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SECURE DATA TRANSMISSION OVER WIRELESS NETWORKS 

ABSTRACT 

 

 Authentication and encryption are the core security concepts of Wireless LAN. 

Today, very strong security mechanisms for WLAN do exist. If proper WLAN 

security solutions are deployed, a wireless network can be as secure as the wired 

network. An 802.1X/EAP framework allows a variety of specific methods to be used 

for the authentication and key management procedures. There are two major sets of 

EAP-methods, which are password-based and certificate-based. The password-based 

EAP-types provide lightweight processing and are very convenient. But many of 

them are susceptible to the offline dictionary attacks, and hence considered weak. On 

the other hand, the certificate-based methods provide strong security as well as allow 

password-based authentication methods to be used. The certificate-based methods 

achieve these security properties using Transport Layer Security (TLS) Handshake 

protocol that establishes authenticated and encrypted tunnel. Within tunnel, 

password-based methods can run securely. The significant downside of certificate-

based methods is the requirement of Public Key Infrastructure (PKI) which is costly 

to implement and hard to manage. This research's aim is an analysis of TLS-based 

EAP protocols used in WLAN. We have chosen only wide deployed RFC-based 

EAP types because of their availabilities and standards based property. We mainly 

focus on the EAP-FAST protocol because of its attracting security features. The 

EAP-FAST protocol differs from other TLS-based EAP types on using shared secret 

keys instead of certificates, thus significantly increasing performance. EAP-FAST 

provides not only the same security level as other strong TLS-based methods, but 

also convenience and efficiency by using PACs. We validated different 

authentication scenarios of EAP-FAST protocol using an AVISPA model checker.  

 

Keywords: Wireless LAN Security, 802.1X, Extensible Authentication Protocol 

(EAP), 802.11 Authentication and Key Management, Tunnel-based EAP methods, 

AVISPA. 
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KABLOSUZ AĞLAR ÜZERİNDEN GÜVENLİ VERİ İLETİMİ 

ÖZ 

 

 Kimlik doğrulama ve şifreleme Kablosuz Yerel Alan Ağları’nın (KYAA) temel 

güvenlik kavramlarıdır. Günümüzde KYAA için çok güçlü güvenlik çözümleri 

mevcuttur. Eğer uygun KYAA güvenlik çözümleri uygulanırsa, kablosuz ağ da 

kablolu ağ kadar güvenli olabilir. 802.1X/EAP taslağı kimlik doğrulama ve anahtar 

yönetimi prosedürlerinde kullanılmak üzere çeşitli özellikli metotlara izin verir. EAP 

metotları şifre-bazlı ve sertifika-bazlı olarak iki ana gruba ayrılırlar. Şifre-bazlı EAP 

metotları hafif işlerde kullanılır ve çok elverişlidirler. Ama birçoğu şifre-bazlı 

metotlar çevrimdışı sözlük saldırılarına elverişlidir ve dolayısıyla zayıftırlar. Diğer 

taraftan, sertifika-bazlı metotlar güçlü güvenlik sağlarlar, aynı zamanda zayıf sayılan 

şifre-bazlı metotların da kullanılmasına izin verirler. Sertifika-bazlı metotlar bu 

güvenliği doğrulanmış ve şifrelenmiş tünel oluşturan TLS protokolünü kullanarak 

elde ederler. Bu tünelde şifre-bazlı metotlar güvenli olarak çalışırlar. Sertifika-bazlı 

metotların kötü yanı uygulaması pahalı ve yönetimi zor olan Açık Anahtar 

Altyapısına ihtiyaç duymalarıdır. Bu çalışmanın amacı KYAA’nda kullanılan TLS-

bazlı EAP protokollerinin analizidir. Sadece geniş çaplı kullanılan RFC tabanlı EAP 

tiplerini seçmemizin nedeni kullanılabilirlikleri ve standart tabanlı özelliğidir. 

Cezbedici güvenlik özelliklerinden dolayı özellikle EAP-FAST protokolünü 

odaklandık. EAP-FAST protokolü diğer TLS-bazlı EAP tiplerinden sertifikalar 

yerine paylaşılmış gizli anahtar kullanımlarından dolayı ayrılmaktadır ki bu da 

önemli şekilde performansı arttırmaktadır. EAP-FAST sadece diğer güçlü TLS-bazlı 

metotlar gibi aynı güvenlik seviyesini sağlamamakta aynı zamanda PAC’leri  

kullanarak elverişliliği ve verimliliği de sağlamaktadır. Bu çalışmada, EAP-FAST 

metodunun değişik doğrulama mekanizmalarını AVISPA model denetçisi ile 

onayladık. 

 

Anahtar sözcükler: Kablosuz yerel ağ güvenliği, 802.1X, Genişletilebilir Kimlik 

Doğrulama Protokolü (EAP), 802.11 Kimlik Doğrulama ve Anahtar Yönetimi, 

Tünel-bazlı EAP metotları, AVISPA. 
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CHAPTER ONE 

INTRODUCTION 

 

Nowadays, wireless is being offered everywhere and it is becoming more and 

more popular. The main reasons of preferring wireless network to wired network are 

(Dengg & others, 2009):  

 

 Flexibility 

 Mobility 

 High productivity 

 Easy of deployment 

 Expandability 

 Lower cost 

 

Contrary to the aforementioned features, wireless networking introduces new 

security issues that require new security solutions. Here is some example: 

 

Wireless technology works only at the Physical layer and the Media Access 

Control (MAC) sublayer of the Data-Link layer of the OSI model. The Logical Link 

Control (LLC) sublayer of the Data-Link layer and other upper layers are identical 

for all 802 - based networks. The physical layer for wireless is air (Figure 1.1). So, 

attackers do not need physical access to get data that is being transmitted freely and 

openly in the air. Thus strong encryption is needed to ensure data privacy (Coleman, 

Westcott, Harkins & Jackman, 2010).  

 

Most wireless networks provide a portal into wired networks. Portals have to 

provide strong authentication solution, which allows to pass only authorized users to 

the network resources. 

 

Today, very strong security mechanisms for wireless local area networks 

(WLAN) do exist. If proper WLAN security solutions are deployed, a wireless 

network can even be more secure than the wired network. For instance, in small 
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office/home office (SOHO) environments, WPA2-Personal mechanism should be 

used with strong passwords in order to secure the network, where enterprise 

corporate wireless networks should be secured with WPA2-Enterprise mechanism. 

Another example, there is no security at most Wi-Fi hot spots such that airports, 

cafe’s, metro, hotels. Such networks can be secured with VPN technology and 

Captive portals. The Virtual Private Networks (VPN) provides data privacy for 

remote access while Captive portals provide authentication. We can give many 

similar examples, and it is certain that with proper implementation of the security 

architectures, without doubt, we can be sure about the security of wireless network. 

 

 

Figure 1.1 Wireless operating layers (Institute of Electrical and Electronics 

Engineers [IEEE], 2007).  

 

Coleman, Westcott, Harkins & Jackman (2010) lists the five major wireless 

security components (Figure 1.2): 

 

 Data Confidentiality 

 Authentication 

 Segmentation 

 Monitoring 

 Policy 

 

Among above components, authentication and data confidentiality, which we 

analyzed in this research, are most important. 
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Figure 1.2 Major wireless security components.  

 

1.1 Evolution of WLAN Security 

 

The original 802.11 standard was published in June 1997 as IEEE Std. 802.11-

1997, and it defined an encryption protocol called Wired Equivalent Privacy (WEP) 

and two methods of authentication: Open System authentication and Shared Key 

authentication. These methods provided the authentication, confidentiality and 

integrity of WLAN in the past (Coleman & Westcott, 2009). Although now there 

exists much better and faster methods, the legacy methods are also being used 

because of legacy hardware which are not capable to support new authentication and 

confidentiality methods. These legacy security methods have been deprecated except 

Open System authentication. The deprecated methods should be avoided to use 

because of their weaknesses. 

 

In 2003, the Wi-Fi Alliance introduced the Wi-Fi Protected Access (WPA) 

certification as a snapshot of the not-yet-released 802.11i amendment. WPA 

introduced new 802.1X/EAP authentication and TKIP/RC4 dynamic encryption-key 

generation methods (Coleman, Westcott, Harkins & Jackman, 2010). Temporal Key 

Integrity Protocol (TKIP), uses the RC-4 stream cipher algorithm. It was basically an 

enhancement of WEP encryption and was considered just an interim solution. In 

2008, some flaws  were found in TKIP/RC4. 
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In 2004, the 802.11i amendment was ratified by the IEEE and published as IEEE 

Std. 802.11i-2004. The same year, the Wi-Fi Alliance introduced a more complete 

implementation of the 802.11i amendment which is referred to as Wi-Fi Protected 

Access 2 (WPA2) certification. The 802.11i amendment was one of the most 

important enhancements to the original 802.11 standard. The amendment fully 

defined a robust security network (RSN) with stronger encryption and better 

authentication methods. The major enhancement of the amendment was a stronger 

encryption method called Counter Mode with Cipher Block Chaining Message 

Authentication Code Protocol (CCMP), which uses the Advanced Encryption 

Standard (AES) algorithm. The encryption method is often abbreviated as 

CCMP/AES or just CCMP. The 802.11i amendment also defines an optional 

encryption method TKIP/RC4 (Figure 1.3) (IEEE, 2004b).  

 

 

Figure 1.3 The 802.11 security timeline.  

 

Both WPA and WPA2 have two versions:  

 

 WPA/WPA2-Personal defines security mechanisms for a Small Office/Home 

Office (SOHO) environment.  

 WPA/WPA2-Enterprise defines security mechanisms for enterprise corporate 

networks.  

 

The main differences between these versions are authentication methods. IEEE 

802.1X authorization framework or (PSKs). An IEEE 802.1X/EAP authentication 

method used within WPA/WPA2-Enterprise while preshared key (PSK) based 

authentication is used within WPA/WPA2-Personal.  
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In June 2007, IEEE published new IEEE Std. 802.11-2007 standard which 

includes eight amendments. The 802.11i security amendment is also now part of the 

802.11-2007 standard. All aspects of the 802.11i ratified security amendment can be 

found in clause 8 of the 802.11-2007 standard (Figure 1.4). The 802.11-2007 

standard as the most current guideline to provide operational parameters for WLANs 

(Table 1.1) (IEEE, 2007).  

 

Table 1.1 The 802.11 standards and certifications (Coleman, Westcott, Harkins & Jackman, 2010).  

802.11 

Standard 

Wi-Fi Alliance 

Certification  

Authenticatio

n Method 

Encryption 

Method 
Cipher 

Key 

Generation 

802.11-1997 
 

Open system, 

Shared Key 
WEP RC4 Static 

 WPA-Personal WPA PSK TKIP RC4 Dynamic 

 WPA-Enterprise 802.1X/EAP TKIP RC4 Dynamic 

802.11-2007 WPA2-Personal WPA2 PSK CCMP (mandatory) AES Dynamic 

 

 

 TKIP (optional) RC4  

802.11-2007 
WPA2-

Enterprise 
802.1X/EAP CCMP (mandatory) AES Dynamic 

 

 

 TKIP (optional) RC4  

 

 

Figure 1.4 The 802.11 security evolution.  
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The 802.11-2007 standard defines a robust security network (RSN) and robust 

security network associations (RSNAs). RSNA is an association, in which two 

stations authenticate and associate with each other as well as create dynamic 

encryption keys that are unique between those two stations. A robust security 

network (RSN) is a network that allows for the creation of only robust security 

network associations (RSNAs). In RSN, CCMP/AES encryption is the mandated 

encryption method, while TKIP/RC4 is an optional encryption method. It is also 

possible to create pre-robust security network associations (pre-RSNAs) using legacy 

security methods, defined in the 802.11-1997 standard, in the same basic service set 

(BSS) along with RSN-security defined mechanisms. Such networks referred to as 

Transition Security Networks (TSN). The summary of security mechanisms used in 

WLANs is shown in Figure 1.5. 

 

1.2 RSNA Establishment  

 

RSNA establishment procedure consists of 802.1X authentication and key 

management protocol known as the Four-Way Handshake. RSNA establishment 

procedure involves three entities: the wireless station which may be laptop or PDA, 

access point and authentication server that is typically RADIUS server. A successful 

RSNA established means that the station and the access point verified each other’s 

identity and derived some keys for secure data communication with each other. The 

RSNA establishment stages in enterprise network may be listed as follows:  

 

 Discovery of the network and its capabilities 

 Open System authentication and association to the network 

 802.1X/EAP Authentication  

 Generation of Master and Temporal keys  

 Secure data communication  

 

In SOHO environments, where there is no RADIUS server, preshared keys will be 

used in generation of Master keys. Thus the 802.1X/EAP authentication step will be 

omitted.  
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Figure 1.5 The 802.11-2007 standards security.  

 

This research discusses RSNA establishment procedures in infrastructure 

networks and analyzes tunnel-based Extensible Authentication Protocols (EAP) 

which are used within 802.1X/EAP framework (Figure 1.5). We have chosen only 

wide deployed RFC-based EAP types because of their availabilities and standards 

based property. We mainly focus on the EAP-FAST protocol because of its attracting 

security features. The EAP-FAST protocol differs from other tunnel-based EAP 

types on using shared secret keys instead of certificates, thus significantly increasing 

performance. EAP-FAST provides not only the same security level as other strong 

tunnel-based methods, but also convenience and efficiency by using Protected 

Access Credentials (PACs). We validated different authentication scenarios of the 

EAP-FAST protocol and the four-way handshake key management protocol using an 

Automated Validation of Internet Security Protocols and Applications (AVISPA) 

model-checker.  

 

1.3 Organization of Thesis 

 

This research consists of six chapters. Chapter two describes the RSNA 

Establishment procedures. Chapter three discusses and compares the TLS-based EAP 

methods. Chapter four introduces the AVISPA tool. Chapter five focuses on 

validation of protocols and analyzes the output results. Finally, chapter six concludes 

the research. 

  



 

8 

 

CHAPTER TWO 

AUTHENTICATION AND KEY MANAGEMENT 

 

This chapter fully focuses on RSNA establishment procedures. RSNAs 

established using authentication and key management (AKM) services which is 

defined in the 802.11-2007 standard. The AKM services consist of a set of 

algorithms which require both authentication processes and the generation and 

management of encryption keys. Many of these algorithms are non-IEEE-802 

protocols that were defined by other standards organizations, such as the Internet 

Engineering Task Force (IETF). An authentication and key management protocol 

(AKMP) can be either a preshared key (PSK) or an EAP protocol used during 

802.1X authentication. The main goals of 802.1X/EAP are the validation of stations' 

credentials (authentication) and granting access for the station to network resources 

(authorization). Although authentication and encryption have different goals and are 

different processes, they are linked together in AKM services. Authorization is not 

finalized until encryption keys are created and encryption keys cannot be created 

without authentication. 

 

Figure 2.1 The AKM operations within enterprise.  
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In enterprise network, where the 802.1X/EAP authentication solution is used, 

AKM operations will be as shown in Figure 2.1.  

 

In SOHO environments, generally there is no use of the 802.1X/EAP 

authorization framework, the AKM procedures will look like as shown in Figure 2.2. 

In this environment, preshared key becomes the Master key which is consequently 

used in derivation of data encryption/decryption keys. 

 

 

Figure 2.2 The AKM operations within SOHO.  

 

Before discussing details in each stage of AKM process, it is important to 

understand some concepts of WLAN such as BSS, IBSS and ESS.  

 

WLAN operates in ad-hoc mode or infrastructure mode.  

 

In infrastructure mode, the wireless network contains at least one wireless access 

point (AP), a device that bridges wireless stations to each other and to a wired 

network. Stations that are members of a BSS are termed as “associated”. Stations 

cannot communicate directly with each other unless they go through the access point. 

The infrastructure mode is also referred as Basic Service Set (BSS) (Figure 2.3). Two 
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or more basic service sets connected by a distribution system is called an extended 

service set (ESS). In this research, we will focus on only infrastructure networks.  

 

In ad-hoc mode, the wireless network contains no wireless APs. Wireless stations 

connect and communicate directly with each other. The ad-hoc mode is also known 

as Independent Basic Service Set (IBSS). 

 

 

Figure 2.3 The infrastructure network (BSS).  

 

 The following sections will explain all stages of Figure 2.1 and Figure 2.2 in 

details.  

