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SAMPLE SIZE DETERMINATION IN BIOEQUIVALENCE STUDIES
UNDER 2x2 CROSSOVER DESIGN

ABSTRACT

In bioequivalence studies, approximate formulas for sample size determination are
derived based on Schuirmann's (1987) two one-sided tests (TOST) in bioequivalence
studies. In clinical trials, crossover trials are experiments in which patients/volunteer
are allocated a series of treatments with the objective of comparing the different

treatments or different doses of the same treatment. This design attracts clinicians

because it eliminates between subjects variability.

Sample size calculation plays an important role in bioequivalence trials. In
practice, a bioequivalence study is usually conducted under a crossover design or a
parallel design with raw data or log-transformed data. The purpose of this work is to
determine the number of subjects/sample size required to conduct a clinical trial in
order to compare the efficacy or futility of a new produced drug/treatment with that
of the reference drug in case of heterogeneous variability. A simulation study was
carried out to construct two-one sided (1-2alpha)x100 percent confidence intervals
for ratios of the test and reference formulations of a drug product to assess whether
the test and the reference drug products are bioequivalence or not. Finally, the

simulation is performed through R 2.14.0 statistical software.

Keywords: Crossover design, sequential design, bioequivalence studies, power and

sample size.



2X2 CAPRAZ TASARIMI ALTINDAKiI BiYOESDEGERLIK
CALISMALARINDA ORNEK BOYUTUNUN TANIMLANMASI

0z

Biyoesdegerlik ¢alismalarinda 6rneklem biyiikliigi Schuirmann (1987)‘in iki tek
yonlii testine (TOST) dayanilarak elde edilir. Biyoesdegerlik caligmalar1 igin
carpimsal ve toplamsal modeller kullanilir. En yaygin tasarim 2 dizi, 2 donem ve 2
tedavi igeren 2x2  carpimsal tasarim  modelidir. Capraz  tasarimda
gontilliilere/hastalara farkli tedaviler ya da ayni tedavide farkli dozlar uygulanir ve
sonuclar karsilastirilir. Bu tasarim bireyler aras1 degiskenligi yok ettigi ig¢in

klinisyenler tarafindan tercih edilmektedir.

Orneklem biiyiikliigii klinik ¢alismalarda onemli bir rol oynar. Gergek veriler
(doniistim uygulanmamis) ya da Logaritmik doniisim uygulanmis veriler,
biyoesdegerlik ¢alismalarinda, paralel ya da ¢apraz tasarimlar altinda kullanilir. Bu
caligmanin amaci heterojen varyanslilik durumunda test ve referans ilacinin
etkinligini karsilastirmak i¢in gerekli 6rneklem biiyiikliigiinii belirlemektir. Test ve
referans ilaglarin biyoesdeger olup olmadigini belirlemek i¢in iki tek yonlii test
yapist kullanilarak %(1-20)x100 giiven araliginda simulasyon g¢alismasi yapilmistir.

Son olarak simulasyon ¢alismasi R 2.14.0 paket programi kullanilarak yapilmistir.

Anahtar kelimeler: Capraz tasarim, ardisik tasarim, biyoesdegerlik ¢alismasi, giic
ve drneklem biiytkIigi.
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CHAPTER ONE
INTRODUCTION

The sequential approach has been a natural way to proceed throughout the history
of experimentation. Perhaps the earliest proponent was Noah, who on successive
days released a dove from the Ark in order to test for the presence of dry land during
the subsidence of the flood (Turnbull, B.C., & Jennison, C., 2000). Sequential design
is an adaptive design this allows for pre mature termination of a trial due to efficacy
or futility, based on the interim analyses. According to Gould, A.L. (1995), the
concept of sequential statistical methods was originally motivated by the need to
obtain clinical benefits under certain economic constraints, that is, for a trial for a
positive result, early stopping ensures that a new drug product can exploited sooner.
While negative results indicated, early stopping avoids wastage of resources, referred
to as “abandoning a lost cause”. That is the right drug at the right time for the right
patient. In general; Sequential methods typically lead to savings in sample-size, time,

and cost when compared with the classic design with a fixed sample-size.

Bioavailability (BA) of a drug is defined as the rate and extent to which the active
drug ingredient is absorbed and becomes available at the site of the drug action.
Bioavailability (BA) and Bioequivalence (BE) studies are performed based on the
requirements set forth in part 320 of section 21 of the Code of Federal Regulation
(CFR) and guidance given by US Food and Drug Administration’s (FDA) Center for
Drug Evaluation and Research (CDER)

Bioequivalence; “The absence of significant difference in the rate(CmaX) and

extent (AUC) to which the active ingredient or active moiety in pharmaceutical
equivalents or pharmaceutical alternatives become available at the site of drug action
when administered the same molar dose under the similar conditions in an
appropriately designed study. Or in a broad definition: Two different drugs or
formulations of the same drug are called bioequivalent if they are absorbed into the
blood and become available at the drug action site at about the same rate and

concentration. Bioequivalence trials (FDA, guidance1992,2000b and 2001) play a



crucial role in the drug development processes. Under this approach, to minimize
both inter and intra individual variation eligible subjects (typically, normal healthy
volunteers, preferably nonsmokers and without a history of alcohol and drug abuse)
are randomized to one of two treatment sequences, either Test followed by reference
(TR) or reference followed by test (RT). Subjects may be males or females.
However, risk to women of childbearing potential should be considered an individual
basis. Women should be neither pregnant, nor likely to become pregnant until after
the study. Additionally, women taking contraceptive drugs should not include in the

studies.

Exception: If the investigated active substance is known to have adverse
(negative or harmful) effects, it may be necessary to use patients instead under

suitable precautions and supervision.And the two drugs are said to be average

bioequivalence (ABE) if and only if the(1—2a)><100% confidence interval for the

ratio of test to reference formulation is contained within the regulatory limits of

0,0, , specifically according to some regulatory agencies, like FDA,0.8-1.25

or-0.2231436—0.2231436 for both AUC andC__ (Anonymous, 2001a).

max

There are two commonly used experimental study designs in clinical research:

parallel and crossover.

In parallel study design, each subject is randomized to one and only one
treatment. Most large clinical studies adopt this approach. While a crossover design
Is a repeated measurements design such that each experimental unit (patient) receives
different treatments during the different periods of time, i.e., the patient’s crossover
from one treatment to another during the course of the trial. In a crossover trial
subjects are randomly allocated to study groups where each group consists of a
sequence of two or more treatments given consecutively. Subjects allocated to the
RT study group receive the reference treatment R first, followed by the test treatment
T, and vice versa in the TR group. Crossover trials allow the response of a subject to

treatment R to be contrasted with the same subject's response to treatment T.



Removing patient variation in this way makes crossover trials potentially more
efficient than similar sized, parallel group trials in which each subject is exposed to
only one treatment. In theory, treatment effects can be estimated with greater

precision given the same number of subjects.

Even if there are so many types of crossover designs, the most popular crossover
design is the 2 -sequence, 2 -period, 2 -treatment crossover design, sometimes called
the 2x2 crossover design. Crossover designs have been the most popular designs of
choice in many clinical and pharmaceutical trials. Many diseases and conditions are
studied using a crossover design in a clinical trial, Chow, S.C., & Liu, J.P. (2009). A
crossover design is a study that compares two or more treatments or interventions in
which subjects, on completion of a course of one treatment, are switched to another.
This implies that each subject acts as his/her own control. The fundamental
assumption of a crossover design is that patients usually have a chronically stable
condition that will not vary between when they are taking the first and the second
treatments. Therefore, crossover trials are, by necessary, short term trials. Typically,
each treatment is administered for a selected period of time and, often, there is a
“washout” or “re-stabilization” period between the last administration of one
treatment and the first administration of the next treatment, allowing the effect of the
preceding treatment to wear off. Where possible, allocation of the treatment

sequences in crossover trial is randomized, blinded process.

It is widely recognized among statisticians that the evaluation of sample size and
power is a crucial element in the planning of any research venture (Chow, S.C.,
Shao, J., & Wang, H., 2003). Consider a clinical trial to study the efficacy and safety
of new drug where patients are randomized to receive either a treatment with the new
drug or a control with a reference or existing treatment. A key design element is to

determine the required sample size (Julious, S. A., 2010).

Power and sample size estimations are measures of how many patients are needed
in a study (Schuirmann, D.J.A., 1987). Nearly all clinical studies entail studying a
sample of patients with a particular characteristic rather than the whole population.



We then use this sample to draw inferences about the whole population. Power and
sample size estimations are used by researchers to determine how many subjects are

needed to answer the research (Anonymous, 2001).

Sample size determination is important for the following main reasons:
Economic reasons:

An undersized study may result in a waste of resources due to their incapability to
yield useful results. Recall that without a large enough a sample, an important
relationship or effect/difference may exist, but the collected data not be sufficient to
detect it. An oversized study can result in unnecessary waste of resources, while at
the same time vyielding significant results that may not have much practical
importance. Note that if a study is based on a very large sample, it will almost always

lead to statistically significant results (Altman, D. G., 1982).

Ethical reasons:

An undersized study can expose subjects to unnecessary (sometimes potentially
harmful or futile) treatments without the capability to advance knowledge. An
oversized study has the potential to expose an unnecessarily large number of subjects
to potentially harmful or futile treatments. Generally, overall sample size calculation
is an important part of the study design to ensure validity, accuracy, reliability and,
scientific and ethical integrity of the study (Altman, D.G., 1980).

This thesis consists of six chapters and the first chapter includes the general
information about the study. The aim of the study, its content and the steps, which
will be followed, are explained and also sequential designs, parallel and crossover
designs, bioequivalence studies, features of the crossover designs, power and sample

size determinations are shortly touched in this chapter.

The second chapter explains about the general concept of sequential design and
the theoretical aspects of this design will be also stated in detail. In addition, adaptive

design and sample size re-estimation will be seen.



The third chapter is about designs, the most important types of designs, i.e.
crossover and parallel, types of effects in BE study, washout periods and the role of
statisticians in clinical study. The advantageous and disadvantageous of crossover

designs over parallel design will be touched.

