

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

MULTIPLE AUTHENTICATION

by

Onur ÇAKIRGÖZ

August, 2012

İZMİR

MULTIPLE AUTHENTICATION

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of

Science in Computer Engineering, Computer Engineering Program

by

Onur ÇAKIRGÖZ

August, 2012

İZMİR

ii

iii

ACKNOWLEDGMENTS

I would like to thank to my thesis advisor Prof. Dr. Süleyman Sevinç for his help,

suggestions and guidance.

I also thank to my family and my sincere friends for their patience and support.

Onur ÇAKIRGÖZ

iv

MULTIPLE AUTHENTICATION

ABSTRACT

Authentication is one of the fundamental security mechanisms in computer

science applications. Users can have access to the systems after authentication

process is performed. Due to the easy use, passwords are mostly used for

authentication. However, people encounter some problems with passwords in real

life situations. One of the problem is users need to memorize and remember lots of

passwords for distinct services. Unfortunately, rather than using disparate passwords,

users generally prefer to use the same passwords for distinct services. Using the

same password for different services give rise to security vulnerabilities. At this

point, the question “Can we manage relatively strong and different passwords via a

unique password?” arises.

In the scope of this study, an ancient theorem which is called Chinese Remainder

Theorem was used to solve the problem. Firstly, a unique password was obtained

from pre-defined passwords. But, since this unique password is very long and very

difficult to memorize, another method has been developed. According to the second

method, a unique password is defined by the user in advance then distinct and strong

passwords are generated from the unique password. Finally, a secure multiple

authentication protocol which is based on Chinese remainder theorem have been

developed and the security analysis of the protocol have been done.

Keywords : Chinese remainder theorem, authentication, password, password

reduction, password management

v

ÇOKLU KİMLİK DOĞRULAMA

ÖZ

Bilgisayar bilimi uygulamalarında kimlik doğrulama temel güvenlik

mekanizmalarından bir tanesidir. Kimlik doğrulama işlemi gerçekleştirildikten sonra

kullanıcılar sistemlere erişebilirler. Kimlik doğrulaması için kolay kullanımlarından

ötürü çoğunlukla şifreler kullanılır. Fakat gerçek hayatta insanlar şifrelerle ilgili bazı

problemlerle karşılaşıyorlar. Problemlerden bir tanesi kullanıcılar farklı servisler için

birçok şifreyi ezberleme ve hatırlama ihtiyacı duymaktadırlar. Ne yazık ki farklı

şifreleri kullanmak yerine kullanıcılar genellikle farklı servisler için aynı şifreyi

kullanmayı tercih ediyorlar. Farklı servisler için aynı şifreyi kullanmak güvenlik

zafiyetlerine neden olmaktadır. Bu noktada “Göreceli olarak güçlü ve farklı şifreleri

tek bir şifre aracılığıyla yönetebilir miyiz?” sorusu ortaya çıkmaktadır.

Bu çalışmanın kapsamında, bahsi geçen problemi çözmek için Çinli Kalan

Teoremi olarak adlandırılan eski bir teorem kullanılmıştır. İlk olarak, önceden

tanımlanmış şifrelerden tek bir şifre elde edildi. Fakat bu tek şifrenin çok uzun

olması ve ezberlenmesinin çok zor olmasından dolayı farklı bir yöntem geliştirildi.

İkinci yönteme göre, tek bir şifre kullanıcı tarafından önceden belirleniyor daha

sonra farklı ve güçlü şifreler bu tek şifreden üretiliyor. Son olarak, Çinli Kalan

Teoremine dayanan güvenli çoklu kimlik doğrulama protokolü geliştirilmiş ve

protokolün güvenlik analizi yapılmıştır.

Anahtar sözcükler : Çin kalan teoremi, kimlik doğrulama, şifre, şifre indirgeme,

şifre yönetimi

vi

CONTENTS

 Page

M.Sc THESIS EXAMINATION RESULT FORM .. ii

ACKNOWLEDGMENTS ... iii

ABSTRACT ... iv

ÖZ ... v

CHAPTER ONE -- INTRODUCTION .. 1

1.1 Recent Studies ... 2

1.1.1 Authentication using Smart Cards ... 2

1.1.2 Secret Sharing and Asmuth-Bloom’s Scheme ... 5

1.1.3 Password-Authenticated Key Exchange Protocols(PAKE) 6

1.1.4 Federated Identity Management and SAML ... 7

1.1.5 Kerberos ... 9

1.1.6 Saravanakumar and Mohan’s Single Password Protocol 12

1.1.7 Sevinç and Çakırgöz’s Password Reduction Method 14

CHAPTER TWO – ENHANCED PASSWORD REDUCTION METHOD 16

2.1 Passwords and Integers ... 16

2.2 Formulation of the Problem .. 17

2.3 Chinese Remainder Theorem .. 18

2.4 Backward Direction Method ... 19

2.5 Forward Direction Method .. 20

2.6 Security Analysis of Our Protocol ... 27

2.6.1 Message Replay Attack ... 27

2.6.2 Malicious Server Attack .. 27

2.6.3 Password Files Compromise Attack .. 28

2.6.4 Message Log Compromise Attack .. 28

2.6.5 Offline Dictionary Attack .. 29

2.6.6 Online Dictionary Attack ... 29

vii

2.6.7 Man-In-The-Middle Attack ... 30

2.6.8 Identity Protection ... 30

2.6.9 Mutual Authentication ... 31

CHAPTER THREE -- IMPLEMENTATION .. 33

3.1 Forward Direction Method .. 33

3.2 Backward Direction Method ... 35

3.3 Server Application ... 39

CHAPTER FOUR – CONCLUSION & FUTURE WORK 41

REFERENCES ... 44

APPENDIX ... 47

1

1 CHAPTER ONE

 INTRODUCTION

Password, or formerly called parole, is an authentication method which is based

on very old history. As is well known in general, a word agreed upon, or a character

sequence is selected as a password and with the presentation of this password, the

verification of the identity claim is performed. Some of the services that password

authentication is used by are, e-mail servers, bank accounts, student accounts,

numerous web sites, and so on.

Password has entered into our daily life with the widespread use of the internet.

However the password usage that increases in daily life has provided deficiencies of

this method to emerge noticeably. When users need to use more of the services

requiring password, they are forced to memorize more and more passwords, as a

result, they have begun to choose more simple and predictable passwords. Since the

choice of simple passwords facilitates the work of malicious password hunters,

institutions have defined constraints on the password’s strength (predictability). The

necessity which comes out with defining some constraints by service providers upon

the strength(predictability) of passwords to be selected by the users, increases the

requirement of more complex remembrance function. It is estimated that this

contradictory situation causes some users to use very similar passwords even same

password for different services. Thus, particular service provider’s security policies

that are applied to the user passwords and are aimed to be used only in its own

service encounter the threat of losing the effects.

Authentication method via SMS that is commonly used today appears as a method

which supports password-based authentication. Although this method does not

increase the security of the password information theoretically, it emerges as an

effective and deterrent method. Furthermore some methods such as a variety of one-

time password applications, implementation of the obligation of replacing passwords

periodically, using SSL(Secure Socket Layer) on the web, namely https, for

2

storing passwords more secure - often running on mobile phone - password storage

software have been widely taken in use to increase the security of password

authentication.

Although authentication methods based on biometric characteristics of individuals

proposed instead of authentication method via password, the password application

did not lose its significance (Snelick, Uludag, Mink, Indovina & Jain, 2005), (Herley

& Van Oorschot, 2012). Consequently, the techniques improving the usage security

of password method are developed by researchers.

In this study, the method which is going to be devised removes difficulty in user’s

remembrance function and necessity of the usage of the similar passwords for

distinct services. This is achieved with a method which is called password reduction.

Simply, password reduction is defined as reducing n number of passwords defined

for n number of service providers to a unique password through a mathematical

procedure. Thus, without any loss of security, it is planned to increase the usability of

password-based authentication systematic.

1.1 Recent Studies

1.1.1 Authentication using Smart Cards

Smart cards are widely used in remote authentication. Smart cards are preferred

strongly by the users because of the reasons such as easy to use, mobility, efficiency,

low computation cost and cryptographic preferences. Thus, many researches

proposed smart card based authentication schemes such as (Yang & Shieh, 1999),

(Hwang & Li, 2000), (Chien, Jan & Tseng 2002) and (Juang, 2004).

In smart card based authentication, firstly some information which corresponds to

the user should be embedded into the smart card. This information is necessary for

computations during the authentication session. This first phase is often called

“registration phase”. Registration phase is performed via an out-of-band(secure)

channel.

3

After the first phase, smart card can be used by the users. To be able to provide

the authentication, smart card should be placed into the card reader, and necessary

information such as user-id and password should be submitted by the user. Card

reader and smart card make pre-defined computations by using the information

submitted by the user and the information embedded in the registration phase.

In this section, the scheme of (Shieh & Wang, 2006) will be explained as an

example of the authentication methods using smart cards. (Shieh & Wang, 2006)

have proposed an efficient remote mutual authentication and key agreement protocol

using smart cards. The proposed protocol is computationally efficient and provides

mutual authentication. It is efficient because the computations include one-way hash

functions, XOR operations and concatenation operations. In the proposed scheme,

time synchronization is not required although current time stamps are used as

challenges and responses. Their protocol consists of two phases:

• The Registration Phase

• The Login and Key Agreement Phase

The symbols in their scheme are defined as in Table 1.1:

Table 1.1 The symbols used in Shieh & Wang’s scheme

h() secure one-way hash function

x the secret key maintained by the server

⨁ exclusive-or operation

‖ string concatenation operation

Registration Phase

Assume a user Ui submits his identity IDi and password PWi to the server over a

secure channel for registration. If the request is accepted, the server computes Ri =

h(IDi ⨁ x) ⨁ PWi and issues Ui a smart card containing Ri and h().

4

Login and Key Agreement Phase

When the user Ui wants to login to the server, he first inserts his smart card into a

card reader then enters his identity IDi and password PWi. The smart card then

carries out the following steps to begin an access session:

1. Calculate ai = Ri ⨁ PWi.

2. Obtain current time stamp Tu, keep Tu in memory temporarily till the end of the

session, and compute MACu = h(Tu ‖ ai).

3. Send the message (IDi, Tu, MACu) to the server and wait for response from the

server. If no response is received in time or the response is incorrect, send a failure

report to the user and stop the session.

