20.32 19.37 19.41 19.68 19.77 0.42 0.17 0.95 
11 19.22 20.45 18.56 16.20 21.64 19.21 2.06 4.23 5.44 

12 18.62 20.73 15.57 20.66 17.63 18.64 2.17 4.73 5.17 
13 20.93 20.44 17.03 22.92 15.72 19.41 2.96 8.75 7.21 
14 17.98 18.27 15.70 15.51 19.53 17.40 1.74 3.02 4.02 
15 22.33 18.19 22.34 17.34 21.32 20.30 2.37 5.63 5.00 
16 16.30 17.49 18.81 25.54 16.73 18.97 3.79 14.37 9.24 
17 24.71 22.93 18.18 19.67 18.95 20.89 2.80 7.84 6.53 
18 22.05 17.52 22.12 18.94 20.49 20.22 2.00 3.99 4.61 
19 19.91 19.20 21.44 20.40 20.37 20.26 0.81 0.66 2.23 

20 22.94 20.83 22.14 17.96 20.84 20.94 1.89 3.58 4.98 
21 18.97 17.13 18.45 20.69 15.41 18.13 1.98 3.93 5.27 
22 20.55 19.00 17.28 19.45 16.80 18.62 1.55 2.42 3.75 
23 20.91 21.24 17.69 21.80 20.75 20.48 1.61 2.59 4.11 
24 16.94 15.97 21.17 22.39 18.63 19.02 2.73 7.43 6.42 
25 19.81 25.19 20.30 19.17 14.94 19.88 3.65 13.32 10.25 
26 20.92 21.65 18.40 22.73 19.87 20.71 1.66 2.76 4.33 

27 12.81 20.12 20.27 13.08 24.20 18.10 4.98 24.80 11.39 
28 24.20 16.43 17.50 15.26 20.42 18.76 3.59 12.90 8.94 
29 19.94 17.12 19.54 14.05 16.14 17.36 2.45 5.98 5.89 

30 19.11 20.85 20.66 20.72 22.98 20.87 1.38 1.91 3.87 

AVERAGE = 19.514 2.360 6.463 5.686 

LCL = 16.645 0 0.1653 0 

UCL = 23.355 4.91 27.8098 12.295 
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To obtain the first observations and to see that all the trees are healthy made Pupil 

happy. There seems to be a little problem for 27
th

 tree’s leaf’s standard deviation 

since Standard Deviation Chart gave an out of control limit value. However, this 

value is only a little over the upper control limit and still inside the control limits for 

Range Chart. Just in case, she marked that tree and decided to observe it later again. 

Since it is hard to observe each statistics via numbers, she decided to construct the 

control charts and check if there is an aberrant behavior in the data pattern. The 

reason is that, although all the data values are within limits, some specific patterns of 

the data points may be suspicious for out of quality tendency. These patterns are 

called “Sensitizing Rules for Shewart Control Charts.” For example, two of the three 

consecutive points being outside the two sigma warning limits, six points in a row 

steadily increasing or decreasing, and a non-random pattern of the data are some of 

these rules  (Montgomery, 2009). The corresponding charts are in the following 

figures: 

Figure 2.1 Shewart  ̅  Control Chart for leaves data given standards   

   and       
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Data points of X-bar chart are completely random and are not even close to 

Control Limits. Process mean is in statistical control. 

Figure 2.2 Shewart   Control Chart for leaves data given standard       

Data points of R chart are also completely random and are not even close to 

Control Limits. Process standard deviation is in statistical control. 
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Figure 2.3 Shewart   Control Chart for leaves data given standard       

Contrary to the R chart, Standard Deviation Chart may indicate some small 

problems about the process standard deviation. Although their appearances look 

similar, 27
th

 observation is out of the upper control limit and the first six points of the 

chart are steadily increasing. 

A few days later, Pupil performed a special check to the 27
th

 labeled observation 

and saw that the tree is quite healthy. This experience confused her lovely mind 

because this tree had given an out of control signal in the standard deviation chart. 

That was simply a false alarm. What is the frequency of having this experience? 

Moreover, she thought that the converse is also possible. Namely, it is possible to 

miss an ill tree since its measured statistics fall within control limits. She got the 

feeling that she had new things to learn from Glorious Statistics, which will be 

whispered to her ears soon. This whisper was going to turn into a scream in time... 

When a data point –let’s say in  ̅              – gives an out of control signal, 

Pupil decides that the mean length of the leaves in the tree is different from 20 cm 
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and that the tree is ill. This decision has a false alarm probability of         . In 

fact, each observation is a statistical hypothesis test: 

         

         

 In a statistical hypothesis test, two hypotheses and two decisions construct a cross 

product of 4 cases: 

Table 2.2 Terminology and notation of hypothesis testing cases and the corresponding probabilities. 

 

 

 

There is a threshold between false alarm and miss probabilities. Namely, as   

decreases,   increases or vice versa. Since    limits are used, mean control chart has 

a constant probability of false alarm. Reducing probability of miss (and therefore 

increasing detection probability) can be achieved by two different ways. First one is 

increasing the sample size and the second is decreasing the standard deviation of the 

process. 

Let’s assume, a tree got ill and its mean length of leaves became      . What is 

the probability that this illness is detected? The calculations follow: 

         ̅                       ̅               

     (
         

   
√ 

⁄
 

 ̅   
 

√ ⁄
 

         

   
√ 

⁄
)                      

Hypothesis Testing Cases 

     is true    is true 

Do NOT Reject    
Confidence 
Level:     Miss:   

Reject    False Alarm:   
Detection: 
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                             (2.20) 

where      is the cumulative standard normal distribution. 

When the true mean shifts to     , the probability to miss that illness is 0.8872. 

A shift is often measured in standard deviation units. For example, this shift is      

shift since      

   
     .Then, the detection probability of such a shift is: 

                    (2.22) 

The number of samples to get an out of control signal is a random variable, which 

is called Run Length. Given the constant mean value of   ,              is a 

Geometric Random Variable with parameter                         . Identifying 

the true processes’ “in control” and “out of control” cases with corresponding 

subscripts, we have: 

                

      
 

 
  and          

   

   (2.23) 

                  

      
 

   
  and          

 

      
 (2.24) 

 (Montgomery, 2009). 

The expected value of the Run length is called Average Run Length (ARL). When 

the process of the mean is in control, we have: 
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        (2.24) 

        
        

                  (2.25) 

The average run length and variance of run length for a      shift when the 

sample size     is used are: 

           
 

      
      (2.26) 

        
        

              (2.27) 

Since   is a constant value, ARL0 of  ̅       does not depend on  . However,   

is a decreasing function of     which results in decreasing values of ARL1 with 

increasing   . This means that the more sample is collected, the more accurate 

information is gained, and in return, the quicker the shift is detected.     

Similar calculations show that the detection probability for sample size       

increases to 0.7183 and ARL1 reduces to 1.392. Sample size       has 

corresponding values of 0.9961 and 1.004 respectively. 

Pupil had stormed her brain and improved her statistical ability. She now knows 

the concept of hypothesis testing, Type-I and Type-II Errors, Random variable, 

mean, and variance. She was also satisfied with her question: “How frequently can I 

expect an out of control signal?” She thought that it may be too late to detect an ill 

tree for her current sample size and she decided to increase her sample size to  

     .  

Glorious Statistics taught her how to make a simulation and wanted her to see 

applicable results of the theory she learnt. She decided to check the mean and 

standard deviation of the random variable R.  
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For many applications, using standardized scores improves the computational 

efficiency. For a realization of a random variable   , its standard score    
     

  
 

shows how far the observed value    is away from its mean    in standard deviation 

units. Therefore,     has mean zero and standard deviation 1. It is customary to show 

standardized score with     , but more generally   is a standard normal random 

variable. Due to the fact that   does not necessarily follow a normal distribution, I 

decided this notation to be more appropriate.  

Pupil generated        replications of     for the   ̅      , designed for 

standard normal T with different sample sizes and calculated the mean for each of 

the simulated runs for 10 independent streams, each of which is   
̅̅ ̅. The final mean is 

represented as   
̿̿ ̿      . 

Table 2.3 Simulated run lengths with different sample sizes for mean control chart of Normal data and 

the average run length, when the process is in control. Standard deviation of the mean run lengths and 

the control limits given standards are at the bottom part of the table. 

ARL0 for mean 

given standards  (Normal Distribution) 

n=5   n=20 
 

n=50   

sims ARL0 sims ARL0 sims ARL0 

388.9910 375.5783 391.2840 372.1857 381.1700 373.3449 

372.1630  384.7030  376.7660   
376.4210  347.7520  373.0490   
359.7050  371.3350  374.2000   

353.9880 
 

373.5040 
 

380.9160   
388.4730 

 
345.4720 

 
366.4210   

364.6110 
 

371.6030 
 

366.8730   
400.1050 

 
384.3830 

 
371.8470   

375.6640 
 

381.0000 
 

381.1330   

375.6620   370.8210   361.0740   

14.1363  =stdev 15.1408  =stdev 6.9472  =stdev 

                  
              

 
  

UCL = 1.3416 UCL = 0.6708 UCL = 0.4243 

LCL = -1.3416 LCL = -0.6708 LCL = -0.4243 
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The left column sims shows the mean run length for each n obtained from each of 

the        runs and ARL0 is the mean of these 10 values. The simulated ARL0 

estimates are not significantly different from the theoretical mean 370.37. However, 

sims column values lie in a wide range since standard deviation of the R0 is 

√                , and standard deviation for mean of        runs 

is       
√    

⁄       . It is important to mention that all these calculations are 

valid for  ̅       and under Gaussian case.  

Next, she generated        replication of R1 again for the control charts 

designed for standard normal T, but this time she used a normal random number 

generator with mean 0.8 and standard deviation 1. The results of the simulation are 

given in the following table. The simulated ARL1 values are much closer to the 

theoretical values this time. Moreover, sims values lie in a narrower range since 

increase in parameter of R reduces its variance.  
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Table 2.4 Simulated run lengths with different sample sizes for mean control chart of Normal data and 

the average run length, when the process is out of control with a      shift. Standard deviation of the 

mean run lengths and the control limits given standards are at the bottom part of the table. 

ARL1 for mean with a shift of 0.8σ 

given standards  (Normal Distribution) 

n=5   n=20 
 

n=50   

sims ARL1 sims ARL1 sims ARL1 

8.8270 8.8773 1.3970 1.3977 1.0060 1.0053 

9.2400  1.4280  1.0060   
8.9610  1.3770  1.0050   
8.6320  1.3740  1.0030   

8.6490 
 

1.3960 
 

1.0010   

8.7120 
 

1.3910 
 

1.0100   
9.0120 

 
1.3890 

 
1.0020   

8.8310 
 

1.3990 
 

1.0070   
8.9330 

 
1.3930 

 
1.0030   

8.9760   1.4330   1.0100   

0.1867  =stdev 0.0192  =stdev 0.0031  =stdev 

                  

              
 

  
UCL = -1.3416 UCL = 0.6708 UCL = 0.4243 
LCL = 1.3416 LCL = -0.6708 LCL = -0.4243 

     0.1128     0.7183     0.9961 
 

Calculation of ARL for         in the same manner will not be true since s does 

not follow a Gaussian distribution. Hopefully, we can calculate the probability of 

getting an out of control limit signal using Chi-Square distribution. The random 

variable   
        

   follows a Chi-Square distribution with degrees of freedom   

 , where    is the sample variance of a Gaussian data with variance    . If 

standardized score T is used, the control limits of         for     will be: 

                      (2.29) 

                      (2.30) 

False alarm probability for         is calculated as follows: 
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   (
            

  
 

        

  
 

            

  
) 

                                               (2.31) 

                  (2.32) 

Therefore, Run Length for standard deviation chart has distribution: 

                       (2.33) 

Finally, in control average run length is: 

           
 

      
        (2.33) 

Unlike the distribution of Z used to calculate average run length of   ̅     , the 

distribution of W used to calculate that of         is a function of n. For that reason, 

average run length of         depends on the sample size n. The corresponding 

values of ARL0 for      and      are 357.14 and 367.06, respectively. The 

calculations are similar. 

Following table shows the simulation results of ARL0. Simulation parameters are 

the same as the previous one and Run Lengths are calculated for        . The results 

are similar to that of   ̅       in that simulated ARL0 values are close to theoretical 

ones and there exist a variation within sims. 
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Table 2.5 Simulated run lengths with different sample sizes for standard deviation control chart of 

Normal Data and the average run length, when the process is in control. Standard deviation of the 

mean run lengths and the control limits given standards are at the bottom part of the table. 

ARL0 for standard deviation 

given standards  (Normal Distribution) 

n=5   n=20 
 

n=50   

sims ARL0 sims ARL0 sims ARL0 

252.1050 258.2923 372.5630 361.4899 381.1980 365.4255 

258.6720  364.5900  344.9180   
252.1900  370.1940  367.1300   
260.7010  345.9530  360.7810   

262.0200 
 

382.1870 
 

361.1380   

254.5820 
 

352.7760 
 

380.3800   
248.5270 

 
348.2580 

 
378.1370   

256.9360 
 

360.7160 
 

347.4870   
258.8570 

 
340.1970 

 
365.6360   

278.3330   377.4650   367.4500   

8.2211  =stdev 14.2905  =stdev 12.5757  =stdev 

              
 

  

UCL = 1.9636 UCL = 1.4703 UCL = 1.2972 

LCL = 0.0000 LCL = 0.5036 LCL = 0.6926 
 

The change in ARL0 values of         with respect to sample size may cause 

some practical problems in interpreting the chart results. It is a good idea to develop 

a chart that has the same ARL0 value with  ̅      , which is the constant 370.37. It 

is easy to develop such a chart using    statistics that follows the same logic 

of  ̅       development.  

Considering the statement “The probability is     that     lies within the 

interval       ⁄
     ⁄

    will follow that: 

     ⁄
        ⁄

  

     ⁄
  

        

  
    ⁄

  

     ⁄
    

   
    

   ⁄
    

   
 (2.35) 
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Therefore, the control limits of the          are: 

    
   ⁄

 

   
   (2.36) 

    
     ⁄

 

   
   (2.37) 

 (Montgomery, 2009). 

Using confidence level of 0.9973 and leaves data of Table (2.1), we have the 

following confidence limits: 

    
       

 
             (2.38) 

    
      

 
            (2.39) 

Following figure is the control chart for variance. Its appearance is exactly the 

same as the standard deviation chart but this time, no data points are out of control 

limits. The reason is that, false alarm probability of variance chart is lower due to the 

design for a higher ARL0 value. 
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Figure 2.4 Sample Variance Control Chart for leaves data given standard 

      

Following table is the ARL0 simulation for variance chart. Simulation parameters 

are the same as the previous ones. Results are very similar to that of   ̅       

because they have the same parameter   for the run length random variable R0. 
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Table 2.6 Simulated run lengths with different sample sizes for variance control chart of Normal Data 

and the average run length, when the process is in control. Standard deviation of the mean run lengths 

and the control limits given standards are at the bottom part of the table. 

ARL0 for variance 

given standards  (Normal Distribution) 

n=5   n=20 
 

n=50   

sims ARL0 sims ARL0 sims ARL0 

367.8530 372.7727 396.8810 376.2946 388.8490 372.2155 

349.4350  388.7400  352.5830   
374.3600  366.0620  373.1640   
376.8830  376.4790  364.4410   

395.1820 
 

392.1050 
 

358.9310   

388.9330 
 

364.4060 
 

392.8820   
376.9460 

 
365.0390 

 
384.8150   

358.0790 
 

366.2990 
 

352.8140   
345.6640 

 
354.7590 

 
371.5570   

394.3920   392.1760   382.1190   

17.5980  =stdev 14.9716  =stdev 14.7600  =stdev 

        1.0000 
 

  

UCL = 4.4501 UCL = 2.2564 UCL = 1.7158 

LCL = 0.0264 LCL = 0.2969 LCL = 0.5007 
 

Pupil’s introductory education on Statistical Quality Control was almost 

completed. The thing she wonders was how reliable the mean and the standard 

deviation parameters of the leaves of quassia amara are. The grand mean of the 

data  ̿         and mean of the sample standard deviations  ̅       were quite 

close to the standard values of mean      and      . However, she wanted both 

to be sure about the accuracy and to complete her basic knowledge. 

Glorious Statistics was so generous that any kind of information improves the 

inference with an honest study. Consequently, he contains the scope for those who 

has not standardized values. 

Since    ̅    and         , their mean counterpart     ̿    and    ̅  

    are also true. This fact make  ̂   ̿ and  ̂  
 ̅

  
 unbiased estimators of   and   

respectively. Moreover,  ̅ and   are complete statistics for the data set when the data 
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has Gaussian distribution. Then, these estimators can be replaced with the parameters 

in the previous interval:  

( ̿    ̅

  √ 
      ̿    ̅

  √ 
 ) (2.40) 

Letting the constant     

  √ 
 , the upper and lower control limits for  ̅       are 

obtained:  

     ̿     ̅ (2.41) 

     ̿     ̅ (2.42) 

 (Montgomery, 2009). 

Control limit calculations for         are similarly as follows. If   is replaced 

with  
 ̅

  
 , the corresponding interval is: 

(  
 ̅

  
  

 ̅

  
√    

      
 ̅

  
  

 ̅

  
√    

 ) (2.43) 

The following constants are defined to reduce the formulas: 

     
 

  
√    

           
 

  
√    

  (2.44) 

Finally, the control limits of         becomes: 

       ̅ (2.45) 

       ̅ (2.46) 

 (Montgomery, 2009). 
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Control chart constants for     are: 

            ;                ;         (2.47) 

The corresponding control limits for  ̅             are as follows: 

 ̅      : 

     ̿     ̅                            (2.48) 

     ̿     ̅                            (2.49) 

       : 

                          (2.50) 

                          (2.51) 

The statistics of leaves data are exactly the same for “Standards: KNOWN” and 

“Standards: UNKNOWN” cases, and only the limits change a little, hence the figures 

for the latter is not required. However, it is necessary to simulate ARL0 values 

because change in the control limits will cause a change in false alarm probabilities. 

The following tables are obtained by a two stage procedure, as is the case in 

practice, when quality standards are not known. In the first stage,       standard 

normal numbers are generated and control limits are calculated. In the second stage, 

       runs of ARL0 are simulated (using the same random stream as in previous 

simulations) 10 times and their means are calculated as done previously.  

It is absolutely obvious that ARL0 values decreases significantly (except for the 

case of standard deviation for    ). The performances of the control charts are 



30 
 

 
 

quite sensitive to the control limits. If standards are not known in a process, they 

should be estimated in great care. 

Table 2.7 Simulated run lengths with different sample sizes for mean control chart of Normal Data 

and the average run length, when the process is in control. Standard deviation of the mean run lengths 

and the control limits for the case no standards given, are at the bottom part of the table. 

ARL0 for mean 

without standards  (Normal Distribution) 

n=5   n=20 
 

n=50   

sims ARL0 sims ARL0 sims ARL0 

343.1790 331.3637 275.6170 265.8428 304.8720 306.5488 

320.6540  272.4350  299.5170   
327.2340  248.4530  302.8230   
328.0760  265.3820  311.8030   

311.9450 
 

266.1180 
 

309.7280   
341.1650 

 
252.7180 

 
304.2810   

328.6130 
 

263.5020 
 

303.0720   
338.4370 

 
261.0120 

 
311.7310   

337.8700 
 

279.0680 
 

312.5540   

336.4640   274.1230   305.1070   

9.8953  =stdev 9.9232  =stdev 4.5470  =stdev 

 ̿            ̿            ̿           
 ̅           ̅           ̅          
UCL = 1.2598 UCL = 0.6125 UCL = 0.3985 

LCL = -1.4469 LCL = -0.7108 LCL = -0.4447 
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Table 2.8 Simulated run lengths with different sample sizes for standard deviation control chart of 

Normal Data and the average run length, when the process is in control. Standard deviation of the 

mean run lengths and the control limits for the case no standards given, are at the bottom part of the 

table. 

ARL0 for standard deviation 

without standards  (Normal Distribution) 

n=5   n=20 
 

n=50   

sims ARL0 sims ARL0 sims ARL0 

280.5900 290.1759 289.3430 273.8020 321.5970 316.3736 

288.4670  275.8650  304.4700   
273.7430  277.4160  310.4810   
297.0480  271.8470  319.3990   

297.8720 
 

281.9100 
 

323.6640   
291.8810 

 
260.8090 

 
328.1490   

283.8940 
 

260.8450 
 

321.3160   

291.9060 
 

268.5070 
 

297.4140   
289.6740 

 
265.1460 

 
321.1430   

306.6840   286.3320   316.1030   

9.3656  =stdev 10.1383  =stdev 9.4949  =stdev 

 ̅   0.9377  ̅   0.9734  ̅   0.9886 
UCL = 1.9808 UCL = 1.4501 UCL = 1.2890 

LCL = 0.0000 LCL = 0.4966 LCL = 0.6883 
 

2.2 Performance of Dispersion Charts for Non-Gaussian Data 

Pupil was suffering from false alarms for control charts, especially about the 

standard deviation chart. It was the case parallel to the 27
th

 observation of her first 

data. She learnt that dispersion control is more important than location control. For 

example, if the mean is out of control for a production process, this may mean that 

the machines set are wrong and should be corrected. However, if the standard 

deviation of the process is out of control, the reason may be that the machines are 

old, or cannot produce within the specified limits. Another example goes with human 

nature. If an housewife is unhappy for a period of time, relatively simple acts of her 

husband can turn her back to a usual life of productivity. However, if her mind goes 

back and front between happiness and sadness frequently, a clinical depression can 

be suspected. 
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Pupil was feeling that she should learn some new concepts but she couldn’t get a 

start for a period of time. Then, she suspected from the heart of the assumptions: 

Gaussian distribution. It was the heart because all of the control formulas for charts 

had developed assuming that data has a Gaussian distribution. What if it is not? Are 

there any alternative formulas, statistics, or methods for control? 

Glorious Statistics cooled her down, recalling the fundamentals of wisdom. There 

are surely many estimators, distributions and patterns, but inference is a difficult art 

with its lower stairs and slower steps. He told Pupil to understand the logic that 

underlies the false alarm signals and execute the performance of her relevant chart 

trying some other distributions.  

Pupil was relieved and satisfied. She understood that a calm mind is more likely 

to produce creative ideas. There should be some unexpectedly high or law values of 

the data that increases the standard deviation of the data and yield false alarm signals. 

There should be some characteristics of other distributions that make this more 

possible than that of Gaussian.  

She finally met the definition of heavy tail. A heavy-tailed distribution has higher 

probabilities than Gaussian distribution to observe values from the part that is far 

away from its median. A measure for “far away” can be outside the middle 50% of 

the distribution. 

To make the results comparable with Gaussian case, she decided to study some 

symmetric heavy tailed distributions. Logistic Distribution, Laplace (Double 

Exponential) Distribution, and Cauchy Distribution are three such distributions 

which form a good set to study because their heaviness of tail are different from each 

other. 

A proxy for heaviness of a distribution’s tail can be its kurtosis, which is a 

measure of its “peakedness.” The relationship is that the sharper the distribution has 

http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#distribution
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peak, the narrower its middle 50% interval is, and in return the more a “far away” 

value is probable. Therefore, a distribution having a high kurtosis has a sharper peak 

and longer, fatter tails or vice versa. Moreover, higher kurtosis means that outlier 

values contribute to its variance more than modestly sized observations. 

If    is the fourth moment about the mean of the distribution and its standard 

deviation is  , kurtosis is defined as: 

   
  

   (2.52) 

(De Carlo, 1997). 

Gaussian distribution has kurtosis 3 and it is customary to measure the kurtosis of 

a distribution (and in parallel, heaviness of tail) with reference to that of Gaussian. 

Subtracting 3 from the kurtosis give a parameter value, which is called “Excess 

Kurtosis”: 

   
  

     (2.53) 

(De Carlo, 1997). 

Obviously, positive excess kurtosis shows that the distribution has a more acute 

peak and fatter tails than Gaussian distribution and these distributions are called 

“leptokurtic” (lepto means slim). Likewise, distributions having negative excess 

kurtosis aim to have a lower and wider peak around their mean and they are called 

“platykurtic” (platy means wide).  

The distributions Pupil will study are all leptokurtic and Logistic Distribution has 

excess kurtosis 1.2 whereas Laplace has that of 3. Namely, Laplace has heavier tails 

than Logistic. Cauchy distribution has the heaviest tail among them, but since its 

moments are undefined, it has no kurtosis value (De Carlo, 1997). 
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The study must begin with analyzing false alarm probabilities because decrease in 

false alarm probability will naturally increase the detection probability and this will 

be misleading. Secondly, it is also possible to obtain analytical calculations for this 

purpose, but only ARL0 simulations will be presented since analytical results will be 

unobtainable for future parts of the study. 

Logistic distribution has the probability density function (pdf): 

         
        ⁄

            ⁄   
            (2.54) 

where    is location parameter and     is scale parameter.   

Mean and variance of logistic distribution is: 

                 ;                  
  

 
   (2.55) 

The cumulative distribution function (cdf) is: 

         ∫           
 

  
 

 

           ⁄  
 (2.56) 

(Walck, 2007). 

The graphs of Logistic pdf for some values of    and   are shown in Figure 2.5. 
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Figure 2.5 Graphs of Logistic pdfs with some specified location and scale 

parameter values 

In the simulations that will be run, standardized random variables will be used as 

before. In order to run a simulation with Logistic Random Variable, its “Random 

Number Generator” is required. In general, a random number generator is a mapping 

that transforms a random number                 to a random number of the 

specified distribution. 

Let,                     . Then, Y has cdf: 

     
 

       
 (2.57) 

Since        , the inverse function          will map the uniform random 

number    to the Logistic random number   . This is called “Inverse Transformation 

Technique” (Banks, Carson II, Nelson, & Nicol, 2005). The calculations are as 

follows: 
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) (2.58) 

But we have         and          
  

 
. To obtain a standardized random 

variable,   
√ 

 
  is defined and finally T is a standard Logistic random variable 

with generator: 

  
√ 

 
    (

 

   
) (2.59) 

The code for MATLAB function “generator.m” that performs random number 

mappings to Logistic, Laplace, and Cauchy distributions is shown in Appendix-4. 

