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GEOMETRY OF TORIC VARIETIES

ABSTRACT

Toric varieties admit a computable description that arise from combinatorial objects,
so-called cones and fans. On the other hand the whole deformation theory of an
isolated singularity is encoded in its semi-universal deformation. More generally,
for a complete intersection singularity, deformation is a family over a smooth base
space that is obtained by perturbations of the defining equations. In this thesis, we
want to investigate a description of deformation of affine toric varieties, which was
studied in Altmann (1995a). It follows that, by the geometric properties of a cone, the
semi-universal deformation, or the total spaces over the components can be described
by completely combinatorial methods. Key points for all our investigations are the
geometric properties of a cone and the notion of a Minkowski summand of some

polyhedron that comes from an affine cross cut of the cone.

Keywords: Toric variety, toric deformations, complete intersection singularity, cyclic

quotient singularity, Minkowski sum.
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SIMITSI CESITLEMLERIN GEOMETRISI

0z

Bu tezde, afin simitsi ¢esitlemlerinin deformasyonunun tanimini incelemek istiyoruz.
Simitsi ¢esitlemler kombinasyonal nesneler olan koni ve fanlarla ifade edilebildiginden
daha kolay ve hesaplanabilir bir tanimlamaya olanak saglar. Diger taraftan yalitilmis
tekilliklerin biitiin deformasyon teorisi onlarin yari-evrensel deformasyonlari ile ifade
edilir. Genel olarak tam kesisim tekillikleri icin bu aile piiriizsiiz bir taban uzayi
tizerinde tanim denklemlerinin perturbasyonundan elde edilir. Bundan dolay1 yari-
evrensel deformasyon ya da her bir bilegen {izerindeki tiim uzay koninin geometrik
ozelliklerinden faydalanarak sadece kombinasyonal methodlarla ifade edilebilir. Bu
tez icin yapacagimiz tiim arastirmalarimiz icin asil kilit noktalar ise koninin geometrik
ozellikleri ve konilerin afin ¢apraz kesiminden elde ettigimiz bazi ¢ok yiizliilerin

Minkowski toplamidir.

Anahtar Sozciikler : Simitsi ¢esitlem, simitsi deformasyonlar, tam kesisim tekilligi,

devirli boliim tekilligi, Minkowski toplama.
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CHAPTER ONE
INTRODUCTION

Since 1970’s, the study of torus actions has become increasingly important in
several areas. The main force of this progress was provided by the theory of toric
varieties in algebraic geometry. A toric variety is an irreducible normal algebraic
variety which contains an algebraic torus (C*)", as a dense open subset together with
a torus action on itself extended to an action on the whole variety. It provide an

alternative way to see many problems in algebraic geometry.

Up to today, a lot of results and applications related to toric varieties have been
obtained by using different approaches. In particular, combinatorial approach is a
mixture of principles from combinatorics and principles from geometry. The most
basic and elementary object in combinatorial geometry is called fan. This notion
allows us to describe toric varieties by combinatorial tools, that is, algebraic objects
can be translated into combinatorics. It follows that, toric varieties relates algebraic
geometry to the geometry of convex objects in real affine space. Then we obtain more
impressive and computable description of toric varieties. The benefit of the theory lies
in the fact that the geometric properties of toric varieties are constructed in terms of
the elementary geometry of fans. The standard textbooks on the theory of toric variety
are Fulton (1993), Ewald (1996), Cox et al. (2011) and Danilov (1978) with analytic
approach.

Deformation theory is as old as algebraic geometry and is one of the fundamental
techniques in algebraic geometry and in many other disciplines. We can deform
various kinds of objects, for example algebraic varieties, complex spaces, or singularities.
The main idea of the deformation is to perturb a given object by suitably varying the
coeflicients of its defining equations. The whole deformation theory is encoded in
the concept of flatness, which preserves the information of the original objects after
deformation. For example, flatness implies continuity of certain invariants. Good
references for details about deformation theory are Artin (1976), Sernesi (2006) and

Stevens (2003), the first two of them are in algebraic sense and the latter one is in



analytic sense.

In recent years, the value of using the idea of toric deformation has emerged
as a promising tool. Toric deformation allows us to replace a complicated object
by a simpler one that still carries most or all of the numerical and combinatorial
information. This gives rise to a theory with a geometric concept which is described

by cones and fans.

The base point of our investigation is Christophersen’s observation which states
that deforming a two-dimensional cyclic quotient singularity yields the total spaces
over the components of the reduced base space are also toric varieties. Based on
this observation, we will investigate the deformation theory of toric singularities that
occur in toric varieties. Their semi-universal deformations are analysed by using
combinatorial data, after the method was first introduced in Altmann (1995a). The
main result of Altmann (1995a) is that the toric deformations can be obtained from
homogeneous toric regular sequences which comes from Minkowski decomposition

of affine slices of the cone.

Now we give a more detail about how this thesis is organized:

In Chapter 2, we will try to provide a basic terminology for varieties and schemes.
We will construct an affine variety V in C" and its coordinate ring C[V]. By using
the gluing axiom, we will investigate the notion of algebraic variety. Then we will
examine the generalization of these notions, i.e., over a commutative ring. Theory of

schemes is introduced by Grothendick in late 1950’s.

In Chapter 3, we will introduce our main concept, toric varieties. As stated before,
toric varieties can be described in terms of combinatorial object, a strongly convex
rational polyhedral cone o C Nr. The procedure of the construction of affine toric
varieties associates to a cone o: the dual cone -, a semigorup S, a finitely generated
reduced C-algebra R, and eventually an affine variety X,. By the gluing method, in
the same manner given in Chapter 2, we will construct general toric varieties Xy that

correspond to the compatible collection of strongly convex rational polyhedral cones,



so-called fan ¥ € Ng. We will end this chapter by investigating some topological and

geometric properties of toric varieties.

In chapter 4, we will give a brief introduction to deformation theory in general case.
The main point of this theory is the existence of a semi-universal deformation. Because
of this we will especially introduce the deformation theory of isolated singularities
of affine schemes. More generally, the deformation of a complete intersection
singularities is obtained by perturbations of the defining equations over the smooth
base space. If we change the class of singularities, then the structure of the deformation

family or the base space will become more complicated.

In chapter 5, we will investigate the deformation of toric singularities, which occurs
in toric varieties, by combinatorial methods. Our aim is to understand the following
fact: a semi-universal deformation of a toric variety is also a toric variety. The first step
is always to look at the vector space of infinitesimal deformations 7'!. In addition, toric
deformations are existing deformations, i.e., admits reduced (smooth) base spaces. In
Section 5.3 we will explicitly construct homogeneous toric regular sequences. Each
toric regular sequence can be regarded as a flat map X — C™ by itself. It follows
that, toric deformations always comes from homogeneous toric regular sequences.
Then, we will investigate the Kodaira-Spencer map o : C" — T'! corresponding to toric
deformations. Finally, we will end our work by giving some examples to illustrate
all statements and methods completely. Basic references for this notion are Altmann

(1995a), Altmann (2009) and Altmann (1995b).



CHAPTER TWO
PRELIMINARIES

In this chapter we will give a brief information about some fundamental notions of
algebraic geometry which are necessary to understand the more deeper theory. This
chapter is based on Cox et al. (1997), Fulton & Weiss (1969), Hartshorne (1977) and
Reid (1988).

2.1 Affine Variety

Studying with polynomials gives us some conveniences in terms of geometry. More
explicitly, the solution set of polynomials gives us a geometric object. In this section

we will investigate this geometric object in the affine sense.

Let k be a field and k[xy,...,x,] denote the ring of polynomials with n variables,

X1,...,X,. Monomials form a basis for k[x,...,x,] as a k-vector space.
Definition 2.1.1. An n-dimensional affine space over k is defined to be the set:

Ap =k"=kx---xk={(ai,....,an) la;i ek, Yi=1,...,n}.

For example, Aﬁ is C" if wetake k =C, and R" if k = R.

The fundamental theorem of algebra states that every nonzero polynomial in one
variable over C is determined up to a scalar factor by its roots. Hilbert extends this
fact to the multi-variable polynomials over C. It follows that this idea works best for
an algebraically closed field k. An algebraically closed field means a field for which
every non-constant polynomial has a root in k. In this thesis, unless otherwise stated
we will always work over the algebraically closed field C. Now, we have enough tools

to construct the relation between polynomials and affine space.

Definition 2.1.2. Let S = {f1,..., fs} be a set of polynomials in C[xy,...,x,]. Then
the set V(S) ={(ay,...,a,) € C"| fi(ay,...,a,) =0, 1 <i < s}is called an affine variety
defined by f1,..., f;.



Remark 2.1.3. Note that, since more equations gives fewer solutions, we have § c S’

implies V(S) > V(S ).

Every affine variety can be defined by an ideal with the following construction. Let
=<8 >=<fi,..., fs > be the ideal generated by the polynomials f; € C[xy,...,x,],i=
1,...,s. The elements of I are in the form as )’ g;fi, gi € C[x1,...,x,] by the definition
of an ideal. If f; are all zero at a point, then such a sum is zero at that point. This means
that V(S) c V(1) and conversely since S C I, by Remark 2.1.3 we have V(S) > V(J).
Thus, V(S) = V().

Note that, an affine variety V is a hypersurface in C" if it can be given as roots of a
single polynomial f € C[xq,...,x,]. For example, the set V(y> — x?) is an affine variety

in C2. Since it is defined by only one polynomial, V(y? — x?) is a hypersurface.

The Hilbert Basis Theorem states that the ring C[xy,...,x,] is Noetherian. A
Noetherian ring means that every ascending chain of ideals Iy € I C --- in a ring
R eventually becomes constant, or equivalently every ideal is finitely generated. So,
for a given affine variety there exists a finite set of polynomials defining the variety. In

other words all varieties in C" are of the form V(7).

Proposition 2.1.4. (Reid, 1988, page 50) The following properties are true:
i) V({0}) =C" and V(C[x1,...,x,]) =0,

ii) VUINJ)=V({)UV(J),

iii) V(X 1) = V), for any family of ideals {1,}qen.-

These properties show that the affine variety of C" satisfy the axioms for the closed
sets of a topology of C". This topology is called the Zariski topology on C". One can
show that this is a cofinite topology on C". The induced topology on a subset V of C"

is called the Zariski topology on V.

On the other hand, given any affine variety V in C", we can associate it with an ideal

as follows:



Definition 2.1.5. The set I(V) = {f € C[x,...,x,]| f(ai1,...,a,) =0, Y(ay,...,a,) € V}
is called the ideal of V.

Note that, V. c W implies I(V) D I(W). Moreover, I(0) = C[x,...,x,] and I(C"*) = 0.

Consider the point P = (ay,...,a,) € C", then {P} = V(x| —ay,...,x, —a,). Hence,
every singleton of C" is an affine variety and thus closed in Zariski topology. Denote

the ideal I({P}) by

Mp =Cl[x](x; —ay) +---+ C[x](x,, — ay). (2.1.1)

At this stage, a natural question arises;

“What is the relation between the ideal I and I(V), where V =V (1)?”

To investigate this relation, we need some notions from algebra. A radical of an
ideal I is defined astobe aset {f| f" €I, for somer € Z¢} = VI and the ideal I is called
radical if VI = I. In addition, an ideal I is radical in a ring R if and only if R/I is a
reduced ring, i.e., a ring without nonzero nilpotent elements. The Nullstellensatz states
that if / is an ideal in C[xq, ..., x,], then (V1)) = VI. Therefore, I(V) is a radical ideal
for any affine variety V c C". Now we are ready to define the notion of the (reduced)
coordinate ring of an affine variety V in C". The Hilbert’s Nullstellensatz theorem
shows that V, endowed with the Zariski topology, is determined by its coordinate ring.

So we need to determine a regular mapping and to define a map between varieties.

Definition 2.1.6. Let V c C" and W c C" be two varieties. A function ¢ : V —» W
is said to be a regular mapping (or polynomial mapping) if there exist polynomials

fis--os [u € Clx1,...,xn] such that ¢(ay,...,an) = (filai,...,am),..., fu(a1,...,ay)) for
all (ay,...,an) € V. We say that the n-tuple of polynomials (fi,..., fn) € (C[x1,...,xu])"

represents ¢.

Example 2.1.7. Consider the varieties V = V(y — x%,z— x>) € C3 (the twisted cubic)

and W = V(y® = z2) ¢ C? (the cusp). Let m: C3 — C? be the projection map defined



by (x,y,z) — (v,z). Since every point in 7(V) = {(x%,x%)|x € C} satisfies the defining

equation of W, then r is a regular mapping 7 : V — W.

Now consider the simple case W = C. For any variety V ¢ C" amapping ¢: V — Cis
a regular function (or polynomial function) if there exists a polynomial f € C[xy,...,x;]
representing ¢. The polynomials f, g € C[xy,..., x,] represent the same regular function
on V c C" if and only if f —g € I(V). Thus, there exists a one-to-one correspondence
between polynomials in C[xy,...,x,] and regular functions. This means that the
polynomial ring C[xy,...,x,] is also coordinate ring of C". For an arbitrary affine

variety V c C", we define the coordinate ring of V as follows:
ClV]:=Clx1,...,x,]/I(V).
In particular, we can identify the coordinate ring C[V] with the regular functions on V.

Notice that, since I(V) is a radical ideal, the coordinate ring C[V] is finitely
generated reduced C-algebra. This means that C[V] is a vector space over C.

Furthermore, the homomorphism of C-algebras is a linear transformation, i.e., ¢(afg) =

ad(fg) = ap(f)¢(g), foralla € C, f,g € C[V].

Example 2.1.8. Consider the affine variety V = V(x) in C>. Then the coordinate ring
of V is the ideal < y >. Indeed, C[V] = C[x,y]/I(V) =C[x,y]/ < x >=<y >.

Now we are going to introduce the notion of the irreducibility of an affine variety
V in C". Some authors say that ‘affine variety’ instead of our ‘irreducible affine
variety’. There is no confusion, because we want to especially emphasize the notion

of irreducibility.

Definition 2.1.9. An affine variety V c C" is irreducible if there exist no decomposition

of subvarieties Vy, V; such that V = V; U V,. Otherwise, V is called reducible.

Since the polynomial ring C[x1,...,x,] is Noetherian, an ascending chain of ideals

IKvpc---cl(vy) c...



must stabilizes. Then the corresponding varieties satisfy the descending chain
conditions of varieties, by the fact V(I(V)) = V. Thus, we obtain the following

structure of an affine variety.

Theorem 2.1.10. (Cox et al., 1997, Theorem 2, page 204) An affine variety V C C" can

be written in the form 'V =V U---UV,, where each V; is an irreducible variety.

For example, the variety V(xz,yz) is a reducible variety, since V(xz,yz) = V() U

V(x,y).

On the other hand, irreducibility can be tought in algebraic terms. To do this we
need some fundamental notions of algebra. A proper ideal I c C[xy,...,x,] is called
prime if fg el for f,g € C[xy,...,x,], then either f € I or g € I. A proper ideal I C
Clx1,...,x,] is called maximal if I # C[x,...,x,] and any proper ideal J D I implies

J=1

For any point P € C" the ideal Mp, see Equation (2.1.1), is maximal in C[xy,...,x,],

since one can show that the quotient C[x1,...,x,]/Mp is a field. On the other hand,

any maximal ideal in Cl[x,...,x,] is prime, since the polynomial ring C[x,...,x,] is
a commutative ring. Furthermore, all maximal ideals of C[xy,...,x,] are in the form
Mp. Thus, Mp is a prime ideal, and all maximal ideals of C[x,...,x,] are prime.

Proposition 2.1.11. (Cox et al., 1997, Proposition 4, page 218) Let V C C" be an affine

variety. Then the followings are equivalent:

i) Visirreducible
ii) I(V) is a prime ideal

iti) C[V] is an integral domain

Therefore, the following one-to-one correspondences are valid.
{Irreducible varieties of C"} «— {Prime ideals of C[x1,..., x,]}

{Points of C"} «— {Maximal ideals of C[x,...,x,]}



{Points of affine variety V} «— {Maximal ideals of its coordinate ring C[V]}.

Definition 2.1.12. Two affine varieties V; ¢ C" and V, c C™ are isomorphic if there
are polynomial maps F : C" — C" and G : C"* — C" such that F(V}) = V,, G(V,) = V]
and FoG =idV2, GOFZidVI.

As aresult, we obtain the relation between V and C[V]. Furthermore, the coordinate

ring C[V] of an affine variety V can be characterized as follows.

Proposition 2.1.13. (Cox, 2000a) A C-algebra R is isomorphic to the coordinate ring
of an affine variety if and only if R is reduced finitely generated C-algebra.

Now, we describe another function, so-called rational function, on a variety.

Definition 2.1.14. A rational function in x1,..., x, with coefficients in C is a quotient
f/g of two polynomials where g is not the zero polynomial. Two rational functions
f/g and h/k are equal if fk = gh in C[x,...,x,]. The set of all rational functions
in xi,...,x, with coefficients in C is denoted C(xy,...,x,). It is a field with classical

addition and multiplication operations, and called qguotient field (or field of fractions).

Given f/g € C(V), g =0 gives a subvariety W c V and f/g: V\W — C is a well-
defined function, denoted by f/g: V --» C. If an affine variety V is irreducible, then
its coordinate ring C[V] is an integral domain. So, C[V] has a field of fractions. For

example, in the case of V = C", its field of rational functions C(V) is C(xy,...,x,).

Finally, we introduce some topological properties of an affine variety V. Given an
affine variety V c C", a subset W of V is called a subvariety if W is also an affine
variety. Then by the property of I, we have I(W) D I(V). Given a subvariety W C V,
the complement V — W is called a Zariski open subset of V. Some Zariski open subsets

of an affine variety V are themselves affine varieties. Given f € C[V]\ {0}, define
D(f)=Vy={PeVI|f(P)#+0}CV.

Indeed, if (V) =< fi,..., f; > for an affine variety V, then for any g € k[x1,...,x,], we
can write f in the form g +I(V). Thus, Vs =V -V(fi,..., f;,g). This means that V



10

is a Zariski open in V. And if we take W = V(f,..., f;,1 —gy) c C" X C, then we can
identify this variety with V. The sets Vy are bases for the topology on V and called

the principal open subsets of V.

If V is irreducible and f € C[V], then denote by C[V] the localization of C[V] at the
multiplicative set S = {f"|r > 0}. Thus, we obtain C[V];={g/f" € C(V)|g€C[V], r>
0}.