After receiving the message (IDi, Tu, MACu) from Ui, the server performs the

following steps to assure the integrity of the message, respond to Ui, and challenge Ui

to avoid replay:

1. Check the freshness of Tu. If Tu has already appeared in a current executing

session of user Ui, reject Ui’s login request and stop the session. Otherwise, Tu is

fresh.

2. Compute ai` = h(IDi ⨁ x) , MACu` = h(Tu ‖ ai`), and check whether MACu` is

equal to the received MACu. If it is not, reject Ui’s login and stop the session.

3. Acquire the current time stamp Ts. Store temporarily paired time stamps (Tu,

Ts) and IDi for freshness checking until the end of the session. Compute MACs = h(Tu

‖ Ts ‖ ai`) and session key Ks = h((Tu ‖ Ts) ⨁ ai`). Then, send the message (Tu, Ts,

MACs) back to Ui and wait for response from Ui. If no response is received in time or

the response is incorrect, reject Ui’s login and stop the session.

On receiving the message (Tu, Ts, MACs) from the server, the smart card performs

the following steps to authenticate the server, achieve session key agreement, and

respond to the server:

5

1. Check if the received Tu is equal to the stored Tu to assure the freshness of the

received message. If it is not, report login failure to the user and stop the session.

2. Compute MACs` = h(Tu ‖ Ts ‖ ai) and check whether it is equal to the received

MACs. If not, report login failure to the user and stop. Otherwise, conclude that the

responding party is the real server.

3. Compute MACu`` = h(Ts ‖ (ai + 1)) and session key Ks = h((Tu ‖ Ts) ⨁ ai), then

send the message (Ts, MACu``) back to the server. Note that, in the message (Ts,

MACu``), Ts is a response to the server.

When the message (Ts, MACu``) from Ui is received, the server performs the

following steps to authenticate Ui and achieve key agreement:

1. Check if the received Ts is equal to the stored Ts. If it fails, reject Ui’s login

request and stop the session.

2. Compute MACu``` = h(Ts ‖ (ai` + 1)) and check whether it is equal to MACu``.

If it is not, reject Ui’s login request and stop the session. Otherwise, conclude that Ui

is a legal user and permit the user Ui’s login. At this moment, mutual authentication

and session key agreement between Ui and the server are achieved. From now on, the

user Ui and the server can use the session key Ks in their further secure

communication until the end of the access session.

1.1.2 Secret Sharing and Asmuth-Bloom’s Scheme

Secret sharing is a method which provides distribution of a secret amongst a group

of participants. In secret sharing schemes, a dealer who is responsible for the

distribution distributes shares of the secret to participants. The dealer gives only one

share to each participant. Then, any group of t or more participants can reconstruct

the secret. To reconstruct the secret, any t or more shares should be combined

together. But no group of fewer than t participants can reconstruct the secret. This

system is called a (t,n) threshold scheme. Secret sharing was invented independently

by (Shamir, 1979) and (Blakley, 1979).

6

Secret sharing schemes are developed upon mathematical theorems. Thus, secret

sharing can use Chinese Remainder Theorem. Because, from the definition of the

Chinese Remainder Theorem, the unique solution can be thought as the secret and

the simultaneous congruence equations can be thought as the shares. (Mignotte,

1983) and (Asmuth & Bloom, 1983) have developed (t,n) threshold schemes

independently. Both of their schemes are based on the Chinese Remainder Theorem.

According to the (k,n) threshold scheme of (Asmuth & Bloom, 1983), firstly we

choose integers k and n such that n ≥ 2 and 2 ≤ k ≤ n. Here, k denotes the minimum

number of shares required to reconstruct the secret and n denotes the total number of

shares. We generate a sequence of pairwise coprime integers such that m0 ˂ … ˂ mn

and m0.mn-k+2…mn < m1…mk. Then, the secret S can be chosen as a random integer

in the set Z/m0Z. After the selection of the secret S, we find a random integer α such

that S+α.m0 < m1…mk. To compute the shares Ii = (si , mi) we perform (S+α.m0 mod

mi) for all 1 ≤ i ≤ n. If we want to reconstruct the secret S, firstly we combine any

different k shares and solve the system of simultaneous congruences. Then the secret

S can be computed as the unique solution of simultaneous congruences modulo m0.

1.1.3 Password-Authenticated Key Exchange Protocols(PAKE)

Password-Authenticated key exchange protocols – sometimes called Password-

only authenticated key exchange – require users to remember only a password. In

these kind of protocols, public-private key pairs and symmetric(secret) key are not

required to be stored. Bellovin and Merritt’s password-based protocol (Bellovin &

Merritt, 1992,1993) is the most well-known example of these. In their study, the

problem of selecting poorly-chosen passwords has been addressed. Even if the

situation where users select weak passwords, their protocol is secure against on-line

and off-line dictionary attacks.

Although public/private key pairs and secret key are not needed to be stored,

these keys have to be generated randomly by the system. The combination of

asymmetric(public-key) and symmetric(secret-key) cryptography is used to provide

7

secure communication over an insecure network. In their protocol, password is used

to encrypt randomly-generated public key. The only information that the

communicating parties have to share is password.

Their protocol is as following:

1. A sends A,P(EA) to B.

2. B sends P(EA(R)) to A.

3. A sends R(challengeA) to B.

4. B sends R(challengeA,challengeB) to A.

5. A sends R(challengeB) to B.

1.1.4 Federated Identity Management and SAML

Federated Identity management is the extension of classical identity

management where enterprises or services exchange information between each

other in accordance with pre-arrangements and pre-defined standards.

Identity management is a concept which provides centralized and automated

management of identities. Rather than the classical approach where users are

defined with identifiers(user-id), identity management approach presents identity

and attributes associated with this identity as the main focus. According to the

identity management concept, each user or process has to have a digital identity.

Also this concept supplies a standard mechanism by which users verify their

identities. By using identity management concept, users can have enterprise-wide

access to resources in an authorized manner. The fundamental notion of an identity

management system is the use of single sign-on(SSO). Single sign-on provides the

advantage of enterprise-wide access of whole resources with a single

authentication.

8

In identity management concept, users can create attributes which incorporate

their digital identities. The responsible part of the identity management for the

creation and maintenance of attributes is attribute service. Users can define their

phone numbers, addresses, e-mail addresses as attributes. Attribute service enable

users to define attributes once, so that this information is maintained in a particular

place and released to data consumers when needed according to their

authorizations.

Federated identity management provides multiple independent domains to

exchange digital identities. The aim of the exchange of the digital identities

between these distinct domains is to have an access to resources, services,

applications across independent security domains by a user when a single

authentication is performed. These domains include internal enterprise resources,

external enterprise resources, other distinct services, applications. In order to

exchange digital identities, cooperating enterprises should construct a federation

based on the agreement and standards. Federated identity management includes

standards, security policies and arrangements.

The underlying technology of federated identity management is SAML(Security

Assertion Markup Language). SAML is an XML-based, open standard language

which addresses the single sign-on problem on the internet. The OASIS Security

Services Technical Committee started to develop a standard in January 2001 and

published SAML v1.0 specification as an OASIS standard in November 2002. The

latest version of Saml is v2.0 which was announced as an OASIS standard in march

2005.

In SAML identity provider(a producer of assertions) submits user’s

authentication request as an assertion to the service provider(a consumer of

assertions) and in accordance with this assertion service provider makes a decision.

As mentioned before, SAML is an XML-based technology and naturally SAML is

constructed upon a number of existing standards such as XML Schema, XML

signature and XML Encryption. Also SAML relies heavily on http as its

9

communication protocol. Saml provides the exchange of the authentication and

authorization information between online business partners in the form of

assertions. Assertions consist of the three types of statements. These are:

• Authentication statements

• Attribute statements

• Authorization decision statements

1.1.5 Kerberos

Kerberos is a centralized authentication service which provides mutual

authentication between user and server. Kerberos has been developed at MIT as a

part of a project known as Athena (Miller, Neuman, Schiller, & Saltzer, 1987),

(Steiner, Neuman, & Schiller, 1988), (Kohl, Neuman, & Tso, 1994). There are five

versions of the Kerberos authentication service; version 1,2 and 3 are internal

versions and are not used alone. Version 4 and version 5 take place in real-world

distributed environments where security is a main issue. Kerberos and the protocol

that it is based on are well-suited for an open distributed environment.

The secret key distribution scheme which has been developed by (Needham &

Schroeder, 1978) is adopted as a base structure and Kerberos has been constructed

upon this base. Their scheme involves the use of Key Distribution Center(KDC).

The Key Distribution Center performs the responsibility of generating temporary

keys(session keys) and distribution of these session keys. Each party has a master

key which is shared with KDC. This master key is used to provide the security and

confidentiality of session keys to be distributed.

The messages sent and received in a Kerberos authentication session are as

following:

(1) C→AS IDc||IDtgs||TS1

(2) AS→C E(Kc,[Kc,tgs||IDtgs||TS2||Lifetime2||Tickettgs])

10

Tickettgs = E(Ktgs, [Kc,tgs||IDc||ADc||IDtgs||TS2||Lifetime2])

(3) C→TGS IDv||Tickettgs||Authenticatorc

(4) TGS→C E(Kc,tgs, [Kc,v||IDv||TS4||Ticketv])

Tickettgs = E(Ktgs, [Kc,tgs||IDC||ADC||IDtgs||TS2||Lifetime2])

Ticketv = E(Kv, [Kc,v||IDC||ADC||IDv||TS4||Lifetime4])

Authenticatorc = E(Kc,tgs, [IDC||ADC||TS3])

(5) C→V Ticketv||Authenticatorc

(6) V→C E(Kc,v, [TS5 + 1]) (for mutual authentication)

Ticketv = E(Kv, [Kc,v||IDc||ADc||IDv||TS4||Lifetime4])

Authenticatorc = E(Kc,v,[IDc||ADc||TS5])

The symbols used in the Kerberos protocol and their meanings can be seen from

Table 1.2.

