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JACKKNIFE-AFTER-BOOTSTRAP METHOD FOR DETECTION OF 

OUTLIERS AND INFLUENTIAL OBSERVATIONS IN LINEAR 

REGRESSION MODELS 

 

ABSTRACT 

 

In this thesis, the jackknife-after-bootstrap method which was proposed by 

Bradley Efron (1992) for estimating the standard errors and bias of a statistic, and 

proposed by Martin and Roberts in the context of influence diagnostics have been 

investigated. In addition, this method has been extended for several influence 

measures such as t-star, Likelihood Distance, Welsch' Distance and Modified Cook's 

Distance statistics. The therminology and algorithm of the method have been studied 

in detail. Performance of the proposed method has been evaluated with both real 

world examples and designed simulation studies. The results have been compared 

with the traditional version of the influence statistics. The simulations have been run 

by R 2.14.0. The sufficient bootstrap method proposed by Sing and Sedory (2011) 

has been combined with jackknife-after-bootstrap algorithm. We call this method as 

"sufficient jackknife-after-bootstrap" method. The same simulation studies and real-

world examples have been carried out for this method, and the results were compared 

with conventional jackknife-after-bootstrap results. 

 

Keywords: regression diagnostics, bootstrap, sufficient bootstrap, jackknife, 

influential observation. 
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DOĞRUSAL REGRESON MODELLERİNDE UÇ DEĞERLERİN VE ETKİN 

GÖZLEMLERİN BELİRLENMESİNDE BOOTSTRAPTEN-SONRA-

JACKKNİFE YÖNTEMİ 

 

ÖZ 

 

Bu tezde, Bradley Efron (1992) tarafından istatistiğin standart hatasını ve 

yanlılığını tahmin etmek için önerilen ve ayrıca Martin ve Roberts (2006) tarafından 

etkin gözlemleri belirlemek için geliĢtirilen jackknife-after-bootstrap metodu 

incelenmiĢtir. Ek olarak, bu metot t-star, Likelihood Distance, Welsch's Distance ve 

Modified Cook's Distance gibi çeĢitli etkinlik ölçümleri için geniĢletilmiĢtir. Bu 

metodun terminolojisi ve algoritması detaylı bir Ģekilde incelenmiĢtir. Önerilen 

metodun performansı gerçek dünya verileri ve simülasyon çalıĢmaları ile 

değerlendirilmiĢtir. Simülasyonlar R 2.14.0 programı kullanılarak çalıĢtırılmıĢtır. 

Sing ve Sedory (2011) tarafından önerilen sufficient bootstrap metodu jackknife-

after-bootstrap algoritması ile birleĢtirilmiĢtir. Biz bu metodu sufficient jackknife-

after-bootstrap metodu olarak adlandırıyoruz. Aynı simülasyon çalıĢmaları ve gerçek 

dünya örnekleri bu metot için çalıĢtırılmıĢ ve sonuçları jackknife-after-bootstrap 

metodunun sonuçları ile karĢılaĢtırılmıĢtır. 

 

Anahtar sözcükler: regresyon tanı teĢhisleri, bootstrap, yeterli bootstrap, jackknife, 

etkin gözlem. 
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CHAPTER ONE 

INTRODUCTION 

 

Detection and evaluation of influential observation/s is a critical part of data 

analysis in linear models. Since the computers were not as common or fast as they 

are now, and since the most of the calculations had to be performed by hand, it was 

very hard to make detailed examination of influential observations in the past. With 

the increased usage of computers, detecting influential observations has become an 

obligatory part of data analysis. The first studies were conducted by Cook (1977, 

1979). Afterwards, they have been followed by Andrews and Pregibon (1978), Cook 

and Weisberg (1982), Belsley et al. (1980), Cook and Weisberg (1980), Welsch and 

Kuh (1977) and Welsh and Peters (1978). Most of the statistics developed by these 

authors, such as Cook’s Distance, DFFITS, DFBETAS, Andrew-Pregibon statistic, 

Likelihood Distance, Covariance Ratio, Cook-Weisberg Statistic, Welsch’s Distance 

and Modified Cook’s Distance, today have become an indispensable part of many 

statistical packages. Chattarjee and Hadi (1986) and Cook (1979) provide an 

excellent overview of research into regression diagnostics. The general idea of the all 

proposed measures is deleting the cases from the data one data point at a time. Then, 

the influence of each individual case is measured by comparing the full data analysis 

to the analysis with a case removed. Cases whose removal cause major changes in 

the analysis are called “influential”. Cut-off points are used to determine whether 

these changes are major or not. 

 

Traditional methods have generally been used for identification and evaluation of 

influential observations and outliers. With the increased usage of computers, some 

methods which are better than traditional methods in general or in some situations 

were developed. One of the most important method among these is jackknife-after-

bootstrap (JaB) method. 

 

While the traditional usage of regression influence diagnostics is straightforward, 

the cut-offs suggested remain somewhat ad hoc (Martin and Roberts, 2010). 

Traditional methods work under the assumption of large sample theory and normal 
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distribution, and therefore they work well when errors have a normal distribution and 

sample size is large enough. In the aforementioned cases, traditional methods work 

well for identification of influential observations. But, in case of non–normal error 

distributions or in case of small sample size, these methods may not be sufficient 

since they always use the same quantity as a cut-off point with the same sample 

sizes, irrespective of what might be known or suspected about the data generating 

process. In addition, the cut-offs calculated on the basis of large sample theory may 

not be accurate for small samples. To overcome these problems, Martin and Roberts 

(2010) proposed a variation of Efron (1979)’s well known bootstrap method. 

 

Bootstrapping is a computer based method for assigning measures of accuracy to 

sample estimates (Efron and Tibshirani, 1993). This method is used to approximate 

the sampling distribution of a statistic. In the bootstrap method, bootstrap resamples 

of the data are obtained by random sampling with replacement from the original data 

set, and these resamples are assumed to be independent and identically distributed. 

Because of the construction method of bootstrap resamples, a point may appear 

multiple times in resamples. For example, the approximate proportion of resamples 

in which any given data point will appear j  times is 1)!( ej , meaning that a 

particular point fails to appear in about   11)1( en n  36.79% of resamples, 

appears only once in about 1e  of resamples, but appears multiple times in the 

remaining  e/21  26.4% of resamples (Martin and Roberts 2010). Thus, if the 

original data set contains influential observations, these observations will potentially 

appear many times in the created sampling distributions and as a result, quantities 

calculated from those samples will not be satisfactory for comparison. In order to 

calculate the appropriate quantities, the cut-offs should be determined from the 

sampling distributions estimated using resamples not containing the point in 

question. Therefore, Martin and Roberts (2010) proposed jackknife-after-bootstrap 

(JaB) technique developed by Efron (1992). With this technique, which is fast and 

convenient for practitioners, the appropriate quantities can be calculated for both any 

individual data point and for all observations. 
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Bootstrap method has several advantages over the traditional methods. First, 

traditional methods are based on the large sample theory, and cut-offs calculated 

from these methods are affected by model size and the sample size. But, bootstrap 

method tries to approximate the sampling distribution and calculates the cut-off 

points, regardless of sample size. Second, while bootstrap allows for asymmetry in 

the sampling distributions of the diagnostic statistics, traditional methods assume that 

the distribution is symmetric. Traditional methods work well when the distribution of 

errors is normal and sample size is large enough, but when the distribution of errors 

is different from the normal distribution such as heavy tailed or skewed, this 

approximation may not be adequate to detect the actual influential observations. 

Since an influential observation arising from a certain underlying distribution does 

not have to be influential with respect to other underlying distributions, or a non-

influential observation arising from a certain underlying distribution may be 

influential with respect to other underlying distributions, the observations detected as 

influential by the traditional methods in the different distribution cases may not be 

reasonable. This has been proven by both the study of Martin and Roberts (2010) and 

Beyaztas and Alin (2012). Of course, the bootstrap method automatically takes into 

account the features of the underlying distribution. In this thesis, several simulation 

studies and real-world examples were performed for Welsch’s Distance, Modified 

Cook’s distance, Likelihood Distance and t-star statistics, under normal, log-normal 

and t-distributions. The results which will be discussed in detail in Chapter 4 reveal 

that traditional methods flagged roughly the same number of influential observations 

in these three error distributions, while JaB method flagged fewer number of 

influential observations in skewed distribution case than normal distribution case. 

This result should not be surprising. A point flagged as influential in normal 

distribution does not have to be influential in skewed distribution, and logically 

fewer influential observations are expected for skewed distribution. Third advantage 

of the bootstrap method is that it combines the model information with the values of 

the diagnostic statistics to approximate the sampling distribution, while the 

traditional methods do not take into account the model information when the cut-offs 

are calculated. 
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Also in this thesis, we studied with sufficient jackknife-after-bootstrap method 

which is simply combination of the sufficient bootstrapping proposed by Sign and 

Sedory (2011) and jackknife-after-bootstrap algorithm. The methodology of the 

sufficient jackknife-after-bootstrap is the same as conventional JaB except the fact 

that only distinct units are used for sufficient version. Using sufficient bootstrapping 

into the jackknife-after-bootstrap algorithm provides important advantages for 

practitioners. This method and its advantages will be discussed in Chapter 3 and 4. 

Chapter 2 describes the influence measures used in the applications of this thesis, the 

methodology of these studies will be discussed in detailed in Chapter 3, and the 

simulation studies, real world examples, their results and discussions about these 

results are given in Chapter 4. 
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CHAPTER TWO 

INFLUENTIAL OBSERVATION 

 

In this chapter, we will investigate the linear regression model, influential 

observation and regression diagnostics used in this thesis which are Welsch's 

Distance, Modified Cook's Distance, Likelihood Distance and t-star statistics.  

 

2.1 Linear Regression Model 

 

The linear regression model used with influence measures throughout this thesis is 

iikkiii xxxy   ...22110 , i = 1,2,…,n (2.1)  

This can be written in matrix form as 

  XY  (2.2) 

where, Y is an 1n column vector for response variable, X  is an pn  ( p=k+1 )  

fixed full-rank design matrix,  is an 1p  vector of unknown parameters including 

0 , and ε  is an 1n  error vector with zero mean and unknown variance 2 . Using 

the method of least squares with the multiple linear regression model (2.1) we have; 

YXXX TT 1)(ˆ   (2.3) 

12 )()ˆ(  XXVar T  (2.4) 

PYXY  ̂ˆ  (2.5) 

TT XXXXP 1)(   (2.6) 

PYVar 2)ˆ(   (2.7) 

YPIYYe )(ˆ   (2.8) 

)()( 2 PIeVar   (2.9)
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pN

eeT


2̂  (2.10) 

These quantities can be influenced by one or a group of observations, but all 

observations do not have same impact over the least square regression outputs. For 

this reason, identification of influential observations is an important part of 

regression analysis, and this process is required to make a good inference. To 

identify influential observations, as mentioned above, several methods have been 

proposed. 

 

Before examining these methods, we want to determine what is meant by 

influence. An influential observation is one which, either individually or together 

with several observations, has a demonstrably larger impact on the calculated values 

of various model features than is the case for other observations (Belsley et al. 1980). 

Existing diagnostic statistics explore the impact of the observations in various way. 

In general, the influence measures can be classified as follows; 

 

 Measures based on the prediction matrix 

 Measures based on the volume of confidence ellipsoids 

 Measures based on influence functions, and 

 Measures based on partial inference. 

 

The rest of this chapter describes the influence measures used in this thesis. For 

more information about these measures and another measures, see Chatterjee and 

Hadi (1986). 

 

2.2 t-star Statistic 

 

Generally, the the least squared residual for the ith observation can be found as; 

̂iii xye   (2.11) 

where ix  is the ith row of X. The standard error for this residual is 
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  (2.12) 

where ip  is the ith diagonal element of P given with (2.6). Two special cases of 

(2.12) are: 

i

i
ei

p

e
t

i




1̂
  (2.13) 

where ̂  is defined in (2.10), and 

ii

i

i
p

e
t




1ˆ
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 (2.14) 

where 

)1(
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ˆ

)()()(2
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pN

YPIY ii
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i  

  
)1)(1()1(
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 (2.15) 

So, equivalently the *

it  statistic can be computed as follows; 

)(

)1(
2

*

i

ii
tpN

pN
tt




  (2.16) 

This measure is based on residuals with and without ith observation, and is 

distributed approximately t-distribution with (N-p-1) degrees of freedom. That is the 

cut-off points for this measure approximately are )1(,2/  pNt . 

 

2.3 The Likelihood Distance 

 

Let )ˆ(L  and )ˆ( )(iL   be the log likelihood functions at ̂  and )(
ˆ

i , respectively. 

A measure of the influence of the ith observation on ̂  can be based on the distance 

between )ˆ(L  and )ˆ( )(iL   (Cahtterjee and Hadi, 1986). The likelihood distance 

defined by Cook and Weisberg (1982) is 

)(
ˆ()ˆ(2 ii LLLD    
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 (2.17) 

This influence measure is based on the change in volume of confidence ellipsoids 

with and without the ith observation. The likelihood distance is related to the 

asymptotic confidence region,  2

, 1
ˆ: 2 ( ) ( ) pL L     

  
 

where 2

1, p  is the 

upper   point of the 2  distribution with (p+1) degrees of freedom (Chatterjee and 

Hadi, 1986). Hence, LDi is compared to 2

1p . 

