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İZMİR
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ELECTRONIC STRUCTURE OF THE QUANTUM WIRES WITH
SPIN-ORBIT INTERACTIONS UNDER THE INFLUENCE OF IN-PLANE

MAGNETIC FIELDS

ABSTRACT

In this thesis, we have made a theoretical investigation of electronic ground state

structure of a parabolically confined quantum wire subjected to an in-plane magnetic

field, including spin-orbit interactions and exchange-correlation effects. In this study,

the effect of generally off-neglected cubic Dresselhaus spin-orbit interaction has also

been taken into account. The energy dispersion has been numerically calculated in a

wide range of linear electron densities. The effects of the exchange-correlation interac-

tion have been investigated within the noncollinear local-spin density approximation.

A self-consistent solution of the Kohn-Sham equations has been implemented. The

energy eigenvalues and the eigenfunctions of the system have been obtained from nu-

merical solutions of Schrödinger equation. One-dimensional finite elements method

based on Galerkin procedure has been used.

It has been seen that the structure of energy subband depends strongly on the strength

of spin-orbit interaction, the magnitude and the orientation angle of magnetic field and

the exchange-correlation effects. It has been shown that in the presence of an exter-

nal magnetic field the interplay of different types of spin-orbit interaction and Zee-

man effect leads to complicated and intriguing energy dispersion for different spin

branches. Including exchange-correlation energy has been caused anomalous plateaus

which could play an important role for understanding of the conductance. We have

seen that our results are compatible with the studies in the litterateur. We have found

different results for exchange-correlation effect especially in low density limits that

could be due to the use of different parametrization for exchange-correlation energy

functional.

Keywords: Quantum wire, spin-orbit interaction, exchange-correlation energy.
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DÜZLEM MAGNETİK ALAN ALTINDA SPIN-YÖRÜNGE ETKİLEŞİMLİ
KUANTUM TELLERİNİN ELEKTRONİK YAPISI

ÖZ

Bu tezde, düzlem manyetik alan altındaki parabolik hapsedilmiş kuantum telinin

elektronik taban durumu yapısını, spin-yörünge etkileşimleri ve degiştokuş-korelasyon

etkilerini içerecek şekilde, teorik olarak inceledik. Bu çalışmada, genellikle ihmal

edilen kübik Dresselhaus spin-yörünge etkileşme etkisi de hesaba katıldı.

Enerji dağınımı lineer elektron yoğunluğunun geniş bir aralığında nümerik olarak

hesaplandı. Değiştokuş-korelasyon etkileşim etkileri eşçizgisel olmayan yerel-spin

yoğunluk yaklaşımı dahilinde incelendi. Kohn-Sham denklemlerinin özuyumlu çözümü

gerçekleştirildi. Sistemin enerji özdeğerleri ve özfonksiyonları Schrödinger

denkleminin sayısal çözümünden elde edildi. Galerkin yöntemine dayalı olan bir-

boyutta sonlu elemanlar yöntemi kullanıldı.

Enerji altbant yapısının spin-yörünge etkileşimine, manyetik alanın büyüklüğüne

ve yönelim açısına ve değiştokuş-korelasyon etkisine güçlü bir şekilde bağlı olduğu

görüldü. Dış manyetik alan varlığında farklı tipteki spin-yörünge etkileşimi ile

Zeeman etkisinin etkileşiminin farklı spin dalları için karmaşık ve şaşırtıcı enerji

dağınımına yol açtığı gösterildi. Değiştokuş-korelasyon enerjisinin eklenmesi

iletkenliğin anlaşılmasında önemli rol oynayabilecek olan olağandışı platoların

oluşmasına sebep oldu. Sonuçlarımızın literatürdeki çalışmalarla uyumlu olduğunu

gördük. Özellikle düşük yoğunluk limitinde değiştokuş-korelasyon etkileri için farklı

sonuçlar elde ettik bu faklı değiştokuş-korelasyon enerji fonksiyoneli kullanılmasından

kaynaklanabilir.

Anahtar sözcükler: Kuantum teli, spin-yörünge etkileşimi, değiştokuş-korelasyon

enerjisi.
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CHAPTER ONE

INTRODUCTION

In the past 40 years, semiconductor physics brought a revolution, both in science

and in everyday life technology. The advent of semiconducting devices and their use

in integrated circuits was a social revolution and clearly marked the brink of a new

era. With the development of this new technology, the tendency to produce high pre-

cision nanostructured electronic devices has been increased. Producing these devices

has prompted intense activity in the study of semiconductor heterostructures. These

new devices exploit electron spin rather than electron charge and due to their low di-

mensional features they are faster and more powerful than those existing. Spintronics

is a new emerging field based on the electron spin and promises possible applications

in many fields such as electronics, quantum information etc. The main goal of spin-

tronics is carrying out controllable manipulations of electron spins using intrinsic spin-

orbit (SO) interactions. These SO interactions occur in the existence of macroscopic

electric fields which arise from inversion asymmetry properties characteristic of the

heterostructures. Two basic mechanisms of the spin-orbit interaction are Rashba and

Dresselhaus coupling (Zhang, Zhao, & Liu, 2009). The inversion asymmetry of the

confining potential in the growth direction induces Rashba SO coupling and the bulk

inversion asymmetry of the heterostructure causes Dresselhaus SO coupling.

Among semiconductor nanostructures, quantum wires (QW)s are especially well-

suited for the development of spintronic devices. Their transverse length can be ex-

ternally controlled hence the system can be made more or less quasi-one-dimensional.

In addition, the ratio of the SO strength to the confinement can also be adjusted. On

the other hand, the electron motion can be rendered almost collisionless because of

the high purity of two-dimensional electron gas (Malet, Marti, Barranco, Serra, & Lip-

parini, 2007).

The aim of this work is to make a theoretical investigation of the electronic struc-

ture of a parabolically confined QW subjected to an in-plane magnetic field, including

both Rashba and Dresselhaus SO interactions and exchange-correlation effects. We

choose the wire plane to be xy-plane with y-direction parallel to wire. We have inves-
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tigated energy dispersion in a wide range of linear electronic densities in the presence

of strong and weak SO coupling that are characterized according to value of ratio of

SO coupling to confining energy. We take into account the generally off-neglected cu-

bic Dresselhaus SO interactions. The effects of the exchange-correlation interaction

on the energy subband structure of QW has been investigated within the noncollinear

local-spin density approximation in the framework of density functional theory. The

exchange-correlation potential was defined by using the energy functional of Attac-

calite and coworkers (Attaccalite, Moroni, Gori-Giorgi, & Bachalet, 2002; Attaccalite,

Moroni, Gori-Giorgi, & Bachalet, 2003). We implemented a self-consistent solution

of the Kohn-Sham equations for a QW submitted to a parabolic lateral confinement.

This work is organized as follows: In Chapter 2 we give a brief overview of quan-

tum wires and their fabrication techniques. We present the spin-orbit interaction and

Zeeman effect in Chapter 3. Chapter 4 is devoted to introduce the theory and formalism

used in this work. The definition of the system and its properties are given in Chapter

5. In Chapter 6 we give the numerical results of quantum wires in different conditions

such as different strength of SO interaction, magnetic field and exchange-correlation

energy. A short concluding chapter summarizes our findings.



CHAPTER TWO

QUANTUM WIRES

Technology and science has opened a new era via the bulk crystalline semicon-

ductor. With the electronic and optical features they constitute the basis of industry

such as electronics, spintronics, telecommunications, microprocessors, computers and

many other components of modern technology. A typical example for bulk crystalline

is semiconductor heterostructure which is formed by combination of two or more het-

erojunctions together in a device (Wagner, 2009). A heterojunction is composed of

more than one material which has same lattice constant but different band gaps.

Figure 2.1 A 2-dimensional electron gas is formed
at the interface between intrinsic GaAs and n-doped
AlGaAs.

A well known example is GaAs/AlxGa1−xAs alloy which consist of semiconductor gal-

lium (Ga), arsenide (As) and aluminium (Al), thus forming a heterointerface (Harrison,

2005). The lattice constant is same for two alloys but it is clearly seen that the band

gaps are different and the edges of conduction and valance bands are not in the align.

When these two crystals bring together, electrons start to spill over from n-AlGaAs

leaving behind positively charged donors. The electrostatic potential bends the bands

as seen in Figure 2.1. When the system achieve the equilibrium, the Fermi energy

is constant everywhere. The conduction band at the interface constitutes a triangular

3
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quantum well crossing the Fermi energy and a very thin layer occurs. The electrons

are restricted only perpendicular to the interface, thus a two-dimensional electron gas

is obtained.

The two-dimensional electron gas can be confined by application of gate voltages.

The motion of at least one type of charge carriers is confined in at least one direc-

tion which spatial dimension can be compared to the de-Broglie wavelength of charge

carriers. Therefore the semiconductor can be called to be of reduced dimensionality.

Reduction in dimensionality can be developed by reducing the dimensionality of the

electron’s environment from a two-dimensional quantum well to a one-dimensional

quantum wire and to a zero-dimensional quantum dot.

Figure 2.2 Schematic representation of the quantum well, wire and dot.

In the quantum wells, the electrons are localized in the direction perpendicular to the

layer and they can move freely in the layer plane. The electrons are localized in two

directions in the QWs and their motion has freedom along the wire axis. The quantum

dots are confined in all three directions as a result they have discrete energy spectrum.

QWs have been studied intensively worldwide both theoretically and experimen-

tally ( Canham, 1990; Quay et al, 2010; Gujarathi, Alam, & Pramanik, 2012). The

one-dimensional structures such as QWs take interest in for fundamental research be-

cause of their unique structural and physical properties which arise from their char-

acteristic bulk structure. On the other hand they promise fascinating potential for fu-

ture technology such as microelectronic and opto-electronic devices (Alferov, 2001).

These structures have been studied extensively in order to investigate their electronic,

spin, transport and conductance properties (Orellana, Dominguez-Adame, Gomez, &

de Guevera, 2003; Abonov, Pokrovsky, Saslow, & Zhou, 2012).
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QWs can be produced by some fabrication techniques such as molecular-beam

epitaxy (Gonzalez et al, 2000; Garcia, Gonzoles, Silveria, Gonzoles, Y., & Brianes,

2001), electron-beam lithography, wet/dry chemical etching (Petroff, Gassard, Lo-

gan, & Wiegmann, 1982), and epitaxial growth techniques which can be separated

as V-shaped (Kapon, Hwang, & Bhat, 1989) and T-shaped (Pfeiffer et al, 1990). The

quantum wire can be also obtained by confining the electrons in two-dimensions. de

Picciotto and his coworkers (de Picciotto, Stormer, Pfeiffer, Baldwin, & West, 2001)

fabricate quantum wires by cleaved-edge overgrowth on GaAs/AlGaAs heterostruc-

tures as shown Figure 2.3. Three tungsten gate electrodes on the surface of the device

define two strips of two-dimensional electron gas that serve as voltage probes for the

central part of the wire. As the width of these strips is small compared with the scat-

tering length in the wire, the perturbation caused by the voltage probes is negligible.

After mentioning about the fabrication process of quantum wires, it may be use-

ful to briefly summarize the numerical calculating techniques. A serious effort was

spent to develop their theoretical modelling in order to predict the physical properties

of such structures and to understand experimental results. The energy band structure

forms the basis of understanding the most optical properties of semiconductors. Their

confinement leads to a discrete energy spectrum, namely electrons and holes occupy

discrete quantum levels. The energy band diagrams and the wave functions of quantum

wires are very complicated to calculate. Generally the analytic solution is not possible

except some circumstances. For the analysis of quantum wires several numerical tech-

niques have been developed, such as effective bond orbital method (Citrin, & Chang,

1989), tight binding method (Yamauchi, Takahasi, & Arakowa, 1991), finite difference

method (Pryor,1991), and finite-element method (FEM) (Searles, & Felsobuki, 1988;

Kojimo, Mitsunaga, & Kyuma, 1989).