 

2.1 Stage 1: Discovery of Security Capabilities 

 

Within a BSS, prior to authentication to occur, a station and an access point (AP) 

should learn the RSN capabilities of each other. RSN security can be identified by a 

RSN information element (RSNIE) field found in certain 802.11 management 

frames. The RSN information element identifies the supported encryption cipher 

suites (WEP, TKIP, CCMP/AES) and the supported authentication methods 

(802.1X/EAP or PSK) of both the AP and the station (Figure 2.4). The RSN 

information element field is found in four different 802.11 management frames: 

beacon frames, probe response frames, association request frames and reassociation 

request frames.  
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Figure 2.4 The RSN information element (IEEE, 2007).  

 

The station discovers an access point by either active or passive scanning. In 

passive scanning, the station listens for the beacon frames that are continuously 

being sent by the access points (Figure 2.5). In active scanning, the station transmits 

probe requests to the AP which in turn replies with probe response (Figure 2.6). If 

the station hears beacons or receives probe responses from multiple access points, it 

will connect to the AP which has the best signal strength and quality.  

 

 

 Figure 2.5 Passive scanning (IEEE, 2007).  

 

 

 Figure 2.6 Active scanning (IEEE, 2007).  

 

The access point learns about the station's security capabilities through association 

request frames or reassociation request frames send by the station (Figure 2.7).  
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Figure 2.7 The 802.11 association (IEEE, 2007).  

 

2.2 Stages 2 and 3: 802.11 Authentication and Association 

 

The authentication and association states in WLAN are often misunderstood. 

Authentication is the first of two steps required to connect to the 802.11 network. 

Here, authentication doesn't mean to enter username and passwords in order to get 

access to the network resources. This authentication occurs at Layer 2 of the OSI 

model to create an initial connection between two stations. After the station has 

authenticated with the access point, the association process takes place. Once 

authentication and association occurs, the client STA establishes a Layer 2 

connection to the AP and is considered as a member of the BSS. Only the associated 

station can send data through the access point to another device on the network. Both 

authentication and association must occur, in that order. Figure 2.8 shows the 

authentication and association states.  

 

Figure 2.8 The 802.11 authentication and 

association states (Coleman & Westcott, 2009).  
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2.2.1 802.11 Authentication Methods 

 

Open System authentication is considered as a null authentication. Every station is 

validated during Open System authentication, because there is no exchange or 

verification of identity between the devices. To provide data privacy, WEP 

encryption can be used only after authentication and association occur. Although 

Open System authentication does not provide any identity verifications, it is still used 

prior to the 802.1X/EAP authentication (Coleman, Westcott, Harkins & Jackman, 

2010). It is the only pre-RSNA security mechanism that has not been deprecated. 

Open system authentication is a two-way authentication frame exchange, as shown in 

Figure 2.9.  

 

 

 Figure 2.9 The 802.11 open system authentication (IEEE, 2007).  

 

Shared Key authentication uses WEP keys to authenticate stations. The same 

static WEP keys must be manually configured on the AP and on all stations i.e. 

members of the BSS. Authentication will not work if the static WEP keys do not 

match. The same static WEP key that was used during the Shared Key authentication 

process will also be used to encrypt the 802.11 data frames (Figure 2.10). 

 

2.2.1.1 Open System Authentication vs. Shared Key Authentication 

 

It might seem Shared Key authentication is more secure than Open System 

authentication, since the Open System authentication offers no real authentication. 
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However, it is quite the opposite. With Open System authentication, anyone can 

associate to the access point but they can't pass traffic because they don't have the 

WEP key. When using Shared Key authentication, it is possible to derive the key 

stream used for the handshake by capturing the challenge frames. Hence, using Open 

System authentication together with WEP encryption is better than Shared Key 

authentication with WEP encryption (Figure 2.11) (Coleman, Westcott, Harkins & 

Jackman, 2010).  

 

 

Figure 2.10 The 802.11 shared key authentication (Coleman, 

Westcott, Harkins & Jackman, 2010).  

 

 

Figure 2.11 The vulnerability of shared key authentication.  
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2.2.2 802.11 Association 

 

As it is said earlier, association occurs only after authentication. Associated 

station means that the station is a member of a basic service set (BSS) and it can send 

data through the access point. Association is also simple process that is done by two-

way frame exchange as shown in Figure 2.7.  

 

2.3 Stage 4: An 802.1X/EAP Authentication  

 

The IEEE 802.11-2007 WLAN standard defines how 802.1X mechanisms are 

used for authentication and port control within an 802.11 WLAN. These mechanisms 

will be described in detail in this section. Before getting into the details of 

802.1X/EAP Authorization framework, we should be sure about the following 

security concepts:  

 

 Authentication is the verification of users’ identity and credentials. 

 Authorization is the allowing authenticated users to access to network 

resources and services. As it is clear, authentication occurs before 

authorization. 

 

2.3.1 The 802.1X Standard 

 

An IEEE 802.1X-2004 is a port-based access control standard that defines the 

mechanisms necessary to authenticate and authorize devices to use network 

resources. The 802.1X standard does not specify all of the components needed to 

implement a complete port-based authentication system, but it requires the use of 

several other standards and protocols, written by different organizations, such as an 

Extensible Authentication Protocol (EAP) and Remote Authentication Dial-in User 

Service (RADIUS) protocol. All of these standards and protocols work together and 

enable an 802.1X port-based authentication system to operate. The 802.1X operates 

at Layer 2 of OSI model with virtual ports of access points in WLAN. Every station 

within BSS is associated with the access point through virtual ports (IEEE, 2004a). 
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The 802.1X/EAP Authorization Framework consists of three main components: 

 

Supplicant: A software application that performs the 802.1X endpoint services on 

a client device such as a laptop or PDA. There are many different types of supplicant 

client utility software exist (Figure 2.12). Each has its advantages and drawbacks. 

Some of them are free while some come with cost. Generally costly ones offer a 

more robust set of configuration parameters and can operate on multiple OS 

platforms and device platforms. When choosing supplicants the very important 

property is: its support for EAP-method type that is used within 802.1X/EAP 

authentication. Each supplicant has unique authentication credentials that are verified 

by the authentication server. 

  

Figure 2.12 Windows 7 supplicant (right) and a secureW2 (left) which is 

the open-source EAP-TTLS client for Microsoft Windows platforms. 

 

Depending on which EAP-method type is used, the supplicant identity credentials 

can be in many different forms as follows:  

 Usernames and passwords 

 Preshared keys (PSK) 

 Digital certificates 

 Smart cards 

 Token devices 

 RFID tags 

 Biometrics 
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Authenticator: A Layer 2 device that blocks or allows traffic to pass through its 

port entity. It maintains two virtual ports: an uncontrolled port and a controlled port. 

The uncontrolled port allows only EAP authentication traffic to pass through, while 

the controlled port stays closed until the authentication server verifies the credentials 

of the supplicant. The authenticator does not validate the supplicant’s credentials, it 

is essentially an intermediary device that passes certain messages between the 

supplicant and the authentication server. It is also important to understand that the 

authenticator doesn't need to know any specific EAP-method type, but just requires 

EAP authentication. In a WLAN, the authenticator is usually either an Access Point 

or a WLAN controller.  

 

Authentication Server: A server that validates the credentials of the supplicant that 

is requesting access. The authentication server and the supplicant communicate using 

a Layer 2 EAP authentication protocol. If the supplicant's credentials are successfully 

verified, the authentication server notifies the authenticator that the supplicant has 

been authorized. The Table 2.1 contains several examples of authentication servers. 

Typically a Remote Authentication Dial-in User Service (RADIUS) server is used as 

an authentication server. But any Lightweight Directory Access Protocol (LDAP) - 

compliant database can be used as the authentication server, too. 

 

Table 2.1 Widely deployed authentication servers (Coleman, Westcott, Harkins & Jackman, 2010).  

Product Name Protocol 

Cisco ACS RADIUS 

Juniper Steel Belted RADIUS RADIUS 

Microsoft NAP (Windows Server 2008) RADIUS 

Microsoft AD 2003 and higher Kerberos and LDAP  

FreeRADIUS (open source) RADIUS 

 

The authentication server will maintain a user database or may proxy with an 

external user database to authenticate user credentials (Figure 2.13). In some cases, 

the authentication server may be embedded in the authenticators. This authentication 

server model significantly reduces authentication traffic over the network, thus 

increases authentication performance. This can be particularly useful in small sites. 
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The embedded authentication servers that are incorporated into many of the WLAN 

APs and controllers are not as full featured as the dedicated RADIUS servers. 

 

 

Figure 2.13 Proxy authentication (Coleman, Westcott, Harkins & Jackman, 2010). 

 

In order to communicate with each other, the RADIUS server and the 

authenticator need to be configured with each others' IP Adresses, UDP ports (1645 

or 1812) and with a shared secret. The shared secret is only used to validate and 

encrypt the communication link between the authenticator and the server.  

 

Not only the supplicant, but also the authentication server needs to present its 

credentials to the supplicant when there is mutual authentication. Strong EAP 

authentication methods provide mutual authentication between the supplicant and the 

server to prevent primarily man-in-the-middle attacks and other such attacks. 

 

2.3.2 Extensible Authentication Protocol (EAP) 

 

The Extensible Authentication Protocol (EAP) is the Layer 2 protocol used within 

an 802.1X framework. EAP is designed flexible to support many different specific 

authentication protocols. EAP is a lock-step protocol, which means only one packet 

is delivered at a time in order, out of order reception is not supported. In other words, 

other than the initial Request, a new Request cannot be sent prior to receiving a valid 

response. The 802.1X components are referred to as the followings:  

 

 Supplicant     :  Peer 

 Authenticator    :  Network Access Server (NAS) 

 Authentication server :  EAP server/AAA server 
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NAS devices need to support the 802.1X in order to use EAP, but they do not 

have to understand each authentication method and may act as a pass-through agent 

for a backend authentication server (Figure 2.14) (Aboba, Blunk, Vollbrecht, Carlson 

& Levkowetz, 2004).  

 

 

Figure 2.14 Pass-through mode of authenticator (Aboba, Blunk, Vollbrecht, Carlson & 

Levkowetz, 2004).  

 

There are four EAP frame types: Request, Response, Success and Failure. The 

supplicant can only issue EAP-Response frames, and the authenticator can perform 

EAP-Request, Success, and Failure frames. EAP-Request and EAP-Response 

packets carry the specific EAP-Method protocol data while EAP-Success and EAP-

Failure packets carry no data but the result of the authentication process. 

 

2.3.3 EAP Carrier Protocols 

 

2.3.3.1 EAPOL Protocol 

 

A specific EAP-method protocol implements the actual authentication process 

between a supplicant and an authentication server. EAP packets carry the EAP-

Method protocol data. EAPOL packets transport the EAP packets, and 802.11 data 

frames carry the EAPOL packets between the supplicant and the authenticator. The 

encapsulation of packets is shown in Figure 2.15.  
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Figure 2.15 EAPOL encapsulation (Geier, 2008). 

 

There are five major types of EAPOL messages, from which only one type carries 

EAP packets. Table 2.2 summarizes the EAPOL frames.  

 

Table 2.2 EAPOL packets (Coleman, Westcott, Harkins & Jackman, 2010). 

Name Description 

EAP-Packet Only this frame carries EAP packets. 

EAPOL-Start 
The supplicant can use this frame to initiate the EAP process. This frame is 

optional.  

PEAPOL-Logoff 
This frame terminates an EAP session and return the authenticated port to an 

unauthorized state.  

EAPOL-Key This frame is used to exchange dynamic keying information.  

EAPOL-Encapsulated-

ASF-Alert 
This frame is used to send alerts.  

 

The EAPOL-Start and the EAPOL-Encapsulated-ASF-Alert frames are only sent 

by the supplicant to authenticator, while other frames can be sent to each side. 

 

2.3.3.2 RADIUS Protocol 

 

RADIUS provides the “transportation” of the EAP packets between the 

authenticator and the authentication server. RADIUS frames are sent using a lock-

step mechanism i.e. frames are sent in order. All EAP-method data is transported in 

encrypted format (Aboba & Calhoun, 2003). The followings are RADIUS frame 

types:  
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 Access-Request 

 Access-Challenge 

 Access-Accept 

 Access-Reject 

 Accounting-Request 

 Accounting-Response 

 

An Access-Request and an Accounting-Request frames are sent by the 

authenticator to the RADIUS server. The other frames are sent by RADIUS server to 

the authenticator. As it is seen, the authenticator acts as a translator between the 

supplicant and the RADIUS server (Figure 2.16). 

 

 Figure 2.16 Authenticator acts as a translator (Geier, 2008).  

 

2.3.4 EAP Methods 

 

 Figure 2.17 An 802.1X layering (Haas, 2010).  
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An EAP-Method actually implements the authentication process, whereas other 

protocols, such as EAPOL and RADIUS, merely transport the EAP-Method data. 

The layered authentication framework is shown in Figure 2.17 and the generic EAP 

exchange is shown in Figure 2.18.  

 

 

Figure 2.18 Generic EAP exchange (Coleman, Westcott, Harkins & Jackman, 2010).  

 

There are a number of EAP-methods, some are defined in RFCs and many others 

are proprietary. EAP-Methods make use of different types of credentials, such as 

username/passwords, pre-shared keys and digital certificates. The EAP specification, 

RFC 3748, defines three EAP-methods. They are EAP-MD5 (MD5 Challenge), 

EAP-OTP (One-Time Passwords) and EAP-GTC (Generic Token Card). These EAP-

methods are very simple and provide only one-way authentication, thus there is no 

generation of keys. These methods do not meet requirements of EAP protocol, they 

should be avoided. All EAP implementations are required to support these methods. 

As weak EAP-methods do exist, there are also very strong EAP-methods. In next 

chapter we will discuss in details the TLS-based EAP methods, which are very 

popular and widely used in today's networks. 
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2.4 Stages 5, 6 and 7: Key Management  

 

The IEEE 802.11-2007 WLAN standard defines how 802.11 and 802.1X 

mechanisms are used together to provide for robust secure key management. This 

section focuses on key management procedures. 

 

The goals of authentication and encryption are very different. Authentication 

provides mechanisms for verification of users’ identity and credentials, while 

encryption provides mechanisms for data privacy or confidentiality. But they are 

linked together in AKM services. The authentication process provides the seeding 

material to create the necessary encryption keys i.e. encryption keys cannot be 

created without authentication. 

 

2.4.1 RSNA Key Hierarchy  

 

A successful 802.1X/EAP mutual authentication will generate a key known as 

Master Session Key. Both, the supplicant and the authentication server will create the 

same MSK separately. The generation of the MSK from the EAP process is EAP 

method specific. The MSK is also referred to as the AAA key.  

 

The MSK is used as seeding material to create another master key called Pairwise 

Master Key (PMK). The PMK is simply computed as the first 256 bits (bits 0–255) 

of the MSK. The PMK derivation will occur in both parties: the supplicant and the 

authentication server. Every supplicant will have its own unique PMK. PMK is 

generated every time the supplicant authenticates or reauthenticates (IEEE, 2007). 

After the generation of the PMK, the authentication server securely transfers the 

PMK to authenticator (Figure 2.1, Stage 5). The server will delete the PMK from its 

disk.  

 

In SOHO environments, where there is no 802.1X/EAP solution, preshared key 

becomes the PMK (Figure 2.2, Stage 4). In fact, SOHO users are more familiar with 

using passwords rather than preshared keys. In this case, preshared key can be 
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generated from password. The formula to convert a password to a PSK is given 

below: 

 

PSK = PBKDF2 ( passphrase, ssid, ssidLength, 4096, 256 ) 

where 

PSK         : preshared key, 

PBKDF2     : password-based key generation function, 

passphrase  : user password, 

ssid         : an 802.11 wireless network name, 

ssidLength   : the number of octets of the ssid, 

4096         : the number of times the passphrase is hashed, 

256          : the number of bits output by the passphrase mapping. 

 

The above PSK generation process will occur in each station that is a member of 

BSS in SOHO environment. As a result, every station will have the same PMK. It 

should be noted that, weak passwords are highly susceptible to social engineering 

attacks and offline dictionary attacks (Coleman, Westcott, Harkins & Jackman, 

2010).  

 

Figure 2.19 Key hierarchy of RSN.  

 

Another master key, known as the group master key (GMK), is randomly created 

on the authenticator. The PMK and the GMK master keys are not used to encrypt or 

decrypt 802.11 data. They will be used as seeding material for the Four-Way 

Handshake process which creates temporal keys that are used to encrypt and decrypt 
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802.11 data frames between the station and the access point. The keys generated 

from the Four-Way Handshake are called the pairwise transient key (PTK) and the 

group temporal key (GTK). The PTK is generated using the PMK and the GTK is 

generated using GMK keys (Figure 2.19) (IEEE, 2007).  