The forth chapter is about bioequivalence (BE) and bioavailability (BA),
pharmacokinetics and pharmacodynamics parameters are discussed in detail and
some decision rules and regulatory aspects used to determine BE  studies.
Additionally, applications of group sequential design in BE studies will be touched.

The principal topic of the fifth chapter is, the statistical considerations for the
assessment of average bioequivalence studies (BE) and methods used to evaluate BE
will be considered. Some of the methods are Two One-Sided Test (TOST),
confidence interval method and hypothesis testing methods will be considered in
detail. Power and sample size determination for clinical study is also the main

concern for this chapter.

Finally, in chapter six, simulation methodologies, formulas, conclusions of this

work will be touched, which is the important of this paper work.



CHAPTER TWO
SEQUENTIAL DESIGN

A principal reasoning for conducting a group sequential test is discussed in detail

in Pocock (1977) and O’Brien and Fleming’s(1979), and its aim is simply to

decrease the sample size of the study units. Interim analyses also enable management
to make appropriate decisions regarding the allocation of limited resources for
continued development of a promising treatment. In clinical trials, it is desirable to
have a sufficient number of subjects in order to achieve a desired power for correctly
detecting a clinically meaningful difference if such a difference truly exists (Chow,
S.C., 2007).

2.1 Two Stage Design

According to Potvin, D., et al. (2008), first initial group of subjects are treated and
data are analyzed, if bioequivalence are not demonstrated an additional subject can
be employed and the results from both groups combine for final statistical analyses.

In general, two stage group sequential design with interim look aftern, subject’s
complete and final look after N(znl+n2)subjects complete. Here we have the

following potential decisions.

1. In stage one (for n; subjects)

a. Stop and claim bioequivalence

b. Continue the trial in second stage
2. In stage two (for n=n;+ny)

a. Stop and claim bioequivalence

b. Stop and don’t claim bioequivalence.



2.1.1 Sample size re-estimation methods

A sample size re-estimation (SSR) refers to an adaptive design that allows for
sample size adjustment or re-sampling based on the review of interim analyses
results. The sample size requirements for the trial are sensitive to the effect size and
its variability (Schuirmann, D.J.A., 1987). That is inaccurate estimation of the effect
size and its variability leads overpowered or underpowered results, neither of which
is desirable. If a trial is underpowered, if the variance used in the power calculation is
too low or the chosen effect size overly optimistic, it will not be able to detect a
clinically meaningful difference, and consciously prevent a potentially effective drug
from being delivered to patients. On the other hand, if the trial is overpowered, it
could lead to unnecessary exposure of many patients to a potentially harmful

compound when the drug, in fact, is not effective (Lenth, R.V., 2001).

The required sample size to compare two populations means 4 and g, against a 2-

sided alternative with common variance o can be derived as

2 2

Z(Zl—a/2+zl—ﬂ) _ Z(Zl—a/2+zl—ﬂ)

(=) (2)

n=>

2.1

Where 6 = 1, — 14,

n: The number of subjects (patients) to be sampled.

Z, : The critical value
2

o and é are the variance and the effect size respectively.

aand [ are type one and type two errors respectively (Chow, S.C., 2007).

Our aim here is to increase the power by minimizing both type one and type two
errors, but from (eq.2.1) and Figure 2.1, it is impossible to minimize these two errors
simultaneously, for a constant sample size n, as a result the only way to increase the

power, is increasing the sample size.



In short the effect size and its variability should be estimated correctly in order to
get the appropriate results. And the sample size re-estimation depends on the effect

size or the variance or both.

Table 2.1 The relationship between sample size, power and Type one error.

Tail(5)=one,Effect size=0.2
o err prob o err prob
=0.05 =01
#| Power (1-B err prob) | Total sample size | Total sample size
1 0.600000 87.8581 57.3932
2 0.627000 94.4058 62.7096
3 0.654000 101.355 B68.3984
4 0.651000 108.770 745169
5 0.708000 116.735 81.1377
3 0.735000 125.356 58.3551
7 0.762000 134.772 96.2935
8 0.759000 145174 105122
9 0.816000 156.829 115.081
10 0.843000 170128 126.520
11 0.870000 185.683 139.991
12 0.897000 2045331 156.427
13 0.924000 228,649 177618

Tail{s)=0ne,Effect size=0.2

250

200 -
o
E i o oerr prob
=
g —0— = 0.05
5 150
z —o— =0.
&
=] -
=

100 —

0= T T T T T T T T T T T T T i

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Power (1-B err prob)

Figure 2.1 The relationship between type one error, power and sample size.



2.1.2 Adaptive sample size sequential methods

In a group sequential trial, interim analysis are conducted on the data available at

one or more intermediate stages, when the sample size n, and allowed type | error

rate (0;), at each stage are pre-established according to some rules. The utilization of
adaptive trial designs can increase the probability of success, reduce the cost, reduce
the time to market and deliver the right drug to the right patient at the right time.
Commonly used adaptive trials include standard group sequential design, sample size
re-estimation, drop-loser design (Jones, B. & Kenward, M.G., 2003 and Chow, S.C.,
2007).

The benefits of monitoring clinical data are:

Economical: Savings in time and money can result if the answers to the research
questions become evident early before the planned conclusion of the trial. By
permitting early stopping, group sequential approaches provide some protection
against unnecessary use of resources if the planned total sample size was based on an

overestimated variance.

Ethical: In a trial comparing a new treatment with a control, it may be unethical
to continue subjects on the control (or reference) arm once it is clear that the new
treatment is effective. Likewise if it becomes apparent that the treatment is
ineffective, inferior, or unsafe, and then the trial should not continue. Interim
analysis in sequential trials allows making conclusions on efficacy and safety before
the planned end of the trial is reached.

In the basic two treatment comparison, a maximum number of groups”k», and a
group size”m», are chosen, subjects are allocated to treatments according to a

constrained randomization scheme which ensures m subjects receive each treatment

in every group and the accumulating data are analyzed after each group of 2xm

responses. For each K =1...k,a standardized statistic Z, is computed from the first

k groups of observations, and the test terminates with rejection of
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H, if |Z,| is greater than critical value C,
Here H,,Z, and C,are respectively the null hypothesis, test statistic and the
critical values. If the test continues to the K" analysis and the Z, < C, then it stops at

that point and H is accepted.

Here the sequenceC, are C,,C,,C,,..C, , chosen to achieve a specified typel
error and different types of group sequential test give rise to different sequence
(O’Brien, P.C., & Fleming, T.R., 1979). Shortly, the following can be achieved.

After group k=1..k -1

if Zk| > Ck stop, reject H, and otherwise

Continue to groupk +1
After groupk
If|Zk| > Ck . Stop and reject H, , otherwise,

Stop and report fail to reject H, ,”accept” H, .

Or simply letT, be the test statistic and a, andb, be the lower and upper limits

then the stopping rule can be rewritten as:

Stop for efficacy if T, <b,
Stop for futility if T, > a,
Continue to second stage ifa, <T, <b,

The major imputes to group sequential testing came with papers of Pocock’s

(1977), O’Brien and Fleming’s (1979) and Turnbull and Jonnison (2000).

The minimum sample size for stage two is 2 (if the decision rule determined that
the study should continue to stage 2) and there is no upper limit to the size of stage 2.
This can be expressed as: Sample size for stage 2 is [2, o) and here equal sample

size assumption is also under consideration.



CHAPTER THREE
TYPES OF DESIGNS

We can split research studies in to two broad classes. That is experimental/
interventional and observational studies. There are two commonly used experimental
study designs in clinical research: parallel and crossover (Hinkelmann, K. &

Kempthorne, O., 1994).

3.1 Parallel Design

Parallel study design, each subject is randomized to one and only one treatment

(Jones, B., Kenward, M.G., 2003).

D Group 1 Test
Subjects— §

3,

5

_ Group 2 Reference

Figure 3.1 Two group parallel design

Parallel design may not be an appropriate for bioavailability and bioequivalence
studies. This is because the variability in observations (e.g., AUC) consists of the
inter-subject and intra-subject variabilities and the assessment of bioequivalence
between formulations is usually made based on the intra-subject variability. Even if
the bioequivalence in average bioavailability between formulations can still be
established through this design, the comparison is made based on the inter-subject
and intra-subject variabilities. In crossover design an adequate length of washout
period is important in order to eliminate the possible carry over effects and as a
result, the study may take considerable time. This, in turn, may increase the number
of drop outs and make the completion of a study difficult. In addition, if the study is

conducted with very ill patients, a parallel design is recommended over that of a

11
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crossover design so that the study can be completed quickly. Generally a parallel

design is recommended over a crossover design for the following conditions:

1. The drug is potentially toxic or has a very long elimination half-life.
2. The population of interest consists of very ill patients.
3. The cost increasing the number of subjects is much less than that of adding an

additional treatment period.

3.2 Crossover Designs and Statistical Inferences for a Standard 2x2 Crossover
Design

A crossover design is a repeated measurements design such that each
experimental unit (patient) receives different treatments during the different periods
of time, i.e., the patient’s crossover from one treatment to another during the course
of the trial (Brown, B., 1980). Generally, a crossover design is a modified
randomized block design in which each block receives more than one formulation of
a drug at different time periods and a block may be subjects or a group of subjects.
Jones, B. & Kenward, M.G. (2003). A crossover trial is a study that compares two or
more treatments or interventions in which subjects, on completion of a course of one
treatment, are switched to another. This effectively means that each subject acts as
his/her own control. Senn, S. (2002) the fundamental assumption of a crossover trial
is that, patients usually have a chronically stable condition that will not vary between
when they are taking the first and second treatments. Therefore, crossover trails are,
by necessity, short-term trials.

3.2.1 Classification of crossover trials

Crossover trials are classified according to the number of treatments given to a
subject and according to whether a given subject receives all (complete crossover) or
just some (incomplete crossover) of the study treatments. For simplification, as
usual, let’s represent T for the test drug and R for the reference drug.
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The simplest crossover design is two sequence, two period, two treatment

crossover design, in which subjects receives either test (T) and reference(R)

treatment in the first study period and the alternative treatment in the succeeding

period, commonly called the 2x 2 crossover design (Jones, B. & Kenward, M.G.,

2003).