The simulations are done by the function “runlength_intro.m.” Moreover, all of the 

MATLAB functions that generate the tables and figures of the thesis are also given 

in Appendix-4. 

The following table shows the ARL0 simulation for the variance control chart of 

Table 2.6, but this time simulation random variable T follows a standard Logistic 

distribution, not a standard Gaussian distribution. There are two important facts to 

mention for the variance control chart.  

First of all, there is a dramatic decrease in ARL0 performances when the data is 

Logistic. The variance chart is quite sensitive, in other words, non-robust to 

deviations in the distribution of the data. Secondly, ARL0 does not converge to its 

nominal value of 370.37 calculated for Gaussian case. Conversely, values decrease 
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as n gets higher. It might be interpreted that as a result of higher n values, there exist 

more extreme values in the data and variance increases. 

Table 2.9 Simulated run lengths with different sample sizes for variance control chart of Logistic Data 

and the average run length, when the process is in control. Standard deviation of the mean run lengths 

and the control limits given standards, are at the bottom part of the table. 

 

 

 

 

 

 

 

 

Having seen the disappointing results for ARL0 performances of Logistic case, 

one may expect that things will go worse for Laplace and the worst for Cauchy 

distributions because their tails are heavier. As mentioned before, Laplace 

distribution has excess kurtosis 3.0 which is much higher than 1.2 of Logistic.  

Laplace (Double Exponential) distribution has the probability density function 

(pdf): 

         
 

  
   ( 

     

 
)             (2.60) 

ARL0 for variance 

given standards  (Logistic Distribution) 

n=5   n=20 
 

n=50   

sims ARL0 sims ARL0 sims ARL0 

106.3150 104.6312 68.1160 68.4798 62.7940 61.4027 

102.4110  65.5090  59.7870   
107.3710  69.4650  59.6100   

101.7360  68.0230  61.2240   

101.2060 
 

66.9130 
 

65.0210   
105.6810 

 
66.6580 

 
64.6460   

102.8520 
 

74.1380 
 

60.7360   

108.1370 
 

68.8120 
 

63.5340   
107.0870 

 
70.1360 

 
55.7440   

103.5160   67.0280   60.9310   

2.5651  =stdev 2.4241  =stdev 2.7615  =stdev 

        1.0000 
 

  
UCL = 4.4501 UCL = 2.2564 UCL = 1.7158 

LCL = 0.0264 LCL = 0.2969 LCL = 0.5007 
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where    is location parameter and     is scale parameter. For the special case μ 

= 0 and   = 1, the positive half-line is exactly an exponential distribution scaled by 

0.5, and negative one is its symmetric. That’s why; “Laplace distribution” is also 

called as “Double Exponential distribution.” 

Mean and variance of Laplace distribution is: 

                 ;                      (2.61) 

The cumulative distribution function (cdf) is: 

         ∫           
 

  
 {

 

 
   ( 

   

 
)        

  
 

 
   ( 

   

 
)        

} (2.62) 

(Walck, 2007). 

The graphs of Laplace pdf for some values of    and   are shown in the following 

figure: 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Exponential_distribution
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Figure 2.6 Graphs of Laplace pdfs with some specified location and scale parameter 

values 

To generate standardized Laplace random variable T, exponential random variable 

should be introduced first. An exponential random variable   with rate   has the pdf 

and cdf: 

                                     (2.63) 

Letting                 , the inverse function          is: 

   
 

  
       (2.64) 

Now, if we consider two independent exponential random variables       with 

   
 ⁄ , their joint pdf is: 

                      
 

 
  

     
  (2.65) 
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Let,    
     

 
 and      . Then,                     and     

            . The Jacobian of the transformation is: 

  |

   

   

   

   

   

   

   

   

|  |
  
  

|    (2.66) 

The joint pdf of           is: 

           (                   )    
 

 
        (2.67) 

Thus, pdf of    is given by: 

       ∫             
 

 
       (2.68) 

Then,                           . Since            , Random number 

generator for standard Laplace random variable is: 

   
 

√ 
   

     

 √ 
 

 

 √ 
                   

 

√ 
    

  

  
  (2.69) 

The following table shows the ARL0 simulation for the variance control chart 

where T follows a standard Laplace distribution. Just like for the logistic case, ARL0 

values get smaller for increasing sample size values. Moreover, ARL0 values are 

about one third of Logistic case since Laplace distribution has heavier tails.  
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Table 2.10 Simulated run lengths with different sample sizes for variance control chart of Laplace data 

and the average run length, when the process is in control. Standard deviation of the mean run lengths 

and the control limits given standards, are at the bottom part of the table. 

ARL0 for variance 

given standards  (Laplace Distribution) 

n=5   n=20 
 

n=50   

sims ARL0 sims ARL0 sims ARL0 

49.6360 48.0299 25.2540 23.9981 20.6820 20.4096 

48.5240  24.0990  20.1790   
50.6610  23.7670  21.1100   
47.2660  24.0490  20.0790   

47.6370 
 

23.0730 
 

20.0550   

46.5740 
 

23.3520 
 

21.0220   
47.5790 

 
24.1170 

 
19.6310   

48.1810 
 

24.3020 
 

20.4900   
47.7220 

 
23.9610 

 
20.1620   

46.5190   24.0070   20.6860   

1.2999  =stdev 0.5797  =stdev 0.4689  =stdev 

        1.0000 
 

  

UCL = 4.4501 UCL = 2.2564 UCL = 1.7158 

LCL = 0.0264 LCL = 0.2969 LCL = 0.5007 

 

The final distribution that is going to be studied is Cauchy distribution, with pdf: 

         
 

 
[

 

         
]            (2.70) 

where    is location parameter and     is scale parameter.   

The cumulative distribution is: 

         ∫           
 

  
 

 

 
      (

   

 
)  

 

 
     (2.71) 

 (Walck, 2007). 
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The graphs of Cauchy pdf for some values of    and   are shown in the following 

figure: 

Figure 2.7 Graphs of Cauchy pdfs with some specified location and scale 

parameter values 

In order to simulate Cauchy random variables, it is necessary to show that Cauchy 

random variable is the ratio of independent Gaussian random variables. Let, random 

variables       are standard Gaussian. We want to find the distribution of    
  

  
⁄  

and we let      . The joint pdf of           is: 

                      
 

  
  

  
    

 

  (2.72) 

We have,                   and                 and the Jacobian of 

the transformation is: 
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|  |
    

  
|     (2.73) 

The joint pdf of           is: 

           (                   )    
 

  
  

     
     

 

      (2.74) 

Thus, pdf of    is given by: 

       ∫             
 

      
  

 (2.75) 

Then,                          . Random number generator for standard 

Cauchy random variable is: 

     
  

  
 (2.76) 

Given uniform random variables          , Standard Normal random variables 

can be generated by the following transformation, which is suggested by Box and 

Muller: 

             √          (2.77) 

             √          (2.78) 

(Hogg & Craig, 1995) 

since this transformation results in the joint pdf of independent standard Gaussian 

random variables         . 
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The following table shows the ARL0 simulation for the variance control chart 

where T follows a standard Cauchy distribution. ARL0 values are too small to be 

acceptable for any practical study. 

Besides having very heavy tails, such low values can be explained considering the 

denominator term    of the Cauchy random variable T. For a few values of    in the 

data that are close to zero, corresponding T values attain a very high (absolute)  

value, and in return, sample variance will be out of control limits too frequently.  

Table 2.11 Simulated run lengths with different sample sizes for variance control chart of Cauchy 

Data and the average run length, when the process is in control. Standard deviation of the run lengths 

and the control limits given standards, are at the bottom part of the table. 

ARL0 for variance 

given standards  (Cauchy Distribution) 

n=5   n=20 
 

n=50   

sims ARL0 sims ARL0 sims ARL0 

1.7110 1.7421 1.0320 1.0287 1.0001 1.0001 

1.7690  1.0330  1.0000   
1.6980  1.0280  1.0000   
1.7340  1.0240  1.0000   

1.7060 
 

1.0350 
 

1.0000   
1.7780 

 
1.0240 

 
1.0000   

1.7480 
 

1.0210 
 

1.0000   

1.7690 
 

1.0350 
 

1.0010   
1.7280 

 
1.0290 

 
1.0000   

1.7800   1.0260   1.0000   

0.0311  =stdev 0.0049  =stdev 0.0003  =stdev 

       1.0000 
 

  
UCL = 4,4501 UCL = 2,2564 UCL = 1,7158 

LCL = 0,02644 LCL = 0.2969 LCL = 0.5007 
 

Pupil was so upset for the results of her analysis. There was no way to be satisfied 

with the validity of the Gaussian assumption and when the data is not Gaussian, 

dispersion control chart suffers too much from false alarms and this caused too much 

time to be lost in control. She has to find some new ideas to develop a control chart 

which was resistant to changes in distribution of the data.  
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Pupil had graduated from Botanic Department and Statistics was a new area for 

her. For a plenty of time, she couldn’t discover new aspects of Glorious Statistics to 

improve her studies. During this period, she lost considerable time and effort due to 

false alarm out of control signals. 

 During one of her morning walks, she saw a young boy who was examining a 

quassia amara tree carefully. He said a calm hello to her and introduced himself. 

Rookie was an Agricultural Technician and he was a fan of nature like Pupil. Pupil 

told him about her studies on the health of quassia amara in detail.  

Rookie had studied “Estimation of Agricultural Productivity” for his 

undergraduate thesis and used many statistical techniques there. It was not quite 

apparent whether her study itself or her charming beauty got him interested, but they 

decided to continue searching together. In fact, who cares? 
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CHAPTER THREE  

ROBUST ESTIMATORS AND QUALITY APPLICATIONS 

Whether directly or indirectly, every statement is based on an “Assumption,” that 

is assumed to be true unquestionably. A scientific study does so by defining a 

“Model” with some specified parameters or characteristics, and by continuing the 

search using its own terminology of discipline. 

How can we rely on the truth of assumptions, or more specifically, on the 

presupposed Model? Pure mathematical studies can give intuitive reasoning for this 

required reliance, but when it comes to an area in Applied Science, it may be more 

difficult to find such intuitions that are more than a belief. 

Glorious Statistics enables us to “Check Assumptions” and provides a bridge to 

go back and forth between the presupposed data models and the real life data. 

Moreover -with some acceptable costs paid for desired properties- the concept of 

“Robust Statistics” enables the scientist to feel comfortable because these statistics 

are resistant to the changes in data distributions. 

To open the discussion in detail, consider the population parameter   we want to 

estimate using the estimator  ̂.   can be a location parameter such as population 

mean  , or a scale parameter such as population variance   . 

In general, an estimator (or statistics)  ̂ is any mapping from the sample data to 

the real line, but some estimators are better than the others in some sense. Now, the 

question is, “What is a good estimator?” or “How can we understand its goodness?” 

Such a terminological distinction as “Classical Estimation” and “Robust Estimation” 

may be helpful to introduce the concept since the criteria of being good will refer to 

different intuition for each case. 
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This part of the story will begin with some properties of an estimator in classical 

sense, such as unbiasedness and efficiency. Next, it comes to the important concepts 

of robust estimators, which are relative efficiency, breakdown point, influence 

function, and gross error sensitivity. Having understood the basics of background, 

young enthusiasts of Glorious Statistics will search for “Robust Control Charts”...  

3.1 “Classical versus Robust” Estimation of Location 

In a part of his undergraduate thesis study, Rookie had studied food demand 

estimation and got the logic. It was a good starting point to train Pupil. Before 

anything else, we want an estimator to estimate the true population parameter on the 

average. Then, we want its values to show a small variation between observed 

samples. The former is the unbiasedness property  ( ̂)   , and the latter is the 

efficiency, which refers to a small variance.  

The term “small variance” needs a reference point here. Hopefully, smart 

statisticians Cramer and Rao brothers found the minimum variance that an unbiased 

estimator can take using Fisher Information. Fisher is another smart one. If there 

exists an estimator  ̂ of   whose variance    ( ̂) is equal to “Cramer Rao Lower 

Bound,” it is called “Efficient Estimator.” Another unbiased estimator  ̂  is said to 

have relative efficiency (RE) measured by: 

  ( ̂ )      
   ( ̂)

   ( ̂ )
 (3.1) 

(Hogg & Craig, 1995) 

As in our traditional path, we first assume that data follows a Gaussian 

distribution and then we will analyze the case “What if it is not?” So, at first, let the 

random data of size n is:                 . The Fisher Information of a 

parameter   obtained from a single observation     is defined as: 
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] (3.2) 

(Hogg & Craig, 1995) 

Then, Fisher information of Gaussian distribution’s mean     is 

       
 

√    
 

 
      

               

          
 

 
         

      

   
 

         

  
 

   

  
 

          

   
  

 

  
 

       [
          

   
]     [ 

 

  
]  

 

   (3.3) 

The joint probability distribution of the random vector                is 

called the likelihood function, which is due to independence: 

                              (3.4) 

Replacing the pdf        with the likelihood function       , we have the Fisher 

Information obtained from the sample data, which is shown by      , and it is easy 

to show that            . Cramer Rao Inequality, which serves a lower bound for 

an unbiased estimator’s variance is: 

   ( ̂)  
 

     
 (3.5) 

(Hogg & Craig, 1995) 
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The minimum variance of an unbiased estimator     is  
 

     
 

  

 
, which is the 

variance of the sample mean:   ̅ . Therefore,    ̂   ̅  is the “Uniformly Minimum 

Variance Unbiased Estimator” (UMVUE) of     . 

A second estimator can be used for the Gaussian mean     as,   ̂          , 

which is the sample median. Due to the symmetry of Gaussian distribution,  ̂  is also 

an unbiased estimator but its variance is more than that of sample mean. In 

particular, their variance ratio is about   ⁄  for large values of sample size.  

The limit of Relative Efficiency as      is called “Asymptotic Relative 

Efficiency (ARE)” and if the limit of variance for an estimator is equal to Cramer 

Rao lower bound, the estimator is called “Asymptotically Efficient.” The asymptotic 

relative efficiency of sample median is: 

   ( ̂ )      
   ( ̂)

   ( ̂ )
 

 

 
       (3.6) 

(Martin & Zamar, 1991) 

Although being less efficient than mean, median has desirable properties that 

mean does not have. A simple example may be helpful to explain the case. Let, a 

very rich man -say with a wealth of 50 billion TL- moves to a village in which 

people have moderate income. If we use mean to estimate location parameter, this 

movement will result in all people but one having income less than the mean. 

However, there will be almost no change in median income and this measure will 

make much more sense in terms of location parameter since many of the people still 

will have income around median. 

The reason for our control charts not performing well was similar. Since the 

distributions other than Gaussian have heavy tails, estimations were subject to false 

alarm signals due to outlier values. If we can find resistant estimators against 
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outliers, it might be expected that they will outperform the current ones. Such 

estimators are called Robust Estimators and they are not unduly affected by a few 

outliers, or say moderate departures from model assumptions. 

As our simple example indicates, a useful way to qualify robustness can be by 

looking at the response of the estimator created by an additional unit in the sample 

data. This response is observed by “Influence Function,” which is explained as 

follows. Before giving theoretical background, “Empirical Influence Function (EIF)” 

will be defined with an example. 

Let the random sample               and the estimator (or functional) 

                be given. The empirical influence function        is given by: 

                                     (3.7) 

(Klawonn, 2009). 

Besides the estimators mean and median, it is useful to define   ̅    

            , which is the mean of the sample after removal of lowest and 

highest        values. Consider the      (ordered) sample data: 

                                                    

The statistics are calculated as: 

  ̅                       ̃              ̅          (3.8) 

The following table shows the Empirical Influence Functions of these three 

estimators based on the given sample data. Influence function of mean is unbounded, 

which refers to non-robustness of an estimator. This means that any additional 

value     influences the estimator sample mean. Trimmed mean is not affected by 
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extreme values since they are removed before calculating the mean and its influence 

function has a positive slope within middle 80% of the sample data. Median is almost 

a step function here because an additional data unit makes the median 1.75 if the unit 

is less than this value and 2.09 if the unit is more than this value. Additional unit is 

the median itself between these two values. 

Figure 3.1 Empirical Influence Functions for the location estimators: mean, 10% 

trimmed mean and median using the simulated      sample data set.  

The normalized version of EIF which is centered on zero and scaled with respect 

to sample size is called the Empirical Sensitivity Curve. The idea for normalization 

resembles that of obtaining standardized scores. 

The Empirical Sensitivity Curve (ESC) is given by the following equation:  

       
                                   

 
     ⁄

 (3.9) 

(Klawonn, 2009). 
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The following figure is the ESC of the previous example: 

Figure 3.2 Empirical Sensitivity Curves for the location estimators: mean, 10% 

trimmed mean and median using the simulated      sample data set.  

Sensitivity Curve is a bridge between EIF and its theoretical counterpart of 

Influence Function (IF). The influence function is defined as the limit (only if the 

limit exists) of sensitivity curve as sample size goes to infinity. 

                

 ((  
 

 
)  

 

 
  )     

 
   ⁄

 (3.10) 

(Klawonn, 2009). 

The interpretation of IF is similar to that of EIF but it enables us to make general 

inferences for estimators T under an assumed distribution with cdf F.    stands for a 

cdf resulting in the value of x with probability 1. In other words, it measures the 

effect of an infinitesimal contamination to the estimator T. It is clear that having a 

bounded Influence Function is a necessary condition for T to be a Robust Estimator. 
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The unbounded influence function of sample mean is given by: 

      ̅         (3.11) 

(Wilcox, 2005). 

The bounded influence function of the sample median (a step function) is given 

by: 

  (   ̃  )  
        ̃ 

    ̃ 
 (3.12) 

(Wilcox, 2005). 

The maximum absolute value of the Influence Function is called “Gross Error 

Sensitivity” (GES) and in terms of the outlier value x, it shows the worst case that 

will happen to the estimator T. GES is defined as: 

                           (3.13) 

(Klawonn, 2009). 

Since the IF of mean is unbounded, its GES is infinite. On the other hand, median 

has a finite GES and its value for standard Gaussian distribution is     √   

      , which is the minimum value an estimator for mean of a standard Gaussian 

distribution can have (Martin & Zamar, 1991). 

Imagine that Estimators are Kings of their data lands and a black hearted witch is 

able to make a conversion charm that disturbs data members. What percentage of the 

ranked observations should the witch convert in order to reach and disturb the King? 
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The King Mean can be upset by converting any member of the sample data. 

Therefore, mean is said to have a breakdown point of 0%. A more robust estimator 

                has a breakdown point of       and it is more resistant to 

outliers. One of the most powerful kings of the “Glorious Statistics World” is the 

median with maximum breakdown point of 50%. Therefore, it will be too hard to 

defeat median for the witch. 

Walking through the wonders of “Glorious Statistics World” made Pupil so 

excited. She was also feeling safe for experiencing these wonders with Rookie. Their 

tenderness on the nature was a strong tie between their souls. She was so eager to 

learn about robust scale estimators, hoping to find well performed control charts… 

Rookie was also happy, but he was a bit confused. He was afraid of suffering 

from pangs of love. He thought that he should keep it slow, but it may be riskier than 

the current situation. He remembered the famous aphorism of Nietzsche on beauty, 

which can give an explanation to the case: 

“The slow arrow of beauty… The noblest kind of beauty is not that which 

suddenly transports us, which makes a violent and intoxicating assault upon us (such 

beauty can easily excite disgust), but that which slowly infiltrates us, which we bear 

away with us almost without noticing and encounter again in dreams, but which 

finally, after having for long lain modestly in our heart, takes total possession of us, 

filling our eyes with tears and our heart with longing. –What is it we long for at the 

sight of beauty? To be beautiful ourselves: we imagine we would be very happy if 

we were beautiful. – But that is an error.” (Hollingdale, R.J., trans., 1996). 

But maybe Nietzsche was wrong. That may be a random error, too… 
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3.2 “Classical versus Robust” Estimation of Scale 

Rookie remembered the fact that sample mean was the best estimator for the 

population mean under normality assumption. Then, he wondered if it was the case 

for the population variance. It was a good starting point for future wonders… 

As stated before,   
       

   follows a Chi-Square distribution with degrees of 

freedom    . Mean of W is     and its variance is       . (Walck, 2007) 

Then, if  ̂     is used to estimate the parameter      we have: 

      (
       

  
)      

      
       

     
    

 ( ̂)    (3.14) 

          (
       

  
)         

        
   

   
 

   ( ̂)  
   

   
 (3.15) 

Fisher information of Gaussian distribution’s variance      is: 

       
 

√   
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    (3.16) 

By Cramer Rao Inequality, we have: 

   ( ̂)  
 

     
 

   

 
 (3.17) 

Therefore,    ( ̂) is only a little greater than Cramer Rao lower bound and for 

large samples, this difference disappears.  ̂     is unbiased and asymptotically 

efficient estimator for the parameter      of Gaussian distribution. 

As for the case in estimation of location, we will use a second estimator for the 

Gaussian standard deviation, which is  ̂     . Thus, its square is an estimator of 

variance, but we will define  ̂    and compare the estimators for    . MAD is 

defined as: 

           |         | (3.18) 

Calculation of MAD is a two-step procedure. At first, the absolute value of the 

differences from median of the data is found. Second, the median of these numbers is 

calculated and multiplied with the constant b to make the estimator consistent. Like 

that of median, MAD has the best possible breakdown point 50% and its influence 

function is bounded with the sharpest possible bound among all scale estimators. 

Moreover, its gross error sensitivity is 1.167 for Gaussian distribution, which is the 
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minimum a scale estimator can have. These excellent properties make MAD a very 

robust estimator of population standard deviation (Rousseeuw and Croux, 1993).  

Although being very robust, “Median Absolute Deviation” has an efficiency of 

only 37%. Due to this low efficiency, young enthusiasts of Glorious Statistics 

thought that they may need some other estimators to study for their control purpose. 

They came up with two new estimators Sn and Qn, and made a plan to study them. 

Pupil was going to study Sn and Rookie the other. Then they would compare the 

properties these estimators together. 

The third estimator  ̂     is defined as: 

         {    |     |} (3.19) 

The two-step procedure of calculating Sn is as follows. For each i, the median of 

{|     |        }  is calculated, which yields n numbers. Median of these n 

numbers, multiplied with c for consistency, is the final estimate Sn. Like that of 

MAD, Sn also has 50% breakdown point and bounded influence function. Luckily, it 

is more efficient than MAD with a value of 58.23% under Gaussian distribution, but 

unfortunately, its gross error sensitivity is 1.625, which is larger than that of MAD 

(Rousseeuw and Croux, 1993).  

Finally, the fourth and the last estimator that will be studied is  ̂    : 

     {|     |    }
   

 (3.20) 

The estimator Qn resembles Sn, but median is replaced by another order statistics 

k. Here, d is a constant factor again and   (
 
 
), where   ⌊

 

 
⌋    is almost half of 

the observations. Qn’s breakdown point is again 50% and its influence function is 
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again bounded. These two properties are the same for the three estimators suggested 

as alternatives to sample standard deviation. However, their efficiency and gross 

error sensitivity for Gaussian distribution change. Qn is the most efficient one among 

the three with nearly 82% efficiency value, and it has the largest (worst) gross error 

sensitivity value of 2.069 (Rousseeuw and Croux, 1993). Therefore, studying these 

three estimators will construct a very good set for the purpose of performance 

comparison.  

The following figure is the empirical sensitivity curves for the scale estimators 

under study. Same data set is used with that of location estimators. It can be followed 

that standard deviation has an unbounded influence curve, and therefore is not 

robust. The other three robust estimators’ curves are bounded. 

 

 

 

 

 

 

Figure 3.3 Empirical Sensitivity Curves for the scale estimators: standard deviation, 

median absolute deviation, Sn and Qn using the simulated      sample data set. 

Pupil was grateful to Rookie for teaching her new concepts. She got the theory but 

there was a question in her mind. How large is a large sample? Would the asymptotic 

results for unbiasedness and efficiency hold for small samples? They decided to 

conduct a simulation study to see practical counterpart of the theoretical results. 
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The following table shows simulated mean of the scale estimators for different 

sample sizes and their expected values. 10000 samples of each n are run using 

standard normal random data. Last row shows expected values and since all 

estimators are unbiased, their expected value is standard deviation of the generated 

data. Besides some negligible sampling errors, all samples have mean values that are 

close to 1. 

Table 3.1 Simulated mean values of scale estimators MAD, Sn, Qn and Standard Deviation for 

different sample sizes at each row, and their theoretical expected values are at the bottom row. 

Average Estimated value of 

Scale Estimators for Gaussian data 

n MADn Sn Qn SD 

5 0.9957 1.0063 1.0064 0.9399 
10 0.9945 0.8705 1.0090 0.9748 
20 0.9992 0.9343 1.0008 0.9875 
50 1.0024 0.9760 1.0010 0.9957 

100 1.0016 0.9876 1.0005 0.9971 
inf 1.0000 1.0000 1.0000 1.0000 

 

It was stressed that sample standard deviation is the best scale estimator for 

Gaussian data, and therefore, it has minimum variance. The efficiencies for other 

estimators are the ratio of their variances to the variance of standard deviation. Last 

row of the following table gives the theoretical variances, and other rows’ values are 

obtained by the standardized variance formula: 

      ̂ 
̂

    
        ̂ 

̂

(    ̂ )
̂   (3.21) 

(Rousseeuw and Croux, 1993).  
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Table 3.2 Simulated standardized variance values of scale estimators MAD, Sn, Qn, and Standard 

Deviation for different sample sizes at each row, and their theoretical variances are at the bottom row. 