 

2.4 Welsch's Distance 

 

Welsch's Distance is based on the idea of influence function introduced by 

Hampel (1986, 1974) with and without ith observation, 

);;;( TFyxIF iii  

 ,(1 )
lim

i ix yT F T F



 



      (2.18) 

where )(T  is a vector-valued statistic, and is based on a random sample from the 

cumulative distribution function (cdf) of F, 
ii yx ,  is the kronecher delta function 

which takes value of 1 at ii yx ,  and 0 otherwise.  IFi measures the change in T 

caused by adding ii yx ,  to a very large sample. For a finite sample, several 

approximations exist including empirical influence curve, the sample influence curve 

and the sensitivity curve. 

 

Let F̂  be the empirical distribution function based on the full sample, and )(
ˆ

iF  be 

the empirical distribution function when the ith observation is omitted. The empirical 

influence curve (EIC) is 

)ˆ())(1( )(

1

)()( iii

T

ii

T

ii xyxXXNEIC    

2

1

)1(
))(1(

i

iT

i

T

p

e
xXXN


   (2.19) 

where  
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)()(

1

)()()( )(ˆ
i

T

ii

T

ii YXXX   (2.20) 

is the estimate of   when the ith observation is omitted. Eg. (2.19) is obtained by 

replacing iF̂  by F  and )ˆ( iFT . Omitting the limit in (2.18) and taking  FF ˆ , 

,ˆ)ˆ( FT  )1/(1  N gives the following formula for the sample influence 

curve. 

)ˆ())(1( )(

1

iii

T

i

T

i xyxXXNSIC     

)1(
))(1( 1

i

iT

i

T

p

e
xXXN


   (2.21) 

On the other hand, setting )(
ˆ

iFF  , )()(
ˆ)ˆ( iiFT  , and N/1  yields the 

sensitivity curve (SC). 

i

iT

i

T

i
p

e
xXXNSC


 

1
)( 1  (2.22) 

To be able to order the observations in a meaningful way, IFi vector must be 

normalized. The class of norms which are location/scale invariant is given by 

c

IFMIF
cMD i

T

i
i

)()(
);(   (2.23) 

for any appropriate choice of M and c Chatterjee and Hadi (1986). If Di(M;c) is large 

it means that ith observation has strong influence on estimated coefficients relative to 

M and c. Using (2.19) to approximate (2.18) and setting )()( i

T

i XXM   and 

2

)(
ˆ)1( iNc  , (2.23) becomes the Welsch Distance. 

)ˆ)1(;( 2

)()()(

2

ii

T

iii NXXDW   

2

2*

)1(
)1(

i

i

i
p

p
tN


  (2.24) 

Welsch (1982) suggested using iW  as a diagnostic tool and, n > 15, using p3  as a 

cut-off point for Wi. Equivalently 

i

ii
p

N
WKW






1

1
 (2.25) 

where iiii pptWK  1/(*  also known as iDFFITS . 
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2.5 Modified Cook's Distance 

 

The measure is the modified version of the Cook's Distance proposed by Cook 

(1977). 

2

)(

2
* ˆ

)1(
;( i

T

ii
pN

Np
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p

pN
WK
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p

p

pN
t i

i

i
i









1

*  (2.26) 

The cut-off point for this measure is defined as 
n

pN 
2 . A short summary of the 

influence measures used in this thesis is shown in Table 2.1. 
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Table 2.1 Influence measures 

Influence measures Formulas Cut-off points 
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CHAPTER THREE 

METHODOLOGY 

 

This chapter includes the history, methodology and algorithm of the methods used 

in this thesis.  

 

3.1 The Bootstrap 

 

The bootstrap, which was proposed by Bradley Efron (1979, 1981, 1982) and 

further developed by Efron and Tibshirani, is an one of the most important tool of 

modern statistical analysis. It establishes a general framework for simulation based 

statistical inference. There are two types of bootstrap methods: parametric and 

nonparametric. Our interest will be a nonparametric bootstrap. From now, we will 

simply call it as bootstrap. The main goal of bootstrap method is; to estimate the 

standart errors, bias and other measures of a statistic, and approximate the sampling 

distribution by re-sampling with replacement from the original sample. The most 

useful references about theory and applications of bootstrap are Efron and Tibshirani 

(1993), Davison and Hinkley (2005), and Hall (1995). In the bootstrap method, 

bootstrap re-samples of the data are obtained by random sampling with replacement 

from the original data set, and these re-samples are assumed to be independent and 

identically distributed (i.i.d.).   

 

Let Y1,Y2,...,Yn be the i.i.d. random samples from unknown distribution F with 

parameter  . The data Y1,Y2,...,Yn is used to estimate  ; ),...,,(ˆˆ
21 nYYY  . 

Generally, we are interested in the distribution of ̂  in order to provide standard 

errors, to construct confidence intervals, or to perform test of hypothesis. Using 

random samples taken from a population, we estimate the population parameter   

wheres in the bootstrap context, we try to estimate the parameter of the sampling 

distribution. That is, our population is now the original sample, and now we estimate 

the parameter of the sampling distribution ̂ . The general bootstrap idea is given 

step by step as follows; 
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 Let Y1
*
, Y2

*
,..., Yn

*
 be the generated bootstrap re-samples with replacement 

from the original sample Y1,Y2,...,Yn. 

 Let *̂  be the bootstrap estimates of ̂ . 

 The first two steps are repeated for B times, say B = 1000, and B values of 

**

2

*

1
ˆ,...,ˆ,ˆ
B  are obtained. 

The empirical distribution of *̂  is used to approximate the distribution of  ̂ . 

 

3.2 Sufficient Bootstrap 

 

One of the most recent studies related to bootstrap is about sufficient bootstraping 

by Singh and Sedory (2011). The main idea underlying this is to use only distinct 

individual responses to estimate a statistic. Apart from the usage of only distinct 

individual responses, this technique is the same as conventional bootstrap. Singh and 

Sedory (2011) claim that the usage of the sufficient bootstrapping may help to reduce 

the amount of computation, and may results in better inference for certain cases than 

conventional bootstrapping. While the sufficient bootstrap uses only distinct 

observations, conventional bootstrap uses all of the observations in the re-samples. 

For this reason, the size of a sufficient bootstrap re-sample is smaller than the one 

obtained by conventional bootstrap. Every unit in a sample of size n has probability 

nn)/11(1   (3.1) 

to appear in a sufficient bootstrap resamples. So, the expected length of a sufficient 

bootstrap resample can be found as 

nn n  ])/11(1[  (3.2) 

which causes sufficient bootstrap to be more advantageous than conventional 

bootstrap in terms of time and amount of computation. For example, for a sample 

with size 50, while the size of the conventional bootstrap re-samples are constantly 

50, the size of the sufficient bootstrap re-samples are  50])50/11(1[ 50  31.80 in 

average. Therefore, the computing time is less than conventional bootstrap method. 

For more information about sufficient bootstrapping, see Singh and Sedory (2011). 
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3.3 The Jackknife 

 

The jackknife technique is a cross-validation technique. First, Quenouille 

proposed the jackknife to estimate bias (1949), and Tukey named the technique the 

"jackknife" and used it to estimate standard errors (1958). Jackknife creates sample 

data sets from the data leaving out one or more observations at a time, and uses these 

samples to estimate bias and standard errors of a statistic. The jackknife procedure 

can be explained as follows. Let )(
ˆ

i  be computed from the sample with the ith value 

deleted. Then the jackknife estimator calculated as 





n

i

iJ
n 1

)(
ˆ1ˆ   (3.3) 

As mentioned above, the goal of the jackknife is to estimate a parameter of a 

population of interest from a random sample of data. More precisely, Let 

nXXX ,...,, 21  be a data set of size n. Using jackknife we get n set of n-1 data. Let T 

be a function which is used to approximate the distribution of the data set F̂ . Let 

)(
ˆ

iF  be the emprical distribution of the data set where the ith observation deleted. 

That is, )(
ˆ

i  = )ˆ( )(iFT  which is the estimate of )ˆ(FT . The jackknife estimate which 

is the expected value of )ˆ(FT  is 



n

i

iFT
n

T
1

)( )ˆ(
1ˆ . 

 

3.4 Jackknife-after-Bootstrap 

 

Jackknife-after-Bootstrap method was proposed by Bradley Efron (1992) for 

estimating the standard errors and bias of a statistic. This method was proposed by 

Martin and Roberts (2005) in the context of influence diagnostics.  

 

Efron (1992) described the idea behind the JaB method as follows: a sample of 

size n from nii yyyyy ,...,,...,, 1,121   has the same distribution as a bootstrap sample 

from nyyy ,...,, 21  in which none of the bootstrap values equals iy . This method 

requires about e times more re-samples than regular bootstrap. For example, for any 
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data set, if we want to determine whether an individual data point is influential or 

not, and to obtain 1000 re-samples without this individual data point, about 1000e   

3000 re-samples are required. Then, these 1000 re-samples are used to construct the 

sampling distribution, and to determine the influence cut-offs. The algorithm of JaB 

method for detection of influential observations proposed by Martin and Roberts 

(2010) can be described as follows; 

 

 Let i  be the diagnostic statistic that we study. The appropriate model is 

fitted for original data set, and the i  for i= 1, 2, …, n are calculated. 

 Construct B re-samples with replacement from the original data set. 

 For each data point within these B re-samples, get a subset of the samples 

which do not contain that data point, so there are B/e re-samples obtained for 

each data point. Calculate the n values of i , i = 1, 2, …, n, for each of these 

resample, so nB/e values of i  are obtained. Collect all nB/e values of   into 

a single vector. 

 Suitable quantiles (say 2.5% and 97.5%) of this generated bootstrap 

distribution are determined. Percentiles of this distribution are then compared 

to the original i , i = 1, 2, …, n, values to flag the points as influential or not.  

 

The steps 1-4 are repeated M times. Then, the average and standard deviation for 

the number of flagged points for all these M simulations can be calculated. It should 

be noted that this algorithm runs only once for the real data.  

 

As described by Martin and Roberts (2010), the rationale behind this approach is 

to generate a “null” bootstrap distribution of   under the hypothesis that the ith data 

point is not influential. They propose that since the ith data point is not present in any 

of the re-samples from which this bootstrap distribution is generated, it cannot exert 

influence, and thus the distribution generated is free from the influence of this point. 
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3.5 Sufficient Jackknife-after-Bootstrap Method 

 

The idea of sufficient bootstrapping is easily applicable in JaB method, and the all 

mentioned advantages apply to sufficient JaB method. As it is known, compared to 

traditional methods, JaB method requires too much computation. By implementing 

sufficient bootstrapping into the JaB method, similar results can be obtained with less 

calculation and less time, which is important for practitioners. The one of the 

purposes of this thesis is to study this hypothesis. The performance of JaB method 

and Sufficient JaB method as we call it were compared on both real world examples 

and simulated data sets for Welsch’s Distance, Modified Cook’s distance, Likelihood 

Distance and t-star statistics, under normal, log-normal and t-distributions. The 

results which will be discussed in detail in Chapter 4 reveal that the general 

behaviour of JaB does not change by adapting sufficient JaB. In addition, with the 

increase of the sample size the sufficient JaB performance gets better and for some 

cases sufficient JaB results are even better than conventional JaB results. The 

algorithm of the sufficient JaB is same as the conventional JaB. The only difference 

is that sufficient bootstrap is used rather than conventional bootstrap in the JaB 

method. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

 

Two real-world examples and various designed simulation studies have been 

performed for traditional methods, conventional JaB and sufficient JaB methods, and 

the result have been compared. All calculations have been done by R 2.14.0. 

 

4.1 Numerical Results for Conventional JaB 

4.1.1 The life cycle savings data (Belsley et al., 1980, p.41) 

 

The life cycle savings data for 50 countries are explained by per capita disposable 

income, the percentage rate of change in per-capita disposable income, and two 

demographic variables: the percentage of population less than 15 years old and the 

percentage of the population over 75 years old. The data were averaged over the 

decade 1960–1970 to remove the business cycle or other short-term fluctuations. The 

outliers in this example were already determined by traditional methods by Belsley et 

al (1980). For instance, Japan (23), Zambia (46) and Libya (49) flagged as outliers by 

using DFFITS, and Canada (6), Chile (7), South Rhodesia (37), United States (44), 

Zambia (46) and Libya (49) flagged as outliers by using COVRATIO.  We use our 

proposed methods to flag influential observations. Influential observations in this 

data set were flagged by using both JaB and traditional methods, and the results are 

presented in Table 4.1. For this example, 3100 resamples were created from the 

original data set, so that roughly 1000 resamples without that point were produced 

for each data point. 