2.1.1 Spectrum

The identification of the points of an affine space C"* with the maximal ideals in the
polynomial ring C[xy,...,x,] gives us a useful object which is called spectrum. We
will define the spectrum as a set, for more detail, we direct the reader to Eisenbud &

Harris (2000) and Ueno (1997).

Definition 2.1.15. Let R be a commutative ring. The spectrum of R, denoted Spec(R),

is the set of all prime ideals of R.

Example 2.1.16. Let R = Z. Since Z is a principal ideal domain, every prime is

generated by only one element. Thus, we have Spec(Z2) = {0,2,3,...}.

Example 2.1.17. Consider the polynomial ring C[x] in one variable. Since prime
ideals are also maximal ideals in C[x], we have maximal ideals of the form < x—a >

for any a € C. Thus, Spec(C[x]) = C. More generally, Spec(C[xy,...,x,]) = C".
The notion of spectrum gives us the close relationship between V and C[V].

Because of this relation we can write V = Spec(C[V]). Since the principal open set

V' has a natural affine structure, we have V; = SpecC[V]y.

2.1.2 Normal Affine Variety

Normality is an important tool for us because a toric variety, which we will define

in Chapter 3, are always normal. Let R be an integral domain with the field of fractions
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K. R is integrally closed if every element of a field of fractions K which is integral

over R, means that it is a root of a monic polynomial in R[x], lies in R.

Definition 2.1.18. An irreducible affine variety V is normal if its coordinate ring C[V]

is integrally closed.

Example 2.1.19. C" is normal since its coordinate ring C[xy,...,x,] is integrally

closed.

Example 2.1.20. Consider the irreducible variety V = V(x> —y?) ¢ C2. Then its
coordinate ring is C[V] = C[x,y]/ < X - y2 >. Assume that X and Y be the cosets
of x and y in C[V], respectively. Since (Y, /X)Z: X, Y/X is not integral over C[V]. Thus,

V is not a normal variety.

We will end this section with another important tool, the dimension, since
dimension is an important invariant in algebraic geometry and we will especially use

in Chapter 4 and 5.

Definition 2.1.21. The dimension of an affine variety V, denoted by dimV, is the
supremum of all integers n for which there exists a chain @ # Voc Vy c---CcV, =V of

distinct irreducible sets.

For example, the dimension of V = C is 1, since we have {P} = Vo C V| =V for

PeC.

Definition 2.1.22. By the height, we mean the supremum of all integers n for which
there exists a chain pg C - -+ C p, = p of distinct prime ideals. The supremum of heights

of all prime ideals is called the Krull dimension of a ring.

Remark 2.1.23. Let V be an irreducible affine variety. We have identified any
irreducible subvariety of V with the prime ideals in C[xy,...,x,] which contains I(V).

Thus, we obtain the following fact:

dimV = dim (C[)q ] /]I(V)) = dimC[V].
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This fact allows us to apply results from the dimension theory of rings to the algebraic

geometry.

Proposition 2.1.24. Let R be an integral domain. Then for any prime ideal p in R we

have: heightp+dimR/p = dimR.

2.2 Projective Variety

Let M be an (n+ 1)-dimensional vector space over a field k. The projective space
P(M) is the parameter space of one-dimensional subspaces of the k-vector space M,

1.e., P(M) := {1-dimensional vector subspaces of M}.

Define an equivalence relation ~ on the nonzero points of k"*! by setting (aq, ..., a,) ~
(bg,...,by) if there is a nonzero scalar A € k such that (ag,...,a,) = A(by,...,b,). Let
0 denote the origin (0,...,0) € k™*!. Then we can give an equivalent definition for a

projective space as follows:

Definition 2.2.1. The set of equivalence classes of ~ on k™ 1\ {0} is called an n-

dimensional projective space over k, i.e.,

Pl =P" = K"\ {0))/~ = {(ap, ..., an) € K" |(ap,....an) # O}.

For simplicity, assume k = C. Each nonzero (n+ 1)-tuple (ay,...,a,) € C™*! defines
a line through the origin and a point (ay,...,a,). But there are many points (by,...,b,)
in C™*! defining the same lines. By the equivalence relation ~, the ratios ag : ... : a,
and by : ... : b, are the same. So, the notation [ag : ... : a,] can be used to describe the
equivalence class of (ao,...,a,), and it denotes a point P in IP”. In other words, one
can view P" as the space of lines through the origin. In this notation, the coordinates

lao : ... : a,] are called homogeneous coordinates.

At once, we will describe the projective varieties in terms of affine varieties follows:
LetUj={lap:...:a,] €P"|a;+# 0} cP". Forall j, one can defineamap ¢;: U; — C"
. . J— a . . . . n — a . .

by P=[ap:...:a,]€Uj> P= a—‘}’lg—} . Then the set Y(P) = a—‘j’
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aé—;l : aﬂ’l—;l S Z—;‘ is contained in C". Since the j-th component is nonzero, we get an
inverse map ¢ : C" — U; given by ¢((bo,...,b,))— [b1:...:1:...:b,]. Thus, there

exists a one-to-one correspondence between C" and U; C P".

Definition 2.2.2. A homogeneous polynomial of degree d is a polynomial in C[x, ..., x;]
whose all terms has total degree d or equivalently, F[Adxg:...: Ax,] = MFE[x0:...: x4,

1eC.

Given Pe P", F(P)=F([ag : ... : ay)]) is not equal to F(AP) = F([lag : ... : a,)) =
F([Aag: ...: day]) = %F([ag : ... : a,]). It follows that, we cannot define F(P). But,
the equation F(P) = 0 is well-defined since A € C* = C\ {0}. Let F € C[xop,...,x,] be a
homogeneous polynomial of degree d. The polynomial ring is an important example
of a graded ring, because

Clxo,-... xal = H CLx0,...., 4],
d>0
where C9[x,...,x,] = {f € C[xo,...,x,] | fis homogeneoues of degree d} U {0}. So
if F vanishes on any one set of homogeneous coordinates for a point P € P", then F
vanishes for all homogeneous coordinates of P as in affine case. Thus a projective

variety can be described in the following sense.

Definition 2.2.3. Let S be the set of homogeneous polynomials in C[xy,...,x,]. The

set V(§)={PeP"|F(P)=0,VF €S§}is called a projective variety.

As in affine case if [ is the ideal generated by S, then V(§) = V(). An ideal /
in Clxo,...,x,] is called homogeneous if it is generated by homogeneous polynomials,
1.e., any F € [ can be written as F = Z?:o F4, F4 € I where F; denotes the homogeneous

polynomials of degree d.

Definition 2.2.4. Given any projective variety V = V(I) ¢ P" we define the ideal as to
be a set, I(V) = {F € C[xp,...,x,]| F(P)=0,YP e V}.

This ideal is a homogeneous ideal. And by the same reason given in Section 2.1 this

ideal is finitely generated. If I is a homogeneous ideal, then VT is also homogeneous.
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Furthermore, it is known that V(< 1 >) = 0 in the affine case, but in projective case

there is an another homogeneous ideal, m =< xj, ..., x, > such that V(m) = 0.

Theorem 2.2.5 (Projective Nullstellensatz). For any homogeneous ideal I, we have
the following:
i) V(I) = 0 if and only if NT> m.

i) If V() # 0, then I(V(1))= VI.

Thus we have the following one-to-one correspondence:
{Homogeneous Prime Ideals} «— {Irreducible Projective Varities}.

Remark 2.2.6. We can define the topological notions on the projective variety as in the
affine case. If V € P" is a projective variety, then P\ V is called a Zariski open subset
of P". The Zariski topology is the topology on P"” whose open sets are Zariski open
sets. The subset W C V is called a subvariety of V. C P" if W is a projective variety in

P".

At the end of this section we discuss the rational function on a projective variety. We
have seen that a homogeneous polynomial in xo,...,x, does not give a function on P".
However the quotient of two such polynomials does if they have the same degree. Now,
suppose that F,G € C[xy, ..., x,] homogeneous polynomials of degree d and that G # 0.
Then we obtain a well-defined function g : P*\V(G) — C. As in Section 2.1, we can
write this as g : IP" --> C and it is a rational function on C. Thus, for an irreducible
projective variety V we define C(V) := {g | F,G homogeneous and degF = degG, G ¢

]I(V)} / ~ where the relation is defined as g = g—: if and only if FG"—GF’ € I(V).

2.3 Algebraic (Abstract) Variety

Recall that in Proposition 2.1.13 we have identified affine varieties with reduced
finitely generated, C-algebras. If we remove these restrictions we obtain a new object

of an algebraic geometry, called an affine scheme. This means that an affine scheme is
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a tool obtained from a commutative ring R. Because all of the differences between the
schemes theory and the theory of abstract varieties are clashed in the affine case, we
will focus on the notion of an affine scheme to define an affine variety, which parallels
our construction of an affine variety in Section 2.1. As in Section 2.1 there is a one to
one correspondence between a ring and an affine scheme. Studying with schemes
admits global constructions in our process, so will describe an abstract variety by
using an affine scheme. All statements can be found in Eisenbud & Harris (2000) and
Hartshorne (1977). To construct a scheme we need to define a sheaf, which includes

more local data on a topological space.

Definition 2.3.1. Let X be a topological space. A family with the following properties:

i) F(U) is an abelian group, for all open subset U of X,

ii) For any inclusion V C U of open subsets of X, there is a morphism of abelian
groups pyy : F(U) — F (V) such that
a) £(0)=0,
b) pyu : F(U) — F(U) is the identity map,

c¢) If Wc V c U are open, then pyw = pyw °puv

is called a presheaf F of abelian groups on X.

Remark 2.3.2. For an open set U C X, elements of ¥ (U) are called sections, denoted
by I'(U,F). Elements of I'(X, %) are called global sections. The maps pyy are called

restrictions and denoted by s |y for simplicity.

Let ¥ and G be two presheaves on X. We can define a morphism of presheaves,
¢ :F — G, as a morphism of an abelian groups ¢(U) : ¥ (U) — G(U) for any open set

U with the commutative diagram,

) 2L gw)

L]

FV) 5 6V)
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for each inclusion V c U.

Remark 2.3.3. If ¥ is a presheaf on X and U is an open subset of X, we can define a
presheaf # |y on U by setting F |y (V) = F (V) for any open subset V of U, which is

called the restriction of ¥ to U.

A sheaf F on X is a presheaf that satisfies the gluing axiom.

Definition 2.3.4. A presheaf ¥ on a topological space X is a sheaf if it satisfies the
following additional conditions:
i) If U =JV; is an open covering, and s € ¥ (U) such that s |y,= 0 for all i, then
s=0.

ii) If U = |JV; is an open covering, and s; € ¥ (V;) for each i such that s; |V,-0Vj:
s |Vimvj for all j, then there exist s € #(U) such that s |y,= s; for each i, (this

guarantees that s is unique).

Note that we can define a morphism of sheaves to be the same as a morphism of

presheaves.

Definition 2.3.5. A subsheaf of a sheaf ¥ is a sheaf ¥ such that for every open set
UcX, F'(U) is a subgroup of F(U), and the restriction maps of the sheaf ¥’ are
induced by those of F.

On the other hand, there is another way to describe sheaf; sheaf by its stalks.

Definition 2.3.6. If ¥ is a presheaf on X, and P is a point of X, we define the stalk Fp
of F at P to be the direct limit of the groups ¥ (U) for all open set U containing P, via
the restriction maps p, i.e., Fp = li_r)nT(U) = | lpeycx T(U)/ ~.

An element of Fp is represented by a pair < U, s > where U is an open neighbourhood
of P, and s is an element of ¥ (U). We can define an equivalence relation ~ as follows:
< U, s> and < V,t > define the same element if and only if there exists a neighbourhood

W containing P with W € U NV such that s|y = flw. Thus we have equivalence classes
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on ¥ (U). Therefore, one may speak of elements of the stalk ¥p as germs of sections

of F at the point P.

So far we have talked about a presheaf of abelian groups and their basic properties,
but we can define a presheaf (or sheaf) of rings. Now, we are able to describe affine
schemes: to any coordinate ring C[V] of an affine variety V we associate a topological

space together with a structure sheaf on it, SpecC[V].

Firstly, we need to construct a space SpecC[V] as a set. We have defined the
spectrum of a commutative ring as a set in Subsection 2.1.1, but in this case we
take a coordinate ring C[V] instead of a commutative ring R. In particular, points
of SpecC[V] were identified points of the affine variety V, maximal ideals of C[V],

and also irreducible subvarieties of V.

The next step is to define a topology on a space SpecC[V]. We can consider a regular
function on SpecC[V] as an element of C[V]. By using regular functions, we transform
SpecC[V] into a topological space; this topology is called the Zariski topology with
closed sets: V(S) ={P € SpecC[V]| f(P)=0, VfeS}={p e SpecC[V]|pDS}, for
each subset S c R. If f € C[V], we define the principal open subset of V = SpecC[V]
associated with f to be V= SpecC[V]\ V(f).

Finally, to complete the definition of SpecC[V], we have to describe the structure
sheaf Oy = Ospeccyv). The structure sheaf of an irreducible affine variety V = SpecC[ V]
is the sheaf of C-algebras in the Zariski topology which is defined as follows: given
a Zariski open U C V, a function f : U — C is regular if for every P € V, there is

fp €C[V] such that P € Vs, C U and ¢ IVfPe C[Vlp. Then
Oy(U) ={f:U — C| fis a regular function}

is a sheaf of C-algebras. Let us establish an important property of the structure sheaf

Oy.

Theorem 2.3.7. Let V = SpecC[V] be an irreducible affine variety. Then the structure

sheaf Oy has the following properties:
i) Oy(U)=C[V].
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ii) Iff € C[V], then OV |Vf: va.

This theorem tells us that Oy(Vy) = Oy lv, (Vy) = va(Vf) = C[V]; when V =
SpecC[V] and f € C[V].

Definition 2.3.8. A ringed space is a pair (X,Oy) consisting of a topological space X
and a sheaf of rings Ox on X. The ringed space (X,Oyx) is a locally ringed space if the

stalk of X is a local ring for each point P € X.

Now, we are ready to define our main concept, affine scheme, in this section.

Definition 2.3.9. An affine scheme is alocally ringed space (X, Ox) which is isomorphic
to the spectrum of some ring. An abstract variety (X,Ox), say simply X, is a ringed
space over C where each P € X has a neighbourhood U such that the restriction

(U,Ox |p) is isomorphic to (V,Oy) for some affine variety V.

Remark 2.3.10. If X is an affine scheme, then the dimension of X is the same as the

Krull dimension of C[X].

Given an abstract variety X, an open U C X is called a Zariski open if (X,Ox |y
) is isomorphic to the ringed space of an affine variety. Two rational functions are
equivalent if they agree on some nonempty Zariski open. The set of equivalence classes
is denoted by C(X) and is called the function field of X. Thus one can define a local

ring:

Definition 2.3.11. The local ring of V at P is Ox p = {¢ € C(X) | ¢ is defined at P} with
maximal ideal My p = {¢ € Ox p | #(P) = 0}.

Example 2.3.12. Consider the projective space P”. Now we will show that P" is an
abstract variety. Let U C IP" be a Zariski open and ¢ : U — C be a regular function such
that for each P € U there exists f/g € C(IP") with g(P) # 0 and ¢ [ynv(g)= (f/8) lunv(e)-

Then we obtain a structure sheaf on IP” as follows:

Opn(U) ={¢ : U — C| ¢ is a regular function}.
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In Section 2.2, we defined the affine open sets U;, and obtained U; = C". This gives an
isomorphism C(IP"*) = C(xo/x;,...,Xi—1/Xi,Xi+1/Xi,...,Xn/X;). Thus, the ringed space

(U;,Opr |y,) is isomorphic to (C"*,Ocn) for an affine variety C".

At last, we describe the morphism of abstract varieties. A morphism of abstract
varieties from X to Y is a pair of a continuous map f : X — Y and a map f* :
Oy(U) = Ox(f~1(U)) of sheaves of rings on W for each open set U such that f*is
compatible with restriction maps and the induced map f* : Oy rp) — Ox,p satisfies
My sp) = (fﬁ)_l(/\/(x,p). Let R and S be any two commutative rings. If X = SpecR and
Y = SpecS are irreducible affine varieties then a morphism is equivalent to C-algebra

homomorphism.

2.3.1 Gluing with Affine Varieties

The definition of an abstract variety implies that X has an affine cover U,, so that
Us=V, where V,, is an affine variety. Then the set V, g = fo(U, N Up) C V, is a Zariski
operci in V, and the map gop = fzo f, . Vap = Vg 1s an isomorphism of Zariski
open subsets for any a,. Moreover, these maps have the following properties, called

compatibility conditions:

1) 8aa =1y, forall «,

i) 8galy, vy, ©8esly, yov., = 8arly, v, - forallap.y.

Now, suppose we have a collection {{Vy}a,{Vagle s (8 8)a8} Where each V, is an
affine variety, Vg C V,, is Zariski open and g g : Vo g — Vp,o are isomorphisms which
satisfy the compatibility conditions. Then we get the topological space X = | |, Vo/ ~
where the relation is defined as; (a € V) ~ (b€ Vg) ifa€ V, g and b = g4 g(a). And the
structure sheaves Oy, patch to give a sheaf Oy. So, X is a variety with an affine open
cover U, such that U, = V,, for every a. This means that, a variety X is constructed
by gluing together affine varieties along Zariski open subsets V,, g by the map g, g, see
Cox (2000b).



20

Example 2.3.13. Let Vo= V| =C, V1 = Vi = C* and go.1(x) = g1,0(x) = x~!. Then
we take the disjoint union of Vj and V| and the equivalence relation which identifies

points under the gluing. Thus, we obtain

X

Voul Vl/(x € Vo1~ go0,1(x) € Vip)

{(ap,a1) |a; #0,i=1,2}

P!,

IR

2.3.2 Sheaves on Modules

One of another most important constructions of presheaf is that of a presheaf of
modules ¥ over a presheaf of rings O on a space X and also sheaf. The notion of
smoothness, we will especially introduce in Section 3.3, is related with the notion of
differentiability. So we need to investigate the notion of differentiability. All statements

can be found in Eisenbud & Harris (2000), Hartshorne (1977).