Standardized Variance of  

Scale Estimators for Gaussian Data 

n MADn Sn Qn SD 

5 1.6767 1.4729 1.3955 0.6550 

10 1.3667 1.0020 0.8915 0.5687 
20 1.3544 0.8867 0.7797 0.5325 
50 1.3679 0.8578 0.6885 0.5193 

100 1.3525 0.8533 0.6526 0.5157 
inf 1.3610 0.8570 0.6080 0.5000 

 

It can be deduced from the table that asymptotical efficiency values do not hold 

for small samples and especially for    , almost all robust estimators are suffering 

from being totally inefficient. Hopefully, they converge to their theoretical values 

considerably fast and starting from     , theoretical efficiencies can be stated as 

acceptable. This result is especially important for control purpose because sample 

size is one of the very important facts that determine estimation performance. 

Pupil was satisfied since the studies they made supplied a necessary theoretical 

background to go further. Still, the background was not sufficient because she still 

had no idea about construction of the control chart limits using the robust scale 

estimators.  

Since the time they met, Rookie possessed a kind of a teacher role by training her 

on estimation theory. But now, it was Pupil’s turn. She was going to teach him the 

basics of Quality Control and they would be able to search robust scale control charts 

together. 
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3.3 A search for Robust Scale Control Charts 

Before studying the theory, it would be a good idea to see the pattern of robust 

statistics on real data. Pupil showed Rookie the first leaf data she collected and the 

                she constructed. For the purpose of comparison, the same chart 

is given in the following figure but this time, its legend is not to the right of the chart 

but inside the chart. Rookie claimed that this would seem better. Pupil didn’t think 

so, but she just smiled. 

Figure 3.4 Shewart   Control Chart for leaves data given standard       

The following figures are the robust scale estimator charts using the same control 

limits with that of                . Their patterns are very similar because the 

estimators have similar characteristics. Like in the                , there is a 

single out of control value, which is the 27
th

 observation, but this value is much 

higher than UCL at robust charts. Additionally, there are some points close to UCL, 

especially at MAD chart. 
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Figure 3.5 Median Absolute Deviation Control Chart for leaves data given 

standard      , using control limits of                 

Figure 3.6 Sn Control Chart for leaves data given standard      , using control 

limits of                 
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Figure 3.7 Qn Control Chart for leaves data given standard      , using control 

limits of                 

At first glance, the robust charts may give such an opinion that they will not 

perform well. However, this may not be the case because this data is Gaussian and it 

is already expected that                 is the best. Furthermore, we have 

already observed that sample size     is too small for our robust charts, and finally 

control limits are not updated yet. 

To discover new control limits for each of the robust estimator control charts, a 

similar pattern following that of                 can be tried. Mean and standard 

error of s were given by the formulas: 

          √    
  (3.22) 

       √    
  (3.23) 
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Like for the case of standard deviation, MAD also needs a constant for finite n 

values to be unbiased. We have        
 

  
 but unfortunately, we do not have 

      for finite n yet. Under Gaussian assumption, we may consider an efficiency 

constant    and define it as follows: 

   
 

        
 (3.23) 

Values of    for changing n will be calculated from the simulation results given in 

Table 3.2. Since this coefficient will give the variance ratio of MAD to   for finite 

sample sizes, we may at least hope that standard error of MAD may be     

 √       
  . If this is the case, then     control limits for MAD-Chart will be: 

    
 

  
   √       

   (3.24) 

    
 

  
   √       

   (3.25) 

The folowing two constants are defined to reduce the formulas: 

    
 

  
  √       

           
 

  
  √       

   (3.26) 

Then, the control limits of           becomes: 

         (3.27) 

         (3.28) 

To check the validity of these formulas, a simulation study on ARL0 performances 

of           will be made, as that of                . To enable comparison 

easier, Table 2.5 is shown again below, but with a different table number:  
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Table 3.3 Simulated run lengths with different sample sizes for standard deviation control chart of 

Normal data and the average run length, when the process is in control. Standard deviation of the 

mean run lengths and the control limits given standards are at the bottom part of the table. 

ARL0 for standard deviation 

given standards  (Normal Distribution) 

n=5   n=20 
 

n=50   

sims ARL0 sims ARL0 sims ARL0 

252.1050 258.2923 372.5630 361.4899 381.1980 365.4255 

258.6720  364.5900  344.9180   
252.1900  370.1940  367.1300   
260.7010  345.9530  360.7810   

262.0200 
 

382.1870 
 

361.1380   

254.5820 
 

352.7760 
 

380.3800   
248.5270 

 
348.2580 

 
378.1370   

256.9360 
 

360.7160 
 

347.4870   
258.8570 

 
340.1970 

 
365.6360   

278.3330   377.4650   367.4500   

8.2211  =stdev 14.2905  =stdev 12.5757  =stdev 

              
 

  

UCL = 1.9636 UCL = 1.4703 UCL = 1.2972 

LCL = 0.0000 LCL = 0.5036 LCL = 0.6926 
 

The simulation results using the estimator MAD and new control limits are shown 

in the following table: 
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Table 3.4 Simulated run lengths with different sample sizes for MAD control chart of Normal data 

and the average run length, when the process is in control. Standard deviation of the mean run lengths 

and proposed control limits with fn constants given standards are at the bottom part of the table. 

ARL0 for MAD with control limits using proposed fn constants 

 given standards  (Normal Distribution) 

n=5   n=20 

 

n=50   

sims ARL0 sims ARL0 sims ARL0 

60.3980 62.1869 181.7730 176.4228 237.1750 241.6036 

65.6660  188.7180  247.7430   

60.6920  177.6150  243.7950   

63.7740  168.0890  231.1410   

60.7220 
 

166.7830 
 

236.7630   

60.8950 
 

176.1770 
 

239.3550   

64.0450 
 

170.3120 
 

246.6420   

62.9650 
 

175.6420 
 

249.4300   

62.8930 
 

179.7530 
 

245.6860   

59.8190   179.3660   238.3060   

1.9447  =stdev 6.6780  =stdev 5.9089  =stdev 

              
 

  

UCL = 2.4960 UCL = 1.7407 UCL = 1.4754 

LCL = 0.0000 LCL = 0.1793 LCL = 0.4926 

 

Unfortunately, poor ARL0 performances are obtained. The idea seemed to be 

good but it wasn’t, as we see. Anyway, here is the result: “Ideas are sometimes not as 

good as they seem.” Here is another one: “Some bad ideas may create good ones 

later, so keep on trying.” 

Pupil was sad for this result, but Rookie was cool and hopeful. He thought that 

extending the confidence limits might work for variance chart obtained using Chi-

Square statistics. Pupil felt desperate and Rookie tried to change her feelings for a 

time. He told her: “It may not work. But how can we know, if we don’t try?” Then he 

remembered the beautiful song of Mary-Mary, which is “Can’t give up now.” A part 

of its lyrics is given below. 
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There will be mountains that I will have to climb 

And there will be battles that I will have to fight 

But victory or defeat, it’s up to me to decide 

But how do I expect to win if I never try 

Listening to music made them happy and they performed their first dance. Then, 

they studied the extended confidence limits version of variance chart for 

         . The confidence limits for variance chart were: 

    
   ⁄

 

   
                               

     ⁄
 

   
   (3.29) 

Variance chart simulation gave ARL0 values that are around 370, its table will not 

be given here again. If UCL value is multiplied by a constant and LCL is divided to 

the same constant, the simulation results can be adjusted by choosing constants so 

that MAD chart ARL0 simulation values are also close to 370. Then, these limits can 

be tried for data with some other distributions. Specifically, performances for 

Logistic, Laplace, and Cauchy distributions will be analyzed. Letting the extending 

constant be   , the newer control limits for           is given as follows: 

      
√

   ⁄
 

   
   (3.30) 

    
 

  

√
     ⁄

 

   
   (3.31) 

The values of    found via simulation for the sample sizes 5, 20 and 50 are equal 

to 4.11, 1.445 and 1.234, respectively. The following table contains the simulation 

results:  
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Table 3.5 Simulated run lengths with different sample sizes for MAD control chart of Normal Data 

and the average run length, when the process is in control. Standard deviation of the run lengths and 

proposed extended control limits with gn constants given standards are at the bottom part of the table. 

ARL0 for MAD extended limits using proposed gn constants 

 given standards  (Normal Distribution) 

n=5   n=20 
 

n=50   

sims ARL0 sims ARL0 sims ARL0 

396.9440 370.2951 365.0250 369.2875 377.3890 371.0283 

370.8570  372.3360  363.1560   
360.5000  359.8560  372.4810   
358.1620  364.1760  372.0430   

368.6970 
 

365.5690 
 

365.5320   

368.3760 
 

375.4910 
 

361.5460   
374.6660 

 
365.9700 

 
396.5600   

379.7220 
 

356.1640 
 

373.0950   
354.7230 

 
395.2920 

 
344.2490   

370.3040   372.9960   384.2320   

12.0662  =stdev 10.8938  =stdev 14.0369  =stdev 

       1.0000 
 

  

    4.1100      1.4450      1.2340 

UCL = 8.6696 UCL = 2.1705 UCL = 1.6163 

LCL = 0.0396 LCL = 0.3771 LCL = 0.5734 
 

The purpose of this way of formulation was to see its performance for other 

distributions under study. For that reason, performance differences in changing 

sample sizes and their ARL0 simulations will not be conducted any more. The 

following table demonstrates the simulated performances for Logistic data at specific 

shifts in population standard deviation. As asserted before, a shift is defined as the 

population standard deviation becoming    .  
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Table 3.6 Simulated run lengths for gn extended MAD control chart of Logistic data and the average 

run length, when the process is out of control with a λσ shift. Standard deviation of the mean run 

lengths for different λ values are at the bottom row of the table. 

ARL for MAD extended limits using proposed gn constants 

 with n=50 (Logistic Distribution) 

                      

sims ARL0 sims ARL1 sims ARL1 sims ARL1 

83.1600 82.9906 232.9310 231.8269 9.4950 9.1201 1.4550 1.4566 

85.4640  246.2950  9.3720   1.4650   
83.5510  234.5400  8.8930   1.4510   
81.8200  219.7800  8.6510   1.4440   

83.1120 
 

233.5450 
 

9.2480   1.4840   

82.0390 
 

230.0410 
 

9.2390   1.4400   
78.1160 

 
223.6290 

 
9.0350   1.4760   

87.5660 
 

232.6620 
 

8.8510   1.4330   
83.9570 

 
241.0330 

 
9.2850   1.4960   

81.1210   223.8130   9.1320   1.4220   

2.5359  =stdev 8.0695  =stdev 0.2610  =stdev 0.0235  =stdev 
 

MAD is considerably increasing at the first shift at our formulation. 

Consequently, it didn’t work here. We actually want to detect shifts and so want to 

have ARL a decreasing function of    . It means that Rookie’s idea for 

          control limits has failed at Logistic distribution. May the chart have a 

chance for other distributions? We guess not, but it may still be worthy trying for our 

distributions under study. For sure, Glorious Statistics has created a trial with a 

distribution.  
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Table 3.7 Simulated run lengths for gn extended MAD control chart of Laplace data and the average 

run length, when the process is out of control with a λσ shift. Standard deviation of the mean run 

lengths for different λ values are at the bottom row of the table. 

ARL for MAD extended limits using proposed gn constants 

 with n=50 (Laplace Distribution) 
 

   

sims ARL0 sims ARL1 sims ARL1 sims ARL1 

7.1390 6.8513 33.3950 32.4678 57.4720 54.6408 3.5910 3.6729 

6.6860  31.9680  56.8790   3.7420   

6.6520  31.4200  53.8250   3.6960   

6.4270  32.4630  52.9610   3.6650   

6.9110 
 

33.0550 
 

53.2880   3.8140   

7.1130 
 

33.3500 
 

53.7220   3.5560   

6.6410 
 

31.3630 
 

55.2310   3.7760   

7.2850 
 

32.7350 
 

52.5520   3.4940   

6.8140 
 

30.9170 
 

56.1590   3.6820   

6.8450   34.0120   54.3190   3.7130   

0.2658  =stdev 1.0226  =stdev 1.7097  =stdev 0.1000  =stdev 
 

 The case is more terrible than Logistic case. ARL is not a decreasing function of   

again and it increases at      shift also.  
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Table 3.8 Simulated run lengths for gn extended MAD control chart of Cauchy data and the average 

run length, when the process is out of control with a λσ shift. Standard deviation of the mean run 

lengths for different λ values are at the bottom row of the table. 

ARL for MAD extended limits using proposed gn constants 

 with n=50 (Cauchy Distribution) 
 

   

sims ARL0 sims ARL1 sims ARL1 sims ARL1 

2.9920 2.9644 1.5190 1.5301 1.0890 1.0860 1.0080 1.0046 

2.9220  1.5410  1.0750   1.0030   

2.9320  1.5310  1.0680   1.0000   

3.0560  1.5150  1.0850   1.0080   

2.8410 
 

1.5150 
 

1.0900   1.0070   

2.9390 
 

1.4890 
 

1.0660   1.0020   

2.9170 
 

1.5470 
 

1.0990   1.0060   

2.9820 
 

1.5450 
 

1.1010   1.0040   

3.0660 
 

1.5950 
 

1.1200   1.0040   

2.9970   1.5040   1.0670   1.0040   

0.0682  =stdev 0.0294  =stdev 0.0176  =stdev 0.0026  =stdev 
 

There may be a slight improvement for Cauchy case since ARL0 is higher than 

that of the sample variance and ARL is a decreasing function of   , but the 

improvement is not satisfactory at all and so it isn’t worthy... 
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CHAPTER FOUR  

CONTROL CHARTS USING ROBUST SCALE ESTIMATORS 

Autumn was approaching and the forest started to turn yellow. Rookie couldn’t 

decide whether it was the forest having new colors or if it was the soul of variation 

that forces its existence to change. His current way of thinking was accustomed to 

supporting the former idea, but he couldn’t resist against the provocation of the latter. 

What was the reason for not modeling the creation of variation as the main reason in 

itself that brings the life into existence? He couldn’t give an answer and felt that the 

best decision was just waiting for an answer, doing nothing… 

Autumn was coming back to recall that it has never gone. Pupil just couldn’t 

understand her feelings that distinguish existence and realization. It may be that not 

realizing the autumn is just a permission for realizing other seasons. Moreover, 

Glorious Statistics might have created a stochastic process for realization of four 

seasons. “To illustrate” she thought, “let a fair pair of dice come up    . This cannot 

mean that the fair pair possesses a    .” She was allowing herself to become a 

statistician… 

Autumn was coming to realize the creation against the deterministic beautiful 

ideas swallowed in the summer. Its coming was just an offence for being forgetful in 

contrast to its enabling creativeness… 

Rookie and Pupil were sharing their feelings and they were a little upset for not 

having started to collect data before autumn. They thought that their studies for 

understanding the basics went too long. While one of their morning walks, Pupil 

realized the coming of autumn and remembered the previous ones. She then silently 

dived into the moment they performed a lovely dance and strongly felt that it hadn’t 

gone. That dance was still existing… 
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She didn’t answer Rookie when he asked her the reason why she was smiling. 

Like Rookie, she waited for the time by doing nothing and unlike Rookie, she got the 

answer. Love was the answer, but what was the question? 

Then, they turned back to their study. It would become a way soon to strengthen 

the unquestionable tie between… 

4.1 Bootstrap Confidence Intervals 

The brilliant statistician Brad Efron created an idea in 1989. His way of thinking 

was so simple but quite efficient. The idea was: “Why do not we treat the sample on 

hand as the whole population and take repeated samples from our sample with 

replacement?” This is brilliant because the only thing we practically have is the 

sample in hand.  

In fact, the primary task of us as statisticians is to summarize a sample based 

study, and generalize the findings in order to make inferences for the whole 

population. In the early years of our Statistics education, we learned that there are 

populations –as if they really were– having a specified distribution and we take 

samples from them in order to understand where it resides (location) and how far its 

members can go away (dispersion) from the main base of resident (mean). Moreover, 

we are taught the following fable. If it was possible to draw all possible samples 

from the considered population and we would calculate a specific statistics for each, 

we obtain another population, whose distribution is the sampling distribution.   

As dealings with Statistics passed on with years of my life, I was able to 

understand the real story. Truly, distribution is just a mathematical formula. It is a 

tool to fit our way of thinking and experiences. For example, if the experiences 

through a specific subject are considered as a population, a proverb about that subject 

can be thought as a summary statistics. However, all possible experiences about the 

subject do not really exist.  
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For some statistics such as mean and under specific distributions such as 

Gaussian, our current knowledge of mathematics lets us reach the mathematics of 

further inferences. But sometimes, it does not. Furthermore, much of us are not fans 

of boring and long theoretical searches. As one of our proverbs expresses, “A good 

example has twice the value of a good advice.”  

Anyway, he introduced the bootstrap method. This method practically makes the 

thing we ideally or theoretically learn. Basically, we draw new random samples (of 

same size) with replacement from our original sample. Here, our sample in hand is 

simply replaced with the theoretical distribution, and the “bootstrap sample” is 

treated as a sample. By taking many bootstrap samples, we reach some inferential 

idea about the sampling distribution. Some theoretical support, notations, and 

formulas are as follows:  

Remember the standard score formula: 

  
   

 
 (4.1) 

And its sample mean version: 

  
 ̅  
 

√ ⁄
 (4.2) 

where the denominator is the standard error of the sample mean and can be 

expressed as     ̅  . Replacing µ with a general population parameter   and sample 

mean with a general statistics   ̂ , by Central Limit Theorem (CLT), we have a 

statistics whose limiting distribution is standard Gaussian: 

  
 ̂  

    ̂ 
 (4.3) 
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Now, consider the random sample of the size n with data             . If this is 

the population, its parameter under consideration is now  ̂. We are going to draw 

bootstrap samples from the –population treated- sample and calculate the 

statistics  ̂ . Theoretical studies show that for most of the commonly used statistics, 

Z also has a limiting Gaussian distribution with the following formula: 

  
 ̂   ̂

    ̂  
 (4.4) 

It is noticeable to mention that the power of the bootstrap does not stem from 

CLT. In fact, CLT is just an evidence for the use of bootstrap method for inferential 

purposes. As explained in the previous chapters, the main idea of the control chart is 

to construct a confidence interval for population parameter. Specifically, we search 

for a confidence interval for population standard deviation to be used as Upper and 

Lower control limits.  

The bootstrap method allows us to estimate sampling distribution of a statistics. 

Then, why do not we try to construct confidence intervals for our robust statistics 

using bootstrap method? Here is the answer, why not? Here are some standard 

brands of confidence intervals constructed using bootstrap: 

Consider a 90% confidence interval       of  . We basically infer that, 90% of 

the time we obtain these two numbers,   will be within them. Therefore, it makes 

sense to map L to the 5
th

 percentile and U to the 95
th

 percentile.  

Suppose a random sample of size 100. It is customary (or maybe sufficient) to 

take n
2
 bootstrap samples, hence our young enthusiasts of Statistics may settle 10000 

bootstrap replications of the sample. For Pupil’s considered parameter   , they used 

the estimator  ̂ and calculated this statistics for each of the bootstrap sample yielding 

the tuple    
    

          
  . When they make an ascending order of the realized 

statistics, the tuple will become: 
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(    
      

            
 ) (4.5) 

 Then the 90% confidence interval for population parameter   will be: 

       
         

   (4.6) 

This is called “Bootstrap Percentile Method” (Singh & Xie, 2010).  

If she has some doubt about the symmetry of the sampling distribution, she might 

want to change the places of L and U in symmetry with  ̂. The new confidence by 

this consideration is: 

   ̂         
    ̂        

   (4.7) 

This is called “Centered Bootstrap Percentile Method” (Singh & Xie, 2010). 

The usual confidence interval idea based on CLT may also be applied provided 

that there is not a strong evidence for non-normality of the sampling distribution. It is 

simply the interval: 

  ̂         ( ̂)  ̂         ( ̂)  (4.8) 

 where   ( ̂) is estimated from the bootstrap samples.  

 The b coefficients of this interval are explained as follows. Let    

  ̂   ̂ 
    ̂  

⁄  and consider the statement T lies within               . This is 

called “Bootstrap-t Method” (Singh & Xie, 2010). 
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   4.2 Robust Control Charts 

The bootstrapping method is applied to our four distributions under study, which 

are: Gaussian (Normal), Logistic, Laplace (Double Exponential) and Cauchy 

distributions. “Sample Variance” statistics is the control statistics to compare 

performances of the other alternative robust statistics, because it is the classical 

statistics used under the assumption of normality. The robust statistics, whose 

performances are analyzed via Average Run Length (ARL) values, are MAD, Sn, and 

Qn.  

The values for         are ARL0 values and ARL1 values for                 

are also given. The method used for confidence intervals is the “percentile” method. 

For comparison purposes, “centered percentile” method is also shown for Qn 

statistics. Upper limit of the confidence interval is equated to UCL and that of lower 

is likewise to LCL. As we know, for 3 sigma confidence limits, type one error level 

is           . However, this value of   has given too high values of ARL0 for 

MAD and Sn, and too low ARL0 values for Qn. For practical purposes, the 

significance levels of the confidence intervals are 0.0075 for MAD and Sn. That 

value is 0.0010 for Qn statistics. The idea here is like that of the second trial for 

MAD chart in Chapter Three. 

As mentioned before, Run Length is a Geometric random variable. When the 

process is in control, R0 has mean  
 

 
  and standard deviation is also approximately 

 

 
. 

Likewise, when the process is out of control, R1 is a Geometric random variable with 

parameter    . 10 values of  ̅ statistics are calculated, each of which is mean of 

        runs for corresponding R. Results are shown in the “sims” column of the 

tables, to observe the variation in  ̅. Their mean is used as a final estimator for ARL. 

Their standard deviation is also shown. Since LCL and UCL values are calculated 

using bootstrapping method, they are also random variables whose values change 

with respect to bootstrap samples taken. LCL and UCL are calculated using 

   bootstrap samples, and this operation is performed 100 times each time to see the 
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variability in Control Limits. Their mean is used as final Control Limits. The 

standard deviations of 100 corresponding limits are also shown in the tables but 100 

bootstrap confidence intervals are not shown. 

Sample sizes used in simulations are      for Variance and MAD, and      

for Sn and Qn. The aim was to see the difference between small sample and large 

sample cases (practically less than and more than 30) and there seems no practical 

difference between these two sample sizes. It has been already shown that our robust 

statistics reaches their asymptotical efficiencies at sample size      . The 

following subchapters are devoted to analyze the simulation statistics obtained by the 

four distributions under the study and to a search which aims to understand basic 

characteristics of the robust statistics used.  

4.2.1 Gaussian Distribution 

4.2.1.1 Sample Variance 

The following table shows the ARL values of “Sample Variance.” Random 

samples of size 50 are taken from Standard normal distribution. 

 

 

 

 

 



79 
 

 
 

Table 4.1 Simulated run lengths for variance control chart of Normal Data and the average run length, 

when the process is out of control with a    shift. Standard deviation of the run lengths for different λ 

values are at the bottom row of the table. 

ARL for Sample Variance 

 with n=50 (Normal Distribution) 

λ = 1.0 λ = 1.2 λ = 1.5 λ = 2.0 
 sims ARL0 sims ARL1 sims ARL1 sims ARL1 

388.8490 372.2155 5.8730 5.9524 1.1230 1.1241 1.0000 1.0002 

352.5830  5.6870  1.1200   1.0010   
373.1640  5.9020  1.1380   1.0000   
364.4410  5.7400  1.1120   1.0000   

358.9310 
 

6.1590 
 

1.1350   1.0000   

392.8820 
 

6.2800 
 

1.1390   1.0010   
384.8150 

 
5.7060 

 
1.1270   1.0000   

352.8140 
 

6.1540 
 

1.0940   1.0000   
371.5570 

 
6.0060 

 
1.1260   1.0000   

382.1190   6.0170   1.1270   1.0000   

14.7600  =stdev 0.2062  =stdev 0.0134  =stdev 0.0004  =stdev 
 

As might be expected, “Sample Variance” statistics performs very well for 

Normal distribution. Even for small shifts in the population parameter, shift can be 

quickly detected. It might be stressed that standard error of the ARL0 statistics is 

relatively high.  

To give an idea; under Normal Approximation to Geometric Distribution, (even if 

this approximation may not be well enough) 95% Confidence Interval for ARL0 is 

almost           . Namely, even if the process is under control, we may have a 

false alarm signal between 340 to 400 runs. Standard deviations for ARL1 statistics 

are relatively small. On the average, a 1.2 shift in true standard deviation is expected 

to be detected in 6 runs and higher shifts are expected to be detected immediately.  

4.2.1.2 Median Absolute Deviation 

The following is a histogram of MAD for 2500 bootstrap samples constructed by 

a random sample of size 50 taken from Standard normal distribution. 
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Figure 4.1 Histogram of Sampling distribution of MAD, based on bootstrap 

samples, when samples are taken from Gaussian distribution. 

First of all, KS-test for normality has a p-value that can be rejected at any 

acceptable significance level. Therefore, sampling distribution of MAD statistics is 

not Normal. Then, confidence intervals based on Normal distribution will not be 

valid for MAD. The used confidence interval method which is based on 

bootstrapping is “Bootstrap Percentile Method.”   

The relevant hypothesis testing is as follows: 

                                                    

                                    

Test statistics is Kolmogorov Smirnov (KS) test 

Reject    if              

                  (4.9) 
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P value of the normality test is 0.00047571
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Reject    at any acceptable level of α. Sampling distribution of MAD is not 

Normal. 

Moreover, the histogram does not like to seem to fit any known distribution, due 

to the peaks in the middle and dips between them. This fact makes hard to implement 

a theoretical study on MAD.  

The following table shows the ARL values of “MAD.” Random samples of size 

50 are taken from Standard normal distribution. 

Table 4.2 Simulated run lengths for MAD control chart of Normal Data and the average run length, 

when the process is out of control with a    shift. Next, standard deviations of the run lengths for 

different λ values are given. The bottom part consists of the Control Limits based on bootstrap 

percentile confidence interval, and their standard deviation.  