 

JaB cutoffs are consistent with traditional cutoffs for Modified Cook's Distance 

and t-star statistics, but for Welsch's Distance and Likelihood Distance, JaB cutoffs 

are significantly different from traditional’s for all designs. JaB method flagged same 

points as influential as traditional method for Modified Cook’s Distance and t-star 

statistics. For Welsch’s Distance, JaB flagged Japan (23), Zambia (46) and Libya 

(49) as influential and traditional method flagged Japan (23) and Libya (49) but did 
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not flag point 46. For Likelihood Distance, while JaB flagged Zambia (46) and Libya 

(49) as influential, traditional method did not flag any point as influential. The results 

of the proposed method in this study are consistent with the results in Belsley et al. 

(1980). 

 

4.1.2 The Hertzsprung - Russell diagram of the star cluster data (Rousseauw and 

Leroy, 1987, p.27) 

 

Data for the Hertzsprung - Russell diagram of the star cluster CYG OB1, which 

contains 47 stars in the direction of Cygnus from C. Doom. For this data-set, the 

explanatory variable (x) is the logarithm of the effective temperature at the surface of 

the star, and dependent variable (y) is the logarithm of its light intensity. Influential 

observations in this data set were flagged by using both JaB and traditional methods, 

and the results are presented in Table 4.2. 

 

For Likelihood Distance and t-star statistics JaB results are better than 

traditional's. While traditional Likelihood Distance did not flag any point as 

influential, JaB method flagged point 34. In addition, while for t-star statistic, points 

14, 17 and 34 were flagged as influential by JaB, traditional t-star flagged only points 

14 and 17. For Welsch's and Modified Cook's Distances, it is difficult to discriminate 

the performances of JaB and traditional methods. For both distances, JaB flagged 

points 14 and 34. On the other hand, traditional Welsch's Distance only flagged point 

14, and traditional Modified Cook's Distance flagged points 14, 20, 30 and 34 as 

influential. In this example, the results of JaB and traditional methods differ. These 

differences may be caused due to masking or swamping effects, but for this example, 

we are not interested in such of these situations. Using delete-d jackknife proposed 

by Martin et al. (2010) may be useful to find more reliable results and to eliminate 

the masking and swamping effects. 
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4.2 Numerical Results for Sufficient JaB 

4.2.1 The life cycle savings data (Belsley et al., 1980, p.41) 

 

In this example, sufficient JaB cutoffs are consistent with convential JaB cutoffs 

for  Welsch’s  Distance,  Modified  Cook’s  Distance  and  t-star,  but  for Likelihood 

Distance, sufficient JaB cutoffs are significantly different from conventional JaB’s 

for all designs. Sufficient JaB method flagged same points as influential as 

conventional JaB method for Modified Cook’s Distance and t-star statistics. For 

Welsch’s Distance, conventional JaB flagged Japan (point 23), Zambia (46) and 

Libya (49) as influential, and sufficient JaB flagged Japan (23) and Libya (46) but 

did not flag point 46. For Likelihood Distance, while conventional JaB flagged 

Zambia (46) and Libya (49) as influential, sufficient JaB did not flag any point as 

influential as in the traditional case for Likelihood Distance. Our results reveal that 

the proposed method in this study is consistent with not only conventional JaB but 

also with traditional methods. 

 

4.2.2 The Hertzsprung - Russell diagram of the star cluster data (Rousseauw and 

Leroy, 1987, p.27) 

 

Apart from the Likelihood Distance conventional JaB and sufficient JaB results 

are the same. For Likelihood Distance, while conventional JaB method flagged point 

34, sufficient JaB did not flag any point as influential. Note that, for this data set, it is 

difficult to identify actual influential observations because of the masking or 

swamping effects. Nevertheless, except for the Likelihood Distance, proposed 

method showed the same performance as conventional JaB. 

 

4.3 Simulation Results for Conventional JaB 

 

A simulation study was conducted to assess the performance of JaB and 

traditional methods for detection of influential observations under different sample 

sizes and various modeling scenarios based on the design of Martin and Roberts 
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Table 4.1 Conventional JaB Regression influence diagnostics for life cycle saving data, n=50, p=5 

Method Welsch’s Distance Modified 

Cook’s Distance 
Likelihood Distance t-star 

Traditional      

 Low Cut-off -6.708 -1.897  -2.015 

 High Cut-off 6.708 1.897 11.070 2.015 

 Points below 49 49  7 

 Points above 23 23, 46 None 46 

JaB      

 Low Cut-off -4.468 -1.769  -2.014 

 High Cut-off 5.141 2.059 0.969 2.178 

 Points below 49 49  7 

 Points above 23, 46 23, 46 46, 49 46 

 

Table 4.2 Conventional JaB Regression influence diagnostics for Hertzsprung - Russell diagram of the star cluster  data, n=47, p=2 

Method Welsch’s Distance Modified 

Cook’s Distance 
Likelihood Distance t-star 

Traditional      

 Low Cut-off -4.242 -1.956  -2.015 

 High Cut-off 4.242 1.956 5.991 2.015 

 Points below None 14,   14, 17 

 Points above 30, 34 20, 30, 34 None None 

JaB      

 Low Cut-off -2.391 -1.637  -1.906 

 High Cut-off 5.381 3.387 0.589 1.667 

 Points below 14 14  14, 17 

 Points above 34 34 34 34 
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Table 4.3 Sufficient JaB Regression influence diagnostics for life cycle saving data, n=50, p=5 

Method Welsch’s Distance Modified 

Cook’s Distance 
Likelihood Distance t-star 

Conventional JaB      

 Low Cut-off -4.470 -1.770  -2.013 

 High Cut-off 5.134 2.062 0.971 2.179 

 Points below 49 49  7 

 Points above 23, 46 23, 46 46, 49 46 

Sufficient JaB      

 Low Cut-off -6.152 -1.966  -2.031 

 High Cut-off 5.874 2.184 2.068 2.245 

 Points below 49 49  7 

 Points above 23 23, 46 None 46 

 

Table 4.4 Sufficient JaB Regression influence diagnostics for Hertzsprung - Russell diagram of the star cluster  data, n=47, p=2 

Method Welsch’s Distance Modified 

Cook’s Distance 
Likelihood Distance t-star 

Conventional JaB      

 Low Cut-off -2.391 -1.637  -1.906 

 High Cut-off 5.381 3.387 0.589 1.667 

 Points below 14 14  14, 17 

 Points above 34 34 34 34 

Sufficient JaB      

 Low Cut-off -2.530 -1.695  -1.966 

 High Cut-off 6.902 4.008 1.318 1.727 

 Points below 14 14  14, 17 

 Points above 34 34 None 34 

2
1
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(2010). We considered the cases (n, p) = (20, 2) for small sample, (n, p) = (50, 5) for 

large sample, and three error distributions: normal (N(0, 0.5625)), t(3) (heavy-tailed), 

and centered log-normal (1.5[exp{N(0, 0.5625)}– exp(1/2)]; skewed). The modeling 

scenarios are adapted such that no clear influential data points were deliberately 

generated, and a clearly influential data point was inserted into the data set. The 

regression model Y = 1 + 2X +  was used for small sample and Y = 1 + 2X1 + 4X2 + 

3X3 + 2X4 +   for large sample. For each model X was generated as i.i.d N(2, 1) 

variates, and   was generated with one of three error distributions mentioned above. 

The deliberately inserted influential point was at (x = 5, y = 2) for small sample and 

at (x2 = 10,   y = 10) for large sample. Simulation studies were carried out for four 

diagnostic statistics given in Table 2.1 as in real world examples. For each statistic, 

M = 500 simulations were performed, and for each case, a sample of size n was 

generated, and B = 3100 resamples were generated in each resampling operation, so 

that roughly 1000 resamples without that point were produced for each data point. 

The simulation study results are given with Tables 4.5-4.7. The average number of 

points flagged as influential for each simulation is recorded as “Average no. of 

points”. For deliberately inserted data point, the detection rate for all simulations 

recorded as “Percent of times point identified”. The standard deviations are given in 

brackets below.  

 

In Table 4.5, the “influential point cut-off” values are the cut-off points belonging 

to sampling distributions which do not contain the deliberately inserted influential 

observation, and the “other cut-offs” values are the cut-off points belonging to 

sampling distributions containing the deliberately inserted influential observation. 

For normal errors, while influential point cut-offs are almost symmetric, the other 

cut-offs are not symmetric. The sampling distribution for other cut-offs contains the 

deliberately inserted data point. Hence, the percentiles of this distribution are 

affected by this point and become skewed in its direction. Since the skewness caused 

by the inserted data point is to the left, the other cut-offs become skewed to the left. 

In addition, because the JaB method takes into account the distribution structure, for 

log-normal errors, the cut-offs become asymmetric in the direction of error 

distribution. Since the influential point cut-offs calculated are free from the effect of 

inserted point, these values are affected only by the error distribution. That is, these 
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values become skewed to the right which is the direction of the skewness of the log-

normal distribution. The JaB method combines the skewness of the error distribution 

and skewness of the inserted data point. All of these changes are the result of internal 

scaling automatically performed by bootstrap distribution. The results of Tables 4.6 

and 4.7 reveal that in general, traditional modified Cook’s distance and t-star 

measures do not seem to be heavily affected by the violation of normal error 

distribution. On the other hand, for n = 20 traditional Welch distance and likelihood 

distance detect more points as the distribution gets skewed. It is more obvious for 

likelihood distance. Tendency is same for JaB version of these two measures but 

with less increase. Their performance gets better as sample size increases. For n = 50, 

while traditional Welch distance and likelihood distance get affected by the 

asymmetry, their JaB versions flags less points which is logical since a point 

influential in normal error case may not actually influential in skewed error case. For 

both small and large samples, when no deliberate influential data point is inserted 

into the original data set, the generated JaB cut-offs are nearly symmetric and close 

to traditional cut-offs in normal error case. However, with inserted influential point, 

the generated JaB cut-offs are skewed in the direction of inserted point. But, 

traditional cut-offs remain the same. For the heavy-tailed distribution, the JaB 

distribution of the Modified Cook’s Distance and t-star tend to be heavier tailed than 

the traditional cut-offs. For the skewed error case, skewness of the JaB distribution is 

more clear for n = 20. 

 

 Even if there are no deliberately inserted influential points, some influential 

points may occur randomly. The results in Tables 4.6 and Table 4.7 show that 

traditional Modified Cook’s Distance and t-star measures successfully flag such 

points. The average number of points flagged by these measures is consistent with 

the results of DFBETAS given in Martin and Roberts (2010). Moreover, in general 

the deliberately inserted point did not have significant affect on the percentage of 

points flagged by JaB especially for n = 50, which is not surprising since randomly 

occurring points are likely to be less influential than deliberately inserted point and 

the bootstrap automatically scales the distribution for this.  
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Regardless of the error distributions, our method is promising for Welsch’s 

Distance and Likelihood Distance measures. For n = 20, when there is no 

deliberately inserted influential point, the traditional Welsch’s Distance and 

Likelihood Distance flagged small percentage of data points. However, the other 

traditional measures studied in this paper and the ones given in Martin and Roberts 

(2010) indicate more influential points. JaB method for the same measures give 

results consistent with other traditional measures including the ones in Martin and 

Roberts (2010). For n = 50 with no influential point present, traditional Likelihood 

Distance flagged no points for normal error case while the JaB Likelihood Distance 

flagged some points giving consistent results with other measures. Even if traditional 

Likelihood Distance flags some points for non-normal error cases, the percentage is 

still much less than JaB predicts. When an influential point is inserted into data set 

for n = 50, traditional Likelihood Distance flags only that point. However, even 

though the difference is not so significant, JaB Likelihood Distance flags more 

points, such points occurring at random. Apart from Welsch’s Distance and 

Likelihood Distance, traditional cut-offs are stringent especially for small samples 

and when the assumption for the normal-error distribution is not satisfied. On the 

other hand, with 5.991 traditional cut-off Likelihood Distance is too liberal compared 

to its JaB cut-off 1.560. For each of non-normal error distributions, JaB performed 

generally well by identifying the deliberately inserted influential point and even more 

points especially for Welsch’s Distance for n = 20. 

 

For the real-world, it is hard to find data where the model assumptions are 

satisfied, so using traditional methods for these data may not be satisfactory for 

detecting influential observations. When model assumptions are not satisfied and the 

sample size is small, the results for traditional methods may be misleading and flag 

fewer points than is either desirable or prudent. To overcome this problem, we 

propose to use JaB method for detecting influential points.  The simulation results in 

this study show that JaB is much more effective for Welch distance in terms of 

tendency for non-normal error cases. For likelihood distance, it adjusts the cut-off 

value to a value consistent with other measures. For both of these measures, the 

number of points flagged increase with JaB. 
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Table 4.5 Conventional JaB Low and High average cut-off points for influential point and other points – all simulations. 