Definition 2.3.14. Let (X,Oy) be a ringed space. A sheaf of Ox-modules is a sheaf
F on X, such that the group ¥ (U) is an Ox(U)-module for each open set U C X and
for each inclusion of open sets V C U, the restriction homomorphism 7 (U) — F (V) is

compatible with the module structures by the ring homomorphism Ox(U) — Ox(V).

A morphism ¥ — G of sheaves of Ox-modules is defined as the morphism of
sheaves, such that for each open set U C X, the map ¥ (U) — G(U) is a homomorphism
of Ox(U)-modules.

The direct sum @Ti of sheaves, is defined by the presheaf U — @F (U, F;) for
iel iel
open subset U C X. Ien particular, if the index set / is finite, then it is a sleleaf.
Definition 2.3.15. An Ox-module 7 is free, if it is isomorphic to a direct sum of copies
of Ox. It is locally free if X can be covered by open sets U for which ¥y is a free

Ox|y-module. In the case of I is finite, its number of elements is called the rank of F .

A locally free sheaf of rank 1 is also called an invertible sheaf.
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The general notion of a sheaf of modules on a ringed space is a sheaf associated

which is defined on SpecR.

Definition 2.3.16. Let R be a ring and let M be an R-module. For each prime p C R, let
M, be the localization of p. For any open set U C SpecR define the group M(U) to be

the set of functions s : U — |_| M, such that for each p € U there is a neighbourhood

peU
V of p in U, and there are elements m € M and f € R such that for each qe V, feq

and s(q) = m/f in M,. Such M is called a sheaf associated to M on SpecR.

Definition 2.3.17. A sheaf of Ox-modules ¥ is quasicoherent if X can be covered
by open affine subsets U; = SpecR;, such that for each i there is an R;-module M; with

Flu, = M;. F is called coherent if additionally each M; is finitely generated R;-module.

Example 2.3.18. Let X be an any affine scheme. The structure sheaf Oy is coherent.

2.3.3 Differentials and Applications

Firstly we will introduce the module of differentials of one ring over another. And
then we generalize this idea. Let R be a commutative ring with identity and let B be an

R-algebra and let M be a B-module.

Definition 2.3.19. An R-derivation of B into M is amap d : B — M such that
1) d is additive,

ii) d(bb’") =bdb" +b’db (Leibniz’s Rule),
1) dr=0forall r e R.

Definition 2.3.20. The module of relative differential forms of B over R is defined to
be a B-module Qp/g, with an R-derivation d : B — Qg defined as b — db, which
satisfies the following property: for any B-module M and R-derivation d’ : B — M,
there exists a unique B-module homomorphism f : Qp/g — M such that fod =d’. It

follows that Qp/g is generated as a B-module by {db | b € B}.

Proposition 2.3.21. (Hartshorne, 1977, Proposition 8.1A, page 173) Let f : BOg B —
B be the diagonal homomorphism defined by f(b®b") = bb’, and let I = Ker(f).
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Consider B®g B as B-module by multiplication on the left. Then 1/I? inherits a
structure of B-module. Let a map d : B — I/1? defined by db=1®b—-b® 1. Then
< 1/I%,d > is a module of relative differentials for B/R.

Example 2.3.22. Let B = C[x,...,x,] be a polynomial ring over C. Then Qp/c is
the free B-module of rank n generated by dxi,...,dx,, where xi,...,x, are affine

coordinates of C".

Definition 2.3.23. Let Y be any subscheme of a scheme X.
1) The quotient I/1?> =1 ®o, Oy can be regarded as a coherent sheaf on Y, and called

conormal sheaf. Its dual Ny,x := Homp, ((I/ 1?)|y,Oy) is called the normal sheaf
of the embedding Y C X.

2) The tangent sheaf of Y is Oy := Homg, (-, Oy).

Let X be a scheme over Y. Then the sheaf of relative differentials of X over Y is

the conormal sheaf to the diagonal in X Xy X, and denoted by Q; Iy This sheaf is

a coherent sheaf on X. Additionally, a sheaf Q)

Xy is a higher order differential and

computed by an exterior powers. Note that, for each coherent Oy-sheaf M, there is a
canonical isomorphism of Ox-modules Hom(Qy, M) 5 Derc(Oy, M) defined by ¢ —
pod, where d : Oy — Qy is the exterior derivation and Derc(Oy, M) is the sheaf of

C-derivations of Oy with values in M. In particular, we have ®y = Derc(Oy,Oy).

n
Furthermore, the sheaf Qyx is locally free with Qx = @OX -dx; where x1,...,X,

=1
are local coordinates of X. As a consequence Oy is a locaily free of rank n and
n
0
Ox = Ox-—,
N axl‘
i=1
where 0x1,...,0x, is the dual basis of dxq,...,dx,.
n
: . aof .
Let f € Ox. Then in local coordinates, we have df = Z 6_dxi' In particular, we
— 0X;
i=1
can define an Ox-linear map a : I — Q)'( defined as f — df. By the Leibniz rule, «
induces a map « : I/I2 — Qx ®p, Oy, gives the exact sequence I/I2 R Q}( ®o, Oy —

Ql

¥ 0. Taking its dual, we obtain the exact sequence

0 — By — Ox®0, Oy B Nyx. 2.3.1)
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where £ is the dual of a.

n
. 0 .
In the local coordinates, we have @x p ®, , Oyy = @Oxy g and the image
: : X;
i=1
ﬁ(a%)e Homox),(ly/lz,()xy) sends a residue class [h] € Iy/I%, to [g—fi] € Oy,y, where Iy

is subsheaf of ideals of Ox consisting of the sections that vanish on Y.



CHAPTER THREE
TORIC VARIETIES

Toric varieties are special type in the scheme theory. The reason for this, toric
varieties allow a more simple and impressive description that uses objects from
elementary convex and combinatorial geometry. These objects are “‘convex polyhedral
cones” and their compatible collection so called “fans”, in a real vector space of
dimension equal to complex dimension of a variety. It follows that there is a one-
to-one correspondence between toric varieties and combinatorial objects. Thus, this
makes everything more computable than the usual one. The fundamental references

for this chapter are Cox et al. (2011), Ewald (1996) and Fulton (1993).

3.1 Affine Toric Variety

In this section we describe rational polyhedral cones and then explain how they
relate to affine toric varieties. We start by giving some fundamental notions from

convex geometry, see Oda (1985), Griinbaum & Ziegler (2003).

A set o C R" is convex if and only if for each pair of distinct points a,b € o the
closed segment with end points a and b is contained in . We can consider any linear
subspace of R” as a convex set. A set c CR" is cone if and only if forallue ocand 1 e R
implies that Au € o. A set o C R" is polyhedral if for all x € o are written as a linear
combination of only finite elements. Now we are ready to give our main combinatoric

objects, called a convex polyhedral cones.

Definition 3.1.1. Let S = {uy,...,u,} be a finite set of vectors in R". The set
r
U:{MER”W:Z/L-W, /lieRZ()}
i=1

is called convex polyhedral cone and the vectors u;’s are called generators of o,

denoted by o =< uy,...,u, >.

24
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In particular, if we take S = 0, then o = {0}. To understand better we will investigate

the below examples. Let {¢;} be the standart basis of R", fori=1,...,n.

Example 3.1.2. Let § = {u; = eq,u2 = e2}. Then applying Definition 3.1.1, we obtain

o = {ueR"u=21(1,00+22(0,1), 212 € Ry}

First quadrant of R,

Figure 3.1 The cone o generated by

e; and ey

Example 3.1.3. The largest possible convex polyhedral cone is R", generated by u; =

+eq,...,uUu, = te,, while the smallest is the trivial cone o = {0}.

Definition 3.1.4. Let N be a subgroup in R” containing the origin. N is called a lattice
if it is a discrete group with respect to addition. N is a discrete group means that for
all x € N there exists a neighbourhood U containing x such that UNN = {x}.

Let S ={vy,...,v,} be a linearly independent subset of R”. A lattice in R”, generated
by S, can be described as follows: N ={zjvi +---+z,v, | zi € Z, 1 <i <n}. An element

v in the lattice N is called a lattice point and v;’s are called a basis for the lattice N.

We will study with the standard lattice N = 7" = Z X --- X Z. In particular, a lattice
N is a finitely generated free abelian group such that N =2Z.-¢; ®---®Z-e,, where
{ei}?=1 is a standard basis of R". If we want to talk about vectors we must pass to real
vector space Ng =R-e; ®---®R-e, =R". Thus, we can consider the convex polyhedral
cone as a subset of Ng, i.e., we can write o C Ng. Now we will define our main tool,

so-called strongly convex rational polyhedral cone, to construct an affine toric variety.
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Definition 3.1.5. A cone o is a rational (or lattice) cone if all generators u; € S of o
belongs to N.

A cone o is strongly convex if it does not contain any straight line going through the
origin. In other words, ooN (—0) = {0}.

The dimension of a cone o is the dimension of the smallest linear space containing o,

and denoted by dim(c). Note that, dim(o) = dim(o + (—0)).

Example 3.1.6. Consider the cone o =< ej,e; +ep > in Np = R2, see Figure 3.2. Since
the generators of o are in N this cone is rational and since o-N (—0") = {0}, it is strongly

convex. The dimension is 2, because the smallest linear space containing o is R?.

Figure 3.2 The cone o
in Ng with a lattice N =
ZZ

Definition 3.1.7. The dual lattice of a lattice N is defined by
M =Hom(N,Z)={v:N — Z|v(u) = (u,v), Yu € N}.
If we take ie”l‘, ..., e as a basis for M, then

) 1 ifi=
(ei,€)) = 6ij = -
0 ifi#j

is satisfied.

In this definition (, ) coincides with the usual inner product (,) in R". On the dual

level, we will work over a real vector space corresponding to M such that

Mg =R-€]®---®R-¢, =R")" =R".
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Definition 3.1.8. The dual cone of a cone o is the subset of My defined by
o={ve Mg |{u,v)>0, Yueco}

Example 3.1.9. Consider the cone o given in Example 3.1.6, (see Figure 3.3a) where
up = ey and up = ey +ey. The generators of & are of the form vy = ae] + be; and
Vg = ce’i‘ +de§ where a,b,c,d € R, since M is generated by iegf, iez. Then by Definition
3.1.8, we have to find vectors in My such that they are perpendicular to a vector in Ng
and (, ) > 0 for other elements in Ng. In other words, (u;,v;) =0if i = jand (u;,v;) >0

if i # j, for i, j = 1,2. Then we have two systems of inequalities such that:

a+b>0 c+d=0

a=0 c>0

Thus, we get vi = be; and v, = ce] —de;,. This means that & =< e}, e} — e >, see Figure

3.3b.

(a) o=<ej,e1+ep > (b) o =<e),e]—e;>

Figure 3.3 Cone with its dual

Proposition 3.1.10 (Duality Theorem). ¢ = o for any cone o C Ng.

Definition 3.1.11. Let v be a nonzero vector in Mg. The set vt = H, = {u € Ng | {u,v) =
0} is called a hyperplane and the set H} = {u € Ng | {u,v) > 0} is called a closed half

space.

We can define a face of a cone o by using hyperplanes and closed half-spaces.
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Definition 3.1.12. Let o be a cone and let ve N M. A face of a cone o is defined to
beasett=0NH,=1Nv":={uco|{(u,v)=0}for some v e F and denoted by 7 < .
An edge (ray) of a cone is a one-dimensional face and faces different from o are called
proper faces. A face of codimension one is called a facet of o-. We can consider the

cone o as a face of itself.

Let us investigate some fundamental properties of a convex polyhedral cone o and

its faces.

Lemma 3.1.13. There is an inclusion reversing relation between a cone o and its face

T such that if t < o, then T D 0.
Remark 3.1.14. o = 0| + 0 implies & = 0°1 N 07%.

Proposition 3.1.15. (Cox et al., 2011, Lemma 1.2.6, page 25) Let o be a convex
polyhedral cone and T be its face. Then we have following properties:

i) Tis also a convex polyhedral cone,
ii) Every intersection of faces of o is again a face of o,
iii) The face p of T is also a face of o.

Proposition 3.1.16. (Fulton, 1993, Property 8, page 11) Suppose that o € NR is an
n-dimensional convex polyhedral cone such that o # Nr. Let the facets of o be T; =
vj' N o, where o C Hv+,- fori=1,...,s. Then o is an intersection of closed-half spaces,

thatiSO':H;Llﬂ---ﬂH;:.

Proposition 3.1.17 (Farkas’ Lemma). The dual of a convex polyhedral cone is a convex

polyhedral cone.

In particular, the dual of a rational cone is also rational. But if o is a strongly
convex cone, then J need not to be a strongly convex. For example, consider the cone
o0 =< e, > and it’s dual cone F =< ej,—e| > in Ng = R%. The dual cone & is not a
strongly convex cone while o is, since g N (=) = & # {0}). As an end, our aim is to
identify the faces of a cone o and the faces of its dual cone J. To do this we need to

define the relative interior of a cone.
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Definition 3.1.18. The topological interior of the space R - o generated by o is called

the relative interior of a cone o, denoted by Relint(o).

Remark 3.1.19. We can take the positive linear combination of m linearly independent
vectors among the generators of o to obtain the relative interior of a cone o, where

m = dim(o). If o is a lattice cone, then these points can be in lattice N.

Now, we define aset {v e & | (u,v) =0, forallu € r <o} = ¥ N7+ to describe a face

of a dual cone ¢

Theorem 3.1.20. (Fulton, 1993, Property 10, page 12) If T < o, then & N1+ is a face
of & with the property dim(t) + dim(5 Nt+) = n = dim(c). This gives a one-to-one

inclusion-reversing correspondence between the faces of o and the faces of .

3.1.1 Semigroup and Semigroup Algebras

This part is a second step to construct a toric variety. More explicitly, we will

construct a semigroup by using the elements of a dual cone.

Definition 3.1.21. A monoid S is a non-empty set with an associative binary operation
+:85 x§ — S. If it has an identity element, it is called a semigroup. In a semigroup,
every element need not has an inverse. A semigroup S is said to be commutative if the
operation + is commutative. Now suppose that a semigroup S satisfies the cancelation

property: s+x=t+x= s=t, forall s,t,x € Sthen § is called cancellative.

Remark 3.1.22. Let S and T be two semigroups. Amap f :S — T is called a semigroup
homomorphism if f(a+b) = f(a)+ f(b) for every a and b in S and f(Os) = Or.

Definition 3.1.23. A semigroup S is said to be finitely generated if there exist
ai,...,ar € S, such that Vs € §, s = A1a; + --- + A,a, with A; € Z>9. The elements

ai,...,a, are called generator of the semigroup.

Let S be a finitely generated semigroup with generators {ai,...,a,}. S can be
embedded as a semigroup into a group G(S) which has ay,...,a, as group generators

(coeflicients in Z) such that G(c N N) = (0 + (—0))NZ" where N = Z".
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Theorem 3.1.24 (Gordon’s Lemma). If o is a rational polyhedral cone, then c NN is

a finitely generated semigroup.

Proof. By the definition of a cone o, x,y€ 0 = x+y€o. Andso, x+yeocnNN
if x,y € cNN. The zero vector in o gives the identity of cNN. Then cNN is a
semigroup. For the second part, let S = {uy,...,u;} be the set of vectors defining the

cone o. Each u; is an element of o N N. Consider the set

KZ{ZCL’Z'M,'|OSQZ'S1}-

Then, K is compact in Ng, in the usual sense. Since N is discrete, the intersection
K NN has only finitely many elements. Now, we show that it generates o N N. Take
u € o NN. Then u can be written v = ajuy +--- + a;uy, a; € Z>o. Let | a;] be the largest
integer less than or equal to a;. Then for each of the a;’s we have a; = | a;] + b;, where

b; =a;—|a;], and so b; € [0,1]. Then u can be written as

(Lar]+bpuy +---+(Las] + b)u,

u=auy+---+au;

laj Jug +---+ lagJus + byuy + - -+ + byuy.

If we set w = bjuy +--- + b;uy, then each u;’s are in KN N and w is also in KN N, so
that u is a combination with integer coeflicients of elements of K N N. This means that
o NN is generated as a semigroup by the elements of K N N. Since K NN is finite,

o NN is finitely generated. O

Remark 3.1.25. By Proposition 3.1.17, we can apply this lemma to the dual of rational
cone ¢ and so we obtain a semigroup o N M, which is denoted by S . Furthermore,
S is saturated, i.e., cm € S implies m € S for m € M and ¢ € Z*. There is a close
relation between the notion of saturation and being normal, we will study in Subsection

3.3.3.

Remark 3.1.26. Lemma 3.1.13 implies that 5N M C ¥ N M, in other words S, C S+.

Example 3.1.27. Consider the cone o =< e3,2¢; —e3 > in R2. Then S, = &N M can
not be generated by the vectors e] and e] + 2¢3, since we cannot write e] + ¢ in terms
of e*f and e]* + 2e§. To obtain a set of generators, one has to add e*f + e;. Thus, S is

generated by the set {e’[,e*l‘ + ez,e’{ + 2@3}, see Figure 3.4.
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Figure 3.4 The cone o and its dual cone

Proposition 3.1.28. (Fulton, 1993, Proposition 2, page 13) Let o be a rational cone

and T = o Nv* be a face of o, with v € &, then S+ = S 5 + Z>o(—V).

Proof. LetVv' €S =71NM. Firstly, we have to show that there exists an element A € R>(

such that v/ + Av € ¢, or in other words
W +Av,u)y >0 (3.1.1)

for all u € 0. Suppose that for each generator v;, there exists a real number A; satisfying
the inequality (3.1.1). Set 4 := max{/li}l’.’zl. Then for every vector v’ € S ;, the inequality
(3.1.1) is satisfied, by the property of inner product. Let v; be one of the generators
of S. Suppose that (v,v;) =0. Then v; € T = o Nv*t. Since V' € ¥, we get (', v;) > 0.

Indeed

0<V +Av,v)) =0, vi)+ A, vy =", v;) > 0. (3.1.2)
Now, suppose that (v,v;) > 0, define A; = <(‘:,’\:i)>' Then
G+ = L)+ 4
= o+ I =20 vy 2 0.
v,vi)

Thus, we have shown that there exists a real number A € Ry satisfying the inequality
(3.1.1), 1.e., T = 0+ Rxo(—v). For such 4, let [ p] = [ be the smallest integer greater than

orequal to p. ThenVv' +lvedFNM =S, and V' = (V' + V) +1(—v) € S5 + Z>o(—V).