Table 3.1 Crossover design (2x2)

Design 1 period 1 period 2
Sequence TR T R
Sequence RT R T

Table 3.2 Higher-order crossover design
Design type Order Treatment sequence
Two-sequence dual design 2x3 TRR,RTT
Double design 2x4 RRTT,TTRR
Balaam’s design 4x2 TT,RR,TR,RT
Four-sequence design 4x4 TTRR,RRTT, TRRT,RTTR
Williams’ design with three treatments 6x3 TRT, TAR,RTARAT ATR,ART
3x3 Latin square design 3x3 TRA,RAT,ATR
4x4 Latin square design 4x4 TRBA,RATB,ABRT,BTAR

Where: TR means for the assumption of equal number of subjects for the two

groups, the first group receives treatment T in period 1 and after a certain period of

time (sufficient washout period), this group receives treatment R in period 2 and the

result is recorded. While RT stands for the reverse, first treatment R and after a

certain period of time this group receives treatment T and the results are recorded.

T=for test, R= reference and other two test drugs A and B for two other drugs.
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3.2.2 Washout period

According to Carriere, K.C. & Huang, R., (2000), the washout period is defined as
the rest period between two treatment periods for which the effect of one formulation
(the first treatment) administered at one treatment period does not carry over to the
next in other words, to eliminate the effect of the first treatment to the second time.
In a crossover design, the washout period should be long enough for the formulation
effects to diminish so that there is no carryover effect from one treatment period to

the next.
Period
1 2

& =

QD

3 equence 1  Reference § Test

o o
Subject—| = =

2 <

S 2

equence 2 Test Reference

Figure 3.2 A standard 2x2 crossover designs.

3.2.3 Two-treatment crossover study

The typical study design employed in bioequivalence studies is the two-treatment,
two-period, and two sequence crossover design given in (table 3.1). In this study
design, subjects are randomly separated into two groups of equal number. The test
formulation is administered to group ‘1’ in the first study period, and the reference
formulation is administered to group 2’ in the first period. During the second study
period, group ‘1’ receives the reference formulation and group ‘2’ receives the test
formulation. The first and second study periods are separated by a washout period,

which is designed to be of sufficient duration to allow elimination of the drug
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administered in the first period (Jones, B. & Kenward, M.G., 2003). An example of
a crossover experiment is one in which laboratory animals are treated sequentially
with more than one drug and blood levels of certain metabolites are measured for
each drug.

A two-period crossover design is commonly used in blood-level studies. The use
of crossover design eliminates a major source of study variability: between-subject
differences in the rates of drug absorption, drug clearance, and the volume of drug
distribution. In a typical two-period crossover design, subjects are randomly assigned
to either sequence T or sequence R with the restriction that equal numbers of subjects
are initially assigned to each sequence. A crucial assumption in the two-period
crossover design is that of equal residual effects. Unequal residual effects may result,
for example, from an inadequate washout period. Another assumption of the
crossover design is that there is no subject by formulation interaction. In other words,
the assumption is that all subjects are from a relatively homogeneous population and
will exhibit similar relative bioavailability of the test and reference products (Brown,
B., 1980.

3.2.4 The role of statisticians in clinical trials

Statistics has been called the technology of the scientific method yet medical
research is often criticized for ignorance and misuse of statistics. Examples include
incorrect use of statistical methods, inadequate sample sizes and poor reporting of
study design and analysis (Jones, B., 2006). In epidemiological research and clinical
research based on populations there is a particularly strong need for good statistical
input. For these reasons it is unwise for epidemiologists and clinical researchers to
get on alone upon such research or to seek insufficient statistical advice.
Additionally, statistician in clinical study is to use randomization (to eliminate the
systematic error), replication, blocking, and blinding in study design and proper
application of models to ensure that the statistics for the parameters we are interested
in are accurate and precise. In short, statisticians are the backbone of any field of
study. For example, suppose a standard 2x2 crossover design is to be conducted with

24 healthy volunteers to access bioequivalence between a test and reference
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formulations of a drug product (Chow, S.C., & Liu, J.P., 2009). Here we have two
sequence of formulations (RT and TR), implies12subjects are assigned for each
sequence for equal number of subjects for each group assumptions. And finally one
group will receive the first sequence of formulations (TR) and the second group
receives formulations in reverse order (RT). And the main thing here is we have to
assign 12 subjects for each sequence randomly, means that we first generate a set of
random numbers from 1 to 24 using appropriate statistical software like, R, Minitab,
SPSS, SAS else (Jones, B. & Kenward, M.G., 2003).

Table 3.3 Randomization of numbers

Sequencel 20 4 18 21 9 5 2 22 14 11 19 12

sequence2 10 24 15 1 13 7 23 8 16 3 6 17

Then, the subjects are sequentially assigned a number from 1 to 24. Subjects with
numbers in the first half of the above random order are assigned to the first sequence
RT and the rest are assigned to the second sequence TR.

Table 3.4 Randomization codes for the standard crossover design

Sequence 1 Sequence 2
Subject Formulation Subject Formulation

2 TR 1 RT
4 TR 3 RT
5 TR 6 RT
9 TR 7 RT
11 TR 10 RT
12 TR 11 RT
14 TR 13 RT
18 TR 15 RT
19 TR 16 RT
20 TR 17 RT
21 TR 23 RT

22 TR 24 RT
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3.2.5 Linear model for 2x2 cross-over data

In order to define the linear model, let Y;, denote the response (e.g. AUC, log

AUC or logC,.,, ) in period j, in subject i on sequence K,
where;
1I=1,2,..,n, j=1,2 and k=1,2 and n,is the number of subjects in group k. The
total number of subjects in the trial is n=n+n,. The systematic effects we

anticipate are due to the periods and formulations (Chow, S.C., 200). As the subjects
are allocated randomly to the two groups, there should be no sequence effect.

However, it is traditional to include such an effect and we will do so here.

After each subject is assigned to either treatment sequences TR or RT in each

period, we can construct a general linear model as follows:

Y =p+S, +m; +F  +X. |, +ey (Additive model) 321
X = Sy F A ey (Multiplicative model)

Yijk =log(X,

«) (and the multiplicative model can be changed in to additive

model.),
where
1 =the overall mean;
S, =the random effect of the i" subject in the k" sequence, i=1, 2,...,n, and
k=1,2
7 =the fixed effect of the j™ period, where, j=1, 2.

F. =the direct fixed effect of the formulation or drug product administered at

period j in sequencek.In the standard 2x2 crossover design there are only two
formulations (Jones, B. & Kenward, M.G., 2003). This is because the formulation
administered at the first period in the first sequence, as shown in table 3.5 below, is

the test formulation, then



18

(R ifkaj k=12 299
U Ry if ko ’ -

A, 1 = the residual effect carried over from the(j —1)th period to the j" period

in sequence K.
&, =the (within subject) random error in observing y;, .

For the standard 2x2 crossover design, the carry over effects can be occurring at
the second period. Let us represent the carry over effect of the test formulation from

period 1which exists in period 2 at sequence 1 by A, . Thus

if j=2, k=1
(j-1k) — {AT if I iz 3.2.3
As 1T K J=2
Table 3.5 The fixed effects in the full model.
. Period 1 Period 2
o | § S3 S3
3|2 g2 .2
G| & 88 3
1 |TR w,=pu+m+F | ForTdrug(Y,y,) | th, =p+m,+F+A. | ForRdrug(Y,,,)
2 |RT | g, =pu+m+F, | ForRdug(Yy,) | thy, =p+m,+F + A, | For Tdug(Y,,,)
My = E (Yijk)
Where; 7,+7,=0 (3.2.4)
F+F =0
A+4,=0

Based table 3.5, for comparison of the bioavailability of these two formulation
effects we have to separate and estimate each effect from drug (treatment effect). In

general for bioavailability and bioequivalence studies in crossover design, it is

commonly assumed that:

1. There are no period effects
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2. No carry over effects
This is due to

a. A well conducted study can eliminate the possible period effect.
b. The residual effects from the previous dosing period, carry- over effect, can be

eiminated by giving sufficient length of washout (drug free) period.

But these two effects may be still present and especially the present of the
carry over effect strongly increases the complexity of statistical analysis for the
assessment of average bioequivalence. In conclusion, before the comparison of
average bioavailability between two formulations, we have to test the
presence/absence of both the period and the carry over effect (Carriere, K.C. &
Huang, R., 2000). It was common practice to follow the advice of Grizzle (1965)
when testing for the carryover difference. Grizzle suggests two important things
about the carry over effect: If the test for a carry-over effect is not significant, then
the t-test based on the within-subject difference is used. While if the carry-over
effect is significant, then the treatments are compared using only the period 1
data, as in case of a parallel group design. In short if there is carryover effect,
period 2 is discarded.

3.2.6 Types of Effects and assumptions

In any design the following effects are common to appear.
1. Carryover effect
2. Treatment effect
3. Period effect
4

. The period by treatment effects/interaction effect

Statistical inferences for these effects can be done from the model given in
equation (3.2.1) and we have to consider the following assumptions additionally
(Chow, S.C., 2007). But from our study we assume that there is no carry-over, period

and interaction effect in addition to the following assumptions.
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i. {S; }i.i.d with normal with mean0 and variance o’ .

ii. {eijk} i.i.d with normal with mean0 and variance o’

iii. {Sik} and {eijk} are mutually independent. And

o’ and o are the inter and intra subject variabilities respectively.

3.2.6.1 Carry over effects

Carriere, K.C. & Huang, R.(2000), the effect of the treatment from the previous
time on the response at the current period is called carryover effect. In other words, if
a patient receives treatment T during the first period and treatment R during the
second period, then measurements taken during the second period could be a result
of the direct effect of treatment R administered during the second period, and/or the
carryover or residual effect of treatment T administered during the first period. There
are a few types of carryover effects for example first-order carryover effects which
stay one period beyond application. Second-order carryover effects stay two periods
beyond application, and generally k™-order carryover effects stay for k periods
beyond application. These carryover effects yield statistical bias. In short, the
possibility is that the effect of a treatment given in one period might still be present

at the start of the next period.