Welsch’s Distance t-star Modified Cook’s Distance Likelihood Distance 

 Influential 

point  cut-off 

Other       

cut-offs 

 Influential 

point  cut-off 

Other      

cut-offs 

 Influential 

point  cut-off 

Other      

cut-offs 

 Influential 

point  cut-off 

Other      

cut-offs 

Normal errors, n=20, p=2  

 

        

 -3.385 -8.253  -2.057 -2.561  -2.142 -4.809    

3.423 3.082 2.068 1.920 2.150 1.951 1.589 4.323 

t(3) errors, n=20, p= 2  

 

        

 -3.164 -8.101  -1.927 -2.474  -2.037 -4.680    

3.651 3.063 2.252 2.003 2.269 1.964 1.734 4.385 

Log-normal errors, n=20, p=2  

 

        

 -2.686 -7.216  -1.428 -2.070  -1.685 -4.145    

4.633 3.642 2.961 2.567 2.962 2.373 3.011 5.896 

Normal errors, n=50, p=5  

 

        

 -5.270 -7.011  -2.031 -2.174  -2.108 -2.703    

5.292 4.854 2.007 1.872 2.103 1.944 1.050 1.527 

t(3) errors, n=50, p=5  

 

        

 -5.170 -6.922  -1.959 -2.131  -2.055 -2.649    

5.451 4.927 2.108 1.891 2.172 1.960 1.086 1.531 

Log-normal errors, n=50, p=5          

 -4.069 -6.219  -1.402 -1.869  -1.584 -2.394    

7.013 5.448 2.861 2.155 2.819 2.186 1.691 2.062 
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Table 4.6 Conventional JaB Simulation results, n=20, p=2 for all distribution of errors. 

Distribution of errors                                  Normal                                                                                      t(3)                                                                     Log-normal                                   .  

Method Welsch’s 

Distance 

Modified 

Cook’s 

Distance 

Likelihood 

Distance 

t-star Welsch’s 

Distance 

Modified 

Cook’s 

Distance 

Likelihood 

Distance 

t-star Welsch’s 

Distance 

Modified 

Cook’s 

Distance 

Likelihood 

Distance 

t-star 

Influential point 

not present 

Traditional 

        Low cut-off 

         

       High cut-off 

         

Average no. of 

points (SD) 

            

JaB 

        Low cut-off 

        

       High cut-off 

 

Average no. of 

points (SD) 

 

 

 

-4.242 

 

4.242 

 

0.524 

(0.643) 

 

 

-3.387 

 

3.391 

 

1.038 

(0.696) 

 

 

 

-1.897 

 

1.897 

 

1.570 

(0.937) 

 

 

-2.178 

 

2.107 

 

1.348 

(0.714) 

 

 

 

 

 

5.991 

 

0.023 

(0.152) 

 

 

 

 

1.560 

 

0.390 

(0.487) 

 

 

 

-2.100 

 

2.100 

 

1.226 

(0.734) 

 

 

-2.062 

 

2.088 

 

1.088 

(0.699) 

 

 

 

-4.242 

 

4.242 

 

0.653 

(0.704) 

 

 

-3.261 

 

3.682 

 

1.127 

(0.687) 

 

 

 

-1.897 

 

1.897 

 

1.548 

(0.912) 

 

 

-1.990 

 

2.313 

 

1.225 

(0.664) 

 

 

 

 

 

5.991 

 

0.085 

(0.279) 

 

 

 

 

1.828 

 

0.590 

(0.497) 

 

 

 

-2.100 

 

2.100 

 

1.003 

(0.659) 

 

 

-1.904 

 

2.270 

 

1.118 

(0.663) 

 

 

 

-4.242 

 

4.242 

 

0.860 

(0.658) 

 

 

-2.654 

 

4.620 

 

1.100 

(0.651) 

 

 

 

-1.897 

 

1.897 

 

1.500 

(0.746) 

 

 

-1.682 

 

2.863 

 

1.110 

(0.628) 

 

 

 

 

 

5.991 

 

0.385 

(0.491) 

 

 

 

 

2.827 

 

0.800 

(0.415) 

 

 

 

-2.100 

 

2.100 

 

1.224 

(0.519) 

 

 

-1.466 

 

2.904 

 

0.972 

(0.509) 

Influential point 

present 

Traditional 

Average no. of 

points (SD) 

 

Percent of times 

point identified 

 

JaB 

        Low cut-off 

         

       High cut-off 

 

Average no. of 

points (SD) 

 

Percent of times 

point identified 

 

 

 

1.384 

(0.520) 

 

1.000 

 

 

 

-8.180 

 

3.099 

 

1.443 

(0.497) 

 

1.000 

 

 

 

1.800 

(0.665) 

 

1.000 

 

 

 

-4.770 

 

1.961 

 

1.650 

(0.492) 

 

1.000 

 

 

 

1.020 

(0.120) 

 

1.000 

 

 

 

 

 

4.166 

 

1.000 

(0.000) 

 

1.000 

 

 

 

1.318 

(0.483) 

 

1.000 

 

 

 

-2.519 

 

1.929 

 

1.256 

(0.436) 

 

1.000 

 

 

 

1.304 

(0.472) 

 

1.000 

 

 

 

-8.001 

 

3.094 

 

1.346 

(0.476) 

 

1.000 

 

 

 

1.750 

(0.616) 

 

1.000 

 

 

 

-4.632 

 

1.982 

 

1.500 

(0.478) 

 

1.000 

 

 

 

1.010 

(0.104) 

 

1.000 

 

 

 

 

 

4.234 

 

1.000 

(0.000) 

 

1.000 

 

 

 

1.400 

(0.529) 

 

1.000 

 

 

 

-2.432 

 

2.017 

 

1.226 

(0.418) 

 

1.000 

 

 

 

1.465 

(0.563) 

 

0.998 

 

 

 

-7.055 

 

3.694 

 

1.474 

(0.514) 

 

0.997 

 

 

 

2.000 

(0.682) 

 

1.000 

 

 

 

-4.057 

 

2.404 

 

1.800 

(0.500) 

 

1.000 

 

 

 

1.050 

(0.343) 

 

0.914 

 

 

 

 

 

5.621 

 

1.025 

(0.188) 

 

0.893 

 

 

 

1.852 

(0.647) 

 

0.980 

 

 

 

-2.027 

 

2.590 

 

1.492 

(0.520) 

 

0.964 
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Table 4.7 Conventional JaB Simulation results, n=50, p=5 for all distribution of errors. 

Distribution of errors                                  Normal                                                                             t(3)                                                                             Log-normal                                   .  

Method Welsch’s 

Distance 

Modified 

Cook’s 

Distance 

Likelihood 

Distance 

t-star Welsch’s 

Distance 

Modified 

Cook’s 

Distance 

Likelihood 

Distance 

t-star Welsch’s 

Distance 

Modified 

Cook’s 

Distance 

Likelihood 

Distance 

t-star 

Influential point 

not present 

Traditional 

        Low cut-off 

         

       High cut-off 

         

Average no. of 

points (SD) 

            

JaB 

        Low cut-off 

        

       High cut-off 

 

Average no. of 

points (SD) 

 

 

 

-6.708 

 

6.708 

 

1.106 

(0.946) 

 

 

-5.299 

 

5.318 

 

2.544 

(0.856) 

 

 

 

-1.897 

 

1.897 

 

3.572 

(1.408) 

 

 

-2.098 

 

2.086 

 

2.534 

(0.854) 

 

 

 

 

 

11.07 

 

None 

(0.000) 

 

 

 

 

1.043 

 

1.176 

(0.686) 

 

 

 

-2.015 

 

2.015 

 

2.522 

(1.062) 

 

 

-2.018 

 

2.020 

 

2.488 

(0.805) 

 

 

 

-6.708 

 

6.708 

 

1.151 

(0.895) 

 

 

-5.170 

 

5.484 

 

2.512 

(0.896) 

 

 

 

-1.897 

 

1.897 

 

3.543 

(1.380) 

 

 

-2.056 

 

2.146 

 

2.475 

(0.896) 

 

 

 

 

 

11.07 

 

0.003 

(0.051) 

 

 

 

 

1.055 

 

1.206 

(0.635) 

 

 

 

-2.015 

 

2.015 

 

2.511 

(1.041) 

 

 

-1.974 

 

2.085 

 

2.507 

(0.829) 

 

 

 

-6.708 

 

6.708 

 

1.486 

(0.821) 

 

 

-4.060 

 

6.951 

 

2.152 

(0.851) 

 

 

 

-1.897 

 

1.897 

 

3.133 

(1.231) 

 

 

-1.593 

 

2.812 

 

2.142 

(0.833) 

 

 

 

 

 

11.07 

 

0.262 

(0.440) 

 

 

 

 

1.774 

 

1.419 

(0.548) 

 

 

 

-2.015 

 

2.015 

 

2.540 

(0.885) 

 

 

-1.397 

 

2.876 

 

1.838 

(0.796) 

Influential point 

present 

Traditional 

Average no. of 

points (SD) 

 

Percent of times 

point identified 

 

JaB 

        Low cut-off 

         

       High cut-off 

 

Average no. of 

points (SD) 

 

Percent of times 

point identified 

 

 

 

1.470 

(0.614) 

 

1.000 

 

 

 

-6.936 

 

4.864 

 

2.038 

(0.732) 

 

1.000 

 

 

 

2.874 

(1.032) 

 

1.000 

 

 

 

-2.678 

 

1.947 

 

2.070 

(0.738) 

 

1.000 

 

 

 

1.000 

(0.000) 

 

1.000 

 

 

 

 

 

1.510 

 

1.134 

(0.349) 

 

1.000 

 

 

 

1.738 

(0.713) 

 

1.000 

 

 

 

-2.170 

 

1.875 

 

1.745 

(0.628) 

 

1.000 

 

 

 

 

1.566 

(0.671) 

 

1.000 

 

 

 

-6.847 

 

4.938 

 

2.084 

(0.760) 

 

1.000 

 

 

 

2.764 

(1.038) 

 

1.000 

 

 

 

-2.624 

 

1.965 

 

1.930 

(0.722) 

 

1.000 

 

 

 

1.000 

(0.000) 

 

1.000 

 

 

 

 

 

1.516 

 

1.127 

(0.333) 

 

1.000 

 

 

 

1.674 

(0.675) 

 

1.000 

 

 

 

-2.126 

 

1.896 

 

1.674 

(0.620) 

 

1.000 

 

 

 

 

1.508 

(0.631) 

 

1.000 

 

 

 

-6.134 

 

5.478 

 

1.832 

(0.659) 

 

1.000 

 

 

 

2.968 

(1.123) 

 

1.000 

 

 

 

-2.363 

 

2.198 

 

1.890 

(0.694) 

 

1.000 

 

 

 

1.005 

(0.072) 

 

1.000 

 

 

 

 

 

2.051 

 

1.109 

(0.312) 

 

1.000 

 

 

 

2.540 

(0.885) 

 

1.000 

 

 

 

-1.856 

 

2.167 

 

1.776 

(0.684) 

 

1.000 
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4.4 Simulation Results for Sufficient JaB 

 

The simulation design for conventional JaB was also applied for sufficient JaB 

method. For sufficient JaB, we considered the cases as (n, p) = (50, 5) and (n, p) = 

(100, 5). For this simulation study, conventional and sufficient JaB results are 

slightly different. This difference is because of sample size differences for 

conventional and sufficient JaB resamples. This difference gets much less as n 

becomes larger. 

 

For the case (n, p) = (50, 5), when no deliberate influential data point is inserted 

into the original data set and for three error distributions, the average number of 

points flagged by sufficient JaB are close to the average number of points flagged by 

conventional JaB for Modified Cook’s Distance and t-star statistics. For Welsch’s 

Distance, there is a slight difference between conventional and sufficient JaB results, 

while difference is more significant for Likelihood Distance. With inserted 

influential point, sufficient JaB showed nearly the same performance as conventional 

JaB to flag influential points for Likelihood Distance. However, the other measures 

showed the same performance as in the first scenario. For the case (n, p) = (100, 5), 

sufficient JaB performed better than the first case (n, p) = (50, 5). Modified Cook’s 

Distance and Likelihood Distance calculated based on sufficient bootstrap even 

flagged more points as influential than their counterparts based on conventional 

bootstrap under all three error distributions. 

 

A question that comes to mind in a large samples, is whether the relative effects of 

unusual data points are diluted by the sheer number of "good" data points or not. But 

it is seen from the Table 4.12 that the deliberately inserted influential observation 

were flagged by both conventional and sufficient JaB (Percent of times point 

identified = 1.000 for all distribution of errors). In both scenarios, sufficient JaB 

showed almost the same performance with the smallest standard deviations as 

conventional JaB and traditional method. That is, the sufficient JaB results in this 

simulation ((n, p) = (250, 5)) are more efficient than both of the conventional JaB 

and traditional results. If n is sufficiently large, we expect that the bootstrap 
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distribution of the statistics will approximately be the normal. Another notable point 

is in the results given in Table 4.12, in general, the sufficient JaB cut-offs are more 

symmetric than conventional JaB cut-offs. 

 

Let ),...,,( 21 Mb kkks   be a vector including the number of flagged influential 

observations in conventional bootstrap resamples and ),...,,( 21 Msb llls   be a vector 

including the number of flagged influential observations in sufficient bootstrap 

resamples. The percent relative efficiency of the sufficient bootstrap estimator over 

the conventional bootstrap estimator is given by: 

%100
)(

)(


sb

b

sV

sV
RE  (4.1) 

The percent relative efficiency of the sufficient bootstrap over the conventional 

bootstrap are given in Table 4.13, 4.14 and 4.15 for sample sizes n =50, n = 100 and n 

= 250,  respectively. Even though the size of sufficient JaB resamples are smaller than 

conventional JaB, in general, the percent relative efficiency 100RE . Thus, the use 

of sufficient JaB may lead to more efficient results than conventional JaB.  