For the converse inclusion, let v € § -+ Zso(—v). Then V' = u+1(—v) for some [ € Zs
and for any w € T we have (V',w) = (u+1(—v),w) = (u,w) = v,w). Since we r=oNvt,
then (v,w) = 0 and since u € S, then {u,w) > 0. Thus, (V' ,w) >0, i.e., v € ¥. Since

v e M,weobtainy e fNM=3S. |
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Example 3.1.29. Let us consider o =< e,er > in Np = R2. For the face 7 = e, of o

the vector v = e] satisfies the inequality (3.1.1) for A € Rxo, see Figure 3.5.

T

g

Figure 3.5 Cone and face relation

Our main point is associate a semigroup S to a finitely generated reduced C-algebra,
to obtain the coordinate ring of some affine variety. We construct this by the following
way: consider C[S] as a vector space with basis S such that the basis vector is defined
as a power y* of the corresponding element s € S. Every element in C[S] can be
written as finite formal linear combination with coeflicients in C, that is Z agy’, ag €
C. A binary operation, multiplication, on C[S] is determined by the ailegition inS;
X' x* =x*"*. This is also a C- algebra with identity y* = 1, and if an element s € §

is invertible, then y* is a unit in C[S].

For example, if S = N, then the C-algebra C[N] is the set of all formal expressions
Zann, where a, € C for all n and a, = 0 for sufficiently large n > N. Thus, we can
neN

N N N
write elements as in the form Zann. Then the map which sends Zann to Z any"

=1 =1 =1
gives us an isomorphism of C’falgebras between C[N] and the pol;nomial rir};g Clx].

More generally, C[N"] = C[xy,...,xy].

3.1.2 Description of an Affine Toric Variety

Now, we are able to see a connection of semigroup algebras with algebraic
geometry. We will use only “cone” instead of strongly convex rational polyhedral cone

in NR.
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A Laurent polynomial is defined as the finite formal linear combinations with
coefficients in C. If we set S = Z", then there is a natural isomorphism of C-algebras
between C[Z"] and the algebra C[zy,... ,zn,zfl, ... ,z;l] of Laurent polynomials in the

variables z1,...,z,. This isomorphism is given on the basis {y*},ez» of C[Z"] by
X(l = chll .”Zgn’

where @ = (a1,...,a,). For simplicity, denote the set of all Laurent polynomials by

Clz, z‘l], where z = (z1,...,2n)-

In Section 3.1.1 we have defined the semigroup algebra, now in a similar way we

will define the C-algebra C[S -] for a cone as follows:

Definition 3.1.30. For any cone o C N, the ring R is defined as

R,=C[S,] = {Zav)(v | VES,, a, EC}.

Example 3.1.31. Consider the cone o = {0} in Ng. Then the dual cone & is
all of Mg, the associated semigroup is nothing but the group M = Z" which is
generated by +ej,...,+e,. By setting )(67 = X; and )(_e? = Xl._l we have R, .= C[M] =
ClXy,... ,Xn,Xl_l, ...,X; 1. For any cone o € Ng, the semigroup S is a subsemigroup

of S, so the semigroup algebra R is a subalgebra of R,,.

Remark 3.1.32. It follows from this fact that for any 7 < o, we have R, C R;.

Since S 1s finitely generated by Theorem 3.1.24, we have obtained a finitely
generated C-algebra, C[S,]. Moreover, since S, has no torsion element, i.e., if
n-s=n-timplies n = 0 or s = ¢, we have identified C[S ;] with an algebra of Laurent
polynomials. Thus, C[S] is an integral domain and it has no nonzero nilpotents.

Hence, C[S ] is the coordinate ring of some irreducible affine variety SpecC[S -]

Let {v1,...,v;;} be a generator set of S. Since C[S ] is finitely generated, we can
define a map f : C[Zy,...,Z,;] = C[Ss] by using Z; = " for i = 1,...,m. Then the

kernel of this map gives an ideal / in C[Zy,...,Z,], so that

Ro- :C[Zl,...,Zm]/I.
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Definition 3.1.33. The affine variety X, := SpecC[S ] = SpecC|[Zy,...,Z,]/I associated
to a cone o in Ng = R" is called the affine toric variety corresponding to o. The

dimension of an affine toric variety X, is n.

Remark 3.1.34. 1t is known that, there is a bijective correspondence between points
of an affine variety V and maximal ideals of its coordinate ring C[V]. By this fact we
will construct a correspondence between points of an affine variety X, = SpecC[S ]
and semigroup homomorphisms S, — C, where C considered as a multiplicative
semigroup. Let P be a point in X-. Define a map P : S, — C such that v € § , maps to
x"(P) = P(v) € C, where xy' € C[S,]. Since P(m| +my) = P(y"™ ") = P(y"™ ") =
POY™)P(x") = P(my)P(my) and P(0) = P()(O) = P(1) = 1, this map is really a
semigroup homomorphism. For the converse, consider a semigroup homomorphism
S+ — C. Then this homomorphism can arise a C-algebra homomorphism C[S ] —
C. Since the kernel of this homomorphism gives us a maximal ideal, we obtain a
one-to-one correspondence between points of an affine toric variety and semigroup

homomorphisms. This correspondence is special in the case of toric.

Theorem 3.1.35. (Ewald, 1996, Theorem 2.7, page 217) Let o be a cone in Nr = R"
and let I be the ideal generated by the relations between the generators of S . Then,
Xs=V().

It follows that, the height of the ideal I is m —n, where dimC|[Z,,...,Z,] = m.

Lemma 3.1.36. If T < o, then the map X; — X, embeds X; as a principal open subset

of X,

Proof. For any T < o we have S; = S, +Z>o(—v) where v € S and 7 = o N v*. This
implies that if v/ € S, then v/ = w+[(—v) for some [ € Z5(, and w € S . If we pass to

C-algebra C[S ], then

w
Vi wHl(-v) _ X_
X _X - (Xv)l'
This means that R; is a localization of R, at y", i.e., X; — X |

Example 3.1.37. Consider the cone given in Example 3.1.31. We have shown that its

semigroup S, is generated by the vectors +e7,...,+e;,. Then its C-algebra R, is given
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by Ro =C[M]=C[X1,.... X, X', ....X; . Let X; = Zyand X; ' = Z,,i fori=1,...,n.

Then we obtain a natural isomorphism
ClSol=CIM] =ClZ,...,Z2]/1

There are n relations between the variables Z,...,7Z,, for the ideal I, because
dm(X,) =n: Z1Z,+1 = 1,...,Z,Z>, = 1. Then, SpecC[S,] = SpecR, = V(Z1Z,+1 —
1,...,2,Z5, —1). Assume that u; # 0 € C for all i = 1,...,n. Then by the projection

C2" — C" we have

Xo = SpecR, ={(uy,...,uy) €C"|u; #0, Y1 <i<n}
= (C\{op"=(C".

Remark 3.1.38. As stated before, we have different choices of generator elements to
obtain the semigroup S for the cone o in Ng. And we can represent the finitely
generated C-algebra R, as a coordinate ring C[£1,...,&,]/I in a different ways, i.e., we
have different representations for affine varieties V (/) in C". But, SpecR, is identified
with these subvarieties V(/) in C". This means that, V() are all homeomorphic to the
variety SpecR,-. For example, another representation of (C*)" is obtained by using the

generator set S, = {e’f, sl —e}‘ ——eph

Definition 3.1.39. The set Ty = (C\ {0})" = (C*)" is called an affine (complex

algebraic) n-torus.

Remark 3.1.40. Since the set of all semigroup homomorphisms Hom(S o, C) = Homz(M, C*),

we can write 7y in the form:
Ty :=Homyz(S,,C)=N®zC*=C".

Given any cone o € Ny, we have X, C X-. So, every n-dimensional affine toric variety

contains Ty := (C*)" as a Zariski open subset.

Example 3.1.41. In the case of Example 3.1.27 the generators of S are v; = e],v2 =
e’lk + e; and v3 = e’i‘ + Zez. Then the monic Laurent monomials Z; = X1, Z, = X1 X> and

Z3 = X, X3. The corresponding C-algebra is

R, = C[S,]=CIX1,X1X2,X1X3]

ClZ1,2»,Z3]/1,
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where the relation v + v3 = 2v, between the generators of S, implies the relation
2173 = Z% in C[S+]. Thus, X, = SpecC[S ] = V(Z,Z3 —Z%). This affine toric variety

corresponds to the quadric cone in C3, see Figure 3.6.

Figure 3.6 Real part of a quadratic cone

Now, we will give more information about the ideal /. We have defined a map from
ClZy,...,Zy] to C[S+] by x" — Z; with the ideal /. This map can be identified with
an isomorphism given in semigroup algebra construction. Hence, the generator of the

semigroup S - are related with the ideal /. More explicitly, we have a correspondence
apvy+--+auvy, = bIVI + .. +bmvm «— (/\/Vl)al .. .(va)am - (le)bl .. .(va)bm

where a;,b; € Z>¢. This means that the polynomial ring C[Zy,...,Z,] is obtained by

the relation Z{' -+ Z," = le’l L zbm,

Definition 3.1.42. A polynomial with at most two monomials, say @Z% + 8Z” where
a,f € C and a,b € Z’;O, 1s called a binomial. A binomial ideal is an ideal of

ClZy,...,Z;] generated by binomials.

From the definition, we can say that our ideal / is generated by the finite binomials

of the form Zi” e Zpm — Zi" . -Z,l,’{". This ideal is called a toric ideal.

We will conclude this section by defining a morphism of affine toric varieties.

Definition 3.1.43. A morphism between affine toric varieties ¢ : X, — X, is toric

morphism if the corresponding map of coordinate ring C[S ;] — C[S o] is induced by



37

a semigroup homomorphism S ,» — S . If ¢ is a bijective and its inverse is also a toric

morphism, then y is called a toric isomorphism.

Let N,N’ be lattices and 0,0’ be strongly convex rational polyhedral cone with
respect to lattices, respectively. Consider the lattice homomorphism ¢ : N — N’ with
the property ¢(ocNN) C o’. Its dual map ¢ : M" — M is defined as ¢(S) = S,
Then we have an algebra homomorphism C[S ;] — C[S ], since our semigroups are
finitely generated as stated before. By Lemma 3.1.36, we obtain a morphism X, —
Xs. Therefore, a toric morphism can be described by using lattice homomorphism.

As a result we obtain the following proposition.

Proposition 3.1.44. (Barthel, 2000a) Let X, and X, be affine toric varieties given by
cones o’ € Ny and o € Nr. Then a lattice homomorphism N — N" mapping NN o to
o’ determines a morphism X, — Xy. That is, this map is equivariant with respect to

the induced homomorphism Ty — Ty of torus.

Proposition 3.1.45. (Cox et al., 2011, Proposition 1.3.14, Page 41) Let V1, V; be affine

toric varieties with tori Tn,, Tn,, respectively. Then:
i) A morphism ¢ : Vi — Vyis toric if and only if o(Tn,) C Ty, and ¢ ITN1 :Tn, — T,

is a group homomorphism.

ii) A toric morphism is equivariant,that is, ¢(t- P) = ¢(t) - ¢(P) for all t € Ty, and
PeV.

3.2 General Toric Variety

3.2.1 Fans and Toric Variety

Now, we will generalize the idea given in Section 3.1 to obtain a general toric

variety. So, start by defining the set of strongly convex rational polyhedral cones.

Definition 3.2.1. A fan X in a lattice N is a finite set of strongly convex rational

polyhedral cones such that:



38

1) Every face of a cone of X is a cone of X,

.o ’ ’ . ’
11) If o and o are cones of X, then ccN o is a common face of o and o .

In particular, the zero cone o belongs to every fan since o is a face of any cone.

Example 3.2.2. Given cones in Figure 3.7 gives a fan in Ng = R2.

© o © - oy°

Figure 3.7 The fan X = {071,073}

Now, we will construct a general toric variety. A general toric variety is obtained
by taking the disjoint union of an affine toric variety, for each cone o in the fan X,
and gluing them. We will explain the way of gluing, as follows: let 7 < o and the
semigroup S, generated by {vy,...,v}. Then, by Proposition 3.1.28, the semigroup
S: is obtained from S, by adding one generator vi,; = —v. That is the generators
of S;is vy,...,vg,—v. We can assume v; = v since vy € S. In this case to obtain a
relationships between the generators of S, we have to use relationships between the
generators vy,..., v, of S, and additionally vi + v¢+1 = 0. In terms of C-algebra C[S ],

this relation gives uguy1 = 1, since u; = " forall i = 1,...,k+ 1. Thus, we obtain
X = {(u1,...,u) € CY

k+1
Xe ={(ut,...,up ui+1) € C | upugry = 1)

This means that the projection CK*! — C*, given by (x1,..., Xt Xee1) = (X1,...,Xk)

identifies X; with the open subset of X, defined by x; # 0. As a result:

Proposition 3.2.3. (Ewald, 1996, Lemma 3.1, page 225) There is a natural isomorphism
Xr = Xo\{ur =0}
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For two cones, 0,07 € £, let T = 0N o’ be the common face. Let’s take any

compatible coordinate system vy,...,v; for X, then we have
Xo\(ttg = 0} = X; = X\ (v = O},
We have a toric isomorphism ¢ : X, \{uy = 0} = X, \{v; = 0} defined by

(U1, U, Ur1) = (V1L VL VD).

Thus, ¢ glues together X, and X, along X; and it is called the gluing map.

Now, we are ready to define a general toric varieties.

Definition 3.2.4. Let X be a fan in Ng. A quotient space of the disjoint union |_| X

oeX
modulo the equivalence relation that defined by identifying two points x € X, and x’ €

Xs by the gluing map ¢ is called a general toric variety. A toric variety corresponding

to a fan X is denoted by Xs.

It follows that the toric variety Xy is a topological space endowed with an open

covering by affine complex varieties that intersect (Zariski) open subvarieties.

Example 3.2.5. Let £ c Mg = R be a fan obtained by the cones o =< e; > and

02 =< —ej >. Then the corresponding affine toric varieties are X, = C and X, = C.

—el 0 €]

Figure 3.8 The fan X = {071,073}

Now, consider the common face of o; and o, we have T = o Nop = {0}. Then the
semigroup S - is generated by {e], —e’]“ }. So, the C-algebra C[S ;] = C[x, x~1, and hence
X, = SpecC[x,x‘l] =~ C*. Consider the projection map (ul,ufl) — uy for u; # 0. Then

we have identifications
X=Xy \fu1 =0} and Xy =Xy, \{u;' =0}
This means that, the gluing map is defined by x + x~!. Assume that x = % and ¢; :

C — P! such that ¢(t)=(1:¢). And we get

t t _ 1 1
x:—1|—>(1:—1):U0 x 1= —0:1):U1
Io Io 51 51



40

This gives us a correspondence between the affine toric varieties X,-,, X,-, and the open

1

subsets Uy, U; of P!, respectively. Thus, gluing X,-, and X, by the map x — x~! is

1
the same thing with taking the union of open subsets Uy and U; of P'. Therefore,

Xs = PL.

We can generalize Example 3.2.5 to P” by taking the fan X in Ng = R" generated by
all proper subsets of (ey,...,e,,—e; —---—e,). The affine toric varieties X, are copies

of C", corresponding to affine open subsets of P" and glued together to obtain P".

Proposition 3.2.6. (Fulton, 1993, Lemma at page 21) If o and T are cones that
intersect in a common face, then the diagonal map Xonr — Xo X X¢ is a closed

embedding, i.e., it maps Xynr injectively onto a closed subvariety.

In fact this proposition states that every toric variety is determined by a fan.

Remark 3.2.7. Generalization of the affine case implies that, toric morphisms between
general toric varieties X5y and Xy are defined by the fans ¥’ € NIC& and X € Ngr. Then we

have the following fact:

Proposition 3.2.8. (Barthel, 2000b) Let Xy and Xs be toric varieties given by fans
Y’ € N and X € Ng. Then a lattice homomorphism N — N’ mapping N N o, for each
cone o € X to some cone o’ € ¥’ determines a morphism Xs — Xss. That is, this map

is equivariant with respect to the induced homomorphism Ty — Tx' of torus.

3.2.2 Polytopes and Toric Varieties

There are a lot of different methods to describe a toric variety. One of these ways
comes from a polytope. Firstly, we will define this geometric object to understand the

description and details can be found in Griinbaum & Ziegler (2003).

A polyhedron in a finite dimensional real vector (or affine) space with a lattice is any
set obtained as the intersection of finitely many halfspaces. If additionally bounded, it
is called a polytope. There is an equivalent way to define a polytope, which we will

use in this section.
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Definition 3.2.9. A polytope in Mg is a set of the form
P=Com($)={ Y aw|2,20, > 4, =1}
vesS veS

where § C My is finite.

In other words, a polytope is the convex hull of a finite set in a finite dimensional

vector space.

Remark 3.2.10. For a given polytope P in My, we obtain a polyhedral cone defined by
C(P) = {2 (v, 1) € Mz xR | v e P, 2 0) and is called the cone of P, see Figure 3.9.

A
\V/

Figure 3.9 The cone of a
polytope P

Definition 3.2.11. The dimension of a polytope P C My is the dimension of the

smallest affine subspace of My containing P.

Definition 3.2.12. A (proper) face F of P is the intersection with a supporting affine
hyperplane, i.e., F = {v € P|(u,v) = r} where u € Ny is a function with (u,v) > r for all

v € P; P is usually included as an improper face.

Every face of P is again a polytope. We call facets and vertices, faces of P with
dimension dimP — 1 and 0, respectively. By the definition of the polytope, we can say

that P is the convex hull of its vertices.

Definition 3.2.13. Let P C My be a polytope of dimension d. P is a simplex if it has
d + 1 vertices, for example a tetrahedron is a 3-simplex. P is simplical if every facet of
P is a simplex, for example octahedron. P is simple if every vertex is the intersection

of d facets.
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Definition 3.2.14. The Minkowski sum of subsets A;,Ay C R" is

A1 +A2 = {m1 +my | mp €A1, my GAZ}.

For two polytopes Py and P, their Minkowski sum Pj + Py = Conv(S | +S7) is again
a polytope, where S 1, S are generator sets of polytopes, respectively. For simplicity,

we will assume that P is n-dimensional and P contains the origin in its interior point.
Definition 3.2.15. The polar (or dual) set of P is defined to be the set
P° ={u€eNg|{u,vy>-1forallve P} C Ng

Example 3.2.16. Let P be the square with vertices (+1,+1) in Ng = R?. Then the polar

set P° of P is given by the inequality | x | + |y |[< 1 for (x,y) € N, see Figure 3.10.