 

The PTK is unique between each individual station and the access point and it 

encrypts all unicast transmissions between them. PTK is composed of three sub keys: 

 

 Key Confirmation Key (KCK) is used to provide data integrity during the 4-

Way Handshake and Group Key Handshake. 

 Key Encryption Key (KEK) is used by the EAPOL-Key frames to provide 

data privacy during the 4-Way Handshake and Group Key Handshake. 

 Temporal Key (TK) is used to encrypt and decrypt the 802.11 data frames 

between the supplicant and the authenticator (Figure 2.20).  

 

 

Figure 2.20 Pairwise transient key (Coleman, Westcott, 

Harkins & Jackman, 2010).  

 

The GTK is shared among all stations and the single access point. GTK is used to 

encrypt all broadcast and multicast frames (Figure 2.21). 

 

The PTKs and the GTKs used for encryption are either CCMP/AES or 

TKIP/RC4. 
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Figure 2.21 Group temporal key (Coleman, 

Westcott, Harkins & Jackman, 2010).  

 

2.4.2 The Four-Way Handshake  

 

 

Figure 2.22 The four-way handshake protocol (IEEE, 2007).  
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As mentioned above, the Four-Way Handshake finalizes the AKM process by 

generating PTK for encryption of unicast transmissions and a GTK for encryption of 

broadcast/multicast transmissions. The Four-Way Handshake process occurs 

between the supplicant and the authenticator. The EAPOL-Key frame messages are 

used within Four-Way Handshake process to confirm the existence of the same 

PMK, verify the selection of the cipher suite, derive and install a fresh PTK for the 

following data session. The authenticator might also distribute a GTK to the 

supplicant if necessary. After the successful Four-Way Handshake, the virtual 

controlled port of the authenticator is unblocked. All 802.11 data frames that are 

encrypted with appropriate keys are can pass through the authenticator (Figure 2.22). 

The complete message exchange details of the Four-Way Handshake process are 

given in chapter four in Alice & Bob Notation form. 

 

2.4.3 The Group Key Handshake 

 

An authenticator may change the GTK on disassociation or deauthentication of a 

client station. In such cases, the authenticator will generate a fresh Group Transient 

Key (GTK) and distribute this GTK to the supplicants. The Group Key Handshake is 

used only to issue a new GTK to all stations that already have an original GTK 

generated by an earlier Four-Way Handshake. The Group Key Handshake is 

identical to the last two frames of the Four-Way Handshake process (Figure 2.23).  

 

 Figure 2.23 The group key handshake protocol (IEEE, 2007).  



28 

 

 

 

2.5 Stage 8: Secure Data Communication  

 

The 802.11-2007 standard defines three encryption methods that operate at Layer 

2 of the OSI model: WEP, TKIP, and CCMP. All these encryption methods use 

symmetric algorithms. Symmetric algorithms are faster and require less computer 

processing power than asymmetric algorithms. Using the PTK (or GTK) and the 

negotiated cipher suite from above handshakes, all upper layer data, through layer 3 

to layer 7, is encrypted prior to transmission and then decrypted after being received. 

The PTKs and the GTKs used for encryption may be either TKIP/RC4 or 

CCMP/AES (Coleman, Westcott, Harkins & Jackman, 2010) (Figure 2.24).  

 

Wired Equivalent Privacy (WEP) is a Layer 2 security protocol that uses the RC4 

streaming cipher. WEP uses a preconfigured static key that is shared between access 

point and all stations. WEP runs a cyclic redundancy check (CRC) for data integrity. 

It is not cryptographically strong integrity protection. Due to its many vulnerabilities, 

WEP has been deprecated. WEP is still supported only for backward compatibility 

within TSN.  

 

Figure 2.24 RSNA within BSS.  

 

Temporal Key Integrity Protocol (TKIP) is an enhancement of WEP that also uses 

the RC4 algorithm as WEP does. It was created to provide a stronger security 

solution without requiring users to replace their legacy equipment. With just a 

firmware upgrade, it is possible to use TKIP within legacy equipments. TKIP uses 

dynamically created encryption keys and a stronger data integrity check known as 
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the Message Integrity Code (MIC). TKIP addresses many known weaknesses of 

WEP. They are social engineering attacks, replay attacks, reinjection attacks, weak 

key attacks, bit-flipping attacks, forgery attacks, impersonation attacks, 

fragmentation attacks.  

 

TKIP was a short term solution. TKIP has been successfully used for five years 

until when some flaws were found in TKIP such as Beck-Tews attack, Ohiagi/Morii 

attack (Coleman, Westcott, Harkins & Jackman, 2010).  

 

Counter Mode with Cipher-Block Chaining Message Authentication Code 

Protocol (CCMP) was designed to replace TKIP and WEP. CCMP uses the AES 

block cipher algorithm. Legacy 802.11 devices that only supported WEP and TKIP 

had to be replaced with newer hardware to support CCMP/AES encryption 

processing. CCMP is made up of many different components that provide different 

functions. The Counter Mode (CTR) is used to provide data confidentiality. The 

Cipher-Block Chaining Message Authentication Code (CBC-MAC) is used for 

authentication and integrity. CCMP is mandatory in WPA2 networks, while 

TKIP/RC4 is mandatory in WPA networks (Coleman, Westcott, Harkins & Jackman, 

2010). The Table 2.3 depicts the properties of encryption methods used in 802.11.  

 

Table 2.3 The 802.11 encryption methods.  

Encryption method Cipher 
Key 

Generation 
Integrity Comments 

WEP  

(Wired Equivalent Privacy) 
RC4 Static ICV (CRC) 

 Has weaknesses 

 Has been cracked 

 Still deployed in enterprise 

TKIP 

(Temporal Key Integrity Protocol) 
RC4 Dynamic MIC 

 Enhancement of WEP 

 Needs firmware upgrade 

 Has flaws  

CCMP  

(Counter Mode with Cipher-Block 

Chaining Message Authentication 

Code Protocol) 

AES Dynamic CBC-MAC  Processor intensive 
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CHAPTER THREE 

TLS-BASED EAP METHODS 

 

The 802.1X does not specify an exact authentication method. The 802.1X uses the 

concept of an EAP framework that allows a variety of specific methods to be used 

for the authentication procedure. An EAP-method actually implements the 

authentication process between a peer and an authentication server. There are two 

major sets of EAP-methods, which are password-based and certificate-based. The 

password-based EAP-types provide lightweight processing and are very convenient. 

But many of them are susceptible to the offline dictionary attacks, and hence 

considered weak. On the other hand, the certificate-based methods provide strong 

security as well as allow password-based authentication methods to be used. The 

certificate-based methods achieve these security properties using Transport Layer 

Security (TLS) Handshake protocol that establishes authenticated and encrypted 

tunnel (Dierks & Rescorla, 2006, 2008). Within tunnel, password-based methods can 

run securely. The significant downside of certificate-based methods is the 

requirement of Public Key Infrastructure (PKI) which is costly to implement and 

hard to manage. As a result, there is a need for an EAP method that can provide the 

same level of security as certificate-based types as well as allows password-based 

methods run on it. EAP-FAST is the exactly protocol that we need. The EAP-FAST 

does not use certificates, instead it uses shared secret within TLS handshake protocol 

to establish secure tunnel and it does allow any password-based EAP-methods run 

within the tunnel. 

 

3.1 TLS-Based EAP Methods Overview 

 

In this chapter, we will discuss and compare the security properties of the widely 

used TLS-based EAP-methods which are defined in IETF RFCs used in WLAN 

(Table 3.1). Table 3.2 lists the EAP types that currently included in the Wi-Fi 

Alliance Certification program. All these EAP-methods use a TLS Handshake 

protocol. EAP-TTLS, PEAP and EAP-FAST methods are tunnel-based methods that 

extend the EAP-TLS protocol. Tunnel-based methods are constructed as combination 
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of two protocols: an outer protocol and an inner protocol. The outer protocol is the 

TLS Handshake protocol which establishes encrypted TLS tunnel to protect the 

exchange of the inner protocol messages. The inner protocol is usually the weak 

password-based protocol. Weak, legacy protocols are used as an inner protocol 

because they are already widely deployed and work lightweight. The tunnel-based 

protocols provide mutual authentication and run in two phases. In the first phase, the 

outer protocol runs and authenticates the server to the peer. The inner protocol is 

typically used for peer authentication, in the second phase. As a result of successful 

authentications, both the outer and the inner protocols derive some keys (Figure 3.1). 

Among TLS-based protocols, in this chapter we mainly focus on the EAP-FAST 

protocol because of its attracting security features. 

 

Table 3.1 TLS-based EAP methods defined in IETF RFCs. 

EAP-types RFCs Category Publication Date 

EAP-TLS RFC 5216 Standards Track March, 2008  

EAP-TTLSv0 RFC 5281 Informational August, 2008 

EAP-TTLSv1 draft-funk-eap-ttls-v1-01.txt Informational March, 2006 

PEAPv0 draft-kamath-pppext-peapv0-00.txt Informational October, 2002 

PEAPv1 draft-josefsson-pppext-eap-tls-eap-05.txt Informational September, 2002 

PEAPv2 draft-josefsson-pppext-eap-tls-eap-10.txt Informational October, 2004 

EAP-FASTv1 RFC 4851 Informational May, 2006 

EAP-FASTv2 draft-ietf-emu-eap-tunnel-method-01.txt Standards Track October, 2011 

 

Table 3.2 TLS-based EAP methods included in the WFA certification program 

EAP Types  Comments 

EAP-TLS Client certificate can be stored on a smartcard 

EAP-TTLS/MSCHAPv2 Well supported by Cisco and Microsoft 

PEAPv1/EAP-GTC Not supported by Windows OS, so not really deployed 

PEAPv0/EAP-MSCHAPv2 Method mainly supported by Microsoft 

EAP-FAST A protocol proposal by Cisco Systems 
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Figure 3.1 Tunnel-based EAP methods overview (Hoeper & Chen, 2009).  

 

Tunnel-based EAP methods were introduced for several reasons:  

 

 To enable the use of password-based authentication methods for peers. As 

mentioned before, without tunneling, widely deployed password-based 

authentication methods are insecure.  

 To enable privacy protection. Not only the peer identity but also the server 

identity can be protected.  

 To enable the execution of multiple authentication methods. In cases, where 

both a machine authentication and the user authentication are required we 

will need to provide multiple authentications. Since a tunnel-based EAP 

method is considered as one authentication method and, thus, multiple 

authentication methods may be executed within the protective tunnel. 

 

3.2 EAP-TLS 

 

EAP-Transport Layer Security (EAP-TLS) is defined in RFC 5216 and is 

considered one of the most secure EAP methods available today. The EAP-TLS has 

the broadest support in supplicants and authentication servers. EAP-TLS requires 

both the peer and the authentication server have X.509 certificates for authentication. 

This means that each client requires a unique digital certificate. It is difficult to 
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manage the certificates in a large enterprise network, since certificates add 

administrative overhead. As a result, EAP-TLS is rarely deployed. EAP-TLS is best 

for enterprises that have digital certificates already deployed. Another drawback of 

EAP-TLS is that the peer identity is exchanged in the clear. So, a passive attack can 

easily obtain the usernames. EAP-TLS provides mutual authentication as shown in 

Figure 3.2 (Simon, Aboba & Hurst, 2008). 

 

 

Figure 3.2 EAP-TLS authentication mechanism (Simon, Aboba & Hurst, 2008). 

 

3.3 EAP-TTLS  

 

EAP-Tunneled Transport Layer Security (EAP-TTLS) is a two-phase 

authentication protocol that establishes encrypted tunnel in phase one, and then 

performs user authentication within encrypted tunnel in phase two. The EAP-TTLS 

requires only server-side certificates for server authentication. The users can 

authenticate themselves to the server through the use of a password, rather than a 

certificate. This significantly reduces the complexity of the port-based authentication 

system. The EAP-TTLS supports both EAP protocols and non-EAP protocols such 
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as PAP, CHAP, MS-CHAPv1, MS-CHAPv2 within encrypted tunnel. TTLS uses the 

TLS tunnel to exchange "attribute-value pairs" (AVPs), much like RADIUS. Note 

that, in phase one the real user identity is hidden (Funk & Blake-Wilson, 2008). 

 

3.4 PEAP 

 

Protected Extensible Authentication Protocol (PEAP) is often called as "EAP 

inside EAP". PEAP is the most common and most widely supported EAP-method. 

PEAP operates in two phases similar to EAP-TTLS. PEAP also supports the identity 

hiding, as EAP-TTLS. Moreover, PEAP provides the chaining of several EAP-

methods, cryptographic binding of outer and inner methods. These properties 

differentiates PEAP from EAP-TTLS. Figure 3.3 illustrates the PEAP authentication. 

Note that, EAP-TTLS is very similar to PEAP (Palekar & others, 2004). 

 

 

Figure 3.3 PEAP authentication mechanism (Palekar & others, 2004). 
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3.5 EAP-FAST 

 

Flexible Authentication via Secure Tunneling EAP (EAP-FAST) is a 

"lightweight" and convenient protocol that can provide the same level security as 

PEAP and EAP-TTLS. Unlike PEAP and EAP-TTLS, EAP-FAST uses a Protected 

Access Credential (PAC) to establish a TLS tunnel instead of X.509 digital 

certificates. With using PACs, EAP-FAST authentication acts more like a session 

resumption, hence the authentication occurs much more faster than complete 

authentication. Use of server certificates is optional in EAP-FAST (Cam-Winget, 

McGrew, Salowey & Zhou, 2007). 

 

 

Figure 3.4 EAP-FAST authentication (Cam-Winget, McGrew, Salowey & Zhou, 2007).  
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EAP-FAST consists of three phases: Phase 0 is an optional phase in which the 

PAC can be provisioned manually or dynamically. This phase may be skipped in the 

case of the peer has appropriate PACs. PAC provisioning is only done once to set up 

the PAC secret between the server and client and all subsequent EAP-FAST sessions 

skip "Phase 0". Phase 0 is independent of other phases. In Phase 1, the client and the 

AAA server uses the PAC to establish TLS tunnel. In Phase 2, the client credentials 

are exchanged inside the encrypted tunnel. Figure 3.4 depicts the EAP-FAST 

process.  

 

3.5.1 PAC Types 

 

 Tunnel PAC is used to establish an authenticated and encrypted tunnel 

between the peer and the authentication server. The Tunnel PAC is consists 

of PAC-Key, PAC-Opaque and PAC-Info. PAC-Key is a shared secret key 

that will be used within generation of tunnel key. PAC-Opaque is the 

protected data that can not be interpreted by the peer. Only the authentication 

server can decrypt it. Figure 3.5 depicts the Tunnel PAC.  

 

 

Figure 3.5 Tunnel PAC. 

 

 Machine Authentication PAC contains PAC-Opaque that is used in 

identification of the machine. This PAC can be provisioned during the 

authentication of a user and can also be used in establishing a secure tunnel as 

the Tunnel PAC.  

 

 User Authorization PAC is also PAC-Opaque that holds user identity 

information. When this PAC is presented in phase 2 of EAP-FAST, inner 

authentication process may be skipped. 
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3.5.2 Dynamic PAC Provisioning 

 

As shown in Figure 3.5, the Tunnel PAC contains the PAC-Key, PAC-Opaque 

and PAC-Info. The PAC-Opaque contains the PAC-Key, initiator ID (I-ID) and the 

Key Lifetime. I-ID is assigned by the authentication server to the peer and it is only 

used by the server for peer identification. The PAC Info contains the Authenticator 

ID (A-ID) and A-Info, both of which identify the particular authentication server that 

created the PAC for the specific I-ID (Peer). All of these are created by the 

authentication server. The authentication server encrypts the PAC-Opaque with its 

own Master Key. Within encrypted tunnel, the authentication server sends the 

created Tunnel PAC to the peer. The authentication server deletes the Tunnel PAC 

from its memory to save the storage capacity.  

 

After possessing the valid Tunnel PAC, the peer will reathenticate to use PAC. 