 

As mentioned in Chapter 3, in general, since the number of observation in 

sufficient bootstrap resample is less than conventional bootstrap, the computing time 

is less than conventional bootstrap. R-software contains the R-function, system.time 

which calculates the computing time. To illustrate the time spent by conventional and 

sufficient JaB methods, computing times (in seconds) were recorded for a simulation 

where (n, p) = (100, 5) for all statistics. The results are given in Table 4.8. There is 

no doubt that, elapsed time for sufficient JaB is less than conventional JaB for all 

statistics. 

 

Time spent by conventional bootstrap can be much more as the sample size gets 

larger. To see if it is true, we recorded the computing times both conventional and 

sufficient JaB simulations for Modified Cook's Distance where (n, p) = (250, 5) and 

M = 500. The computing times were recorded as roughly 93.54 hours for 

conventional JaB and 68.16 hours for sufficient JaB. As a conclusion, the 
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computational burden of conventional JaB can be reduced by roughly %30 by using 

sufficient JaB. 

 
Table 4.8 Elapsed time for all statistics, n=100, p=5 

Method Welsch’s Distance Modified 

Cook’s Distance 

Likelihood 

Distance 

t-star 

Conventional JaB 

 

Sufficient JaB 

114.18 

 

97.38 

112.06 

 

95.11 

114.43 

 

98.89 

109.40 

 

92.64 

 

For small sample sizes, sufficient JaB cut-offs are more liberal compared to 

conventional JaB cut-offs. For this reason, when the deliberately inserted data point 

appears in the original data set, conventional JaB flagged more points as influential 

than sufficient JaB in general. But, with the increase of the sample size, the results 

for sufficient JaB started to be the same as conventional JaB results with reduced 

computing times roughly by %30 and less standard deviation. To be brief, our study 

reveals that, sufficient JaB is a good competitor for conventional JaB with less 

amount of computation and time with more efficient results than conventional JaB. 
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Table 4.9 Sufficient JaB Low and High average cut-off points for influential point (point 1) and other points – all simulations. 

                     Welsch’s Distance                  .                                 t-star                            .                   Modified Cook’s Distance         .                           Likelihood Distance                .         

Influence point 

Cut-off 

Other 

Cut-offs 

Influence point 

Cut-off 

Other 

Cut-offs 

Influence point 

Cut-off 

Other 

Cut-offs 

Influence point 

Cut-off 

Other 

Cut-offs 

Conventiona JaB Normal errors, n=50, p=5 

-5.270 -7.011 -2.031 -2.174 -2.108 -2.703   

5.292 4.854 2.007 1.872 2.103 1.944 1.050 1.527 

Sufficient JaB Normal errors, n=50, p=5 

-6.092 -8.428 -2.066 -2.505 -2.238 -3.006   

6.010 5.519 2.076 1.920 2.178 2.021 2.132 3.774 

Conventional JaB t(3) errors, n=50, p= 5 

-5.170 -6.922 -1.959 -2.131 -2.055 -2.649   

5.451 4.927 2.108 1.891 2.172 1.960 1.086 1.531 

Sufficient JaB t(3) errors, n=50, p= 5 

-5.854 -8.189 -1.995 -2.442 -2.123 -2.871   

6.345 5.629 2.177 1.957 2.307 2.051 2.145 3.861 

Conventional JaB Log-normal errors, n=50, p=5 

-4.069 -6.219 -1.402 -1.869 -1.584 -2.394   

7.013 5.448 2.861 2.155 2.819 2.186 1.691 2.062 

Sufficient JaB Log-normal errors, n=50, p=5 

-4.524 -7.489 -1.375 -2.084 -1.626 -2.583   

8.508 6.280 3.321 2.250 3.182 2.307 5.075 15.168 

Conventiona JaB Normal errors, n=100, p=5 

-4.841 -4.808 -2.000 -1.875 -2.081 -2.611   

4.907 4.336 1.986 1.721 2.137 1.975 1.080 1.557 

Sufficient JaB Normal errors, n=100, p=5 

-5.231 -5.208 -1.984 -1.869 -2.095 -2.098   

5.238 4.676 2.002 1.730 2.128 1.886 0.759 0.733 

Conventional JaB t(3) errors, n=100, p= 5 

-4.756 -4.721 -1.961 -1.860 -2.101 -2.677   

4.947 4.409 2.023 1.735 2.120 1.949 1.069 1.524 

Sufficient JaB t(3) errors, n=100, p= 5 

-5.095 -5.162 -1.985 -1.881 -2.088 -2.121   

5.335 4.628 2.055 1.768 2.147 1.887 0.7431 0.718 

Conventional JaB Log-normal errors, n=100, p=5 

-3.333 -4.011 -1.230 -1.465 -1.609 -2.444   

6.494 4.818 2.813 2.027 2.833 2.179 1.794 2.158 

Sufficient JaB Log-normal errors, n=100, p=5 

-3.409 -4.387 -1.190 -1.446 -1.423 -1.813   

6.957 5.327 2.985 2.097 2.877 2.113 1.342 1.055 

 



 

 

32 
3
2
 

Table 4.10 Sufficient JaB  Simulation results, n=50, p=5 for all distribution of errors. 

Distribution of errors Normal                                         . t(3)                                      . Log-normal                             . 

Method Welsch’s 

Distance 
Modified Cook’s 

Distance 

Likelihood 

Distance 
t-star Welsch’s 

Distance 
Modified 

Cook’s 

Distance 

Likelihood 

Distance 
t-star Welsch’s 

Distance 
Modified 

Cook’s 

Distance 

Likelihood 

Distance 
t-star 

Influential point not 

present 
            

Conventional JaB             
Low Cut-off -5.299 -2.098  -2.018 -5.170 -2.056  -1.974 -4.060 -1.593  1.397 

High Cut-off 5.318 2.086 1.043 2.020 5.484 2.146 1.055 2.085 6.951 2.812 1.774 2.876 

Average no. of points 

(SD) 
2.544 

(0.856) 

2.534 

(0.854) 
1.176 

(0.686) 
2.488 

(0.805) 
2.512 

(0.896) 
2.475 

(0.896) 
1.206 

(0.635) 
2.507 

(0.829) 
2.152 

(0.851) 
2.142 

(0.833) 
1.419 

(0.548) 
1.838 

(0.796) 
Sufficient JaB             

Low Cut-off -6.207 -2.211  -2.079 -5.836 -2.130  -1.993 -4.540 -1.632  -1.371 

High Cut-off 6.040 2.204 2.108 2.070 6.228 2.305 2.214 2.178 8.735 3.277 4.804 3.338 

Average no. of points 

(SD) 
1.516 

(0.628) 
2.145 

(0.710) 

0.127 

(0.334) 
2.197 

(0.642) 
1.436 

(0.697) 
2.156 

(0.675) 
0.147 

(0.355) 
2.254 

(0.627) 
1.344 

(0.615) 
1.835 

(0.650) 
0.596 

(0.491) 
1.583 

(0.675) 
Influential point 

present 
            

Conventional JaB             
Low Cut-off -6.936 -2.678  -2.170 -6.847 -2.624  -2.126 -6.134 -2.363  -1.856 

High Cut-off 4.864 1.947 1.510 1.875 4.938 1.965 1.516 1.896 5.478 2.198 2.051 2.167 

Average no. of points 

(SD) 
2.038 

(0.732) 
2.070 

(0.738) 

1.134 

(0.349) 
1.745 

(0.628) 
2.084 

(0.760) 
1.930 

(0.722) 
1.127 

(0.333) 
1.674 

(0.620) 
1.832 

(0.659) 
1.890 

(0.694) 
1.109 

(0.312) 
1.776 

(0.684) 
Percent of times point 

identified 
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Sufficient JaB             
Low Cut-off -8.314 -2.970  -2.485 -8.077 -2.836  -2.422 -7.367 -2.545  -2.061 

High Cut-off 5.529 2.025 2.132 1.923 5.643 2.056 2.145 1.962 6.316 2.321 5.075 2.265 

Average no. of points 

(SD) 
1.544 

(0.541) 
1.768 

(0.598) 
1.116 

(0.327) 
1.488 

(0.564) 
1.514 

(0.553) 
1.757 

(0.614) 
1.097 

(0.296) 
1.482 

(0.541) 
1.388 

(0.492) 
1.549 

(0.576) 
1.026 

(0.160) 
1.385 

(0.492) 
Percent of times point 

identified 
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 4.11 Sufficient JaB Simulation results, n=100, p=5 for all distribution of errors. 

Distribution of errors Normal                                         . t(3)                                      . Log-normal                             . 

Method Welsch’s 

Distance 
Modified Cook’s 

Distance 

Likelihood 

Distance 
t-star Welsch’s 

Distance 
Modified 

Cook’s 

Distance 

Likelihood 

Distance 
t-star Welsch’s 

Distance 
Modified 

Cook’s 

Distance 

Likelihood 

Distance 
t-star 

Influential point not 

present 
            

Conventional JaB             
Low Cut-off -4.911 -2.052  -1.978 -4.703 -2.005  -1.948 -3.530 -1.392  -1.233 

High Cut-off 4.843 2.038 0.426 1.994 4.899 2.039 0.418 2.027 5.901 2.774 0.723 2.785 

Average no. of points 

(SD) 
5.320 

(1.043) 

 

5.130 

(0.812) 

 

2.590 

(0.753) 

5.050 

(1.038) 

5.160 

(1.051) 

5.010 

(1.058) 

2.630 

(0.824) 

5.000 

(0.994) 

4.230 

(0.851) 

4.230 

(1.135) 

2.480 

(0.673) 
3.480 

(1.049) 

Sufficient JaB             
Low Cut-off -5.081 -2.061  -2.007 -5.098 -2.088  -1.974 -3.404 -1.397  -1.205 

High Cut-off 5.060 2.116 0.789 1.975 5.183 2.138 0.797 2.048 6.961 2.909 1.334 2.926 

Average no. of points 

(SD) 
3.900 

(0.745) 

4.790 

(0.807) 

0.510 

(0.627) 

4.720 

(0.877) 

4.020 

(0.852) 
4.730 

(0.789) 

0.630 

(0.525) 
4.780 

(0.773) 

3.460 

(0.914) 
4.080 

(0.981) 

1.330 

(0.603) 

3.390 

(0.993) 

Influential point 

present 
            

Conventional JaB             
Low Cut-off -4.809 -2.605  -1.877 -4.722 -2.671  -1.862 -4.001 -2.436  -1.462 

High Cut-off 4.342 1.976 1.080 1.724 4.416 1.950 1.069 1.738 4.833 2.182 1.794 2.034 

Average no. of points 

(SD) 
2.990 

(0.926) 
2.400 

(0.953) 

 

1.010 

(0.100) 

1.930 

(0.807) 
3.150 

(1.028) 
2.190 

(0.950) 

1.040 

(0.196) 
1.960 

(0.777) 
3.540 

(0.957) 

2.510 

(0.858) 

1.090 

(0.287) 
2.980 

(1.053) 

Percent of times point 

identified 
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Sufficient JaB             
Low Cut-off -5.208 -2.098  -1.872 -5.160 -2.120  -1.883 -4.374 -1.808  -1.442 

High Cut-off 4.683 1.889 0.759 1.733 4.636 1.890 0.743 1.772 5.341 2.120 1.342 2.104 

Average no. of points 

(SD) 
2.540 

(0.887) 

2.760 

(0.996) 

1.070 

(0.256) 

1.670 

(0.652) 

2.450 

(0.783) 

2.790 

(0.935) 
1.140 

(0.348) 
1.730 

(0.736) 

3.120 

(0.902) 
3.520 

(1.049) 

1.180 

(0.386) 
2.920 

(1.001) 
Percent of times point 

identified 
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 4.12 Sufficient JaB  Simulation results for Modified Cook's Distance, n=250, p=5 for all distribution of errors 

Method Traditional Conventional JaB Sufficient JaB 

Distribution of errors Normal t(3) Log-normal Normal t(3) Log-normal Normal t(3) Log-normal 

Influential point not 

present 

         

Low Cut-off -1.979 -1.979 -1.979 -2.018 -2.017 -1.259 -2.048 -2.052 -1.243 

High Cut-off 1.979 1.979 1.979 2.048 2.037 2.676 2.028 2.052 2.668 

Average no. of points (SD) 13.860 

(2.730) 

13.760 

(2.404) 

11.220 

(2.634) 

12.820 

(1.351) 

12.650 

(1.666) 

10.970 

(1.696) 

12.280 

(1.064) 

12.135 

(1.069) 

11.173 

(1.378) 

Influential point present          

Low Cut-off -1.979 -1.979 -1.979 -1.725 -1,710 -1.310 -1.720 -1.736 -1.330 

High Cut-off 1.979 1.979 1.979 1.675 1.698 2.031 1.736 1.732 2.073 

Average no. of points (SD) 2.710 

(1.200) 

2.900 

(1.218) 

5.610 

(1.841) 

4.391 

(1.650) 

4.693 

(1.169) 

8.711 

(1.707) 

4.246 

(1.457) 

4.400 

(1.370) 

8.536 

(1.513) 

Percent of times point 

identified 
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 
Table 4.13 Sufficient JaB Relative efficiency, n=50, p=5 for all distribution of errors. 