Table 1.2 The symbols used in the Kerberos protocol

Message (1) Client requests ticket-granting ticket

IDC Tells AS identity of user from this client

IDtgs Tells AS that user requests access to TGS

TS1 Allows AS to verify that client's clock is synchronized with that of AS

Message (2) AS returns ticket-granting ticket

Kc Encryption is based on user's password, enabling AS and client to verify

password, and protecting contents of message (2)

Kc,tgs Copy of session key accessible to client created by AS to permit secure exchange

between client and TGS without requiring them to share a permanent key

IDtgs Confirms that this ticket is for the TGS

TS2 Informs client of time this ticket was issued

Lifetime2 Informs client of the lifetime of this ticket

Tickettgs Ticket to be used by client to access TGS

Message (3) Client requests service-granting ticket

IDV Tells TGS that user requests access to server V

Tickettgs Assures TGS that this user has been authenticated by AS

Authenticatorc Generated by client to validate ticket

Message (4) TGS returns service-granting ticket

Kc,tgs Key shared only by C and TGS protects contents of message (4)

11

Table 1.3 Continue

Kc,v Copy of session key accessible to client created by TGS to permit secure

exchange between client and server without requiring them to share a permanent

key

IDv Confirms that this ticket is for server V

TS4 Informs client of time this ticket was issued

Ticketv Ticket to be used by client to access server V

Tickettgs Reusable so that user does not have to reenter password

Ktgs Ticket is encrypted with key known only to AS and TGS, to prevent tampering

Kc,tgs Copy of session key accessible to TGS used to decrypt authenticator, thereby

authenticating ticket

IDC Indicates the rightful owner of this ticket

ADC Prevents use of ticket from workstation other than one that initially requested the

ticket

IDtgs Assures server that it has decrypted ticket properly

TS2 Informs TGS of time this ticket was issued

Lifetime2 Prevents replay after ticket has expired

Authenticatorc Assures TGS that the ticket presenter is the same as the client for whom the

ticket was issued has very short lifetime to prevent replay

Kc,tgs Authenticator is encrypted with key known only to client and TGS, to prevent

tamperig

IDc Must match ID in ticket to authenticate ticket

ADc Must match address in ticket to authenticate ticket

TS3 Informs TGS of time this authenticator was generated

Message (5) Client requests service

Ticketv Assures server that this user has been authenticated by AS

Authenticatorc Generated by client to validate ticket

Message (6) Optional authentication of server to client

Kc,v Assures C that this message is from V

TS5 + 1 Assures C that this is not a replay of an old reply

Ticketv Reusable so that client does not need to request a new ticket from TGS for each

access to the same server

Kv Ticket is encrypted with key known only to TGS and server, to prevent

tampering

Kc,v Copy of session key accessible to client; used to decrypt authenticator, thereby

authenticating ticket

IDC Indicates the rightful owner of this ticket

12

Table 1.4 Continue

ADc Prevents use of ticket from workstation other than one that initially requested the

ticket

IDv Assures server that it has decrypted ticket properly

TS4 Informs server of time this ticket was issued

Lifetime4 Prevents replay after ticket has expired

Authenticatorc Assures server that the ticket presenter is the same as the client for whom the

ticket was issued; has very short lifetime to prevent replay

Kc,v Authenticator is encrypted with key known only to client and server, to prevent

tampering

IDC Must match ID in ticket to authenticate ticket

ADC Must match address in ticket to authenticate ticket

TS5 Informs server of time this authenticator was generated

1.1.6 Saravanakumar and Mohan’s Single Password Protocol

(Saravanakumar & Mohan, 2008) have proposed a multiple authentication

scheme which allows users to use the same user-id and the same password for

distinct servers. Firstly, they have addressed the malicious server attacks, phishing

attacks and the compromised server attacks. In malicious server attacks, an attacker

can build up a malicious server which seems a legal server providing a particular

service but actually it is intended to make use of gathering clients’ passwords

illegally. In most of the web sites, users have to reveal their passwords to

authenticate themselves. Unfortunately an adversary who listens the

communication between the user and the server can capture the user’s password.

This type of attack is called phishing attack. Saravanakumar and Mohan’s multiple

authentication scheme adopts the use of challenge/response and one-time server

specific ticket to counter such types of attacks. In their scheme a user does not

reveal his respective password at any point. Rather, the user uses his password with

the challenge and the name of the server to generate the one-time server-specific

ticket. The symbols in their scheme are defined as following:

13

Table 1.5 The symbols used in Saravanakumar & Mohan’s protocol

C Client or user-id

S Server

P Password

ni , ni+1 Challenges

MD() Message Digest Function(One-way Hash Function)

MD2() MD(MD())

| Concatenation

 Their scheme consists of two phases. The scheme is as follows:

Registration Phase

Client generates a challenge ni and ticket verification information MD2(ni | p | s).

Then client sends this information to the server for registration through a secure

channel. Server stores this information to perform authentication process of the

client later.

Login Phase

1. When client wants to login to the server, he sends his user-id C to the

server.

2. Server sends the challenge which was generated by the client at registration

phase.

3. Client creates one-time server-specific ticket MD(ni | p | s), new challenge

ni+1 and new ticket verification information MD2(ni+1 | p | s) and sends these

information to the server S.

4. Server S confirms the received ticket MD(ni | p | s) with the ticket

verification information MD2(ni | p | s). If the current ticket which Server S

receives is valid, Server S authenticates the client C and immediately stores

ni+1 in place of ni and MD2(ni+1 | p | s) in place of MD2(ni | p | s).

14

They adopt two assumptions for their protocol. Firstly, they assume that user

remembers the password which consists of at least eight or more random

characters. Secondly, they assume that their protocol is used with SSL(Secure

Socket Layer).

1.1.7 Sevinç and Çakırgöz’s Password Reduction Method

(Sevinç & Çakırgöz, 2012) have proposed ‘Password Reduction Method’ based

on Chinese Remainder Theorem (CRT) and the Fundamental Theorem of Algebra

(FTA). In this approach many passwords used for different services are reduced

through a number theory procedure to a single password (call it X). The Password

Reduction method can work in two directions; in the first case, called backward

direction, a user has an existing set of n passwords (xi) required to be reduced to a

single one (X), in the second case, called forward direction, user starts with a

single, easy-to-remember password (X) from which n passwords are generated each

of which (xi) is to be registered with a different service for authentication. In both

cases, user needs only the single password (X) to authenticate with any of the n

services. Password Reduction Method treats individual passwords as numbers (#xi

and #X represent number forms) equivalent to their string representation. In the

backward direction, a random prime number (pi where pi > #xi) is generated for

each of (xi). It is intended to reduce n different passwords (xi) to a singleone (X).

Using (#xi mod pi) n equations in CRT style are formed. It is a well-known fact

that these n equations have a unique solution in modulo (p1p2p3…pn) , call this

product r. The unique solution to this equation system is the unique password (#X).

Individual passwords (xi) and their corresponding random prime numbers (pi) are

registered with each service. In addition to unique password, user also keeps a copy

of the product of all primes (. This password and the product is used for securely

logging in a service. At login time, user identifies herself to a service using a

username then awaits the service to provide the prime number associated with her

password. This prime number is used to ensure that the service is genuine as well as

to generate the relevant password from previously computed single password. User

15

generates password for the specific service using the single password computed

earlier and the random prime provided at authentication time to the user by the

service authenticating the user.

In the forward direction, user selects an easy to remember string (X) which then

is used, in its number form, to generate n passwords (xi) using CRT in the other

direction. The end result in both cases is the same: unique password is the solution

to a set of equations, each one representing one of n passwords to be reduced, as

characterized by CRT.

The password reduction method, in its naive form, suffers from a weakness

where an attacker can spoof a service and then provide a prime number (p) to a user

with the intention of obtaining (#X mod p). By repeating this a few times, an

attacker con construct a CRT like equation from which to predict the single

password. To remedy this problem, authors in (Sevinç & Çakırgöz, 2012) have

proposed that the product of all primes (r) used in Password Reduction Method to

construct a CRT-like equation system be saved and used as benchmark by a user to

check the authenticity of a service. Therefore, since each service is required to

present a prime number (pi) which they were given along with their individual

passwords at the time of authentication, this prime number is obviously a factor of

the product, i.e. pi must divide r. The service authenticity can be verified by

checking this fact. The authors refer to FTA for the security of this approach.

Our approach in this thesis is an enhancement of password reduction method of

(Sevinç & Çakırgöz, 2012) and eliminates all known attack types as security threats

to the method. We focus on our approach (Enhanced Password Reduction Method)

in the following chapters.

16

2 CHAPTER TWO

ENHANCED PASSWORD REDUCTION METHOD

2.1 Passwords and Integers

The passwords used today are sequences consisting of symbols. These symbols

can be letters, numbers and punctuation marks. On the one hand sequences to be

selected as a password should be easy to remember, on the other hand the security

of them should be strong in terms of service providers. Although passwords

consisting of personal information such as name, surname or phone number are

easy to remember for the user, they are classified as not secure passwords. Because

they are also easy to estimate for password hunters. For example, password

“sp961?&$icm” is difficult to remember for users but it emerges as a relatively

high secure password. The strength of a password is related to its predictability.

Assuming that passwords are selected totally randomly by users, it can be said that

the strength of passwords is related to the number of symbols in the symbol space

and the length of the password. For example, 1020 different passwords that contains

10 symbols can be constructed with the symbol alphabet which comprises 100

symbols. However, in practice, users' chosen passwords are not completely random,

even if they are replaced (Gong, Lomas, Needham & Saltzer, 1993).

It is a well known fact that when s symbols exist in the symbol space, sequences

consisting of these symbols can be expressed by a polynomial. Password cn-1cn-

2...c1c0 can be expressed with the unique polynomial of an-1sn-1 + an-2sn-2 +..+ a1s1 +

a0s0 numerically. Here, symbols are represented by c, the numeric values

corresponding to these symbols in the Unicode Table are represented by a. For

example a->97, b->98, c->99, ...etc. Each password can be converted into an

integer with the calculation of this polynomial at point s. For instance, if it is

assumed that there are total 100 symbols in symbol space, the password of abc is

1.1002 + 2.1001 + 3.1000 = 10203. In other words the password of abc matches

uniquely with the number of 10203. Furthermore when we have such an integer, the

17

corresponding password of this integer can be obtained exactly and uniquely. Thus,

it is possible to obtain the integer corresponding to a password or vice versa to

obtain password corresponding to the integer.