Let A=A —A;. Then A can be used to assess the carry over effect. Under the

constraint of A, + 4, =0 , carry over effects are equal for the two formulations, that

is A=0 if and only if A, = A;. Therefore a test for carry over effect means a test
for equal carry over effects. When there are no carry over effects, the direct treatment

effect(F =, — F;) can be estimated the data from both periods.

Let’s see the test for the present of the carry over effect.
Hy: A=0 (or A; = 43)

Versus 3.25
H,: A0 (or A, # 4)
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As usual the rejection of the null hypotheses leads to the presence of the carry

over effect.

From statistical point of view, if the confidence interval contains zero, then there
is no enough information to reject the null hypothesis and we can conclude that no
carry over effect. Generally, there is a reasonable assumption that the washout period
can be chosen to be long to eliminate the possible carry-over effect.

Carry over effect

0 \Ye\

N

Within-patient test for Between-patient  test  for
treatments  (crossover treatments (parallel design)
0 Yes
Efficacy is unproven Efficacy is demonstrated

Figure 3.3 The impact of the carry-over effects
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3.2.6.2 Direct Treatment effects

Unlike carry over effect, here in case of treatment effect, it is helpful to start with

the period difference for each subject with in each sequence which is defined as

follows:

di :%(Yizk _yilk)1 1=12,..,n; k=12 3.2.6

And the expected value and the variances of the period differences are given by:

From this we can see that the variance of the period difference only involves the
intra-subject variability which reflects the merits of the crossover design in
comparing the direct drug effects. However, the expected value of d, consists of
both the period and the carryover effects.

In short,
H,:F =F; 328
H,:F = Fy -

Denote the period effect and the direct drug effect by 7 =7z, —mandF =F, — F;,
respectively. To draw statistical inference on F, consider the sample means of the

period differences for each sequence (Chow, S.C., & Liu, J.P., 2009). That is
3.2.9

The difference between sequences(i.e.,a.l—a.z)is clearly not an unbiased

estimator of F unless there are no unequal carry-over effects(i.e., 4; = A5 ) since
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E(di—d.,)=(F ~F)+ (4 —4)/2 3.2.10
=F-A/2

where A =4, — 4.

As a result, if A, # A, there exists no unbiased estimator for F based on the data
from both periods. On the other hand, if A, = A, then

F=d:—d>
=3 (V.Zl —V.n)—(?.zz ~Y 1 )} 3211

is MVVUE of F, in where

?R = %(V,n +V,22) and VT = (V.zl +V.12> . 3.2.12

Yrand Yr are the least squares (LS) means for the tests and the reference
formulations, respectively.

A test for a direct treatment effect can be obtained easily as follows:

___F
Td - 64 %4_% 3.2.13
Where &7 is the pooled sample variance of period difference from both sequences

and unbiased estimator of oﬁ , which is given by;

2 Ny
62 =iy D> (dy —d, )’ 3.2.14
k=1 i=1
And reject the null hypothesis that no direct drug /treatment effect of if and only if
Ty|>t(a/2,n+n,-2).

And a (1—a)><100% confidence interval for F = F — F,is given by

F (L0 +0,—2)6, 2+ 3.2.15

1
n
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3.2.6.3 Period effects

According to ,Carriere, K.C. & Huang, R. (2000), the presence of a period effect
can be studied by testing the following hypothesis.

Using a t-test.

The null hypothesis of no period effect is rejected at the alpha significant level if,

If [T,|>t(er/ 2,0, +n,-2).

A 100(1- ) x100% confidence interval for 7z =z, — 7, is given by

AE(Ln +0,=2) 6y [+ 3.2.16

1
L
3.2.6.4 Period by treatment effects

This is also known as Direct-treatment by period interaction. As the name
suggests, different conditions may be present in different periods and this might have
an effect on patients. For example, certain diseases and conditions depend on the
weather. Let say a trial is conducted from December to February for period 1 and
March to May for period two. If the trial is applied to patients with an asthmatic
problem, it is possible that the patients under treatment are being affected by the
weather conditions (Chow, S.C., & Liu, J.P., 2009).

3.3 Analysis of variance for 2x2-crossover design

Although we can test all the hypothesis of interest by using two-sample t-tests, it
is important to note that we can also test these hypotheses using F-tests obtained
from ANOVA table. Here the main thing is the variability in the observed data by
partitioning the total sum of squares (TSS) of the observations into components of
the fixed effects and random errors (Senn, S., 2002).
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For 2x2 crossover design, we would partition the total sum of squares of the

2 n +n, observations into components for the carry-over effects, the period

effects, the direct treatment effects, and the error. LetY be the grand mean of all

observations. Then the total corrected sum of squares is given by;

Ty

S

k=1 j=1 i=1
:iinzk uk _‘?i-k'l' ‘?i.k + V i 3217
k=1 j=1 i=1
2 2 _ N
:ZZ Jk —Yik +ZZZ Y
k=1 j—1 i-1 —

= SSWithin + S’S Between

Where Yk %ﬁvi,-k and SS,;,, 1S the sum of squares for the within subject and

SS is the sum of squares due to subjects (between subjects). Since there are

Between

2 n +mn, observations, SS; ., has 2 n +n, —1 degrees of freedom. And there are
n, +n,subjects in both sequences. Thus, SS;,,.,and SS,,, have n +rn, —land

n, +n, degrees of freedom, respectively (Jones, B., 2006).

3.4 Crossover design is appropriate over parallel design.

A crossover design is preferred over a parallel-group design as it segregates the
inter-subject variation from the intra-subject variation (Jones, B. & Kenward, M.G.,
2003). The main advantageous that the treatments are compared “with-in subjects”.
That is every subject provides a direct comparison of a treatments she/he has
received. For example, in case of 2x2 crossover design, each subject provides two
measurements: one on T and the other on R. The difference between these
measurements removes any ‘subject-effect’ from the comparison. The main

advantageous and disadvantages will be highlighted below.
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3.4.1 Advantages and disadvantages of crossover design

I. Advantages

Each subject serves as his/her own control. It allows a within-subject comparison
between formulations, there is an assessment of both (all) treatments in each subject.
It removes the inter-subject variability from the comparison between formulations.
As there is usually less variability within than between different subjects, there is an
increase in the precision of observations. Therefore, fewer numbers of subjects are
required to detect a treatment difference (Chow, S.C., & Liu, J.P., 2009).

In short, since within-subject variation is almost certainly less than between —
subject variation, a crossover should produce more precise result than a parallel
group study of the same size.

ii. Some drawbacks of a crossover design:

There may be a carryover effect of the first treatment continuing into the next

treatment period,;

The experimental unit may change over time (for example, extreme weather

changes may make the second part of the crossover design different from the first.)

In animal or human experiments, the treatment introduces permanent

physiological changes; the experiment may take longer

In medical clinical trials, the disease should be chronic and stable, and the
treatments should not be total cures but only alleviate the disease condition. If
treatment A cures the patient during the first period, then treatment B will not have
the opportunity to demonstrate its effectiveness when the patient crosses over to
treatment B in the second period. Therefore this type of design works only for those

conditions that are chronic, (such as asthma, diabetes, hypertension, migraine,
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arthritis) where there is no cure and the treatments attempt to improve quality of life
simply (Jones, B. & Kenward, M.G., 2003).



CHAPTER FOUR
BIOEQUIVALENCE AND BIOAVAILABILITY

4.1 Introduction

The term bioavailability (BA) is a contraction for “biological availability” (Chow,
S.C., 2007). Both bioequivalence (BE) and BA are discussed in literature review in
detail and here precisely. A comparative bioavailability study refers to the
comparisons of bioavailability of different formulations of the same drug or different

drug products (Anonymous, 2001a and Anonymous, 1994).

Bioequivalence is usually studied by administering dosages to subjects and
measuring concentration of the drug in the blood just before and at set times after the
administration. On the other hand, in precise the concentration of drug that is in the
blood is referred to us bioavailability and two drugs, which have the same
bioavailability is called bioequivalence. There are a number of reasons why trials are

under taken to show two drugs are bioequivalent (Jones, B., 2006). Among them are:

1. When different formulations of the same drug are to be marketed, for instance
in solid tablet or liquid capsule forms.

2. When a generic version of an innovator drug is to be marketed.

3. When production of drug is scaled up and the new production processes needs
to be shown to produce drugs of at least equivalent strength and effectiveness

to the original process.

For a text on bioequivalence studies in pharmaceutical trials, we refer the reader
to (O’Brien, P.C., & Fleming, T.R, 1979).

4.2 Pharmacokinetic and pharmacodynamics parameters

Pharmacokinetic and pharmacodynamics parameters are explained in detail in 320
of section 24 of the Code of Federal regulation (CFR) and guidance given by US
Food and Drug Administration’s (FDA) Center for Drug Evaluation and Research

28
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(CDER). Some of the pharmacokinetic parameters are plasma or blood concentration

time curve (AUC), maximum concentration C__ , time to achieve maximum

concentration T,__, (Jones, B., 2006).

Pharmacokinetics; What the Body Does to the Drug (Absorption, Distribution,

Metabolism and Elimination)

Pharmacodynamics; What the Drug Does to the Body (Wanted Effects: Efficacy
or Unwanted Effects: Toxicity) (Anonymous, 2001).

Among the pharmacokinetic parameters, AUC is the primary measure of the
extent of absorption or the amount of drug in the body which is often used to access
bioequivalence between drug products. AUC is often used to measure the extent of
absorption or total amount of drug absorbed in the body. This measure is most
frequently estimated using the linear trapezoidal rule. Other Several methods exist
for estimating the AUC from zero time until time t (trapezoidal rules, See for
example, Chow, S.C. (2007), Patterson, S., & Jones, B. (2006), at which the last

blood sample is taken. LetC,,C,,C,...C, be the plasma or blood concentrations
obtained at a time 0,t,,...,t respectively. The AUC from 0 tot,, is obtained by

AUC

0ty

The area of a trapezoid is the sum of the area of a triangle and the rectangle. That

is from each part of an AUC is we can extract a triangle and a rectangle at same time.