All of these methods base on basis functions and the number of the basis func-

tion determine the convenience of the method. On the other hand, FEM is more useful

method due to the requirement only a few basis functions at each atomic site to describe

the electronic band structure accurately, depending on whether the spin-orbit split-off

bands are neglected or not. The advantage of FEM over a numerical technique is that

it can analyze accurately energy eigenstates and wave functions of arbitrarily shaped
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Figure 2.3 Fabrication of quantum wire (de Picciotto et
al, 2001).

geometries with wide range of lateral dimensions. For an arbitrary shaped quantum

wire the energy levels and the wave functions were calculated by Kojima (Kojimo et

al, 1989) and his co-workers. An investigation of valence band structures and opti-

cal properties of quantum wire was carried out by Yi and Dagli (Yi, & Dagli, 1995)

via using a four band k · p analysis by FEM. Using the FEM the valence band mix-

ing effect, the strain effect, and the crystallographic orientation effect on the valence-

subband structures of quantum wire was analyzed by Ogawa (Ogawa, Kunimasa, Ito,

& Miyoshi, 1988). And in this thesis, the single particle states has been calculated with

high accuracy by FEM.



CHAPTER THREE

SPIN-ORBIT INTERACTION

3.1 From Dirac Equation to Spin-Orbit Coupling

SO interactions are important in transport and manipulation of electron spins in

two-dimensional electron gas channels (Jalil, Tan, & Fujita, 2008). When a charge

carrier travels in an electric field, in its restframe it sees a moving electric field. These

moving charges, due to electric field, give rise to an internal magnetic field and this

internal magnetic field couples to the spin of the electron (Meijer, 2005). The ability of

couple the spin and charge conductance helps to approach investigation of electronics,

photonics and spintronics in semiconductors. Quasi-two-dimensional semiconductor

structures such as QWs and heterostructures are well suited for a systematic investi-

gation of SO coupling effects (Wrinkler, 2003). Some of features especially spatial

properties of electrons, moving through the periodic crystal, can be determined by en-

ergy bands Enk.

SO interaction which is a relativistic effect can be obtained by taking the nonrela-

tivistic limit of the Dirac equation. The derivation is based on Pauli equation and it has

been taken Sakurai (Sakurai, 1967). The Hamiltonian form of the Dirac equation in

the standart formalism can be written as H|ψ⟩= E|ψ⟩.

H =

 0 cσ.p

cσ.p 0

+

 mc2 0

0 −mc2

 (3.1.1)

where c is the speed of light, p is the momentum and σ are Pauli spin matrices. From

|ψ⟩= (ψA,ψB)
T , one can obtain two coupled equation for ψA and ψB. Eliminating ψB

p ·σ c2

E +mc2 p ·σψA = (E −mc2)ψA (3.1.2)

If a potential V exist in the system E-V can be written instead of E. The derivation is

calculated in the nonrelativistic regime so E = mc2 + ε where ε << mc2. |V |<< mc2

is assumed and this expansion is obtained

7



8

c2

E −V +mc2 =
1

2m

(
1− ε −V

2mc2 + ...

)
(3.1.3)

Using the (p ·σ)(p ·σ) = p2 knowledge, simply Schrödinger equation emerges

(
p2

2m
+V

)
ψ = εψ (3.1.4)

The reason this derivation works is that to zeroth order in (υ/c), ψB = 0. In fact, from

Equation 3.1.1 we have to first order in (υ/c)2

ψB =
p ·σ
2mc

ψA (3.1.5)

Namely, in this frame ψA is equivalent to the Schrödinger wave function ψ . In accor-

dance with Dirac theory the wave functions have to be normalized.

∫
(ψ†

AψA +ψ†
BψB) = 1 (3.1.6)

From Equation 3.1.5, writing ψA instead of ψB

∫
ψ†

A

(
1+

p2

4mc2

)
ψA = 1 (3.1.7)

To obtain normalize wave function, ψ = [1+ p2/(8mc2)]ψA should be taken. Equation

3.1.3 is substituted in Dirac equation and Pauli equation is obtained.

(
p2

2m
+V − p2

8mc2 −
h̄

4mc2σ ·p×∇V +
h̄2

8mc2 ∇2V
)

ψ = εψ (3.1.8)

Every term in the equation can be addressed one by one. The third term is a relativistic

correction to the kinetic energy, presented as a first term, and the last term gives the

shift in the energy. And the fourth term is the SO coupling term in the general form the

three-dimension SO interaction Hamiltonian.

HSO =− h̄
4m2

0c2 σ · (p×∇V (r)) (3.1.9)

where m0 is the mass of free electron, c the speed of light, h̄ Planck’s constant σ
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the vector of Pauli matrices and V (r) the electrical potential. V (r) is called Coulomb

potential in atomic physics.

3.2 Semiconductor Spintronics

Electron spin rather than charge is the key property of semiconductor spintronics.

Spin-dependent phenomena in semiconductor have a serious potential for development

future spintronic devices so they have motivated an intense study field in recent years

(Zutic, Fabian, & Sarma, 2004; Nitta, 2004; Choi, Kakegawa, Akabori, Suzuhi, & Ya-

mada, 2008). In semiconductor spintronics the basic idea is combining semiconductor

microelectronics with spin dependent effects for development of new devices. Spin-

tronics emerges attractively in fabricating these new information storage devices. But

there are some difficulties in production of semiconductor based spintronics devices.

One of the major obstacle is producing the magnetic fields which control the electron

spins. But effectively varying external magnetic fields over device length scales, which

are measured in nanometers, is not considered feasible. To get rid of this problem there

are two ways. One of them is to use dilute magnetic semiconductors (Dietl, 1994,

2010). The other way is to use electric fields to carry out controllable manipulations of

electron spins through SO interactions (Wu, Jiang, & Weng, 2010).

3.3 Spin-Orbit Interaction

SO interactions have an effective impact on the energy subband structure and the in-

teractions arise from some sources. In solid systems, electric field generally causes SO

interactions in three different types. They can be written as impurities in the conduction

band, lack of crystal inversion symmetry and lack of structural inversion asymmetry of

the confinement potential of electrons in a heterostructure. The SO interaction which is

induced by impurities can be neglected in practise because its effect is very weak in the

presence of other two mechanism. If impurities is the only SO interaction source then it

can’t be neglected. Most of III-V semiconductors are formed in zinc-blende structure.

The feature of zinc-blende structure is the lattice in this form doesn’t have inversion
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symmetry. So the electrons are exposed to an asymmetric crystal potential during the

moving in the lattice. This SO interaction leads to spin-splitting in conduction band and

this impact was investigated theoretically by Dresselhaus. So it is known as Dressel-

haus SO interaction (Dresselhaus, 1955). The strength of Dresselhaus SO interactions

depend only on the atomic elements in the crystal lattice. Another source of SO inter-

action is confining the motions of electrons in two dimension with an an asymmetric

confinement potential. What render important this mechanism is that the asymmetry in

the confinement potential can be varied electrostatically, namely the strength of SO in-

teraction can be controlled by gate voltages (Schliemann, Egues, & Loss, 2003). This

kind of SO interaction is named Rashba SO interaction (Rashba, 1960; Byckhov &

Rashba, 1984).

3.3.1 Rashba Spin-Orbit Interaction

An asymmetric confining potential consists asymmetry in the band structure and

this asymmetry leads to Rashba SO interaction. The structural inversion asymmetry

in the confining potential generates electric field which is perpendicular to the two-

dimensional electron gas (Wrinkler, 2003). The Hamiltonian which describes Rashba

SO interaction is written as (Byckhov et al, 1984).

HR =
αR

h̄
[σ× (p+ eA)]z (3.3.1)

where σ are the Pauli matrices, p is the momentum vector and αR is the Rashba pa-

rameter and it defines the strength of the interaction and it can be varied by the gate

electric field (Zhang et al, 2009).

3.3.2 Dresselhaus Spin-Orbit Interaction

The source of SO coupling is the bulk inversion asymmetry and it arises from lack

of an inversion center in the III-V zinc-blende semiconductors. The inversion sym-

metry in space and time not only changes wave vector k into −k but also flips spin.

When these two inversion operators are combined two degenerate energy states are
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obtained for single particle, namely E(k,↑) = E(−k,↓). This property is commonly

seen in group-IV elements such as diamond, Si, Ge. But the inversion asymmetry

does not continue in III-V zinc blende structures and E(k,↑) ̸= E(−k,↓). Bulk inver-

sion asymmetry lifts the spin degeneracy and it firstly was investigated by Dresselhaus

(Dresselhaus, 1955). And Dresselhaus SO interaction Hamiltonian is given

HD = γD ∑
c.p.x,y,z

{σxKx,K
2

y −K 2
z } (3.3.2)

=
βD

h̄
((px + eAx)σx − (py + eAy)σy)+ γD[σx{Kx,K

2
y }−σy{Ky,K

2
x }]

γD is called Dresselhaus parameter and it depends on the effective width and thickness

of the quantum wire and can be varied with a split gate potential that controls the oscil-

lator frequency (Zhang et al, 2009). K is the canonical momentum with components

K = (Kx,Ky,Kz) and it can be written as

Kx =
1
2
{
(px + eAx)[(py + eAy)

2 − (pz + eAz)
2]+ [(py + eAy)

2 − (pz + eAz)
2](px + eAx)

}
Ky =

1
2
{
(py + eAy)[(pz + eAz)

2 − (px + eAx)
2]+ [(pz + eAz)

2 − (px + eAx)
2](py + eAy)

}
Kz =

1
2
{
(pz + eAz)[(px + eAx)

2 − (py + eAy)
2]+ [(px + eAx)

2 − (py + eAy)
2](pz + eAz)

}

3.4 Zeeman Effect

When an atom placed in a uniform external magnetic field, the energy levels are

shifted. This phenomenon is known as the Zeeman effect. The energy splitting occurs

because of the interaction of the magnetic moment µ of the atom with the magnetic

field B that slightly shifts the energy of the atomic levels by amount ∆E =−µ.B. This

energy depends on the relative orientation of magnetic moment and the magnetic field

(Griffiths,1994). The Hamiltonian of electron spin in a magnetic field can be written

as

HZ =−µ ·B = g∗µBS ·B (3.4.1)

where µ=−g∗µBS is magnetic moment and µB = eh̄/2m∗ is Bohr magneton.



CHAPTER FOUR

THEORETICAL BACKGROUND

4.1 Schrödinger Equation

The physical and chemical properties of a matter in any phase and in any form can

be exactly determined by solving many-body Schrödinger equation.

H Ψ = EΨ (4.1.1)

It is very excellent that this famous equation includes all the information of any sys-

tem. When you solve the many-body Schrödinger equation it means that you have

everything about the system. But solving the Scrödinger equation for a system of N

interacting particle electrons in an external field is a very difficult problem. Only for

a few cases analytical solutions exist and the numerical solutions are limited to very

small number of particles. In this case, solving the Schrödinger equation requires some

approximation.

4.2 Fundamental Approximations to Schrödinger Equation

4.2.1 Born-Oppenheimer Approximation

When the motion of electrons is compared with the nuclei, the electrons move faster

because of their smaller mass. Electrons follow the motion of drowsy nuclei instan-

taneously. So assuming the movement of electrons depends on positions of nuclei in

a parametric way we can separate the movements of electron and nuclei. This is the

foundation of Born-Oppenheimer Approximation. According to the this approxima-

tion electron remains in the same stationary state all the time (Born & Oppenheimer,

1927).

This approximation provides freedom for ionic coordinates (RI)s which are taken

as the equilibrium position, so the ionic coordinates (RI)s can be taken constant. And

12
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many-body electronic Hamiltonian can be written as

Ĥ =−
n

∑
i=1

h̄2

2m
∇2

i + e2
n

∑
i=1

(
P

∑
I=1

−ZI

|ri −RI|

)
+

e2

2

n

∑
i=1

n

∑
j ̸=i

1
|ri − r j|

(4.2.1)

where second term yields ionic potential and the third term is the interaction between

electrons.

4.2.2 Hartree Approximation

As we see the last term of Equation 4.2.1, the repulsion of electron-electron couples

the motion of electrons. This coupling prevents the separation of coordinates. So the

solution of many-body Hamiltonian is still difficult problem. To get over this problem

in 1928 Hartree proposed that many-electron wave function (electronic wave function)

can be written as product one-electron wave functions each of which satisfies one-

particle Schrödinger equation in an effective potential (Hartree, 1928).

Φ(R,r) = Πiφ(ri) (4.2.2)

A single electron feels the effective potential is written

V (i)
e f f (R,r) =V (R,r)+

∫ ∑n
j ̸=i ρ j(r′)
|r− r′|

dr′ (4.2.3)

where ρ j(r) is the electronic density associated with particle j.