ARL for Median Absolute Deviation 

 with n=50 (Normal Distribution) 

λ = 1.0 λ = 1.2 λ = 1.5 λ = 2.0 

sims ARL0 sims ARL1 sims ARL1 sims ARL1 

357.3500 355.3918 17.3260 17.4950 2.2470 2.2456 1.0750 1.0733 

350.8000   17.6500 
 

2.2800   1.0630   
338.6770   16.9940 

 
2.2210   1.0760   

352.3980   17.6180 

 

2.2140   1.0660   

374.1070   17.6210 
 

2.2650   1.0740   
348.3770   17.4280 

 
2.2550   1.0790   

365.9910   17.5660 
 

2.2250   1.0680   
357.8550   16.9950 

 
2.2040   1.0610   

360.2180   18.1840 
 

2.3170   1.0800   

348.1450   17.5680 
 

2.2280   1.0910   

10.0385  =stdev 0.3455  =stdev 0.0347  =stdev 0.0091  =stdev 

    LCL UCL         

  MEAN = 0.5386 1.4993 
 

  
 

  

  STDEV = 0.0878 0.1592         
 

Confidence interval significance level is 0.0075 for practical purposes, as 

mentioned before. This significance level achieves an ARL0 value that is close to 

370, which enables the MAD’s power comparable with that of “Sample Variance.” 
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The difference between estimated ARL0 values (372.22 and 355.39) is not 

statistically significant. 

Under Normal distribution, “Sample Variance” is more powerful than MAD, 

especially for detecting small shifts. ARL1 of a 1.2 shift has an average value of 17 

for MAD, which was only 6 for “Sample Variance.” Although having less power, 

MAD is not bad at all especially in detecting moderate or large shifts.  

In fact, although detection of small shifts gives idea about the performances of the 

statistics under study, it is not a very important practical problem. In general, since 

Shewart control charts are not good enough to detect small shifts (because of their 

memoriless property), some other charts such as Cumulative Sum (CUSUM) chart 

are used simultaneously for this purpose (Montgomery, 2009). Additionally, a new 

procedure will be proposed in this chapter, which has an equal power to the sample 

variance chart. 

4.2.1.3 Sn 

The following is a histogram of Sn for 2500 bootstrap samples constructed by a 

random sample of size 20 taken from Standard normal distribution. (This is for 

illustration purpose. Confidence intervals are performed using 400 bootstrap 

samples)  
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Figure 4.2 Histogram of Sampling distribution of Sn, based on bootstrap samples, 

when samples are taken from Gaussian distribution. 

The interpretation of the histogram of Sn is very similar to that of the MAD. 

Again, the sampling distribution is not Normal (p-value is 0.00023) and there are 

apparent dips in the middle.  

The following table shows the ARL values of Sn. Random samples of size 20 are 

taken from Standard normal distribution. 
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P value of the normality test is 0.00023443
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Table 4.3 Simulated run lengths for Sn control chart of Normal Data and the average run length, when 

the process is out of control with a    shift. Next, standard deviations of the run lengths for different λ 

values are given. The bottom part consists of the Control Limits based on bootstrap percentile 

confidence interval, and their standard deviation.  

ARL for Sn 

 with n=20 (Normal Distribution) 

λ = 1.0 λ = 1.2 λ = 1.5 λ = 2.0 

sims ARL0 sims ARL1 sims ARL1 sims ARL1 

278.3560 264.2448 16.9130 16.7496 2.7810 2.7793 1.2080 1.2123 

267.9220  16.4990  2.7870   1.2010   
274.3580  16.8390  2.7440   1.2600   
260.7650  16.6800  2.8340   1.2110   

267.7780 
 

16.9160 
 

2.7980   1.1980   
262.0720 

 
16.6090 

 
2.8130   1.2090   

247.7410 
 

16.9550 
 

2.6870   1.2210   
264.2190 

 
17.7870 

 
2.7820   1.1960   

259.7380 
 

16.3320 
 

2.7990   1.2130   

259.4990   15.9660   2.7680   1.2060   

8.5599  =stdev 0.4780  =stdev 0.0406  =stdev 0.0183  =stdev 

    LCL UCL         

  MEAN = 0.3075 1.5015         

  STDEV = 0.1106 0.2855         
 

Confidence interval of Sn is relatively wider than that of MAD. The control limits’ 

standard deviations are close to each other for both statistics. Therefore, it can be 

inferred that change in sample size from 50 to 20 does not practically effects the 

inference on performance measures. 

Confidence interval significance level is again 0.0075, in order to enable 

comparison. This significance level achieves ARL0 value of 264, which seems to be 

less than that of MAD. Moreover, ARL0 statistics of Sn seems to be less variable than 

that of MAD. Surely, formal tests are required to make these inferences. The 

“Anderson-Darling test of Normality” supports the Normality of the both   
̅̅ ̅  values 

with corresponding p-values of 0.867 and 0.574. Namely we can safely assume that 

the values come from a Normal distribution, and therefore, F test and t test are valid. 

Corresponding tests are made as follows: 
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        (  
̅̅ ̅ of Sn)        

̅̅ ̅         

        0                            

Test statistics is F statistics 

Reject    if p-value < α  

                 (4.10) 

Do not Reject    at α=0.10. Variance of ARL0 statistics of Sn is not less than that 

of MAD. 

      (  
̅̅ ̅ of Sn)        

̅̅ ̅         

        0                  

Test statistics is t statistics 

Reject    if p-           

                 (4.11) 

Reject    at any acceptable type one error level. ARL0 statistics of MAD has a 

higher mean than that of Sn.  

The “two sample t test” strongly evident indicates that MAD outperforms Sn when 

there is no shift. Moreover, ARL0 statistics of Sn is not significantly less variable than 

that of MAD. Performances of two statistics are quite similar in detecting shifted 

population standard deviation. 

4.2.1.4 Qn 

The following is a histogram of Qn for 2500 bootstrap samples constructed by a 

random sample of size 20 taken from Standard normal distribution: 
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Figure 4.3 Histogram of Sampling distribution of Qn, based on bootstrap samples, 

when samples are taken from Gaussian distribution 

The sampling distribution of Qn is again not Normal (p-value = 0.0000) but the 

histogram of Qn exhibits different characteristics than the previous statistics. First of 

all, the histogram has much more dips and the dips are not only at the middle part. 

Secondly, the histogram is not bell shaped at all and except from the peaks, 

histogram has uniform characteristics from 0.7 to 0.9 and from 1.2 to 1.3. Finally, 

too many outliers are apparent at both sides, but especially at the upper side. The 

reason may be that Qn has a higher GES compared to other estimators, MAD and Sn. 

These characteristics -at least visually- support the bad performance of Qn for 

“Normally distributed data’s quality control.” However, the histogram is surprisingly 

more skewed than the other two robust statistics. This fact may help to improve 

performance by using “Centered Bootstrap Percentile Method” for constructing the 

confidence intervals. 
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P value of the normality test is 3.34e-017



87 
 

 
 

The following table shows ARL values of Qn. Random samples of size 20 are 

taken from Standard normal distribution. 

Table 4.4 Simulated run lengths for Qn control chart of Normal Data and the average run length, when 

the process is out of control with a    shift. Next, standard deviations of the run lengths for different λ 

values are given. The bottom part consists of the Control Limits based on bootstrap percentile 

confidence interval, and their standard deviation.  

ARL for Qn "Percentile" 

 with n=20 (Normal Distribution) 

λ = 1.0 λ = 1.2 λ = 1.5 λ = 2.0 

sims ARL0 sims ARL1 sims ARL1 sims ARL1 

12.2000 12.1767 2.8130 2.8063 1.3140 1.3051 1.0430 1.0290 

11.9590  2.7760  1.3010   1.0370   
13.0860  2.7980  1.3370   1.0260   
12.5000  2.9750  1.2980   1.0230   

12.1260 
 

2.8390 
 

1.2770   1.0300   
11.7120 

 
2.7700 

 
1.2930   1.0240   

11.8070 
 

2.7880 
 

1.3310   1.0330   

11.2280 
 

2.8480 
 

1.2850   1.0330   
12.4840 

 
2.7740 

 
1.3090   1.0240   

12.6650   2.6820   1.3060   1.0170   

0.5341  =stdev 0.0749  =stdev 0.0188  =stdev 0.0077  =stdev 

    LCL UCL         

  MEAN = 0.3008 1.5243         

  STDEV = 0.1166 0.2943         
 

Qn has a very bad ARL0 performance, and clearly cannot be used for control 

purposes. However, there may be an interesting idea here, based on the differences in 

performance measures.  

Performance of Qn is very good for ARL1 statistics, even better than that of 

“Sample Variance.” This means that, if Qn and one of the other two robust statistics 

are used simultaneously, variability of the process can be screened in a perfect 

manner. Frequency of “out of control signals” around 12 for Qn is not important 

because it naturally occurs and decision on “Process is in Statistical Control” can be 

based on Sn or MAD statistics, whichever is used in process. On the other hand, if Qn 
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is out of control for 1
st
, 2

nd
 or 3

rd
 sample after the last signal, then a conclusion as 

“Process is out of Statistical Control” can be reached safely. 

It is valuable to check the control limits using “Centered Bootstrap Percentile 

Method” for constructing the confidence intervals, since the bootstrap samples have 

exhibited a skewed pattern. This is basically for illustrative purposes. Method is also 

tried for other statistics, but the results were worse since their bootstrap samples are 

more symmetric than that of Qn. The following table shows the ARL values of Qn. 

Table 4.5 Simulated run lengths for Qn control chart of Normal Data and the average run length, when 

the process is out of control with a    shift. Next, standard deviations of the run lengths for different λ 

values are given. The bottom part consists of the Control Limits based on centered bootstrap 

percentile confidence interval, and their standard deviation.  

 ARL for Qn "Centered Percentile" 

 with n=20 (Normal Distribution) 

λ = 1.0 λ = 1.2 λ = 1.5 λ = 2.0 

sims ARL0 sims ARL1 sims ARL1 sims ARL1 

42.6250 43.1550 5.4380 5.3979 1.6790 1.6617 1.0870 1.0708 

44.3250  5.4650  1.6400   1.0760   
44.5590  5.3050  1.7500   1.0740   
42.3750  5.4550  1.6420   1.0670   

42.9020 
 

5.3490 
 

1.6810   1.0710   
41.0730 

 
5.3690 

 
1.6480   1.0520   

44.0310 
 

5.3480 
 

1.6410   1.0760   
43.3470 

 
5.6020 

 
1.6190   1.0670   

43.0300 
 

5.3260 
 

1.6730   1.0780   

43.2830   5.3220   1.6440   1.0600   

1.0255  =stdev 0.0921  =stdev 0.0368  =stdev 0.0099  =stdev 

    LCL UCL         

  MEAN = 0.4588 1.6823         

  STDEV = 0.4018 0.4842         
  

The results are better than that of the Percentile Method’s. There is an 

improvement in the performance measure of ARL0, but the performance is not better 

than either that of MAD’s or Sn’s. For that reason, this improvement makes no help. 
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4.2.2 Logistic Distribution 

4.2.2.1 Sample Variance 

The following table shows the ARL values of “Sample Variance.” Random 

samples of size 50 are taken from Logistic distribution centered at zero (mean, and 

also median is zero) with variance 1. 

Table 4.6 Simulated run lengths for variance control chart of Logistic Data and the average run length, 

when the process is out of control with a    shift. Standard deviation of the run lengths for different λ 

values are at the bottom row of the table. 

ARL for Sample Variance 

 with n=50 (Logistic Distribution) 

λ = 1.0 λ = 1.2 λ = 1.5 λ = 2.0 

sims ARL0 sims ARL1 sims ARL1 sims ARL1 

62.7940 61.4027 4.9420 4.8613 1.2120 1.2196 1.0010 1.0008 

59.7870  4.7470  1.2230   1.0000   
59.6100  4.8270  1.2030   1.0010   
61.2240  4.7930  1.2170   1.0010   

65.0210 
 

4.9860 
 

1.2140   1.0000   
64.6460 

 
4.8420 

 
1.2240   1.0010   

60.7360 
 

4.7100 
 

1.2210   1.0030   
63.5340 

 
4.7770 

 
1.2420   1.0010   

55.7440 
 

5.1160 
 

1.2170   1.0000   

60.9310   4.8730   1.2230   1.0000   

2.7615  =stdev 0.1231  =stdev 0.0101  =stdev 0.0009  =stdev 
 

Performance of “Sample Variance” for Logistic distribution is much worse than 

its performance for Normal Distribution. This shows that “Sample Variance” is not 

robust with respect to change in distribution. Its ARL0 value dropped dramatically 

from 372 to 61. To make inference about variations of two distributions’ ARL0 

statistics, we need to compare the “Coefficient of Variation” values because their 

means differ too much. For Normal case,     
 

 ̅
 

    

     
      and for Logistic 

case,     
 

 ̅
 

    

    
     . Then, the variability in ARL0 for these two 

distributions is close to each other.   
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4.2.2.2 Median Absolute Deviation 

The following is a histogram of MAD for 2500 bootstrap samples constructed by 

a random sample of size 50 taken from standard Logistic distribution. Unlike the 

Normal case, histogram for bootstrap samples of MAD has no apparent dips. The 

sampling distribution seems to be more symmetric and more bell-shaped in tails. 

However, the sampling distribution is not Normal again, since p-value for Normality 

test is 0.0001.  

Figure 4.4 Histogram of Sampling distribution of MAD, based on bootstrap 

samples, when samples are taken from Logistic Distribution 

The following table shows the ARL values of “MAD.” Random samples of size 

50 are taken from standard Logistic distribution. 

 

 

0.5 1 1.5 2
0

50

100

150

200

250
MAD bootstrap histogram for Logistic Distribution

P value of the normality test is 0.00011067
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Table 4.7 Simulated run lengths for MAD control chart of Logistic Data and the average run length, 

when the process is out of control with a    shift. Next, standard deviations of the run lengths for 

different λ values are given. The bottom part consists of the Control Limits based on bootstrap 

percentile confidence interval, and their standard deviation. 

ARL for Median Absolute Deviation 

 with n=50 (Logistic Distribution) 

λ = 1.0 λ = 1.2 λ = 1.5 λ = 2.0 

sims ARL0 sims ARL1 sims ARL1 sims ARL1 

301.9620 294.5157 25.9690 25.2847 2.7980 2.8065 1.1240 1.1269 

292.7750  24.0920  2.7290   1.1290   
294.1690  24.0510  2.9210   1.1250   
287.6920  25.6990  2.7710   1.1280   

288.9780 
 

24.2520 
 

2.8820   1.1320   
294.7600 

 
25.7720 

 
2.8130   1.1290   

295.7280 
 

26.2250 
 

2.7610   1.1310   
305.3920 

 
25.3580 

 
2.7480   1.1140   

289.4260 
 

25.6920 
 

2.7680   1.1390   

294.2750   25.7370   2.8740   1.1180   

5.5938  =stdev 0.8265  =stdev 0.0647  =stdev 0.0071  =stdev 

    LCL UCL         

  MEAN = 0.5041 1.4055         

  STDEV = 0.1054 0.1848         
 

Compared to the Normal case, the decrease in ARL0 value of MAD from 355 to 

294 is statistically significant, but it is not as dramatic as that of “Sample Variance.” 

Still, ARL0 value of 294 can be interpreted as “practically good.” Variability of 

ARL0 statistics is reduced since Coefficient of Variation decreases here to 1.9%. 

Similar to the Normal case, MAD is efficient in detecting moderate or high shifts but 

not efficient enough in detecting small shifts.  

4.2.2.3 Sn 

The following is a histogram of Sn for 2500 bootstrap samples constructed by a 

random sample of size 20 taken from standard Logistic distribution. 
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Figure 4.5 Histogram of Sampling distribution of Sn, based on bootstrap samples, 

when samples are taken from Logistic Distribution 

The bootstrap samples histogram of Sn for Logistic case is similar to the Normal 

case, except that there seems to be more outliers. The p-values of Normality test is 

again close to zero and sampling distribution is not normal again.  

The following table shows the ARL values of Sn Random samples of size 20 are 

taken from standard Logistic distribution. 
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Table 4.8 Simulated run lengths for Sn control chart of Logistic Data and the average run length, when 

the process is out of control with a    shift. Next, standard deviations of the run lengths for different λ 

values are given. The bottom part consists of the Control Limits based on bootstrap percentile 

confidence interval, and their standard deviation.  

ARL for Sn 

 with n=20 (Logistic Distribution) 

λ = 1.0 λ = 1.2 λ = 1.5 λ = 2.0 

sims ARL0 sims ARL1 sims ARL1 sims ARL1 

322.4760 324.4974 26.5070 26.4653 4.0670 4.0856 1.3440 1.4076 

330.8230  26.8720  4.3120   1.4560   
328.3160  27.2330  3.9740   1.3900   
322.3340  25.3840  3.9040   1.4110   

327.2260 
 

25.4780 
 

4.1340   1.3790   
316.9670 

 
26.9480 

 
4.1790   1.4730   

315.6380 
 

27.1880 
 

4.0450   1.4180   
329.1860 

 
24.9030 

 
4.1760   1.3920   

332.4770 
 

26.0280 
 

4.0430   1.3980   

319.5310   28.1120   4.0220   1.4150   

5.9285  =stdev 1.0000  =stdev 0.1173  =stdev 0.0370  =stdev 

    LCL UCL         

  MEAN = 0.2749 1.4964         

  STDEV = 0.1093 0.3164         
 

Confidence interval of Sn is slightly wider than that of MAD. ARL0 performance 

of Sn is interesting. There is a significant increase in ARL0 from 264 and 324, which 

is contrary to our expectations. Can Sn be more robust than MAD? It is an early 

inference but it can be. We need to see the performances for other distributions to 

infer this. The variation in the   
̅̅ ̅ statistics is slightly different since CoV is 3.2% for 

Normal and 1.8% for Logistic distributions.  

4.2.2.4 Qn 

The following is a histogram of Qn for 2500 bootstrap samples constructed by a 

random sample of size 20 taken from standard Logistic distribution. Its shape is very 

similar to the Normal case and the sampling distribution is not Normal again (p-value 

= 0.0000). 
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Figure 4.6 Histogram of Sampling distribution of Qn, based on bootstrap 

samples, when samples are taken from Logistic Distribution 

The following table shows the ARL values of Qn. Random samples of size 20 are 

taken from standard Logistic distribution. 
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Table 4.9 Simulated run lengths for Qn control chart of Logistic Data and the average run length, 

when the process is out of control with a    shift. Next, standard deviations of the run lengths for 

different λ values are given. The bottom part consists of the Control Limits based on bootstrap 

percentile confidence interval, and their standard deviation. 

ARL for Qn "Percentile" 

 with n=20 (Logistic Distribution) 

λ = 1.0 λ = 1.2 λ = 1.5 λ = 2.0 

sims ARL0 sims ARL1 sims ARL1 sims ARL1 

16.1400 15.5633 3.7290 3.7112 1.4590 1.5296 1.0650 1.0608 

15.1300  3.7730  1.6000   1.0680   
15.5160  3.6940  1.4930   1.0590   
15.7890  3.5870  1.5150   1.0570   

16.2740 
 

3.6120 
 

1.4930   1.0590   
15.4000 

 
3.8010 

 
1.6000   1.0600   

15.5660 
 

3.7540 
 

1.5140   1.0590   
15.3840 

 
3.7300 

 
1.5280   1.0610   

14.9780 
 

3.6890 
 

1.5450   1.0670   

15.4560   3.7430   1.5490   1.0530   

0.4071  =stdev 0.0679  =stdev 0.0455  =stdev 0.0046  =stdev 

    LCL UCL         

  MEAN = 0.2630 1.5129         

  STDEV = 0.1150 0.3120         
 

The following table shows the ARL values of Qn using “Centered Bootstrap 

Percentile Method” for constructing the confidence intervals. 
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Table 4.10 Simulated run lengths for Qn control chart of Logistic Data and the average run length, 

when the process is out of control with a    shift. Next, standard deviations of the run lengths for 

different λ values are given. The bottom part consists of the Control Limits based on centered 

bootstrap percentile confidence interval, and their standard deviation. 

ARL for Qn "Centered Percentile" 

 with n=20 (Logistic Distribution) 

λ = 1.0 λ = 1.2 λ = 1.5 λ = 2.0 

sims ARL0 sims ARL1 sims ARL1 sims ARL1 

32.8450 33.7421 5.7120 5.8122 1.7710 1.8591 1.0950 1.0978 

32.5250  5.8330  1.9300   1.0980   

33.9240  5.7130  1.8080   1.1080   

34.1880  5.8070  1.8430   1.0960   

34.8690 
 

5.6650 
 

1.7780   1.1050   

32.6480 
 

5.8640 
 

1.9330   1.0960   

34.4450 
 

6.0310 
 

1.9000   1.0780   

33.7290 
 

6.0420 
 

1.8540   1.1110   

35.2000 
 

5.5750 
 

1.8760   1.0930   

33.0480   5.8800   1.8980   1.0980   

0.9479  =stdev 0.1514  =stdev 0.0589  =stdev 0.0092  =stdev 

    LCL UCL         

  MEAN = 0.3700 1.6199 
 

  
 

  

  STDEV = 0.4108 0.5028         
 

Practically, there is almost no additional comment for the performance of Qn. 

Small shift average detection has increased from 3.7 to 5.8 for the two different 

confidence interval methods, and the difference is significant. It may be interesting to 

note that performance of Qn is increased again by using “Centered Percentile Method 

but the increase was higher for the Normal case. 

The idea for simultaneous use of Sn and Qn is still valid here looking at the 

performance measures. Moreover, for the Normal case, it was an alternative idea but 

for Logistic case, the new idea’s overall detection performance is expected to be 

much better.  
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4.2.3 Laplace Distribution 

4.2.3.1 Sample Variance 

The following table shows the ARL values of “Sample Variance.” Random 

samples of size 50 are taken from Laplace (Double Exponential) distribution 

centered at zero with variance 1. 

Table 4.11 Simulated run lengths for variance control chart of Laplace Data and the average run 

length, when the process is out of control with a    shift. Standard deviation of the run lengths for 

different λ values are at the bottom row of the table. 

ARL for Sample Variance 

 with n=50 (Laplace Distribution) 

λ = 1.0 λ = 1.2 λ = 1.5 λ = 2.0 

sims ARL0 sims ARL1 sims ARL1 sims ARL1 

20,6820 20,4096 4,3300 4,2228 1,3120 1,3112 1,0040 1,0064 

20,1790  4,3080  1,2880   1,0040   

21,1100  4,2760  1,3000   1,0120   

20,0790  4,1230  1,3050   1,0060   

20,0550 
 

4,0930 
 

1,3000   1,0050   

21,0220 
 

4,3820 
 

1,3610   1,0060   

19,6310 
 

4,1940 
 

1,3570   1,0070   

20,4900 
 

4,0770 
 

1,2830   1,0050   

20,1620 
 

4,2090 
 

1,2780   1,0050   

20,6860   4,2360   1,3280   1,0100   

0,4689  =stdev 0,1034  =stdev 0,0290  =stdev 0,0026  =stdev 
 

Things are getting worse for “Sample Variance” compared to the previous 

distributions’ performances. It has no practical use for Quality Control purposes 

since 20 is a very low value for ARL0 statistics. 

4.2.3.2 Median Absolute Deviation 

The following is a histogram of MAD for 2500 bootstrap samples constructed by 

a random sample of size 50 taken from standard Laplace distribution. 
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Figure 4.7 Histogram of Sampling distribution of MAD, based on bootstrap 

samples, when samples are taken from Laplace Distribution. 

The sampling distribution of the Bootstrap samples is clearly right skewed, unlike 

that of the Normal case. Due to the right tail of the histogram, outliers from the upper 

side can be expected more. 

The following table shows the ARL values of MAD. Random samples of size 50 

are taken from standard Laplace distribution.  
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P value of the normality test is 6.4646e-018
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Table 4.12 Simulated run lengths for MAD control chart of Laplace Data and the average run length, 

when the process is out of control with a    shift. Next, standard deviations of the run lengths for 

different λ values are given. The bottom part consists of the Control Limits based on bootstrap 

percentile confidence interval, and their standard deviation. 

ARL for Median Absolute Deviation 

 with n=50 (Laplace Distribution) 

λ = 1.0 λ = 1.2 λ = 1.5 λ = 2.0 

sims ARL0 sims ARL1 sims ARL1 sims ARL1 

213.1170 214.7750 33.3150 32.3486 3.9530 4.0626 1.3040 1.3124 

216.6350  33.2420  4.1200   1.3490   
220.4300  31.7080  4.0860   1.3260   
206.5180  31.6020  3.9870   1.3270   

217.8650 
 

32.6420 
 

4.1890   1.2900   
212.1960 

 
33.0540 

 
4.0060   1.3380   

220.7480 
 

32.7250 
 

4.1060   1.3090   
214.5800 

 
30.5410 

 
4.0030   1.2880   

211.6170 
 

32.1690 
 

4.0900   1.3040   

214.0440   32.4880   4.0860   1.2890   

4.3306  =stdev 0.8657  =stdev 0.0726  =stdev 0.0216  =stdev 

    LCL UCL         

  MEAN = 0.3877 1.2305         

  STDEV = 0.0933 0.1892         
 

In fact, the confidence in ARL0 performance is considerably lost here but it is still 

much better than “Sample Variance” statistics’ ARL0 values, and estimated ARL0 

215 is practically not too bad. CoV has decreased to 2.0%. Standard deviations for 

LCL and UCL are very close to those for Gaussian and Logistic cases.  

4.2.3.3 Sn 

The following is a histogram of Sn for 2500 bootstrap samples constructed by a 

random sample of size 20 taken from standard Laplace distribution. The histogram 

for Sn is alike with that of MAD for Laplace case. The sampling distribution is not 

normal since p-value for Normality test is 0.0000. 
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Figure 4.8 Histogram of Sampling distribution of Sn, based on bootstrap samples, 

when samples are taken from Laplace Distribution. 