The peer will skip the phase 0 and starts directly from phase 1. In phase 1 the 

authentication server will send its A-ID to the peer. The peer uses the A-ID to select 

the correct PAC from its inventory (it may have multiple PACs, one for each Server 

it may authenticate with). The peer sends the correct PAC-Opaque to the 

authentication server. The authentication server decrypts the PAC-Opaque using its 

Master Key (the same one that originally encrypted the PAC-Opaque) and obtains 

the PAC-Key. Now both partes, the peer and the authentication server holds the same 

key. Thus they use this key in generation a Tunnel Key. A secure tunnel is now 

created between them.  

 

In short, the authentication server creates the Tunnel PAC and gives it to the peer. 

Then during authentication phase 1, the peer just sends back the PAC-Opaque 

portion of the Tunnel PAC to the authentication server.  

 

In the same manner, User Authorization PAC is also created by the authentication 

server and it is also opaque to the peer which means the peer does not understand 

what is in it and it cannot interpret it. The peer just sends it to the server within phase 

2, to authenticate itself to the server. In this case, any inner authentication method 
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may be skipped. It should be noted that User Authorization PAC does not include 

PAC-Key. Thus it should be bounded to the Tunnel PAC (Cam-Winget, McGrew, 

Salowey & Zhou, 2009). Figure 3.6 illustrates the usage of Tunnel PAC as well as 

User Authorization PAC.  

 

 

Figure 3.6 EAP-FAST authentication: User-Authorization-PAC usage.  
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3.5.3 EAP-FAST Provisioning Modes 

 

 Server-Authenticated Provisioning Mode: The protected tunnel is established 

using server-side certificates (Figure 3.7).  

 

 Server-Unauthenticated Provisioning Mode: The protected tunnel is 

established based on anonymous Diffie-Hellman key exchange (Figure 3.8).  

 

 

Figure 3.7 Server-authenticated dynamic provisioning.  
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Figure 3.8 Server-unauthenticated dynamic provisioning (Cam-Winget, McGrew, Salowey 

& Zhou, 2009).  

 

3.5.4 MITM on Tunnel-Based EAP Methods 

 

Asokan, Niemi & Nyberg (2002) describe the vulnerability of tunnel-based EAP 

methods to man-in-the-middle attack. This attack can be launched as follows:  

 

An adversary, acting as a peer, initiates a tunnel-based EAP method with the 

authentication server. The adversary executes a tunnel protocol with the 

authentication server in which the authentication server authenticates to the 

adversary. As a result of a successful tunnel protocol execution, both the adversary 
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and the authentication server obtain tunnel key (TK). The server then initiates an 

inner authentication method inside the protective tunnel. The adversary, acting as an 

authentication server, initiates a parallel session with a peer using the same 

authentication method outside a tunnel. The adversary then replays the peer’s 

response into the tunnel, making the authentication server believe that the messages 

are coming from the other end of the tunnel. Thus, the inner authentication method, 

and the tunnel-based EAP method are executed successfully, and both the adversary 

and the authentication server subsequently share the established MSK if it is derived 

from the tunnel key (TK). Figure 3.9 shows the man-in-the-middle attack against 

tunnel-based EAP methods. 

 

 

Figure 3.9 Man-in-the-middle attack on tunnel-based methods (Hoeper & Chen, 2009). 

 

3.5.5 EAP-FAST MiTM Attack Protection  

 

EAP-FAST provides protection from aforementioned man-in-the-middle attacks 

in two ways (Cam-Winget, McGrew, Salowey & Zhou, 2007): 

 

1. By using the PAC-Key: In phase 1, the tunnel PAC is not only used for server 

authentication but also server can authenticate peer through information 

found in tunnel PAC. Thus, mutually authentication mitigates the man-in-the-

middle attack described above.  
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2. By using the Crypto-Binding TLVs: In phase 2, Crypto-Binding TLVs are 

used to bind the outer authentication protocols with inner authentication 

protocols through derived keys from both authentication methods. Crypto-

Binding assures that the outer authentication and inner authentication is 

occured between the same peer and the server. 

 

3.5.6 Summary of EAP-FAST Features 

 

 It provides not only strong security but also convenience and efficiency by 

using PACs. Since it uses shared secrets that have strong entropy, it is much 

more faster than PEAP and EAP-TTLS.  

 Enables the network access communication to be computationally 

lightweight. Uses PAC in lightweight devices. 

 PACs are unique to each client identity. A different client cannot use the 

same PAC file or authentication will fail. 

 Using PAC, allows faster TLS tunnel establishment. 

 Supports crypto-binding, mixing the tunnel encryption key with the inner 

EAP method key to prevent MITM attack. 

 Supports anonymous provisioning and manual provisioning of PAC, 

eliminate the need for PKI or use of server certificate. 

 Supports EAP inner method chaining.  

 Supports authorization PAC to allow fast session resumption without server 

state, allowing endpoints to roam the sessions across multiple AAA servers 

(Salowey, Zhou, Eronen & Tschofenig, 2008). 

 

3.6 Comparison of TLS-Based EAP Methods  

 

Table 3.3 and Table 3.4 show an in-depth comparison of the TLS-based EAP 

methods. 
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Table 3.3 EAP Security Claims (Cam-Winget, McGrew, Salowey & Zhou, 2007, Funk & Blake-

Wilson, 2008, Palekar & others, 2004, Simon, Aboba & Hurst, 2008). 

EAP Security Claims 
EAP-TLS   

(RFC 5216) 

EAP-TTLSv0 

(RFC 5281) 

PEAPv2   

(Draft, 2004) 

EAP-FASTv1   

(RFC 4851) 

Ciphersuite negotiation Yes Yes Yes Yes 

Mutual authentication Yes Yes Yes Yes 

Integrity protection Yes Yes Yes Yes 

Replay protection Yes Yes Yes Yes 

Confidentiality Yes Yes Yes Yes 

Key derivation Yes Yes Yes Yes 

Key strength Variable Up to 384 bits Variable Variable 

Dictionary attack protection Yes Yes Yes Yes 

Fast reconnection Yes Yes Yes Yes 

Cryptographic binding N/A No Yes Yes 

Session independence Yes Yes Yes Yes 

Fragmentation Yes Yes Yes Yes 

Channel binding No No No No 

 

 

Table 3.4 Summary of TLS-based EAP methods (Coleman, Westcott, Harkins & Jackman, 2010). 

Features 
EAP-TLS   

(RFC 5216) 

EAP-TTLSv0   

(RFC 5281) 

PEAPv2        

(Draft, 2004) 

EAP-FASTv1   

(RFC 4851) 

Server authentication Certificate Certificate Certificate PAC 

Client authentication Certificate Any method Any EAP method Any EAP method 

Server certificate Required Required Required Optional 

Client certificate Required Optional Optional Optional 

Tunnel establishment Optional Necessary Necessary Necessary 

User identity protection No Yes Yes Yes 

Ease of deployment Hard Moderate Moderate Moderate 

Security strength Highest Medium High High 
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CHAPTER FOUR 

THE AVISPA TOOL 

 

 To validate the EAP-FAST protocol we used the automatic protocol analyzer 

AVISPA (Armando & others, 2005). Its good expressive form and ease-of-use are 

the attractive features of the tool, but the main advantage of AVISPA is the ability to 

use different verification techniques on the same protocol specification. In AVISPA, 

security protocols are specified by High Level Protocol Specification Language 

(HLPSL). As indicated in Chevalier & others (2004), the HLPSL language has 

already proven itself to be an effective language for modeling security protocols: 

many protocols of varying levels of complexity. We have chosen AVISPA mainly 

because it is concluded as more efficient tool to falsify and verify security protocols 

than the other several widely used tools (Patel & others, 2010). Figure 4.1 depicts the 

classification of formal methods for security protocol analysis (Modersheim, Vigano 

& von Oheimb, 2005). 

 

 

Figure 4.1 Protocol analysis techniques (Modersheim, Vigano & von Oheimb, 2005).  
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 AVISPA (Automated Validation of Internet Security Protocols and Applications) 

is a research tool that automatically validates and analyzes formal models of 

security-sensitive protocols. In AVISPA (Automated Validation of Internet Security 

Protocols and Applications [AVISPA], 2006b), protocols and their security 

requirements are described using HLPSL language. A hlpsl2if translator takes as 

input a HLPSL specification and translates it into a corresponding Intermediate 

Format (IF) specification automatically. IF (AVISPA, 2003b) is a lower-level 

language than HLPSL and is read directly by the state-of-the-art back-ends 

embedded in AVISPA. The IF specification of a protocol is then analyzed by back-

end tools to test if the security goals are satisfied or violated (Figure 4.2). If any 

attack is found back-ends return it in an intuitive and readable output format. The 

command-line AVISPA Tool outputs attack traces in an Alice&Bob notation. The 

web interface displays an attack trace in the form of a Message Sequence Chart 

(Figure 4.3). 

 

 Figure 4.2 Architecture of the AVISPA tool (AVISPA, 2006b).  

 

4.1 The High Level Protocol Specification Language (HLPSL) 

 

 HLPSL (AVISPA, 2003a) is a role-based language. It is easier to specify a 

protocol from Alice&Bob notation. Alice-Bob notation describes the security 

protocols using flow of messages between the involved parties (Figure 4.4). 
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 Figure 4.3 Attack trace of AVISPA web tool (Armando & others, 2005).  

 

 

Figure 4.4 Analysis steps using AVISPA.  

 

The HLPSL consists of following sections:  

 

 Basic roles specifies the initial knowledge and the behaviour of each honest 

participant in a protocol. Basic roles contain a set of transitions. Generally, 

each transition represents the receipt of a message and the sending of a reply 

message. A transition consists of a trigger, or precondition, and an action to 

be performed when the trigger event occurs.  
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 Composed roles instantiate the participants(basic roles) and specify how they 

interact with one another. Usually, roles are executed simultaneously 

(parallel) as independent state-machines. 

 

 Environment role is a top level role which contains a composition of one or 

more sessions, where the intruder may play some roles as a legitimate user. It 

also contains global constants and describes what knowledge the intruder 

initially has.  

 

 Goals: AVISPA supports different forms of authentication and secrecy. In 

this section, goals are specified by using predefined macros which are:  

o the secrecy of some information,  

o the strong authentication of agents on some information,  

o the weak authentication of agents on some information.  

 

Each goal is identified by a constant, referring to predefined predicates (secret, 

witness, request and wrequest) declared explicitly in transitions. Here, 'witness' and 

'request' pair specifies strong authentication while 'witness' and 'wrequest' pair used 

for weak authentication. One pair of witness/request serves for unilateral 

authentication, so for mutual authentication there should be defined two pairs. When 

a sender sends any message, he/she may issue a 'witness' to denote that he/she needs 

the message to be correctly delivered to the receiver. On the other hand, the receiver 

should issue a 'request' to answer the 'witness' (AVISPA, 2006a). For instance,  

 

 witness(A,B,authNonce,Nonce')  

means "'A' wishes to prove his identity to 'B', and presents Nonce'. 'A' wants 

to ensure that 'B' received the exact value of Nonce' that is sent". 

 request(B,A,authNonce,Nonce') 

means " 'B' authenticates 'A' on Nonce', i.e. 'B' wants to ensure that 'A' sent 

this value of the Nonce' which is received".  

Here; 'A' and 'B' are agents, 'authNonce' is a constant 'protocol_id' identifying 

the 'witness-and-request' statements in the goals section. 
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The main rule to remember when putting 'requests' is to put them as late as 

possible. On the other hand since the secrecy check takes effect only after the events 

have been issued, the 'secrecy' events should be given as early as possible i.e. right 

when the secret term has been created in the respective role transition.  

 

The above described 'witness-and-request' predicates are defined in transitions of 

basic roles. In the 'Goal' section those properties specified as following:  

 

goal 

secrecy of na             % na is a constant 'protocol_id' representing secret term 

authentication_on authNonce  

end goal 

 

AVISPA mainly covers the following Goals, but also several other goals may be 

approximated (AVISPA, 2003c):  

 

 Authentication (unicast and multicast) 

o Entity authentication 

o Message origin and integrity 

o Replay protection 

 Key agreement (reduced to authentication) 

o Key authentication 

o Key confirmation 

o Fresh key derivation 

 Confidentiality (Secrecy) 

 

Basic types in HLPSL: 

 

o agent     : names of principles 

o public_key   : asymmetric keys 

o symmetric_key : symmetric keys 

o nat      : natural numbers 
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o hash_func   : to model hash functions etc 

o bool     : boolean values for modeling flags 

o channel(dy)   : for exchanging messages. The intruder is modeled by the 

'dy' channel (the Dolev-Yao intruder) over which the communication takes 

places. Communication in HLPSL is synchronous, via immediate transitions.  

 

HLPSL supports cryptographic primitives such as nonces, hash functions, 

signatures, encryption, etc. and algebraic properties like concatenation ('.'), exclusive 

or (xor()), exponential (exp()) (AVISPA, 2006a). 

 

4.2 The Dolev-Yao Intruder 

 

AVISPA implements the Dolev-Yao intruder model. Dolev–Yao is known as the 

most general and the strongest possible intruder model for formal protocol analysis 

(Cervesato, n.d.). Under this model, the intruder has full control over the network, 

meaning that each message received by a participant has also been received by the 

intruder. The model (Dolev & Yao, 1983) states that the active intruder has the 

capability to : 

 

 read all messages 

 block any message 

 arbitrarily re-direct messages 

 store messages it receives indefinitely 

 build new messages with the different constructors 

 arbitrarily re-order messages 

 decompose messages into their components 

 encrypt/decrypt messages and modify them if it possesses the appropriate 

key (Black-box perfect crypto) 

 

The only restriction that is placed on the Dolev-Yao intruder is that it cannot 

break encryption. If it receives an encrypted message, it cannot learn the contents of 

the message unless it has knowledge of the appropriate key. 
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Naturally, it is hardly realistic that a process performing all of a Dolev-Yao 

attacker’s actions is active on a physical network, but if a protocol can withstand a 

Dolev-Yao attacker, then it is reasonably certain that any real-world attacks will fail 

as well. 

 

4.3 The Back-End Analyzers 

 

OFMC (On-the-fly Model-Checker) is based on two lazy techniques: the first is 

lazy demand-driven search and second is the lazy intruder, which reduces the 

computational effort. Lazy demand-driven search uses lazy data types to model 

infinite state-space of protocol. Lazy data types model the protocol and attacker as 

infinite tree on the fly, in a demand driven way. The nodes of the tree are traces and 

children represent the next step of protocol or an action of an attacker. Properties of 

nodes represent the security properties. Lazy intruder techniques model a lazy Dolev-

Yao intruder whose actions are generated in a demand-driven way. Now, the OFMC 

is renamed as Open source Fixed-point Model-Checker (Basin, Modersheim & 

Vigano, 2005). 

 

CL-AtSe (Constraint-Logic-based Attack Searcher) is OCaml-based 

(programming language) implementation of the deduction rules. These rules allow 

user to interpret and automatically execute the protocols in every possible way in the 

presence of Dolev-Yao intruder Capabilities. The main design goals of CL-Atse are 

modularity (easily extend the class of the protocols to be analyzed) and performance 

(obtain the results using large number of protocol sessions). The analysis algorithm 

used by CL-AtSe is designed for a bounded number of loops, i.e. a bounded number 

of protocol steps in any trace. Any state-based properties (like secrecy, authentication 

etc) and algebraic properties of operators like XOR, exponentiation can be modeled 

and analyzed (Turuani, 2006). 

 

SATMC (SAT-based Model-Checker) is an open and flexible platform for 

SATbased bounded model checking. Protocol descriptions are specified as rewrite 

formalism in IF format. SAT compiler generates the formula for each step of the 
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protocol using encoding techniques. Each formula is then tested using SAT solver - 

whether formula is satisfiable or it leads to an attack. SATMC performs bounded 

analysis by considering finite sessions of the protocol with Dolev-Yao intruder 

capabilities (Armando & Compagna, 2004). 

 

TA4SP (Tree Automata based on Automatic Approximations for th Analysis of 

Security Protocols): is based on abstraction-based approximation method. 

Abstraction provides a way to prove correctness or security of a protocol by over-

estimating the possibility of failure. This tool language represents an over-

approximation or under-approximation of the intruder knowledge with an unbounded 

number of sessions. For secrecy properties, TA4SP can show whether a protocol is 

flawed (by under-approximation) or whether it is safe for any number of sessions (by 

over-approximation) (Boichut, Heam, Kouchnarenko & Oehl, 2004). 