Distribution of errors                                     Normal                                .                                            t(3)                                    .                                     Log-normal                              

Method Welsch’s 

Distance 

Modified 

Cook’s 

Distance 

Likelihood 

Distance 

t-star Welsch’s 

Distance 

Modified 

Cook’s 

Distance 

Likelihood 

Distance 

t-star Welsch’s 

Distance 

Modified 

Cook’s 

Distance 

Likelihood 

Distance 

t-star 

Influential point not 

present 

185.892 144.676 421.847 157.225 165.253 176.210 319.956 174.813 191.673 164.234 124.565 139.065 

Influential point 

present 

183.074 152.303 111.958 123.982 188.876 138.273 126.562 131.337 179.407 145.169 380.250 193.277 

 

Table 4.14 Sufficient JaB  Relative efficiency, n=100, p=5 for all distribution of errors. 

Distribution of errors                                     Normal                                .                                            t(3)                                    .                                     Log-normal                              

Method Welsch’s 

Distance 

Modified 

Cook’s 

Distance 

Likelihood 

Distance 

t-star Welsch’s 

Distance 

Modified 

Cook’s 

Distance 

Likelihood 

Distance 

t-star Welsch’s 

Distance 

Modified 

Cook’s 

Distance 

Likelihood 

Distance 

t-star 

Influential point not 

present 

196.000 101.242 144.229 140.086 152.169 179.811 246.340 165.353 86.689 133.860 124.564 111.596 

Influential point 

present 

108.987 91.551 15.258 153.197 172.370 103.234 31.721 111.451 112.566 66.899 55.282 111.080 

 
Table 4.15 Sufficient JaB  Relative efficiency for Modified Cook's Distance, n=100, p=5 for all distribution of errors. 

Distribution of errors Normal t(3) Log-normal 

Influential point not present 161.223 242.881 151.479 

Influential point present 128.247 72.809 127.288 
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CHAPTER FIVE 

CONCLUSION 

 

The main theme of this study is that using traditional methods in some situations 

mentioned in this thesis may not be sufficient since they always use the same 

quantity as a cut-off point irrespective of sample sizes and what might be known or 

suspected about the data generating process. The cut-offs calculated on the basis of 

large sample theory may not be accurate for small samples. To overcome this 

problem, based on the idea of Martin and Roberts (2006), we proposed the jackknife-

after-bootstrap method for the process of identification of influential observations 

and outliers. Even though this method has a lot of advantages over the traditional 

methods, there is one main disadvantage which is the computational burden. To 

overcome this, we also proposed the sufficient jackknife-after-bootstrap method. To 

support our ideas, two real-world examples and various designed simulation studies 

were performed for traditional methods, conventional and sufficient JaB methods. 

 

The results have showed that, when model assumptions are not satisfied and the 

sample size is small, the results for traditional methods may be misleading and flag 

fewer points than is either desirable or prudent. The simulation results in this study 

show that JaB is much more effective for Welch distance for non-normal error cases. 

For likelihood distance, it adjusts the cut-off value to a value consistent with other 

measures. For both of these measures, the number of points flagged increase with 

JaB. When no points inserted deliberately, having points flagged may seem 

confusing and as an error. However, the issue of flagging points is reasonable in a 

sense that some point will have the most extreme value of the measure and the 

solution would be to put tests on these points. (Martin, 2011 by personal contact). 

The same problem also holds for traditional methods but this time we have, at least, 

estimable error rate. Another solution would be using hybrid method which includes 

using the bootstrap cut-offs in general but then using traditional cut-offs as threshold. 

These solutions worth considering to be able to find some method to moderate the 

fact that the method being considered will always flag some points. 
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The results for sufficient JaB against conventional JaB showed that, for small 

sample sizes, sufficient JaB cut-offs are more liberal compared to conventional JaB 

cut-offs. For this reason, when the deliberately inserted data point appears in the 

original data set, conventional JaB flagged more points as influential than sufficient 

JaB in general. But, with the increase of the sample size, the results for sufficient JaB 

started to be the same as conventional JaB results with reduced computing times 

roughly by %30 and less standard deviation. To be brief, our study reveals that, 

sufficient JaB is a good competitor for conventional JaB with less amount of 

computation and time with more efficient results than conventional JaB. 
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APPENDIX 1. 

THE R CODES FOR SIMULATION STUDY 

################### Conventional jackknife-after-bootstrap################# 

system.time({      # to get computing time 

output.percentile.general.low.Ci.star <- list () 

output.percentile.general.high.Ci.star <- list () 

output.percentile.1.low.Ci.star <- list ()  # these are required for getting  

output.percentile.1.high.Ci.star <- list ()  # modified cook's distance 

outputs 

output.percentile.others.low.Ci.star <- list () 

output.percentile.others.high.Ci.star <- list () 

output.number.of.influential.observation.jab.Ci.star <- list () 

output.number.of.influential.observation.tra.Ci.star <- list () 

output.percentile.of.time.Ci.star <- list() 

output.percentile.of.time.tra.Ci.star <- list() 

 

output.percentile.general.low.Wi <- list () 

output.percentile.general.high.Wi <- list () 

output.percentile.1.low.Wi <- list ()   # these are required for getting 

output.percentile.1.high.Wi <- list ()   # welsch's distance outputs 

output.percentile.others.low.Wi <- list () 

output.percentile.others.high.Wi <- list () 

output.number.of.influential.observation.jab.Wi <- list () 

output.number.of.influential.observation.tra.Wi <- list () 

output.percentile.of.time.Wi <- list() 

output.percentile.of.time.tra.Wi <- list() 

 

output.percentile.general.high.LDi <- list () 

output.percentile.1.high.LDi <- list ()  # these are required for getting 

output.percentile.others.high.LDi <- list ()  # likelihood distance outputs 

output.number.of.influential.observation.jab.LDi <- list () 

output.number.of.influential.observation.tra.LDi <- list () 

output.percentile.of.time.LDi <- list() 

output.percentile.of.time.tra.LDi <- list() 

 

output.percentile.general.low.ti.star <- list () 

output.percentile.general.high.ti.star <- list () 

output.percentile.1.low.ti.star <- list ()  # these are required for getting 

output.percentile.1.high.ti.star <- list ()  # t-star statistic outputs 

output.percentile.others.low.ti.star <- list () 

output.percentile.others.high.ti.star <- list () 

output.number.of.influential.observation.jab.ti.star <- list () 

output.number.of.influential.observation.tra.ti.star <- list () 

output.percentile.of.time.ti.star <- list() 

output.percentile.of.time.tra.ti.star <- list() 
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n = 50     # number of observation in original data set 

B = 3100    # number of bootstrap 

 

for (M in 1:500) {   # number of simulation 

 

e <- rnorm(n=n, mean=0, sd=sqrt(0.5625)) 

x0 <- c(rep(1,n)) 

x1 <- rnorm(n=n,mean=2,sd=1) # the creation of the original data set 

x2 <- rnorm(n=n,mean=2,sd=1) # step 1 begins from here 

x3 <- rnorm(n=n,mean=2,sd=1) 

x4 <- rnorm(n=n,mean=2,sd=1) 

y <- 1+ 2*x1+4*x2+3*x3+2*x4+e 

x2[1] = 10     #influential observarion 

y[1] = 10      #influential observarion 

 

X <- matrix(c(x0,x1,x2,x3,x4),ncol=5) 

Y <- matrix(y,ncol=1) 

Design.data <- cbind(X, Y)  # original data set 

 

B.cap <- solve(crossprod(X)) %*% crossprod(X, Y) 

P <- X %*% solve(crossprod(X)) %*% t(X) 

Y.cap <- P %*% Y 

e <- Y - Y.cap 

dX <- nrow(X) - ncol(X) 

var.cap <- crossprod(e) / (dX)  # 

ei <- as.vector(Y - X %*% B.cap)  # matrix operations 

pi <- diag(P)     #  

var.cap.i <- (((dX) * var.cap)/(dX - 1)) -  

(ei^2/((dX - 1) * (1 - pi))) 

ti <- ei / sqrt(var.cap * (1 - pi)) 

ti.star <- ei / sqrt(var.cap.i * (1 - pi)) 

pi.star <- pi + ei^2 / crossprod(e) 

LDi <- nrow(X) * 

log((nrow(X)/(nrow(X) - 1)) * ((dX - 1)/(ti.star^2 + dX - 1))) + 

((ti.star^2 * (nrow(X) - 1)) / ((1 - pi) * (dX - 1))) - 1 

WKi <- (ti.star)*sqrt(pi/(1-pi)) 

Wi <- WKi * sqrt((nrow(X)-1)/(1-pi)) 

Ci.star <- WKi* sqrt((dX)/(ncol(X))) 

 

Comparing.table.Ci.star <- c(Ci.star) 

Comparing.per.of.time.Ci.star <- Wi[1] 

Comparing.table.Wi <- c(Wi) 

Comparing.per.of.time.Wi <- Wi[1]   

Comparing.table.LDi <- c(LDi)   

Comparing.per.of.time.LDi <- LDi[1] 

Comparing.table.ti.star <- c(ti.star) 

Comparing.per.of.time.ti.star <- ti.star[1] # end of step 1 
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for (j in 1:n) {     # JaB steps start from here 

result.Ci.star <- vector("list", ) 

result.ti.star <- vector("list", ) 

result.LDi <- vector("list", ) 

result.Wi <- vector("list", ) 

 

for( i in 1: B) {    # number of bootstrap ( B ) 

 

data <- Design.data[sample(n,n,replace=TRUE),] # bootstrap step, step 2 begins  

dataX <- data[,1:ncol(X)]    # from here 

dataY <- data[,(ncol(X)+1)]      

 

B.cap.simulation <- solve(crossprod(dataX)) %*% crossprod(dataX, dataY) 

P.simulation <- dataX %*% solve(crossprod(dataX)) %*% t(dataX) 

Y.cap.simulation <- P.simulation %*% dataY 

e.simulation <- dataY - Y.cap.simulation 

dX.simulation <- nrow(dataX) - ncol(dataX) 

var.cap.simulation <- crossprod(e.simulation) / (dX.simulation) # re-sample 

ei.simulation <- as.vector(dataY - dataX %*% B.cap.simulation)  # operations 

pi.simulation <- diag(P.simulation) 

var.cap.i.simulation <- (((dX.simulation) * var.cap.simulation)/(dX.simulation - 1)) - 

(ei.simulation^2/((dX.simulation - 1) * (1 - pi.simulation))) 

ti.simulation <- ei.simulation / sqrt(var.cap.simulation * (1 - pi.simulation)) 

ti.star.simulation <- ei.simulation / sqrt(var.cap.i.simulation * (1 - pi.simulation)) 

pi.star.simulation <- pi.simulation + ei.simulation^2 / crossprod(e.simulation) 

WKi.simulation <- (ti.star.simulation)*sqrt(pi.simulation/(1-pi.simulation)) 

Ci.star.simulation <- WKi.simulation* sqrt((dX.simulation)/(ncol(dataX))) 

Wi.simulation <- WKi.simulation * sqrt((nrow(X)-1)/(1-pi.simulation)) 

LDi.simulation <- nrow(X) * 

log((nrow(X)/(nrow(X) - 1)) * ((dX.simulation - 1)/(ti.star.simulation^2 + 

dX.simulation - 1))) + 

((ti.star.simulation^2 * (nrow(X) - 1)) / ((1 - pi.simulation) * (dX.simulation - 1))) - 1 

 

result.Ci.star[[i]] <- list(outCi.star.simulation=(Ci.star.simulation),influ.obs = any 

(dataY ==Y[j])) 

result.ti.star[[i]] <- list(outti.star.simulation=(ti.star.simulation),influ.obs = any 

(dataY ==Y[j])) 

result.LDi[[i]] <- list(outLDi.simulation=(LDi.simulation),influ.obs = any (dataY 

==Y[j])) 

result.Wi[[i]] <- list(outWi.simulation=(Wi.simulation),influ.obs = any (dataY 

==Y[j])) 

 

}      # end of step 2 

 

i.obs.Ci.star <- sapply(result.Ci.star,function(x) {x$influ.obs}) #  

i.obs.ti.star <- sapply(result.ti.star,function(x) {x$influ.obs}) # step 3 and 4 begins  

i.obs.LDi <- sapply(result.LDi,function(x) {x$influ.obs})  # from here 

i.obs.Wi <- sapply(result.Wi,function(x) {x$influ.obs})  # 

 



 

 

42 

39 

 

 

 

 

ni.result.Ci.star <- result.Ci.star[! i.obs.Ci.star] 

ni.result.ti.star <- result.ti.star[! i.obs.ti.star] 

ni.result.LDi <- result.LDi[! i.obs.LDi] 

ni.result.Wi <- result.Wi[! i.obs.Wi] 