The following table shows the ARL values of Sn. Random samples of size 20 are 

taken from standard Laplace distribution. 
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P value of the normality test is 1.301e-009
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Table 4.13 Simulated run lengths for Sn control chart of Laplace Data and the average run length, 

when the process is out of control with a    shift. Next, standard deviations of the run lengths for 

different λ values are given. The bottom part consists of the Control Limits based on bootstrap 

percentile confidence interval, and their standard deviation. 

ARL for Sn 

 with n=20 (Laplace Distribution) 

λ = 1.0 λ = 1.2 λ = 1.5 λ = 2.0 

sims ARL0 sims ARL1 sims ARL1 sims ARL1 

313.3800 327.2173 40.7300 40.7901 6.8500 6.7097 1.9180 1.9237 

328.2700  39.8630  6.8490   1.9110   
337.3530  40.2180  6.5270   1.9130   
331.5720  42.6660  7.0290   1.9500   

328.6380 
 

41.4240 
 

6.6690   1.8860   
308.9050 

 
40.8240 

 
6.5480   1.9180   

323.5030 
 

39.4370 
 

6.5160   1.8700   
322.8920 

 
40.9600 

 
6.5140   1.9040   

342.8500 
 

39.3370 
 

6.6540   1.9560   

334.8100   42.4420   6.9410   2.0110   

10.4678  =stdev 1.1456  =stdev 0.1928  =stdev 0.0400  =stdev 

    LCL UCL         

  MEAN = 0.2321 1.4443         

  STDEV = 0.0945 0.3393         
 

Simulation results so far show that Sn is a very robust statistics since unlike the 

other statistics, its ARL0 performance do not change too much. The difference 

between 327 and 324 is not significant at all. Difference between 327 and 264 is 

significant but this change was much more for MAD. Cov is 3.2%; slightly more 

disperse   
̅̅ ̅ values compared to Logistic case, and a similar variability characteristic 

to Normal Case. 

4.2.3.4 Qn 

The following is a histogram of Qn for 2500 bootstrap samples constructed by a 

random sample of size 20 taken from standard Laplace distribution. 
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Figure 4.9 Histogram of Sampling distribution of Qn, based on bootstrap 

samples, when samples are taken from Laplace Distribution. 

The following table shows the ARL values of Qn. Random samples of size 20 are 

taken from standard Laplace distribution. 
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P value of the normality test is 2.6885e-005
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Table 4.14 Simulated run lengths for Qn control chart of Laplace Data and the average run length, 

when the process is out of control with a    shift. Next, standard deviations of the run lengths for 

different λ values are given. The bottom part consists of the Control Limits based on bootstrap 

percentile confidence interval, and their standard deviation. 

ARL for Qn "Percentile" 

 with n=20 (Laplace Distribution) 

λ = 1.0 λ = 1.2 λ = 1.5 λ = 2.0 

sims ARL0 sims ARL1 sims ARL1 sims ARL1 

26.8260 26.7597 6.3430 6.2592 2.1560 2.1775 1.2020 1.2120 

25.4610  6.3880  2.1830   1.2100   
28.1450  6.1160  2.1700   1.2080   
26.8650  6.3030  2.2020   1.2260   

25.6230 
 

6.2610 
 

2.1650   1.2260   
26.6980 

 
6.2750 

 
2.1450   1.2080   

27.0310 
 

6.2150 
 

2.1570   1.1940   
25.8940 

 
6.2240 

 
2.1370   1.2200   

27.0790 
 

6.0400 
 

2.1790   1.2130   

27.9750   6.4270   2.2810   1.2130   

0.9018  =stdev 0.1182  =stdev 0.0410  =stdev 0.0101  =stdev 

    LCL UCL         

  MEAN = 0.2319 1.4993         

  STDEV = 0.0947 0.3798         
 

The following table shows the ARL values of Qn using “Centered Bootstrap 

Percentile Method” for constructing the confidence intervals. 
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Table 4.15 Simulated run lengths for Qn control chart of Laplace Data and the average run length, 

when the process is out of control with a    shift. Next, standard deviations of the run lengths for 

different λ values are given. The bottom part consists of the Control Limits based on centered 

bootstrap percentile confidence interval, and their standard deviation. 

ARL for Qn "Centered Percentile" 

 with n=20 (Laplace Distribution) 

λ = 1.0 λ = 1.2 λ = 1.5 λ = 2.0 

sims ARL0 sims ARL1 sims ARL1 sims ARL1 

17.9070 18.2837 4.9560 4.9164 1.9040 1.9288 1.1580 1.1615 

16.9990  4.9450  1.9090   1.1600   
19.1460  4.9530  1.9200   1.1500   
18.9000  4.9690  1.9260   1.1730   

17.7890 
 

4.9500 
 

1.8960   1.1750   
18.2440 

 
4.8570 

 
1.8860   1.1530   

18.1160 
 

4.8560 
 

1.9360   1.1480   
18.1800 

 
4.7350 

 
1.9280   1.1620   

18.4860 
 

4.9040 
 

1.9550   1.1660   

19.0700   5.0390   2.0280   1.1700   

0.6549  =stdev 0.0836  =stdev 0.0402  =stdev 0.0095  =stdev 

    LCL UCL         

  MEAN = 0.1735 1.4409         

  STDEV = 0.4217 0.5596         
 

The Qn statistics has very similar performance to the previous distributions. 

Unlike the previous ones, ARL0 value is less for the “Centered Percentile Method” 

than the “Percentile Method” but both are insufficient for practical use. Here, 

simultaneous use of Sn and Qn-“Centered Percentile” may be a better idea than 

simultaneous use of Sn and Qn-“Percentile” but since we do not know the distribution 

in practice, we can pass over this slight change and keep the idea, which is the 

simultaneous use of Sn and Qn-“Percentile.” 

 4.2.4 Cauchy Distribution 

Cauchy Distribution is a very special distribution with its interesting properties. If 

we let Z1 and Z2 be standard normal random variables,    
  

  
 is a standard Cauchy 

random variable. Since Z1 has mean 0, standard Cauchy random variable is said to be 
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“Centered at zero” (Actually, the median is zero). However, it has no mean (and so, 

no variance) because as the denominator term values get close to zero   tends to go 

plus or minus infinity. In fact, by a shift for Cauchy random variable, it is not meant 

a shift in standard deviation units, but a shift in the variable itself. Namely, the shift 

is not     but     

4.2.4.1 Sample Variance 

The following table shows the ARL values of “Sample Variance.” Random 

samples of size 50 are taken from standard Cauchy distribution.  

Table 4.16 Simulated run lengths for variance control chart of Cauchy Data and the average run 

length, when the process is out of control with a    shift. Standard deviation of the run lengths for 

different λ values are at the bottom row of the table. 

ARL for Sample Variance 

 with n=50 (Cauchy Distribution) 

λ = 1.0 λ = 1.2 λ = 1.5 λ = 2.0 

sims ARL0 sims ARL1 sims ARL1 sims ARL1 

1.0000 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

1.0000   1.0000   1.0000   1.0000   
1.0000   1.0000   1.0000   1.0000   
1.0000   1.0000   1.0000   1.0000   
1.0000   1.0000   1.0000   1.0000   
1.0000   1.0000   1.0000   1.0000   
1.0000   1.0000   1.0000   1.0000   
1.0010   1.0000   1.0000   1.0000   
1.0000   1.0000   1.0000   1.0000   
1.0000   1.0000   1.0000   1.0000   

0.0000  =stdev 0.0000  =stdev 0.0000  =stdev 0.0000  =stdev 
 

The “Sample Variance” chart does not work for Cauchy Distribution because its 

control limits are designed as relatively small constants based on Normal 

distribution. However, Cauchy random variable will have a few very large values in 

its sample which will result in very high “Sample Variance” values. As the 

simulation table shows, all the values are out of control limits and all the ARL values 

are equal to 1.  
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4.2.4.2 Median Absolute Deviation 

The following is a histogram of MAD for 2500 bootstrap samples constructed by 

a random sample of size 50 taken from standard Cauchy distribution.  

Figure 4.10 Histogram of Sampling distribution of MAD, based on bootstrap 

samples, when samples are taken from Cauchy Distribution. 

The bootstrap samples histogram seems to be almost symmetric and bell shaped 

but its kurtosis is much higher than a usual normal distribution. Its right tail seems to 

be little long, allowing outliers there. Sampling distribution is not normal with p-

value = 0.0040. 

The following table shows the ARL values of MAD. Random samples of size 50 

are taken from standard Cauchy distribution.  
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P value of the normality test is 0.003958
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Table 4.17 Simulated run lengths for MAD control chart of Cauchy Data and the average run length, 

when the process is out of control with a    shift. Next, standard deviations of the run lengths for 

different λ values are given. The bottom part consists of the Control Limits based on bootstrap 

percentile confidence interval, and their standard deviation. 

ARL for Median Absolute Deviation 

 with n=50 (Cauchy Distribution) 

Lambda = 1.0 Lambda = 1.2 Lambda = 1.5 Lambda = 2.0 

sims  ARL_1 sims  ARL_1 sims  ARL_1 sims  ARL_1 

233.2240 232.7874 57.1200 60.8988 7.9670 8.0270 1.8040 1.7895 
243.2990  60.7920  7.8260   1.7670   

229.6540  61.9300  7.4420   1.7750   

235.3870  61.9790  8.0610   1.7810   

218.6470  59.0230  7.8680   1.7660   

237.4540  61.7520  8.4090   1.7410   

233.9540  56.7520  7.9520   1.7990   

232.6520  64.9990  8.1510   1.8030   

228.7120  60.5060  8.2010   1.8820   

234.8910   64.1350   8.3930   1.7770   

6.4239  =stdev 2.6957  =stdev 0.2875  =stdev 0.0378  =stdev 

    LCL UCL         

  MEAN = 0.7786 2.8496         

  STDEV = 0.1543 0.6053         
 

The ARL0 value of 233 is between Logistic distribution and Laplace distribution, 

and can be accepted as a good performance. CoV of ARL0 is 2.5%. However, small 

shift ARL1 value of 61 is extremely poor in detecting small shifts. This value was 

around 20 for other distributions. Large shift ARL1 values are also higher than the 

previous ones, but they are not bad at all and may be considered as practically 

acceptable. 

Since MAD is a robust statistics with 50% breakdown point, it is not affected by a 

few very large values whereas “Sample Variance” does. The confidence interval is 

only a little wider than the other distributions studied. However, standard deviations 

of UCL and LCL are almost two to three times of the previous ones.  
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4.2.4.3 Sn 

The following is a histogram of Sn for 2500 bootstrap samples constructed by a 

random sample of size 20 taken from standard Cauchy distribution. Histogram of Sn 

looks similar to MAD in shape. 

Figure 4.11 Histogram of Sampling distribution of Sn, based on bootstrap 

samples, when samples are taken from Cauchy Distribution. 

The following table shows the ARL values of Sn. Random samples of size 20 are 

taken from standard Cauchy distribution.  
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P value of the normality test is 1.0825e-005
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Table 4.18 Simulated run lengths for Sn control chart of Cauchy Data and the average run length, 

when the process is out of control with a    shift. Next, standard deviations of the run lengths for 

different λ values are given. The bottom part consists of the Control Limits based on bootstrap 

percentile confidence interval, and their standard deviation.  

 ARL for Sn 

 with n=20 (Cauchy Distribution) 

λ = 1.0 λ = 1.2 λ = 1.5 λ = 2.0 

sims ARL0 sims ARL1 sims ARL1 sims ARL1 

821.7320 798.4701 237.7200 239.3869 45.9710 49.0875 9.1160 9.1280 

812.1120  245.4310  49.7350   8.8850   
767.3120  246.1570  48.9500   8.9740   
759.1600  237.1630  48.9590   9.0920   

791.8170 
 

231.8050 
 

50.1740   9.1130   
802.4860 

 
228.3210 

 
48.2340   9.3410   

814.6000 
 

240.4530 
 

48.6760   9.0930   
793.7060 

 
247.2680 

 
50.7110   9.1420   

818.9840 
 

237.8280 
 

49.6750   9.4970   

802.7920   241.7230   49.7900   9.0270   

21.1505  =stdev 6.1569  =stdev 1.3216  =stdev 0.1756  =stdev 

    LCL UCL         

  MEAN = 0.4666 4.8729         

  STDEV = 0.2009 2.8635         
 

ARL values of Sn are very interesting for Cauchy distribution in that they are quite 

different from the previous distributions, and MAD of Cauchy case. Although CoV 

for ARL0 2.7% is not too large, standard deviation of UCL is more than half of mean 

UCL.  

The overall performance can be considered as bad, but from the opposite point of 

view. That is, they are unacceptably large and give no idea about a possible shift in a 

short run. To observe such a high shift as 1.5*C, one should make an additional 49 

observations on the average and its cost may be too high in practice.  
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4.2.4.4 Qn 

The following is a histogram of Qn for 2500 bootstrap samples constructed by a 

random sample of size 20 taken from standard Cauchy distribution. The histogram is 

similar to that of Sn except that histogram is considerably right skewed.  

Figure 4.12 Histogram of Sampling distribution of Qn, based on bootstrap 

samples, when samples are taken from Cauchy Distribution. 

The following table shows the ARL values of Qn. Random samples of size 20 are 

taken from standard Cauchy distribution.  
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Table 4.19 Simulated run lengths for Qn control chart of Cauchy Data and the average run length, 

when the process is out of control with a    shift. Next, standard deviations of the run lengths for 

different λ values are given. The bottom part consists of the Control Limits based on bootstrap 

percentile confidence interval, and their standard deviation. 

ARL for Qn "Percentile" 

 with n=20 (Cauchy Distribution) 

λ = 1.0 λ = 1.2 λ = 1.5 λ = 2.0 

sims ARL0 sims ARL1 sims ARL1 sims ARL1 

191.6200 191.3837 50.7930 53.8334 13.8570 14.1320 3.9270 3.8517 

192.2360  56.0900  13.8960   3.7170   
174.7040  53.3410  14.1040   3.8110   
181.4880  54.1980  14.6150   3.7400   

200.1790 
 

56.3620 
 

14.2040   3.8310   
202.6560 

 
53.2080 

 
14.1170   3.8530   

189.3920 
 

54.0570 
 

14.1010   3.8960   
183.4160 

 
53.3890 

 
14.1360   4.0980   

208.5250 
 

53.8810 
 

14.2930   3.8810   

189.6210   53.0150   13.9970   3.7630   

10.2509  =stdev 1.5782  =stdev 0.2150  =stdev 0.1104  =stdev 

    LCL UCL         

  MEAN = 0.4719 5.5376         

  STDEV = 0.2283 3.6103         
 

Qn has serious problems to be used practically. Although 191 is an acceptable 

mean level for ARL0, ARL1 values of 54, 14 and 4 for corresponding shifts of 1.2 1.5 

and 2 are too high to be acceptable for detection. Moreover, the standard deviation of 

UCL is enormously large which means that sampling error is too high and 

performance measures are highly dependent on the bootstrap samples taken. This 

shows that, we cannot see the robust characteristics of Qn for Cauchy distribution 

using “Percentile Method.” 

The following table shows the ARL values of Qn using “Centered Bootstrap 

Percentile Method” for constructing the confidence intervals. Since the control limits 

are obtained from another random sample, their standard deviations are different 

from the previous Qn table. (If same sample and same bootstrap samples were used, 

standard deviations of UCL and LCL would be exactly the same as those of 

“Percentile Method”, or vice versa.) 
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Table 4.20 Simulated run lengths for Qn control chart of Cauchy Data and the average run length, 

when the process is out of control with a    shift. Next, standard deviations of the run lengths for 

different λ values are given. The bottom part consists of the Control Limits based on centered 

bootstrap percentile confidence interval, and their standard deviation. 

ARL for Qn "Centered Percentile" 

 with n=20 (Cauchy Distribution) 

λ = 1.0 λ = 1.2 λ = 1.5 λ = 2.0 

sims ARL0 sims ARL1 sims ARL1 sims ARL1 

11.1280 11.4421 4.9370 4.9724 2.4280 2.3488 1.3340 1.3344 

11.4340  4.9020  2.3900   1.3780   
11.3970  4.9610  2.3730   1.3120   
11.6010  4.9090  2.3420   1.3630   

11.2560 
 

4.8800 
 

2.3050   1.3710   
12.1720 

 
5.0450 

 
2.2970   1.3190   

11.2510 
 

5.0890 
 

2.2900   1.3040   
11.0540 

 
5.2600 

 
2.3370   1.2950   

11.3610 
 

4.9070 
 

2.3960   1.3480   

11.7670   4.8340   2.3300   1.3200   

0.3321  =stdev 0.1265  =stdev 0.0464  =stdev 0.0292  =stdev 

    LCL UCL         

  MEAN = 0.0000 3.5525         

  STDEV = 1.4590 3.8872         
 

Unlike the previous distributions, there is a dramatic decrease in ARL values for 

Qn using the “Centered Percentile Method.” This may be a result of the fact that the 

distribution of Qn (based on the histogram) is right skewed. 

Although the performance measures are bad and the standard deviations of the 

control limits are high, this is the only statistics of the kind that is proposed as a pair 

with “simultaneous use” for good detection performance. The ARL1 values are quite 

good in detecting shifts, even if the shift is small.  

Simultaneous use of MAD and Qn “Centered” will yield good detection 

performance and low probability of type one error for control purposes. For the other 

distributions, the proposed charts were Sn and Qn (per) respectively. It means that, if 

the distribution of the data is not known for Cauchy case, it will be very hard to 

design a good detector. 
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   4.3 Proposed Control Designs 

Rookie used to think that “Life is Random…” 

He still thinks so, but Pupil has updated his way of thinking so as to infer “…but 

not that much!” … 

She offered him to consider the relationship between exponential distribution and 

Erlang distribution. A typical example to reveal this relationship is as follows: 

Consider that a task’s finishing time T follows an exponential distribution.  

We have,  

                 (4.12) 

     
 

 
            

 

    (4.13) 

(Taylor & Karlin, 1998). 

If the task can be divided into k equivalent exponential events, each of the events 

              will follow an exponential distribution with rate parameter     . 

Then, 

              (4.14) 

The distribution of T becomes an Erlang distribution (Gamma distribution) with 

parameters   and                    . 
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        (4.15) 

Now, we have, 

     
 

 
            

 

    (4.16) 

(Taylor & Karlin, 1998). 

The corollary of this fact is extremely interesting for me. Although mean finishing 

time does not change, if one can find a way to divide the task into parts without 

changing the lifetime distribution of each subtask, then this person can reduce the 

variability of the finishing time. Moreover, as the number of subtasks goes to 

infinity, the task itself becomes a deterministic one! 

This philosophy makes me contemplate two crucial facts… 

One of my conversations in the past comprises the former one. Once, I was 

talking to one of my legendary friends, and he is also one of the most creative 

scientists I’ve ever met. He told me that, if the life itself was random, then why did 

we need to make Statistics? My answer was somehow clear: “We need Statistics to 

cope with randomness!” Once upon a time, I was just a Rookie, with my strong 

feelings, but poor capability in explanations. To be able to give Exponential-Erlang 

relationship example took my ten years of deal… 

The latter fact is that “the heaviness of tail” characteristic somehow resembles to 

the change of the number of subtasks: k. Letting k equal to 1 is similar to modeling a 

Cauchy distribution and higher values of k lets the distribution model be Laplace, 

Logistic and Gaussian correspondingly. The similarity here is not the decreasing 

variance, but the decreasing kurtosis. 
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Obviously, a true model for the population distribution is very important, but what 

if the population parameters are also random variables or the population itself is also 

changing? 

Let’s say, arbitrary 30% of the time, the data is generated by Laplace, 50% by 

Logistic and the remainder by Gaussian distributions. Even if this information is on 

hand, controlling the population parameters steadily is very difficult in classical 

sense. That’s why we need distribution free, namely robust estimators.  

The simulations performed in the previous subchapter revealed that alternative 

robust charts to the usual variance chart perform much better for the non-normal 

distributions, and the performance is also close for the normal case. Following table 

shows “summary statistics” of all the works done, which is based on the result of this 

research. Gray shaded rows show the best performing charts for each distribution. 
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Table 4.21 Summary of performance measures for the four distributions and the five charts used. 

Performances 

Summary 

Distribution Statistics λ = 1.0 λ = 1.2 λ = 1.5 λ = 2.0 SE(R0) Cov of ARL0 

Gaussian Variance 372.22 5.95 1.12 1.00 14.76 3.97% 

  MAD 355.39 17.50 2.25 1.07 10.04 2.82% 

  Sn 264.24 16.75 2.78 1.21 8.56 3.24% 

  Qn-Per 12.18 2.81 1.31 1.03 0.53 4.39% 

  Qn-Cent 43.16 5.40 1.66 1.07 1.03 2.38% 

Logistic Variance 61.40 4.86 1.22 1.00 2.76 4.50% 

  MAD 294.52 25.28 2.81 1.13 5.59 1.90% 

  Sn 324.50 26.47 4.09 1.41 5.93 1.83% 

  Qn-Per 15.56 3.71 1.53 1.06 0.41 2.62% 

  Qn-Cent 33.74 5.81 1.86 1.10 0.95 2.81% 

Laplace Variance 20.23 4.20 1.30 1.01 0.53 2.62% 

  MAD 214.78 32.35 4.06 1.31 4.33 2.02% 

  Sn 327.22 40.79 6.71 1.92 10.47 3.20% 

  Qn-Per 26.76 6.26 2.18 1.21 0.90 3.37% 

  Qn-Cent 18.28 4.92 1.93 1.16 0.65 3.58% 

Cauchy Variance 1.00 1.00 1.00 1.00 0.00 0.00% 

  MAD 232.79 60.90 8.03 1.79 6.42 2.76% 

  Sn 798.47 239.39 49.09 9.13 21.15 2.65% 

  Qn-Per 191.38 53.83 14.13 3.85 10.25 5.36% 

  Qn-Cent 11.44 4.97 2.35 1.33 0.33 2.90% 
 

4.3.1 Proposed Design for Finite Moment Symmetric Distributions 

Under Gaussian distribution, sample variance chart performs the best, as might be 

expected. MAD’s performance is close to sample variance in ARL0, but is poor in 

detecting especially small shifts. MAD clearly outperforms Sn, but Sn is still 

satisfactory. In terms of ARL0 performance, Qn is not practically applicable for both 

methods, but interestingly, its detection performance is very good, especially for the 

“percentile method” case.  

This fact gives the idea of simultaneous use of Qn-per and one of the other two 

robust charts. In this design, intuitively, Qn-per’s response and the other chart’s 
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response will be considered together to infer that “process is out of statistical 

control.” 

For quality purposes, GES seems to be a more important characteristic than 

relative efficiency. Although Qn is the most efficient robust statistics of the three, its 

poor GES makes it underperform compared to the others in terms of ARL0. On the 

other hand, Sn is the best neither in efficiency nor in GES, but its performance is the 

best for ARL0 at heavy tailed distributions.  

Looking at the results for Logistic and Laplace distributions, it is inferred that as 

heaviness of tail increases, MAD’s and Qn-cent’s ARL0 performances are moderately 

decreasing and both Sn’s and Qn-per’s are moderately increasing. Since Sn’s 

performance is also satisfactory under Gaussian data, the proposed design appears to 

be simultaneous use of Sn and Qn-per. There is a considerable performance loss of 

sample variance chart, which clearly supports the non-robustness of this statistics. Its 

use in standard deviation control will result in a considerable increase in production 

costs in practice.  

Before interpreting the results of Cauchy case, a formal definition of the proposed 

design, followed by the false alarm and detection probabilities in comparison with 

the control chart: “sample variance chart,” will be given. Since Cauchy is an extreme 

case, its results will not be included in this design, and the reason will be explained 

later again, but in more detail. Moreover, a new design will be proposed for Cauchy 

model, provided that the model is known to the designer. 

An excerpted part of the previous table is given below, which shows the simulated 

average run length values for the cases when the process is in control and for the case 

when there is a       shift in the standard deviation of the process. These values 

are shown for Gaussian, Logistic and Laplace distributions. Since the ARL1 values 

are very close to each other for these three distributions, their average is calculated 

and this value is inserted in the corresponding value of each distribution. The last two 

column stands for the parameter of the corresponding run length random variable, 
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where    
 

    
        

 

    
. Clearly, these parameters, respectively, stand for 

the false alarm and detection probabilities of the decision that “Process is out of 

statistical control” for a single sample. 

Table 4.22 ARL0 and ARL1 at       values Mean and parameters of corresponding Run Length 

random variables of the sample variance chart. Mean ARL1 column is the mean of three distribution’s 

ARL1 values. 

Distribution ARL0 Mean ARL1 p0 p1 

Gaussian 372.22 5.00 0.0027 0.1998 

Logistic 61.40 5.00 0.0163 0.1998 

Laplace 20.23 5.00 0.0494 0.1998 
 

 The usual control process for sample variance chart (or its standard deviation 

counterpart,                ) detects a shift when a single observation gives an out 

of control signal. Considering the process standard deviation as       , the 

hypothesis testing of the control process is as follows: 

         (The process standard deviation is in statistical control) 

          (There is a shift in process standard deviation) 

Test statistics is                  

Reject    if           (4.17) 

      is the run length of the process, which is defined as the following 

discrete time Markov chain: 

{              } 

     {      } 
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 Then,       is the number of “in control signals” after the last “out of control 

signal” at the beginning of sample period t. A stochastic process is a Markov chain if 

it holds Markovian property. Markovian property states that, if the process’ value at 

time t is known, probabilities of the possible values for time t+1 can be calculated 

independent from the previous information about the process (Taylor & Karlin, 

1998). 