=L1) 1,1)

|
|
|
(=1,=1) : 1,-1)
|
|

Figure 3.10 The polytope P and its polar polytope P°

Definition 3.2.17. A polytope P is called rational if its vertices lie in a lattice in M.

Lemma 3.2.18. The polar set P° of P has the following properties:

i) P°is a convex polytope.

ii) If P is rational, then P° is a lattice polytope.

We have a relation between faces of P and faces of P°. To construct this relation
define the face F™* of P° as follows: F* ={u € P°|(u,v) = —1, Y v € F} for every face
F of P.

Proposition 3.2.19. (Fulton, 1993, Proposition at page 24)
i) There is a one-to-one correspondence between faces of P and faces of P° : F <

F* reversing order

ii) dimF +dimF* =n-1
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3.2.2.1 Fan Associated to a Polytope

Assume that P is n-dimensional but it is not necessary that it contains the origin.

Definition 3.2.20. Let P be a polytope, we construct a cone or to each face F of the
polytope P in the following way: or = {v € Ng | {u,v) <{(u’,v), Y u € F}. A compatible

collection of cones o give a fan £ which is called an inner normal fan.

Remark 3.2.21. If one rewrites the cone associated to a face F of a lattice polytope P
asop={veNgr|{u—u',v) >0, ¥ uec F}, it can be easily seen that the construction in
Definition 3.2.20 is a translation and dilation invariant. For example, if we consider
another lattice polytope P’ of the form P’ = u+ P for u € M, thatis, P’ = {u+w|w € P}
then the fans £p and Zpr coincide. Therefore, all translations and dilations of a polytope

P gives the same toric variety.

Example 3.2.22. Let P C My = R? be a polytope with vertices 0, e; and e>. Then by

the construction in Definition 3.2.20 we have the cone and fan given in Figure 3.11.

€ ey
\

0 €] 0 el

)

Figure 3.11 A polytope P and corresponding fan

Proposition 3.2.23. (Fulton, 1993, Proposition at page 26) If {0} € Int(P), then Xp is

made of the cones based on the faces of the polar polytope P°.

We have known that for each lattice cones o in Zp there exist an affine toric
variety X, over C. The structure of a polytope is such that these varieties satisfy

the conditions needed to glue them and obtain a new variety, Xp.

Example 3.2.24. Let P be a polytope in R? with vertices at +e| = e;. Then, the fan
Xp={og=<ei, ey >, 01 =<—e1,ep>, 0y =<-—-e1,—€y >, 03 =<ejq,—ep >}. Thus, the

corresponding toric variety is Xp = P! x P!,
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Proposition 3.2.25. Let P be a polytope in My and let Xp be the fan corresponds to P.
Then:

i) dimF +dimoF = n for all faces F < P.

ii) Nr = Ugpesy OF-

Definition 3.2.26. A fan is polytopal if there exist a polytope P such that 0 € P and £
is spanned by the faces of P. A fan satisfying the condition (ii) in Proposition 3.2.25 is

called complete.

Thus, a fan of a lattice polytope is always complete. Note that, the notion of
completeness corresponds to the notion of compactness in the classical topology. This
means that if ¥ is complete, then Xy is a compactification of T = (C*)". It follows that

the fan X is polytopal if and only if X, is projective.

3.3 Torus Action and Orbit Structure

We want to generalize a natural action of a torus T on itself to a toric variety Xy
corresponding to a fan X in a real vector space Ng. So, we can recover the definition of
a toric variety by using a torus action. Actually, the origin of the name “toric variety
(originally, torus embedding)” depends on this action. The basic references for this

section are Ewald (1996), Fulton (1993) and Kempf et al. (1973).

3.3.1 The Torus Action

A torus action helps us to understand combinatorial results topologically. We can
easily interpret some properties of toric variety by using combinatorial structure of a
torus orbit. We begin by defining some fundamental definitions about an action in

terms of algebra.

Definition 3.3.1. An action of a group G on a set X is a mapping G X X — X defined

by (g,x) — g - x that satisfies the following two conditions:
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1) g-(h-x)=(gh)-xand

i) eex=xforall g,heG, xeX.

Here, e € G is the identity element of G.

Note that we always have g~! - (g- x) = x for fixed g € G so the mapping X — X,

X — g-x1is a bijection.

Definition 3.3.2. For a fixed element x € X, the subset G- x ={g-x|ge G} C X is
called the orbit of x, denoted by O.

Each point of X lies in a unique orbit. If x and y are in the same orbit, then g-x =y
for all x,y € X. This means that, x is equivalent to y and denoted by x ~ y. Thus X can

be written as a disjoint union of its orbits, that is X = | | ,cx O,.

Now we return our main issue, toric varieties. First of all, we consider the
affine case. Any affine toric varieties can be considered as an affine variety whose
coordinate ring is determined by a strongly convex rational polyhedral cone. And
it is known that there is a one-to-one correspondence between points of an affine
toric variety X, corresponding to a strongly convex rational polyhedral cone o and
semigroup homomorphism S, — C. For a given n-dimensional lattice N, we have
Ty = N®zC* = Hom(M,C*) = Spec(C[M]) = X,, and it is isomorphic to (C*)"*. This
means that 7y has a group structure and the group operation given by regular functions.
The elements of the torus Ty are identified with group homomorphismt: M — C*, (M
is a group), so the group structure is just the multiplication, that is, for ty,ty : M — C*
we have (t1tp)- (1) = t1(u) - to(u) € C* for all u € M, with an identity element ¢ satisfying

t(u)=1forallue M.
At this point one may naturally ask:

“Can we generalize this action to an affine toric variety?”

To do this we will take S, instead of M. But there is a little bit works because S

is just a semigroup, not a group. Let v; = 4;je] + -+ + Aipe, be generators of S, for
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Ai=it,...,Ain) €2 i=1,...,r,and let X, = V(I) c C". Since the ideal I is generated
by the relations between x"',...,x"”, we have ("' (t),....x" (1)) =t ... .t e V()N
(C*)". In this case, there is an isomorphism ¢ such that ¢(t) = (x"1(t),...,x" (1)) =
(th,...,t*) e V(I) N (C*)". Thus, we say that the torus T can be embedded in the

affine toric variety X, by an isomorphism ¢, Brasselet (2001).

Example 3.3.3. Consider the affine toric variety X, = V(x% — x1x3) given in Example
3.1.41. Since S is generated by vy = e}, vo = ] +¢; and v3 = e] +2¢; we get 4 =(1,0),
A2 =(1,1) and A3 = (1, 2), respectively. For t € T, we have th =, t2 =yt tB = tlt%.
Hence, the map ¢ : Ty — X, given by (t1,t2) — (tl,tltz,tltg) is an embedding of Ty

into X,

Since the points of the affine toric variety X, and semigroup homomorphisms S , —
C have been identified, we can restrict the group homomorphism t: M — C* to S
and we obtain a natural product t-x: S, — C, u — t(u) - x(u) for all u € S, that is
a semigroup homomorphism and hence an element of X,. The map Ty X Xy — X,
defines an action of the torus on an affine toric variety. There is an important result

contains a relation between toric morphisms and torus actions.

For general toric varieties, we use the fact that each affine toric variety X, is
embedded in the toric variety Xy as an open subset, for a cone o € £. Thus, we have

an action Ty X Xy — Xs.

3.3.2 The Orbit of a Cone

We will discuss the correspondence between orbits and cones, and show how 7€ X
determines an 7y-orbit of Xs. Our main point is that every toric variety can be written

as a disjoint union of 7'y-orbits.

By Remark 3.1.34 we can define a special point in X,-. Let x, : S — C denote the

semigroup homomorphism defined by the rule;
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1, if —ueS,
X (u) =
0, otherwise.

The point x is called a distinguished point of X,. Note that this map is well-defined,
since forue S, —u€ S, if and only if u € - N M. Indeed, if u and —u are in S -, then
by Definition 3.1.8 we have (u,v) >0 and (—u,v) > 0 for ve o. Then (u,v) = (-u,v) =0,
since (u,v) +{(—u,v) = (u—u,v) = 0, by the property of inner product. This means that

ucotnM.

Example 3.3.4. Let o be a cone given in Example 3.1.27. The generators of S are

vi =ej,va =e| +ep and v3 = e +2e5.

If we take o as a face of itself, 71 = o, then o+ = {0}. This means that, v; ¢ Tf' NM.

Thus, the distinguished point of 71 is given by x;, = (0,0,0).
Let 7, = {0}. Since {0}* = R2, all v{, v,,vs are in 7y N M. Thus, x., = (1,1, 1).

Let 73 =2e1 —e3. Then only v3 € Té‘ N M. This gives us the distinguished point such
as x; = (0,0,1).

Finally take 74 = e,. By the similar way we obtain x,, = (1,0,0).

The affine toric variety X; C X5 has the distinguished point x,. Then we define the

orbit of a distinguished point as follows:

Definition 3.3.5. Let x; be a distinguished point corresponds to a face 7 < 0. Then the
Tn-orbit of x; is defined as O; = T - x;. The closure of an orbit of x; is defined by

V(r) = 0;U{0}.

Remark 3.3.6. If 7 is an n-dimensional, then O; is the point x,. If dim(r) = k in
Ng = R”, then O, = (C*)" %, Moreover, if T = {0}, then O, = (C*)" = T. Then there is
a one-to-one correspondence between the points of 7 and the points of X, except the
origin. This comes from the fact that, the action of 7 on X7 is just an extension of the
action of Ty on X, for any face 7 < 0. So, V(1) = Ty U{0}. Thus, Ty is an open dense

subset of X,,.
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Example 3.3.7. Now, we will determine the orbits corresponding to distinguished

points constructed in Example 3.3.4. By applying Definition 3.3.5, we obtain

Oy, = Ty - X7, = 1{(0,0,0)} € (C*)?,
Or, = Tn - X7, = {(t1, 112, 1113)} = Ty = (C*)?,
Ory =Ty - Xry = {(0,0,1113)} = {0} x {0} X C*,

Or, = Ty - xr, ={(11,0,0)} = C* x {0} x {0}.

Example 3.3.8. Consider the affine toric variety X, = (C*)". Since X, corresponds to
the cone o = {0} in Nr = R”, there is only one distinguished point x; = (1,...,1). Thus,

Oy =Tn.

Now, we will describe the orbits as the torus of some toric variety and then show
how to embed them in that toric variety. In order to do this we must describe its fan
by the following way. Let X be a fan in Ng and o be a cone in £. For each face 7
of a cone o we set M(7) = - N M to be a sublattice of M of rank n — dim(7). On the
other hand, in general 7N N does not determine a sublattice in N. So we define N; to
be the sublattice of N generated by rN N and N, = (tNN)+ (-t N N). The quotient

N(t) = N/N: is also a lattice, called the quotient lattice, and its dual lattice is M(7).

Proposition 3.3.9. (Oda, 1985) O; = Ty(r) = Hom(M(7),C*) = Spec(C[M(7)]), is a

torus whose dimension is n —dim(7).

Example 3.3.10. Now by using Proposition 3.3.9 we will construct orbit of the toric

variety given in Example 3.1.41.

If we take 71 = o, then o+ = {0}. This implies C[c* N M] includes only zero

polynomial. Thus, O7, = Spec(C[M(0)]) corresponds to the origin.

Take 75 = {0}. Then since 75 = Mg, we have C[ry N M] = C[x*!,y*!]. Thus, O, =
Spec(C[M(12)]) = (C*)*.

For 13 = 2e; — e, since 73l = (e} £ ¢€5), we obtain O, = Spec(C[xyz,x‘ly‘z]) =C".

For 74 = e, since Ti‘ = (£e]), we obtain O, = Spec(Cl[x, x 1) =cC*.
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Definition 3.3.11. Let X C Ny be a fan and 7 be a cone in Z. The star of T is the set of
cones which contains 7 as a face. By using the cone o in a star of 7, we can obtain the

quotient cone ¢ as follows:
7 = (0 +(Np)r)/(N)r € Nr/(No)r = N(7)k.

Then we set {0|T < o € X} in N(7), and denoted by X(7), see Figure 3.12.

Figure 3.12 A face 7 in a lattice N = Z3 and (1)

Proposition 3.3.12. i) Forany o € Star(r), & is a strongly convex rational polyhedral

cone in N(T)g.

ii) 2(1) form a fan in N(7)R.

Let 7 be a face of o € . Then the corresponding affine variety is defined by

X, (1) = Spec(C[o N M(7)]) = Spec(C[& N+ N M]).

In particular, since for o~ = T we have X (1) = Spec(C[r+ N M(7)]), we have X, (1) =
O;. Foreachi=1,...,r, if there exist o; in X, which have a face 7, then by gluing the

corresponding affine toric varities X, (1) we obtain the toric variety
V(1) = XZ(1) = Xo (DU U Xq (1),

1.e., the toric variety V(1) is covered by the affine toric varieties. Considering points as

semigroup homomorphisms, the embedding
X, (1) = Hom( N1+ NM,C") — Hom(5NM,C) = X,

is given by the map u — u if u € FNtt N M, u — 0 otherwise, i.e., zero extension.

Since Nt is a face of &, the extension by the zero of a semigroup homomorphism
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is also a semigroup homomorphism. Then the corresponding surjection C[o-N M] —
Cl[onttn M] is defined by y* > x" if u € N1+ and y* > 0 otherwise, see Fulton
(1993).

Let 7 < o < ¢’. Then we have a commutative diagram

Xo (1) X (7)

L

Xoo— =X

and gluing these maps gives an embedding V(7) < X(X(7)) as a closed subvariety.

In particular, if 7 < 7/, then we have closed embedding V(') — V(7). Thus, we

have an order-reversing correspondence
{conest € X} «— {Orbit closures V(1) € X(Z(1))}

By this construction, the ideal of V() N X in R, is @ C-x",the sumoverallue S,

such that (u,v) > 0 for v € Relint(7).

Example 3.3.13. Let X5 = P!, where X = {07] =< ¢| >, 02 =< —e] >}.

Let 71 =< e; >. Then 7 is a face of only o, so Star(r;) = {o1}. Then the toric
variety X, (71) = {0}. By the morphism 0~ (1 : 0), we have an embedding X, (11) <
P!, while X,;, < P! given by x - (1 : x). Thus V(r;) = {(1 : 0) € P}.

Let 70 =< —e; >. Then 73 is a face of only o, so Star(r;) = {03}. Thus, by the

similar construction we have V(r3) = {(0: 1) e P!}.

Let 73 = {0}. Then 73 is a face of both o1 and o, so Star(r3) = {o1,03}. Then,
the toric varieties X (73) = Xy = C(y) and X, (73) = X, = C(,-1y. By gluing these

varieties we obtain V(13) = P.

Let us conclude this section by constructing a general toric variety Xy from a 7y-

orbit O;.

Proposition 3.3.14. (Fulton, 1993) The following relations are true:
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i) Xo =<0 Or
i) V() =50y

iii) Or = V() \Uy»: V()

3.3.3 Characters and One-Parameter Subgroups

Now our main concept is to define the one-parameter subgroups and characters of
the torus and their limit points in toric varieties. Then we will show how to define a

fan from the torus action.

By the fact that every algebraic group endomorphism of the algebraic one-torus
Ty = C* is of the form ¢ — X with a unique integer k € Z, we obtain the canonical

group isomorphism Hom(C*,C*) = Z sending idc- to 1.

Definition 3.3.15. A homomorphism of algebraic groups A : C* — Ty is defined by

AU(t) =u®z for u € N and this is called a one-parameter subgroup of Thy.

If an isomorphism N = Z" sends u to (ay,...,a,), then 2“(¢) = (+“,...,t*) under the

induced isomorphism 7y = (C*)".

Definition 3.3.16. A homomorphism of algebraic groups y’ : Ty — C*is defined as

!
X' = 1_[ #4440 for a given v € M and it is called a character of Ty.
i=1

In particular, ,()() = x“(1,(1)) = ™Y, see Barthel (2000b). So that M is
its character group with the dual pairing N. If M = Z" sends v to (by,...,by),
then xV(t1,...,t,) = (tll",...,t,l;”) under the isomorphism Ty = (C*)". The character
corresponding to v can be identified with the function y” in the coordinate ring
C[M] =TI(Ty,O"). It turns out that the possible limit points are necessarily the images
of distinguished points x, under the embedding X, — Xs. Then we have a one-to-one

correspondence between faces, orbits and limits.
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Proposition 3.3.17. i) If a lattice vector v is contained in the relative interior of

some cone o € X, then lim,;_0 A4,(2) = X, exists.

ii) If a lattice vector v is not contained in any cone of X, then lim,_,o 4,(z) does not

exist in Xs.

This Proposition gives an idea why we prefer a cone in Nr rather than Mr. To
define toric varieties more explicitly we may consider the relation between normality

and saturation. This relation is given as follows:

Proposition 3.3.18. (Barthel, 2000a) A finitely generated subsemigroup S of M is

saturated if and only if the algebra C[S] is normal.

In our case, we have focused on strongly convex rational polyhedral cones in Ng
to construct semigroups S, our semigroups are all saturated. Thus, we obtain the

following fact:

Proposition 3.3.19. Every toric varieties is normal.

After all that we can recover the definition of a toric variety as follows:

Definition 3.3.20. An n-dimensional toric variety is an irreducible normal variety X
that contains a torus 7 = (C*)" as a dense open subset, together with an action Ty X

X — X of Ty on X that extends the natural action of the torus T itself.

It is a natural thing to think about the converse part. Let X be a normal variety

endowed with a torus action that has an open orbit. Then X is also a toric variety.

3.4 Properties of Toric Varieties

3.4.1 Smoothness

Our aim is to give a combinatorial criterion for smoothness of the toric variety.

Since smoothness is a local property, we will study on an affine toric variety X, for
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a cone 0. Then we will generalize the idea of being smooth to general toric varieties
Xs. Basic references for this notion are Cox et al. (2011), Fulton (1993), Kempf et al.
(1973) and Ewald (1996).