ρ j(r) = |φ j(r)|2 (4.2.4)

And Schrödinger equation is

(
− h̄2

2m
∇2 +V (i)

e f f (R,r)
)

φi(r) = εiφi(r) (4.2.5)

The second term in Equation 4.2.3 yields mean field potential and the third term de-

fines the interactions of one electron with the other electrons in a mean field. εi is the
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energy of i-th electron. The calculation starts with some approximate orbitals φi for

example obtained from hydrogen atom. All of N equations are solved and by iterat-

ing them new N φi’s are obtained until the self-consistency is achieved. New orbitals

are obtained and according to Hartree’s proposal, from these orbitals many-electron

wave-function Ψ is formed and then the total energy E is calculated. The process is

named self-consistent field Hartree approximation. The remarkable point is that the to-

tal energy of many-body system is not the sum of εi eigenvalues because the effective

potential formalism counts the electron-electron interaction twice (Madelung, 1981).

The correct expression of the total energy is

EH =
N

∑
i=1

εi −
1
2

∫ ∫ ρ(r)ρ(r′)
|r− r′|

drdr′ (4.2.6)

where second term is correction due to effective potential.

4.2.3 Hartree-Fock Approximation

Hartree approximation, namely single electron wave-function approximation is surely

a good idea and many-electron function for all the atom is produced via this approx-

imation. But the function form based on Hartree approximation is essentially wrong

and it gives incorrect results because it passes over the fermionic nature of electrons.

It can be improved by considering the fermionic features of electrons. In accordance

with Pauli exclusion principle if two fermions have all same quantum numbers they

cannot occupy the same state. Fock and Slater tried to enhancement Hartree approx-

imation. They exploit the one-electron functions but the total wave function isn’t the

simple product of the orbitals, it is antisymmetrized sum of all products. It defines a

determinant and it is known famous Slater determinant (Slater, 1930).

Ψ(R,r) =
1√
N



ϕ1(r1) . . . ϕ1(rN)

. . .

. . .

. . .

ϕN(r1) . . . ϕN(rN)


(4.2.7)
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This approximation is called Hartree-Fock approximation and it explains particle ex-

change (Tongay, 2004). In the absence of many-body correlations, this approximation

gives a moderate explanation for inter-atomic bonding. The Hartree-Fock approxi-

mation is assumed the starting point of advanced calculations. In general form the

Hartree-Fock approximation, which includes an extra term due to the coupling, can be

written as (
− h̄2

2m
∇2 +V (r)

)
φ j(r)+ e2 ∑

k ̸= j

∫ |φk(r′)|2

|r− r′
dr′φ j(r)

+e2 ∑
k ̸= j

∫ φ∗
k (r

′)φ j(r′)
|r− r′|

dr′φk(r) = E jφ j(r)

This is the Hartree-Fock equation.

4.3 Density Functional Theory

Thomas and Fermi suggested that the full electron density was the fundamental vari-

able of the many-body problem and derived a differential equation for density without

using the one-electron orbitals. This is known Thomas-Fermi Theory and it precipi-

tated to development of density functional theory (DFT). In density functional theory,

the electron density is the quantity of interest.

Calculating the total energy of system composed of N interacting electron in an

external filed there is a serious problem with taking the correlation effects into account.

There exists electron-electron interactions and so the total energy can be written as

E = ⟨φ|T̂ +V̂ +V̂ee|φ⟩= ⟨φ |T̂ |φ⟩+ ⟨φ|V̂ |φ⟩+ ⟨φ|V̂ee|φ⟩ (4.3.1)

where T̂ is kinetic energy, V̂ the energy arises from external field and V̂ee is the electron-

electron interaction energy.

The kinetic energy term is defined as

T = ⟨φ|− h̄2

2m

N

∑
i=1

∇2
i |φ⟩=− h̄2

2m

∫
[∇2

r ρ1(r,r′)]r=r′dr (4.3.2)
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And the external field energy term can be written as

V =
N

∑
I=1

⟨φ|
N

∑
i=1

υ(ri −RI)|φ⟩=
N

∑
i=1

∫
ρ(r)υ(r−RI)dr (4.3.3)

And lastly the electron-electron interaction term with considering Coulomb interaction

is defined

Vee = ⟨φ|1
2

N

∑
i=1

N

∑
j ̸=i

1
|ri − r j|

|φ⟩=
∫ ρ2(r,r′)

|r− r|
drdr′ (4.3.4)

where ρ1(r,r′) is one-body density matrix and ρ2(r,r′) is two-body density matrix. In

general form p-body density matrix is defined by (Parr & Yang, 1989).

ρp(x1,x2, ..,xp,x′1,x
′
2, ..,x

′
p) =

 N

p

∫ φ∗
0 (x1,x2, ..,xp, ..,xN)

φ0(x′1,x
′
2, ..,x

′
p, ..,xN)dxp+1..dxN (4.3.5)

Also two-body density matrix can be defined via two-body correlation function g(r,r′)

ρ2(r,r′) =
1
2

ρ(r,r)ρ(r,r′)g(r,r′) (4.3.6)

In the light of these knowledge electron-electron interaction energy can be redefined

Vee =
1
2

∫ ρ(r)ρ(r′)
|r− r′|

drdr′+
1
2

∫ ρ(r)ρ(r′)
|r− r′|

[g(r,r′)−1]drdr′ (4.3.7)

In the last equation the first term yields to classical electrostatic interaction energy and

the second term includes correlation effects. Electrons are fermions so they have an-

tisymmetric wave functions and spatial separation is observed between the electrons

with same spin. This separation reduces Coulomb energy and the reduction is called

exchange energy. Hartree-Fock approximation allows us calculating the exchange en-

ergy. The Coulomb interaction leads to spatial separation between opposite spins. The

correlation energy is defined as the difference between the total energy of system and

the energy calculated from Hartree-Fock approximation. The total energy of system is

E = T +V + J+Exc (4.3.8)

where J is internal energy of classic repulsive gas



17

J =
1
2

∫ ρ(r)ρ(r′)
|r− r′|

drdr′ (4.3.9)

Exc is the exchange-correlation energy

Exc =
1
2

∫ ρ(r)ρ(r′)
|r− r′|

[g(r,r′)−1]drdr′ (4.3.10)

4.3.1 Hohenberg-Kohn Theorems

The idea of electron density is the basic definition which remained unproved for

many years. In 1964, Hohenberg-Kohn legitimized the use of electron density as a ba-

sic variable. They proved the fact that ground state features are functionals of electron

density ρ(r) and this property constituted the fundamental of modern density func-

tionals methods (Hohenberg & Kohn, 1964). The Hohenberg-Kohn theorem can be

explained by two theorems.

Theorem 1: The external potential V (r) is determined, within a trivial additive

constant, by the electron density ρ(r) (Parr et al, 1989). ρ has the number of electrons

knowledge and gives V (r), the ground state wave-function Ψ and all of the electronic

properties of the system. It should be note that the external potential V (r) isn’t re-

stricted to Coulomb potentials.

Theorem 2: (Variational Principle) The ground state density can be calculated using

the variational method involving density instead of wave-functions.

The ground state energy E can be obtained by solving the Schrödinger equation

E = min
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

(4.3.11)

The first principle Hohenberg-Kohn theorem is using ρ(r) instead of Ψ(r). ρ(r) is

the ground state density the minimum energy is obtained for a non-degenerate system.

And it is written as

EV [ρ ] = F [ρ ]+
∫

ρ(r)υ(r)dr (4.3.12)
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where

F [ρ̃] = ⟨Ψ[ρ ]|T̂ +Û |Ψ[ρ]⟩ (4.3.13)

When you have the F [ρ ] knowledge this means that you have solved many-body

Schrödinger equation. There is an important point that F [ρ ] is a universal functional

and it depends only on the electron density, not on the external potential so it doesn’t re-

quire the knowledge of external potential. According to the Hohenberg-Kohn theorem,

F [ρ] is defined as F [ρ] = ⟨Ψ|T̂ +Û |Ψ⟩, Ψ is the ground state wave-function. These

two theorems constitute the basis of DFT. When F [ρ ] is known, the electronic ground

state density and energy is defined by using DFT. But it shouldn’t consider that the DFT

is a ground state theory and doesn’t include excited states. It is a wrong statement. Be-

cause density determines univocally the potential and the many-body wave-functions,

which include ground and exited states, and so the many-body Schrödinger equation is

solved. Kohn and Sham invented the ground state such a scheme.

4.3.2 Kohn-Sham Equations

After Hohenberg-Kohn theorems, Kohn and Sham took to the stage and they pro-

posed their famous theory which computes the main contribution to the kinetic energy

functional (Kohn, & Sham, 1965). Their method bases on the non-interacting Kohn-

Sham particles which behave as non-interacting electrons. Within Kohn-Sham scheme

the system of many interacting electrons can be written as a system of non-interacting

Kohn-Sham particles.

The internal electronic energy functional F [ρ] can be divided into three parts

F [ρ ] = T [ρ]+ J[ρ]+Exc[ρ] (4.3.14)

where T [ρ] is the kinetic energy of non-interacting kinetic energy, namely the kinetic

energy of a system consisted of the non-interacting Kohn-Sham particles and ρ is the

particle density of this system, J[ρ ] is the electrostatic energy of a classical repul-

sive gas and the last term Exc[ρ ] is the exchange-correlation energy. The exchange-
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Figure 4.1 The different contributions to the energy in the Kohn-Sham
scheme (Armiento, 2005).

correlation energy is defined as

Exc[ρ ] = F [ρ ]−T [ρ]− J[ρ] (4.3.15)

Now Exc[ρ ] is the component of F [ρ ] and F [ρ] includes the non-classical part of poten-

tial and kinetic energy related to electron interactions. By this way the total electronic

energy is divided into four terms.

E = T + J+V +Exc (4.3.16)

According to the DFT variational principle the ground state energy is calculated by as

E0 = minΨ⟨Ψ|H|Ψ⟩= minρminΨ→ρ⟨Ψ|T̂ +Û +V̂ |Ψ⟩= minρ(F [ρ ]+V [υ ,ρ ])

(4.3.17)

where υ is static external potential which originates from the nuclei. The ground state

electronic energy can be rewritten with these new quantities

E0 = minρ(T [ρ ]+ J[ρ ]+Exc[ρ ]+V [υ ,ρ]) (4.3.18)

Energy minimization is written as in the variational calculus

δT [ρ]
δρ

+
δExc[ρ]

δρ
+

δJ[ρ ]
δρ

+
δV [υ ,ρ ]

δρ
= 0 (4.3.19)

This DFT variational principle can be applied the system which consists of the non-

interacting Kohn-Sham particles. The ground state energy EKS this system is given
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as

EKS = minρ(T [ρ ]+V [υe f f ,ρ ]) (4.3.20)

υe f f is the potential where in the Kohn-Sham particles move. And the minimization of

this energy
δT [ρ ]

δρ
+

δV [υe f f ,ρ]
δρ

= 0 (4.3.21)

When the interacting and non-interacting systems are compared, Equation 4.3.21 and

Equation 4.3.23 shows the same stationary ρ . By comparing the similarity of the two

cases allows us to write

δV [υe f f ,ρ ]
δρ

=
δEex[ρ ]

δρ
+

δJ[ρ ]
δρ

+
δV [ρ ]

δρ
(4.3.22)

The functional derivatives of these expressions are

υe f f (r) = υxc(r)+
∫ ρ(r′)

|r− r′|
dr′+υ(r) (4.3.23)

υxc(r) yields to exchange-correlation potential and it is defined as

υxc(r) =
δEex[ρ ]

δρ
(4.3.24)

If we want to derive a relation between the energies of interacting and non-interacting

systems we can write this expression

E0 = EKS − J[ρ]+Exc[ρ]−V [υxc,ρ ] (4.3.25)

EKS Kohn-Sham functional is the total energy functional

EKS = T [ρ ]+V [ρ]+ J[ρ ]+Exc[ρ ] (4.3.26)

In conclusion, it has been established that the non-interacting Kohn-Sham particle

system with υe f f has the same ground state density as the system of fully interacting

electrons. As we see the energy of non-interacting particles can be minimized instead

of the energy of non-interacting particles. The non-interacting problem can be solved

via the solution of separable Schrödinger equation. Kohn-Sham orbital equation is

obtained from the separation and this equation determines the one-particle Kohn-Sham
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orbitals φi(r) and the Kohn-Sham orbital energies εi,(
− h̄2

2m
∇2 +υe f f

)
φi(r) = εiφi(r) (4.3.27)

φi(r) is the position part of the one-particle wave function which in fact also depends

on the spin function. So the one-particle wave function is Ψ(r,σ) =φi(r)χi(σ) and the

ground state wave function of the many independent particle system is given by Slater

determinant. The particle of the density is calculated by summing over all occupied

spin states.