The area of a trapezoid is obtained by adding the area of a rectangle and a

triangle.

A= AX Yo "_% Y1— Yo 4.2.1
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AR > AN

Figure 4.1 Computations of pharmacokinetics parameters like (AUC)

K
AUC 0ty :Z% t—t,,—1

t=2

422

The AUC should be calculated from 0 to oo, not just to the time of the blood

sample, as is so often done. The remaining area from t, to oocould be large if the

blood level at t, is substantial. The AUC fromt,to oo, denoted by AUC , _ ,

can be estimated as follows, Bonate, P.L. & Howard, D, R. (2011) and Chow, S.C.
(2007).

AUC . =AUC ,, +AUC, . =AUC ., +5

A 4.2.3

.

where; C,is the concentration at the last measured sample after drug

administration X is the terminal or elimination rate constant, which can be estimated
as the slope of the terminal portion of the log concentration-time curve multiplied
by —2.303.

In addition the AUC, the absorption rate constant is usually studied during the
absorption phase. Under the single-compartment model, the absorption rate constant
can be estimated based on the following equation using the method of residuals
(Chow, S.C., Shao, J., & Wang, H., 2003).

K,FDg —K,t —K,t
Ci=—2—"2 9™ —¢g ™
t = VK, K, 4.2.4
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where;

K, and K_are the absorption and elimination rate constants, respectively.

D, is the dose administered.

V is the volume of distribution.

F is the fraction of the dose that reaches the systemic circulation.

Given equation 4.2.4 , C__ and T__ can similarly be obtained as follows:

T —_ 2 303 10
max g 4.2.5
J— KaFD Ketmax Katmax
Cmax - Vv Kd_lze e —¢ 426

Thus, C,_., is estimated directly from the observed concentrations. That is,
C=max C,,C,,...,C, . Similarly,t, is estimated as the corresponding time

point at which the Cmax occurs. During the elimination phase, the pharmacokinetic
parameters that are often studied are the elimination half-life t; and rate
2

constant K, . The plasma elimination half-life is the time taken for the plasma

concentration to fail by half (Chow, S.C., 2007). Assume that the decline in plasma

concentration is of first order, thet, can be obtained by considering

LOgD = lOgD 2.303 303 4.2.7

D is the amount of drug in the body. Thus, at D:%, ie. t=1,, we have
2

Kty
_ 3 __06%
log 3 — 5355 :>t K

e

Where k, = —2,303 %2
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4.3 Assessment of Bioequivalent and bioavailability

4.3.1 Decision rules and regulatory aspects

The association between bioequivalence limits and clinical difference is difficult

to assess in practice. Suppose AUC and C,_, are the primary systematic exposure

X
measures of the extent and rate of absorption. For each parameter, the following
decision rules for assessment of average bioequivalence are applied (Anonymous,
2001).

75/75 Rule

Bioequivalence is claimed if at least 75% individual subject ratios (relative

individual bioavailability of the test formulation to the reference formulation) are
within(75%,125%) limits. Even if this rule has some advantageous like; it is easy to

apply, it compares the relative variability within each subjects and removes the effect
of heterogeneity of inter-subject variability from the comparison between the
formulations, and it is not viewed favorably by FDA owing to some undesirable

statistical properties.

In a simulation study, Chow, S.C. (2007) showed that the 75/757 rule is very
sensitive for drugs that have large inter- or intra-subject variabilities; even in the
situation where the mean AUC’s for the test and reference formulations are exactly
the same. Provided an analytic evaluation of the 75/75 rule relative to the £20 rule.
The results suggest that the 75/75 rule will never be met when the intra-subject

variability is large (say 20%) for any given true ratio of means.

80/20 Rule

If the average of the test product is not statistically significantly different from
that of the reference product, and if there is at least 80% of power for detection of a
20% difference of reference average bioequivalence is concluded. 80/20Rule is

considered only as a pre-study power calculation for sample size determination in the
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planning stage of study protocol. In other words the idea proposed for testing
bioequivalence was to simply test to see whether the formulations were different, and
if the test did not demonstrate a significant difference of 20% , then one would accept

bioequivalence.

+20% Rule

Bioequivalence is concluded if the average bioavailability of the test formulation
is within £20%of that of the reference formulation with a certain assurance (Chow,
S.C., & Liu, J.P., 2009).

80/125 Rule (Current Regulation Criteria of Bioequivalence)

At present, the regulatory authorities, recommended analysis of the data after

logarithmic transformation forC_,, and AUC and bioequivalence is concluded if the
average bioavailability of the test formulation is within (80,125%)of that of the

reference formulation with a certain assurance. To achieve this equivalence,
geometric mean ratios (like AUC test/AUC reference), as well as their projected (1-
02)x100% confidence intervals for the population mean ratio, must be located within
in 80% tol125%. From a multiplicative model for pharmacokinetic responses

postulated by Potvin, D.et al. (2008), the logarithmic transformation is suggested for

AUC(0—o) or AUC(0—t,,)and C_,. in the guidance of (Anonymous, 2001). As

a result, the Division of Bioequivalence, the FDA suggested use of an equivalence
criterion of 80%—-125% for assessment of bioequivalence based on the ratio of
average bioavailability. This criterion is not symmetric aboutl on the original scale
where the maximum probability of concluding average bioequivalence occurs.
However, on the logarithmic scale, the criterion has a range of —0.2231 t00.2231,
which the symmetric aboutOwhere the probability of concluding average

bioequivalence is at maximum.
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4.4 Application of group sequential design in the assessment of
bioequivalence

Application of group sequential approaches to the BE studies differs from their
application to most other types of clinical studies because the former generally
involves crossover designs, testing of equivalence hypotheses, and testing based on t-

distributions, whereas the later generally involves parallel designs with testing of
difference hypotheses (Gould, A.L., 1995). At the i"stage of a group sequential BE

trial, data are analyzed from the first n, of planned maximum number of subjects n,
and the trial is stopped and BE is concluded if and only if the 1—2« x100% CI for
the test to reference ratios are entirely contained within the interval [80, 125%]for
both C_., (maximum drug concentration) and (the area under the drug concentration

verses curve (Hauck, W.W..et al., 1997). AUC is often used to measure the extent of
absorption or the total amount of drug absorbed in the body). Otherwise the trial

continues to the second stage (Potvin, D. et al., 2008).



CHAPTER FIVE
STATISTICAL METHODS FOR AVERAGE BIOEQUIVALENCE

To claim average bioequivalence (ABE), for untransformed/raw data should be

established if the 90% confidence interval for i, — 4, is entirely within the interval
of —0.24,,0.241, (Chow,S.C., & Shao, J., 1990). The sponsor and FDA determine

the acceptable bounds for confidence limits for the particular drug and formulation
during protocol development (Anonymous, 2001b). Generally, if we keep the risk of
a particular patients at (5%), the risk of the entire population of patients (<80% and

>125% is 2xa(10%).That is 90% confidence interval comes from (CI=1-
2a).Generally, the statistical methods of choice at present are the two one-sided test
procedure, Schuirmann, D.J.A. (1987), or to derive a parametric or nonparametric

(1—2a)x100% confidence interval for the ratio (or difference) between the test and

reference product pharmacokinetic variable averages (Liu, J. P. & Weng, C.S.,
1993). Alpha is set at 5% leading, in the parametric case, to the shortest
(conventional) 90% confidence interval based on an analysis of variance or, in the

nonparametric case, to the 90% confidence intervals (Lindley, D.V., 1998).

Consider a 2x2 crossover trial where we wish to compare R and T using two

sequences of treatment (RT and TR) given in two periods. Let n, and n, subjects be
allocated to the two sequences, respectively (assumen; =11, ). Also assume that Y+

and Yrare the Test and Reference means, respectively, estimated from these

n, +1, subjects.

Two statistical approaches are suggested in literature for testing bioequivalence
between T and R. These are:

35
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* Two One Sided Hypothesis Tests (TOST) procedure at a significance level
(Westlake, W.J., 1972 and Schuirmann, D.J.A. 1987)

« 1—2a x100% Confidence Interval procedure.

5.1 TOST procedure

Let 6, and 6 are two known clinically meaningful biocequivalence limits and 6 be

the parameter of interest (Schuirmann, D.J.A., 1987). In TOST procedure two sided

bioequivalence test divided in to two one-sided tests in the following manner:

TestL,H, :0 <0, versusH :6>6,

Test2,H, :6, >0 versus H, :0 <0, 5.1.1

Under the normality assumptions, the two sets of one-sided hypothesis can be

tested with ordinary one-sided t test. We conclude that ., and i, are bioequivalent if;

Yr—YRrR —0_

o YT—/YXR —U _
T = o) t(e,n, +-n, —2)and
- 512
YT—=YR —0Oy
T =R v~ HeemAn, —2)
Where; V(Y; — Y, ) =<t (L + 1) 513

Equation (5.1.3) is the estimate of variance of mean treatment difference. a’e
MSE (Mean square error) from ANOVA of population measures (or its logarithmic
transformation in ratio hypotheses) considering sequence, period and treatment as

fixed factors and subject as random factor.
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5.2 Confidence interval approach

For a two-period crossover study, the ANOVA model used to calculate estimates
of the error variance and the least square means are identical for both transformed

and untransformed data. The procedural difference comes after the lower and
upper(l—Za)xloo% confidence intervals are found by formulas based on Student’s
t-distribution. A test for the null hypothesis of the equality of the two formulations of
a drug product was derived under a standardized 2x2 crossover design indicate that
the method of confidence interval is an appropriate method of assessing
bioequivalence. Based on the confidence interval approach, Westlake, W.J. (1972),

suggested the following action for decision-making:

If a(1-2a)x100% confidence interval for the difference(s; —u;) or the

ratio(z—L) is within the acceptance limits as recommended by the regulatory agency

like (Anonymous, 2001a), then accept the test formulation (that is the test
formulation is equivalent to the reference formulation), and otherwise reject it. In the

Confidence Interval Approach, there are several methods for constructing a
(1-2a)x100% confidence interval for (Z—L)has been proposed under a raw data

(untransformed) model. Among others the following have been included:
v' The classical confidence interval which is also known as the
shortest confidence interval.

v' Westlake’s symmetric confidence interval.

v' Confidence interval for (z4 —ug)based on Filler’s theorem

(Vuorinen, J. & Tuominen, J., 1994).

v" Chow and Shoa’s joint confidence region for ( 728 ,uR)
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5.2.1 The classical (shortest) interval method

The FDA advocates the use of (1—2a)x100% confidence intervals, as the best

available method for evaluating BE study data. The confidence interval approach

should be applied to the individual parameters of interest (e.g., AUC andC_ ). The

sponsor may use untransformed or log-transformed data.