As defined in the above expression calculating results of the polynomials,

namely, for converting a password into an integer there is a method known as the

Horner’s rule method. This method significantly reduces the number of transactions

made when calculating the result of a polynomial. However, since it is commonly

known in the literature, it’s details will not be described here. The conclusion

reached here is, the password sequences can be addressed such as integers. This

provides the use of all the mathematical methods applied to integers for the

manipulation of passwords.

2.2 Formulation of the Problem

Let’s suppose that a user determines a different password for each of the n

electronic services. Here, our goal is to pass from the n different passwords to a

unique password. Since the fact that each password corresponds to an integer,

reduction of n integers that we have to a single integer can be expressed as the

mathematical formulation of our problem. The mathematical formulation of the

problem is expressed in equation(1). (Since user has determined n passwords, it is

assumed that he knows the passwords and anyone other than himself knows the

passwords.)

 f: Zn -> Z (Z: positive integers) (1)

So, the problem of producing a single password from n passwords can be

expressed as defining a function f between n-dimensional integer space and one-

dimensional integer space as described above.

18

For example, function f can be defined as a simple arithmetic addition. In this

case, value of the function f would be the sum of the all passwords. For instance if

there are three passwords (n = 3), and if these passwords are 4, 7 and 8 the function

f would generate 19. But when we have an integer 19 from here it is not possible to

get 4,7 and 8. 12, 2, 5 and 14,3,2 will also result 19 when they are added. In this

situation, it is clear that function f should be a reversible function. A reversible

function can be defined as in equation (2).

 f-1: Z -> Zn (Z: positive integers) (2)

such that,

 f-1(f (z1,z2,..,zn)) = (z1,z2,..,zn) (3)

2.3 Chinese Remainder Theorem

The method that will be used in our thesis is based on an ancient theorem which

is frequently used in number theory. This theorem is known as Chinese remainder

theorem. This theorem has found place widely in the literature (Koblitz, 1994),

(Ding, Pei, & Salomaa, 1996), (Cormen, Leiserson, Rivest, & Stein, 2001), (Iftene,

2007). Chinese Remainder Theorem was originated by a Chinese mathematician

Sun Tzu. The first form of the Chinese Remainder Theorem was published in a

third-century AD book(The Mathematical Classic by Sun Zi).

Chinese Remainder Theorem is about finding a solution to the system of

simultaneous congruences. Suppose that X, a and p are positive integers. Then

equation (4) defines a congruence.

 X ≡ a (mod p) (4)

http://en.wikipedia.org/wiki/Charles_E._Leiserson�
http://en.wikipedia.org/wiki/Ronald_L._Rivest�
http://en.wikipedia.org/wiki/Clifford_Stein�

19

A system of simultaneous congruences is defined in equation(5). Here p1,p2,...,pn

should be pairwise coprimes. Then, this system of simultaneous congruences has a

unique solution X (mod r).

X ≡ a1 (mod p1)

X ≡ a2 (mod p2)

...

X ≡ an (mod pn)

(5)

Given,

 r = ∏ pi 𝑛
𝑖=1 (6)

Let,

 Mi = ∏ 𝑝𝑗𝑛
𝑗=1,𝑗≠𝑖 (1 ≤ i ≤ n) (7)

Then X is computed as in equation(8):

 X = (∑ 𝑎𝑖 𝑀𝑖 (Mi
−1𝑛

𝑖=1 mod 𝑝𝑖)) (mod r) (8)

2.4 Backward Direction Method

Based on this theorem, we might think (a1, a2,... ,an) as n passwords that we

have. In response to these, prime numbers (p1, p2... pn) that are greater than these

numbers can be generated randomly by using known methods and can be used to

20

acquire individual passwords. The solution of this sytem of simultaneous

congruences would give us the X, namely the value of the unique password.

Extracting individual passwords from X is straightforward. In this case k’th

individual password can be computed as X ≡ ak (mod pk).

Then, what we need to obtain individual passwords from X are the value of X

and the corresponding prime numbers. Obtaining k’th password by someone who

has only X or only prime number pk is not possible. When this informations are put

together desired password can be easily acquired. But, having informations

individually is not sufficient in order to obtain paswords. Then we can define

required steps:

1. Convert n passwords into integers individually by using Horner method.

2. For each password, generate a prime number that is greater than password

and distinct from each other.

3. Compute X from the equation system below:

 X ≡ a1 (mod p1)

 X ≡ a2 (mod p2)

 ...

 X ≡ an (mod pn)

4. Store X and prime numbers separately. Remove ai numbers.

2.5 Forward Direction Method

As mentioned previously, users define either similar passwords or same

password for different service providers. The Backward Direction Method does not

yield a solution to this problem. Because passwords here are defined by the users in

advance and we know that users generally define similar passwords for different

services. Also generated X is a very big integer and the string equivalent of X is

not a memorable password.

21

However, when we think of the set of simultaneous congruences one more time,

we can see that this can be also achieved. Firstly, instead of starting from passwords

individually, user creates a X value which is sufficiently complex but memorable

(We will use numerical equivalent of X but user can define this as a convenient

string which consists of characters.). Secondly, sufficiently large n prime numbers

are generated randomly. Individual passwords can be obtained as X mod pk (for the

k’th service). Then we can define the steps of the method:

1. Choose a strong password X.

2. Convert the string X into its numerical equivalent with Horner method.

3. Generate n random and distinct prime numbers.

4. Perform (X mod pi) for p1,p2..., pn.

5. Convert the results after modulo operation into their string equivalents. Use

the results after conversion as passwords and then remove them.

6. Store X and prime numbers separately.

Here, the condition of selection of pi’s as prime numbers is a stronger condition

than required. It is an adequate condition that pi’s should be pairwise coprime for

the unique solution of the set of the equations which subjects to the explanations

above. Namely, greatest common divisor; gcd(pi, pj) should be 1 for all 1≤ i,j ≤ n

and i≠j. Since the cost of the running time of the Euclid's GCD algorithm which

takes place widely in the literature is limited to Θ (log n), there is no hesitation

about the selection of pi’s correctly.

The simple authentication protocol with any service is as following:

Registration Phase

In the registration phase, user transmits his user-id ID, ai and pi to the server Si

for 1≤ i ≤n over a secure channel. Server Si stores ID, ai and pi in it’s database for

this user.

22

Login Phase

1. User U sends his user-id ID to the server Si.

2. When server Si receives the ID, it sends the corresponding prime number

pi to the user U.

3. After user U receives the prime number pi from the server Si, he performs

X % pi and obtains ai. Then the user U transmits ai to the server Si.

4. Server Si checks the received ai with it’s database. If they are equal,

Server Si authenticates the User U. Otherwise, it rejects the request and

stops the session.

Unfortunately, despite the use of SSL or TLS, the simple authentication protocol

depicted above is vulnerable to some attacks. These attacks are:

1. A malicious server Si may send different coprimes to the user and may

store the received ai’s. Then, it may try to compute X by using the (ai , pi)

pairs.

2. Let k be a positive integer, then (X mod p1) can be expressed as X = kp1

+ a1. Thus, finding X and finding k are equivalent. Assume that a

malicious server sends 2p1 to the user. If the remainder is still a1, this

shows us that k is an integer which is divisible by 2. Similarly, a

malicious server can send 4p1. If the remainder is still a1, this shows us

that k is an integer which is divisible by 4. By this method, a malicious

server can obtain information about the value of X such as it’s prime

factors.

3. If a malicious server sends a pi which is bigger than the X, it can obtain

X easily.

To cope with the vulnerabilities of the simple protocol, we have developed a

secure and efficient protocol by using some cryptographic means such as one-way

23

hash function, xor operation, asymmetric encryption, challenge/response. The

symbols used in our scheme are defined in Table 2.1:

Table 2.1 The symbols used in our scheme

U User

Si I’th server

ID User-id

h() Secure One-way hash function(SHA-2)

⨁ Exclusive-OR operation

X Unique password

x Half of the unique password

ci,ci+1 Challenges(Randomly generated integers between 7 and 10 digits)

N1,N2 Randomly generated Nonce values

ai I’th individual password for the i’th Server Si

pi I’th individual prime number for the i’th Server Si

PUu Randomly generated public key

PRu Randomly generated private key

SK Symmetric key

PUsi Public key for the Server Si

PRsi Private key of the Server Si

D() Decryption

E() Encryption

% Mod operator

|| Concatenation

Registration Phase

User U generates a ci value and calculates h(h(x ⨁ ai ⨁ (ci || PUsi))) , E(x, (pi ⨁

h(x ⨁ ID))) and h(x ⨁ ID ⨁ PUsi). Here, h(h(x ⨁ ai ⨁ (ci || PUsi))) is called

verification information. h(x ⨁ ID ⨁ PUsi) is used instead of ID. Note that h(x ⨁

ID ⨁ PUsi) is specific to a particular server. It is assumed that this three calculated

value and ci are sent to the Server Si over a secure channel for registration. The

24

Server Si then stores this four information in it’s database to authenticate the user U

later on.

Login Phase

When user U wants to login to the Server Si , he performs the following

operations:

1. Generate public-private key pair(PUu , PRu) and N1 randomly.

2. Compute h(x ⨁ ID ⨁ PUsi) which is used instead of ID.

3. Encrypt (N1, h(x ⨁ ID ⨁ PUsi), PUu) with the public key(PUsi) of the Server

Si.

4. Send E(PUsi , (N1, h(x ⨁ ID ⨁ PUsi), PUu)) to the Server Si.

After the Server Si receives the message, it performs the following operations:

1. Decrypt the received message. D(PRsi , E(PUsi , (N1, h(x ⨁ ID ⨁ PUsi),

PUu))) = (N1, h(x ⨁ ID ⨁ PUsi), PUu).

2. Generate a nonce value N2 randomly.

3. Encrypt (N1,N2,E(x, (pi ⨁ h(x ⨁ ID))),ci) using the received PUu.

4. Send E(PUu , (N1,N2,E(x, (pi ⨁ h(x ⨁ ID))),ci)) to the user U.

When the user U receives the message from the Server Si, he performs the

following steps:

1. Decrypt the received message with the private key PRu which was generated

before. D(PRu , E(PUu , (N1,N2,E(x, (pi ⨁ h(x ⨁ ID))),ci))) = (N1,N2,E(x, (pi

⨁ h(x ⨁ ID))),ci).

2. Check N1 for validity. If the received N1 is not equal to the generated N1, stop

the session.