ρ(r) = ∑
i
|φi(r)|2 (4.3.28)

The total energy of the system is

EKS = ∑
i

εi (4.3.29)

Equation 4.3.29 and Equation 4.3.31 are the famous Kohn-Sham equations and the vital

equations of DFT. These equations have difficulty due to the υe f f , it requires unknown

density. But we have a chance because the existence of a minimization principle over

densities means that the correct electron density ρ(r) fulfills a stationary condition.

The stationary ρ(r) can be calculated by an iterative scheme. The process starts with a

trial density and goes on until self-consistency is achieved.

4.4 Exchange-Correlation Energy

Hohenberg-Kohn and Kohn-Sham theorems reduce many-particle Schrödinger equa-

tion into single-particle Schrödinger equation. And these theorems provide that ground

state properties are functionals of electron density. But the exchange-correlation part

is a problem, it is still unknown.
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4.4.1 Local Density Approximation

The local density approximation (LDA) (Jones & Gunnarsan, 1989) is the most

commonly used approximation for calculating exchange-correlation energy. It starts

from assuming that exchange-correlation energy per particle is a local functional of the

electron density. Thus the exchange-correlation energy can be written as the integral

of the density and exchange-correlation energy functional.

ELDA
xc [ρ(r)] =

∫
εxc(ρ(r))ρ(r)dr (4.4.1)

δExc[ρ(r)]
δρ(r)

=
∂ [ρ(r)εxc(ρ(r))]

∂ρ(r)
(4.4.2)

The exchange-correlation energy per electron at position r in inhomogeneous elec-

tronic system is equal to the exchange-correlation energy per electron in homogenous

electron gas (Payne, Teter, Allan, Arios, & Joannapoulos, 1992).

εxc = εhom
xc [ρ(r)] (4.4.3)

Although the exchange-correlation energy per particle is assumed to be local but in fact

it is non-local due to inhomogeneities in the electron density. The exchange-correlation

energy density depends on the presence of other electrons which encompass the elec-

tron at position r, through exchange-correlation hole. LDA is a very well approxima-

tion because it gives the correct sum rule for the exchange-correlation hole. And it

is more useful than other approximations to handle exchange-correlation energy. Al-

though LDA works so well for homogenous system, it tends to fail for systems where

large deviations in the electronic density occur.

4.4.2 The Local Spin Density Approximation

Up to now we didn’t consider the spin. But the systems which include open elec-

tronic shells need better approximations to calculate the exchange-correlation energy.

The exchange-correlation functional can be acquired by defining the spin densities

ρ↑(r) the spin-up density and ρ↓(r) spin-down density. The total density is ρ(r) =
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ρ↑(r) + ρ↓(r) and the magnetization density is ζ (r) = (ρ↑(r)− ρ↓(r))/ρ(r). The

equivalent of the LDA in the spin-polarized systems is the local spin density approxi-

mation (LSDA). The exchange-correlation energy with the spin case is (Giuliani & G.

Vignale, 2005)

ELSDA
xc [ρ↑(r),ρ↓(r)] =

∫
[ρ↑(r)+ρ↓(r)]εxc[ρ↑(r),ρ↓(r)] (4.4.4)

4.5 Theoretical Methods

4.5.1 Variational Principle

There are some approximations to solve the Schrödinger equation. Variational prin-

ciple is a well suited approximation to find ground state energy and wave functions. It

may be defined that the expectation value of a Hamiltonian H is calculated using a

trial wave function ΨT , and this value is never lower than the value of the true ground

state energy Eg which is the expectation value of H calculated using the true ground

state wave function Ψ0.

Eg ≤ ⟨ΨT |H |ΨT ⟩ ≡ ⟨H ⟩ (4.5.1)

The exact value of ground state energy is calculated by using the exact ground state

wave functions.

Eg =
⟨Ψ0|H |Ψ0⟩
⟨Ψ0|Ψ0⟩

(4.5.2)

The energy associated with the trial wave function is given by,

ET =
⟨ΨT |H |ΨT ⟩
⟨ΨT |ΨT ⟩

(4.5.3)

The variational principle is immensely powerful and easy to use. Even if ΨT is

not related to the true wave function, one often gets accurate values for Eg. The only

trouble with this method is that you never know for sure how close you are to the target

(Griffiths, 1994).
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4.5.2 Finite Element Method

Finite Element Method (FEM) is used for numerical calculation of various systems.

FEM can be applied to the systems which have the complicate boundary conditions,

have not ordered geometry, stationary state, dependence on time and eigenvalue prob-

lems. This method is used for the solution of linear and nonlinear problems we face

with in liquid mechanics, acoustics, electromagnetism, biomechanics, transfer of heat

(Hutton, 2004).

In this method, basis functions are generated by division the domain into a set of

simple subdomains. Each subdomain is called finite element or global element. The

process of separating the study region to finite number element expresses discontinuity.

The point where the elements connect with each other called node. The domain be-

tween two nodes is named local element. Gathering of elements, closed to each other,

through common boundary provides continuity of the solution.

The approximation of in piece of physical region on the finite elements provides

genius, more perfect results than basic approximation functions. The more number

of element the more correct and accurate results are obtained. For the generation of

algorithm; the domain is discreted, the element interpolation functions are selected, the

element equations are determined, the element equations into the system equations are

assembled, the boundary conditions are applied to the system equations, the system

is solved and any supplemental calculations are performed. In this work, we follow

the FEM algorithm which has been developed by Güneş, Ungan and Yeşilgül (Güneş,

2009; Ungan, 2010; Yeşilgül, 2010).

Interpolation is a method of constructing new data points within the range of discrete

set of known data points. In the global element, a linear scaler field with d-dimensions

can be defined as

F(x) = a0 +a1x1 +a2x2 + . . .+adxd (4.5.4)

at discrete space, where i is the number of node and x(i) is the coordinate of node

Fi = F(x(i)).
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The notation for a vector or matrix used throughout this work is chosen as follows,

Matrix Column Matrix Row Matrix

{{A}} {A} {A}T

{F}T =
(

F1 F2 · · · Fd+1

)
(4.5.5)

{a}T =
(

a0 a1 · · · ad

)
(4.5.6)

If we define Vd as d-dimensional volume element of the global element, scaler field can

be written as product of nodes and coefficients

{F}= {{x}} · {a} (4.5.7)

Det({{x}}) = d!Vd (4.5.8)

The solution of unknown ai coefficients in general form is

ai =
1

d!Vd
(−)i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F1 1 x1(1) . xi−1(1) xi+1(1) . xd(1)

F2 1 x1(2) . xi−1(2) xi+1(2) . xd(2)

F3 1 x1(3) . xi−1(3) xi+1(3) . xd(3)

. . . . . . . .

. . . . . . . .

Fd+1 1 x1(d +1) . xi−1(d +1) xi+1(d +1) . xd(d +1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.5.9)

From Equation 4.5.4, Fi can be rewritten in terms of coefficients

F(x) = F1L1(x)+F2L2(x)+ · · ·+Fd+1Ld+1(x) (4.5.10)

where i = 1,2, . . . ,d,d + 1 and x = (x1,x1, . . . ,xd). There is a new expression area

coordinates L. Area coordinates have to satisfy the conditions below.

Li(x( j)) = δi, j (4.5.11)

d+1

∑
i=1

Li(x) = 1 (4.5.12)
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d+1

∑
k=1

Lk(x(i))Lk(x( j)) = δi, j (4.5.13)

where i, j,k = 1,2, . . . ,d,d +1; x = (x1,x2, . . . ,xd).

And the partial derivative of area coordinates is

∂Li(x)
∂x( j)

=
1

d!Vd
(−)i−1(−) j·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1(1) x2(1) . x j−1(1) x j+1(1) . xd(1)

. . . . . . . .

1 x1(i−1) x2(i−1) . x j−1(i−1) x j+1(i−1) . xd(i−1)

1 x1(i+1) x2(i+1) . x j−1(i+1) x j+1(i+1) . xd(i+1)

. . . . . . . .

1 x1(d +1) x2(d +1) . x j−1(d +1) x j+1(d +1) . xd(d +1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
In one-dimension a global element with 2 nodes

Figure 4.2 A global element with two nodes

h1 = x− x(1), h2 = x(2)− x, h = x(2)− x(1)

h = h1 +h2

1 =
h1

h
+

h2

h
, 1 = L1 +L2

d = 1, V1 = (x(2)− x(1))

L1 =
1

V1

∣∣∣∣∣∣ 1 x

1 x(2)

∣∣∣∣∣∣= (x(2)− x)
(x(2)− x(1))

(4.5.14)
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L2 =
1

V1

∣∣∣∣∣∣ 1 x(1)

1 x

∣∣∣∣∣∣= (x− x(1))
(x(2)− x(1))

(4.5.15)

Interpolation functions, that span the all space, can be defined in terms of shape func-

tions which span only global elements.

N1(x) = L1(x), N2(x) = L2(x), Ni(x( j)) = δi, j, (i, j = 1,2)

Higher order basis in 2-dimension and 3-dimension also can be written but they are not

addressed here.

Vd is d-dimensional volume element,

Vd =
∫

dx1

∫
dx2

∫
dx3 . . .

∫
dxddx1dx2 . . .dxd

= J
∫ 1

0
dL1

∫ 1−L1

0
dL2

∫ 1−L1−L2

0
dL3 . . .

∫ 1−L1−L−2−...−Ld−1

0
dLd (4.5.16)

constraints on the area coordinates is

1 = L1 +L2 + . . .+Ld +Ld+1 (4.5.17)

where J is Jacobian

Vd = J
1
d!

⇒ J = d!Vd (4.5.18)

In order to apply FEM to the Schrodinger equation, we consider dimensionless one-

particle Hamiltonian where V (r) defines a general potential profile. Solution of Hψ =

Eψ can be achieved by starting a division of the physical region.

If Ntot represents the number of total nodes in meshed domain, and interpolation

functions that span the domain are given by set {ϕn(r)}

ψ(r) =
Ntot

∑
n=1

ψnϕn(r) (4.5.19)

ϕi(r( j)) = δi, j (4.5.20)

where i, j = 1,2, . . . ,Ntot . Matrix notation of the wave function we search for is

{ϕ(r)}T = (ϕ1(r),ϕ2(r),ϕ3(r), . . . ,ϕN(r))
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{ψ}T = (ψ1,ψ2,ψ3, . . . ,ψN)

therefore,

ψ(r) = {ϕ(r)}T · {ψ}

The number of Ntot variation parameter ψNtot can be obtained by Galerkian method

(Zienkiewicz, Taylor, & Zhu, 2005). The essential principle is to write Schrödinger

equation with the wanted wave function ψ(r), multiply the equation with its hermi-

tian conjugate from left and integrating the system in related domain to obtain the

expression which makes the variation parameters minimum. Using this expression

ψ(r)† = {ψ}† · {ϕ(r)} Galerkian is

G =
∫

Ω
ψ(r)†(H − ε)ψ(r)dΩ (4.5.21)

By the wave function to find and it’s hermitian conjugate, Galerkian becomes

G = {ψ}† ·
[∫

Ω
{ϕ(r)}(H − ε){ϕ(r)}T dΩ

]
· {ψ} (4.5.22)

The wave function family (ψ,ψ†) for a minimum G gives the energy eigenvalues

∂G/∂{ψ}† = 0 therefore,[∫
Ω
{ϕ}(H − ε){ϕ}T dΩ

]
· {ψ}= 0 (4.5.23)

Before the writing down Hamiltonian explicitly, the contribution of kinetic term can be

investigated. After the first integration on the kinetic part of Hamiltonian becomes

−
∫

Ω
{ϕ} ·∇2

d{ϕ}T ·dΩ =
∫

Ω
∇d{ϕ} ·∇d{ϕ}T ·dΩ−

∫
Γ
{ϕ}(∇d{ϕ}T ) ·dΓ (4.5.24)

The wanted wave function and its conjugate must be zero at the boundary of the sys-

tem so the second terms doesn’t give any contribution. The explicit expression of the

Hamiltonian is written in the definition of the variation of the G[∫
Ω

dΩ
[

1
2

∇d{ϕ} ·∇d{ϕ}T +{ϕ}V (r){ϕ}T
]]

· {ψ}= ε
[∫

Ω
dΩ{ϕ}{ϕ}T

]
(4.5.25)
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Equation 4.5.33 can be rewritten in a matrix form

{{K}} · {ψ}= ε{{M}} · {ψ} (4.5.26)

where {{K}} is stiffness matrix and {{M}} is mass matrix. The explicit expressions

are

{{K}}=
∫

Ω
dΩ
[

1
2

∇d{ϕ} ·∇d{ϕ}T +{ϕ}V (r){ϕ}T
]

(4.5.27)

{{M}}=
∫

Ω
dΩ{ϕ}{ϕ}T (4.5.28)

The integrals over the whole work space can be re-described as the summation of the

integrals over the divided work space elements.