 To calculate false alarm and detection probabilities, we need to define run length 

variables, and relate the Markov chain to these variables. Let, RV0 and RV1 be the run 

length random variables for the cases, which are “process is in statistical control” and 

“there is a 1.2 shift in process standard deviation,” respectively. These are geometric 

random variables and each of their parameters can be estimated from the simulation 

results. Therefore,  

 

      

 

                           (4.19) 

 Now, detection (power) and false alarm probabilities are calculated as follows: 

          {                                                 } 

1,   if sample variance at period t is out of control 

𝑅𝑉 𝑡   , otherwise       (4.18) 

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑝         ,   if data is Gaussian 

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑝         ,   if data is Logistic 

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑝         ,   if data is Laplace 
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  {         }              (4.20) 

       {                                             } 

  {               }              (4.21) 

 The proposed design aims to perform an equal-power test with the current one, 

but with less false alarm probabilities. Since Sn and Qn-Per charts have relatively 

close mean ARL values for the three distributions, mean of their ARL values can be 

safely used to estimate corresponding run length variable’s parameter. The following 

table shows the excerpted part of Table 4.21 for Sn and Qn-Per charts, where the 

mean is taken among the three distributions: Gaussian, Logistic and Laplace, and the 

p values are reciprocals of the corresponding means: 

Table 4.23 ARL0 and ARL1 at       values of mean and parameters of corresponding Run Length 

random variables to be used for proposed design. 

Statistics Mean ARL0 Mean ARL1 p0 p1 

Sn 305.3198 28.0017 0.0033 0.0357 

Qn-Per 18.1666 4.2589 0.0550 0.2348 
 

The proposed design asserts the following: Use Sn and Qn charts simultaneously 

and decide the fact that “process is out of statistical control” when each chart’s run 

length stochastic process is less than their corresponding pre-determined values. In 

other words, instead of the memoriless decision that takes each single sample 

statistics into account, the cumulative information obtained by both charts’ Markov 

chains will be used as test statistics. The following hypothesis testing of the process 

represents design in a formal manner: 

         (The process standard deviation is in statistical control) 

          (There is a shift in process standard deviation) 

Test statistics are                                         

Reject    if                             (4.22) 
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 Like      ,       and       are the number of “in control signals” after the last 

“out of control signal” for the corresponding charts at the beginning of sample period 

t. Initial values are arbitrary large values, which state that initially, the process is in 

control. Following discrete time Markov chains show the formal definitions: 

{              } 

     {      } 

          

          

  

{              } 

     {      } 

         

          

  

 A similar pattern is followed to calculate false alarm and detection probabilities of 

this proposed design. Let, RQ0, RQ1, RS0 and RS1 are the Qn and Sn run length random 

variables for the cases, where “process is in statistical control” and “there is a 1.2 

shift in process standard deviation”, respectively. Therefore,  

 

1,   if Qn value at period t is out of control 

𝑅𝑄 𝑡   , otherwise       (4.23) 

1,   if Sn value at period t is out of control 

𝑅𝑆 𝑡   , otherwise       (4.24) 
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                           (4.25) 

                           (4.26) 

                           (4.27) 

                           (4.28) 

What is the performance of this design? Its false alarm and detection probabilities 

(PFA and PD) for changing critical decision points should be calculated for 

comparison purposes.       is the corresponding geometric cumulative distribution 

function: 

          {                                                 } 

          {                         } 

  {                 }     (  )          (4.29) 

       {                                             } 

          {                         } 

  {                 }     (  )          (4.30) 

Following table shows the detection probabilities with changing critical decision 

values of Sn and Qn. The yellow shaded region consists of the detection probabilities 

that achieve to exceed the detection probability of sample variance chart for the 

corresponding proposed design parameters. The light blue shaded intersection point 

stands for the design in which the exceedance is achieved at minimum. The dark blue 

shaded point has slightly better detection performance than the light blue point. 

These two points have equal false alarm probabilities as will be shown in the next 

table.  
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Table 4.24 Detection probabilities for the proposed control design for finite moment symmetric 

distributions 

PD Critical Qn 

Critical Sn 1 2 3 4 5 

1 0.0084 0.0148 0.0197 0.0235 0.0263 

2 0.0165 0.0291 0.0387 0.0461 0.0517 

3 0.0243 0.0428 0.0570 0.0679 0.0762 

4 0.0318 0.0561 0.0747 0.0890 0.0999 

5 0.0390 0.0689 0.0918 0.1093 0.1226 

6 0.0460 0.0812 0.1082 0.1288 0.1446 

7 0.0528 0.0931 0.1240 0.1477 0.1658 

8 0.0593 0.1046 0.1393 0.1659 0.1862 

9 0.0655 0.1157 0.1541 0.1834 0.2059 

10 0.0716 0.1264 0.1683 0.2003 0.2249 

11 0.0774 0.1366 0.1820 0.2167 0.2432 

12 0.0830 0.1466 0.1952 0.2324 0.2609 

13 0.0885 0.1561 0.2079 0.2476 0.2779 

14 0.0937 0.1654 0.2202 0.2622 0.2943 

15 0.0987 0.1743 0.2321 0.2763 0.3101 
 

The following table reflects the heart of this research, which shows the false alarm 

probabilities for corresponding design parameters, and which allows the comparison 

with that of the sample variance chart for changing distributions. 
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Table 4.25 False alarm probabilities for the proposed control design for finite moment symmetric 

distributions 

PFA Critical Qn 

Critical Sn 1 2 3 4 5 

1 0.0002 0.0004 0.0005 0.0007 0.0008 

2 0.0004 0.0007 0.0010 0.0013 0.0016 

3 0.0005 0.0010 0.0015 0.0020 0.0024 

4 0.0007 0.0014 0.0020 0.0026 0.0032 

5 0.0009 0.0017 0.0025 0.0033 0.0040 

6 0.0011 0.0021 0.0030 0.0040 0.0048 

7 0.0012 0.0024 0.0035 0.0046 0.0056 

8 0.0014 0.0028 0.0040 0.0052 0.0064 

9 0.0016 0.0031 0.0045 0.0059 0.0072 

10 0.0018 0.0035 0.0050 0.0065 0.0080 

11 0.0020 0.0038 0.0055 0.0072 0.0087 

12 0.0021 0.0041 0.0060 0.0078 0.0095 

13 0.0023 0.0045 0.0065 0.0085 0.0103 

14 0.0025 0.0048 0.0070 0.0091 0.0111 

15 0.0026 0.0051 0.0075 0.0097 0.0118 
 

For the chosen levels of       and       for the decision criteria (4.22), 

design achieves a detection performance            , which was             

for sample variance chart. It means that, simultaneous use of Sn and Qn charts has an 

equal power with this choice of decision parameters (in fact, the proposed design is 

slightly more powerful) . 

However, the changing false alarm probabilities with respect to Gaussian, 

Logistic, and Laplace distributions of “sample variance chart” were 0.0027, 0.0163, 

and 0.0494 respectively. Proposed design’s false alarm probability is 0.0065, which 

is slightly higher than Gaussian of sample variance chart, but is clearly 

outperforming for Logistic and Laplace cases. Moreover, it does not need a prior 

estimate for the distribution model. 
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4.3.2 Proposed Design for Cauchy Model 

Having completed the proposal of quality design for Gaussian, Laplace, and 

Logistic distributions, it is time to interpret the results of the research for Cauchy 

distribution and propose another design for Cauchy model. To begin with, recalling 

the performances summary table for the response of sample variance chart to Cauchy 

distribution will be useful. 

Table 4.26 Sample Variance Chart’s response to Cauchy distribution 

Distribution Statistics λ = 1.0 λ = 1.2 λ = 1.5 λ = 2.0 SE(R0) Cov of ARL0 

Cauchy Variance 1.0001 1 1 1 0 0 
 

 Clearly, sample variance chart does not work for Cauchy case at all. The reason is 

that Cauchy distribution has no standard deviation. Standard Cauchy random variable 

is the ratio of two independent standard Gaussian random variables. For each of the 

other three distributions, we used the term “standard” implying that its mean is zero 

and standard deviation is one, but this is not the case for Cauchy distribution.  

 On the other hand, our proposed “Sn and Qn-per design” also does not work here. 

Moreover, their responses to Cauchy model are unacceptably high and adding these 

values to the mean for a more general design will be misleading. This can be 

explained as follows: The mean value obtained using the responses to the other three 

distributions, which are close to each other, is used as an estimator for geometric 

distribution’s parameter. Since responses to the Cauchy model are extremely high, 

the addition of corresponding value to the mean will result in an inconsistent 

estimator.    

 Fortunately, we still have something to do for Cauchy model, using the well 

performed robust charts in this case. The same idea of previous design will be used 

in order to design a detector to cope with a Cauchy shift. Recall that the shift is not in 

terms of standard deviation units:    for a Cauchy random variable (C), but that of 

the variable itself:   .   
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 Due to the use of another design for Cauchy model, it is required that the model is 

known to the designer. In other words, the inference of the previous design is that it 

is robust for the symmetric distributions which have finite moments. However, the 

design here is unique to the Cauchy model. For that reason, some applications of the 

Cauchy distribution will be introduced before the interpretation of performance 

measures. 

 In science and engineering (especially the electrical engineering), Signal-to-Noise 

Ratio (SNR) is defined as the ratio of “the variance of the desired signal” to “the 

variance of the level of background noise.” Square root of this ratio is called the 

voltage SNR (Childers, 1997).  

 If      and      are independent discrete time Markov chains at time         , 

then        will also be a discrete time Markov chain. Moreover, if      and      

are modeled as standard Gaussian distributions, then (voltage)        will be a 

Cauchy model. Here, if a ratio is higher than one, then we indicate the case that the 

signal is more than the noise. Thus, if one may want to control the process          

(which also is a Cauchy model), then an out of control case can be defined as “the 

noise is shadowing the signal.” 

 An application in Physics can be given as another example for Cauchy model. 

Before giving this example, we need to explain Brownian motion:     , which is a 

continuous-time, continuous-space stochastic process, and which models the position 

of a particle at time t. Einstein showed that the solution of the particle’s diffusion 

equation is a      process, which is a Gaussian random variable (Taylor & Karlin, 

1998). 

 Belghin L., Sakhno L. and Orsingher E. (2010) have shown that many practical 

differential equations in physics, like wave equation, equation of vibration of rods 

and higher order heat equation are specific kinds of Brownian motions. They have 

also described the motion in more specific examples involving the composition of 

two independent Brownian motions       and      , whose examples are diffusions 



127 
 

 
 

in cracks or the flow of a gas in a fracture. Finally, they reach a Cauchy model, 

which is the solution of the “space-fractional equation.” 

 The simulations of our research show that, under Cauchy distribution, the best 

performers of ARL0 and ARL1 are MAD Chart and Qn-Cent chart, respectively. 

Hence, the proposed design for Cauchy model should involve the simultaneous use 

of MAD and Qn-Cent. Since the formulation of the design is the same as the previous 

ones, corresponding stochastic processes will not be defined again. The following 

table gives the required results for these two charts under Cauchy distribution. 

Table 4.27 ARL0 and ARL1 at       values of mean and parameters of corresponding Run Length 

random variables to be used for Cauchy model design. 

Statistics ARL0 ARL1 p0 p1 

MAD 232.7874 60.8988 0.0043 0.0164 

Qn-Cent 11.4421 4.9724 0.0874 0.2011 

 

 Considering “the in control process random variable”  , process random variable 

is       , and the hypothesis testing of the control process is as follows: 

         (The process random variable is in statistical control) 

          (There is a shift in process random variable) 

Test statistics are                                           

Reject    if                                 (4.31) 

 The following table shows the detection performances for changing values of the 

control design parameters    and     . Since sample variance chart does not work 

here, there is not such a comparable detector as in the previous case. Then, to 

illustrate the use of the Cauchy design, let the designer want to achieve a minimum 

detection probability of 10%, whose parameter space’s feasible region is shaded with 

yellow in the table and blue shaded point is the minimum exceedance point. 

Table 4.28 Detection probabilities for the Cauchy model design 



128 
 

 
 

PD Critical Qn 

Critical MAD 1 2 3 4 5 

1 0.0033 0.0059 0.0080 0.0097 0.0111 

2 0.0066 0.0118 0.0160 0.0193 0.0220 

3 0.0097 0.0175 0.0238 0.0287 0.0327 

4 0.0129 0.0232 0.0314 0.0380 0.0432 

5 0.0160 0.0287 0.0389 0.0471 0.0536 

6 0.0190 0.0342 0.0463 0.0560 0.0638 

7 0.0220 0.0396 0.0536 0.0649 0.0738 

8 0.0249 0.0449 0.0608 0.0735 0.0837 

9 0.0278 0.0501 0.0679 0.0821 0.0934 

10 0.0307 0.0552 0.0748 0.0904 0.1029 

11 0.0335 0.0602 0.0816 0.0987 0.1123 

12 0.0362 0.0652 0.0883 0.1068 0.1216 

13 0.0389 0.0701 0.0949 0.1148 0.1306 

14 0.0416 0.0748 0.1014 0.1226 0.1396 

15 0.0442 0.0796 0.1078 0.1303 0.1484 
 

The design parameters      and          correspond to the solution point 

of the following optimization problem. Letting the false alarm and detection 

probability functions of design parameters be assigned as                  and 

              , we have: 

Minimize                

Subject to: 

  (       )      

      and          (4.32) 

We have the solution         , which is shown as the blue shaded intersection 

point in the following table of false alarm probabilities (objective function) table: 
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Table 4.29 False alarm probabilities for the Cauchy model design 

PFA Critical Qn 

Critical MAD 1 2 3 4 5 

1 0.0004 0.0007 0.0010 0.0013 0.0016 

2 0.0007 0.0014 0.0021 0.0026 0.0031 

3 0.0011 0.0021 0.0031 0.0039 0.0047 

4 0.0015 0.0029 0.0041 0.0052 0.0063 

5 0.0019 0.0036 0.0051 0.0065 0.0078 

6 0.0022 0.0043 0.0061 0.0078 0.0094 

7 0.0026 0.0050 0.0071 0.0091 0.0109 

8 0.0030 0.0057 0.0081 0.0104 0.0124 

9 0.0033 0.0064 0.0091 0.0116 0.0139 

10 0.0037 0.0070 0.0101 0.0129 0.0155 

11 0.0040 0.0077 0.0111 0.0142 0.0170 

12 0.0044 0.0084 0.0121 0.0154 0.0185 

13 0.0048 0.0091 0.0131 0.0167 0.0200 

14 0.0051 0.0098 0.0140 0.0179 0.0215 

15 0.0055 0.0105 0.0150 0.0192 0.0229 
 

The corresponding probabilities of the former design were           and 

         . Although the proposed design for Cauchy model does not perform as 

well as the previously proposed design for finite moment symmetric distributions, it 

is the best at hand for a Cauchy model, at least for now. 

 

 



 
 

130 
 

CHAPTER FIVE  

CONCLUSION

  In a production process of industry, product’s quality is aimed to be optimized 

continuously. Such an optimization entails maximum available quality at minimum 

cost, which is achieved by standardizing the production level. In order to standardize 

the production level, say volume of the cola produced, controlling the standard 

deviation of the process cannot be underestimated.  

Usual Shewart S control chart uses each of the periodically taken sample’s 

standard deviation as an estimator for the process standard deviation. Equivalently, 

one can control the variance of the production process using sample variance chart.  

Run Length (R) counts the number of periods between the last out of control 

signal and that of the recent one. In order to evaluate the performance of a chart, R is 

an important random variable, which enables us to make comparisons and to achieve 

relevant inferences. That is, a large value of R is desired to realize “when the process 

is in control,” and that of a small one is required, “when the process is out of 

control.” The reason is that, an “out of control signal” is a false alarm during an “in 

control case,” and is a “detection of a shift,” otherwise. 

Statistical theory exhibits that sample variance is the best estimator for population 

variance under Gaussian distribution, but as is stated and supported with the 

simulation results, sample variance chart’s performance is highly dependent on the 

assumption that the relevant data follows a Gaussian distribution. Its performance 

becomes too poor for heavy tailed symmetric distributions. 

Some robust estimators of population standard deviation in the literature are: 

“Median Absolute Deviation” (MAD), Sn, and Qn. These estimators are very robust 

since they have the maximum available breakdown point, 50%. However, their 

robustness characteristics under Gaussian distribution change with respect to 
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“relative efficiency” and “gross error sensitivity” (GES), Qn being the most efficient, 

and MAD having the minimum available GES among these three.  

For the construction of robust control charts using these robust scale estimators, 

their standard errors are required. Yet, there is a contradictory problem here, because 

standard error is a distribution-dependent-parameter.  

At first, I tried two formulations using the ideas of                , and sample 

variance chart. Unfortunately, these trials resulted in poor performing charts.  

 Then, I used the help of another useful statistical method, which is the bootstrap 

method. Bootstrap method is used to estimate the sampling distribution by taking 

repeatedly samples from the sample in hand, with replacement. The proposed robust 

charts with their limits constructed by the bootstrap confidence intervals, perform 

really well for non-normal symmetric distributions. Moreover, since the robust 

estimators used have different characteristics in terms of relative efficiency and GES, 

their control charts’ responses to the heaviness of a distribution’s tail are different. 

 Although Sn chart’s both ARL0 and ARL1 values significantly underperform those 

of the sample variance chart under Gaussian distribution, they still seem to be 

practically satisfactory. Interestingly, as the kurtosis of the distribution becomes 

higher, there is a significant loss in performance of the sample variance chart. 

However, Sn chart’s ARL0 increases with the increasing kurtosis of the distribution. 

A pitfall of Sn Chart is its poor performance in detecting shifts. Having seen the good 

detection performance of Qn with low ARL1 values for the finite moment symmetric 

distributions under study, I decided to consider the idea that Sn and Qn charts can be 

designed to perform together. 

 The first proposed design of the research is the simultaneous use of Sn and Qn 

charts, which infers an out of control decision when both charts’ run length variables 

are less than their corresponding predetermined constants. Monte Carlo simulation 
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study is performed to solve the optimization problem, whose objective is to minimize 

the false alarm probability of the process, and whose constraint is that the design 

matches the power of the variance chart. Performance of this optimization scheme is 

slightly worse than the sample variance chart’s false alarm probability under 

Gaussian case, but significantly outperforms that of the sample variance under the 

other two distributions: Logistic and Laplace. 

 Cauchy distribution is an extremely heavy tailed one and its moments are 

divergent. Since it has no variance, sample variance chart does not even work under 

Cauchy distribution at all. Cauchy model has some applications in the specific fields 

of Electrical Engineering and Physics. Provided that the model is known to the 

designer, simulation results of the research also reveals a control design for Cauchy 

model. This second proposed design makes simultaneous use of MAD and Qn charts, 

whose logic is exactly the same as the previous one. Despite not performing as well 

as the former one, it is the best at hand for a Cauchy model, at least for now. 

 All these findings express me the following fact: Having sources limited, there is 

a natural tradeoff between “the false alarm based acts,” and “missed events.” To 

improve the probabilities of both without additional sources may be accomplished by 

controlling these via two different detectors. I guess the idea, suggesting the 

simultaneous use of two charts, is a good one… 

For the prospective studies that may be ensuant responses to this research, the 

following suggestions are given:  

First of all, MAD assumes a prior estimate for location, and therefore MAD is 

expected to be good at symmetric distributions. On the other hand, it might be 

expected that Sn and Qn will not suffer from asymmetry. Studying the case on 

asymmetric distributions can be entertaining. 
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Secondly, any other creative ideas may help standard errors of the robust 

estimators used in this research to be further developed. Good theoreticians can 

perform theoretical studies to find such creative ideas. Moreover, real data 

applications of this research’s findings might be helpful. 

Finally, there are many fields of Statistics that robust estimation of scale hasn’t 

been tried yet. One can try the estimators MAD, Sn, and Qn in other applied fields. 

Honestly, “Statistical Quality Control” was just one of them. 

Before finishing it up, I want to complete my story. 

“And Pupil said “I love you”… 

 Rookie thought, “I wish I could know why”… 

But he got the case; his thoughts were dependent on the process itself, not on that 

of the existence. Also, she got the question, but she decided not to tell ever… 

They shared the remaining of their lives through the wings of Glorious 

Statistics… 

What a wonderful life!” 
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APPENDIX-1 

(Information for Quassia Amara tree) 

Quassia amara is a species in the genus Quassia, with some botanists treating it as 

the sole species in the genus. It is a shrub or rarely a small tree, growing to 3 m tall 

(rarely 8 m), native to Brazil. The leaves are compound and alternate, 15-25 cm long, 

and pinnate with 3-5 leaflets, the leaf rachis being winged. The flowers are produced 

in a panicle 15-25 cm long, each flower 2.5-3.5 cm long, bright red on the outside 

and white inside. The following figure is an example picture. (Wikipedia, n.d.) 

 

Figure A1.1 Quassia Amara tree 

http://en.wikipedia.org/wiki/Quassia
http://en.wikipedia.org/wiki/Botanist
http://en.wikipedia.org/wiki/Shrub
http://en.wikipedia.org/wiki/Tree
http://en.wikipedia.org/wiki/Brazil
http://en.wikipedia.org/wiki/Leaf
http://en.wikipedia.org/wiki/Flower
http://en.wikipedia.org/wiki/Panicle
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APPENDIX – 2 

(Factors for Constructing Variables Control Charts) 
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APPENDIX – 3 

(MATLAB functions for Robust Scale Estimators: MAD, Sn, and Qn) 

The following codes are taken from MATLAB toolbox TOMCAT (Daszykowski, 

M., Serneels, S., Kaczmarek, K., Espen, P. V., Croux, C., & Walczak, B., 2007). 

These m-files calculate the robust scale estimators MAD, Sn and Qn correspondingly 

for the given data.  

MAD: 

function m=madn(X) 

  
% MAD computes the median absolute deviation of X. If X is 
%  a matrix, MAD is a row vector containing the MAD's of the 
%  columns of X. 
% 
% ! Includes correction for consistency ! 
% 
% Written by S. Serneels, 17.12.2003 

  
[n,p]=size(X); 
Xmc=X-repmat(median(X),n,1); 
m=1.4826*median(abs(Xmc)); 

  
bn=0; 
switch n 
    case 2  
        bn=1.196; 
    case 3  
        bn=1.495; 
    case 4  
        bn=1.363; 
    case 5 
        bn=1.206; 
    case 6  
        bn=1.200; 
    case 7  
        bn=1.140; 
    case 8  
        bn=1.129; 
    case 9  
        bn=1.107; 
    otherwise  
        bn = n/(n-0.8); 
end 

  
m=bn*m; 
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Sn: 

function s=sn(y) 

  
% Sn scale estimator 
% ------------------------------------------ 
% Input:  y, matrix of size (n,p) 
% ------------------------------------------ 
% Output: s, vector of size (1,p) containing the Sn scale estimates 

of the 
% columns of y 
% ------------------------------------------ 
% The Sn estimator is proposed in P.J. Rousseeuw, C. Croux, 

Alternatives to 
% the median absolute deviation, J. Am. Statist. Assoc., 88 (1993), 
% 1273-1283 

  
% Written by Sven Serneels, University of Antwerp 

  
if size(y,2)>1 
    if size(y,1)>1 
        for i=1:size(y,2) 
            s(:,i)=snsven(y(:,i)); 
        end 
    else 
        y=y'; 
        s=snsven(y); 
    end 
else 
    s=snsven(y); 
end; 

  

  
% ----------------------------------------- 
function s=snsven(y) 

  
n=length(y); 
if n>1000 
    sy=sort(y); 
    nbins=floor(n/10); 
    mys=zeros(nbins,1); 
    ninbins=floor(n/nbins); 
    for i=1:nbins 
        if (mod(n,nbins)~=0 && i==nbins) 
            mys(i)=median(sy((i-1)*ninbins+1:n)); 
        else 
            mys(i)=median(sy((i-1)*ninbins+1:i*ninbins)); 
        end 
    end 
    y=mys; 
    n=nbins; 
end 
pairwisediff=sort(abs(repmat(y',n,1)-repmat(y,1,n)));  
pairwisediff=pairwisediff(floor((n+1)/2),:); 
pairwisediff=sort(pairwisediff); 
s=1.1926*(pairwisediff(floor(n/2)+1)); 
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cn=1; 
switch n 
    case 2  
        cn=0.743; 
    case 3  
        cn=1.851; 
    case 4  
        cn=0.954; 
    case 5 
        cn=1.351; 
    case 6  
        cn=0.993; 
    case 7  
        cn=1.198; 
    case 8  
        cn=1.005; 
    case 9  
        cn=1.131; 
    otherwise  
        if (mod(n,2)==1)  
            cn=n/(n-0.9); 
        end 
end 
s=cn*s; 

Qn: 

function s=qn(y) 

  
% Qn scale estimator 
% ------------------------------------------ 
% Input:  y, matrix of size (n,p) 
% ------------------------------------------ 
% Output: s, vector of size (1,p) containing the Qn scale estimates 

of the 
% columns of y 
% ------------------------------------------ 
% The Qn estimator is proposed in P.J. Rousseeuw, C. Croux, 

Alternatives to 
% the median absolute deviation, J. Am. Statist. Assoc., 88 (1993), 
% 1273-1283 

  
% Written by Sven Serneels, University of Antwerp 

  
if size(y,2)>1 
    if size(y,1)>1 
        for i=1:size(y,2) 
            s(:,i)=qnsven(y(:,i)); 
        end 
    else 
        y=y'; 
        s=qnsven(y); 
    end 
else 
    s=qnsven(y); 
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end; 

  
function s=qnsven(y) 

  
n=length(y); 
% Do binning for big n 
if n>1000 
    sy=sort(y); 
    nbins=floor(n/10); 
    mys=zeros(nbins,1); 
    ninbins=floor(n/nbins); 
    for i=1:nbins 
        if (mod(n,nbins)~=0 && i==nbins) 
            mys(i)=median(sy((i-1)*ninbins+1:n)); 
        else 
            mys(i)=median(sy((i-1)*ninbins+1:i*ninbins)); 
        end 
    end 
    y=mys; 
    n=nbins; 
end 
h=floor(n/2)+1; 
k=0.5*h*(h-1); 
pairwisediff=repmat(y,1,n)-repmat(y',n,1);  
pairwisediff=sort(abs(pairwisediff(find(tril(ones(n,n),-1))))); 
s=2.2219*(pairwisediff(k)); 