5.2.1.1 Untransformed data

If we let X1 the mean of the test drug in period 1, X2be the mean of the test

drug in period 2, and Xr: the mean of the reference drug in period 1, Xr2be the
mean of the reference drug in period 2, then the estimates for drug averaged over

both periods are

5.21

Or Xrand Xr be the respective least square means for the test and formulations
respectively, which can be obtained from the sequence by period means stated above.

That is the halves of subjects are considered in RT and the other are in TR sequence

for first and second period respectively. The classical (1—2a)x100% confidence

interval can then be obtained based on the following t-statistic.

~ 11 5.2.2
Ud E‘FE

Wheren, and n, are the number of subjects in sequencel and sequence 2 and

2
S, given in chapter three from direct treatment effect which is &,° :0—26,

where g7 is the intra-subject variance. Under normality assumptions, T follows a

central Student’s t- distribution with n +n,—2 degrees of freedom (Locke, C. S.,
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1984). Thus, the classical (1-2a)x100% confidence interval for s —u, can be

obtained as follows.

L1:<YT—YR)—t(aanl"’nz_z)&d‘\/%_Fn_lz 523
U1=<YT—YR)+'[(05,”1+”2_2) o %—Fn_lz 5.2.4

5.2.1.2 Logarithmically transformed data

In the previous discussion we have seen so many statistical methods for the
assessment of bioequivalence. Most of the methods are derived under a row data. But
one of the difficulties commonly encountered in bioavailability studies, however is,
whether the assumption of normality is valid. In many cases distribution of the
response are positively skewed and exhibit the luck of homogeneity of variances
(Liu, J. P. & Weng, C.S., 1993). In this situation a log-transformation on the
response is often considered in order to reduce the skewness and to achieve an
additive model with relatively homogeneous variances. This leads to a multiplicative
(log-transformed) model. Based on the transformed data, the methods introduced
above can be applied directly (Hauschke, D., Steinijans, V.W., Diletti, E. & Burke,
M., 1992).

Shortly, FDA guidance’s (1) recommended log transformation before BE study.
Then for log-transformed data, the BE can be established if the 90% CI for ., — 11 is

entirely located in the interval (80%, 125%). It should be noted that (log 1.25

=—log 0.8 , which is0.231= —(—0.231) ). In other words, the BE limit for the log-

transformed data is symmetric about 0.

This section discusses how the (1—2a)x100% confidence interval approach

should be applied to log-transformed data. In this situation, the individual animal

AUC andC_, values are log-transformed and the analysis is done on the transformed

data. For a two-period crossover study, the ANOVA model used to calculate
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estimates of the error variance and the least square means are identical for both

transformed and untransformed data. The procedural difference comes after the

lower and upper (1-2a)x100% confidence intervals are found by formulas based on

Student’s t-distribution. The lower and upper confidence bounds of the log-
transformed data will then need to be back-transformed in order to be expressed on
the original scale of the measurement. One thing to keep in mind when moving
between the logarithm scale and the original scale is that the back-transformed mean
of a set of data that has been transformed to the logarithm scale is not strictly
equivalent to the mean that would be calculated from the data on the original scale of

measurement. This back-transformed mean is known instead as the geometric mean.

Bioequivalence studies measure and compare statistically AUC, C_., and T _,,

of the formulations. In case of AUC andC__ , the regulatory authorities recommend

max !
that they should be logarithmically transformed before further statistical analysis.

The use of log transformed values for AUC and C,, is recommended for several

reasons (Anonymous, 2001).

Clinical rationale: In a meeting in September 1991, the Generic Drugs Advisory
Committee (GDAC) concluded that the primary comparison of interest in a
bioequivalence study was the ratio rather than the difference between average
parameter data from the test and reference formulations. This is achieved statistically

by using log transformation.

Pharmacokinetic rationale: In the crossover design, the usual assumption is that
the observation is a function of additive effects due to subject, period and treatment.

But pharmacokinetic equations are of multiplicative character.

Statistical rationale: Many biological data correspond more closely to a log

normal distribution. AUC and C_,, tend to be skewed and their variances increase

with the means. Log transformation makes the variances independent of the mean

and the frequency distribution is made more symmetrical.
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5.3 Methods of interval hypothesis

As we have seen before the assessment of bioequivalence is based on the
comparison of bioavailability profiles between treatment formulations. Schuirmann,
D.J.A. (1987), first introduced the concept of interval hypothesis for the assessment

of average bioequivalence based on the two-one sided tests (TOST).

Westlake, W.J. (1972), pointed out that a statistically significant difference in the
comparison of bioavailability between drug products does not necessarily imply that
there is a clinically significant difference between drug products. For example, the
AUC for the test product may exhibit 80% bioavailability compared to the reference
product. The 20% difference in AUC, which may be statistically significant,
however, may not be of clinically significance in terms of therapeutic effect.

The statistical confidence interval hypotheses given below, is to show average
bioequivalence by rejecting the null hypothesis of average bioinequivalence. The
interval hypothesis for untransformed data/additive hypothesis of average

bioequivalence can be formulated as

Ho thy —pg <6 or pp —pg =6y
H,:6, <p, —pg <6, BE

5.3.1
Or interms of Union and intersection,
Ho iy —pg <6
H,, ‘pr —pg >0, 5.3.2

And

Ho, iy —pg 20y
H,, thr — g <8y 533
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The first set of hypothesis is to verify that the bioavailability of the tests
formulation is not too low, while the second set of the hypothesis is to verify that the
bioavailability of the test formulation is not too high ( Berger, R. L. & Hsu, J. C.,
1996).

Multiplicative bioequivalence tests of hypothesis/ after logarithmic transformation

of the given data, the hypothesis of the above can be written as follows:

H. <8 or 2>

0" pg R — 5.34
VS.
- .
H, 10, <3E <y 535
And this becomes an additive model after In transformation:
H, :Ing —Inp, <Iné, or Ingy —Inpy, >Ino,
H,:InS, <Ing —Inu, <8, ! 536

where
L+ and |L are respectively the mean of the test and reference treatments. When

population measures distributed log normally, 6 is considered as ratio and data is
analyzed after logarithmic transformation. Logarithmic transformation ratio

hypothesis is converted to difference hypothesis in the following way.

__ Logo; __
Logb = 5" = Logb, — Logd, 537
And here to keep integrity, BE limits also converted to their logarithmic values

when@ is ratio. For example, when the actual BE limits are 0.8 and 1.25, one
should use Log 0.8 =-—0.223and Log 1.25 =0.223 (this is very

imperative concept to change the given data to symmetry) as lower and upper BE
limits, respectively for testing purpose. It is clear from the above discussion that ratio
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hypotheses can be well converted into the hypotheses of difference. For simplicity,
we will refer the corresponding bioequivalence hypotheses as ratio bioequivalence
hypotheses and difference bioequivalence hypotheses when 0 is ratio and difference,

respectively (Chow, S.C., 2007). And finally we conclude that s, and yu;are

equivalent if
TH=—"1"""%" -t a,n,+n,—2
1“/jval’ YT—YR
T — YT—YRrR —0y 5.3.8

_—_— << —t o, N, +n, —2
N(“‘var YT—YR

2

_ I ~2
Where, V Y1 —Yr =<t L4+ L sofrom oa =22 therefore the test
statistics can be simplified as follows.
T " =
5.3.9

5.4 Power and sample size Determination in clinical design

During the planning stage of BA/BE study, the clinicians and the statisticians are
able to answer the following questions. How many subjects are needed in order to
achieve a desired power (commonly 80%) to established BE between two
formulations within clinically/may not be statistically important limits (£20% of the
reference mean)? If only small number of subjects is available in hand due to limited
resources/budget or some medical considerations, what we have to do? In order to
answer the above critical questions, a statistical approach for sample size
determination is employed. And the most commonly used approach is to perform a
pre-study power calculation based on an estimate of the intra-subject variability from
previous study (Chow, S.C., 2007) and (Phillips, K.F., 1990).
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5.4.1 Type | and type Il errors

In fact, two types of errors occur when testing hypotheses. As usual when the null
hypothesis is rejected when it is true, then type | error has occurred. While, when the
null hypothesis is not rejected when it is false, then a type Il error has been made
(Schuirmann, D.J.A., 1987) and (Phillips, K.F., 1990).

And the probability of making the above two types of errors is summarized below.

a = P(type I error)
=p(reject H, when H_ is true)

B = p(type Il error) 5.4.1
=p( fail to reject H, when H is false)

The probability of making a type | error,«, is called the level of significance,

commonly called the patient risk. And the probability of making a type Il error, 3, is
called commonly called the producers risk (Chow, S.C., 2007).

Table 5.1 Type one and two errors for traditional case /General case

H, (no difference)

True/ No difference False /Difference
Fail to reject No error Type Il error
Reject Type I error Power

Table 5.2 Type one and two errors for Bioequivalence trials

H, (bioinequiavalnce)

True/Bioinequivalent False/Bioequivalent

Fail to reject Right decision Type Il error/ producers risk

Reject Type | error/patients risk Right decision/power
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5.4.2 Hypothesis setting

In practice, the null hypothesis H_ and the alternative hypothesis H,are

sometimes reversed and evaluated for different interests. Generally, the choice of the
null and the alternative hypotheses may have some impact on the parameter to be
tested (Chow, S.C., 2007).

Choose H, based on the importance of a type | error. Under this rule, it is

believed that a type | error is more important and serious than that of a type Il error.
We would like to control the chance of making a type | error at a tolerable limit.