Before proceeding, we need to recall some facts from algebraic geometry. Let X be
any variety and let P be a point in X. To describe the notion of smoothness we will
define the tangent space in terms of algebraic geometry. The Zariski tangent space is
defined to be Tp(X) := Homc(My p/ Mi p»C) where My p is a maximal ideal of the

local ring Oy p. Since Ox p/ Mxp = C, Mxp/ /\/@( p has a natural structure as a vector

space over C.

For the affine case we compute the Zariski tangent space as follows: Let V c C" be

an affine variety, P € V and I(V) =< f1,..., fs >. Let

%(P)Xl 4o+ a‘ﬁ
ox| X5,

dp(fi) =

(P)xn, (3.4.1)

for each i. The tangent space Tp(V) is isomorphic to the subspace of C" defined by
dp(fi)=---=dp(fs) =0.

Example 3.4.1. Let V = V(x? —y?) € C? be an affine variety and let P € V. The Zariski

tangent space of V is computed by using the formula given in Equation (3.4.1).

0 0
dp(f) = —af (P)x+ o (P)y = 3x*(P)x - 2y(P)y.
x oy

Thus, the Zariski tangent space is isomorphic to subspace of C? defined by the line

equation ax + by = 0, where a,b € C.

Definition 3.4.2. A variety V is smooth (or nonsingular) at P € V if dimcTp(V) =
dimp(V). The point P is called a singular point of V if it is not a smooth point. The set
of singular points of V is denoted by Sing(V). A point P € V is called isolated singular
point if Sing(V)N(V\{P}) = 0.

After all that we can characterize the smoothness of an affine toric variety as in the

following cases:
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Let dim(o) = n. Let C[S,] — C be the C-algebra homomorphism which sends y*
to O for all u € S \ {0}. Then the kernel of this homomorphism gives a maximal ideal

M that corresponds to a point x,-. It follows that
M={("lueS,\{0}) and M*=(y"|ueS,\{0}is reducible).

Thus, the irreducible elements of S \ {0} give a basis of M/M? as a vector space
over C. Since My, ., is a maximal ideal of Oy, . we get MIM? = MXva/M?((T,xU’
and since x, € X, is smooth, it follows that T (X,) = Homc(Mx, x, / Mimxo_) has
dimension n as a vector space over C, we have dimcM/M? = n. This implies that,
the dual cone & cannot have more than n edges, and that the minimal generators, i.e.,
primitive elements, along these edges must generate S. Since S, generates M as a
group, the minimal generators for S - must be a basis for M. Thus, & must be generated

by a basis for N. Hence, X, = C".

Let dim(o) < d. Assume that N, be the sublattice of rank d generated by c NN, i.e.,
Ny =0NN+(—oNN). Since o is saturated, N, is also saturated, so that we can find a
splitting N = N, & N1, where o = 0 x{0}. By duality and (M,N,) =0, we have M =
(Ny)*®M and o = (ov") @® M. This gives an isomorphism C[7] = C[(ov-’)] ®c C[M].
Thus, X, = X, x (C*)""?. By the previous case, o’ must be generated by a basis for

Ng.

Proposition 3.4.3. (Fulton, 1993, Proposition at page 29) An affine toric variety X is
smooth if and only if o is generated by part of a basis for the lattice N, in which case

X, = C4x (C*" 4, d = dim(o).

Therefore, a cone o is called a regular (or nonsingular) if it is generated by part of
a basis for the lattice N, and we call a fan regular (or nonsingular) if all of its cones

are regular, i.e., if the corresponding toric variety is smooth.

Remark 3.4.4. In general case, we can characterize smooth toric varieties as follows:

A toric variety Xy is smooth if and only if every cone ¢ in a fan X is regular.

Definition 3.4.5. A cone o in Ny is simplicial if its minimal generators are linearly
independent over R, i.e., generated by numbers of dim(o) edges. A toric variety Xy is

simplicial if every cone in X is simplicial.
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A simplest example of a simplical cone is any two dimensional cone.

Before going further, we will investigate an idea of changing the lattice that allows
us to construct singularities of toric varieties. Let N be a lattice with a sublattice N’
of finite index. Now consider a cone o given in a lattice N. We write ¢’ instead of
o if we consider it in a lattice N’. It can be seen that, for a cone o C Ny = N]’R, the
property being strongly convex, rational and polyhedral is equivalent with respect to
both lattices. Then the morphism of affine toric varieties X’ = X,» — X, = X induced

by the inclusion N’ — N. Let N/N’ be a group denoted by G, where
N/N’ = Hom(M'/M,Q/Z)= Hom(M'/M,C)c Hom(M’,C").
This group can be identified with the kernel of the homomorphism
Tn» = Hom(M',C*) — Tn = Hom(M,C")

induced by the inclusion N’ < N. Therefore, an affine toric variety X, can be
identified by the quotient of X, under the action of N/N’. More generally, a toric

variety X is identified with the quotient of X5/ under the action of N/N’.

More explicitly, suppose that o is a cone in Ng which is simplicial, and suppose
that uy,...,ux € o0 NN are the primitive elements, along the edges of 0. Let N, denote
the subgroup of N generated by the u;. Then N, can be extended to a lattice N’ ¢ N
such that o "Ny, = N, i.€., o is nonsingular with respect to N’, denoted by o”’. On the

other hand, we have
CIX1=Ry =C[x¥"|ueS~12Clx"*|lueS,] =R, =C[X]
forSocSy. IfgeG,ueS,, x’ € X/, then
(8 X)) =x"(g™'u) = g7 (W) ' (u) = X' (w) = " ().

This means that R, C Rg,. Conversely, suppose f ¢ R,. Write f =} c;x"/ for some
cj€C,uje M’. Since f ¢ R, at least one u; ¢ M, say u;. Choose g € G such that
g(uy) # 1. Then, g(f) # f and hence R, = Rg,. It follows that, X = X’/G. Thus, we

obtain the main result about simplicial toric varieties.
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Theorem 3.4.6. A toric variety X given by a simplicial fan £ has only quotient

singularities.

Suppose that X is a fan in N in which every cone is simplicial. Then X5 is covered
by affine open sets X, each of which is a quotient of affine space by a finite group.
Thus, Xy is a quotient of a smooth variety by the action of a finite groups locally. Such

a space is called an orbifold.

Before specizaliting our case, we will formulate two-dimensional affine toric

varieties as follows:

Lemma 3.4.7. Any two-dimensional affine toric variety comes from a cone o generated

by uy =ex=1(0,1) and uy = pe; —gez = (p,—q) with 0 < g < p and gcd(p,q) = 1.

Example 3.4.8. Assume that the cone o0 C Ny = R? is generated by pe; —ges and e;

where 0 < ¢ < p and ged(p,q) = 1.

[S] 0] o) o)
[S] 0] © ©
[S] <] © ©
[S] <] © ©
0] 0] €2 0] 0]

(0] . (0] ©
(0] . (0] ©
0] . [0] [0]
O] . <] <]
O] . <] <]

Figure 3.13 o and ¢~ in lattices N and

N’, respectively

Let N be a lattice generated by dots, and let N’ = {ae; +Bes | B € gZ} =< pe; —
ges, ey >, that is generated by circles, see Figure 3.13. Then N/N’ — Z/qZ. The dual
lattice M’ is generated by e + %e’{ and ;]e’i‘, ie., ée’{ and e; corresponding to monomials
U and Y, and the corresponding ¢’ has S+ = (ée’i‘, ge*{ +e3). So we get V = U?Y and
then

Ry =C[U,V]=C[U,U%Y].
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Thus, =~ C2. The group G = Z/pZ acts on X, = C? by (u,v) = ({u,¢%) and
X =X /G =C?/G, ie., Ry = RS =C[U,V]°. In this case, X is a cyclic quotient

singularity.

It follows that, any two-dimensional affine toric variety has only cyclic quotient

singularities.

Example 3.4.9. Apply the above construction to the cone o =< pe; —e3,e2 >C Ny =
R2, where g=1. Then R, = C[S,] = C[X,XY,...,XYP]. Let X=U? and Y = V/U.
Thus, R, = C[UP,UP~'V,...,VP] c C[U,V] so Xy = Spec(R) is the cone over the
rational normal curve of degree p. Now assume that N’ be the sublattice in N generated
by pe; and e, and let o’ be the same cone as o, but considered in N’. N’ C N implies
that M’ > M and M’ is generated by le}* and €, corresponding to monomials U and Y
with U” = X. Since S, = (5¢}, ye} +¢3), we get Ry = C[U,UY] = C[U,V] with V =
UY. Thus, X,» = C2. The inclusion N’ ¢ N gives us X,» — X,. Therefore, X, = C2 /PZ.



CHAPTER FOUR
DEFORMATION THEORY

Deformation theory is the fundamental technique in many branches of mathematics.
We will develop the deformation theory of affine schemes, and their singularities.
This theory gives us methodical ways in which these schemes can be perturbed.
In particular, deformation theory allows to better understand some properties of an
original object on a simpler tool, which comes from an algebraic notion, so-called
flatness. Flatness preserves certain invariants of an original object and so we will
especially introduce these properties of flatness in the present chapter. The standard
textbooks on the theory of deformations are Artin (1976), Stevens (2003) and Greuel
et al. (2007).

4.1 Definitions and Examples

Our main point is to obtain a description of an affine scheme X, it is useful to
investigate the characteristics of X under deformations. Then we will try to reinforce

our description on some basic examples.

To talk about a morphism for the notion of deformations firstly we need to define the
fibre of a morphism. Let X and Y be schemes over S. A fibred product (or pullback) of
X and Y over S is a scheme X Xg Y with morphisms p; : XXg Y — X and pr: XXg Y —
Y such that given any scheme Z with morphism f :Z — X and g : Z — Y, there exists
a unique morphism 6 : Z — X Xg Y such that f = p; o6 and g = p, 08 which makes a

commutative diagram:

77{

\\ J/ p1 J/
N

Y —S§

We can use the fibred product to define the fibre of a morphism. Let f: X — Y be a
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morphism of schemes and let y € ¥ be a point. Let C(y) = Oy, /My, be the residue
field of y, and let SpecC(y) — Y be the natural morphism. Then we define the fibre
of the morphism f over the point y to be the scheme Xy = X X, SpecC(y). In other
words, the fibre X, is a scheme over C(y), and one can show that X, = f “ly). Ify=0,
then the fibre Xy = f‘l(O) is called a special fibre. The fibre admits to consider a
morphism as a family of schemes that parametrized by the points of the image scheme.
Conversely, this family gives a useful way to vary a family of schemes algebraically.

Thus, intuitively a deformation of X is actually a variation of X in a family.

Example 4.1.1. Let X = X = V(xy) c C2. Now we perturb the defining equation to
deform Xy. X; = V(xy —t) c C? gives us a family of smooth plane curves. This family
degenerates to Xp as t — 0. In other words, we can lift the relation of the defining
equation. Since Xy is given by only one defining equation, every perturbation is a

deformation of Xj.

(a) Xo, (fort =0) (b) X;, (for t # 0)

Figure 4.1 Deformations of X

We define a family with special fibre Xy over a base space S to be a morphism
n:X= UXt — § such that Xy is isomorphic to n~1(0). This means that each X;
arises as ﬁbres of the morphism 7 : X — S. In terms of locality, we have equations
fl()_c, Dy.os ﬁ()_c, t) whose restrictions fl(g, 0),..., fk(g, 0) generate the ideal, isomorphic
to the ideal of Xj. But, in general this family is not nice enough to define deformations.

Investigating the following example we will find a necessary condition to obtain a good
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description of deformation. The good deformation means that discrete invariants stable

with respect to ¢.

Example 4.1.2. Let X = Xo = V(xy, xz,yz) C C3 which consists of the three coordinate

axes in C3.

Firstly, consider the one-parameter family given by X; = V(xy—t,xz—1,yz—1) c C.
Then the equations of X, gives us just two points (= V1, — Vt,— V) and (V1, V1, V1)
when ¢ # 0. Then clearly this family cannot be a deformation of Xy, since X; does
not gives X as t — 0. One can show that the dimension changes with respect to this

family. Something is WRONG!

Now, we investigate what the problem is here. For ¢ = 0, we have three linearly
independent equations f] = xy, f> = xz and f3 = yz. But we have non-trivial relations

such that
firz=f2ry=0, firz—fz3-x=0 and fr-y—f3-x=0.
If we try to extend this relations to be include the variable 7, we obtain
F-z-G-y=t(z—y) and F-z—-H-x=t(z—x),

where F = xy—t, G =xz—t and H = yz—t. For t # 0, we can divide by ¢ and take new
generators of the ideal < z—y,z—x, x2 —1> describes the lines (x V1, £ V1, = V). Thus,

we cannot lift the relations.
On the other hand, consider a different family such that
F=xy, G=xz and H=yz+ty+tz=yz+t(y+2).

For ¢ # 0, the space X; consists of the x-axis and the smooth hyperbola passing through

the origin.

Now we can lift the relations as follows:

F-z-G-y=0 and F-(z+t)+G-t—H-x=0.
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(a) Xo, (for t=0) (b) X;, (fort #0)

Figure 4.2 Deformations of X

Thus, we obtain a true deformation of X, the key point is that the relation between the
defining equations f;(x) lift to some relations, depending on ¢, between the perturbed

equations fi(x,7). The corresponding algebraic tool for this notion is that of flatness.

A module M over a commutative ring R (with unity) is said to be flat if for every
short exact sequence of R-modules 0 - N’ — N — N”’ — 0, the induced sequence
0> N'®M—->NRM— N”"®rM — 0 is again exact. Flatness is exactly an algebraic

tool, but it can be regarded as continuous behaviours of the fibres in view of geometry.

Now, we define a ring of deformation parameters Clzq,...,t] and g1,...,8% €
Clty,...,t,] generate an ideal in C[t,...,#,]. They also define an affine scheme

S =SpecClty,...,t]/ < gi >. This will be our base space of deformations.

Let I =< fi(x),..., fu(x) >C Oc» be an ideal, and let T =< fi(x,1),..., fn(x, 1) >C
Ocnxs a lifting of 1, which define schemes X ¢ C" and X c C" xS, respectively. Now

we will construct the lifting relations in terms of flatness, under these notation.

Definition 4.1.3. The map 7 : X — S is flat if every relations between the f; lifts to

some relations between the f;.

The criterion for flatness can be given as follows:

Proposition 4.1.4 (Lifting Relations). With the above notations the followings are

equivalent:
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i) Themapm:X — S is flat
ii) Ox is a flat Os o-module.

iii) Every exact sequences --- — O’;(OO - OS(O 0 = Ox,.0 = Ox,0/1 — 0 lifts to an

exact sequence - -+ — O’:\,’O — OS(,O — Ox0— Oxo/I— 0.
To further proceed we recall that some properties of flat morphism:

i) Flatness is preserved under base change: For a given morphism diagram

X/#X

S’ —=>S

Take any p’ € X’ and let f(p’) = p. If mis flat at p, then 7’ is flat at p’.

i) If #: X — § is flat, then for every P € X the dimension formula dimpX =

dimgp)S +dimpXj holds.

iii) Every flat morphism is open.

Now, we are able to give our main definition of deformations as follows.

Definition 4.1.5. A deformation of an affine scheme X is a flat family of schemes
n: X — S, such that X is isomorphic to the fibre 771(0). A scheme X c C"x S is
called the fotal space, S the base space of the deformation. We call & an r-parameter

deformation for an open subset S of C’.

We can write a deformation in the deformation language

where i is a called embedding mapping X isomorphically onto 7~!(0). Note that, we

can define a deformation of X for any s € §. We just prefer using 0 for simplicity.
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The simplest example is the hypersurfaces, because every perturbations gives a

deformation, see Example 4.1.1.

Definition 4.1.6. A morphism between two deformations 7: X — S and 7’ : X — S of
X over the same base S is a morphism f: X — XoverS,ie, o f = m, compatible
with the embedding i : X — X and i’ : X — X such that foi = i’. In other words, the

diagram

1S commutative.

Two deformations are isomorphic if there exists an isomorphism f : X — X.

Definition 4.1.7. Let 7 : X —» S be a deformation of X, and let f: S’ — § be
a morphism. The induced deformation is the flat map f*(n) : (X xXg S") — S’.

Sometimes, called a pull-back.

By the property of flatness (i), f*(n) is really a deformation of X over (S’,0). More
explicitly, consider a deformation of X. We can induce other deformations of X by
applying changes of coordinates to the variables x; and substituting in new deformation
parameters for the #;. A simplest example of an induced deformation is the restriction

to subspace in the parameter space S'.

Example 4.1.8. Let X = X; := V(x? +y> —z%). We perturb this with a parameter  to get
f" = x> +y>—z> —t. The fibre over 0 is just X and the fibre over ¢ # 0 is smooth. Thus,
this is a deformation of X. If we substitute ¢ = —%sz and take the change of coordinates

z (z+ %s), then we obtain another deformation given by x? + y? — z> — sz.

Definition 4.1.9. Given any schemes X and S, we always have a deformation of X,
namely, the product family 7 : X XS — S. Any deformation isomorphic to the product

family is called trivial.
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The main point is that we can obtain a deformation from other ones, by making
a base change. There is no new informations during this process, and hence we can
restrict our searching for “all possible” deformations of a given variety to the looking

for selected deformations including all other ones with base change.

Definition 4.1.10. A deformation 7 : X — S of X is called semi-universal (or mini-
versal) if every deformation p : X — S’ of X is isomorphic to a deformation f*(rr), for

some f:S" — S.

In particular, the map f may not be unique, but its derivative df is uniquely
determined by 7 and /. From the definition, we can say that if we know a semi-
universal deformation of X, then we will know all other deformations. So we will
know all nearby fibres and hence all nearby singularities for an arbitrary deformation

of X.

Example 4.1.11 (Cone over Rational Normal Curve). In Example 3.4.9, we have
described the cone over rational normal curve of degree p by using combinatorial
object cone. On the other hand, we can define by using the Veronese map. Consider the
map v, : P" — P2~ defined by lap:...:a,]— [ag7 ; ag_lal Dt af]. This map is
called the Veronese embedding of P” of degree p. In particular case n = 1, the Veronese
variety is called rational normal curve of degree p. Considered as map between affine

varieties, this map arises the affine cone X over the rational normal curve.