  

  
switch n 
    case 1 
        error('Sample size too small'); 
    case 2 
        dn=0.399; 
    case 3  
        dn=0.994; 
    case 4  
        dn=0.512; 
    case 5  
        dn=0.844; 
    case 6  
        dn=0.611; 
    case 7  
        dn=0.857; 
    case 8  
        dn=0.669; 
    case 9  
        dn=0.872;         
    otherwise  
        if (mod(n,2)==1)  
            dn=n/(n+1.4); 
        elseif (mod(n,2)==0)  
            dn=n/(n+3.8); 
        end 
end 
s=dn*s; 
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APPENDIX – 4 

(MATLAB functions used to create the figures and tables in this thesis) 

At this final part, I want to give the MATLAB functions that I used in my study 

with a detailed explanation. I hope that this part will be useful for scientists who 

want to make similar studies in order to go further… 

Basically, two facts change in the tables and figures created. First one is the 

distribution, and the second one is the scale estimator used. Creating functions for 

these two purposes will make the works more efficient because otherwise, each table 

or figure would require another m-file. (This was what I’d done at the beginning). It 

will be a good starting point to give these two functions. The following m-files 

generator.m and estimator.m give the random number generator function and 

estimator used, respectively: 

generator: 

% [datam] = generator(distribution,mu,sigma,n,m) 
% 
%   function generator generates random stream for the 
% input distribution. 
% 
%   INPUTS: 
%   distribution: Distribution Type is the input  

% string of the function 
% Input  
%       'nor' for Normal (Gaussian) 
%       'log' for Logistic 
%       'de' for Double Exponential (Laplace)  
%       'cau' for Cauchy 
%                                   distributions 
%   distribution parameters: 
%   mean: mu 
%   standard deviation: sigma 
% 
%   matrix size nxm 
% 
%   OUTPUT: 
%   datam: Random data with given distribution 
% 
%   Written by Alp Giray Özen, 2011 

  
function [datam] = generator(distribution,mu,sigma,n,m) 
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switch lower(distribution) 
    case('nor') 
        datam = mu+sigma*randn(n,m); 

         
    case('log') 
        Xuni = rand(n,m); 
        datam =mu+sigma*(-sqrt(3)/pi)*log(Xuni./(1-Xuni)); 

         
    case('de') 
        Xuni = rand(n,m,2); 
        datam = mu+sigma*(1/sqrt(2))*log(Xuni(:,:,1)./Xuni(:,:,2)); 

         
    case('cau') 
         Xtemp = randn(n,m,2); 
         datam = Xtemp(:,:,1)./Xtemp(:,:,2); 

          
    otherwise 
        disp('No match for this distribution type') 
        return 
end 

estimator: 

% stat = estimator(distribution,X) 
% 
%   function estimator returns the input estimate of the input  

% matrix X 
% 
%   INPUTS: 
%   scale: Estimate of the vector to be returned 
% Input  
%       'mad' for Median Absolute Deviation 
%       'sn' for Sn 
%       'qn' for Qn 
%       'sd' for Standard Deviation 
%       'range' for Range 
%       'var' for Variance 
%       'mean' for Mean 
%                                   estimators 
% 
%   X: input matrix whose scale estimator will be calculated  

% column wise 
% 
%   OUTPUT: 
%   stat: a row vector containing the scale estimators of columns X 
%   if X is a vector (either row or column) stat will be a scalar. 
% 
%   Written by Alp Giray Özen, 2011 

    
function stat = estimator(scale,vector) 

  
switch lower(scale) 
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    case('mad') 
        stat = madn(vector); 
    case('sn') 
        stat = sn(vector); 

         
    case('qn') 
        stat = qn(vector); 

         
    case('sd') 
        stat = std(vector); 

         
    case('range') 
        stat = range(vector); 

         
    case('var') 
        stat = var(vector); 

         
    case('mean') 
        stat = mean(vector); 

          
    otherwise 
        disp('No match for this estimation type') 
        return 
end 

Now, it is easy to generate such a table as leaves data of table (2.1), and to 

calculate the relevant statistics. For example, creation of a table and calculation of 

the relevant row statistics is as follows: 

leaves = generator('nor',20,2.5,30,5); 

stats = [estimator('mean',leaves'); estimator('sd',leaves');... 

estimator('var',leaves'); estimator('range',leaves')]'; 

The control charts of the thesis are obtained by the function intro_charts.m, which 

is shown as follows. The inputs and outputs of the function are defined before 

writing the actual code. Between the explanation and the actual code, there exists my 

name and my creation year of the function. 

intro_charts: 

%   [datam] = intro_charts(distribution,standard,avg,sigma) 
% 
%   function intro_charts draws the Control charts that I used  
% in my thesis based on n=5 observations and m=30 subgroups,   
% Shewart R Chart, Shewart S Chart, Variance Chart, Shewart    
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% X-bar Chart, MAD Chart, S_n Chart and Q_n chart will be plotted 
% 
% 
%   INPUTS: 
%   distribution: Distribution Type is the input string 
% of the function 
% Input  
%       'nor' for Normal 
%       'log' for Logistic 
%       'de' for Double Exponential 
%       'cau' for Cauchy 
%                                   distributions 
% 
%   standard: Standards Known/Unknown is the input string 
% of the function 
% 
% Input  
%       'yes' for Quality Standards Known case 
%       'no' for Quality Standards estimated from the data case 
% 
%   avg: Mean and sigma: Standard Deviation of the data 
% to be generated 
% 
%   OUTPUT: 
%   data: Random data with given distribution,  
% mean and standard deviation 
% 
%   Written by Alp Giray Özen, 2011 

  
function [datam] = intro_charts(distribution,standard,avg,sigma) 

  
n = 5; m = 30;  %define n, m 
seed = 1978;    %state seed 

  
% Enter constants for Shewart R Chart for n<26 

  
if n<26 
    d_2 = [0 1.128 1.693 2.059 2.326 2.534 2.704 2.847 2.970... 
        3.078 3.173 3.258 3.336 3.407 3.472 3.532 3.588... 
        3.640 3.689 3.735 3.778 3.819 3.858 3.895 3.931]; 
    d_3 = [0 0.853 0.888 0.880 0.864 0.848 0.833 0.820 0.808... 
        0.797 0.787 0.778 0.770 0.763 0.756 0.750 0.744... 
        0.739 0.734 0.729 0.724 0.720 0.716 0.712 0.708]; 
    D_3p = 1-3.*d_3./d_2; 
    D_3 = max([D_3p ; zeros(1,25)]);%LCL coefficient, standard=='NO' 
    D_4 = 1+3.*d_3./d_2;            %UCL coefficient, standard=='NO' 
    D_1p = d_2-3*d_3; 

%LCL coefficient, standard=='YES': 
    D_1 = max([D_1p ; zeros(1,25)]); 

%UCL coefficient, standard=='YES': 
    D_2 = d_2+3*d_3;                 

    clear D_3p; 
end 

  
% Enter constants for Shewart S Chart 

  
c_4 = sqrt(2/(n-1))*gamma(n/2)/gamma((n-1)/2); 
B_3p = 1-3*sqrt(1-c_4^2)/c_4; 
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B_3 = max([B_3p ; 0]);              %LCL coefficient 
B_4 = 1+3*sqrt(1-c_4^2)/c_4;        %UCL coefficient 
clear B_3p; 

  
% Enter constants for Variance Chart 

  
U_var = chi2inv(0.99865,n-1)/(n-1); 
L_var = chi2inv(0.00135,n-1)/(n-1); 

  
% Enter constants for X-bar Chart 
A = 3/sqrt(n); 
A_3 = 3/(c_4*sqrt(n)); 

  
% Enter constants for MAD Chart, S_n Chart and Q_n Chart 

  
B_5p = (c_4-3*sqrt(1-c_4^2)); 
B_5 = max([B_5p ; 0]);               %LCL coefficient 
B_6 = (c_4+3*sqrt(1-c_4^2));         %UCL coefficient 
clear B_5p; 

  
% Create random data for given distribution and return datam     

  
randn('state',seed) 
rand('twister',seed) 

  
X = generator(distribution,avg,sigma,n,m); 
datam = X'; 

  
% Calculation of chart statistics 

  
obs = 1:m; 
X_R = estimator('range',X); 
X_std = estimator('sd',X); 
X_var = estimator('var',X); 
X_mean = estimator('mean',X); 
X_mad = estimator('mad',X); 
X_sn = estimator('sn',X); 
X_qn = estimator('qn',X); 

  
% Calculation of Control Chart Limits 

  
switch lower(standard) 

     
    case('no') 

         
        R_bar = mean(X_R); 
        std_bar = mean(X_std); 
        var_bar = mean(X_var); 
        mean_bar = mean(X_mean); 
        mad_bar = mean(X_mad); 
        sn_bar = mean(X_sn); 
        qn_bar = mean(X_qn); 

  

         
        if n<26 
            LCL_R = D_3(1,n)*R_bar*ones(1,m); 
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            CL_R = R_bar*ones(1,m); 
            UCL_R = D_4(1,n)*R_bar*ones(1,m); 
        end 

  
        LCL_std = B_3*std_bar*ones(1,m); 
        CL_std = std_bar*ones(1,m); 
        UCL_std = B_4*std_bar*ones(1,m); 

         
        LCL_var = L_var*var_bar*ones(1,m); 
        CL_var = var_bar*ones(1,m); 
        UCL_var = U_var*var_bar*ones(1,m); 

  
        LCL_mean = mean_bar-A_3*std_bar*ones(1,m); 
        CL_mean = mean_bar*ones(1,m); 
        UCL_mean = mean_bar+A_3*std_bar*ones(1,m); 

  
        LCL_mad = B_5*mad_bar*ones(1,m); 
        CL_mad = c_4*mad_bar*ones(1,m); 
        UCL_mad = B_6*mad_bar*ones(1,m); 

  
        LCL_sn = B_5*sn_bar*ones(1,m); 
        CL_sn = c_4*sn_bar*ones(1,m); 
        UCL_sn = B_6*sn_bar*ones(1,m); 

  
        LCL_qn = B_5*qn_bar*ones(1,m); 
        CL_qn = c_4*qn_bar*ones(1,m); 
        UCL_qn = B_6*qn_bar*ones(1,m); 

  
    case('yes') 

           
        if n<26 
            LCL_R = D_1(1,n)*sigma*ones(1,m); 
            CL_R = d_2(1,n)*sigma*ones(1,m); 
            UCL_R = D_2(1,n)*sigma*ones(1,m); 
        end 

  
        LCL_std = B_5*sigma*ones(1,m); 
        CL_std = c_4*sigma*ones(1,m); 
        UCL_std = B_6*sigma*ones(1,m); 

         
        LCL_var = L_var*(sigma^2)*ones(1,m); 
        CL_var = (sigma^2)*ones(1,m); 
        UCL_var = U_var*(sigma^2)*ones(1,m); 

  
        LCL_mean = avg-A*sigma*ones(1,m); 
        CL_mean = avg*ones(1,m); 
        UCL_mean = avg+A*sigma*ones(1,m); 

  
        LCL_mad = B_5*sigma*ones(1,m);         
        CL_mad = sigma*ones(1,m); 
        UCL_mad = B_6*sigma*ones(1,m); 

         
        LCL_sn = B_5*sigma*ones(1,m);         
        CL_sn = sigma*ones(1,m); 
        UCL_sn = B_6*sigma*ones(1,m); 
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        LCL_qn = B_5*sigma*ones(1,m);         
        CL_qn = sigma*ones(1,m); 
        UCL_qn = B_6*sigma*ones(1,m); 
end 

  
% Determination of out of control values 

  
if n<26 
    out_R = (double(X_R>UCL_R) +double(X_R<LCL_R)).*X_R; 
    for i=1:30 
        if out_R(1,i)==0 
           out_R(1,i)=NaN; 
        end 
    end 
end 

  
out_std = (double(X_std>UCL_std) +double(X_std<LCL_std)).*X_std; 
for i=1:30 
    if out_std(1,i)==0 
       out_std(1,i)=NaN; 
    end 
end 

  
out_var = (double(X_var>UCL_var) +double(X_var<LCL_var)).*X_var; 
for i=1:30 
    if out_var(1,i)==0 
       out_var(1,i)=NaN; 
    end 
end 

  
out_mean = (double(X_mean>UCL_mean) +... 
    double(X_mean<LCL_mean)).*X_mean; 
for i=1:30 
    if out_mean(1,i)==0 
       out_mean(1,i)=NaN; 
    end 
end 

  
out_mad = (double(X_mad>UCL_mad) +double(X_mad<LCL_mad)).*X_mad; 
for i=1:30 
    if out_mad(1,i)==0 
       out_mad(1,i)=NaN; 
    end 
end 

  
out_sn = (double(X_sn>UCL_sn) +double(X_sn<LCL_sn)).*X_sn; 
for i=1:30 
    if out_sn(1,i)==0 
       out_sn(1,i)=NaN; 
    end 
end 

  
out_qn = (double(X_qn>UCL_qn) +double(X_qn<LCL_qn)).*X_qn; 
for i=1:30 
    if out_qn(1,i)==0 
       out_qn(1,i)=NaN; 
    end 
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end 

  
clear i; 

  
%Control Charts 

  
if n<26 
    plot(obs,X_R,'bo-',obs,LCL_R,'r',obs,CL_R,'g',obs,UCL_R,'r'... 
        ,obs,out_R,'m*-',obs,out_R,'ks-'); 
    switch lower(distribution) 

     
        case('nor') 
            title('Shewart R Chart for Normal Data'); 

        
        case('log') 
            title('Shewart R Chart for Logistic Data'); 

         
        case('de') 
            title('Shewart R Chart for Double Exponential Data'); 

         
        case('cau') 
            title('Shewart R Chart for Cauchy Data'); 
    end  

     
    switch lower(standard) 
        case('no') 
            xlabel('Standards: UNKNOWN'); 
        case('yes') 
            xlabel('Standards: KNOWN');            
    end 

     
    legend('RANGE','LCL','CL','UCL','Outlier',... 
        'Location','NorthEastOutside') 

     
else sprintf('For n>25, Range is an inefficient estimator for 

sigma') 
end 

  
figure; 

  
plot(obs,X_std,'bo-

',obs,LCL_std,'r',obs,CL_std,'g',obs,UCL_std,'r'... 
    ,obs,out_std,'m*-',obs,out_std,'ks-'); 

     
    switch lower(distribution) 

     
        case('nor') 
            title('Shewart S Chart for Normal Data'); 

        
        case('log') 
            title('Shewart S Chart for Logistic Data'); 

         
        case('de') 
            title('Shewart S Chart for Double Exponential Data'); 
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        case('cau') 
            title('Shewart S Chart for Cauchy Data'); 
    end  

   
     switch lower(standard) 
        case('no') 
            xlabel('Standards: UNKNOWN'); 
        case('yes') 
            xlabel('Standards: KNOWN');            
    end 

     
    legend('STD DEV','LCL','CL','UCL','Outlier',... 
        'Location','NorthEastOutside') 

     
    figure; 

  
plot(obs,X_mean,'bo-

',obs,LCL_mean,'r',obs,CL_mean,'g',obs,UCL_mean,'r'... 
    ,obs,out_mean,'m*-',obs,out_mean,'ks-'); 

     
    switch lower(distribution) 

     
        case('nor') 
            title('MEAN Chart for Normal Data'); 

        
        case('log') 
            title('MEAN Chart for Logistic Data'); 

         
        case('de') 
            title('MEAN Chart for Double Exponential Data'); 

         
        case('cau') 
            title('MEAN Chart for Cauchy Data'); 
    end  

   
     switch lower(standard) 
        case('no') 
            xlabel('Standards: UNKNOWN'); 
        case('yes') 
            xlabel('Standards: KNOWN');            
    end 

     
    legend('MEAN','LCL','CL','UCL','Outlier'... 
        ,'Location','NorthEastOutside') 

  
figure; 

  
plot(obs,X_var,'bo-

',obs,LCL_var,'r',obs,CL_var,'g',obs,UCL_var,'r'... 
    ,obs,out_var,'m*-',obs,out_var,'ks-'); 

     
    switch lower(distribution) 

     
        case('nor') 
            title('Variance Chart for Normal Data'); 
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        case('log') 
            title('Variance Chart for Logistic Data'); 

         
        case('de') 
            title('Variance Chart for Double Exponential Data'); 

         
        case('cau') 
            title('Variance Chart for Cauchy Data'); 
    end  

   
     switch lower(standard) 
        case('no') 
            xlabel('Standards: UNKNOWN'); 
        case('yes') 
            xlabel('Standards: KNOWN');            
    end 

     
    legend('VARIANCE','LCL','CL','UCL','Outlier'... 
        ,'Location','NorthEastOutside') 

     
figure; 

  
plot(obs,X_mad,'bo-

',obs,LCL_mad,'r',obs,CL_mad,'g',obs,UCL_mad,'r'... 
    ,obs,out_mad,'m*-',obs,out_mad,'ks-'); 

     
    switch lower(distribution) 

     
        case('nor') 
            title('MAD Chart for Normal Data'); 

        
        case('log') 
            title('MAD Chart for Logistic Data'); 

         
        case('de') 
            title('MAD Chart for Double Exponential Data'); 

         
        case('cau') 
            title('MAD Chart for Cauchy Data'); 
    end 

             
     switch lower(standard) 
        case('no') 
            xlabel('Standards: UNKNOWN'); 
        case('yes') 
            xlabel('Standards: KNOWN');            
    end 

     
    legend('MAD','LCL','CL','UCL','Outlier'... 
        ,'Location','NorthEastOutside') 

  
figure; 

  
plot(obs,X_sn,'bo-',obs,LCL_sn,'r',obs,CL_sn,'g',obs,UCL_sn,'r'... 
    ,obs,out_sn,'m*-',obs,out_sn,'ks-'); 
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    switch lower(distribution) 

     
        case('nor') 
            title('S_n Chart for Normal Data'); 

        
        case('log') 
            title('S_n Chart for Logistic Data'); 
           case('de') 
            title('S_n Chart for Double Exponential Data'); 

         
        case('cau') 
            title('S_n Chart for Cauchy Data'); 
    end  

   
    switch lower(standard) 
        case('no') 
            xlabel('Standards: UNKNOWN'); 
        case('yes') 
            xlabel('Standards: KNOWN');            
    end 

     
    legend('S_n','LCL','CL','UCL','Outlier'... 
        ,'Location','NorthEastOutside') 

     
figure; 

  
plot(obs,X_qn,'bo-',obs,LCL_qn,'r',obs,CL_qn,'g',obs,UCL_qn,'r'... 
    ,obs,out_qn,'m*-',obs,out_qn,'ks-'); 

     
    switch lower(distribution) 

     
        case('nor') 
            title('Q_n Chart for Normal Data'); 

        
        case('log') 
            title('Q_n Chart for Logistic Data'); 

         
        case('de') 
            title('Q_n Chart for Double Exponential Data'); 

         
        case('cau') 
            title('Q_n Chart for Cauchy Data'); 
    end  

  
     switch lower(standard) 
        case('no') 
            xlabel('Standards: UNKNOWN'); 
        case('yes') 
            xlabel('Standards: KNOWN');            
    end 

     
    legend('Q_n','LCL','CL','UCL','Outlier'... 
        ,'Location','NorthEastOutside') 

Here, some notes may be considerable: 
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First of all, it is also possible to design intro_charts.m in the way that the 

estimator is also taken as an input.  

The next point is that “seed” is stated in the function as a constant to obtain the 

same result when function is run again. If seed was deleted, each run would generate 

different streams. In fact, leaves data of table (2.1) is the output vector: “datam.” Its 

seed is my birth year, 1978.  

Finally, if standards are set as “NO,” function does not take the avg and sigma 

values into account and estimates mean and standard deviation from the sample data. 

Moreover, it is possible to set another m and n values for a different dimension 

matrix. 

The Logistic, Laplace, and Cauchy pdf graphs are drawn by the m-file: plotpdf.m. 

The m-file is as follows: 

plotpdf: 

%   plotpdf.m draws the pdf figures for Logistic, Laplace  
% and Cauchy distributions, with changing parameters. 
% 
%   Written by Alp Giray Özen, 2011 

  
x = -15:0.1:15; 

  
f1 = zeros(1,size(x,2)); 
f2 = zeros(1,size(x,2)); 
f3 = zeros(1,size(x,2)); 
f4 = zeros(1,size(x,2)); 

  
% Logistic pdf 

  
mu=0; s=1; 

  
for i=1:size(x,2) 
    f1(i)=exp(-(x(i)-mu)/s)/(s*((1+exp(-(x(i)-mu)/s))).^2 ); 
end 

  
mu=0; s=3; 

  
for i=1:size(x,2) 
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    f2(i)=exp(-(x(i)-mu)/s)/(s*((1+exp(-(x(i)-mu)/s))).^2 ); 
end 

  
mu=0; s=4; 

  
for i=1:size(x,2) 
    f3(i)=exp(-(x(i)-mu)/s)/(s*((1+exp(-(x(i)-mu)/s))).^2 ); 
end 

  
mu=5; s=1; 

  
for i=1:size(x,2) 
    f4(i)=exp(-(x(i)-mu)/s)/(s*((1+exp(-(x(i)-mu)/s))).^2 ); 
end 

  

  
plot(x,f1,'b',x,f2,'r',x,f3,'k',x,f4,'g'); 

  
title('Logistic pdf'); 
xlabel('x'); 
ylabel('p(x)'); 
legend('mu=0  s=1','mu=0 s=3',... 

'mu=0 s=4','mu=5  s=1','Location','NorthEast') 

  
figure 

  

  
% Laplace pdf 

  
x = -15:0.1:15; 

  
f1 = zeros(1,size(x,2)); 
f2 = zeros(1,size(x,2)); 
f3 = zeros(1,size(x,2)); 
f4 = zeros(1,size(x,2)); 

  
mu=0; s=1; 

  
for i=1:size(x,2) 
    f1(i)=(1/(2*s))*exp(-(abs(x(i)-mu))/s); 
end 

  
mu=0; s=2; 

  
for i=1:size(x,2) 
    f2(i)=(1/(2*s))*exp((-abs(x(i)-mu))/s); 
end 

  
mu=0; s=4; 

  
for i=1:size(x,2) 
    f3(i)=(1/(2*s))*exp((-abs(x(i)-mu))/s); 
end 

  
mu=5; s=4; 
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for i=1:size(x,2) 
    f4(i)=(1/(2*s))*exp((-abs(x(i)-mu))/s); 
end 

  

  
plot(x,f1,'b',x,f2,'r',x,f3,'k',x,f4,'g'); 

  
title('Laplace pdf'); 
xlabel('x'); 
ylabel('p(x)'); 
legend('mu=0 b=1','mu=0 b=2',... 

'mu=0 b=4','mu=5 b=4','Location','NorthEast') 

  
figure 

  
% Cauchy pdf 

  
x = -5:0.1:5; 

  
f1 = zeros(1,size(x,2)); 
f2 = zeros(1,size(x,2)); 
f3 = zeros(1,size(x,2)); 
f4 = zeros(1,size(x,2)); 
f5 = zeros(1,size(x,2)); 

  
mu=0; s=1; 

  
%f=(1/pi)*(s/(((x(i)-mu))^2+s^2));      

  
for i=1:size(x,2) 
    f1(i)=(1/pi)*(s/(((x(i)-mu))^2+s^2)); 
end 

  
mu=0; s=0.5; 

  
for i=1:size(x,2) 
    f2(i)=(1/pi)*(s/(((x(i)-mu))^2+s^2)); 
end 

  
mu=0; s=2; 

  
for i=1:size(x,2) 
    f3(i)=(1/pi)*(s/(((x(i)-mu))^2+s^2)); 
end 

  
mu=2; s=1; 

  
for i=1:size(x,2) 
    f4(i)=(1/pi)*(s/(((x(i)-mu))^2+s^2)); 
end 

  

  
plot(x,f1,'b',x,f2,'r',x,f3,'k',x,f4,'g'); 
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title('Cauchy pdf'); 
xlabel('x'); 
ylabel('p(x)'); 
legend('mu=0 gamma=1','mu=0 gamma=0.5',... 