For example in case of bioequivalence-bioinequivalence, the following two
errors occur in assessment of bioequivalence when comparing two formulations in
average bioavailabilities:

i. We conclude bioequivalence when in fact the test formulation is not

bioequivalent to that of the reference formulations

ii. We conclude bioinequivalence when in fact the test formulation is

bioequivalent to the reference formulation.

In the interest of controlling the chance of making type I error, the FDA may
consider (i) is more important than (ii) and consequently prefer the following
hypotheses:

H, : Bioinequivalence

H, : Bioequivalence



CHAPTER SIX
APPLICATIONS AND CONCLUSIONS

6.1 Statement of the problem

Every clinical trial should be planned. This plan should include the objectives of
the given trial, primary and secondary end-points, and method of collecting data,
sample to be included, sample size with scientific justification, method of handling
data, statistical methods and assumptions. This plan is termed as clinical trial
protocol. One of the key aspects of this protocol is sample size estimation. The aim
of our work is to determine the minimum sample size to detect a clinically
important difference in bioequivalence studies under 2x2 crossover design. The
number of patients in a clinical trial should always be large enough to provide a
reliable answer to the questions addressed, but should also be the minimum
necessary to achieve this aim. This number is usually determined by the primary
efficacy objective of the trial. In any experimental study, neither under estimation
nor over estimation of sample size is risky. It is explained in detail from literature

review.

6.2 Simulation methodologies and formulas

The goal of simulation is to learn important statistical information about the
processes .and it is performed based on random numbers. This random numbers form
a basic tool for simulation studies. The following are important points for a
simulation study.

v In our simulation work, the missing value is substituted by the mean of the
other observations, if existed. And it is expected that there is no neither
outliers nor the influential observations exist.

v In R, the ‘seed. Set’ declares the seed for random number generator. And
if we use this command before random number generating statement, we
are able to retain same number each time we provide same seed.

v The for-loop (see introduction to R):

For (var in vector)

a7
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{Statements we want to simulate}
In our simulation study, we want to determine the required sample size to conduct
a clinical study in crossover design. The minimum sample size in BE study is 12.
0 First let us see the traditional approach
Sample size determinations based on the rules and regulations for the
assessment of bioequivalence and bioavailability of two drug treatments.
0 The confidence interval approach
0 Interval hypothesis testing approach

0 Power approach

First the values of AUC for Test and References drugs were generated from the
statistical model for a standard crossover design under normality assumption
distributed with the given mean and standard deviation as follows. For simplicity, it
is assumed that there were no carryover and period effects. For the standard 2
sequence, 2 period, 2 treatment crossover designs, Schuirmann’s TOST procedure is
still valid when the intra-subject varaibilities differ from formulation to formulations

of a drug product. The confidence interval can be computed as follows:

L
I
—_—
x|
-
|
x|
o
S~
i
—~
|
=
+
ND
|
N
S~
Q.q)

U, =(X7 = Xz)+t(a,n+n,-2)6, [£++ Fordifference 6.2.1

_X ~ [1 | 1 i 6.2.2
=3 +t(a,n +n,-2)6, [+ ++ Forratio

In this study design, ANOVA is to be used to identify the source contributions by
factors including subjects, period, formulation and potential interactions. The
geometric mean ratio together with the ANOVA residual mean error term are used to
identify the statistical basis for the 90% confidence interval for the ratio of the

population means (Test/Reference) of the identified metrics (e.g. AUC, Cmax).
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For traditional approach

As we may know, from statistical point of view, test for equality of two treatments

the hypothesis is stated as:

H, = g =0
ot A For difference 6.2.3
HlﬂT_ﬂRio B
H, 2 =1
#* " For ratio 6.2.4
Hl:ﬁil -
Hr

And if the confidence in case of the difference contains zero and in case of the
ratio contains one the equality of the two means can be conclude otherwise the null
hypothesis is rejected for the given level of significant. The simulation for the
traditional approach /method is performed based on this theoretical concept. For each

random sample, the lower and upper (Li,Ui) values are computed and finally the
proportion of (L;,U;)which contains 0 and 1 for difference and ratio are calculated,

if the proportion isz(l—Za)xloo%, then the two treatments are said to be

equivalent.
Some rules and regulations for bioequivalent studies
The confidence interval approach

As we have stated in the literature part of this paper in detail, if the computed
confidence interval is contained in (0.8, 1.25) and (-0.223, 0.2231) for the difference
and ratio logarithmic respectively, then bioequivalence is concluded. For each
simulation step, the confidence interval is calculated for the difference and ratio and

finally we compute the proportion of the confidence intervals contained in the two
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values stated by FDA and some other regulatory agencies. For this approach BE was
evaluated using two one-sided-t-test (Lindley, D.V., 1998).

L =(Xr = Xz)-t(an+n,-2)6, [F+E
U, =(Xv = Xz)+t(a.n+n,-2)6, [+ +X For difference case 6.2.5

Interval hypothesis testing approach

Here in each simulation step, we perform a statistical test (t-test) on the5%
significant level for TOST. And both the simulated p-values of TOST are compared
with the significant level of o« =5%, finally the proportion of rejecting the null

hypothesis is evaluated. Actually, this approach is similar to the shortest confidence
level.

Power approach for assessment of BE

An appropriate sample is chosen to meet the desired power for the assessment of
bioequivalence within clinically important limits.

H, :BIE
H,:BE 6.2.6
Here we have to see two important steps
1. If H,is not rejected atcx the level of significant, then we cannot conclude
that the two formulations are bioequivalent.
2. But if the null hypothesis is rejected, we proceed to whether the power for

detection of a difference of A = 0.2 14 is greater than80%.

And the power was calculated based on the modification of (Hauschke et al.,
1992).
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1-B=F ("5 -, ,,DF,DF |- F (%= +1,,, DF,,DF )

sy2/n s\2/n 6.2.7

Where; 1- 3 is the power, DF is the degrees of freedom associated with the error,
the F (x,DF)is the cumulative distribution functions of student’s t-distribution with
DF degrees of freedom, and lastly,t,_,,DF is the (1-«)thpercentile of a student’s t-

density function. S is the sample standard deviation (estimate ofc) which is
calculated from ANOVA on the In(Test/Reference)=In(Test)-In(Reference)
differences (from all the given data) using stage/sequence, and stage*sequence
effects in the model (since only one stage is conducted this model reduces to just a
sequence effect) (Potvin, D.,2008).

Generally; the simulation were performed using statistical software R, version
2.14.0 a different randomly selected seed was used for each scenario as shown in
table 6.1 below. A scenario was defined as a specified combination of ratio of
geometric means (GMR), intra-subject coefficient of variation (CV), and sample

size.

Table 6.1 The given values parameters for this simulation study.

Sample 2
Fr Hr 0= | size(n) o cvoe= 2R % 100%
I I

85 100 0.85 12 100 10
90 0.9 16 200 15
95 0.95 20 400 20
100 1.0 . 580 25
105 1.05 . 850 30
110 1.10 . 1200 35
115 115 100 1600 40
120 1.20 110 2000 45

120 2500 50

130 3000 55

140

150

4 = The true test mean
[t = The true references mean which constant.

0 = Geometric mean ratio, thus, the equivalence limits for the difference are —20
to +20 and for the ratio are 0.8t01.25.
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o =Intra-subject variability and for specified values of sample size;
Test~N (4,07 ) and
Reference~N (1, 0%),

where, n, u, o are respectively the sample size, the true mean and the true standard

deviation for the test and the reference drug products.

One million simulation studies were performed at« = 0.05 significant level, and
all approaches are evaluated. Note that, in our simulation results, the missing value is
likely to be produced sometimes, if it is the case it is replaced by the arithmetic
mean of the other simulated data produced in each step. For all stages we Evaluate
BE based on the power approach for the given CV and GMR. Let us summarize this
in the following table.

Evaluate BE for n, =12 subjects (first stage)

If BE meet, n=12 is the If BE not meet, based on the given CV and
appropriate sample size GMR value, take additional n, subjects

n=12+n, and evaluate BE again (second stage)

If BE meet n =12+, ,is If not meet stop
the appropriate sample size the study here.
Figure 6.1 Two stage Bioequivalence study

6.3 Results and conclusions

The analysis conducted at the adjusted significance levels (with the confidence
interval accordingly using an adjusted coverage probability which will be greater

than 90% for significant level 0.05) the proportion of the simulated value for all
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approaches should at least 90% to conclude BE and the corresponding sample size
to be sufficient, this is our aim for this study. Since the minimum sample size
required to conduct a clinical study is,12, which is also the initial sample size in our

simulation study, 6 for each group.

The simulation results of the sample size for GMR=0.85 and the corresponding
coefficient of variation, is given in table 6.2 below. For CVV=10, we need additional
52subjects, in addition to the initial sample size n=12. While for second stage,
CV=15, additional 60 subjects are required to demonstrate BE (n=12+60).

But generally, we can observe that when CV increased from 10 tol15, we need
additional 8 subjects. While when the coefficient of variation increased from 10to 20
the sample size is extremely increased t0120, further more we need additional 56

subjects.

Table 6.2 Simulation results for GMR=0.85

GMR=0.85

CV% 10| 15| 20 25 30] 35| 40| 45| 50| 55

Sample size=n 64| 72| 120

Table 6.2 shows the simulation results when the GMR=0.90. And CV=10,
additional 8 subjects in which 4 subjects for each group, are important to achieve BE
between the test and the reference drugs. For second stage when CV=20, only 24 in
addition to the initial12 subjects, which is almost one third of the sample size
required in case of GMR=0.85for same CV value to demonstrate BE. This implies

that the sample size is highly affected by GMR, in addition to CV value. In short, for

small values of CV <30 , a maximum of48 subjects/ sample size is needed. And

for high values of CV >30 , a minimum of 72 subjects are needed to conduct a BE

study.
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Table 6.3 Simulation results for GMR=0.90

GMR=0.90

CV% 10 15 20| 25| 30| 35 40 45 50| 55

Sample size=n 20 24| 36| 48| 72| 110

Here in table 6.3 above, we can observe that for GMR=0.90, when CV values
larger than 35, proceeding to the next step is not important. It is harmful both ethically

and economically.