∫
Ω

dΩ =
Ne

∑
e=1

∫
Ωe

dΩe (4.5.29)

and than global element stiffness matrix {{ke}} and global element mass matrix {{me}}

are

{{ke}} =
∫

Ωe

dΩe

[
1
2

∇d{N} ·∇d{N}T +{N}V{N}T
]

{{Ke}} =
Ne

∑
e=1

{{ke}} (4.5.30)

{{me}} =
∫

Ωe

dΩe{N}{N}T (4.5.31)

{{Me}} =
Ne

∑
e=1

{{me}} (4.5.32)

where {ϕ} is all space interpolation functions and {N} is global element interpolation

functions or Shape functions.

Finite Element Analysis for Coupled Systems

We used the notation for the coupled systems that given Table 4.1 and we exploits

the Sarıkurt’s notes (personal communication, 2011).
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Table 4.1 The notation for the coupled systems

FEM Coupled System

Matrix {{X}} X

Column Matrix {X} X

Row Matrix {X}T XT

Now, we focus on the solution of a classical Hamiltonian for coupled systems is

given as

H = H A +H B pξ +H C p2
ξ (4.5.33)

where pξ = 1
i

∂
∂ξ is the dimensionless canonical momentum. The Hamiltonian in quan-

tum mechanical formulation is

H =
∞

∑
n=0

 1
n!

∂ nH

∂ pn
ξ

∣∣∣∣∣
pξ=0

, pn
ξ

= {H A,1}+{H B, pξ}+{H C, p2
ξ} (4.5.34)

Specify to define

{A,B}= 1
2
(AB+BA){

H A,1
}
=

1
2

(
H A ·1+1 ·H A

)
= H A{

H B, pξ

}
=

1
2

(
H B pξ + pξ H B

)
{
H C, p2

ξ

}
=

1
2

(
H C p2

ξ + p2
ξ H C

)
= pξ H C pξ +

1
2

[
[H C, pξ ], pξ

]

Finally the Hamiltonian is obtained

H = H A +
1
2

(
H B pξ + pξ H B

)
+ pξ H C pξ +

1
2

[
[H C, pξ ], pξ

]
(4.5.35)

Within the FEM scheme, the approximate solution is found in the finite dimension

function space where the domain is divided into meshes.
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ngen : Number of nodes in global element

nge : Number of global element

ntn : Number of total nodes (ntn = nge · (ngen−1)+1)

nc : Number of coupling

N(ξ ) : Basis functions in global element

N(ξ ) : Basis functions in whole space

The wave function for nc coupled band system and the wave function of set of basis

functions are given as
χ1(ξ ) = ∑ntn

i=1 χi1(ξ )Ni(ξ )

χ2(ξ ) = ∑ntn
i=1 χi2(ξ )Ni(ξ )

·

·

·

χnc(ξ ) = ∑ntn
i=1 χi(nc)(ξ )Ni(ξ )

The wave function can be shown in matrix notation

χ(ξ ) =
{
N(ξ )I

}†
{χ} (4.5.36)

χ†(ξ ) =
(

χ†
1 (ξ ),χ

†
2 (ξ ), . . . ,χ

†
nc(ξ )

)
= {χ}†

{
N(ξ )I

}
(4.5.37)

Therefore, ntn variational parameters (χnc) which are desired to get can obtain with

”Galerkin’s Method”.

G = {χ}†

ξ f∫
ξi

dξ{N(ξ )}
(
H − εI

)
{N(ξ )}†

{χ} (4.5.38)
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The functions {X (ξ ),X †
(ξ )} which minimalizes the G integration minimalizes

the energy.

∂G
∂{X }†

= 0 ⇒

ξ f∫
ξi

dξ{N(ξ )}
(
H − εI

)
{N(ξ )}†

{X }= 0 (4.5.39)

ξ f∫
ξi

dξ{N(ξ )}H {N(ξ )}†

{X }= ε

ξ f∫
ξi

dξ{N(ξ )}{N(ξ )}†

{X } (4.5.40)

With the new presentation the generalized eigenvalue equation is obtained.

{{K}}{X }= ε{{M }}{X } (4.5.41)

Stiffness and mass matrices under this new notation are

{{K}}=
ξ f∫
ξi

dξ{N(ξ )}H {N(ξ )}† (4.5.42)

{{M }}=
ξ f∫
ξi

dξ{N(ξ )}{N(ξ )}† (4.5.43)

The Hamiltonian is

H = H A +
1
2

(
H B pξ + pξ H B

)
+ pξ H C pξ (4.5.44)



CHAPTER FIVE

FORMALISM

5.1 System and Its Variables

Figure 5.1 Schematic representation of quantum
wire (Serra, Sanchez, & Lopez, 2005).

The aim of this thesis is to investigate theoretically the ground state electronic

structure of a parabolically confined quantum wire subjected to an in-plane magnetic

field, including both Rashba and Dresselhaus spin-orbit interactions and exchange-

correlation effects. We consider a parabolic confinement in the y-direction and free mo-

tion along the x-direction. The electrons are treated within the effective mass approxi-

mation, dielectric constant model in two-dimensions where the motion is restricted to

the xy plane as seen in Figure 5.1. In fact the structure is not two-dimensional, but gen-

eral acception is that if the confinement in the perpendicular direction is very strong,

the system catches the fundamental physics features of two-dimensional models. In

this study, the confinement is strong enough to accept the system in two-dimensions.

We use a finite-temperature formalism as a numerical trick in order to avoid the trou-

blesome evaluation of the band occupations at zero temperature. T has been chosen

small enough so the results are the T = 0 results.

33
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The wave function ψα includes both spatial and spinor wave functions.

ψα → ψσ ,n,k(r)

ψσ ,n,k(r) =
eikx
√

L

 φn,k(y,↑)

φn,k(y,↓)

 (5.1.1)

where φn,k defines the spinor function. The system has translational invariance along

the x axis so we can introduce a continuous wave number k which is a good quantum

number. The index n = 1,2,3, ... takes integer numbers and labels different energy

subbands. Through this study (n,k) is used as quantum labels. The advantage of this

labeling there is no spin label for the subbands and it satisfies Kohn-Sham spinoral

equation.

The Kohn-Sham Hamiltonian of the system is

HKSψ = εψ (5.1.2)

To solve the Kohn-Sham Hamiltonian electron density and spin magnetization must

be determined therefore the thermal occupation of each single electron Kohn-Sham

orbital must be defined at a given temperature T and chemical potential µ . To define

the occupation of each (n,k) state Fermi function is defined.

fβ (ε,µ) =
1

(1+ eβ (ε−µ))
(5.1.3)

where β=kBT and µ is chemical potential. In general form the particle density can be

written as the function of chemical potential, temperature and position.

ρ(µ,β ;r) = ∑
α

fβ (Eα ,µ) | ψα(r) |2 (5.1.4)

At zero temperature T = 0, the chemical potential is equal to the Fermi energy

µ(T = 0) = EF .

ρ(µ,β ;r) =
∫ EF

dE fβ (Eα ,µ)D(E;r) (5.1.5)



35

The equivalence of these two equations we can write local density of states D(E;r).

D(E;r) = ∑
α

δ (E −Eα) | ψα(r) |2 (5.1.6)

The electron density is written as

ρ(µ,β ;r) = ∑
n

L
2π

∫
dk⟨ψσ ,n,k|δ (ri − r)|ψσ ,n,k⟩ri fµ(εnk) (5.1.7)

where L/2π arises from box quantization. In this system the electron density depends

on y and it can be written as

ρ(y) = ∑
n

∑
k

fβ (εnk,µ)
1
L
(|φnk(y,↑)|2 + |φnk(y,↓)|2) (5.1.8)

Summation over k can be transformed to an integration by using the fact k.L = 2πn

that leads to

ρ(y) = ∑
n

1
2π

∫
dk(|φnk(y,↑)|2 + |φnk(y,↓)|2) fβ (εnk) (5.1.9)

The one-dimensional electron density along the quantum wire is the integral of ρ(y)

over y.

ρ1D =
∫

dyρ(y) (5.1.10)

We can define spin magnetization

ma(µ,r) = ∑
n

L
2π

∫
dk⟨ψnk|δ (ri − r)σa|ψnk⟩ri fβ (εnk,µ) (5.1.11)

By using Pauli spin matrices, magnetization along each direction can be calculated as

follows

mx(µ,r) = ∑
n

L
2π

∫
dk⟨ψnk|δ (ri − r)σx|ψnk⟩ri fβ (εnk,µ)

mx(y) = ∑
n

1
2π

∫
dk2Re[φ∗

nk(y,↑)φnk(y,↓)] fβ (εnk) (5.1.12)

my(µ,r) = ∑
n

L
2π

∫
dk⟨ψnk|δ (ri − r)σy|ψnk⟩ri fβ (E(n,k)
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my(y) = ∑
n

1
2π

∫
dk2Im[φ∗

nk(y,↑)φnk(y,↓] fβ (εnk) (5.1.13)

mz(µ,r) = ∑
n

L
2π

∫
dk⟨ψnk|δ (ri − r)σz|ψnk⟩ri fβ (E(n,k)

mz(y) = ∑
n

1
2π

∫
dk(|φnk(y,↑)|2 −|φnk(y,↓)|2) fβ (εnk) (5.1.14)

5.2 Kohn-Sham Hamiltonian

So as to identify the effects of SO interactions and exchange-correlation, we split

the Kohn-Sham Hamiltonian into pieces. First of them H0 consists of the kinetic and

confinement terms, SO Hamiltonian HR +HD defines Rashba and Dresselhaus SO

interactions, respectively, and the third one HZ the Zeeman effect contribution arising

from an in-plane magnetic field applied with an arbitrary orientation. The last term in

the Hamiltonian is devoted to the exchange-correlation energy.

The applied in-plane magnetic field is

B = B(cosϕB ux + sinϕB uy) (5.2.1)

where ϕB denotes the azimuthal angle.

We can write explicitly

H = H0 +HZ +HR +HD +V xc (5.2.2)

H0 =
p2

x + p2
y

2m∗ +
1
2

m∗ω2
0 y2 (5.2.3)

HZ = g∗µsB.S (5.2.4)

HR =
αR

h̄
(σ×p)z (5.2.5)

HD = γD ∑
x,y,z

{σxκx,κ2
y −κ2

z } (5.2.6)

We solve the Kohn-Sham Hamiltonian with FEM and to do this we scaled the Hamilto-

nian. We used the harmonic oscillator length b0 =
√

h̄
m∗ω0

and the energies are in h̄ω0

units. We also defined some terms to make the hamiltonian dimensionless. K0 = kxb0,
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y = ξ b0, d
dy = 1

b0
d

dξ = 1
b0

Dξ , d2

dy2 = 1
b2

0

d2

dξ 2 = 1
b2

0
D2

ξ , pξ = 1
i

d
dξ = 1

i Dξ ; Dξ = ipξ ;

D2
ξ =−p2

ξ where pξ is dimensionless momentum.