 

4.4 The SPAN Tool 

 

 SPAN (a Security Protocol ANimator for AVISPA) is an animation tool that 

makes HLPSL specification debugging more easy. SPAN allows us to have a better 

understanding of the specification, check that it is executable and that it corresponds 

to what is expected (Figure 4.5). From an HLPSL specification, it is possible to 

interactively produce a Message Sequence Chart (MSC) corresponding to an 

execution of the specification step by step (Figure 4.6) (Glouche, Genet & Houssay, 

2008). AVISPA is very convenient, especially when visualized with SPAN. Here are 

some features of SPAN: 

 

 Supports the editing of protocol specifications. 

 Allows to select and configure the back-ends integrated into the tool. 

 It is possible to go back in the execution. 

 Hide/show content of variables of roles. 

 Can represent one or more sessions of the protocol in parallel. 
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Figure 4.5 SPAN animator for AVISPA. 

 

SPAN allows to launch three different modes: 

 

 Protocol Simulation for simulating the protocol and build a particular MSC 

corresponding to the HLPSL specification (Figure 4.6). 

 Intruder Simulation for simulating the protocol with an active/passive 

intruder (Figure 4.7). 

 Attack Simulation for automatic building of MSC attacks from the output of 

either OFMC or CL-ATSE tools. 

 

 

 Figure 4.6 Protocol simulation in SPAN.  
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 Figure 4.7 Intruder simulation in SPAN.  

 

4.5 Summary of AVISPA Features 

 

 Usefulness: The main advantages of AVISPA are its good expressive form and 

ease of use. 

 Scalability and flexibility: AVISPA has been successfully validated a number of 

security protocols developed by the IEEE, IETF Working Groups, and others. The 

AVISPA Library is the best publicly available library that comprises a large 

collection of security protocols, specified together with their properties in HLPSL 

(AVISPA, 2005) 

 Availability: Freely available web interface to experiment the AVISPA Tool 

(Figure 4.8). It can be accessed at the URL, http://www.avispa-project.org/web-

interface.  

 Visualization:  

o Provided a very helpful HLPSL XEmacs mode. Its syntax highlighting and 

menus are very practical for editing protocol specifications (Figure 4.9). 

o A Security Protocol ANimator for AVISPA (SPAN) helps in interactively 

producing Message Sequence Charts from an HLPSL specification. 

 High performance: AVISPA is capable of analyzing the model and its properties 

in a short period of time.  

 



60 

 

 

 

 

 Figure 4.8 AVISPA's web interface.  

 

 

Figure 4.9 XEmacs mode of AVISPA (Armando & others, 2005). 

 

4.6 AVISPA Modeling Limitations 

 

The HLPSL language is simple and capable of expressing most authentication and 

key exchange protocols, but also have a number of limitations:  
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 Lack of support algebraic equations (arithmetic expressions such as '+', '-', '*', '/', 

'>', '<', "mod") 

 Lack of support for fairness constraints, timestamps, timeouts and delays. 

 Could not be used to model security protocols with non-repudiation 

requirements. 

 Does not support anonymity goals (like; identity privacy, location privacy)  

 Supports only a single intruder model; the Dolev-Yao intruder model. This is the 

most powerful intruder model, and is generally the type of intruder which 

protocols are designed to be secure against. However communication mediums 

are becoming more diverse and this model is no longer suitable in all cases. 

 Cannot detect attacks such as DoS attacks, Guessing attacks, Downgrade attacks, 

Dictionary attacks, Brute-force attacks.  

 

4.7 AVISPA Usage Recommendations 

 

 Check the executability of the protocol before run it against the security 

properties to find attacks. Use the step-by-step simulation of the protocol to see 

that the specification is what it should be and all the states are reachable. 

Examples of checking the executability (runnable) of HLPSL specification is 

given below: 

 avispa  protocol_model.hlpsl  --cl-atse  -noexec 

avispa  protocol_model.hlpsl  --ofmc     -sessco 

avispa  protocol_model.hlpsl  --satmc    --check_only_executability=true 

 Tools stop the search at the first attack if they find out. So it is recommended to 

drop the goal that was found violated, to see if the other goals of the protocol do 

hold.  

 It is not possible to disable the intruder completely, because AVISPA relies on 

him to relay messages. It is very useful to specify only one session, between 

only honest agents, and then run to see how protocol works.  

 It is preferred to use compound types rather than the most general type 

'message'. For instance, if X={Na.Nb}_Kab; where Na, Nb are nonces and Kab 

is a symmetric key, X should be declared as {text.text}_symmetric_key. 
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CHAPTER FIVE 

VALIDATION OF PROTOCOLS 

 

We have modeled the Dynamic Provisioning mechanisms, EAP-FAST 

authentication mechanisms and the Four-Way Handshake protocol in HLPSL. In this 

chapter, we will show the A&B notations of each protocol and output results of 

AVISPA tool. A&B notation shows a clear illustration of the messages exchanged in 

a normal run of a given protocol (AVISPA, 2006a). It is convenient and very helpful 

to get protocols in the form of flow of messages before specify them in HLPSL. 

 

AVISPA has its web interface just as a demo for presenting the tool. Because, the 

resources (memory and time) assigned to each test are significantly limited on it. We 

used local version of AVISPA: AVISPA-1.1 and SPAN-1.6 on UBUNTU 10.04.  

 

The statistics given by each tool are not uniform. There are some timings, for 

parsing/translating the HLPSL specification into a back-end usable specification, and 

for the total execution time. Each backend has its own output format. For instance 

OFMC output results mean:  

 

parseTime: 0.00s   > the time for reading the input file 

searchTime: 0.27s   > the time for the analysis of the protocol 

visitedNodes: 119 nodes > the number of nodes in the tree 

depth: 8 plies     > the depth of the tree 

 

In the analysis of protocols, we mainly used Cl-Atse model checker supported by 

AVISPA. Because in Vigano (2006), the CL-AtSe has shown better properties than 

other model checkers, implemented in the tool, such as OFMC, SATMC or TA4SP. 

 

EAP-FAST authentication process occurs in three phases. Phase 0 is an optional 

phase in which the PAC can be provisioned manually or dynamically. PAC 

provisioning is only done once to set up the PAC secret between the server and client 

and all subsequent EAP-FAST sessions skip "Phase 0". In Phase 1, the peer and the  
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authentication server uses the PAC to establish TLS tunnel. In Phase 2, the peer 

authenticates to the server by another EAP method inside the encrypted tunnel. 

Figure 5.1 depicts the EAP-FAST process. 

 

 

Figure 5.1 EAP-FAST authentication phases. 

 

5.1 Dynamic Provisioning using EAP-FAST 

 

 Dynamic Provisioning occurs in the Phase 0 of EAP-FAST protocol. The Phase 0 

is independent of other phases which may be skipped in the case of the peer has 

appropriate PACs. There are two modes of Dynamic PAC provisioning:  

 Server-Authenticated Provisioning 

 Server-Unauthenticated Provisioning 

 

In both modes, only Tunnel PAC is allowed to be provisioned (Cam-Winget, 

McGrew, Salowey & Zhou, 2009).  

 

5.1.1 Server-Authenticated Provisioning Mode 

 

In this mode, the secure tunnel is established using the TLS handshake protocol 

and within the tunnel the peer is authenticated to the server with EAP-MSCHAPv2 

protocol. The server is authenticated to the peer twice: in phase 1 by certificates and 
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in phase 2 by challenge/responses. A Figure 5.2 illustrates the A&B notation of the 

Server-Authenticated provisioning mode of EAP-FAST protocol (Cam-Winget, 

McGrew, Salowey & Zhou, 2009). 

 

 

  Figure 5.2 Server-authenticated provisioning.  

 

where,  

A and B    :  Server and Peer respectively  

A-ID_Info    :  Server realm or hint 

Kserver     :  Server's Public key  

Kca      :  Certificate Authority's Public key 

Client_Hello   :  TLS_version.Session_ID.Peer_nonce.CiphersuiteList  

Server_Hello   :  TLS_version.Session_ID.Server_nonce.Ciphersuite  

Server_Certificate   :  {A.Kserver}_inv(Kca)  

Server_Hello_Done   :  Informative message 

Client_Key_Exchange :  {PMS}_Kserver 

PMS        :  Pre-Master-Secret = Randomly generated value by Peer 

Change_Cipher_Spec  :  Informative message  

Finished      :  Encrypted hash of all previous messages with MS  
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MS        :  Master-Secret = PRF(PMS.Peer_nonce.Server_nonce)  

Client_Key  :  Client Session Key = PRF0(B.Peer_nonce.Server_nonce.MS)   

Server_Key  :  Server Session Key = PRF0(A.Peer_nonce.Server_nonce.MS)   

 

%% Within tunnel all messages are encrypted with Server's or Peer's session keys 

Server_Challenge  :  Randomly generated value by Server 

Peer_Challenge   :  Randomly generated value by Peer 

Password     :  Shared Secret between the Server and the Peer  

NT_Response   :  Hash(Password.(Peer_Challenge.Server_Challenge.User_ID))  

Inter_Result_TLV  :  Success or Failure  

Result_TLV    :  Success or Failure  

PAC_Request   :  PAC type 

TunnelPAC    :  PAC_key.PAC_opaque.PAC_info   

PAC_key     :  Shared Secret between Server and Peer  

PAC_info     :  Necessary information about PAC  

SMK      :  Server's Master Key  

PAC-opaque    :  {PAC_Key.PAC_info}_SMK  

Crypto_Bind_Request :   

Bind_version.FAST_version.zero.CMK_Nonce.Compound_MAC1  

Crypto_Bind_Response :   

Bind_version.FAST_version.one.CMK_Nonce.Compound_MAC2 

 

Generating inner method (MSCHAPv2) MSK (Microsoft Corporation, 2001, 

Zorn, 2000, 2001): 

 

MasterKey = HMAC(Hash(Hash(Password)), NT_Response) 

MasterSendKey = PRF1(MasterKey)  

MasterReceiveKey = PRF2(MasterKey)  

MSK = MasterReceiveKey.MasterSendKey  

 

%Calculating Compound_MAC (Cam-Winget, McGrew, Salowey & Zhou, 2007):  

Seed_Label  :  "Seed"  
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CMK_Label  :  "CMK"  

Seed   :  Session Key Seed  = PRF0(MS, Seed_Label, Peer_nonce.Server_nonce) 

CMK  :  Compound Session Key  = PRF(Seed, CMK_Label, MSK) 

Compound_MAC1 =  

 HMAC(CMK, Bind_version.FAST_version.zero.CMK_Nonce) 

Compound_MAC2 = HMAC(CMK, Bind_version.FAST_version.one.CMK_Nonce) 

 

In Step2, the UserID is a bogus user ID. It may be "realm" or "anonymous". But 

in step 8, it is the real user ID.  

 

In the end of the protocol run, in step 17, the server allowed the peer to access the 

network. Here, it should be noted that the server may also deny the access even if the 

authentication and provisioning were successful. It is up to network policy of the 

authentication server.  

 

The Server-Authenticated provisioning is validated against the goals shown in 

Figure 5.3 and the output of the validation is shown in Figure 5.4. It is important to 

note that, only EAP methods that provide mutual authentication and key derivation 

should be used within the tunnel. Otherwise, this mode will be vulnerable to man-in-

the-middle attack introduced in Asokan, Niemi & Nyberg (2002).  

 

 

 Figure 5.3 Validation goals of server-authenticated mode.  
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Figure 5.4 The output results.  

 

To validate the protocols we used CL-AtSe analyzer which does falsification. The 

CL-AtSe analyzer searches for attacks that falsify the goals of the protocol. There are 

two possible results that the analyzer may bring us: SAFE or UNSAFE. A protocol 

validated with AVISPA is SAFE or UNSAFE within the scope of security goals and 

the analysis scenario given. 

 

5.1.2 Server-Unauthenticated Provisioning Mode 

 

 This mode enables any wireless client to be provisioned with new PAC. The 

server-side certificate is not necessary to establish the encrypted tunnel. The tunnel is 

established through anonymous handshake by Diffie-Hellman key exchange 

protocol. The clients, that don't have valid information to authenticate the server, can 

use this alternative provisioning mode to get PACs. After getting provisioned with 

PACs, the wireless clients have to reauthenticate to the network with new PACs.  

 

The differences between this mode and the Server-Authenticated mode are the 

followings:  

 The secure tunnel is established using the Diffie-Hellman Key Exchange 

protocol. Instead of using server-side certificates, the both parties exchange 

some seed materials to generate master keys separately:  

o G :  Public value  

o Server_Key_Exchange :  G.exp(G,Server_nonce) 

o Client_Key_Exchange :  exp(G,Peer_nonce) 

o PMS = exp(exp(G,Server_nonce),Peer_nonce) 
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 The inner authentication protocol is EAP-FAST-MSCHAPv2 protocol, in 

which the server and the peer challenges are not transferred to each other. 

Both parties generate the challenges on themselves. Only the hash of 

challenges are exchanged.  

o Server_challenge  :  PRF1(PMS.Server_nonce.Peer_nonce) 

o Peer_challenge   :  PRF2(PMS.Server_nonce.Peer_nonce) 

 

 In the end of the protocol run, in step 17, the server denies the access to the 

network, even if the authentication and provisioning were successful. 

 

The Server-Unauthenticated provisioning mode is validated against the same 

goals as Server-Authenticated provisioning mode. A Figure 5.5 depicts the A&B 

notation of the Server-Unauthenticated provisioning mode (Cam-Winget, McGrew, 

Salowey & Zhou, 2009).  

 

 

  Figure 5.5 Server-unauthenticated provisioning.  

 

Since the Server-Unauthenticated provisioning mode is using anonymous Diffie-

Hellman key exchange protocol which is vulnerable to MiTM attack, AVISPA also 
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found this attack (Figure 5.6). Cam-Winget & others (2009) states that the Server-

Unauthenticated provisioning mode is able to detect the MiTM attacks by two 

techniques:  

 

 Using EAP-FAST-MSCHAPv2 method. Unlike EAP-MSCHAPv2, in this 

method, the peer and the server challenges are derived separately in both 

parties as part of the tunnel key derivation and they are not transferred to each 

other. It makes hard to launch active attacks. For this reason, only EAP-

FAST-MSCHAPv2 can be used as inner authentication method in this 

provisioning mode.  

 

 Cryptographically binding the keys derived from phase 1 with keys derived 

from phase 2. 

 

However, in AVISPA, MiTM attack is not detected by aforementioned techniques 

(Figure 5.7). As expected, here MiTM is not generating EAP-FAST-MSCHAPv2 

challenges but resending them. Also, MiTM just replays crypto-binding messages, as 

it cannot change the concept. As a result, MiTM was successful to disclosure of the 

PAC-key that is transmitted within the tunnel. 

 

 

Figure 5.6 The output results.  
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Figure 5.7 Attack trace of server-unauthenticated provisioning mode.  

 

5.2 EAP-FAST Authentication Mechanisms 

 

 Authentication using PACs makes the EAP-FAST protocol lightweight. Because 

the PAC is the kind of shared secret, EAP-FAST protocol uses the symmetric 

cryptography. In the following subsections we will discuss the validation of EAP-

FAST protocol when it uses the Tunnel PAC and User Authorization PAC.  
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5.2.1 Tunnel Establishment with Tunnel PAC 

 

In this EAP-FAST authentication mechanism, the secure tunnel is established by 

abbreviated TLS Handshake protocol. The encrypted PAC-Key, which is located in 

Tunnel PAC (sent in Client Hello message) becomes the pre-master-key (PMS) 

(Salowey, Zhou, Eronen & Tschofenig, 2008). An A&B notation of the Tunnel PAC 

usage in establishing secured tunnel is shown in Figure 5.8.  

 

 

 Figure 5.8 Tunnel PAC usage. 

 

 When the secure TLS tunnel is established using Tunnel PAC, to avoid 

aforementioned MiTM attack, it is not necessary to use EAP methods that derive 

keys. Since the tunnel is established by mutually authenticating the peer and the 

server using Tunnel PAC, it is possible to use weak EAP methods such EAP-MD5 or 

EAP-GTC. This property allows the EAP-FAST to be more lightweight. 

 

This protocol mechanism is validated against the goals shown in Figure 5.9 and 

the output of the validation is shown in Figure 5.10.  
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 Figure 5.9 Validation goals of EAP-FAST protocol.  

 

 

Figure 5.10 The output results.  