25

3. Otherwise, Decrypt E(x, (pi ⨁ h(x ⨁ ID))) with x. Since user U knows the x

and ID, he can compute pi with (pi ⨁ h(x ⨁ ID) ⨁ h(x ⨁ ID)). Check the

length and the primality of pi. If pi is not a coprime or the length of it is too

long than it has to be, stop the session.

4. If pi is valid, authenticate the server Si, perform X % pi and obtain ai.

5. Calculate h(x ⨁ ai ⨁ (ci || PUsi)).

6. Generate new challenge ci+1 and symmetric key SK randomly.

7. Compute the next verification information h(h(x ⨁ ai ⨁ (ci+1 || PUsi))).

8. Encrypt (N2, h(x ⨁ ai ⨁ (ci || PUsi)), ci+1, h(h(x ⨁ ai ⨁ (ci+1 || PUsi))),SK)

with PUsi.

9. Send E(PUsi, (N2, h(x ⨁ ai ⨁ (ci || PUsi)), ci+1, h(h(x ⨁ ai ⨁ (ci+1 ||

PUsi))),SK)) to the server Si.

After the Server Si receives the message from the user U, it performs the

following steps:

1. Decrypt the message using the PRsi. D(PRsi, E(PUsi, (N2, h(x ⨁ ai ⨁ (ci ||

PUsi)), ci+1, h(h(x ⨁ ai ⨁ (ci+1 || PUsi))),SK))) = (N2, h(x ⨁ ai ⨁ (ci || PUsi)),

ci+1, h(h(x ⨁ ai ⨁ (ci+1 || PUsi))),SK).

2. Check N2 for validity. If the received N2 is not equal to the generated N2, stop

the session.

3. Otherwise, compute h(h(x ⨁ ai ⨁ (ci || PUsi))) with the received h(x ⨁ ai ⨁

(ci || PUsi)).

4. Check the computed value with the stored verification information. If they are

equal, authenticate the user U. From now on, user and the server Si can

communicate by using SK. Otherwise, reject the authentication request.

5. If the user is authenticated, replace ci with ci+1 and h(h(x ⨁ ai ⨁ (ci || PUsi)))

with h(h(x ⨁ ai ⨁ (ci+1 || PUsi))) immediately.

The computational cost of our protocol for the user-side and for the server-side

is listed in Table 2.2.

26

Table 2.2 The computational cost of our protocol

 User Server

Registration

Phase

Encryption: 1 Encryption: -

Decryption: - Decryption: -

Xor Operation: 6 Xor Operation: -

Hash Function: 4 Hash Function: -

Concatenation: 1 Concatenation: -

Random Number

Generation:
1

Random Number

Generation:
-

Comparison: - Comparison: -

Pi Check: - Pi Check: -

% Operation - % Operation: -

Total: 13 Total: -

Login Phase

Encryption: 2 Encryption: 1

Decryption: 2 Decryption: 2

Xor Operation: 7 Xor Operation: -

Hash Function: 5 Hash Function: 1

Concatenation: 14 Concatenation: 6

Random Number

Generation:
5

Random Number

Generation:
1

Comparison: 1 Comparison: 2

Pi Check: 1 Pi Check: -

% Operation: 1 % Operation: -

Total: 38 Total: 13

27

2.6 Security Analysis of Our Protocol

We assume that the messages of the protocol are submitted over a secure

channel. Based on the assumption, we show that our authentication protocol does

not cause any additional security risks when we analyze each of the attacks.

2.6.1 Message Replay Attack

In message replay attack, an adversary firstly listens to the communication

between the user and the server and tries to capture the messages. Then, adversary

attempts to login to the server by replaying the captured messages. Our

authentication protocol is secure against message replay attack. Because in each

session public-private key pair(PUu,PRu), symmetric key(SK) and N1 are generated

randomly by the user. Similarly, in each session N2 is generated randomly by the

server.

If the adversary replays the captured message E(PUsi , (N1, h(x ⨁ ID ⨁ PUsi),

PUu)), he can not decrypt the coming message E(PUu , (N1,N2,E(x, (pi ⨁ h(x ⨁

ID))),ci)) which is encrypted by the server. Because the adversary does not know

the private key(PRu) which is required to decrypt the message. Furthermore, the

adversary can not respond to the coming message E(PUu , (N1,N2,E(x, (pi ⨁ h(x ⨁

ID))),ci)) with the message E(PUsi, (N2, h(x ⨁ ai ⨁ (ci || PUsi)), ci+1, h(h(x ⨁ ai ⨁

(ci+1 || PUsi))),SK)) which was captured in the previous session. Because, (N2, ci) in

the current session and (N2, ci) which was used in the previous session are different.

Therefore, when the server decrypts the coming message E(PUsi, (N2, h(x ⨁ ai ⨁

(ci || PUsi)), ci+1, h(h(x ⨁ ai ⨁ (ci+1 || PUsi))),SK)) from the adversary, it can not

validate N2 and h(x ⨁ ai ⨁ (ci || PUsi)). Naturally, the server Si rejects the login

request of the adversary.

2.6.2 Malicious Server Attack

In this type of attack, an adversary firstly sets up a server which seems legal.

Next, he provides the registration of the users to the system by serving several

28

services. But, the actual aims of the adversary are obtaining the passwords of the

users and having access to bank accounts of the users or other important services by

impersonating them.

Our authentication protocol is secure against malicious server attack. The first

reason of being secure against malicious server attack is a user does not release his

unique password and user-id to any server. Furthermore, he does not release x, ai

and pi in an open format. Thereby, a server can not know X, ID, x, ai and pi. The

second reason is a malicious server can not compute X, x, ai and pi from h(x ⨁ ai ⨁

(ci || PUsi)), h(h(x ⨁ ai ⨁ (ci || PUsi))), E(x, (pi ⨁ h(x ⨁ ID))) and h(x ⨁ ID ⨁

PUsi). The third reason is h(h(x ⨁ ai ⨁ (ci || PUsi))), E(x, (pi ⨁ h(x ⨁ ID))) and h(x

⨁ ID ⨁ PUsi) are specific to a particular server. Thereby, a malicious server can

not impersonate any of it’s users to login to another server by using the users’

authentication information in it’s database.

2.6.3 Password Files Compromise Attack

The aim of this type of attack is obtaining the authentication information of the

users such as password, user-id or ticket by stealing the password file of a server.

Our protocol is secure against password file compromise attack. The reasons are

similar to ones mentioned in the malicious server attacks. The first one is an

adversary can not compute X, ID, x, ai and pi from h(h(x ⨁ ai ⨁ (ci || PUsi))), E(x,

(pi ⨁ h(x ⨁ ID))) and h(x ⨁ ID ⨁ PUsi). The second one is an adversary can not

compute the required information h(x ⨁ ai ⨁ (ci || PUsi)) that will be used for the

next authentication process from h(h(x ⨁ ai ⨁ (ci || PUsi))).

2.6.4 Message Log Compromise Attack

Some servers which carry out high security policies save sent and received

messages in a message log file. In this type of attack, an attacker firstly steals the

message log file. Then, he tries to acquire the passwords of the users or required

29

information for authentication. An attacker can not decrypt the message E(PUsi ,

(N1, h(x ⨁ ID ⨁ PUsi), PUu)). Because he does not know the private key PRsi of the

server Si. Also, he can not decrypt the message E(PUu , (N1,N2,E(x, (pi ⨁ h(x ⨁

ID))),ci)). Because the required private key PRu is known only by the user. Even if

the attacker acquires the private key PRsi, attacker can not use h(x ⨁ ai ⨁ (ci ||

PUsi)) to authenticate himself. The reason is that this information is used for only

one time.

2.6.5 Offline Dictionary Attack

In Offline Dictionary Attack, an attacker listens to the communication between

the user and the server and records the messages transmitted. Then, eavesdropping

adversary tries to acquire the password of the user from observed transcripts of

login sessions.

Our protocol is secure against offline dictionary attack. An attacker can not

decrypt the message E(PUsi , (N1, h(x ⨁ ID ⨁ PUsi), PUu)). Because the private key

PRsi is known only by the server Si. Since an attacker does not know the private key

PRu, he can not decrypt the message E(PUu , (N1,N2,E(x, (pi ⨁ h(x ⨁ ID))),ci)) too.

Even if he decrypts the messages, he can not gather any information about X, ID, x,

pi from E(x, (pi ⨁ h(x ⨁ ID))) and h(x ⨁ ID ⨁ PUsi). Similary, he can not decrypt

the message E(PUsi, (N2, h(x ⨁ ai ⨁ (ci || PUsi)), ci+1, h(h(x ⨁ ai ⨁ (ci+1 ||

PUsi))),SK)). Even if he decrypts the message, he can not acquire any information

about X, x, ai from h(x ⨁ ai ⨁ (ci || PUsi)). Furthermore, he can not derive the

required information h(x ⨁ ai ⨁ (ci+1 || PUsi)) for the next authentication session

from h(h(x ⨁ ai ⨁ (ci+1 || PUsi))).

2.6.6 Online Dictionary Attack

In this type of attack, an adversary pretends to be a legitimate user and attempts

to login to the server repeatedly by trying each possible password from a dictionary.

30

Our protocol is secure against online dictionary attack. An attacker can not

construct h(x ⨁ ID ⨁ PUsi) which represents the user-id. Because an attacker can

not guess the value of x and the value of the ID at the same time. So, he can not

pass to the next steps of the protocol. Also, an attacker has maximum three chances.

After three unsuccessful attempts an attacker can not try more passwords.

2.6.7 Man-In-The-Middle Attack

In this type of attack, an attacker intercepts and modifies the messages sent

between the user and the server. Then he acts as the user to the server or vice-versa

by sending modified messages. The aim of an attacker may be obtaining

unauthorized access or acquiring the password of the user.

The proposed protocol is secure against man-in-the-middle attack. An attacker

can not decrypt the intercepted message E(PUsi , (N1, h(x ⨁ ID ⨁ PUsi), PUu))

which is sent to the server. Thus, he can not modify the intercepted message.

Similarly he can not decrypt the intercepted message E(PUu , (N1,N2,E(x, (pi ⨁ h(x

⨁ ID))),ci)) which is sent to the user.