If the GMR=0.95, the minimum number of sample size is achieved compared to

the above two GMR values for a constant CV values. Even, for Cv=10,15, BE is

achieved in the first stage, which is not for the above two GMR values. For example,

for CV = 20, only 4 subjects are needed, 2 for each group. And here we go for other

CV values.

As shows below in table 6.4, to summarize, for small values of CVV a maximum of

24 subjects are required, and for high values of CV, at least 36 subjects are needed.

Table 6.4 Simulation results for GMR=0.95

GMR=0.95
CV% 10| 15| 20| 25| 30| 35| 40| 45| 50| 55
Sample size=n 12| 12| 16 24| 36| 52| 88

When the GMR=1.0, and CV value is small, the simulation result shows similar
sample size value with that of GMR=0.95. Furthermore, we stop the study when
CV > 40, which is the critical value of CV with the corresponding sample size =88.

But for small values of CV, this GMR value is more appropriate in terms of

sample size.
Table 6.5 Simulation results for GMR=1.0
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GMR=1.0
CV% 10| 15| 20| 25| 30| 35| 40| 45| 50| 55
Sample size=n 12| 12| 16| 20| 40| 72| 88

For GMR=1.05, for small values of CV, almost similar results of sample size is
required with that of GMR=0.95, 1.0. And for large values of CV, adding additional
sample size is unimportant, in other words we have to stop the study here and must

use other alternatives.
Table 6.6 Simulation results for GMR=1.05

GMR=1.05
CV% 10| 15| 20| 25| 30| 35| 40| 45| 50| 55
Sample size=n 12| 12| 20| 40

And when the GMR=1.10, for small values of CV given in table 6.7, the
simulation result shows that, approximately two times the number of subjects needed
for GMR=0.95, 1.0, and 1.05. Nevertheless, for large CV values no need of
conducting any trial for the given GMR value, it is also wastage of time, resource

and may be risky ethically.

Example here for CV=25, we need 60 additional number of samples to conduct

BE study for the second stage.
Table 6.7 Simulation results for GMR=1.10

GMR=1.10
CV% 10| 15| 20| 25| 30| 35| 40| 45| 50| 55
Sample size=n 12| 20| 44| 72

For GMR=1.15, the simulation result shows that, for the second stage,

additional12, 32,98 subjects are required in addition to the 12 initial subjects.
Table 6.8 Simulation results for GMR=1.15
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GMR=1.15

CV%

10

15

20

25

30

35

40

45

50

55

Sample size=n

24

44

110

For simplicity, when CV is20, we have to take additional 98 subjects / sample

size in addition to the first12.

Finally for GMR=1.20, for CV =10, the sample size is n=100, means that

additional 88 sample are important. But for CV>10, no need of taking additional

sample size.

Table 6.9 Simulation results for GMR=1.20

GMR=1.20
CV% 10 15 200 25| 30 35| 40| 45, 50| 55
Sample size=n 100
Table 6.10 Summary of sample size from simulation results
GMR= /iy / 1
Cv% 085 090 0.95 1.0 1.05 1.10 1.15 1.20
10 64 20 12 12 12 12 24 100
15 72 24 12 12 12 20 44
20 120 36 16 16 20 44 110
25 48 24 20 40 72
30 72 36 40 72
35 110 52 72
40 88 88
45 130
50

55
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From our simulation study shown in the above table, we can understand that, for
highly variable drugs (CVV>=30), the appropriate GMR value is (0.95, 1.05), which is
also very important for low variable drugs to achieve the minimum sample size
required to conduct a clinical trials. For GMR values less than 0.95 and more than
1.05, we need maximum number of subjects even for low variable drugs. Finally
from our simulation result given in the appendix, we observe that the when the

sample size increases, the proportion of (1-2a)x100% Confidence interval contained
in 0.8,1.25 is highly increased, even for large values of CV and any values of
GMR, but the value of the power, which is very important to detect meaningful

clinical difference is decreased. As a result, based on the power approach,
demonstrating BE and determining the corresponding sample size for highly variable

drugs and for GMR values out of the range 0.95,1.05 , is very difficult. As the
intrasubject coefficient of variation CV increases, the power decreases and larger
sample sizes are needed to achieve a given power. Table 6.10 demonstrates the
influence of the intra-subject/within-subject coefficient of variation CV, where the

sample sizes necessary to attain a power of at least 80% are given. As conclusion,

the appropriate GMR to conduct BE study is 0.95,1.05
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R CODES

a <- sample (1:24, 24) # simply for randomization purpose.
sequencel <- a[1:12]# groupl taking the treatment in RT order.
sequence2 <- a[13:24]# group 2 taking the treatments in TR order.

# This the R codes for the simulation

sr=c(100,200,400,580,850,1200,1600,2000,2500,3000)#sr=variances for reference
st=100#variances for test

cv=ceiling(sqrt(sr)/mur*100)#ceiling()function rounds the vector entries up to the nearest integer
#ev

data.frame(sr,cv)

#muT=seq(85,120,5)# is the assumed mean of the test drug

muT=85# can be changed here easly

muR=100# which assumed to be constant

sigmaT=sqrt(100)# is the variance of the test drug which is assumed to be constant.
#sigmaR=c(100,200,400,580,850,1200,1600,2000,2500,3000)

sigmaR=sqgrt(100)# can be changed here easly

nsim=1000000# which is the number of simulation to be done
#n=c(seq(12,100,4),seq(110,150,10)) is the sample size

n=12 #n is the initial sample size and can be changed here

alpha=0.05

#1. Coverage of the Confidence interval

190=rep(NA,nsim)# list of 90% lower Confidence interval values.
r90=rep(NA,nsim)# list of 90% upper Confidence interval values.
sequence=c(rep(1,1,n/2),rep(2,1,n/2))# to assign the sequence
stagel=rep(1,1,n)# here to assign the stages

for (i in 1:nsim)

{
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XT=rnorm(n,muT,sigmaT)

XR=rnorm(n,muR,sigmaR)

#Ratio=log(xT)-log(xR)

ratio=(xT/xR)

T=log(xT)

R=log(xR)

Ratio=log(ratio)# equal to the log(xT)-log(xR)

Ratio[which(is.na(Ratio)==TRUE)] = mean(Ratio,na.rm = TRUE)# in case, if missing value is
exist,

#it should be replaced by the mean of the remaining values.

mu=mean(Ratio)

Imfit=Im(Ratio~stagel+sequence+stagel*sequence)#$resid for s2/2=sserror+ss.. #
sserrors=sresiduals

anova(lmfit)

resissq=anova(lmfit)["Residuals”, "Sum Sq"] # here how to extract sum of squares of a residual
#from ANOVA table
df=anova(lmfit)[,"Df"]
names(df)=c("seq","Res")#only one stage here no stage effect
df=df["Res"]
var= (resissq)/(2*df)

data.frame(Ratio,sequence,stagel)# how to write the treatments order

190[i]=mu-qt(1-alpha,df)*sqrt(var*2/n)# 1,000,000 lower values of confidence interval.
r90[i]l=mu+qt(1-alpha,df)*sqrt(var*2/n)#1,000,000 upper values of confidence interval.

}

# here we are intersted to calculate the coverage of the confidence interval
Cl=mean((190>=-0.2231436)&(r90<=0.2231436)) #Rule of FDA that is log (0.8,1.25)

#2. tTesting statistical hypothesis (p-values are simulated)
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pvl=rep(NA,nsim)# list of 90% lower p-values values.
pv2=rep(NA,nsim)# list of 90% lower p-valuesl values.
sequence=c(rep(1,1,n/2),rep(2,1,n/2))# to assign the sequence
stagel=rep(1,1,n)# here to assign the stages

for (i in 1:nsim)

{

xT=rnorm(n,muT,sigmaT)

XR=rnorm(n,muR,sigmaR)

#Ratio=log(xT)-log(xR)

ratio=(XT/XR)

T=log(xT)

R=log(xR)

pv1[i]=t.test(T,R,alternative="greater",mu=-0.2231436,paired=TRUE)$p.value
#1,000,000 lower p-values (first one-sided).

pv2[i]=t.test(T,R,alternative="less",mu=0.2231436,paired=TRUE)$p.value
#1,000,000 upper p-values (for the second one-sided test)

mean((pvl<alpha)&(pv2<alpha))# to compute the proportion of rejecting the null H. for TOST.

#3. The values of power computaions

power=rep(NA,nsim)

sequence=c(rep(1,1,n/2),rep(2,1,n/2))# to assign the sequence
stagel=rep(1,1,n)# here to assign the stages

for (i in 1:nsim)

{

XT=rnorm(n,muT,sigmaT)

XR=rnorm(n,muR,sigmaR)

#Ratio=log(xT)-log(xR)
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ratio=(xT/xR)

T=log(xT)

R=log(xR)

Ratio=log(ratio)# equal to the log(xT)-log(xR)

Ratio[which(is.na(Ratio)==TRUE)] = mean(Ratio,na.rm = TRUE)# in case if missing value is
exist,

#it should be replaced by the mean of the remaining values.

mu=mean(Ratio)

Imfit=Im(Ratio~stagel+sequence+stagel*sequence)#$resid for s2/2=sserror+ss.. #
sserrors=sresiduals

anova(lmfit)

resissq=anova(lmfit)["Residuals”, "Sum Sq"] # here how to extract sum of squares of a residual
#from ANOVA table
df=anova(Imfit)[,"Df"]
names(df)=c("seq","Res")#only one stage here no stage effect
df=df["'Res"]
var= (resissq)/(2*df)
sl=sqgrt(var)# how to compute the standard deviation

theta=muT/muR # the ratio of the means

power[i]=pt((log(1.25/theta)/(s1*sqrt(2/n)))-qt(1-alpha,(n-2)),(n-2))-pt(-
(log(1.25*theta)/(s1*sqrt(2/n)))

+qt(1-alpha,(n-2)),(n-2))

¥

mean(power>=0.8)# the values of power which is greater the the minimum requeirment.