Kinetic energy and confinement term

H0 =
p2

x + p2
y

2m∗ +
1
2

m∗ω2
0 y2

=
h̄2k2

x
2m∗ − h̄2

2m∗
d2

dy2 +
1
2

m∗ω2
0 y2

H0

h̄ω0
=

[
1
2

p2
ξ +

1
2
K 2

0 +
1
2

ξ 2
]

σ0 (5.2.7)

Zeeman term

HZ = g∗µsB.S ==
1
2

g∗µBB(cosϕBσx + sinϕBσy)

HZ =
1
2

g∗µBB(cosϕBσx + sinϕBσy) = h̄ω0
1
2

 1
h̄ω0

g∗µBB︸ ︷︷ ︸
(cosϕBσx + sinϕBσy)

where ωc = eB/m∗

1
h̄ω0

g∗µBB = B =
1

h̄ω0
g∗
(

eh̄
2me

)(
m∗ωc

e

)
= g∗

1
2

m∗

me

ωc

ω0

m∗/me = m0

B = g∗
1
2

m0
ωc

ω0

HZ

h̄ω0
=

1
2
B(cosϕBσx + sinϕBσy) (5.2.8)

Rashba SO term

HR =
αR

h̄
(σ×p)z

=
αR

h̄
(pyσx − pxσy) =

αR

h̄

(
−ih̄

d
dy

σx − h̄kxσy

)
HR

h̄ω0
=

αR

b0h̄ω0︸ ︷︷ ︸(σx pξ −σyK0)
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ηR =
αR

b0h̄ω0

HR

h̄ω0
= ηR(σx pξ −σyK0)

∆R
SO is the characteristic Rashba SO energy

∆R
SO =

m∗α2
R

2h̄2 =
m∗

2h̄2 η2
Rh̄2ω2

0 b2
0 =

m∗

2
η2

Rω2
0

h̄
m∗ω0

=
1
2

η2
Rh̄ω0

∆R
SO

h̄ω0
=

1
2

η2
R

Dresselhaus SO term

HD = γD ∑
x,y,z

{σxκx,κ2
y −κ2

z }

HD =
βD

h̄
(pxσx − pyσy)+ γD[σx{κx,κ2

y }−σy{κy,κ2
x }]

Dresselhaus SO interaction term consists of two parts, linear and cubic Dresselhaus

SO interactions.

Linear Dresselhaus SO term

HD1 =
βD

h̄
(pxσx − pyσy) =

βD

h̄

(
h̄kxσx −

h̄
i

d
dy

σy

)
HD1

h̄ω0
=

βD

h̄ω0b0︸ ︷︷ ︸(K0σx − pξ σy)

ηD1 =
βD

h̄ω0b0

HD1

h̄ω0
= ηD1(K0σx − pξ σy)

βD = h̄γD⟨ς |κ2
z |ς⟩

ηD1 =
1

h̄ω0b0
h̄γD⟨ς |κ2

z |ς⟩=
γD

ω0b0
(κ2

z )
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κz =
h̄
i

d
dz , z = b0z̃

κz =
h̄
i

d
dz

=
h̄
i

1
b0

d
dz̃

=
h̄
b0

Kz

ηD1 =
1

ω0b0
γD

(
h̄2

b2
0

K2
z

)

ηD1 =

(
m∗h̄
b0

)
γDK2

z

∆D1
SO is the Dresselhaus SO interaction energy

∆D1
SO =

m∗

2h̄2 η2
D1h̄2ω2

0 b2
0 =

m∗

2
η2

D1ω2
0

h̄
m∗ω0

=
1
2

η2
D1h̄ω0

∆D1
SO

h̄ω0
=

1
2

η2
D1

Cubic Dresselhaus SO term

HD2 = γD[σx{κx,κ2
y }−σy{κy,κ2

x }] = γD[σx{px, p2
y}−σy{py, p2

x}]

= γD

[
σx

{
h̄kx,

(
h̄
i

d
dy

)2
}
−σy

{(
h̄
i

d
dy

)
,(h̄kx)

2
}]

= γD

(
h̄

ω0

)3 [
−σx{K0,D2

ξ}+ iσy{Dξ ,K
2

0 }
]

h̄3

b3
0
=

h̄3

h̄
m∗ω0

1
b0

=
h̄2m∗ω0

b0

HD2 = γD
h̄2m∗ω0

b0

[
sigmax{K0,−p2

ξ}+ iσy{ipξ ,K
2

0 }
]

HD2

h̄ω0
= γD

h̄m∗

b0︸ ︷︷ ︸
[
σx{K0, p2

ξ}−σy{pξ ,K
2

0 }
]

ηD2 = γD
h̄m∗

b0

HD2

h̄ω0
= ηD2

[
σx{K0, p2

ξ}−σy{pξ ,K
2

0 }
]

ηD1 = ηD2K2
z
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Total Dresselhaus SO term

HD

h̄ω0
= σx

[
ηD1 +ηD2{K0, p2

ξ}
]
−σy

[
ηD1 +ηD2{pξ ,K

2
0 }
]

(5.2.9)

Finally we get the scaled Hamiltonian

H0

h̄ω0
=

[
1
2

p2
ξ +

1
2
K 2

0 +
1
2

ξ 2
]

σ0

HZ

h̄ω0
=

1
2
B(cosϕBσx + sinϕBσy)

HR

h̄ω0
= ηR(σx pξ −σyK0)

HD

h̄ω0
= σx

[
ηD1 +ηD2{K0, p2

ξ}
]
−σy

[
ηD1 +ηD2{pξ ,K

2
0 }
]

We need to Hamiltonian in quantum mechanical form because the solution in FEM

requires it.

H = HA +HB pξ +HC p2
ξ

H =
∞

∑
0

{
1
n!

∂ nH

∂ pn
ξ
|pξ=0, pn

ξ

}
= {HA,1}+{HB, pξ}+{HC, p2

ξ}

HA =H |pξ=0 =

[
1
2
K 2

0 +
1
2

ξ 2
]

σ0+
1
2
B(cosϕBσx+sinϕBσy)−ηRσyK0+ηD1σxK0

HB =
1
1!

∂H

∂ pξ
|pξ=0 =

[
pξ σ0 +ηRσx +σxηD2{K0,2pξ}−σy(ηD1 +ηD2{1,K 2

0 })
]
|pξ=0

{1,K 2
0 }= 1

2
(K 2

0 +K 2
0 ) = K 2

0

HB = ηRσx −σy(ηD1 +ηD2K
2

0 )

HC =
1
2!

∂ 2H

∂ p2
ξ
|pξ=0 =

1
2
[σ0 +σxηD2{K0,2}] |pξ=0

HC =
1
2

σ0 +σxηD2K0
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HA =

[
1
2
K 2

0 +
1
2

ξ 2
]

σ0 +
1
2
B(cosϕBσx + sinϕBσy)−ηRσyK0 +ηD1σxK0

HB = ηRσx −σy(ηD1 +ηD2K
2

0 )

HC =
1
2

σ0 +σxηD2K0

Up to now we haven’t taken into account the exchange-correlation term and now we

will mention about noncollinear local-spin density approximation.

5.3 Noncollinear Local-Spin Density Approximation

Above we have discussed for non-uniformly spin polarized systems. There are nu-

merous spin-density functional calculations of the energy band structure of these sys-

tems. Common to all of these theories and calculations is the treatment of the magnetic

moment as having only two directions, namely up and down. These moment arrange-

ments are called collinear. The first work on disordered magnetic moments was inves-

tigated with the coherent potential approximation and the spin spirals was used that the

magnetic moment was treated as a vector observable and noncollinear arrangements

were admitted (Kübler, Höck, Sticht, & Williams, 1988). In the crystalline system the

spin quantization axis is allowed to vary from site to site and there is no global spin

quantization axis. In noncollinear magnets the orientation of the axes depends on some

frame of reference, it is not arbitrary and a property of the ground state so it is an output

quantity. Although the theory predicts well defined sets of directions for the spins, it

doesn’t couple the latter to the underlying crystal lattice, all that is important is their

relative orientation. This changes when SO coupling is added the Hamiltonian.

When the magnetization direction changes in space then we can’t use the approx-

imation of constant magnetization direction. The problem we face to is construct a

LDA for these systems. We follow an approach developed by Kübler and co-workers

(Kübler et al, 1988). The underlying idea is to obtain a representation that locally di-

agonalizes the single particle density matrix by locally rotating the spin quantization

axis. After constructing LDA the only requirement is exchange-correlation energy as
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a function of spin-up and spin-down densities (or total density and polarization). The

problem at Kohn-Sham Hamiltonian is unknown part exchange-correlation potential

V xc
αβ . An approximation definition in which the single-particle density matrix is diago-

nal with diagonal elements n↑ and n↓ was found by Kübler. The exchange-correlation

potential can be written via chain rule

V xc
ηη ′ =

δExc[n↑,n↓]
δn↑

∂n↑
∂ρηη ′

+
δExc[n↑,n↓]

δn↓

∂n↓
∂ρηη ′

(5.3.1)

We can find approximations for δExc/δnσ via calculating exchange-correlation energy.

The work is to calculate derivatives ∂n↑/∂ρηη ′ and ∂n↓/∂ρηη ′ which introduce the

local spin rotation angles θ(y) and ϕ(y). The angles give the orientation of the spin at

point y. In the noncollinear case the density matrix is written in terms of particle and

magnetization densities

ρηη ′(y) = ∑
n

1
2π

∫
dkφ∗

nk(y,η)φnk(y,η ′) fβ (εnk)

⇒

 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

=
1
2

 ρ +mz mx + imy

mx − imy ρ −mz

 (5.3.2)

The density matrix (ρηη ′) is diagonalized via a local unitary transformation

UρU† = n ≡

 n↑ 0

0 n↓

 (5.3.3)

where the transformation is given as

U =

 eiϕ(y)/2 cos θ(y)
2 e−iϕ(y)/2 sin θ(y)

2

−eiϕ(y)/2 sin θ(y)
2 e−iϕ(y)/2 cos θ(y)

2

 (5.3.4)

The requirement that U diagonalizes ρηη ′ then the local rotation angles are

tanϕ(y) =−
my(y)
mx(y)
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and

tanθ(y) =

√
m2

x(y)+m2
y(y)

mz(y)

From equation (5.3.3) diagonal densities n↑ and n↓ is calculated.

n↑ = ρ↑↑ cos2 θ
2
+ρ↑↓eiϕ cos

θ
2

sin
θ
2
+ρ↓↑e−iϕ cos

θ
2

sin
θ
2
+ρ↓↓ sin2 θ

2

=
1
2
(ρ +mz cosθ)+Re{ρ↑↓eiϕ sinθ} (5.3.5)

n↓ = ρ↑↑ sin2 θ
2
−ρ↑↓eiϕ cos

θ
2

sin
θ
2
−ρ↓↑e−iϕ cos

θ
2

sin
θ
2
+ρ↓↓ cos2 θ

2

=
1
2
(ρ −mz cosθ)−Re{ρ↑↓eiϕ sinθ} (5.3.6)

ρηη ′ is diagonal and we know n↑ and n↓ at a point y, so that in the collinear LSDA

we only need to know exchange-correlation energy as a function of total density and

polarization. Undo this rotation the exchange-correlation potential can be calculated

as

V xc
ηη ′ =

 υ0 +∆υ cosθ ∆υeiϕ sinθ

∆υe−iϕ sinθ υ0 −∆υ cosθ

 (5.3.7)

where  υ↑ 0

0 υ↓

≡

 δExc[n↑,n↓]/δn↑ 0

0 δExc[n↑,n↓]/δn↓

 (5.3.8)

and υ ≡ (υ↑+υ↓)/2 and ∆υ ≡ (υ↑−υ↓)/2. Thus the exchange-correlation potential

matrix was written in terms of spinor orbitals and LSDA energy density functional. In

the LDA the exchnage-correlation energy can be written as the function of polarization

and filling factor instead of density. The relation between density and filling factor is

ν(y) = 2πb2
0n(y) and we can write exchange-correlation energy

Exc =
∫

dyn(y)εxc[ν(y),ζ (y)] (5.3.9)

where εxc is the exchange-correlation energy per particle in an infinite, homogenous

system of filling factor ν and polarization ζ . In this new formulation polarization can

be redescribed function of filling factor ζ = (ν↑− ν ↓)/ν . The new definition of υ↑
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and υ↓ (Heinonen, Kinaret, & Johnson, 1999).

υ↑ =

[
∂

∂ν
+

1
ν
(1−ζ )

∂
∂ζ

]
[νεxc(ν ,ζ )]

υ↓ =

[
∂

∂ν
− 1

ν
(1+ζ )

∂
∂ζ

]
[νεxc(ν ,ζ )] (5.3.10)

In this work the exchange-correlation energy functional was taken from the work of

Attaccalite and coworkers (Attaccalite et al, 2002; 2003).