2.6.8 Identity Protection

Our protocol provides identity protection. This is achieved by sending h(x ⨁ ID

⨁ PUsi) instead of only real identity(ID). Also, the pseudo identifications h(x ⨁ ID

⨁ PUsi) of the same user for different servers are different from each other. In each

session h(x ⨁ ID ⨁ PUsi) is sent to the server Si with two random values(N1, PUu)

and in an encrypted form E(PUsi , (N1, h(x ⨁ ID ⨁ PUsi), PUu)). Thus, an attacker

can not associate the different sessions belonging to the same user.

31

2.6.9 Mutual Authentication

In mutual authentication, both the user confirms the identity of the server and the

server confirms the identity of the user. This is achieved with encryption, nonce

values(N1,N2) and verification information h(h(x ⨁ ai ⨁ (ci || PUsi))) in our

approach. User confirms the identity of the server with N1, and server confirms the

identity of the user with N2 and the verification information h(h(x ⨁ ai ⨁ (ci ||

PUsi))). Since the user encrypts N1 with the public key of the server Si, only server

Si can decrypt and send back N1 to the user. The value of h(x ⨁ ai ⨁ (ci || PUsi)) can

be computed only by the user. Because only user knows the value of x and ai.

The following algorithms are used in our experimentations:

The Euclidean Algorithm: This algorithm is a recursive function which is used

to determine the greatest common divisor of two integers. Suppose we have

integers a and b, then the greatest common divisor of a and b is the biggest integer

which divides both a and b. The greatest common divisor of two relatively prime

integers is 1. In our application randomly generated integers are firstly tested with

the miller-rabin algorithm. Secondly, they are tested in pairs with this algorithm to

make certain the relatively primality of the integers in pairs. Because the miller-

rabin algorithm is not a deterministic algorithm. If the returned value is 1 from this

algorithm for all the integers in pairs, then this shows that these integers can be

used in our method which is based on the Chinese Remainder Theorem.

The Miller-Rabin Algorithm: In our implementation it is necessary to select

several very large prime numbers randomly. This algorithm is used to control a

large number for primality. If the algorithm returns composite for an integer, then

this integer is not prime with one hundred percent certainty. However, if the

algorithm returns inconclusive, then this integer may be prime or not. Namely,

there is no one hundred percent certainty about the integer’s being prime.

32

The Extended Euclidean Algorithm: The Extended Euclidean algorithm is an

extension of the Euclidean algorithm. Let a and b be integers, this algorithm finds

integers x and y such that x is the multiplicative inverse of a modulo b, and y is the

multiplicative inverse of b modulo a. As seen from the equation 8, it is necessary

for our method to obtain the multiplicative inverse of Mi modulo pi. For this

purpose the Extended Euclidean Algorithm is used in our implementation.

33

3 CHAPTER THREE

IMPLEMENTATION

In the scope of this study, three programs were developed. These are Backward

Direction method, Forward Direction method and the server application. These

programs were developed by using Visual Studio .NET technology and Visual C#

programming language.

3.1 Forward Direction Method

The implementation of Forward Direction Method can be seen on Figure 3.1. The

richtextbox that user can enter the unique password, the textbox that is used to

specify the number of passwords which will be generated by the program and the

Calculate button which triggers the system are situated under the Inputs groupbox.

The richtextboxes which show integer equivalent of the unique password and the

pairs of generated passwords and primes are situated under the Results groupbox.

Figure 3.1 Forward direction method page.

34

If user clicks on the Calculate button after he enters the unique password and the

number of passwords which will be generated, the program executes predefined

methods and shows the generated passwords and primes on the screen. But if user

makes a mistake, the program warns the user with an exclamation mark on the screen

and do not execute the methods. The screenshot which includes warning can be seen

on Figure 3.2. The mistakes are followings:

• Entering a unique password which includes Turkish characters

• Entering a unique password which is shorter than 30 characters

• Clicking on the button when there are empty fields

As seen from the Figure 3.1, the generated passwords consist of only keyboard

characters for practical reasons. Because users generally do not prefer to use the

characters which are not situated on keyboard. This situation is provided with a

function which controls the generated passwords.

 Figure 3.2 Forward direction method error page.

According to the ascii table on Figure 3.3, if the corresponding decimal values of

all the characters which constitute a password is in [33..125], this string is accepted

35

as a password. Also a password should contain minimum one lower character, one

upper character, one digit and one punctuation mark.

Figure 3.3 Ascii table.

3.2 Backward Direction Method

The implementation of Backward Direction Method can be seen on Figure 3.4. In

the Generate X tab of the Backward Direction Method implementation, user firstly

specifies the number of servers. After entering the number of server, equal number of

textboxes for the names of the servers and the equal number of textboxes for

passwords become visible on the page. Then user fills the textboxes. Finally, when

user clicks on the Generate button, program executes pre-defined methods, writes the

names of the server to a file and prints out X value(integer), X value(string), and

primes in the richtextboxes. Furthermore numeric values of individual passwords, Mi

values, inverse of Mi values and M value are printed out in the richtextbox which is

situated at the bottom of the Results groupbox. Note that the generated unique

password namely X value is not a memorable password. Another issue is that

although there are three passwords, the system produces equal number of random

36

passwords and primes and calculates X value according to the total six passwords

and primes.

 Figure 3.4 Backward direction method page(Generate X).

When user clicks on the Generate button without filling the required fields, the

program shows an error message and warns the user. An example of this situation

can be seen on Figure 3.5.

37

Figure 3.5 Backward direction method error page.

On Figure 3.6 the authentication tab of the Backward Direction Method is seen.

At the first click of the Authentication tab, the program reads the names of the

servers from the file, adds them to the CheckedListBox and shows it on the page.

This Authentication tab is used to simulate the authentication process. Since we

perform this simulation on the same computer, user can authenticate himself to only

one server.

When user intends to authenticate himself to a server, firstly he should enter his

user-id and unique password, then he should tick off the name of the server which he

wants to authenticate and finally he should click on the Authenticate button. After

user clicks on the Authenticate button, the program starts interaction with the server

application and performs sending and receiving messages in accordance with

authentication protocol. The authentication protocol is as follows:

1. User sends his user-id to the server.

2. Server sends the prime number which corresponds to received user-id to the

user.

38

3. User calculates (X % prime number) and send the result(password) to the

server.

4. Server checks the password. If password is valid server authenticates the user.

Otherwise, server rejects the request.

Figure 3.6 Backward direction method page(Authentication).

The last tab of the Backward Direction Method is Find X tab. This page is seen on

figure 3.7. In the Find X tab of the Backward Direction Method, user firstly specifies

the number of servers. After entering the number of server, equal number of

textboxes for the passwords and the equal number of textboxes for prime numbers

become visible on the page. Then user fills the textboxes. Finally, when user clicks

on the Find X button, program executes pre-defined methods, finds the unique

password, and prints out X value(integer) and X value(string) in the richtextboxes.

39

Figure 3.7 Backward direction method page(Find X).

3.3 Server Application

The server application can be seen on Figure 3.8. Server application is used to

perform the process of the simulation of authentication. As mentioned before, server

application interacts with the Backward Direction Method. When we execute server

application, it starts listening to the coming requests. If an authentication request

comes, program finds the prime number which corresponds to the received user-id

from a text file and sends it to the user. After sending the prime number, if user sends

the correct password server authenticates the user. To test the program locally, the ip

address is set to “127.0.0.1” and port no is set to 20000. If any authentication request

is accepted, the program specifies the acceptance with a message.

To stop the listening and to close the application, user should click on the Close

button.

40

Figure 3.8 Server application page.

41

4 CHAPTER FOUR

CONCLUSION & FUTURE WORK

In the scope of this thesis, firstly the problem of managing and securing the lots of

passwords created for different servers has been addressed. To solve this problem,

Chinese Remainder Theorem is used in two different ways. In Backward Direction

Method, we have seen that the generated password X, namely the unique password

which a user should remember is not a memorable password. Then, we have

developed the Forward Direction Method.

In Forward Direction Method, firstly the unique password is defined by the user.

Then individual passwords are computed according to the X and the randomly

generated prime numbers. The generated individual passwords are minimum 13

characters and consist of letters, digits, punctuation marks and mathematical

operators. The experimental results where the length of the symbol space is set to

127, the length of the unique password is set to 30 and the length of the individual

passwords is set to 13 can be seen on table 4.1. The important part of the table 4.1 is

the difference between the minimum password and the maximum password. This

difference shows us that 1632546855139074680584596572 different passwords

which consist of 13 characters can be generated.

Based on the Forward Direction Method, the simple authentication protocol is

created firstly. But, this simple protocol includes some security vulnerabilities. An

attacker can gather information about the value of X from the vulnerabilities of the

simple authentication protocol. Thus, we realized that this simple authentication

protocol can not be used.

We have developed a secure and efficient authentication protocol which

eliminates the security vulnerabilities of the simple protocol and which is resistant to

all of the known attacks. According to our authentication protocol, a user can

communicate securely with a server over a secure band. The other advantages of

42

 our protocol are a user never reveals his unique password(X), his user-id(ID),

individual passwords(ai) and prime numbers(pi). So, we have achieved managing

many passwords via a unique password. Also we have achieved authentication with

multiple servers via same password and same user-id in a secure manner.

Our multiple authentication protocol is efficient. Because if we count only the

number of high cost operations(encryption, decryption, hashing), server-side

performs 4 operations in the login phase of the authentication protocol. Similarly,

user-side performs 9 high cost operations in the login phase. The number of

operations in the registration phase is not important. Because this phase is performed

only one time.

Our future research intends to test our Enhanced Password Reduction multiple

authentication method. This requires developing a stand-alone authentication module

based on Enhanced Password Reduction method and a set of live services which can

interact with the authentication module as described in this thesis. Although we

developed a simulation system to see the effectiveness of our method, we hope to be

able to test the method more thoroughly in a real environment.

43

Table 4.1 Experimental results

The Length of Symbol

Space(s)
127

The Length of Unique

Password
30

The Length of

Individual Passwords
13

Minimum Password “‼‼‼‼‼

‼!”