 

5.2.2 Inner Authentication with User-Authorization PAC 

 

 It is possible to skip the inner authentication by using the User-Authorization 

PAC. The crypto-binding TLVs also will not be exchanged due to the absence of any 

derived inner keys. It should be noted that, the User Authorization PAC does not 

include PAC-Key. Thus, it should be bounded to the Tunnel PAC (Cam-Winget, 

McGrew, Salowey & Zhou, 2009). We bounded it with Tunnel PAC by inserting the 

hash of the Tunnel PAC into the User Authorization PAC. A Figure 5.11 depicts the 

A&B notation of the User-Authorization PAC usage within the tunnel.  
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 Figure 5.11 User-authorization PAC usage.  

 

This protocol mechanism is validated against the same goals as Tunnel PAC 

usage mechanism with extra "secrecy of New User Authentication PAC" goal in the 

second phase. The output of the validation is shown in Figure 5.12.  

 

 

Figure 5.12 The output results.  

 

5.3 The Four-Way Handshake Protocol 

 

 After each successful authentication, the Four-Way handshake process occurs to 

generate user data encryption keys (PTK) from the seed material derived as the result 

of the EAP-FAST protocol (IEEE, 2007). An A&B notation of the Four-Way 

Handshake protocol is depicted in Figure 5.13 and the output shown in Figure 5.14.  
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Figure 5.13 The four-way handshake protocol.  

 

where, 

A and B :  Authenticator and Supplicant respectively 

PMK    :  (Pre-existing) Pairwise Master Key  

SQN    :  Sequence Number  

PMKID :  Used for Roaming, PMKID = HMAC(PMK.A.B)  

PTK    :  Pairwise Temporal Key = PRF(PMK.A.B.ANonce.SNonce)  

GMK    :  Group Master Key = Randomly generated value  

GNonce :  Group Nonce generated by Authenticator  

GTK   :  Group Temporal Key = PRF(GMK.A.GNonce) 

MIC    :  Message Integrity Code   

MIC1  = MIC(PMK.SNonce. SQN.B_RSNIE) 

MIC2  = MIC(PTK.ANonce.(SQN+1).A_RSNIE.{GTK}_PTK) 

MIC3  = MIC(PTK.(SQN+1)) 

 

 

Figure 5.14 The output results.  
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CHAPTER SIX 

CONCLUSION 

 

In this research, we discussed authentication, confidentiality and integrity 

methods of Wireless LAN Security, the RSNA establishment procedures in 

infrastructure networks, compare the security properties of the widely used TLS-

based EAP-methods which are defined in IETF RFCs. We mainly focused on the 

EAP-FAST protocol because of its attracting security features such as using PACs 

(shared secrets) to establish a TLS tunnel instead of digital certificates. Using 

AVISPA model-checker, we validated the different EAP-FAST authentication 

scenarios and the Four-Way Handshake key management protocol. 

 

Since, manually deploying PACs is not efficient, PACs are typically deployed 

dynamically. Server-unauthenticated provisioning mode of dynamic PAC 

deployment doesn’t need certificates for PAC distribution. But, based on the results 

of AVISPA, this provisioning mode is vulnerable to MiTM attack, which couldn't be 

detected and prevented as stated in Cam-Winget & others (2009). Moreover, this 

mode is also highly vulnerable to offline-dictionary attack.  

 

According to the output results of AVISPA, EAP-FAST protocol can be SAFE in 

spite of authentication service when PAC is provisioned in server-authenticated 

provisioning mode. It means, EAP-FAST is still dependent on at least server-side 

certificate to provision the wireless clients with valid (and unique) PACs.  

 

Note that, EAP-FAST requires the server certificate only once in the beginning 

(when the user has not valid PAC) and all subsequent EAP-FAST sessions skip the 

PAC provisioning. It makes EAP-FAST faster than other certificate-based EAP 

methods. Thus, EAP-FAST can be the best alternative authentication method in 

environments where certificate-based methods are already deployed. Furthermore, 

there is available an EAP-FAST version 2 as an Internet draft which provides an 

additional security property known as channel binding. 
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Authors of AVISPA are currently working on the AVANTSSAR project which is 

the successor of AVISPA. AVANTSSAR supports new versions of most model-

checkers those are capable of analyzing including all AVISPA's constraints. For 

now, AVANTSSAR is not as much popular. As a future work, the EAP-FAST 

protocol can be analyzed using AVANTSSAR toolset and may be defined new 

method to distribute PACs to the wireless clients. 
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APPENDIX A  

 

AVISPA FAQ 

 

The following selected questions were answered by AVISPA Team members in mailing list. We 

decided to give this in questions and answers form since it is more expressive.  

 

Q1: Why does AVISPA uses terms "SAFE" and "UNSAFE" rather than Secure and either Not-

Secure, Non-Secure or Insecure? 

A1: A protocol validated with AVISPA is SAFE within the scope of security goals and the analysis 

scenario given. Since AVISPA is not analyzing all possible executions of the protocol, it cannot 

be assumed "ABSOLUTELY SECURE". 

 

Q2:  Why does AVISPA uses the term "validation" instead of "verification"? 

A2:  OFMC, CL-AtSe and SATMC back-end analyzers search for attacks, or traces that falsify the 

goals of the protocol. Thus they do 'FALSIFICATION' (i.e. detection of attacks). Only TA4SP 

analyzer does 'VERIFICATION' (i.e. proving the protocol is correct). So, AVISPA's goal is both 

falsification and (bounded) verification, not exclusively one or the other. Hence, VALIDATION. 

 

Q3:  Is HLPSL a programming language or not? 

A3:  HLPSL is a (formal) modeling language but not a programming language. The semantics is 

based on the Temporal Logic of Actions, so it's closer to a logic. 

 

Q4: Are there any known instances of False Positives (i.e. AVISPA says SAFE, even when there is a 

known attack in the literature or community) or False Negatives (i.e. AVISPA says UNSAFE, 

although the attack proposed is not a valid attack)? 

A4: It depends on the model and the modeler. The modeler can model the protocol incorrectly. All 

attacks that are found are really attacks on the model (even if the model is constructed badly), 

and no attacks on the specified analysis scenario are missed. 

 

Q5:  If AVISPA tools detect many attacks, will it show all those attacks? 

A5:  Only the first attack found is shown. After fixing this attack or removing the respective goal from 

the goals section, by re-running the tools, any further attack will be shown. 

 

Q6:  What is the difference between weak authentication and strong authentication in AVISPA? 

A6:  Strong authentication allows to check for replay attacks, while weak authentication does not. To 

search for replay attacks simply put two sessions between a and b in parallel. For instance:  

 role environment() 

          def= 

            ... 

           composition 

               session(a,b,ka,kb) 

           /\ session(a,b,ka,kb) 

        end role 

        But note that parallel sessions may generate other kinds of attacks. 

 

Q7:  Is it possible to model Keyed Hash Functions (HMAC/CMAC) in AVISPA?  

A7:  Yes, AVISPA supports keyed hash functions. It depends on the key material of the protocol. 

Simply you can use H(K,Msg), where H is a hash_func, K is a symmetric_key and Msg is the 

message. If you want to model MACs based on public key signature, you can use 

{Msg}_inv(Kp), where Kp is a public_key. 

  

Q8: What is the difference between modeling symmetric encryption and asymmetric encryption in 

AVISPA? 

A8:  The syntax for encryption is the same: {Msg}_K, whatever is the type of K (symmetric key, 

public key, private key). In AVISPA  private key = inv(public_key). So it is considered that 
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{{Msg}_inv(K)}_K is equal to Msg. But in the real world signing, encrypting and decrypting 

messages are done by different algorithms. 

 

Q9: Is it possible to model conditional states (like IF-THEN-ELSE) in AVISPA?  

A9: The left-hand side of transitions are conditions, so by writing two transitions, one for each case, 

both having the same state number it can be modeled. So the analyzer will have to test the two 

solutions. For instance:  

           IF Var1 = Var2  then  SND(Answer1)  else  SND(Answer2)  

              1a. State = 1 /\ Var1 = Var2  /\ RCV(Message')  =|>  State':= 2 /\ SND(Answer1) 

              1b. State = 1 /\ Var1 /= Var2 /\ RCV(Message')  =|>  State':= 3 /\ SND(Answer2) 

 

Q10:  Does AVISPA support wireless environment? 

A10: AVISPA tools handle only Dolev-Yao channel/intruder. Anyway, Dolev-Yao has most strict 

requirements, so if the protocol is safe with Dolev-Yao model, you can be sure that it will be 

safe also for wireless environments. 

 

Q11:   Does AVISPA support algebraic equations? 

A11:   Only CL-AtSe supports XOR and exponentiation, while OFMC supports only exponentiation. 

The other back-ends do not support these properties. In addition OFMC is capable of handling 

user defined algebraic expressions (equations). (Now, new versions of all back-ends with new 

features are already available) 

 

Q12:  Does AVISPA support unbounded sessions? 

A12:  TA4SP can handle unbounded number of sessions on some restricted classes of protocols and 

for secrecy only. The other back-ends do not support it. 

 

Q13:  Many protocols assume that the server is trusted and not compromised. How can I model this 

assumption in AVISPA?  

A13:  Specifying sessions; depends on the protocol and what sorts of attacks the protocol might be 

vulnerable to. For instance, if a protocol between A and B is vulnerability to Man-in-the-

middle attacks, sessions between (A,B) (A,I) and (I,B) are good bets. In case where the server 

is assumed trusted; there is no need to analyze a session where the intruder plays the role of the 

server. 
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APPENDIX B  

 

EAP-FAST Authentication Mechanism 

 

B.1 Tunnel PAC Usage 

 
 Phase 1: TLS Tunnel Establishment using Tunnel PAC. 

 Phase 2: EAP-MSCHAPv2 method and new Tunnel PAC Provisioning. 

 

B.1.1 The HLPSL Specification 

 
role server( 

             S, P     : agent,  

             Password : symmetric_key,  

             PACinfo  : text, 

             Kserver  : symmetric_key,  

             Hash1    : hash_func, 

             Hash2    : hash_func,  

             PRF      : hash_func,  

             KEYGEN   : hash_func, 

             SND, RCV : channel (dy)  )  

  played_by S def= 

 

  local  

    State     : nat,  

    Snonce    : text,  

    Pnonce    : text,  

    SessionID : text,  

    Csuite    : text,  

    CCspec    : text, 

    MS        : hash(symmetric_key.text.text), 

    Finished  : hash(hash(symmetric_key.text.text).agent.agent.text.text.text),  

    ClientKEY : hash(agent.text.text.hash(symmetric_key.text.text)),  

    ServerKEY : hash(agent.text.text.hash(symmetric_key.text.text)),  

    UserID    : text,  

    FASTv1    : text,  

    TLSv1     : text, 

    CsuiteList : text, 

    Schallenge : text,  

    Pchallenge : text,  

    NTResponse: hash(symmetric_key.text.text.agent), 

    Inter_result_tlv : text, 

    Bind_version     : text,  

    CMKnonce         : text, 

    MasterKey        : hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)), 

    MasterSendKey    : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))), 

    MasterReceiveKey : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))), 

    MSK              : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                       hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))), 

    Seed             : hash(hash(symmetric_key.text.text).text.text.text),  

    CMK              : hash( hash(hash(symmetric_key.text.text).text.text.text).text. 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))), 

    Compound_MAC1    : hash( hash( hash(hash(symmetric_key.text.text).text.text.text).text. 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))) 

                     .text.text.text.text ), 

    Compound_MAC2    : hash( hash( hash(hash(symmetric_key.text.text).text.text.text).text. 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))) 

                     .text.text.text.text ), 

    Crypto_bind_request : text.text.text.text. 

                     hash( hash( hash(hash(symmetric_key.text.text).text.text.text).text. 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))) 

                     .text.text.text.text ), 

    Crypto_bind_response: text.text.text.text. 

                     hash( hash( hash(hash(symmetric_key.text.text).text.text.text).text. 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))) 

                     .text.text.text.text ),  

    PAC_type      : text, 

    Result_tlv    : text, 

    PAC_key       : symmetric_key, 

    PAC_lifetime  : text, 

    A_ID          : text, 

    PAC_info      : text.text.text.text, 

    PAC_enc_key   : symmetric_key, 
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    PAC_opaque    : {symmetric_key.text.text.text.text}_symmetric_key, 

    PAC_ack       : text, 

    PACkey        : symmetric_key 

 

  init State := 0 

 

  transition 

 

  1. State  = 0 /\ RCV(start) =|> 

     State':= 2 /\ SND(eap_request_id)  

 

  2. State  = 2 /\ RCV(UserID') =|> 

     State':= 4 /\ FASTv1' := new()  

                /\ SND(start_fast.FASTv1'.a_id_info)  

 

  3. State  = 4 /\ RCV(FASTv1.TLSv1'.session_id_0.Pnonce'.CsuiteList'.{PACkey'.PACinfo}_Kserver) 

=|> 

     State':= 6 /\ Snonce'    := new() 

                /\ SessionID' := new() 

                /\ Csuite'    := new() 

                /\ CCspec'    := new() 

                /\ MS'        := PRF(PACkey'.Snonce'.Pnonce') 

                /\ Finished'  := Hash1(MS'.P.S.Pnonce'.Csuite'.SessionID') 

                /\ ClientKEY' := KEYGEN(P.Pnonce'.Snonce'.MS') 

                /\ ServerKEY' := KEYGEN(S.Pnonce'.Snonce'.MS') 

                /\ SND(TLSv1'.Snonce'.SessionID'.Csuite'.CCspec'.{Finished'}_ServerKEY') 

                /\ witness(S,P,nonces,Pnonce'.Snonce') 

                /\ secret(PACkey',sec_pac,{S,P})  

 

  %%%%%%%%%%%% Phase 2 %%%%%%%%%%%%  

 

  4. State  = 6 /\ RCV(CCspec.{Finished}_ClientKEY)  =|> 

     State':= 8 /\ SND({eap_request_id}_ServerKEY) 

 

  5. State  = 8  /\ RCV({P}_ClientKEY) =|> 

     State':= 10 /\ Schallenge' := new()  

                 /\ SND({Schallenge'}_ServerKEY)  

 

  6. State  = 10 /\ RCV({Pchallenge'.NTResponse'}_ClientKEY) 

                 /\ NTResponse' = Hash2(Password.Pchallenge'.Schallenge.P)  =|> 

     State':= 12 /\ SND({Hash2(Password.Pchallenge')}_ServerKEY)  

                 /\ request(S,P,peer_proof,NTResponse') 

 

  7. State  = 12 /\ RCV({auth_ack}_ClientKEY) =|>  

     State':= 14 /\ Inter_result_tlv' := new()     % success 

                 /\ Bind_version'     := new()     % same version 

                 /\ CMKnonce'         := new() 

                 /\ MasterKey'        := Hash2(Hash2(Hash2(Password)).NTResponse) 

                 /\ MasterSendKey'    := PRF(MasterKey') 

                 /\ MasterReceiveKey' := KEYGEN(MasterKey') 

                 /\ MSK'              := MasterReceiveKey'.MasterSendKey' 

                 /\ Seed'             := PRF(MS.seed_label.Pnonce.Snonce)  

                 /\ CMK'              := PRF(Seed'.cmk_label.MSK')  

                 /\ Compound_MAC1'    := Hash2(CMK'.Bind_version'.FASTv1.zero.CMKnonce') 

                 /\ Crypto_bind_request' := Bind_version'.FASTv1.zero.CMKnonce'.Compound_MAC1' 

       /\ SND({Inter_result_tlv'.Bind_version'.FASTv1.zero.CMKnonce'.Compound_MAC1'}_ServerKEY) 

 

  %%%%%%%%%%%% PAC Provisioning %%%%%%%%%%%%  

 

  8. State  = 14  

  /\ RCV({Inter_result_tlv.Bind_version.FASTv1.one.CMKnonce.Compound_MAC2'.PAC_type'}_ClientKEY)  

                 /\ Compound_MAC2' = Hash2(CMK.Bind_version.FASTv1.one.CMKnonce)   =|>  

     State':= 16 /\ Result_tlv'  := new() 

                 /\ PAC_key'     := new() 

                 /\ PAC_lifetime':= new() 

                 /\ A_ID'        := new() 

                 /\ PAC_info'    := PAC_lifetime'.A_ID'.a_id_info.PAC_type' 

                 /\ PAC_enc_key' := new() 

                 /\ PAC_opaque'  := {PAC_key'.PAC_info'}_PAC_enc_key' 

                 /\ SND({Result_tlv'.PAC_key'.PAC_opaque'.PAC_info'}_ServerKEY)  

                 /\ secret(PAC_key',sec_packey,{S,P})  

                 /\ secret(PAC_opaque',sec_pacopaque,{S,P}) 

 