Letn =1 and p = 4. Then the image of the map [ag : a;] — [ag : agal : a%a% : aéa? :

a‘ll] gives the cone over rational normal curve X of degree 4 in C> whose defining

equations comes from the matrix

ank| 20 0072 P o 4.1.1)

Y y2 Y3 Y4

4—i i _

where we identify ay ‘a; =i for i =0,1,2,3,4. The 2 X 2-minors generate the ideal

I(X) of X with the binomials f;; = y;yjs1 —yis+1y; for 0 <i, j> 3.

How can we find the flat deformations?:
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To obtain relations between of f;; we look at the matrix

Yo y1r Y2 )3
rank| yo y; v y3 [<2. 4.1.2)
yir o y2 y3 Y4
The maximal minors, 3 X 3-minors, vanish identically: on the other hand, row

expansion of a minor yields a linear combination of equations.

yofiz=yifor+y2fo1 =0
Y013 = y1.fo3 +y3foi 13
yof23 —y2f03+y3f02=0
yifaz—y2f13+y3f12=0
Under deformation this property should be preserved. By the relations (4.1.3) gives

the following for y; # 0 and y, # 0

foo =izt 3 fon
fo3 =L fis+ 3 fon
fos =32 fs+ i—gfoz
fiz=3fa+fe

This means that fy1, fi2, f23 determine the other f;; away from the coordinate hyperplanes.

(4.1.4)

Therefore we obtain flat deformations

+1t +t +t
rank Yo Y1+l Y2+l y3+1I3 _ 1 4.1.5)
Y1 y2 Y3 Y4

which is three-dimensional.

On the other hand, we can also write the six equations as 2 X 2-minors of a

symmetric matrix, and we obtain another deformation

Yo yio oy
rank yi y2+s y3 | 1. 4.1.6)
Y2 y3 )4

which is one-dimensional.

Thus, the semi-universal deformation of X equals the union of these two families.

Its base space is the union of hyperplane and a line in C*. In particular, it is not possible
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to find any flat family over a smooth parameter space containing both deformations

X; —» C3 and X, — C.

To further proceed we will establish the notion of deformations of complete
intersections space which is the key point for the next chapter. To do this we need

some preparations.

Definition 4.1.12. Let R be a ring and M an R-module. An ordered sequence of
elements xp,...,x, € R is called an M-regular sequence if and only if

i) <x1,...,x, > M # M, or equivalently M/< xy,...,x, > M # 0,

ii) x; is a non-zerodivisor of M/< xy,...,xi—1 > M.
A typical example of a regular sequence is xi,...,X, in the polynomial ring
Clx1,...,x].

Example 4.1.13. Let R = k[x,y,z], where k is a field. Now consider the sequence
y(1=x),z(1-x),x. Then z(1-x)y=zy—zxy=zy—zy=0since y=yxin R/< y(1—x) > R.

This means that this sequence is not a regular sequence in R = k[x, y, z].

Definition 4.1.14. An algebraic set X is called a set-theoretically complete intersection,
if it is the intersection of r hypersurface {f;—o} in the n-space. If f;’s can be chosen so

that [(X) =< f1,..., f; >, then we say that X is ideal-theoretically complete intersection.

It follows that the ideal of X in C" is generated from a regular sequence, i.e., from
as many equations as the codimension from X in C". Furthermore, let X contains Y.
Y is called relatively complete intersection, if the ideal of Y in X is generated from as

many equations as the codimension from Y in X.

Let X c C" be a complete intersection, and let fi,...,fy be a minimal set of
generators of the ideal of X in Ocx. Since fi,..., fi is a regular sequence, any relation
among fi,..., fi can be generated by the trivial relations (0,...,0,-f;,0,...,0, f;,0...,0)
with —f; sitting in the i-th place and f; in j-th place. Then, for any base space S and
any lifting f; € Ocnys of f; for i =1,...,k the diagram X — X P 5 with X cC"x S
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defined by f; =--- = f; = 0, and pr projection onto the second factor, is a deformation

of X over S.

Remark 4.1.15. In terms of geometry, if § = C”, then flatness of amap 7: X — C" is

equivalent to the fact that f,..., f is an Ox-regular sequence.

After all we can say that the deformation theory of complete intersections is
relatively simple. For hypersurface singularities or more generally complete intersection

singularities we can compute the semiuniversal deformation by the following theorem:

Theorem 4.1.16. (Greuel et al., 2007) Let X C C" be an isolated complete intersection
singularity, and let f = (f1,..., fx) be a minimal set of generators for the ideal of X.
Let g1,...,8r be in O{én v 8i = (gl.l, . ..,gi.‘), represent a basis for the finite dimensional

C-vector space
T)l( = O%n,o/<Df. 0%11’0—'— < f] s ?fk > .Olé",0>

- - . r .
where Df is a Jacobian matrix, and set f = (f1,...,fx), fi(x,0) = X, tjg’j(g), X =
V(fi,...,fr) cC"XC". Then n: X — C" obtained by the inclusion C" c C"xC" and

the projection C" X C" — C’, is a semiuniversal deformation of X.

In Theorem 4.1.16, Df - O%n,o is a submodule of Oé",o generated by columns of the
Jacobian matrix of f. Note that T}( is an Ox-module, called the Tjurina module of the
complete intersection X. If X is a hypersurface, then T}( is an algebra and called the

Tjurina algebra of X.

Corollary 4.1.17. Let X c C" be an isolated singularity defined by f € Ocnp, and
g1s---,8r € Ocny, a C-basis of Tjurina algebra

: of  of
Ty = ogn’0/<f,a—m,...,axﬂ>.

If we set f()_c,[) = f(x)+ Z;zltjgj()_c), X=V(f) cC"xC’, then n: X - C" is a

4.1.7)

semiunversal deformation of X.

Example 4.1.18. Let X be the cone in C? defined by the equation f = z> — xy. Then by
the formula (4.1.7)
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Ty = C[x,y,z]/ < f,—y,—x,2z>=C.

Thus, the semiuniversal deformation is given by z2 — xy +1 = 0.

We will end this section with an important result in our context.

Theorem 4.1.19 (Grauert,1972). Any X c C" with an isolated singularity has a

semiuniversal deformationm: X — S.

4.2 Infinitesimal Deformation

Definition 4.2.1. The space consists of one point with local ring C[e] = C+¢-C, € =0,
that is Cle] = CJ[¢]/ < 2 > where ¢ is an indetermined. Then D = SpecCle] is called the

double point. An infinitesimal or (first-order) deformation of X is a deformation over

D.

Our aim is to generalize the above idea. Let X ¢ C" and let X — D be a deformation

of X. Suppose that I[(X) =< fi,..., fi >C Ocn, Ox = Ocn/I(X). Then we have
oL, 5 ok, L, 0cn = 0x =0

where r is an (I X k)-matrix and f = [fi,..., fr] such that fr = 0. Lifting everything, we
obtain:

/ Rok  F
Otixp = Ognxp = Ocrxp = Ox = 0

with F = f+€f" and R = r+ er’. Since €* = 0, the condition FR = 0 implies

FR (f+ef)r+er)
fr+e(fr'+f'r+ ezf’r’

fr+e(fr'+f'r)=0.

Since fr =0, we obtain fr’' + f'r =0 in Ocn.
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The infinitesimal deformations form an Ox-module:
) (f+ef))(r+er)) =0and (f+€f;)(r+er}) =0 implies

(f +e(fi + N+ e(ry +1p) = fr+e(f(ry +r) +(f] + f)r) =0

ii) For ¢ € Ocn, (f +e€df")(r+epr’) = 0.

Thus, if £ € I¥ c OF

on» then there exists a matrix M € My(Ocn) with f+ef” = f(Id+eM)

where each column of M is a relation of fi,..., fi.

As Id + €M is invertible, the ideals generated by f and by f +€f” are equal.

Proposition 4.2.2. The Ox-module of first-order deformations is isomorphic to the

normal module Nx = Homg, (I/ I2,0x).

An infinitesimal deformation f + ef” is trivial, if there is an automorphism ¢(x, €) =

(x+€d(x),€) € C"x D such that f+e€f” and f o ¢ determine the same ideal.
d d of
—Sopxel = O+ et = Z]: R

this gives us

Ocn

X: @Cn ®OX - Hom()cn(l,()x) = NX

that is, the trivial deformations are the image of the above natural map. The kernel of

this map is the Ox-module Oy = {d|x | 6(]) C I}.

Definition 4.2.3. The module T}( of isomorphism classes of first-order deformations

18 T)l( = Coker{®cn|x — Nx}.

In particular, if X is smooth, then T)l( =0.

Example 4.2.4. Let X = [f = 0] c C" be a hypersurface. Then the ideal I(X) =< f >

is a principal ideal generated by a function f, and Ny = Hom(f/f?,0Ox) is a free Ox-

0 0
module with generators f +— 1. Therefore, T}( = Ocn+i / < £, 6_f’ e, 8f >
X0 Xn




CHAPTER FIVE
TORIC DEFORMATIONS

Our source of inspiration is the Christophersen’s observation, in Christophersen
(1991), which states that deforming of a two-dimensional cyclic quotient singularity
(i.e., two-dimensional affine toric varieties), total spaces over components of the
reduced base space are again toric. It follows from this fact, we will try to answer
the following question: “Is it possible to describe the total spaces over the component
just by combinatorial objects?” More explicitly, our aim is to find the semi-universal
deformation of X with toric total space by using combinatorial data of a cone. This

chapter based on Altmann (2009) and Altmann (1995a).

5.1 Infinitesimal Deformations

We will compute the vector space T of infinitesimal deformations for affine toric
varieties X, corresponding a cone oo C Ng, by using the combinatorial data of a cone

o. All statements and proofs can be found in Altmann (1994).

Let us begin defining a useful object as follows: the minimal set of generators of

this semigroup is defined as
E={veSs|v#0andv=v;+vyimpliesvi =0o0rvy; =0} C S,.
This means that E only consists of the irreducible elements of S .

It is known that the ring C[S ] itself an M-grading. So is C[S ,]-module Tla,
which is important for describing infinitesimal deformations. It follows that, we will
give description of the homogeneous piece T}((—f,-). Assume that a cone oo C R” is

given by its fundamental generators, o =< uy,...,ux >C Nr = R" and its dual cone
o={veMp =R"|{u,v)>0, fori=1,...,k}.

Now, we choose and fix an element 7; € M. Then we define the following sets to

70
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describe the module 7'':

Ki = veSs|{u,vy<<u,r),i=1,...,k}; (5.1.1)

i = ENK; (5.1.2)
k

E = | JE. (5.1.3)
i=1

Note that, one can say that these sets depend on the choice of 7; € M.

Theorem 5.1.1. (Altmann, 1994, Theorem 2.3) Let L(E") be a vector space of all linear
dependences between elements of E’. Then
k *
7}, (-7 =(LEN Y L(ED) ®x.C.
i=1
Corroborating the theorem, we will examine the following example which is taken

from the class of two-dimensional affine toric varieties.

Example 5.1.2. Consider any two-dimensional affine toric variety comes from a cone
o generated by u; = e = (0,1) and uy = Se; —3ex = (5,-3). Using the method of
continued fraction, we want to obtain the minimal generating set E = {vg,...,V,4+1} C
S

5 1

5-3 72
so we have a; =3, a» =2 and r = 2. Now, we set vo = [1,0], vi =[1,1], v3 =[3,5] and
vis1 = a;vi—vi—1, fori=1,2. So we have v» = ajvi —vg =[2,3]. Then, the minimal set

of generators is E = {vo,v,v2,v3} with elements v; € M = 72, see Figure 5.1.

Firstly, consider the case 7 = vi. By using the formulas given in Equation (5.1.1),
we find Ky ={veSq [ (u1,v) <{ui,[1,1]) = 1} and Kr ={v € S & | (up,v) <(ua,[1,1]) =

2}, see Figure 5.1. From Equations (5.1.2) and (5.1.3), we obtain the sets as follows:

Ei = EnKj={w}, (5.14)
E, = ENK;={v,vs3}, (5.1.5)
E' = E|{UE; ={vo,v2,v3). (5.1.6)

It follows that, applying Theorem 5.1.1 gives us T)'((—?,-) =C.
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v3=1[3,5]

3
0 vo =[1,0]

Figure 5.1 The points in E and K;, K; for
r=[1,1]

Now, consider 7» = vp: We obtain £ = {vg,v;} and E> = {v3}, and Theorem 5.1.1

implies T}((—fz) =C.

Consider the cases 7y = vg and 73 = v3: Since E; =0 C E> = {vy,v2,v3} and E| =

{vo,v1,v2} D E3 = 0, respectively, the theorem yields T}((—?o) = T}((—?g) =0.

5.2 Toric Deformations

By Theorem 4.1.19, there exists a semi-universal deformation at least for an isolated
singularities, which induces all other ones by specialization of parameters, and more
generally we have showed that if X is a complete intersection, then each perturbation
of equations gives a deformation with smooth base space. It follows that, in this section
our aim is to investigate deformations of X with toric total space by embedding it into

higher dimensional toric variety as a relative complete intersection.

Definition 5.2.1. A deformation f: X — § of X is said to be foric if

i) X is an affine toric variety,

ii) A morphism i : X — X induces an algebraic group homomorphism Tx — Ty

between the embedded toric which makes i equivariant,

iii) i(closed Ty — orbit in X) isomorphically onto (closed 7 x — orbit in X).
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Note that, if the deformation X — S satisfies the conditions (i) and (ii) of Definition
5.2.1, then i : X — X corresponds to a lattice embedding i : N — N. On the dual
level it gives us a surjection of the semigroups i* : S+ - S&. Then we define the m-
dimensional lattice L := Ker(i*) € M and so we have n —m dimensional lattice N =
NNL* and & = 0N L+ C Ng. Let we define affine toric varieties corresponding to

cones o and ¢ as follows: X = SpecC[S 5] and X = SpecC[S ], respectively.

Proposition 5.2.2. (Altmann, 1995b, Proposition 7.1.3) Let f : X — S be a toric
deformation of X. Then S is smooth, and the ideal I = Ker(C[S ,] — C[S #]) defining
X c X can be generated by m binomials of the form x"i — x"i € C[S o] where vi,w; € S o,
vi—wi€L,andi=1,...,m. In particular, they form a binomial regular sequence, and

X is a relative complete intersection in X.

Remark 5.2.3. Nakayama Lemma can be stated as follows: let / be an ideal in the
Jacobson radical of a commutative ring R and M is finitely generated. If my,...,m,
have images in M/IM that generate it as an R-module, then my,...,m, also generate

M as an R-module.

Proof. Firstly we will show that the base space 0 € § is smooth. To prove this, consider
the deformation diagram

XC—i>X

.

{0})——S§.

This gives a deformation of the corresponding torus 7T'x:

Tx“——Tx

l@lf

{0}——5.

We know that that the corresponding torus Tx and 7x are smooth and Ty = Tx®S.

Thus the base space S is also smooth.
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In terms of local ring, we obtain the following diagram:

l'*
Oxp Oxp

W |

Os,0 — Os,0/Mso=C.

Thus, I-Ox 0= Mx,0-Oxp is generated by m elements g1, ..., g, and by the Nakayama
lemma, we can choose these generators among the elements of the form x" — x"i, with

Vi, Wi ESO-;V,'—W,' eL.

Let [ :=<g1,...,8m >C C[S]. Then, I c I are ideals in C[S -] which satisfies the
properties:

i) T and I are homogeneous with respect to the M-grading,

ii) 7= 1in the local ring Oxo.

Now take any M-homogeneous element g from I. By (ii), there exists an i € C[S ]

such that h-g el and h ¢ My = P C-x". And by (i), we can assume h to

V€S &
be M-homogeneous. Hence 4 is a monomial of C[o* N M]. This means that A is

invertible. O

Note that, if we define L’ := span(v; —w;) C L, then the ideal / is homogeneous in
R,. Now, for each [ € L there are v,w € S, such that / = v—w. Hence x¥ —x" € I.
Since I does not contain monomials at all, x” — x* has to be homogeneous itself, i.e.,
v—w e L. It follows that the m-vectors v; —w; that correspond to the generators of 1

are free generators of the sublattice L C M.

Definition 5.2.4. Let X be an affine toric variety. The sequence fi,..., f;» € ['(X,Ox)
is called a roric regular sequence if and only if f; are all binomials in I'(X,0Oy), for
i=1,....mand X :=[f] =--- = f;, = 0] € X is an affine toric variety of codimension m

in X. It follows that toric regular sequence form a regular sequence in X.

In particular, all toric regular sequences can be considered as a flat map X — C™ by

itself.
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Let X — X defined by a regular sequence fi,..., f, € ['(X,0Oyx). Perturbing the
equations fi,..., f;; over a parameter space S in an arbitrary way gives a deformation
of X in X, and this deformation is called a relative deformation of X. That is relative

deformation can be given by the following diagram:

X——X X—=XxS§
L= ]
{0)——3S {0f——S¢.

Note that, this deformation is comparable with the deformations of complete
intersections in C". It follows that the notion of relative complete intersection can
be given by a toric regular sequence, since there is a close relation between these
objects. As a result, toric deformations always obtain from relative deformations
of X inside a higher dimensional affine toric variety X containing X as a relatively
complete intersection. Furthermore, X € X is defined by a toric regular sequence
Sf1s--» fm € [(X,0x). Before further proceeding, we will try to better understand this

relation and its results by an example.

Example 5.2.5. In Example 3.4.9 we have described the cone over rational normal
curve of degree 4, X in > with the cone & =< (1,0);(=1,4) > and its dual & =<
[0,1];[4,1] >. On the other hand two affine toric varieties are isomorphic if the
corresponding cones are equivalent under SL(n,Z) action. Because of that we can
take the cone & =< (—1,2);(1,2) > and its dual & =< [2,1];[-2, 1] > for X to be more
easily in affine space. And alternatively in Example 4.1.11 we have defined X by the

equations:
0o Y1 Y2 Y3
rank Yooy vz Y =1.
yir y2 y3 Y4

Now, we will identified the points of the semigroup S5 with the variables of X. Let

yo=[=2,1],y1 =[=1,1],y2 =[0,1],y3 = [1,1],y4 = [2,1].