Integer Equivalent of

Minimum Password
585587458908581135427083553

Maximum Password “}}}}}}

}}}}}}}

”

Integer Equivalent of

Maximum Password
2218134314047655816011680125

The Difference

between Maximum

and Minimum

Passwords

1632546855139074680584596572

Minimum Unique

Password
“

“

Integer Equivalent of

Minimum Unique

Password

33028668176872907320424232594608539172

0468611839828611375886336

Maximum Unique

Password

“}}}}}}

}}}}}}}

}}}}}}}

}}}}}}}

}}}”

Integer Equivalent of

Maximum Unique

Password
12901823506590979422040715857268960614

08080514999330513187056000

The Difference

between Maximum

and Minimum Unique

Passwords

959895668890368868999829259780810669687611903159501901811169664

Minimum Unique

Password / Maximum

Password

148902922459200089236762609425574166

Maximum Unique

Password / Minimum

Password

2203227427485796774928424026775185939

44

REFERENCES

Ascii Table. (n.d.). Retrieved March 23, 2012, from

http://en.wikipedia.org/wiki/File:ASCII-Table-wide.svg

Asmuth, C. A., & Bloom, J. (1983). A modular approach to key safeguarding. IEEE

Transactions on Information Theory, 29(2), 208-210.

Assertions and Protocols for the OASIS Security Assertion Markup Language

(SAML) V2.0. (n.d.). Retrieved March 15, 2005, from http://docs.oasis-

open.org/security/saml/v2.0/

Bellare, M., & Rogaway, P. (1994). Entity Authentication and Key Distribution.

CRYPTO '93 Springer-Verlag, Berlin, LNCS 773, 232-249.

Bellovin, S., & Merritt, M. (1992). Encrypted Key Exchange: Password- Based

Protocols Secure Against Dictionary Attacks. In: Proc. IEEE Symposium on

Research in Security and Privacy, 72-84.

Bellovin, S., & Merritt, M. (1993). Augmented Encrypted Key Exchange: A

Password-Based Protocol Secure Against Dictionary Attacks and Password File

Compromise. In: Proc. ACM. Computer and Communication Security, 244-250.

Blakley, G. R. (1979). Safeguarding cryptographic keys. Proceedings of the National

Computer Conference. AFIPS Conf. Proc., 48, 313-317.

Chien, H. Y., Jan, J. K., & Tseng, Y. H. (2002). An efficient and practical solution to

remote authentication: smart card. Computers and Security, 21(4), 372–375.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to

Algorithms, Second Edition. MIT Press and McGraw-Hill, Section 31.5: The

Chinese remainder theorem, 873–876.

Ding, C., Pei, D., & Salomaa, A. (1996). Chinese Remainder Theorem: Applications

in Computing, Coding, Cryptography. World Scientific Publishing, 1-224.

45

Gong, L., Lomas, M., Needham, R., & Saltzer, J. (1993). Protecting Poorly Chosen

Secrets from Guessing Attacks. IEEE Journal on Selected Areas in

Communications, 11(5), 648-656.

Herley, C., & Van Oorschot, P.C. (2012). A Research Agenda Acknowledging the

Persistence of Passwords. IEEE Security and Privacy Magazine, 10(1), 28-36.

Hungerford, T. W. (1974). Algebra. Springer-Verlag, 131-132.

Hwang, M. S., & Li, L. H. (2000). A new remote user authentication scheme using

smart cards. IEEE Transactions on Consumer Electronics, 46(1), 28-30.

Iftene, S. (2007). General Secret Sharing Based on the Chinese Remainder Theorem

with Applications in E-Voting. Electronic Notes in Theoretical Computer Science

(ENTCS), 186, 67–84.

Juang, W. S. (2004). Efficient password authenticated key agreement using smart

cards. Computers and Security, 23(2), 167-173.

Knuth, D. (1997). The Art of Computer Programming, Volume 2: Seminumerical

Algorithms, Third Edition. Addison-Wesley, Section 4.3.2, 286-291.

Koblitz, N. (1994). A Course in Number Theory and Cryptography, Springer, 21.

Kohl, J. T., Neuman, B. C., & Tso, T. Y. (1994). The evolution of the Kerberos

authentication system, Distributed Open Systems. IEEE Computer Society Press,

78-94.

Mignotte, M. (1983). How to share a secret. Lecture Notes in Computer Science,

Springer-Verlag, 149, 371-375.

Miller, S. P., Neuman, B. C., Schiller, J. I., & Saltzer, J. H. (1987). Section E.2.1:

Kerberos Authentication and Authorization System. M.I.T. Project Athena,

Cambridge, Massachusetts.

Needham, R. M., & Schroeder, M. D. (1978). Using encryption for authentication in

large networks of computers. Comm. ACM, 2, 993-999.

46

Rosser, B. (1941). Explicit bounds for some functions of prime numbers. Amer. J.

Math, 63, 211-232.

Saravanakumar, E., & Mohan, A. (2008). Single password multiple accounts.

Proceedings of the 2008 International Conference on Computing, Communication

and Networking (ICCCN), 1-7.

Sevinç, S., & Çakırgöz, O. (2012). Enhancing Password Security and Usability via

Password Reduction Method. (obtained through personal communication).

Shamir, A. (1979). How to share a secret. Communications of the ACM, 22, 612-

613.

Shieh, W., & Wang, J. (2006). Efficient remote mutual authentication and key

agreement. Computers & Security, 25(1), 72-77.

Snelick, R., Uludag, U., Mink, A., Indovina, M., & Jain, A. (2005). Large-Scale

Evaluation of Multimodal Biometric Authentication using state-of-the-art

Systems. Pattern Analysis and Machine Intelligence, IEEE Transactions, 27, 450-

455.

Stallings, W. (2003). Cryptography and network security – principles and practices.

3rd ed. Prentice Hall.

Steiner, J. G., Neuman B. C., & Schiller, J. I. (1988). Kerberos: An authentication

service for open network systems, Proc. Winter Usenix Conference, 191-201.

Tsuji, T. & Shimizu, A. (2004). One-Time Password Authentication Protocol against

Theft Attacks. IEICE TRANSACTIONS on Communications, 87(3), 523-529.

Wu, T. (1998). The Secure Remote Password Protocol. Proceedings of the Internet

Society Symposium on Network and Distributed System Security, 97-111.

Yang, W. H., & Shieh, S. P. (1999). Password authentication schemes with smart

card. Computers and Security, 18(8), 727-733.

47

5 APPENDIX

The Pseudo-Codes of Implementation

The following algorithm converts an integer to its equivalent string. Since

remembering strings more easy than integers, we convert integers to strings.

String Convert_Integer_to_String(Biginteger b)

1 x = 325

2 index = 0

3 value = 1

4 for i = 120 downto 0

5 value = b / Exponentiation(x,i)

6 if value = = 0

7 continue

8 else

9 index = i

10 break

11 Let data[0..index] be a new char array

12 k = 0

13 for j = index downto 0

14 value = b / Exponentiation(x,i)

15 b = b – (value * Exponentiation(x,i))

16 data[k] = (char) value

17 k++

18 return data

The following algorithm returns the primality of a given integer. To generate

individual passwords, we modulo unique password by primes. In our study, we use

the following algorithm to test randomly generated integers being prime.

String miller_rabin(Biginteger n)

1 if n < 2

48

2 return “composite”

3 if n != 2 and (n % 2) = = 0

4 return “composite”

5 if n != 5 and (n % 5) = = 0

6 return “composite”

7 Find integers k, q with k > 0 , q odd, so that (n – 1) = 2k * q

8 Let a[0..9] be an array which includes values 2,3,5,7,11,13,17,31,61,73

9 for i = 0 to 9

10 if Power_and_Mod(a[i],q,n) = = 1

11 return “inconclusive”

12 for j = 0 to k-1

13 if Power_and_Mod(a[i] , Exponentiation(2, j)*q , n) = = n – 1

14 return “inconclusive”

15 return “composite”

The following algorithm calculates the value of r in equation (6).

Biginteger Find_M_Value(Biginteger[] primes)

1 M_value = 1

2 for i = 0 to primes.Length-1

3 M_value = M_value * primes[i]

4 return M_value

The following algorithm is used to compute the value of Mi in equation (7).

Biginteger[] Find_Mi_Values(Biginteger[] primes)

1 Let Mi_values[0..primes.Length-1] be a new Biginteger array

2 for i = 0 to primes.Length-1

3 Mi_values[i] = 1

4 for j = 0 to primes.Length-1

49

5 for k = 0 to primes.Length-1

6 if (j = = k)

7 continue

8 Mi_values[j] = Mi_values[j] * primes[k]

9 return Mi_values

The following algorithm converts a string to its equivalent integer. This algorithm is

used in our study to make mathematical operations possible for passwords.

Biginteger Convert_String_to_Integer(String s)

1 x = 127

2 Integer_value = 0

3 for i = 0 to s.Length-1

4 Integer_value = (x * Integer_value) + s[i]

5 return Integer_value

The following algorithm performs the operation of xn. Exponentiation is necessary

for the algorithms Power_and_Mod() and miller_rabin().

Biginteger Exponentiation(Biginteger x, Biginteger n)

1 if n = = 0

2 return 1

3 if n = = 1

4 return x

5 if (n % 2) = = 0

6 return Exponentiation(x*x , n/2)

7 else

8 return Exponentiation(x*x , n/2)*x

50

Let a, n and m be positive integers. Then, the following algorithm computes an mod

m. This algorithm is used in miller_rabin algorithm.

Biginteger Power_and_Mod(Biginteger number, Biginteger Power, Biginteger

mod_num)

1 Let A[0..49] and mod[0..49] be new arrays

2 Let M[0..14] be an array which includes values from 20 to 214

3 j = 0, global_index = 0, result = 1, abc = 0

4 for i = 0 to M.Length-1

5 if M[i] < Power

6 continue

7 elseif M[i] > Power

8 Power = Power – M[i-1]

9 A[j] = M[i-1]

10 j = j + 1

11 abc = j

12 i = -1

13 if (Power = = 0) break

14 else

15 A[j] = M[i]

16 break

17 for index = 0 to M.Length-1

18 if M[index] = = A[0]

19 global_index = index

20 break

21 for k = 0 to global_index

22 if k = = 0

23 mod[k] = number % mod_num

24 else

25 mod[k] = Exponentiation(mod[k-1], 2) % mod_num

26 for index2 = 0 to M.Length-1

27 if M[index2] = = A[abc]

51

28 result = result * mod[index2]

29 result = result % mod_num

30 abc = abc – 1

31 if abc = = -1

32 break

33 return result

The following algorithm checks not only the strength of the password but also its

writability via standart characters which resides on keyboard.