CHAPTER SIX

RESULTS

In this study, we have investigated the electronic structure of quantum wires ob-

tained of confining the GaAs heterostructure. The bulk parameters g∗ = −0.44, m∗ =

0.067 and dielectric constant ε = 12.4 have been used. We have defined the SO regime

with the ratio of the strength of SO interaction to confinement potential.

∆R,D =
m∗λ 2

R,D

2h̄3ω0

For strong SO regime ∆R = 0.093, ∆D = 0.37 values have been used and for weak

SO regime ∆R = 0.0037, ∆D = 0.015 have been used (Zhang et al, 2006). For

GaAs/AlGaAs SO coupling constants are experimentally in order of 10−11 eVm (Miller

et al, 2003; Könemann, Haug, Maude, Fal’ko, & Altshuler, 2005). We have given the

results of strong and weak SO regime in this study.

We investigated some cases for different strength of SO interaction and in the pres-

ence or absence of magnetic field. A comprehensive study as a function of parameter

space can be carried out but we have restricted our work for some examples. When

applied magnetic field is different from zero we have set it to 20 T and have considered

three orientations of it, namely, ϕB = 0, ϕB = π/4 and ϕB = π/2. The harmonic oscil-

lator length b0 =
√

h̄/m∗ω0 is used to identify the results and the energies are scaled in

h̄ω0 units. The value of h̄ω0 is set to 4 meV which is a typical energy value for GaAs

system.

We studied the exchange-correlation effect on the energy subband structure in some

cases which involve in-plane magnetic field and different strengths of SO interaction.

Systematizing the effect of the exchange-correlation energy is difficult because it de-

pends on the other parameters which are used to characterize the QW, such as linear

density ρ1D, SO coupling constants λR,D and ϕB the orientation of magnetic field.

45
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6.1 The Effect of Spin-Orbit Interaction and Magnetic Field

In the first part of results we present the effects of SO interaction and magnetic field

on the subband structure when exchange-correlation energy is not taken into account.

We firstly wanted to identify the effect of SO interaction on the energy subbands
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Figure 6.1 Single electron energies (in h̄ω0 units) for ρ1Db0 = 0.17 as a function of
kxb0. (a) corresponds to ∆R = 0, ∆D = 0, B = 0 and (b) ∆R = 0.093, ∆D = 0, B = 0

in the absence of an external magnetic field. In Figure 6.1(a) energy subbands are

graphed in the absence of magnetic field and SO interaction for a low density such as

ρ1Db0 = 0.17. Each subband shows twofold degenerate parabola for the two different

spin orientations. The energy subbands are spin-up and down degenerate for all kx

values. We present the effect of including SO interaction to the degeneracy in the

Figure 6.1(b). We addressed the Rashba SO interaction in the Figure 6.1(b) but we have

observed that Rashba and Dresselhaus SO interactions have same effect on the energy

dispersion which shows same behaviors for the same characteristic SO interaction. For

in the presence of a weak Rashba (or Dresselhaus) SO interaction, namely ∆R = 0.093,

the degenerate energy subbands split into two laterally displaced parabolas except the

point at kx = 0 (Zhang et al, 2009). Rashba SO interaction breaks down the degeneracy.

In this Figure 6.1(b) we don’t consider the coupling between different subbands.

In Figure 6.1(b), it is seen that the weak Rashba SO interaction lifts the degeneracy

for k values except kx = 0. In Figure 6.2(a) for the same value of Rashba SO inter-
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Figure 6.2 Single electron energies (in h̄ω0 units) for ρ1Db0 = 0.52 as a function of
kxb0. (a) ∆R = 0.093, ∆D = 0, B = 0 and (b) ∆R = 0.037, ∆D = 0, B = 0
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Figure 6.3 Single electron energies (in h̄ω0 units) for ρ1Db0 = 1.38 as a function of
kxb0. (a) ∆R = 0, ∆D = 0.37, B = 20 T, ϕB = π/2 and (b) ∆R = 0.093, ∆D = 0.37,
B = 20 T, ϕB = π/2

action, ∆R = 0.093, but a different value of density ρ1Db0 = 0.52, weak anticrossings

occur between different spin orientation within the same subband at low kx values. At

higher values of kx weak coupling occurs between different spin orientation and dif-

ferent subbands. The k-splitting which arises from the linear terms in momentum (p)

of HSO increases in the presence of strong Rashba SO interaction such as ∆R = 0.037.

The energy subbands are still degenerate at point kx = 0. The different spin orientation

within each subband leads to anticrrosing at the large values of kx. The crossings which
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are seen in the presence of weak Rashba SO interaction vanish when strong SO inter-

action, of which values is ∆R = 0.037, is considered as seen in Figure 6.2(b) (Knobbe,

& Schapers, 2005; Serra et al, 2005).

In Figure 6.3(a) we show the variation of energy in the presence of an applied mag-

netic field which indicate y-direction, i.e., ϕB = π/2 and set to 20 T and also for a high

density value ρ1Db0 = 1.38. In this case, strong Dresselhaus SO interaction, namely,

∆D = 0.37, lifts the the spin degeneracy of subbands for all k values and lower sub-

bands develops a camelback shape. We see a symmetric double minimum structure

in the first subband. By the inclusion of weak Rashba SO interaction characterized

by ∆R = 0.093, the camelback shape disappears Figure 6.3(b). The symmetric double

minimum structure in the absence of Rashba SO interaction turns into the asymmetric

shape when Rashba SO interaction is taken into account. These k-asymmetries appear

for almost all bands. Near kx = 0 conspicuous subband gap and local extrema is seen.

In the even subbands we observe anomalous steps as reported by Zhang and co-workers

(Zhang et al, 2006).
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Figure 6.4 Single electron energies (in h̄ω0 units) for ρ1Db0 = 0.17 as a function of
kxb0. (a) ∆R = 0.37, ∆D = 0, B = 0 and (b) ∆R = 0.37, ∆D = 0, B = 20, ϕB = π/4

The effect of magnetic field on the subband structure is important for identifying

the beating pattern in the magnetoresistance so we want the understand the effect of an

external applied magnetic field. Figure 6.4 shows the relation between magnetic field

and energy subband for low density ρ1Db0 = 0.17 and in the presence of strong Rashba
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SO interaction, namely ∆R = 0.37. When there is no external magnetic field the energy

subbands show degeneracy at kx = 0 as seen in Figure 6.4(a). When an external mag-

netic field is applied the separation between subbands, namely k-splitting, becomes

larger and the previous spin degeneracy at point kx = 0 is lifted. In the first subband

asymmetry is observed. The magnetic field and SO interaction cause a complex energy

spectrum and the gaps between different subbands vary for different k values at a con-

stant magnetic field. It leads to a characteristic beating pattern in the magnetoresistance

(Zhang et al,2006; Pramanik, Bandyopadyay, & Cahay, 2007).
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Figure 6.5 Single electron energies (in h̄ω0 units) for ρ1Db0 = 1.38 as a function of
kxb0. (a) ∆R = 0, ∆D = 0.093, B = 20 T, ϕB = π/4 and (b) ∆R = 0, ∆D = 0.37, B = 20
T, ϕB = π/4

In this Figure 6.5 we consider the Dresselhaus SO effect on the energy dispersion in

the presence of strong magnetic field which orientates with the angle ϕB = π/4. When

only Dresselhaus SO interaction, which corresponds to weak interaction with the value

of ∆D = 0.093, is considered the energy subbands are degenerate at kx = 0 but applying

an external magnetic field the degeneracy of the two different spin orientations of each

subband is lifted. For the weak Dresselhaus SO interaction the separation between the

neighbour energy subbands decreases with increasing n. For the higher values of n

the k-splitting branches have different shapes and they cross each other, the crossings

are observed as seen in Figure 6.5(a). Including strong Dresselhaus SO interaction,

namely ∆D = 0.37, the lower branches of each subband constitute a camelback shape

in the environs of kx = 0. The crossings caused by the weak SO interaction is lifted in

the presence of strong Dresselhaus SO interaction as shown in Figure 6.5(b).
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Figure 6.6 Single electron energies (in h̄ω0 units) for ρ1Db0 = 0.52 as a function of
kxb0. (a) ∆R = 0, ∆D = 0.37, B = 20 T, ϕB = 0 and (b) ∆R = 0, ∆D = 0.37, B = 20 T,
ϕB = π/2

We want to identify the dependence of the energy subbands on the orientation of the

magnetic field. Therefore in Figure 6.6 we plot the energy subband structure for the

parameters ρ1Db0 = 0.52, ∆R = 0, ∆D = 0.37 and B = 20 T. Figure 6.6(a) corresponds

to the case of B = 0 and strong Dresselhaus SO interaction the energy subbands are

degenerate at kx = 0. Applying an external magnetic field along x-direction doesn’t lift

this degeneracy. It induces k-asymmetries. When the magnetic field is applied along

the y-direction the degeneracy caused by the two different spin orientations at point

kx = 0 is lifted, the k-splitting increases as seen in Figure 6.6(b). The k-asymmetries

vanish and the a symmetric double minimum structure occurs in the first subband by

applying magnetic field. In contrast to zero magnetic field anticrossing of subbands

doesn’t appear.

Now we compare the energy subbands for a strong magnetic field and two types

of strong SO interaction. Rashba and Dresselhaus SO interactions present simultane-

ously but in different strengths, namely we exchange their values. When Rashba SO

interaction is stronger in Figure 6.7(a) with the interaction strengths are ∆R = 0.37,

∆D = 0.093, in Figure 6.7(b) the interactions are changed and Dresselhaus SO inter-

action is dominant, namely ∆R = 0.093, ∆D = 0.37. For strong Rashba SO interaction

k-asymmetries occur in the odd subbands. In the even subbands anomalous steps oc-

cur which arise from the combined effect of SO and magnetic field B as seen in Figure
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Figure 6.7 Single electron energies (in h̄ω0 units) for ρ1Db0 = 0.17 as a function of
kxb0. (a) ∆R = 0.37, ∆D = 0.093, B = 20 T, ϕB = 0 and (b) ∆R = 0.093, ∆D = 0.37,
B = 20 T, ϕB = 0

6.7(a). And Figure 6.7(b) shows the energy dispersion for strong Dresselhaus SO in-

teraction. The symmetric structure in the third subband turns into asymmetric shape.

The plateaus also occur in the even subbands (Zhang et al ,2006; Malet et al, 2007;

Zhang et al, 2009) .

−2 0 2
−0.5

0

0.5

1

1.5

2

2.5

3

k
x
b

0

E nk

−2 0 2
−0.5

0

0.5

1

1.5

2

2.5

3

k
x
b

0

E nk

(b)(a)

Figure 6.8 Single electron energies (in h̄ω0 units) for ρ1Db0 = 0.52 as a function of
kxb0. (a) ∆R = 0.37, ∆D = 0.093, B = 20 T, ϕB = π/4 and (b) ∆R = 0.093, ∆D = 0.37,
B = 20 T, ϕB = π/4

In Figure 6.8 we consider a different orientation ϕB = π/4 of magnetic field in the

presence of strong SO interaction. Figure 6.8(a) and Figure 6.8(b) corresponds the

different strengths of Rashba and Dresselhaus SO interactions. It is seen that in both
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strong SO regime k-asymmetries are induced for odd subbands n > 1. In the ground

state there is symmetric double minimum. For the different strength of SO interaction

subbands show inversion symmetry to kx = 0.
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Figure 6.9 Single electron energies (in h̄ω0 units) for ρ1Db0 = 1.38 as a function of
kxb0. (a) ∆R = 0.37, ∆D = 0.093, B = 0 and (b) ∆R = 0.37, ∆D = 0.093, B = 20 T,
ϕB = 0

In Figure 6.9, we want to identify the effect of magnetic field for the strong regime

which is characterized by ∆R = 0.37, ∆D = 0.093 in the high density limit. When

B = 0, which is shown in Figure 6.9(a), the energy subbands are degenerate at kx = 0.

Symmetric weak local minimum occurs for the even subbands. In Figure 6.9(b), by

applying an external magnetic field this degeneracy is lifted. The magnetic field gives

rise to k-asymmetries and subband splitting. In the presence of an external magnetic

field and strong SO interaction, we observe conspicuous subband gaps and the so-

called anomalous plateaus.