Yo 1 y2 V3 Y4
[ ] ° °
Yo Y1 y2 3 Y4
o —0——— 0

Figure 5.2 Affine Slice of &
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Let X c C be three-dimensional affine variety given by the equations

0 Y1 Y2=y2+1 y3
rank Yooy Y Y =1.
Y1 »n Y3 Y4

Then we use the relations between the monomials to obtain a linear system of
coordinates and the solutions of this system realise the relations between the generators
of the semigroup S . Thus, we have the cone o- =< (-1,2,0);(0,0,1);(1,0,2);(0,1,0) >
with dual cone o =< [0,0, 1];[-2,0, 1];[0, 1,0];[2, 1,0] > which is given in figure: The

Y2 3 V4

Yo Y1 2

Figure 5.3 Affine Slice of &

special fibre t = 0 of X is isomorphic to X and its codimension is one in X. This
means that X is relatively complete intersection in X with the regular sequence ¥, — y,

(codimyX = 1). By Definition 5.2.4, , — y; is also a toric regular sequence in X.

More explicitly, we can obtain the closed embedding X — X by identifying the

variables y, and 7. Then, we define a group homomorphism pr: N = Z3 — Z2 = N by

considering the standard basis of the lattices, i.e, defined by . The kernel of
01 1

this map is generated by the vector [0,—-1,1] = [0,0,1] - [0, 1,0] and it is a surjection.

This makes the closed embedding equivariant.

In the dual case we have the group homomorphism Z> < Z> defined by the matrix
1 0

0 1 | Then & =0 NR2. The lattice points y; = [0,0,1] and y, = [0, 1,0] with

0 1
the corresponding facets become parallel in the affine slice of o which is defined by

(o,[0,1,1]) = 1.

On the other hand, consider another group homomorphism pr’ : N = 7> — Z2 =N

defined by identfiying the variables y; = y, and y, = y3. This means that the special
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fiber X’ of X is not a relatively complete intersection in X, actually it is a cone over

rational normal curve of degree 3.

5.3 Homogeneous Toric Regular Sequences

Now our aim is to describe the conditions for ,0 which makes X a relatively
complete intersection in X for the pair of affine toric varieties (X, X). To do this firstly
we will define an important notion which is known as homogeneous degree in the

following sense.

Definition 5.3.1. Let g = (x"' —x"1,...,x"" — x") be a toric regular sequence which
defines X < X. Then the common images 7; € M of v;,w; € M are called the degrees

of g. The sequence g is said to be homogeneous of degree v, if F =7 =--- =7y,

Note that, a homogeneous toric regular sequence is of the form g = (x"' —
x"0, ..., x"m — x"0) up to Z-linear transformations. If g is given as in this form, then
m m m
L=)Z-i-v)= Y Z-(i=v)) = Ker(deg . Pz-vi» Z),
i=0 i,j=0 i=0

where deg(v;) = 1. The elements vy,...,Vv,, are linearly independent in M.

Now, we are able to construct homogeneous toric regular sequences, which is an

important tool to describe the pair (X, X).

Definition 5.3.2. Let (A,L) be a pair of a k-dimensional real vector space A and a
lattice L € A. A deformation element of size mis a tuple (Ro,R1,...,Ry;C; p) satisfying
the following properties:

i) C C A is a rational polyhedral cone with apex, i.e., 0 € A, and p > 1 is a natural

number.

ii) Ro,Ry,...,R,;, C A are rational polyhedra with cone C as their common cone of

unbounded directions.
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Note that, taking the convex hull of the vertices of R; gives us compact polytopes R;

such thatR; =R; +C.

Let € CY c A*. We define the face of a polyhedron P C A to be
F(P,t):={a € P|{a,t)y = Min(P,1)}.

Definition 5.3.3. A deformation element (Rg,R1,...,R,;;C; p) is said to be admissible,
if
i) Inthe case p = 1. Foreach t € C¥ c A* at least m of the m + 1 faces F(R;,1) of R;,

i =0,...,m, contain lattice points.
i1) In the case p > 2. Ry,...,R,, are lattice polyhedra.

Remark 5.3.4. A deformation element (Ro,Rj,...,R;;C) is admissible if and only if
for each t e L* N CY the values of ¢ on at least m of the m + 1 faces F(R;,t) of R; are
integers for i = 0,...,m. We can use this as an alternative description for admissible

deformation elements.

How can we define the correponding objects X,X and 0,5

Constructing X: One can define the polyhedron Q to be the Minkowski sum Q :=
Ry+++R, =C+(Rp+---+R,;) C A. We can embed the whole space as an affine

hyperplane in a higher-dimensional space:

i) Ng:= A xR is a vector space containing the lattice N := IL X Z, with the dual space

M := N;, and dual lattice M = N*;
ii) Y1 : A > Ngsue (u,ph).
In particular, Q turns out to be a polyhedron in Ng via Q := ¢1(Q). So, the associated

linear embedding i : A < Ny defined as u — (u,0). Thus, the (k + 1)-dimensional

affine toric variety X = SpecC[G¥ N M] that is given by the cone

&= Ro0-91(0) = ¥(C) URs0 - ¥1(Q) C N (5.3.1)
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Constructing X: We put the polyhedra Ry,...,R,, into parallel affine planes of a
vector space:
i) Ng:= A xR™! is a vector space containing the lattice N := L. x Z"*!, with the

dual space M = Nfé and dual lattice M = N*;
ii) ®: Ng — R™*! via the projection onto the second factor;

(u,p~leg), i=0
iil) ¢; : A > Ng; u and these maps correspond to an

(u,e)), i=1....m,
embedding ¢ : A — N defined by u — (u,0).

iv) R;:=¢i(R) c® l(e),i=0,...,m.

Now we set P := conv(UL oRi)C Ng. Then we can define the (k + 1) + m-dimensional

affine toric variety X = SpecC[o"¥ N M] given by the cone

o:=R50-P=¢(C)UR5g- P C Np. (5.3.2)

Constructing Regular Functions: Let pr; : R™*! — R be the projection onto the i-th
p-(proo®), i=0
factor, we can define linear maps vy,..., v, : N = Zbyv; =
prio®, i=1,...,m.
These maps correspond to the elements v; € S .

On the other hand, we can consider N as a sublattice of N by the inclusion map N <

N; (u;1) = (u;1,p, ..., p). This implies that N = NN, (v;—vo)* and & = o-N Np.

Therefore, we obtain a map X — X which sends X into the special fiber of the

morphism X — C" defined by the regular functions x"! —x",..., x"» —x"0 € C[S +].

After all these constructions we have the following theorem:

Theorem 5.3.5. (Altmann, 1995a, Theorem 3.5) Let (Ry, . ..,R,;; C; p) be an admissible
deformation element. The above construction gives a pair (X,X) of affine toric
varieties such that X C X is given by a homogeneous toric regular sequence x"' —

X0, ..., x"m —x"0, Furthermore, all those pairs (X,X) arise in this way.
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Now, we change our point of view and let the affine toric variety X = SpecC[S 5] be
given. We want to construct toric deformation of X. Note that, the homogeneous toric
regular sequences of degree 7 € M can be found by looking for admissible deformation
elements such that Ry +---+R,, = dN[(,7) = 1]. To do this fix some degree r
corresponds to the choice of an affine cross cut Q of the cone & C Ng. Then, Theorem
5.3.5 shows that toric deformations of X comes from the decompositions of Q into a

Minkowski sum. Our method is given as follows:

i) Let us define the vector space A := {u € Ng | (u,7) = 0}, with the lattice L :=
Agn N.

ii) Let p be the greatest common divisor of the coordinates of 7. In other words,

p~ 17 is a primitive element of M.

iii) Define the affine space A := {u € Ng | (u,7) = 1}. We fix some point 0 € Anp~'N,
and we obtain the lattice L := 0+ LLy. Furthermore, we use this point to identity

(A, L) with the pair (Ag,Lo) providing a linear structure.

iv) Let set C .= 3 N A to be a cone and Q := &N A to be a polyhedron. Then,
by Theorem 5.3.5, homogeneous regular sequences of degree 7 correspond to

admissible decompositions of Q into a Minkowski sum Q = Ry + -+ + Ry,.

Finally, we assume that the projective toric variety X corresponds to a lattice
polytope P C Mg. It is known that from Chapter 3, the cone C(P) of a polytope P
defines the dual cone d of a cone o. The corresponding affine toric variety is called
the cone over X. In this case, Minkowski sums occur in connection with affine slices

of the cone & by itself, not of the dual cone.

5.4 The Kodaira-Spencer Map

Consider the elements vy,...,v,, € S. We have defined the map SpecC[S ] — C"

by the regular functions x"1 — x'0,..., x"" — x"0 € C[S]. It is known that this gives
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a deformation of the special fiber X = SpecC[S 5]. Now we will define the Kodaira-

Spencer map o : C" — T)l( corresponding to this deformation.

Let (Ro,R1,...,R;;C; p) be an admissible deformation elements. Recall that we
have defined the cone & as the cone over the polyhedron O embedded in to the
hyperplane in A XR. Thus, the elements of E can be written in the form v, = [c4,74]
with ¢, € L*NC and (g, —pc,) < nq for g € Q. Now, let take an any lifting {7y, ..., ¥} of
E to S, c M. This means that vV, = [c4; 704, - - - » Tma] Where nog + pnia+ -+ Plima = Na

and

noa for g€Ro
(q,—pca) <
Nia for qE Ri(i >1).

Note that, since the given deformation elements is admissible, there exist integer

denoted by 7;,.

Now we are able to give the main result for this section.

Theorem 5.4.1. i) The Kodaira-Spencer map sends the whole space C" into the

homogeneous summand T)l((—l_”l').

ii) The Kodaira-Spencer map given as
k k
o:C" —>(L(E’)/Z L(Ei)) ®r C
i=1
which induced by the bilinear map R™ X L(E) — R defined by the matrix

Nia *° TMNia
(5.4.1)

Nia ** TMNia

5.5 Examples

We will end this chapter by investigating some examples. Now try to figure out on

some examples of what we have done up here.
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Example 5.5.1 (Cone Over Rational Normal Curve of Degree 4). Let X be given by
the cones & =< (—1,2);(1,2) >c Ng = R? with dual &Y =< [2,1];[-2,1] >c M = R>.

On the other hand we can define X c C° by the equations

rank (5.5.1)

Yoy vy
YI Y2 Y3 v4

Then the homogeneous coordinates are [0, 1],[1,1],[—1,1]. Since our example is taken
from a class of two-dimensional cyclic quotient singularities, (i.e., two-dimensional
affine toric varieties), we take p = 1. We will investigate these coordinates case by

case:

7 =[0,1]: Define Ag := {u € Ng | {u, 7y = 0} with the lattice Lo. And define A =
{a € Nr | (u,7) = 1} with the lattice L := {u € Z* | (u,7) = 1} = AN N. Then we have
Q=0nAand C:=nAy.

(-1,2) (1,2)

Figure 5.4 The cone C
and the polyhedron Q
with 7= [0, 1]

The pair (A,L) can be identified with (R,Z) by (u, 1) = u. Then the line segment
corresponds to the closed interval [_71, %]C R. Now, the one-dimensional polyhedron
Q(C = 0) can be split into Q = [F},3]= [, 0]+[0, %]: Ro+ R;. We will check that
(Ro,R1;C) is a deformation element of size 1. Since C =0 € A, C is a rational

polyhedral cone with apex, and since we take Rop = [_71,0] and R; = [O,%] with
cone C =0, (Rg,...,R1;C) is a deformation element. To check admissibility take

teCY cA*:

ii) t>0: F(Ro,?) :={a € Rol{a,t) = Min(Ro, 1)} = 5"
F(R1,0):={a € Ry |{a,t) = Min{R;,)} =0
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iii) 7 <0: F(Ry,0) :={a € Ro|{a,0) = Min{Ry,1)} =0
F(R,0) :={a € R {a,0) = Min(Ry,1)} = 5

they contain lattice points.

Then, we set Ng = AxR?>=R3> and N :=LxZ?>=7° Let®:R>—->R?>bea
projection, ¢; : A — R3 defined by u > (u;e;) fori = 0,1 and let R; := ¢(R;) C O 1(e)
fori=0,1.

More explicitly,
2o =& 1,0 552
$o(5) = (Fie)=(510) (5.5.2)
$0(0) = (0se0) =(0,1,0) (5.5.3)
$1(0) = (0se1) =(0,0,1) (5.5.4)
1 1 1
¢1(§) = (5,61):(5,0,1) (5.5.5)

Then we have P := conv(RyUR)) and o =< (3},1,0);(0,1,0);(0,0,1);(3,0,1)) >.
Therefore we obtain the 3-dimensional affine toric variety X| = SpecC[S ,]. The dual
cone of o is o¥ =< [0,0,1];[-2,0,1];[0,1,0];[2,1,0] >. By the relations between
the generators of S, =<[0,0,1];[-1,0,1];[-2,0,1];[0,1,0];[1,1,0];[2,1,0] > we can
define X by the equations

Vo i=yy+t
rank Yo Y1 Y2:=)2 Y3 _1 (5.5.6)
yroy2 Y3 Y4

It follows that the equation 7 = 0 gives us Y as a closed subvariety in X that is given
by the equation y, = ¥,. Since dim(X) = 2 and dim(X) = 3, X is a relatively complete
intersection in X1. By Definition 5.2.4, y» — ¥, is a toric regular sequence of length one

inXl.

7=[-1,1]: Now we set Ag := {u € Ng | (u,7) = 0} with the lattice Ly and set A :=
{u € Ng | (u,7) = 1} with the lattice L := {u € Z? | (u,7) = 1} = ANN. Then we have
0:=0nA=[3,1]=Ro+R; =[3,0]+[0,1] and C := 5N A = {O}.

Again by similar construction we obtain a cone oo =< (—1,0,3);(0,0, 1);(0, 1,0);(1,1,0) >

which defines 3-dimensional affine toric variety X, = SpecC[S +]. By the same reason
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(-1,2)

Figure 5.5 The cone C and
the polyhedron Q with 7 =
[(-1,1]

we can define X, by the equations

0o Yi=y1+t y2 ¥3
Yo JusEyiHt vz vz 5.57)
Y1 y2 Y3 Y4

rank

7 =[1,1]: Now we set A = {u € Ng | (u,7) = 0} with the lattice Lo and set A :=
{u € Ng | (u,7) = 1} with the lattice L := {u € Z? | (u,7) = 1} = ANN. Then we have

Q:=0nA=[-1,4]=Ro+R; =[-1,01+[0,%] and C := 5N A¢ = {0}.

1,2)

Figure 5.6 The cone
C and the polyhedron
Q with 7 =[1,1]

Again by similar construction we obtain a cone o =< (—1,0, 1);(0,0, 1);(0, 1,0);(1,3,0) >

which defines 3-dimensional affine toric variety X3 = SpecC[S ,]. By the same reason

we can define X3 by the equations

V3 =y3+1
Yo Y1 Y2 Y3=)3 _1 (5.5.8)

rank
yYi Y2 y3 Y4
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Additionally the interval Q = [_71, %] has another decomposition Q = { _TI}U[O, 1]
which is an admissible deformation element. Then we have 3-dimensional affine toric
variety X’ with the cone 0’ =< (-1,2,0);(0,0,1);(1,0,1) >. By the relations between

the lattice points of (¢)", we can define X’ ¢ C° by the equations

Yo Y1 y2
rank Vi Yo=y+s y3 |= 1 (5.5.9)
2 Y3 Y4
Therefore, we obtain the semiuniversal deformation of X with the total space X which

is defined by the equations

Yo Vi=yi+t Yoi=y+h J3i=y3+i
rank =1

Y1 Y2 Y3 ya
and
Yo Y1 y2
rank| y; Joi=ya+s y3 |=1

Y2 Y3 Y4

and with the reducible base space S. In particular, S consists of two smooth

components with dimensions three and one respectively.

Example 5.5.2. Consider ¢; : X — P! for i = 0,1,2 defined as

Yollxo : x1 : x50 :y1:¥21) = [x1:x2] or [y2:y1]
Yollxo : x1 : x50 :y1:y21) = [x2:x0] or [yo:y2]

wollxo : x1 :x25¥0 :y1:y21) = [x0:x1] or [yr:yol.

Each ¢; is well-defined and a morphism of verieties. These morphisms define a
morphism ¢ : X — P! x P! x P!. The map ¢ sends X isomorphically onto the
hypersurface of P! x P! x P! with the defining equation XoYoZo = X;Y1Z;, where
X0, Y0,20,X1,Y1,Z; are the coordinates of the product variety P! x P! xP!. In this
case X is called Del Pezzo Surface of degree 6, and the corresponding fan given in

Figure 5.7.
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o2

03

o4

@5

Figure 5.7 Fan of Del Pezzo

surface

Let Q := conv((0,0),(1,0),(2,1),(2,2),(1,2),(0,1)) c R? be the hexagon. Then, we

obtain the corresponding cone
& = cone(Q) =< (0,0,1),(1,0,1),(2,1,1),(2,2,1),(1,2,1),(0,1,1) >C Np =R°,

by putting H into the affine hyperplane z = 1 ¢ R3. Thus, X c C’ is a three-dimensional
affine toric variety. There is only one homogenous coordinate which is 7 = [0,0;1].
This implies that the splitting of the base space S into two irreducible components

corresponds to the existence of two different Minkowski decomposition of Q.

Firstly, we consider the decomposition of Q in Figure 5.8, that is

Q =conv((0,0),(1,0),(1,1)) + conv((0,0),(0,1),(1,1)).

A

Figure 5.8 O = conv((0,0),(1,0),(1, 1)) +conv((0,0),(0,1),(1,1))

We put into two parallel planes contained in R3. This gives an octahedron which
corresponds to a 4- dimensional cone o such that

o =<(0,0;1,0),(1,0;1,0),(1,1;0,1),(0,0;0,1),(0,1;0, 1),(1,1,0,1) > .

This gives us one-parameter deformation X; — C.
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Now, we consider the decomposition of Q in Figure 5.9, that is

Q = conv((0,0),(1,0))+conv((0,0),(0, 1)) +conv((0,0),(1,1)).

(s

Figure 5.9 Q = conv((0,0),(1,0)) + conv((0,0), (0, 1)) + conv((0,0), (1, 1))

We put into three parallel 2-planes in general position in R*. This gives a 4-
dimensional polytope which corresponds to a 5- dimensional cone o such that
o =<(0,0;1,0,0),(1,0;1,0,0),(0,0;0,1,0),(0,1;0,1,0),(0,0;0,0,1),(1,1,0,0,1) > .

This gives us a two-dimensional deformation X; — C2.

Therefore, we have computed the semi-universal deformation of the cone over the
Del Pezzo surface of degree 6 and its base space S consists of two smooth components

with dimension 1 and 2, respectively.
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