'mu=0 gamma=2','mu=2 gamma=1','Location','NorthEast') 

  
clear 

To obtain the ARL simulations of chapter two, the function runlength_intro has 

been written. The generator function is used to generate a random sample for given 

distribution and estimator function is used to perform the mean, the standard 

deviation, and the variance chart ARL simulations. Location parameter is set to 0 and 

scale parameter is set to 1, since they have no effect on simulation results. new_seed 

value 1405 is my birth day and month. M-file of the function is given below: 

 

runlength_intro: 

%   [ARL_sims ARL_final UCL LCL] = 
%    runlength_intro(distribution,statistics,shift,standard,n) 
% 
%   Function runlength_intro performs ARL simulations 
% for the given distribution and statistics. 
% 
%   INPUTS: 
%   distribution: Distribution Type is the input string  

% of the function 
% Input  
%       'nor' for Normal (Gaussian) 
%       'log' for Logistic 
%       'de' for Double Exponential (Laplace)  
%       'cau' for Cauchy 
%                                   distributions 
%   distribution location parameter is 0 and scale parameter is 1. 
% 
%   statistics: Estimator used in the ARL simulation 
% Input  
%       'sd' for Standard Deviation 
%       'var' for Variance 
%       'mean' for Mean 
%                                   estimators 
% 
%   shift: The shift occurred in the process. For mean shift, shift  
% is defined in standard deviation units and for scale shift, 
% scale parameter of the distribution is multiplied by the shift.  
% Then, enter 0 for no shift case in the mean and 1 for  
% no shift case in scale estimators. 
% 
%   standard: Standards Known/Unknown is the input string 
% of the function 
% Input  



157 
 

 

%       'yes' for Quality Standards Known case 
%       'no' for Quality Standards estimated from the data case 
% 
%   n: Sample size of each period in control process. 
% 
%   OUTPUTS: 
%   ARL_sims: Average run length for each of 1000 simulation run 
% 
%   ARL_final: Mean of ARL_sims values. The purpose here is to 
% see the variability of simulated ARL values. 
% 
%   UCL and LCL: Upper and Lower Control Limits of the Chart. 
% 
%   Written by Alp Giray Özen, 2011 

  

  
function [ARL_sims ARL_final UCL LCL] = ... 
    runlength_intro(distribution,statistics,shift,standard,n) 

  
maxm = 500000;   %define maxm: max number of random stream 
r = 1000;   %define r: number of run lengths 
format short g  %state format 
mu = 0;   %Mean of the data to be generated 
sigma = 1;   %Standard deviation of the data to be generated 

  
% Enter constants for Shewart S Chart 

  
c_4 = sqrt(2/(n-1))*gamma(n/2)/gamma((n-1)/2); 
B_3p = 1-3*sqrt(1-c_4^2)/c_4; 
B_3 = max([B_3p ; 0]);              %LCL coefficient 
B_4 = 1+3*sqrt(1-c_4^2)/c_4;        %UCL coefficient 
clear B_3p; 

  
B_5p = (c_4-3*sqrt(1-c_4^2)); 
B_5 = max([B_5p ; 0]);               %LCL coefficient 
B_6 = (c_4+3*sqrt(1-c_4^2));         %UCL coefficient 
clear B_5p; 

  

  
% Enter constants for Variance Chart 

  
U_var = chi2inv(0.99865,n-1)/(n-1); 
L_var = chi2inv(0.00135,n-1)/(n-1); 

  
% Enter constants for X-bar Chart 

  
A = 3/sqrt(n); 
A_3 = 3/(c_4*sqrt(n)); 

  
% Calculation of Control Limits 

  
switch lower(standard) 

     
    case('no')  % No standards given for mean and standard deviation 

    
        % Estimate mean and standard deviation from m=100 data 
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        m = 100; 
        seed = 1978; 

  
        randn('state',seed) 
        rand('twister',seed) 

         
        X_data = generator(distribution,mu,sigma,n,m); 

         
        barbar_X = mean(mean(X_data)); 
        std_X = mean(std(X_data)); 
        var_X = mean(var(X_data)); 

         
        % Calculate Control Limits based on sample statistics 

          
        switch lower(statistics) 

             
            case('mean') 

   
                UCL = barbar_X+A_3*std_X; 
                LCL = barbar_X-A_3*std_X; 

                 
            case('sd') 

  
                UCL = B_4*std_X; 
                LCL = B_3*std_X; 

  

        
            case('var') 

           
                LCL = L_var*(var_X); 
                UCL = U_var*(var_X); 

                 
            otherwise 
                disp('Please enter mean sd or var for statistics') 
            return 

  
        end 

         

  
    case('yes')% mean and standard deviation are assumed to be known 

         
        % Calculate Control Limits based on sample statistics 

         
        switch lower(statistics) 

             
            case('mean') 

                 
                LCL = mu-A*sigma; 
                UCL = mu+A*sigma; 

                 
            case('sd') 

           
                LCL = B_5*sigma; 
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                UCL = B_6*sigma; 

        
            case('var') 

           
                LCL = L_var*(sigma^2); 
                UCL = U_var*(sigma^2); 

                 
            otherwise 
                disp('Please enter mean sd or var for statistics') 
            return 

        
        end 

         
    otherwise 
        disp('Please enter no or yes for standard') 
        return 

  

  
end 

  

  
% Create new random data to obtain run lengths 
% Obtain index vector of out of control values 

  
new_seed = 1405; 
randn('state',new_seed) 
rand('twister',new_seed) 

  
% Perform ARL simulations of 1000 out of control runs, 10 times 

  
ARL_sims = zeros(10,1); 

  
for i=1:10 

     
    if strcmp(statistics,'mean') 
        X = shift*sigma+generator(distribution,mu,sigma,n,maxm); 
    else 
        X = shift*generator(distribution,mu,sigma,n,maxm); 
    end 

     
    X_stat = estimator(statistics,X); 
    out_stat = logical(X_stat>UCL) + logical(X_stat<LCL); 
    out_index = find(out_stat==1); 

 
    ARL = out_index(r)/r; 
    ARL_sims(i,1) = ARL; 
    clear out* X* 
end 

  
% Calculate mean of the simulations 

  
ARL_final = mean(ARL_sims); 
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This is the end of chapter two and chapter three begins with figures of empirical 

influence functions. Since the codes for location and scale cases are very similar to 

each other, only the scale part function, which create the influence curves for the 

estimators, and their corresponding sensitivity curves, will be given. The following 

function eif_scale is written for this purpose. A figure is not an output for Sir 

MATLAB, so the function has no output. The only input is the sample data. It is also 

possible to design the function in the way that it takes estimator as an input. 

eif_scale:  

%   [] = eif_scale(data) 
% 
%    function eif_scale draws the figures of  
% empirical influence functions and empirical sensitivity curves 
% of scale estimators MAD, Sn, Qn and S for the given input data. 
% 
%   Written by Alp Giray Özen, 2011 

  
function [] = eif_scale(data) 

  
%data: X = [0.43 1.27 1.44 1.52 1.75 2.09 2.96 3.80 3.83 4.22]; 

  
[m n] = size(data); 
data = reshape(data,1,m*n); 
 

add = mean(data)-... 
    20*std(data):range(data)/100:mean(data)+20*std(data); 
sd = zeros(1,size(add,2)); 
md = zeros(1,size(add,2)); 
s = zeros(1,size(add,2)); 
q = zeros(1,size(add,2)); 

  
for i=1:size(add,2) 
    sd(i) = std([data add(i)]); 
    md(i) = madn([data add(i)]);     
    s(i) = sn([data add(i)]); 
    q(i) = qn([data add(i)]); 
end 

  
plot(add,sd,'k') 
hold on 
plot(add,md,'b') 
hold on 
plot(add,s,'m') 
hold on 
plot(add,q,'k--') 

  
legend('SD','MAD','S_n','Q_n'); 
title('Empirical Influence Functions for Scale Estimators'); 
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sd_esc = (size(data,2)+1)*(sd-std(data)); 
md_esc = (size(data,2)+1)*(md-madn(data)); 
s_esc = (size(data,2)+1)*(s-sn(data)); 
q_esc = (size(data,2)+1)*(q-qn(data)); 

  

  
figure 

  
plot(add,sd_esc,'k') 
hold on 
plot(add,md_esc,'b') 
hold on 
plot(add,s_esc,'m') 
hold on 
plot(add,q_esc,'k--') 

  
legend('SD','MAD','S_n','Q_n'); 

title('Empirical Sensitivity Curves for Scale Estimators'); 

 

Average value and standardized variance of scale estimators used in the study 

were given in tables (3.1) and (3.2). These two tables are created (except the last 

column, which consists of the limiting results) by the following m-file: robust.m: 

robust:  

%   robust.m is simulation of table 1 and table 2  
% in "Alternatives to MAD, (Rousseeuw and Croux, 1993)" whose 
% results are at tables (3.1) and (3.2) in my thesis. 
% 
%   Written by Alp Giray Özen, 2011. 

  
seed = 1978; 
n=[5 10 20 50 100]; 

  
table_mean = zeros(size(n,2),4); 
table_var = zeros(size(n,2),4); 

  
for i=1:size(n,2) 
    X = generator('nor',0,1,n(i),10000);  

  
    mad_X = madn(X); 
    var_mad = var(mad_X); 

  
    mean_mad = mean(mad_X); 
    stan_varmad = n(i)*var_mad/((mean_mad)^2); 

     
    table_mean(i,1) = mean_mad; 
    table_var(i,1) = stan_varmad; 
    sn_X = sn(X); 
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    var_sn = var(sn_X); 

  
    mean_sn = mean(sn_X); 
    stan_varsn = n(i)*var_sn/((mean_sn)^2); 

     
    table_mean(i,2) = mean_sn; 
    table_var(i,2) = stan_varsn; 

     
    qn_X = qn(X); 
    var_qn = var(qn_X); 

  
    mean_qn = mean(qn_X); 
    stan_varqn = n(i)*var_qn/((mean_qn)^2); 

     
    table_mean(i,3) = mean_qn; 
    table_var(i,3) = stan_varqn; 

     
    sd_X = std(X); 
    var_sd = var(sd_X); 

  
    mean_sd = mean(sd_X); 
    stan_varsd = n(i)*var_sd/((mean_sd)^2); 

     
    table_mean(i,4) = mean_sd; 
    table_var(i,4) = stan_varsd; 
end 

The ARL simulations of chapter three are obtained by the function 

runlength_mad. The design of this function is very much like to runlength_intro 

except that the only estimator here is MAD, since these trials aim a starting point for 

robust estimator control limits. Calculation of    values is performed by the sub 

function mc, but calculation of     values is not shown, since they are already 

consistent with the corresponding simulation results. Change the value of maxm 

from 500000 to 400000 if you suffer from “Out of memory error.” 

runlength_mad:  

%   [ARL_sims ARL_final UCL LCL] =  

%           runlength_mad(distribution,trial,shift,n) 
% 
%   Function runlength_mad performs ARL simulations of  
% MAD Control Chart trials for the given distribution. 
% 
%   INPUTS: 
%   distribution: Distribution Type is the  

% input string of the function 
% Input  
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%       'nor' for Normal (Gaussian) 
%       'log' for Logistic 
%       'de' for Double Exponential (Laplace)  
%       'cau' for Cauchy 
%                                   distributions 
%   distribution location parameter is 0 and scale parameter is 1. 
% 
%   trial: Estimator used in the ARL simulation 
% Input  
%       'fn' for the std_dev like trial version  
%       'gn' for the variance like trial version 
% 
%   shift: The shift occurred in the process. Scale parameter  
% of the distribution is multiplied by the shift.  
% Then, enter 1 for no shift case. 
% 
%   n: Sample size of each period in control process. 
% 
%   OUTPUTS: 
%   ARL_sims: Average run length for each of 1000 simulation run 
% 
%   ARL_final: Mean of ARL_sims values. The purpose here is to 
% see the variability of simulated ARL values. 
% 
%   UCL and LCL: Upper and Lower Control Limits of the Chart. 
% 
%   Written by Alp Giray Özen, 2011 

  

  
function [ARL_sims ARL_final UCL LCL] = ... 
runlength_mad(distribution,trial,shift,n) 

  
maxm = 500000;   %define maxm: max number of random stream 
r = 1000;   %define r: number of run lengths 
mu = 0;   %mean of the random stream to be generated 
sigma = 1;   %std_dev of the random stream to be generated 
format short g  %state format 

  
% bn coefficients of MAD 

  
switch n 
    case 2  
        bn=1.196; 
    case 3  
        bn=1.495; 
    case 4  
        bn=1.363; 
    case 5 
        bn=1.206; 
    case 6  
        bn=1.200; 
    case 7  
        bn=1.140; 
    case 8  
        bn=1.129; 
    case 9  
        bn=1.107; 
    otherwise  
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        bn = n/(n-0.8); 
end 

  
% ARL simulation of MAD, for fn and gn trials 

  
switch(trial) 

     
    case('fn') 

         
        % Calculate control limits 

         
        m = mc(n); 

  
        c_4 = sqrt(2/(n-1))*gamma(n/2)/gamma((n-1)/2); 
        B_61 = 1/bn+3*sqrt(m*(1-c_4^2)); 
        B_51 = max(1/bn-3*sqrt(m*(1-c_4^2)),0); 

  
        UCL = B_61*sigma; 
        LCL = B_51*sigma; 

         
        % Create new data to obtain run lengths 
        % Obtain index vector of out of control values 

  
        new_seed = 1405; 
        randn('state',new_seed) 
        rand('twister',new_seed) 

  
        ARL_sims = zeros(10,1); 

  
        for i=1:10 
                X = shift*generator(distribution,mu,sigma,n,maxm);  
                X_mad = madn(X); 
                out = logical(X_mad>UCL) + logical(X_mad<LCL); 
                out_index = find(out==1); 
                ARL = out_index(r)/r; 
                ARL_sims(i,1) = ARL; 
                clear out* X* 
        end 
    

    case('gn') 

         
        % Calculate control limits 

         
        constant_search = abs([n-5 n-20 n-50]); 

  
        if min(constant_search)==constant_search(1) 
                constant = 4.11; 
            elseif min(constant_search)==constant_search(2) 
                constant = 1.445; 
            else constant = 1.234; 
        end 

  
        chi_coeff = [chi2inv(1-0.0013513,n-1) ... 

 chi2inv(0.0013513,n-1)]/(n-1); 
        chi_u = chi_coeff(1); 
        chi_l = chi_coeff(2); 
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        B_61 = constant*sqrt(chi_u); 
        B_51 = (1/constant)*sqrt(chi_l); 

  
        UCL = B_61*sigma; 
        LCL = B_51*sigma; 

         
        % Create new data to obtain run lengths 
        % Obtain index vector of out of control values 

  
        new_seed = 1405; 
        randn('state',new_seed) 
        rand('twister',new_seed) 

  
        ARL_sims = zeros(10,1); 

  
        for i=1:10 
                X = shift*generator(distribution,mu,sigma,n,maxm);  
                X_mad = madn(X)/bn; 
                out = logical(X_mad>UCL) + logical(X_mad<LCL); 
                out_index = find(out==1); 
                ARL = out_index(r)/r; 
                ARL_sims(i,1) = ARL; 
                clear out* X* 
        end         

            
end 

  
ARL_final = mean(ARL_sims); 

  
 

function m = mc(n) 

  
% Calculate standardized variance for MAD and standard deviation 

 
seed = 1978; % Define seed of the random vector 
randn('state',seed) 
rand('twister',seed) 
X = generator('nor',0,1,n,10000);  
mad_X = madn(X); 
var_mad = var(mad_X); 
mean_mad = mean(mad_X); 
stan_varmad = n*var_mad/((mean_mad)^2); 

  
sd_X = std(X); 
var_sd = var(sd_X); 

  
mean_sd = mean(sd_X); 
stan_varsd = n*var_sd/((mean_sd)^2); 

  
% Calculate efficiency and constant m 

  
eff = stan_varsd/stan_varmad; 
m=1/eff; 
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This is the end of chapter three and the beginning of the fourth one. Every ending 

is a beginning of something other, isn’t it? Anyway, the following function bs_hist 

draws the histogram of bootstrap samples for the input robust estimator. In other 

words, it is a graphical view for an estimate of sampling distribution. 

 

bs_hist: 

%   [] = bs_hist(statistics, distribution, sample, bins) 
% 
%   function bs_hist draws the histogram of bootstrap samples. 
% Ideally, this is an estimation of sampling distribution of 
% the statistics. 
% 
%   INPUTS: 
%   Statistics: The robust estimator of scale  
% Input  
%       'mad' for Median Absolute Deviation 
%       'sn' for Sn 
%       'qn' for Qn 
%                                   estimators 
% 
%   distribution: Distribution Type is the input  
% string of the function 
% Input  
%       'nor' for Normal (Gaussian) 
%       'log' for Logistic 
%       'de' for Double Exponential (Laplace)  
%       'cau' for Cauchy 
%                                   distributions 
% 
%   sample: sample size of each bootstrap sample 
%    
%   bins: Number of bins to be used in histogram 
% 
% There is no output since the figure does not require it. 
% 
% Additionally, a hypothesis testing is made: 
%       Result is 1 if Ho is rejected and 0 otherwise. 
%       p_value is the p-value of the test, which is shown 
% as x-label of the histogram. 
% 
% The corresponding KS-test has a null hypothesis 
%       Ho: Bootstrap distribution is Normal. 
% 
% For example, the command, 
%       bs_hist('sn','cau',20,50) 
% draws the bootstrap samples histogram (using 50 bins) of Sn   
% that is obtained by a random sample of 20 taken from 
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% Cauchy Distribution (n^2=4000 bootstrap samples are used). 

% 
%   Written by Alp Giray Özen, 2011 

 

 
function [] = bs_hist(statistics, distribution, sample, bins) 

  
n = sample; 
m = bins; 

  
%   Create a random data with location parameter 0  
% and scale parameter 1 

  
new_seed = 1405; 
randn('state',new_seed) 
rand('twister',new_seed) 

  
X = generator(distribution,0,1,1,n); 

  
%   Write the name of the distribution for title 

  
switch lower(distribution) 

     
    case('nor') 
        D = 'Normal Distribution'; 

        
    case('log') 
        D = 'Logistic Distribution'; 

         
    case('de') 
        D = 'Laplace Distribution'; 

         
    case('cau') 
        D = 'Cauchy Distribution'; 

         
    otherwise 
        disp('No match for this distribution type') 
        return 
end 

  
%   Collect statistics of the bootstrap samples, 
% draw histogram and write the name of the estimator for title 

  
switch lower(statistics) 

     
    case('mad') 
        bootstat = bootstrp(n^2,@madn,X); 
        hist(bootstat,m) 
        S = 'MAD'; 

        
    case('sn') 
        bootstat = bootstrp(n^2,@sn,X); 
        hist(bootstat,m) 
        S = 'S_n'; 
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    case('qn') 
        bootstat = bootstrp(n^2,@qn,X); 
        hist(bootstat,m) 
        S = 'Q_n'; 

      
    otherwise 
        disp('No match for this statistics type') 
        return 
end 

  
T = [S ' bootstrap histogram for ' D]; 
title(T); 

  
% KS Normality test for sampling distribution of the statistics 

  
z_bootstat = (bootstat-mean(bootstat))/std(bootstat); 
[H,P] = kstest(z_bootstat); 

  
clear H 
p_value = num2str(P); 
xlabel(['P value of the normality test is ' p_value]); 

The one before the last function of the thesis is runlength_bs, which creates the 

bootstrap ARL simulation tables of chapter four. The first table of each distribution 

(sample variance ARL simulation) is constructed by the function “runlength_intro.” 

The aim is to simulate ARL using bootstrap confidence intervals. Its design is very 

similar to those of the other two chapters’ runlength functions, but I changed the 

algorithm for calculation of sims because the old algorithm was very slow for Sn and 

Qn statistics. The difference in run time between two is extremely high. The former 

works in hours but the latter works in minutes.  

Some additional cautions are required here. Reduce maxm to 300000 when you 

run mad for log, not to face with an “out of memory” error. Also increase maxm to 

800000 when you run Sn for cau because the run length is close to 800 for this case.  

runlength_bs: 

%   [ARL_sims ARL_final limits se_limits] = 
%   runlength_bs(distribution,statistics,center,shift,n) 
% 
%   Function runlength_intro performs ARL simulations 
% for the given distribution and statistics based on 
% bootstrap confidence interval limits taken as control limits. 
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% 
%   INPUTS: 
%   distribution: Distribution Type is the input  
% string of the function 
% Input  
%       'nor' for Normal (Gaussian) 
%       'log' for Logistic 
%       'de' for Double Exponential (Laplace)  
%       'cau' for Cauchy 
%                                   distributions 
%   distribution location parameter is 0 and scale parameter is 1. 
% 
%   statistics: Estimator used in the ARL simulation 
% Input  
%       'mad' for Median Absolute Deviation 
%       'sn' for Sn 
%       'qn' for Qn 
%                                   estimators 
% 
%   center: States if "percentile method" or  
% "centered percentile method" is used for confidence interval. 
% Input 
%       'no' for percentile method 
%       'yes' for centered percentile method 
% 
%   shift: The shift occurred in the process. Scale parameter  
% of the distribution is multiplied by the shift.  
% Then, enter 1 for no shift case. 

  
% 
%   n: Sample size of each period in control process. 
% 
%   OUTPUTS: 
%   ARL_sims: Average run length for each of 1000 simulation run 
% 
%   ARL_final: Mean of ARL_sims values. The purpose here is to 
% see the variability of simulated ARL values. 
% 
%   limits: Upper and Lower Control Limits of the Chart. 
% 
%   se_limits: Standard error of Control limits 
% 
%   Written by Alp Giray Özen, 2011 

  

  
function [ARL_sims ARL_final limits se_limits] = ... 
    runlength_bs(distribution,statistics,center,shift,n) 

  
maxm = 500000;   %define maxm: max number of random stream 
r = 1000;   %define r: number of run lengths 
format short g  %state format 

  
% Calculate control limits 

  
ci_per = zeros(2,25); 
stat = zeros(25,1); 
seed = 1978; 
rand('twister',seed); 
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randn('state',seed); 

  
switch lower(statistics) 

     
    case ('mad') 
        for i=1:100 
            X_limit = generator(distribution,0,1,1,n); 
            stat(i,1) = estimator(statistics,X_limit); 
            ci = bootci(n^2,{@madn,X_limit},... 
                'alpha',0.0075,'type','per'); 
            ci_per(:,i) = ci; 
        end 

         
    case ('sn') 
        for i=1:100 
            X_limit = generator(distribution,0,1,1,n); 
            stat(i,1) = estimator(statistics,X_limit); 
            ci = bootci(n^2,{@sn,X_limit},... 
                'alpha',0.0075,'type','per'); 
            ci_per(:,i) = ci; 
        end 

  
    case ('qn') 
        for i=1:100 
            X_limit = generator(distribution,0,1,1,n); 
            stat(i,1) = estimator(statistics,X_limit); 
            ci = bootci(n^2,{@qn,X_limit},... 
                'alpha',0.0010,'type','per'); 
            ci_per(:,i) = ci; 
        end 

         
end 

     

  
ci_per = ci_per'; 

  
limits = mean(ci_per); 
teta_head = mean(stat); 
teta_head_var = var(stat)*ones(1,2); 

  
se_limits = std(ci_per); 

  
UCL = limits(2); 
LCL = limits(1); 

  
if strcmp(center,'yes') 
    UCL = 2*teta_head - limits(1); 
    LCL = max(0,2*teta_head - limits(2)); 
    limits = [LCL UCL]; 
    se_limits = sqrt(4*teta_head_var + var(ci_per)); 
end 

   

     
% Create a random data of observations with a new seed 
% Obtain index vector of out of control values 
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new_seed = 1405; 
rand('twister',new_seed) 
randn('state',new_seed); 

  
ARL_sims = zeros(10,1); 

  
for i=1:10 

  
    X = shift*generator(distribution,0,1,n,maxm); 

  
    j = 1; 
    check = 0; 

  
    while check<r 

  
        X_stat = estimator(statistics,X(:,j))/coeff(statistics,n); 
        out = logical(X_stat>UCL) + logical(X_stat<LCL); 

  
        if out==1 
            check = check+1; 
        end 

  
        j = j+1; 

  
    end 

  
    clear X X_stat out 

     
    ARL = (j-1)/r; 
    ARL_sims(i,1) = ARL; 

     
end 

  
ARL_final = mean(ARL_sims); 

  

  

  
function cons = coeff(statistics,n) 

  
switch lower(statistics) 

     
    case('mad')  
        cons = n/(n-0.8); 

         
    case('sn') 
        cons = 1; 
        if (mod(n,2)==1)  
            cons=n/(n-0.9); 
        end 

         
    case('qn') 
        if (mod(n,2)==1)  
            cons=n/(n+1.4); 
        elseif (mod(n,2)==0)  
            cons=n/(n+3.8); 
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        end 

         
end 

And finally, the last function of my thesis, which is “detect.m,” creates the false 

alarm and detection probabilities of “Chapter 4.3: Proposed Control Designs.” The 

only input is type, which takes the input ‘gau’ for the former proposed design: 

“simultaneous use of Sn and Qn” and the input ‘cau’ give the matrices for the 

proposed design for the Cauchy model. The outputs are D: detection probability 

matrix for changing decision variables of the design, and FA is the corresponding 

false alarm matrix. 

detect: 

%   function [D FA] = detect(type) 
% 
%   m-file detect.m gives the detection and false alarm  

% probabilities 
% for the new quality design proposed in the conclusion chapter. 
% 
%   mean run lengths of the corresponding robust estimators  
% for Cauchy model design are given in the following table. 
% 
% Statistics     Mean ARL0  Mean ARL1 
% Qn-Cent         18,1666     4,2589 
% MAD             305,3198    28,0017 
% 
%   mean run lengths of the corresponding robust estimators  
% for sn & qn-per design are given in the following table. 
% 
% Statistics     Mean ARL0  Mean ARL1 
% Qn-Cent        11,4421     4,9724  
% MAD            232,7874   60,8988  
% 
%   INPUT: 
%   type: Type of the design whose probabilities will be calculated. 
%   Input: 
%           'gau' for sn-qn design 
%           'cau' for Cauchy model design 
% 
%   Written by Alp Giray Özen, 2012 

  
function [D FA] = detect(type) 

  
switch lower(type) 

     
    case('gau') 
        alpha = [1/18.1666;1/305.3198]; 
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        beta = [1/4.2589;1/28.0017]; 

        
    case('cau') 
        alpha = [1/11.4421;1/232.7874]; 
        beta = [1/4.9724;1/60.8988]; 

         
     otherwise 
        disp('Invalid type entry') 
        disp('Enter gau for sn & qn-per design ') 
        disp('or cau for Cauchy model design') 
        return 
end 

  

    

  
detection = zeros(6,16); 
falarm = zeros(6,16); 

  
for i=2:size(detection,1) 
detection(i,1)=i-1; 
falarm(i,1)=i-1; 
end 

  
for j=2:size(detection,2) 
detection(1,j)=j-1; 
falarm(1,j)=j-1; 
end 

  
for i=2:size(detection,1) 
    for j=2:size(detection,2) 
        detection(i,j)= geocdf(detection(i,1)-1,beta(1))... 
            *geocdf(detection(1,j)-1,beta(2)); 
        falarm(i,j)= geocdf(falarm(i,1)-1,alpha(1))... 
            *geocdf(falarm(1,j)-1,alpha(2)); 
    end 
end 

  
D = detection'; 
FA = falarm'; 

  
clear i j 

  

 

The last command also means that it is over. That’s all for now… 

Goodbye everybody, I wish “Random Power” were with you… 

I also wish each of your lives took its power from love, found its route in art, and 

formed its shape by scientific thought… 