6.2 The Effects of Exchange-Correlation Energy

After having learned the effects of SO interaction and magnetic field on the energy

dispersion, we now search the effect of exchange-correlation energy. From Figure 6.10

to Figure 6.17, with solid lines we show the energy subbands without inclusion of

exchange-correlation effect while the dashed lines correspond to V xc ̸= 0. Figure 6.10,

presented for the low density limit such as ρ1Db0 = 0.17, shows that the weak Rashba
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SO interaction and the magnetic field induce asymmetry in the odd bands. The effect

of the exchange-correlation energy is to break down this asymmetry and to transform

the subbands like parabola shape as seen in Figure 6.10(a). In the presence of strong

Rashba SO interaction the subband structure is graphed in Figure 6.10(b). It is seen

that the asymmetry in the ground state remains when V xc is taken into account.
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Figure 6.10 Single electron energies (in h̄ω0 units) for ρ1Db0 = 0.17 as a function of
kxb0. (a) ∆R = 0.093, ∆D = 0, B = 20 T, ϕB = π/4 and (b) ∆R = 0.37, ∆D = 0, B = 20
T, ϕB = π/4
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Figure 6.11 Single electron energies (in h̄ω0 units) for ρ1Db0 = 0.17 as a function of
kxb0. (a) ∆R = 0, ∆D = 0.37, B = 0 and (b) ∆R = 0, ∆D = 0.37, B = 20 T, ϕB = π/4

Figure 6.11 shows the exchange-correlation effect in the presence of strong Dressel-

haus SO interaction characterized by ∆D = 0.37. For a strong Dresselhaus SO interac-

tion when B= 0 the subbands show degeneracy at point kx = 0. When V xc is considered
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the energy subbands shift to lower energy values as seen in Figure 6.11(a). Applying

an external magnetic field but remaining the strength of SO interaction, the degeneracy

lifts and transforms the double minimum shape to an asymmetry in the ground state.

By adding the V xc this asymmetry increases on the other hand the k-splitting decreases.

When B ̸= 0, V xc seems to change the value of ϕB or increase the intensity of B. This

case is graphed in Figure 6.11(b).
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Figure 6.12 Single electron energies (in h̄ω0 units) for ρ1Db0 = 1.38 as a function of
kxb0. (a) ∆R = 0, ∆D = 0.093, B = 20 T, ϕB = π/4 and (b) ∆R = 0, ∆D = 0.37, B = 20
T, ϕB = π/4

Figure 6.12 shows the result corresponding to a high density ρ1Db0 = 1.38 for an

applied magnetic field of 20 T and ϕB = π/4 in the different strengths of Dresselhaus

SO interaction. Weak Dresselhaus SO interaction induces weak k-asymmetries for odd

bands. Exchange-correlation effects predominantly appears on these asymmetries, it

increases the asymmetry shapes in the odd subbands and shifts all of the subbands to

the lower energy values as seen in Figure 6.12(a). The effect of exchange-correlation

energy in the strong Dresselhaus regime is shown in Figure 6.12(b). Including V xc

doesn’t change the k-asymmetries but it decreases the k-splitting especially for higher

subbands.

Figure 6.13 shows the energy subband structure with these parameters ρ1Db0 =

0.17, ∆R = 0.093, B = 20 T, ϕB = π/4. It can be seen in Figure 6.13(a), for a weak

Rashba SO interaction, inclusion of the exchange-correlation energy changes the asym-

metries, it transforms these structures into a parabola like subbands. A strong SO
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Figure 6.13 Single electron energies (in h̄ω0 units) for ρ1Db0 = 0.17 as a function of
kxb0. (a) ∆R = 0.093, ∆D = 0, B = 20 T, ϕB = π/4 and (b) ∆R = 0.093, ∆D = 0.37,
B = 20 T, ϕB = π/4

regime which includes both Rashba and Dresselhaus, induces anomalous plateaus in

the even subbands. The exchange-correlation energy smooths these structures and

transforms the symmetric shapes to asymmetric shapes in the odd bands. We see this

situation in Figure 6.13(b).
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Figure 6.14 Single electron energies (in h̄ω0 units) for ρ1Db0 = 1.38 as a function of
kxb0. (a) ∆R = 0.37, ∆D = 0.093, B = 20 T, ϕB = π/2 and (b) ∆R = 0.093, ∆D = 0.37,
B = 20 T, ϕB = π/2

When both SO interactions have taken into account we can also observe the effect

of exchange-correlation, as seen Figure 6.14. We study the the exchange-correlation

effects for strong SO regime different values of Rashba and Dresselhaus SO interaction
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Figure 6.15 Single electron energies (in h̄ω0 units) for ρ1Db0 = 0.52 as a function of
kxb0. (a) ∆R = 0.093, ∆D = 0.37, B = 0 and (b) ∆R = 0.093, ∆D = 0.37, B = 20 T,
ϕB = π/2

and in the prensence of magnetic fields which indicate y-direction, i.e., ϕB = π/2. We

can see subband gaps in both graphs and for four cases. The interaction between SO

and magnetic field causes anomalous plateaus. It can be seen that the inclusion of V xc

washes out these plateaus. We can obtain same results with Malet (Malet et al, 2007)

for Figure 6.14 (b).

For strong regime characterized by ∆R = 0.093 and ∆D = 0.37, the exchange-correlation

effect is studied for B = 0 and B = 20 T and ϕB = π/2 which is shown in Figure 6.15.

When B ̸= 0, εxc seems to change the value of ϕB or increase the intensity of B. Includ-

ing the V xc the local maximums at even subbands are smoothed.

We want to identify the dependence of the energy subbands on density. Therefore

in Figure 6.16 we plot the energy subband structure for the parameters ∆R = 0.093,

∆D = 0.37, B = 20 T, ϕB = π/4 and two values of density. Figure 6.16(a) corresponds

to low density ρ1Db0 = 0.17 and the high density such as ρ1Db0 = 1.38 is shown in

Figure 6.16(b). Inclusion of exchange-correlation energy changes the symmetry in

the odd bands, it induces asymmetries. We can see that the εxc smooths the local

maximums at even subbands. When the k-splitting increases for lower subbands, at

higher value of energy values kx = 0 degeneracy occurs. The energy dispersion shows

similar characteristics for different densities.
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Figure 6.16 Single electron energies (in h̄ω0 units) as a function of kxb0. (a) ∆R =
0.093, ∆D = 0.37, B = 20 T, ϕB = π/4, ρ1Db0 = 0.17 and (b) ∆R = 0.093, ∆D = 0.37,
B = 20 T, ϕB = π/4, ρ1Db0 = 1.38

We have obtained same results with Malet (Malet et al, 2007) at high values of den-

sity but in the low density limit our results differs from each other. This discrepancy

can be due to different choices for the exchange-correlation energies. We have used

Attaccalite (Attaccalite et al, 2002) parametrization for exchange-correlation energy

whereas they used von Barth and Hedin prescription (von Barth & Hedin, 1972). von

Barth and Hedin calculate exchange-correlation energy functional for fully polarized

and nonpolarized two-dimensional electron gas and interpolate energy functional be-

tween these two regimes. Attaccalite parametrization doesn’t require any interpolation

so the energy functional. According to Malet and co-workers (Malet et al, 2007) using

the improved energy functional would not make an substantial changes in the results,

but we have seen that especially in the low density limits the results are different. The

effects of improved εxc can be clearly seen in the figures. It has been observed that

V xc tends to increase the effects of magnetic fields and especially at low density limits

it act as if an applied magnetic field. In some situations, when B = 0 involving the

exchange-correlation the subband structure seems same as V xc = 0 but as if a magnetic

field is applied. The magnetization which consists as a result of the spontaneous sym-

metry breaking can be made by the exchange-correlation energy. In the presence of an

external magnetic field V xc may act as if an additional magnetic field and it enhance the

value of B or contributes to create an in-plane magnetic field which heads to different

direction from existing magnetic field.
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Figure 6.17 Single electron energies (in h̄ω0 units) as a function of kxb0. ∆R = 0.093,
∆D = 0.37, B = 20 T, ϕB = π/4, ρ1Db0 = 0.52 (a) without cubic Dresselhaus term (b)
with cubic Dresselhaus terms

We also have investigated the contribution of the cubic Dresselhaus SO interac-

tion. In Figure 6.17, the left panel (a) corresponds the energy dispersion with the off-

neglected cubic Dresselhaus terms. In the right panel (b) we can see the contribution of

cubic terms. The cubic Dresselhaus SO coupling constant is related to linear Dressel-

haus SO coupling constant and the relation between them is βD = h̄ωoγD⟨k2
z ⟩ (Studeret

al, 2010) and ⟨k2
z ⟩α(π/L)2. We have obtained energy dispersion for a moderate value

of k2
z . It has been experimentally observed that cubic Dresselhaus SO interactions be-

come important for the high densities, weak electron confinement and lower values of

γD (Studer et al, 2010) and it plays a strong and previously ignored role in observed

transport properties (Krich & Bertrand, 2007). We have observed in our study that the

contribution of the cubic Dresselhaus term gives rise to a small shift in energy subbands

which can be due to moderate confinement we have chosen.



CHAPTER SEVEN

CONCLUSION

The main aim of this thesis is to investigate theoretically the ground state structure

of a parabolically confined quantum wire. Emphasis has also been set on exploring the

effect of exchange-correlation energy, spin-orbit interaction and magnetic field to the

energy dispersion.

We have studied the energy dispersion relations of the spin-split subbands for dif-

ferent cases such as different types of SO interaction, in the presence or absence of

in-plane magnetic field and exchange-correlation energy. In this study we have taken

account the contribution of the generally off-neglected cubic Dresselhaus terms. We

have considered three different orientations of magnetic fields and and we have seen

that the energy subband structure depends on this orientation. We have investigated the

energy subband structure for different types of SO interaction such as strong or weak

SO interaction. The effect of exchange-correlation energy has also been searched. In

this study the numerical calculations have been achieved high accuracy with a power-

ful method FEM. The electron energies have been calculated by FEM which is based

on Galerkian procedure.

The energy dispersion has been obtained in the absence of magnetic field and SO

interaction. The energy subbands has showed two-fold degeneracy. By applying an ex-

ternal magnetic field the time-reversal symmetry has been broken and the degeneracy

has lifted but in some situations the degeneracy at the point kx = 0 has remained. It has

been shown that the zero-k splitting in any subband not only arises from Zeeman split-

ting but also is not linear in the magnetic field. The zero k-splitting also depends on

subband. We have investigated the structure of subbands for zero and different strength

of magnetic field. When the strength of external magnetic field is increased, it leads

to higher oscillations frequency so the gaps between subbands are extented and thus

weakens the SO coupling. We have searched the effect of different types of SO inter-

action to the energy subband in the absence and presence of magnetic field. It has been

observed that the SO interaction changes the k-splitting, leads to anticrossings between

the different spin orientations within the same subband and couplings between differ-

59
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ent subbands. We have shown that the interplay between the different magnetic field

strengths and different SO coupling causes complex and intriguing energy spectrum.

We have also searched the cubic Dresselhaus terms. It is shown that the contribution

of the cubic Dresselhaus terms are efficient and it caused strong shifting in the energy

subbands.

We have investigated the exchange-correlation effects on the ground state structure

for the different strengths of SO interaction and in the absence or presence of an ex-

ternal in-plane magnetic field. The exchange-correlation energy has been calculated

within the noncollinear local-spin density approximation in the density functional the-

ory framework. We have obtained that exchange-correlation interaction contributes

the existing magnetic field or acts as if an external magnetic field and produces the

effect of magnetic field especially at low density values. It can be obviously seen in

the energy subband structure. The most conspicuous properties appeared in the strong

spin-orbit regimes where exchange-correlation potential induced splitting gives rise to

the so-called anomalous plateaus. In the presence of both magnetic field and strong

SO interaction local maxima has been appeared in the even subbands and it is impor-

tant in the conductance. We have studied the effect of exchange-correlation energy for

different density limits. In the high density limits we have had similar results as in

the litterateur. But in the low density limits, there are some differences between the

studies in the litterateur and ours. We have used different exchange-correlation energy

functional from those existing works in which von Borth Hedin energy functional is

used for calculating the effect of exchange-correlation potential. In this study, we have

exploited Attaccalite prescription, which is commonly used recently, to calculate the

exchange-correlation energy.
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