 

ni.Ci.star.simulation <- sapply(ni.result.Ci.star,function(x) 

{x$outCi.star.simulation}) 

if (j==1) { 

ni.Ci.star.simulation1 <-  ni.Ci.star.simulation 

}else if (j==2) { 

ni.Ci.star.simulation49 <-  matrix(ni.Ci.star.simulation , nrow=1) 

 

}else{ 

ni.i.star.simulation49 <-

cbind(ni.Ci.star.simulation49,matrix(ni.Ci.star.simulation,nrow=1)) 

} 

 

ni.ti.star.simulation <- sapply(ni.result.ti.star,function(x) {x$outti.star.simulation}) 

if (j==1) { 

ni.ti.star.simulation1 <-  ni.ti.star.simulation 

}else if (j==2) { 

ni.ti.star.simulation49 <-  matrix(ni.ti.star.simulation , nrow=1) 

 

}else{ 

ni.ti.star.simulation49 <-

cbind(ni.ti.star.simulation49,matrix(ni.ti.star.simulation,nrow=1)) 

} 

 

ni.LDi.simulation <- sapply(ni.result.LDi,function(x) {x$outLDi.simulation}) 

if (j==1) { 

ni.LDi.simulation1 <-  ni.LDi.simulation 

}else if (j==2) { 

ni.LDi.simulation49 <-  matrix(ni.LDi.simulation , nrow=1) 

 

}else{ 

ni.LDi.simulation49 <-

cbind(ni.LDi.simulation49,matrix(ni.LDi.simulation,nrow=1)) 

} 

 

ni.Wi.simulation <- sapply(ni.result.Wi,function(x) {x$outWi.simulation}) 

if (j==1) { 

ni.Wi.simulation1 <-  ni.Wi.simulation 

}else if (j==2) { 

ni.Wi.simulation49 <-  matrix(ni.Wi.simulation , nrow=1) 
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}else{ 

ni.Wi.simulation49 <-cbind(ni.Wi.simulation49,matrix(ni.Wi.simulation,nrow=1)) 

} 

 

}    # end of step 3 and 4     

  

 

# other calculations such as calculation of cut-off points are made with the rest of the 

# code 

full.data.Ci.star <- unlist(c(ni.Ci.star.simulation1,ni.Ci.star.simulation49)) 

full.data.ti.star <- unlist(c(ni.ti.star.simulation1,ni.ti.star.simulation49)) 

full.data.Wi <- unlist(c(ni.Wi.simulation1,ni.Wi.simulation49)) 

full.data.LDi <- unlist(c(ni.LDi.simulation1,ni.LDi.simulation49)) 

 

percentile.1.low.Ci.star <- quantile(unlist(ni.Ci.star.simulation1), 0.025) 

percentile.1.high.Ci.star <- quantile(unlist(ni.Ci.star.simulation1), 0.975) 

percentile.others.low.Ci.star <- quantile(unlist(ni.Ci.star.simulation49), 0.025) 

percentile.others.high.Ci.star <- quantile(unlist(ni.Ci.star.simulation49), 0.975) 

percentile.general.low.Ci.star <- quantile(full.data.Ci.star, 0.025) 

percentile.general.high.Ci.star <- quantile(full.data.Ci.star, 0.975) 

output.percentile.general.low.Ci.star <- c(output.percentile.general.low.Ci.star, 

list(percentile.general.low.Ci.star)) 

output.percentile.general.high.Ci.star <- c(output.percentile.general.high.Ci.star, 

list(percentile.general.high.Ci.star)) 

output.percentile.1.low.Ci.star <- c(output.percentile.1.low.Ci.star, 

list(percentile.1.low.Ci.star)) 

output.percentile.1.high.Ci.star <- c(output.percentile.1.high.Ci.star, 

list(percentile.1.high.Ci.star)) 

output.percentile.others.low.Ci.star <- c(output.percentile.others.low.Ci.star, 

list(percentile.others.low.Ci.star)) 

output.percentile.others.high.Ci.star <- c(output.percentile.others.high.Ci.star, 

list(percentile.others.high.Ci.star)) 

 

number.of.influential.observation.jab.Ci.star <- sum(sapply(Comparing.table.Ci.star, 

function(x) (x < percentile.general.low.Ci.star||x > percentile.general.high.Ci.star))) 

number.of.influential.observation.tra.Ci.star <- sum(sapply(Comparing.table.Ci.star, 

function(x) (x < (-2) * sqrt((nrow(X)-ncol(X))/nrow(X))||x > 2 * sqrt((nrow(X)-

ncol(X))/nrow(X))))) 

 

output.number.of.influential.observation.jab.Ci.star <- 

c(output.number.of.influential.observation.jab.Ci.star, 

list(number.of.influential.observation.jab.Ci.star)) 

output.number.of.influential.observation.tra.Ci.star <- 

c(output.number.of.influential.observation.tra.Ci.star, 

list(number.of.influential.observation.tra.Ci.star)) 
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percentile.of.time.inf.Ci.star <- sum(sapply(Comparing.per.of.time.Ci.star, 

function(x)                (x < percentile.general.low.Ci.star||x > 

percentile.general.high.Ci.star))) 

output.percentile.of.time.Ci.star <- c(output.percentile.of.time.Ci.star, 

list(percentile.of.time.inf.Ci.star)) 

percentile.of.time.inf.tra.Ci.star <- sum(sapply(Comparing.per.of.time.Ci.star, 

function(x)   (x < (-2) * sqrt((nrow(X)-ncol(X))/nrow(X))||x > 2 * sqrt((nrow(X)-

ncol(X))/nrow(X))))) 

output.percentile.of.time.tra.Ci.star <- c(output.percentile.of.time.Ci.star, 

list(percentile.of.time.inf.Ci.star)) 

 

percentile.1.low.ti.star <- quantile(unlist(ni.ti.star.simulation1), 0.025) 

percentile.1.high.ti.star <- quantile(unlist(ni.ti.star.simulation1), 0.975) 

percentile.others.low.ti.star <- quantile(unlist(ni.ti.star.simulation49), 0.025) 

percentile.others.high.ti.star <- quantile(unlist(ni.ti.star.simulation49), 0.975) 

percentile.general.low.ti.star <- quantile(full.data.ti.star, 0.025) 

percentile.general.high.ti.star <- quantile(full.data.ti.star, 0.975) 

output.percentile.general.low.ti.star <- c(output.percentile.general.low.ti.star, 

list(percentile.general.low.ti.star)) 

output.percentile.general.high.ti.star <- c(output.percentile.general.high.ti.star, 

list(percentile.general.high.ti.star)) 

output.percentile.1.low.ti.star <- c(output.percentile.1.low.ti.star, 

list(percentile.1.low.ti.star)) 

output.percentile.1.high.ti.star <- c(output.percentile.1.high.ti.star, 

list(percentile.1.high.ti.star)) 

output.percentile.others.low.ti.star <- c(output.percentile.others.low.ti.star, 

list(percentile.others.low.ti.star)) 

output.percentile.others.high.ti.star <- c(output.percentile.others.high.ti.star, 

list(percentile.others.high.ti.star)) 

 

number.of.influential.observation.jab.ti.star <- sum(sapply(Comparing.table.ti.star, 

function(x)  (x < percentile.general.low.ti.star||x > percentile.general.high.ti.star))) 

number.of.influential.observation.tra.ti.star <- sum(sapply(Comparing.table.ti.star, 

function(x)  (x < -2.1||x > 2.1))) 

 

output.number.of.influential.observation.jab.ti.star <- 

c(output.number.of.influential.observation.jab.ti.star, 

list(number.of.influential.observation.jab.ti.star)) 

output.number.of.influential.observation.tra.ti.star <- 

c(output.number.of.influential.observation.tra.ti.star, 

list(number.of.influential.observation.tra.ti.star)) 

 

percentile.of.time.inf.ti.star <- sum(sapply(Comparing.per.of.time.ti.star, function(x)  

(x < percentile.general.low.ti.star||x > percentile.general.high.ti.star))) 

output.percentile.of.time.ti.star <- c(output.percentile.of.time.ti.star, 

list(percentile.of.time.inf.ti.star)) 

percentile.of.time.inf.tra.ti.star <- sum(sapply(Comparing.per.of.time.ti.star, 

function(x) (x < -2.1||x > 2.1))) 
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output.percentile.of.time.tra.ti.star <- c(output.percentile.of.time.ti.star, 

list(percentile.of.time.inf.ti.star)) 

 

percentile.1.high.LDi <- quantile(unlist(ni.LDi.simulation1), 0.950) 

percentile.others.high.LDi <- quantile(unlist(ni.LDi.simulation49), 0.950) 

percentile.general.high.LDi <- quantile(full.data.LDi, 0.950) 

output.percentile.general.high.LDi <- c(output.percentile.general.high.LDi, 

list(percentile.general.high.LDi)) 

output.percentile.1.high.LDi <- c(output.percentile.1.high.LDi, 

list(percentile.1.high.LDi)) 

output.percentile.others.high.LDi <- c(output.percentile.others.high.LDi, 

list(percentile.others.high.LDi)) 

 

number.of.influential.observation.jab.LDi <- sum(sapply(Comparing.table.LDi, 

function(x)  (x > percentile.general.high.LDi))) 

number.of.influential.observation.tra.LDi <- sum(sapply(Comparing.table.LDi, 

function(x)  (x > qchisq(.95, ncol(X), lower.tail=T)))) 

 

output.number.of.influential.observation.jab.LDi <- 

c(output.number.of.influential.observation.jab.LDi, 

list(number.of.influential.observation.jab.LDi)) 

output.number.of.influential.observation.tra.LDi <- 

c(output.number.of.influential.observation.tra.LDi, 

list(number.of.influential.observation.tra.LDi)) 

 

percentile.of.time.inf.LDi <- sum(sapply(Comparing.per.of.time.LDi, function(x)    

(x > percentile.general.high.LDi))) 

output.percentile.of.time.LDi <- c(output.percentile.of.time.LDi, 

list(percentile.of.time.inf.LDi)) 

percentile.of.time.inf.tra.LDi <- sum(sapply(Comparing.per.of.time.LDi, function(x) 

(x > qchisq(.95, ncol(X), lower.tail=T)))) 

output.percentile.of.time.tra.LDi <- c(output.percentile.of.time.LDi, 

list(percentile.of.time.inf.LDi)) 

 

percentile.1.low.Wi <- quantile(unlist(ni.Wi.simulation1), 0.025) 

percentile.1.high.Wi <- quantile(unlist(ni.Wi.simulation1), 0.975) 

percentile.others.low.Wi <- quantile(unlist(ni.Wi.simulation49), 0.025) 

percentile.others.high.Wi <- quantile(unlist(ni.Wi.simulation49), 0.975) 

percentile.general.low.Wi <- quantile(full.data.Wi, 0.025) 

percentile.general.high.Wi <- quantile(full.data.Wi, 0.975) 

output.percentile.general.low.Wi <- c(output.percentile.general.low.Wi, 

list(percentile.general.low.Wi)) 

output.percentile.general.high.Wi <- c(output.percentile.general.high.Wi, 

list(percentile.general.high.Wi)) 

output.percentile.1.low.Wi <- c(output.percentile.1.low.Wi, list(percentile.1.low.Wi)) 

output.percentile.1.high.Wi <- c(output.percentile.1.high.Wi, 

list(percentile.1.high.Wi)) 
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output.percentile.others.low.Wi <- c(output.percentile.others.low.Wi, 

list(percentile.others.low.Wi)) 

output.percentile.others.high.Wi <- c(output.percentile.others.high.Wi, 

list(percentile.others.high.Wi)) 

 

number.of.influential.observation.jab.Wi <- sum(sapply(Comparing.table.Wi, 

function(x)  (x < percentile.general.low.Wi||x > percentile.general.high.Wi))) 

number.of.influential.observation.tra.Wi <- sum(sapply(Comparing.table.Wi, 

function(x)  (x < (-3) * sqrt(ncol(X))||x > 3 * sqrt(ncol(X))))) 

 

output.number.of.influential.observation.jab.Wi <- 

c(output.number.of.influential.observation.jab.Wi, 

list(number.of.influential.observation.jab.Wi)) 

output.number.of.influential.observation.tra.Wi <- 

c(output.number.of.influential.observation.tra.Wi, 

list(number.of.influential.observation.tra.Wi)) 

 

percentile.of.time.inf.Wi <- sum(sapply(Comparing.per.of.time.Wi, function(x)     

(x < percentile.general.low.Wi||x > percentile.general.high.Wi))) 

output.percentile.of.time.Wi <- c(output.percentile.of.time.Wi, 

list(percentile.of.time.inf.Wi)) 

percentile.of.time.inf.tra.Wi <- sum(sapply(Comparing.table.Wi, function(x) (x < (-

3) * sqrt(ncol(X))||x > 3 * sqrt(ncol(X))))) 

output.percentile.of.time.tra.Wi <- c(output.percentile.of.time.Wi, 

list(percentile.of.time.inf.Wi)) 

 