  9. State  = 16 /\ RCV({Result_tlv.PAC_ack'}_ClientKEY)   =|>  

     State':= 18 /\ SND(eap_success)  

 

end role 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

role peer( 

          S, P     : agent, 

          Password : symmetric_key, 

          PACkey   : symmetric_key, 
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          PACinfo  : text, 

          Ticket   : {symmetric_key.text}_symmetric_key, 

          Hash1    : hash_func, 

          Hash2    : hash_func, 

          PRF      : hash_func, 

          KEYGEN   : hash_func, 

          SND, RCV : channel (dy)  ) 

  played_by P def= 

 

  local  

    State     : nat,  

    Snonce    : text,  

    Pnonce    : text,  

    SessionID : text,  

    Csuite    : text,  

    CCspec    : text, 

    MS        : hash(symmetric_key.text.text), 

    Finished  : hash(hash(symmetric_key.text.text).agent.agent.text.text.text), 

    ClientKEY : hash(agent.text.text.hash(symmetric_key.text.text)), 

    ServerKEY : hash(agent.text.text.hash(symmetric_key.text.text)), 

    UserID    : text,  

    FASTv1    : text, 

    TLSv1     : text,  

    CsuiteList: text, 

    Schallenge : text,  

    Pchallenge : text,  

    NTResponse: hash(symmetric_key.text.text.agent), 

    Inter_result_tlv : text, 

    Bind_version     : text,  

    CMKnonce         : text, 

    MasterKey        : hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)), 

    MasterSendKey    : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))), 

    MasterReceiveKey : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))), 

    MSK              : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                       hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))), 

    Seed             : hash(hash(symmetric_key.text.text).text.text.text),  

    CMK              : hash( hash(hash(symmetric_key.text.text).text.text.text).text. 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))), 

    Compound_MAC1    : hash( hash( hash(hash(symmetric_key.text.text).text.text.text).text. 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))) 

                     .text.text.text.text ), 

    Compound_MAC2    : hash( hash( hash(hash(symmetric_key.text.text).text.text.text).text. 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))) 

                     .text.text.text.text ), 

    Crypto_bind_request : text.text.text.text. 

                     hash( hash( hash(hash(symmetric_key.text.text).text.text.text).text. 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))) 

                     .text.text.text.text ), 

    Crypto_bind_response: text.text.text.text. 

                     hash( hash( hash(hash(symmetric_key.text.text).text.text.text).text. 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))) 

                     .text.text.text.text ),  

    PAC_type      : text, 

    Result_tlv    : text, 

    PAC_key       : symmetric_key, 

    PAC_lifetime  : text, 

    A_ID          : text, 

    PAC_info      : text.text.text.text, 

    PAC_opaque    : {symmetric_key.text.text.text.text}_symmetric_key, 

    PAC_ack       : text 

 

  init State := 1 

  transition 

 

  1. State  = 1 /\ RCV(eap_request_id) =|> 

     State':= 3 /\ UserID' := new()  

                /\ SND(UserID') 

         

  2. State  = 3 /\ RCV(start_fast.FASTv1'.a_id_info) =|> 

     State':= 5 /\ TLSv1'     := new() 

                /\ Pnonce'    := new() 

                /\ CsuiteList':= new() 

                /\ SND(FASTv1'.TLSv1'.session_id_0.Pnonce'.CsuiteList'.Ticket) 

 

  3. State  = 5 /\ RCV(TLSv1.Snonce'.SessionID'.Csuite'.CCspec'.{Finished'}_ServerKEY') 

                /\ Finished'  = Hash1(PRF(PACkey.Snonce'.Pnonce).P.S.Pnonce.Csuite'.SessionID') 

                /\ ServerKEY' = KEYGEN(S.Pnonce.Snonce'.PRF(PACkey.Snonce'.Pnonce))   =|> 

     State':= 7 /\ MS'        := PRF(PACkey.Snonce'.Pnonce) 

                /\ ClientKEY' := KEYGEN(P.Pnonce.Snonce'.MS') 
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                /\ SND(CCspec'.{Finished'}_ClientKEY') 

 

  %%%%%%%%%%%% Phase 2 %%%%%%%%%%%%  

 

  4. State  = 7 /\ RCV({eap_request_id}_ServerKEY) =|> 

     State':= 9 /\ SND({P}_ClientKEY)  

                /\ secret(ClientKEY,sec_clientkey,{P,S}) 

                /\ secret(ServerKEY,sec_serverkey,{P,S}) 

                /\ request(P,S,nonces,Pnonce.Snonce)  

 

  5. State  = 9  /\ RCV({Schallenge'}_ServerKEY) =|> 

     State':= 11 /\ Pchallenge' := new()  

                 /\ NTResponse' := Hash2(Password.Pchallenge'.Schallenge'.P) 

                 /\ SND({Pchallenge'.NTResponse'}_ClientKEY)  

                 /\ witness(P,S,peer_proof,NTResponse') 

 

  6. State  = 11 /\ RCV({Hash2(Password.Pchallenge)}_ServerKEY) =|> 

     State':= 13 /\ SND({auth_ack}_ClientKEY)  

                 /\ MasterKey'        := Hash2(Hash2(Hash2(Password)).NTResponse) 

                 /\ MasterSendKey'    := PRF(MasterKey') 

                 /\ MasterReceiveKey' := KEYGEN(MasterKey') 

                 /\ MSK'              := MasterReceiveKey'.MasterSendKey' 

                 /\ Seed'             := PRF(MS.seed_label.Pnonce.Snonce) 

                 /\ CMK'              := PRF(Seed'.cmk_label.MSK') 

 

  %%%%%%%%%%%% PAC Provisioning %%%%%%%%%%%%  

 

  7. State  = 13  

      /\ RCV({Inter_result_tlv'.Bind_version'.FASTv1.zero.CMKnonce'.Compound_MAC1'}_ServerKEY) 

                 /\ Compound_MAC1' = Hash2(CMK.Bind_version'.FASTv1.one.CMKnonce')  =|> 

     State':= 15 /\ Compound_MAC2'        := Hash2(CMK.Bind_version'.FASTv1.one.CMKnonce') 

                 /\ Crypto_bind_response' := Bind_version'.FASTv1.one.CMKnonce'.Compound_MAC2' 

                 /\ PAC_type'             := new()  

 /\SND({Inter_result_tlv'.Bind_version'.FASTv1.one.CMKnonce'.Compound_MAC2'.PAC_type'}_ClientKEY) 

 

  8. State  = 15 /\ RCV({Result_tlv'.PAC_key'.PAC_opaque'.PAC_info'}_ServerKEY) 

                 /\ PAC_info' = PAC_lifetime'.A_ID'.a_id_info.PAC_type'  =|> 

     State':= 17 /\ PAC_ack' := new() 

                 /\ SND({Result_tlv'.PAC_ack'}_ClientKEY) 

 

  9. State  = 17 /\ RCV(eap_success) =|>  

     State':= 19  

 

end role 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

role session( 

             S, P     : agent, 

             Password : symmetric_key, 

             PACkey   : symmetric_key, 

             PACinfo  : text, 

             Kserver  : symmetric_key,  

             Ticket   : {symmetric_key.text}_symmetric_key, 

             Hash1    : hash_func, 

             Hash2    : hash_func, 

             PRF      : hash_func, 

             KEYGEN   : hash_func  ) 

def= 

 

  local PSND,PRCV,SSND,SRCV : channel (dy) 

  composition  

           server (S,P,Password,       PACinfo, Kserver, Hash1,Hash2,PRF,KEYGEN,SSND,SRCV)  

        /\ peer   (S,P,Password,PACkey,PACinfo, Ticket,  Hash1,Hash2,PRF,KEYGEN,PSND,PRCV)  

 

end role 

 

role environment() def= 

 

  const  

    eap_request_id, start_fast: text, 

    auth_ack, eap_success     : text, 

    a_id_info                 : text,  

    session_id_0              : text,       % SessionID = 0  

    seed_label, cmk_label     : text, 

    zero, one                 : text, 

 

    sec_pac, 

    sec_packey, sec_pacopaque,  

    nonces, peer_proof,  

    sec_clientkey,  

    sec_serverkey             : protocol_id,  

    s,p,i                     : agent, 

    kps,kis,kpi               : symmetric_key, 
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    packey, pacpi, pacsi      : symmetric_key, 

    pacinfo                   : text,  

    kserver, ksi              : symmetric_key, 

    hash1,hash2               : hash_func, 

    prf                       : hash_func, 

    keygen                    : hash_func 

 

   intruder_knowledge = {  s,p,hash1,hash2,prf,keygen,kpi,kis,pacpi,pacsi,ksi }    % pacinfo 

 

   composition 

      session(s,p,kps, packey,pacinfo, kserver,{packey.pacinfo}_kserver, hash1,hash2,prf,keygen) 

  /\  session(s,i,kis, pacpi, pacinfo, kserver,{pacpi.pacinfo}_kserver,  hash1,hash2,prf,keygen) 

  /\  session(i,p,kpi, packey,pacinfo, ksi,    {pacsi.pacinfo}_ksi,      hash1,hash2,prf,keygen) 

 

end role 

 

goal 

 

    secrecy_of sec_pac 

    secrecy_of sec_clientkey, sec_serverkey  

    secrecy_of sec_packey, sec_pacopaque 

 

    authentication_on nonces           % server authentication  

    authentication_on peer_proof       % peer authentication  

 

end goal 

 

environment() 

 

 

B.1.2 The Output Results 

 
root@ebakyt-laptop:/avispa# avispa Tunnel-establish-pac.hlpsl --cl-atse 

 

SUMMARY 

  SAFE 

 

DETAILS 

  BOUNDED_NUMBER_OF_SESSIONS 

  TYPED_MODEL 

 

PROTOCOL 

  /avispa/avispa-1.1//testsuite/results/Tunnel-establish-pac.if 

 

GOAL 

  As Specified 

 

BACKEND 

  CL-AtSe 

 

STATISTICS 

  Analysed   : 26164 states 

  Reachable  : 6540 states 

  Translation: 0.72 seconds 

  Computation: 2.41 seconds 

 

 

 

root@ebakyt-laptop:/avispa# avispa Tunnel-establish-pac.hlpsl --typed_model=no --cl-atse 

 

SUMMARY 

  SAFE 

 

DETAILS 

  BOUNDED_NUMBER_OF_SESSIONS 

  UNTYPED_MODEL 

 

PROTOCOL 

  /avispa/avispa-1.1//testsuite/results/Tunnel-establish-pac.if 

 

GOAL 

  As Specified 

 

BACKEND 

  CL-AtSe 

 

STATISTICS 

  Analysed   : 26164 states 

  Reachable  : 6540 states 

  Translation: 0.71 seconds 

  Computation: 2.39 seconds 
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B.2 User Authorization PAC Usage 

 

 Phase 1 : TLS Tunnel Establishment using Tunnel PAC. 

 Phase 2: Authenticate user with User Authorization PAC, new Tunnel PAC and new User Authorization PAC 
Provisioning. 

 

B.2.1 The HLPSL Specification 
 
role server( 

             S, P     : agent,  

             Password : symmetric_key,  

             PACinfo  : text, 

             Kserver  : symmetric_key,  

             Hash1    : hash_func, 

             Hash2    : hash_func,  

             PRF      : hash_func,  

             KEYGEN   : hash_func, 

             SND, RCV : channel (dy)  )  

  played_by S def= 

 

  local  

    State      : nat,  

    Snonce     : text,  

    Pnonce     : text,  

    SessionID  : text,  

    Csuite     : text,  

    CCspec     : text,  

    MS         : hash(symmetric_key.text.text), 

    Finished   : hash(hash(symmetric_key.text.text).agent.agent.text.text.text),  

    ClientKEY  : hash(agent.text.text.hash(symmetric_key.text.text)),  

    ServerKEY  : hash(agent.text.text.hash(symmetric_key.text.text)),  

    UserID     : text,  

    FASTv1     : text,  

    TLSv1      : text, 

    CsuiteList : text, 

    Inter_result_tlv : text, 

    PAC_type     : text, 

    PAC_type3    : text, 

    Result_tlv   : text, 

    PAC_key      : symmetric_key, 

    PAC_lifetime : text, 

    A_ID         : text, 

    PAC_info     : text.text.text.text, 

    PAC_enc_key  : symmetric_key, 

    PAC_opaque   : {symmetric_key.text.text.text.text}_symmetric_key, 

    PAC_ack      : text, 

    PACkey       : symmetric_key, 

    UserAuthID   : text, 

    NUserAuthID  : text, 

    TunnelPAC    : hash({symmetric_key.text}_symmetric_key), 

    UserPAC      : {hash({symmetric_key.text}_symmetric_key).text}_symmetric_key, 

    NewUserPAC  : {hash({symmetric_key.text.text.text.text}_symmetric_key).text}_symmetric_key 

 

  init State := 0 

 

  transition 

 

  1. State  = 0 /\ RCV(start)  =|> 

     State':= 2 /\ SND(eap_request_id)  

 

  2. State  = 2 /\ RCV(UserID')  =|> 

     State':= 4 /\ FASTv1' := new()  

                /\ SND(start_fast.FASTv1'.a_id_info)  

 

  3. State  = 4  

         /\ RCV(FASTv1.TLSv1'.session_id_0.Pnonce'.CsuiteList'.{PACkey'.PACinfo}_Kserver) =|> 

     State':= 6 /\ TunnelPAC' := hash1({PACkey'.PACinfo}_Kserver) 

                /\ Snonce'    := new() 

                /\ SessionID' := new() 

                /\ Csuite'    := new() 

                /\ CCspec'    := new() 

                /\ MS'        := PRF(PACkey'.Snonce'.Pnonce') 

                /\ Finished'  := Hash1(MS'.P.S.Pnonce'.Csuite'.SessionID') 

                /\ ClientKEY' := KEYGEN(P.Pnonce'.Snonce'.MS') 

                /\ ServerKEY' := KEYGEN(S.Pnonce'.Snonce'.MS') 

                /\ SND(TLSv1'.Snonce'.SessionID'.Csuite'.CCspec'.{Finished'}_ServerKEY') 

                /\ witness(S,P,nonces,Pnonce'.Snonce') 

                /\ secret(PACkey',sec_pac,{S,P}) 

 

  %%%%%%%%%%%% Phase 2:  User Authorization PAC usage %%%%%%%%%%%%  

 

  4. State  = 6 /\ RCV(CCspec.{Finished}_ClientKEY)  =|> 
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     State':= 8 /\ SND({eap_request_id}_ServerKEY) 

 

  5. State  = 8  /\ RCV({UserPAC'}_ClientKEY) 

                 /\ UserPAC' = {TunnelPAC.UserAuthID'}_Kserver  =|>  

     State':= 10 /\ Inter_result_tlv' := new() 

                 /\ SND({Inter_result_tlv'}_ServerKEY) 

                 /\ secret(UserAuthID',sec_useridentity,{S,P})  

 

  %%%%%%%%%%%% PAC Provisioning %%%%%%%%%%%%  

 

  6. State  = 10 /\ RCV({Inter_result_tlv.PAC_type'}_ClientKEY)  =|> 

     State':= 12 /\ PAC_key'     := new() 

                 /\ PAC_lifetime':= new() 

                 /\ A_ID'        := new() 

                 /\ PAC_info'    := PAC_lifetime'.A_ID'.a_id_info.PAC_type' 

                 /\ PAC_enc_key' := new() 

                 /\ PAC_opaque'  := {PAC_key'.PAC_info'}_PAC_enc_key' 

                 /\ SND({PAC_key'.PAC_opaque'.PAC_info'}_ServerKEY)  

                 /\ secret(PAC_key',sec_packey,{S,P})  

                 /\ secret(PAC_opaque',sec_pacopaque,{S,P}) 

 

  7. State  = 12 /\ RCV({PAC_ack'.PAC_type3'}_ClientKEY)  =|> 

     State':= 14 /\ Result_tlv'  := new() 

                 /\ NUserAuthID' := new() 

                 /\ NewUserPAC'  := {hash1(PAC_opaque).NUserAuthID'}_PAC_enc_key 

                 /\ SND({Result_tlv'.NewUserPAC'}_ServerKEY)  

                 /\ secret(NUserAuthID',sec_userauthid,{S,P}) 

                 /\ secret(NewUserPAC',sec_newuserpac,{S,P}) 

                 /\ request(S,P,peerauth,UserPAC)  

 

  8. State  = 14 /\ RCV({Result_tlv}_ClientKEY)  =|>  

     State':= 16 /\ SND(eap_success) 