Bool Control_password(string data)

1 punctuation = 0, upper = 0, lower = 0, digit = 0

2 for i = 0 to data.Length-1

3 a = data[i]

4 if (a > = 65 && a < = 90)

5 upper = upper + 1

6 if (a > = 97 && a < = 122)

7 lower = lower +1

8 if (a > = 48 && a < = 57)

9 digit = digit +1

10 if ((a > = 33 && a < = 47) || (a > = 58 && a < = 64))

11 punctuation = punctuation + 1

12 if ((a > = 91 && a < = 96) || (a > = 123 && a < = 125))

13 punctuation = punctuation + 1

14 if (punctuation = = 0 || upper = = 0 || lower = = 0 || digit = = 0)

15 return false

16 for i = 0 to data.Length-1

17 if (data[i] < 33 || data[i] > 125)

18 return false

19 if (data.Length < 13)

20 return false

52

21 return true

The following algorithm controls both the strength(length) of the unique password

and the characters that make up the password. The unique password can only be

formed by English letters, digits, punctuation marks and mathematical operators.

Also the minimum length of the unique password should be 30 characters.

Int Control_X_value(string data)

1 for i = 0 to data.Length-1

2 if (data[i] < 32 || data[i] > 125)

3 return 0

4 if (data.Length < 30)

5 return 1

6 return 2

The following algorithm checks whether the number is in the array primes[] or not. If

the number is in the array primes[], algorithm returns true, otherwise it returns false.

In our implementation, to generate the specified number of different primes, we

control the current prime whether it has been added to the array or not.

Bool Control_prime(Biginteger[] primes, Biginteger number)

1 for i = 0 to primes.Length-1

2 if (primes[i] = = number)

3 return false

4 return true

The following algorithm is a recursive function which is used to determine the

greatest common divisor of two integers. In our application, randomly generated

53

integers are firstly tested with the miller-rabin algorithm. Secondly, they are tested

in pairs with this algorithm to make certain the relatively primality of the integers in

pairs.

Biginteger Euclid_alg(Biginteger a, Biginteger b)

1 if (b = = 0)

2 return a

3 else

4 return Euclid_alg(b, a % b)

The following algorithm returns an array which contains the specified number of

randomly generated primes.

Biginteger[] Find_primes_for_passwords(Biginteger key_number)

1 flag2 = true, k = 0

2 Let prime_numbers[0. .key_number – 1] be a Biginteger array

3 while(flag2)

4 k = 0

5 for i = 0 to key_number – 1

6 while(true)

7 Randomly generate a Biginteger number and call it

prime

8 prime_numbers[i] = prime

9 if (miller_rabin(prime_numbers[i]) = = “inconclusive”)

10 break

11 for i = 0 to key_number – 2

12 for j = i + 1 to key_number – 1

13 b1 = Euclid_alg(prime_numbers[i], prime_numbers[j])

14 if (b1 ! = 1)

15 k = 1

16 if (k = = 0)

54

17 flag2 = false

18 return prime_numbers

The following algorithm returns an array which contains the specified number of

randomly generated primes such that each prime is bigger than the corresponding

integer of the array p at the same index.

Biginteger[] Find_primes_for_passwords(Biginteger[] p , int key_number)

1 flag2 = true, k = 0

2 Let num[0. .key_number – 1] be a new Biginteger array

3 while(flag2)

4 k = 0

5 for i = 0 to key_number – 1

6 while(true)

7 Randomly generate a Biginteger number and call it

number

8 num[i] = number

9 if (miller_rabin(num[i]) = = “inconclusive”&& num[i]>

p[i])

10 break

11 for i = 0 to key_number – 2

12 for j = i + 1 to key_number – 1

13 b1 = Euclid_alg(num[i], num[j])

14 if (b1 ! = 1)

15 k = 1

16 if (k = = 0)

17 flag2 = false

18 return num

55

The following algorithm returns an array which includes the results of (X mod

primes[i]) for 0 ≤ i ≤ primes.Length -1, namely numerical equivalents of individual

passwords.

Biginteger[]Return_xi_from_X(Biginteger X, Biginteger[] primes)

1 Let result[0..primes.Length-1] be a new Biginteger array

2 for i = 0 to primes.Length -1

3 result[i] = X % primes[i]

4 return result

The following algorithm computes the numerical equivalent of the unique password,

namely X, when we have individual passwords and the primes.

Biginteger Return_X(Biginteger[] prehash, Biginteger[] Mi, Biginteger[] I_of_Mi,

Biginteger[] primes, Biginteger M)

1 result = 0

2 for i = 0 to prehash.Length – 1

3 result = result + (prehash[i] * Mi[i] * (I_of_Mi[i] % primes[i]))

4 result = result % M

5 return result

The following algorithm tests the array primes[] if it includes the specified number of

different primes.

Bool Control_primes_for_diversity(Biginteger[] primes, int number)

1 count = primes.Length

2 for i = 0 to primes.Length – 2

3 for j = i + 1 to primes.Length – 1

4 if (primes[i] ! = 0 && primes[i] = = primes[j])

5 primes[j] = 0

56

6 count = count -1

7 if (count > = number)

8 return true

9 return false

The following class is used for storing the values of the quotient and the remainder

after division operation.

Class ReturnTwoValues

{

 Biginteger q // quotient

 Biginteger r // remainder

}

Let a and b be integers, then the following algorithm finds integers x and y such that

x is the multiplicative inverse of a modulo b, and y is the multiplicative inverse of b

modulo a.

ReturnTwoValues Find_Inverse(Biginteger a, Biginteger b)

1 Let rt, retv, result be ReturnTwoValues objects

2 if b = = 0

3 rt = new ReturnTwoValues(1, 0)

4 return rt

5 else

6 rt = Divide(a, b)

7 retv = Find_Inverse(b, rt.r)

8 result = new ReturnTwoValues(retv.r , retv.q – rt.q * retv.r)

9 return result

57

The following algorithm returns a ReturnTwoValues object when integers x and y

are given. The object includes the quotient and the remainder of the operation x/y.

ReturnTwoValues Divide(Biginteger x, Biginteger y)

1 quotient = x / y

2 remainder = x – (quotient * y)

3 rt = new ReturnTwoValues(quotient, remainder)

4 return rt

In our implementation, it is necessary for our method to obtain the multiplicative

inverse of (Mi modulo pi) for 0 ≤ i ≤ M i.Length-1. For this purpose, the following

algorithm is used.

Biginteger[] Return_inverse_of_Mi(Biginteger[] Mi , Biginteger[] mi)

1 Let result[0..Mi.Length-1] be a new Biginteger array

2 Let rt1 be a ReturnTwoValues object

3 for i = 0 to Mi.Length-1

4 rt1 = Find_Inverse(Mi[i] , mi[i])

5 result[i] = rt1.r

6 return result

The following algorithm generates individual passwords and primes in accordance

with the Forward Direction method.

Forward_Direction_Method(string password , int num)

1 Xvalue = Convert_String_to_Integer(password)

2 Let primes[0..num-1] be a new Biginteger array

3 flag2 = true, index = 0

4 while(flag2)

5 newprime = Find_primes_for_passwords(5)

58

6 x1 = Convert_Integer_to_String(Xvalue % newprime[0])

7 if (Control_password(x1) && Control_prime(primes , newprime[0]))

8 primes[index] = newprime[0]

9 index = index + 1

10 if (index = = num &&

Control_primes_for_diversity(primes,num))

11 flag2 = false

12 for j = 0 to number – 1

13 passwords[j] = Convert_Integer_to_String(Xvalue % primes[j])

14 Print passwords and primes to the screen

The following algorithm generates primes for the given passwords and computes the

unique password in accordance with the Backward Direction method.

Backward_Direction_Method(string[] passwords)

1 num = passwords.Length

2 Let P_o_s[0..(num*2)-1] be a new Biginteger array

3 for i = 0 to num-1

4 P_o_s[i] = Convert_String_to_Integer(passwords[i])

5 for j = num to (num*2)-1

6 Randomly generate a Biginteger value and call it number

7 P_o_s[j] = number

8 flag1 = true

9 Let primes[0..(num*2)-1] be a new Biginteger array

10 Let Mi_values[0..(num*2)-1] be a new Biginteger array

11 Let I_o_Mi[0..(num*2)-1] be a new Biginteger array

12 Let xi[0..(num*2)-1] be a new Biginteger array

13 X_value = 0

14 M_value = 0

15 while(flag1)

16 primes = Find_primes_for_passwords(P_o_s , num*2)

59

17 Mi_values = Find_Mi_Values(primes)

18 M_value = Find_M_Value(primes)

19 I_o_Mi = Return_inverse_of_Mi(Mi_values, primes)

20 X_value = Return_X(P_o_s, Mi_values, I_o_Mi, primes, M_value)

21 xi = Return_xi_from_X(X_value , primes)

22 if (P_o_s[0] = = xi[0])

23 flag1 = false

24 X = Convert_Integer_to_String(X_value)

25 Print X, passwords and primes to the screen

	1 CHAPTER ONE INTRODUCTION
	1.1 Recent Studies
	1.1.1 Authentication using Smart Cards
	1.1.2 Secret Sharing and Asmuth-Bloom’s Scheme
	1.1.3 Password-Authenticated Key Exchange Protocols(PAKE)
	1.1.4 Federated Identity Management and SAML
	1.1.5 Kerberos
	1.1.6 Saravanakumar and Mohan’s Single Password Protocol
	1.1.7 Sevinç and Çakırgöz’s Password Reduction Method

	2 CHAPTER TWO
	Passwords and Integers
	2.2 Formulation of the Problem
	2.3 Chinese Remainder Theorem
	2.4 Backward Direction Method
	2.5 Forward Direction Method
	2.6 Security Analysis of Our Protocol
	2.6.1 Message Replay Attack
	2.6.2 Malicious Server Attack
	2.6.3 Password Files Compromise Attack
	2.6.4 Message Log Compromise Attack
	2.6.5 Offline Dictionary Attack
	2.6.6 Online Dictionary Attack
	2.6.7 Man-In-The-Middle Attack
	2.6.8 Identity Protection
	2.6.9 Mutual Authentication

	3 CHAPTER THREE
	Forward Direction Method
	3.2 Backward Direction Method
	3.3 Server Application

	4 CHAPTER FOUR
	REFERENCES
	5 APPENDIX