} 

output.genr.per.low.Ci.star <- do.call(rbind.data.frame, 

output.percentile.general.low.Ci.star) 

names(output.genr.per.low.Ci.star) = c("per.general.low.Ci.star")  

output.genr.per.high.Ci.star <- do.call(rbind.data.frame, 

output.percentile.general.high.Ci.star) 

names(output.genr.per.high.Ci.star) = c("per.general.high.Ci.star")  

output.low.per.1.Ci.star <- do.call(rbind.data.frame, output.percentile.1.low.Ci.star) 

names(output.low.per.1.Ci.star) = c("per.poi1.low.Ci.star") 

output.upp.per.1.Ci.star <- do.call(rbind.data.frame, output.percentile.1.high.Ci.star) 

names(output.upp.per.1.Ci.star) = c("per.poi1.high.Ci.star") 

output.low.others.Ci.star <- do.call(rbind.data.frame, 

output.percentile.others.low.Ci.star) 

names(output.low.others.Ci.star) = c("per.others.low.Ci.star") 

output.upp.others.Ci.star <- do.call(rbind.data.frame, 

output.percentile.others.high.Ci.star) 

names(output.upp.others.Ci.star) = c("per.others.high.Ci.star") 

output.number.of.inf.obs.jab.Ci.star <- do.call(rbind.data.frame, 

output.number.of.influential.observation.jab.Ci.star) 

names(output.number.of.inf.obs.jab.Ci.star) = c("number.of.inf.jab.Ci.star") 

output.number.of.inf.obs.tra.Ci.star <- do.call(rbind.data.frame, 

output.number.of.influential.observation.tra.Ci.star) 
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names(output.number.of.inf.obs.tra.Ci.star) = c("number.of.inf.tra.Ci.star") 

output.percent.of.time.Ci.star <- do.call(rbind.data.frame, 

output.percentile.of.time.Ci.star) 

names(output.percent.of.time.Ci.star) = c("percentile.of.time.Ci.star") 

result.per.of.time.Ci.star <-  sum(output.percent.of.time.Ci.star) / 

nrow(output.percent.of.time.Ci.star) 

output.percent.of.time.tra.Ci.star <- do.call(rbind.data.frame, 

output.percentile.of.time.tra.Ci.star) 

names(output.percent.of.time.tra.Ci.star) = c("percentile.of.time.tra.Ci.star") 

result.per.of.time.tra.Ci.star <-  sum(output.percent.of.time.tra.Ci.star) / 

nrow(output.percent.of.time.tra.Ci.star) 

 

output.genr.per.low.ti.star <- do.call(rbind.data.frame, 

output.percentile.general.low.ti.star) 

names(output.genr.per.low.ti.star) = c("per.general.low.ti.star")  

output.genr.per.high.ti.star <- do.call(rbind.data.frame, 

output.percentile.general.high.ti.star) 

names(output.genr.per.high.ti.star) = c("per.general.high.ti.star")  

output.low.per.1.ti.star <- do.call(rbind.data.frame, output.percentile.1.low.ti.star) 

names(output.low.per.1.ti.star) = c("per.poi1.low.ti.star") 

output.upp.per.1.ti.star <- do.call(rbind.data.frame, output.percentile.1.high.ti.star) 

names(output.upp.per.1.ti.star) = c("per.poi1.high.ti.star") 

output.low.others.ti.star <- do.call(rbind.data.frame, 

output.percentile.others.low.ti.star) 

names(output.low.others.ti.star) = c("per.others.low.ti.star") 

output.upp.others.ti.star <- do.call(rbind.data.frame, 

output.percentile.others.high.ti.star) 

names(output.upp.others.ti.star) = c("per.others.high.ti.star") 

output.number.of.inf.obs.jab.ti.star <- do.call(rbind.data.frame, 

output.number.of.influential.observation.jab.ti.star) 

names(output.number.of.inf.obs.jab.ti.star) = c("number.of.inf.jab.ti.star") 

output.number.of.inf.obs.tra.ti.star <- do.call(rbind.data.frame, 

output.number.of.influential.observation.tra.ti.star) 

names(output.number.of.inf.obs.tra.ti.star) = c("number.of.inf.tra.ti.star") 

output.percent.of.time.ti.star <- do.call(rbind.data.frame, 

output.percentile.of.time.ti.star) 

names(output.percent.of.time.ti.star) = c("percentile.of.time.ti.star") 

result.per.of.time.ti.star <-  sum(output.percent.of.time.ti.star) / 

nrow(output.percent.of.time.ti.star) 

output.percent.of.time.tra.ti.star <- do.call(rbind.data.frame, 

output.percentile.of.time.tra.ti.star) 

names(output.percent.of.time.tra.ti.star) = c("percentile.of.time.tra.ti.star") 

result.per.of.time.tra.ti.star <-  sum(output.percent.of.time.tra.ti.star) / 

nrow(output.percent.of.time.tra.ti.star) 

 

output.genr.per.high.LDi <- do.call(rbind.data.frame, 

output.percentile.general.high.LDi) 

names(output.genr.per.high.LDi) = c("per.general.high.LDi")  
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output.upp.per.1.LDi <- do.call(rbind.data.frame, output.percentile.1.high.LDi) 

names(output.upp.per.1.LDi) = c("per.poi1.high.LDi") 

output.upp.others.LDi <- do.call(rbind.data.frame, output.percentile.others.high.LDi) 

names(output.upp.others.LDi) = c("per.others.high.LDi") 

output.number.of.inf.obs.jab.LDi <- do.call(rbind.data.frame, 

output.number.of.influential.observation.jab.LDi) 

names(output.number.of.inf.obs.jab.LDi) = c("number.of.inf.jab.LDi") 

output.number.of.inf.obs.tra.LDi <- do.call(rbind.data.frame, 

output.number.of.influential.observation.tra.LDi) 

names(output.number.of.inf.obs.tra.LDi) = c("number.of.inf.tra.LDi") 

output.percent.of.time.LDi <- do.call(rbind.data.frame, 

output.percentile.of.time.LDi) 

names(output.percent.of.time.LDi) = c("percentile.of.time.LDi") 

result.per.of.time.LDi <-  sum(output.percent.of.time.LDi) / 

nrow(output.percent.of.time.LDi) 

output.percent.of.time.tra.LDi <- do.call(rbind.data.frame, 

output.percentile.of.time.tra.LDi) 

names(output.percent.of.time.tra.LDi) = c("percentile.of.time.tra.LDi") 

result.per.of.time.tra.LDi <-  sum(output.percent.of.time.tra.LDi) / 

nrow(output.percent.of.time.tra.LDi) 

 

output.genr.per.low.Wi <- do.call(rbind.data.frame, 

output.percentile.general.low.Wi) 

names(output.genr.per.low.Wi) = c("per.general.low.Wi")  

output.genr.per.high.Wi <- do.call(rbind.data.frame, 

output.percentile.general.high.Wi) 

names(output.genr.per.high.Wi) = c("per.general.high.Wi")  

output.low.per.1.Wi <- do.call(rbind.data.frame, output.percentile.1.low.Wi) 

names(output.low.per.1.Wi) = c("per.poi1.low.Wi") 

output.upp.per.1.Wi <- do.call(rbind.data.frame, output.percentile.1.high.Wi) 

names(output.upp.per.1.Wi) = c("per.poi1.high.Wi") 

output.low.others.Wi <- do.call(rbind.data.frame, output.percentile.others.low.Wi) 

names(output.low.others.Wi) = c("per.others.low.Wi") 

output.upp.others.Wi <- do.call(rbind.data.frame, output.percentile.others.high.Wi) 

names(output.upp.others.Wi) = c("per.others.high.Wi") 

output.number.of.inf.obs.jab.Wi <- do.call(rbind.data.frame, 

output.number.of.influential.observation.jab.Wi) 

names(output.number.of.inf.obs.jab.Wi) = c("number.of.inf.jab.Wi") 

output.number.of.inf.obs.tra.Wi <- do.call(rbind.data.frame, 

output.number.of.influential.observation.tra.Wi) 

names(output.number.of.inf.obs.tra.Wi) = c("number.of.inf.tra.Wi") 

output.percent.of.time.Wi <- do.call(rbind.data.frame, output.percentile.of.time.Wi) 

names(output.percent.of.time.Wi) = c("percentile.of.time.Wi") 

result.per.of.time.Wi <-  sum(output.percent.of.time.Wi) / 

nrow(output.percent.of.time.Wi) 

output.percent.of.time.tra.Wi <- do.call(rbind.data.frame, 

output.percentile.of.time.tra.Wi) 

names(output.percent.of.time.tra.Wi) = c("percentile.of.time.tra.Wi") 
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result.per.of.time.tra.Wi <-  sum(output.percent.of.time.tra.Wi) / 

nrow(output.percent.of.time.tra.Wi) 

}) 

 

colMeans(output.genr.per.low.Wi) #average of all lower cut-offs of welsch's 

distance 

colMeans(output.genr.per.high.Wi) #average of all upper cut-offs of welsch's 

distance 

colMeans(output.low.per.1.Wi) #average of all lower cut-offs of re-samples 

which do not ###############################contain the deliberately inserted 

data point 

colMeans(output.upp.per.1.Wi) #average of all upper cut-offs of re-samples 

which do not ###############################contain the deliberately inserted 

data point 

colMeans(output.low.others.Wi) #average of all lower cut-offs of re-samples 

which do not ###############################contain each data point ( except 

inserted point)  

colMeans(output.upp.others.Wi) #average of all upper cut-offs of re-samples 

which do not ###############################contain each data point ( except 

inserted point) 

colMeans(output.number.of.inf.obs.jab.Wi) #number of flagged influential 

observations by #####################################jackknife-after-

bootstrap welsch's distance 

sqrt(var(output.number.of.inf.obs.jab.Wi)) #stdev of flagged influential 

observations 

colMeans(output.number.of.inf.obs.tra.Wi) #number of flagged influential 

observations by #####################################traditional welsch's 

distance 

sqrt(var(output.number.of.inf.obs.tra.Wi)) # stdev of flagged influential 

observations 

result.per.of.time.Wi   #Percent of times point identified of JaB method 

sqrt(var(result.per.of.time.Wi)) #stdev of Percent of times point identified of 

JaB 

result.per.of.time.tra.Wi  #Percent of times point identified of traditional 

method 

sqrt(var(result.per.of.time.tra.Wi)) # stdev of Percent of times point identified of 

traditional 

 

colMeans(output.genr.per.low.Ci.star) 

colMeans(output.genr.per.high.Ci.star) 

colMeans(output.low.per.1.Ci.star) 

colMeans(output.upp.per.1.Ci.star) 

colMeans(output.low.others.Ci.star)  # results for modified cook's distance 

colMeans(output.upp.others.Ci.star) 

colMeans(output.number.of.inf.obs.jab.Ci.star) 

sqrt(var(output.number.of.inf.obs.jab.Ci.star)) 

colMeans(output.number.of.inf.obs.tra.Ci.star) 

sqrt(var(output.number.of.inf.obs.tra.Ci.star)) 
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result.per.of.time.Ci.star 

sqrt(var(result.per.of.time.Ci.star)) 

result.per.of.time.tra.Ci.star 

sqrt(var(result.per.of.time.tra.Ci.star)) 

colMeans(output.genr.per.low.ti.star) 

colMeans(output.genr.per.high.ti.star) 

colMeans(output.low.per.1.ti.star) 

colMeans(output.upp.per.1.ti.star) 

colMeans(output.low.others.ti.star)  # results for t-star statistic 

colMeans(output.upp.others.ti.star) 

colMeans(output.number.of.inf.obs.jab.ti.star) 

sqrt(var(output.number.of.inf.obs.jab.ti.star)) 

colMeans(output.number.of.inf.obs.tra.ti.star) 

sqrt(var(output.number.of.inf.obs.tra.ti.star)) 

result.per.of.time.ti.star 

sqrt(var(result.per.of.time.ti.star)) 

result.per.of.time.tra.ti.star 

sqrt(var(result.per.of.time.tra.ti.star)) 

 

colMeans(output.genr.per.high.LDi) 

colMeans(output.upp.per.1.LDi) 

colMeans(output.upp.others.LDi)  # results for likelihood distance 

colMeans(output.number.of.inf.obs.jab.LDi) 

sqrt(var(output.number.of.inf.obs.jab.LDi)) 

colMeans(output.number.of.inf.obs.tra.LDi) 

sqrt(var(output.number.of.inf.obs.tra.LDi)) 

result.per.of.time.LDi 

sqrt(var(result.per.of.time.LDi)) 

result.per.of.time.tra.LDi 

sqrt(var(result.per.of.time.tra.LDi)) 

 

#################################################################### 

There is no need to writing new codes for sufficient jackknife-after-bootstrap. 

Writing sufficient bootstrap codes instead of conventional bootstrap codes is enough. 

Sufficient bootstrap codes should be as follows. 

########################## Sufficient bootstrap ######################### 

 

re.sample <- runif(n, 1, n) 

re.sample <- as.integer(re.sample) 

unique.sample <- unique(re.sample) 

Sufficient.data <- Design.data[unique.sample,] 

dataX <- Sufficient.data[,1:ncol(X)] 

dataY <- Sufficient.data[,(ncol(X)+1)] 

 

#################################################################### 
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