 

end role 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

role peer( 

          S, P       : agent, 

          Password   : symmetric_key, 

          PACkey     : symmetric_key, 

          PACinfo    : text, 

          UserAuthID : text, 

          Ticket     : {symmetric_key.text}_symmetric_key, 

          UserPAC    : {hash({symmetric_key.text}_symmetric_key).text}_symmetric_key, 

          Hash1      : hash_func, 

          Hash2      : hash_func, 

          PRF        : hash_func, 

          KEYGEN     : hash_func, 

          SND, RCV   : channel (dy)  ) 

  played_by P def= 

 

  local  

    State      : nat,  

    Snonce     : text,  

    Pnonce     : text,  

    SessionID  : text,  

    Csuite     : text,  

    CCspec     : text, 

    MS         : hash(symmetric_key.text.text), 

    Finished   : hash(hash(symmetric_key.text.text).agent.agent.text.text.text), 

    ClientKEY  : hash(agent.text.text.hash(symmetric_key.text.text)), 

    ServerKEY  : hash(agent.text.text.hash(symmetric_key.text.text)), 

    UserID     : text,  

    FASTv1     : text, 

    TLSv1      : text,  

    CsuiteList : text, 

    Inter_result_tlv : text, 

    PAC_type     : text, 

    PAC_type3    : text, 

    Result_tlv   : text, 

    PAC_key      : symmetric_key, 

    PAC_lifetime : text, 

    A_ID         : text, 

    PAC_info     : text.text.text.text, 

    PAC_opaque   : {symmetric_key.text.text.text.text}_symmetric_key, 

    PAC_ack      : text, 

    NewUserPAC  : {hash({symmetric_key.text.text.text.text}_symmetric_key).text}_symmetric_key 

 

  init State := 1 

       

  transition 

 

  1. State  = 1 /\ RCV(eap_request_id)  =|> 
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     State':= 3 /\ UserID' := new()  

                /\ SND(UserID') 

         

  2. State  = 3 /\ RCV(start_fast.FASTv1'.a_id_info)  =|> 

     State':= 5 /\ TLSv1'     := new() 

                /\ Pnonce'    := new() 

                /\ CsuiteList':= new() 

                /\ SND(FASTv1'.TLSv1'.session_id_0.Pnonce'.CsuiteList'.Ticket) 

 

  3. State  = 5 /\ RCV(TLSv1.Snonce'.SessionID'.Csuite'.CCspec'.{Finished'}_ServerKEY') 

                /\ Finished'  = Hash1(PRF(PACkey.Snonce'.Pnonce).P.S.Pnonce.Csuite'.SessionID') 

                /\ ServerKEY' = KEYGEN(S.Pnonce.Snonce'.PRF(PACkey.Snonce'.Pnonce))   =|> 

     State':= 7 /\ MS'        := PRF(PACkey.Snonce'.Pnonce) 

                /\ ClientKEY' := KEYGEN(P.Pnonce.Snonce'.MS') 

                /\ SND(CCspec'.{Finished'}_ClientKEY') 

 

  %%%%%%%%%%%% Phase 2:  User Authorization PAC usage %%%%%%%%%%%%  

 

  4. State  = 7 /\ RCV({eap_request_id}_ServerKEY) =|> 

     State':= 9 /\ SND({UserPAC}_ClientKEY)  

                /\ secret(ClientKEY,sec_clientkey,{P,S}) 

                /\ secret(ServerKEY,sec_serverkey,{P,S}) 

                /\ request(P,S,nonces,Pnonce.Snonce)  

                /\ witness(P,S,peerauth,UserPAC)  

 

  %%%%%%%%%%%% PAC Provisioning %%%%%%%%%%%%  

 

  5. State  = 9  /\ RCV({Inter_result_tlv'}_ServerKEY)  =|> 

     State':= 11 /\ PAC_type' := new()      % = '1' for Tunnel PAC 

                 /\ SND({Inter_result_tlv'.PAC_type'}_ClientKEY) 

 

  6. State  = 11 /\ RCV({PAC_key'.PAC_opaque'.PAC_info'}_ServerKEY) 

                 /\ PAC_info'   = PAC_lifetime'.A_ID'.a_id_info.PAC_type  =|> 

     State':= 13 /\ PAC_type3' := new()     % = '3' for User Auth. PAC 

                 /\ PAC_ack'   := new() 

                 /\ SND({PAC_ack'.PAC_type3'}_ClientKEY) 

 

  7. State  = 13 /\ RCV({Result_tlv'.NewUserPAC'}_ServerKEY)  =|> 

     State':= 15 /\ SND({Result_tlv'}_ClientKEY) 

 

  8. State  = 15 /\ RCV(eap_success)  =|>  

     State':= 17 

 

end role 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

role session( 

             S, P       : agent, 

             Password   : symmetric_key, 

             PACkey     : symmetric_key, 

             PACinfo    : text, 

             Kserver    : symmetric_key, 

             UserAuthID : text, 

             Ticket     : {symmetric_key.text}_symmetric_key, 

             UserPAC    : {hash({symmetric_key.text}_symmetric_key).text}_symmetric_key, 

             Hash1      : hash_func, 

             Hash2      : hash_func, 

             PRF        : hash_func, 

             KEYGEN     : hash_func  ) 

def= 

 

  local PSND,PRCV,SSND,SRCV : channel (dy) 

 

  composition  

  server(S,P,Password,      PACinfo,     Kserver,             Hash1,Hash2,PRF,KEYGEN,SSND,SRCV)  

/\ peer(S,P,Password,PACkey,PACinfo,UserAuthID,Ticket,UserPAC,Hash1,Hash2,PRF,KEYGEN,PSND,PRCV) 

 

end role 

 

role environment() def= 

  const  

    eap_request_id, start_fast: text, 

    auth_ack, eap_success     : text, 

    a_id_info                 : text,  

    session_id_0              : text,     % SessionID = 0  

    seed_label, cmk_label     : text, 

    zero, one                 : text, 

 

    sec_pac,sec_useridentity, 

    sec_packey, sec_pacopaque,  

    nonces, sec_userauthid, 

    sec_newuserpac,  

    peerauth,  
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    sec_clientkey,  

    sec_serverkey             : protocol_id,  

    s,p,i                     : agent, 

    kps,kis,kpi               : symmetric_key, 

    packey, pacpi, pacsi      : symmetric_key, 

    pacinfo                   : text, 

    userauthid                : text, 

    kserver, ksi              : symmetric_key, 

    hash1,hash2               : hash_func, 

    prf                       : hash_func, 

    keygen                    : hash_func 

 

intruder_knowledge = { s,p,hash1,hash2,prf,keygen,kpi,kis,pacpi,pacsi,ksi } 

 composition 

    session(s,p,kps,packey,pacinfo,kserver,userauthid,{packey.pacinfo}_kserver,  

            {hash1({packey.pacinfo}_kserver).userauthid}_kserver,hash1,hash2,prf,keygen) 

 /\ session(s,i,kis, pacpi, pacinfo,kserver,userauthid,{pacpi.pacinfo}_kserver, 

            {hash1({pacpi.pacinfo}_kserver).userauthid}_kserver, hash1,hash2,prf,keygen) 

 /\ session(i,p,kpi, packey,pacinfo,ksi,    userauthid,{pacsi.pacinfo}_ksi, 

            {hash1({pacsi.pacinfo}_ksi).userauthid}_ksi,         hash1,hash2,prf,keygen) 

end role 

 

goal 

    secrecy_of sec_pac 

    secrecy_of sec_clientkey, sec_serverkey  

    secrecy_of sec_useridentity 

    secrecy_of sec_packey, sec_pacopaque 

    secrecy_of sec_userauthid 

    secrecy_of sec_newuserpac   

    authentication_on nonces            % server authentication  

    authentication_on peerauth          % peer authentication  

end goal 

 

environment() 

 

B.2.2 The Output Results 

 
root@ebakyt-laptop:/avispa# avispa Tunnel-and-user-pac.hlpsl --cl-atse 

 

SUMMARY 

  SAFE 

 

DETAILS 

  BOUNDED_NUMBER_OF_SESSIONS 

  TYPED_MODEL 

 

PROTOCOL 

  /avispa/avispa-1.1//testsuite/results/Tunnel-and-user-pac.if 

 

GOAL 

  As Specified 

 

BACKEND 

  CL-AtSe 

 

STATISTICS 

  Analysed   : 39082 states 

  Reachable  : 12447 states 

  Translation: 0.42 seconds 

  Computation: 5.95 seconds 

 

root@ebakyt-laptop:/avispa# avispa Tunnel-and-user-pac.hlpsl --typed_model=no --cl-atse 

 

SUMMARY 

  SAFE 

 

DETAILS 

  BOUNDED_NUMBER_OF_SESSIONS 

  UNTYPED_MODEL 

 

PROTOCOL 

  /avispa/avispa-1.1//testsuite/results/Tunnel-and-user-pac.if 

 

GOAL 

  As Specified 

 

BACKEND 

  CL-AtSe 

 

STATISTICS 

  Analysed   : 46655 states 

  Reachable  : 15541 states 

  Translation: 0.42 seconds 

  Computation: 28.31 seconds  
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APPENDIX C  

 

EAP-FAST Dynamic Provisioning Mechanism 

 

C.1 Server-Authenticated Provisioning 

 
 Phase 1: TLS Tunnel Establishment using Server Certificates. 

 Phase 2: EAP-MSCHAPv2 method and Tunnel PAC Provisioning. 

 

C.1.1 The HLPSL Specification 

 
role server( 

             S, P     : agent,  

             Password : symmetric_key,  

             Kserver  : public_key,  

             Kca      : public_key,  

             Hash1    : hash_func, 

             Hash2    : hash_func,  

             PRF      : hash_func,  

             KEYGEN   : hash_func, 

             SND, RCV : channel (dy)  )  

  played_by S def= 

 

  local  

    State      : nat,  

    Snonce     : text,  

    Pnonce     : text,  

    SessionID  : text,  

    Csuite     : text,  

    PMS        : text,  

    CCspec     : text,  

    MS         : hash(text.text.text),  

    Finished   : hash(hash(text.text.text).agent.agent.text.text.text),  

    ClientKEY  : hash(agent.text.text.hash(text.text.text)),  

    ServerKEY  : hash(agent.text.text.hash(text.text.text)),  

    UserID     : text,  

    FASTv1     : text,  

    TLSv1      : text, 

    CsuiteList : text, 

    SHelloDone : text, 

    Schallenge : text,  

    Pchallenge : text,  

    NTResponse : hash(symmetric_key.text.text.agent), 

    Inter_result_tlv : text, 

    Bind_version     : text,  

    CMKnonce         : text, 

    MasterKey        : hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)), 

    MasterSendKey    : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))), 

    MasterReceiveKey : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))), 

    MSK              : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                       hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))), 

    Seed             : hash(hash(text.text.text).text.text.text),  

    CMK              : hash( hash(hash(text.text.text).text.text.text).text. 

                       hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))),  

    Compound_MAC1    : hash( hash( hash(hash(text.text.text).text.text.text).text. 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))) 

                     .text.text.text.text ), 

    Compound_MAC2    : hash( hash( hash(hash(text.text.text).text.text.text).text. 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))) 

                     .text.text.text.text ), 

    Crypto_bind_request : text.text.text.text. 

                     hash( hash( hash(hash(text.text.text).text.text.text).text. 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))) 

                     .text.text.text.text ), 

    Crypto_bind_response: text.text.text.text. 

                     hash( hash( hash(hash(text.text.text).text.text.text).text. 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))) 

                     .text.text.text.text ), 

    PAC_type         : text, 

    Result_tlv       : text, 

    PAC_key          : symmetric_key, 

    PAC_lifetime     : text, 

    A_ID             : text, 
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    PAC_info         : text.text.text.text, 

    PAC_enc_key      : symmetric_key, 

    PAC_opaque       : {symmetric_key.text.text.text.text}_symmetric_key, 

    PAC_ack          : text 

 

  init State := 0 

 

  transition 

 

  1. State  = 0 /\ RCV(start) =|> 

     State':= 2 /\ SND(eap_request_id)  

 

  2. State  = 2 /\ RCV(UserID') =|> 

     State':= 4 /\ FASTv1' := new()  

                /\ SND(start_fast.FASTv1'.a_id_info)  

 

  3. State  = 4 /\ RCV(FASTv1.TLSv1'.session_id_0.Pnonce'.CsuiteList') =|> 

     State':= 6 /\ Snonce'    := new() 

                /\ SessionID' := new() 

                /\ Csuite'    := new() 

                /\ SHelloDone':= new() 

                /\ SND(TLSv1'.Snonce'.SessionID'.Csuite'.{S.Kserver}_inv(Kca).SHelloDone') 

                /\ witness(S,P,nonces,Pnonce'.Snonce')        

 

  4. State  = 6 /\ RCV({PMS'}_Kserver.CCspec'.{Finished'}_ClientKEY') 

                /\ Finished'  = Hash1(PRF(PMS'.Pnonce.Snonce).P.S.Pnonce.Csuite.SessionID) 

                /\ ClientKEY' = KEYGEN(P.Pnonce.Snonce.PRF(PMS'.Pnonce.Snonce))  =|> 

     State':= 8 /\ MS'       := PRF(PMS'.Pnonce.Snonce) 

                /\ ServerKEY':= KEYGEN(S.Pnonce.Snonce.MS') 

                /\ SND(CCspec'.{Finished'.eap_request_id}_ServerKEY') 

 

  %%%%%%%%%%%% Phase 2 %%%%%%%%%%%%  

 

  5. State  = 8  /\ RCV({P}_ClientKEY) =|> 

     State':= 10 /\ Schallenge' := new()  

                 /\ SND({Schallenge'}_ServerKEY)  

 

  6. State  = 10 /\ RCV({Pchallenge'.NTResponse'}_ClientKEY) 

                 /\ NTResponse' = Hash2(Password.Pchallenge'.Schallenge.P)  =|> 

     State':= 12 /\ SND({Hash2(Password.Pchallenge')}_ServerKEY)  

                 /\ request(S,P,peer_proof,NTResponse') 

 

  7. State  = 12 /\ RCV({auth_ack}_ClientKEY) =|>  

     State':= 14 /\ Inter_result_tlv' := new()     % success 

                 /\ Bind_version'     := new()     % same version 

                 /\ CMKnonce'         := new() 

                 /\ MasterKey'        := Hash2(Hash2(Hash2(Password)).NTResponse) 

                 /\ MasterSendKey'    := PRF(MasterKey') 

                 /\ MasterReceiveKey' := KEYGEN(MasterKey')  

                 /\ MSK'              := MasterReceiveKey'.MasterSendKey' 

                 /\ Seed'             := PRF(MS.seed_label.Pnonce.Snonce)  

                 /\ CMK'              := PRF(Seed'.cmk_label.MSK')  

                 /\ Compound_MAC1'    := Hash2(CMK'.Bind_version'.FASTv1.zero.CMKnonce') 

                 /\ Crypto_bind_request' := Bind_version'.FASTv1.zero.CMKnonce'.Compound_MAC1' 

       /\ SND({Inter_result_tlv'.Bind_version'.FASTv1.zero.CMKnonce'.Compound_MAC1'}_ServerKEY) 

 

  %%%%%%%%%%%% PAC Provisioning %%%%%%%%%%%%  

 

  8. State  = 14  

  /\ RCV({Inter_result_tlv.Bind_version.FASTv1.one.CMKnonce.Compound_MAC2'.PAC_type'}_ClientKEY)  

                 /\ Compound_MAC2' = Hash2(CMK.Bind_version.FASTv1.one.CMKnonce)   =|>  

     State':= 16 /\ Result_tlv'  := new() 

                 /\ PAC_key'     := new() 

                 /\ PAC_lifetime':= new() 

                 /\ A_ID'        := new() 

                 /\ PAC_info'    := PAC_lifetime'.A_ID'.a_id_info.PAC_type' 

                 /\ PAC_enc_key' := new() 

                 /\ PAC_opaque'  := {PAC_key'.PAC_info'}_PAC_enc_key' 

                 /\ SND({Result_tlv'.PAC_key'.PAC_opaque'.PAC_info'}_ServerKEY)  

                 /\ secret(PAC_key',sec_packey,{S,P})  

                 /\ secret(PAC_opaque',sec_pacopaque,{S,P}) 

 

  9. State  = 16 /\ RCV({Result_tlv.PAC_ack'}_ClientKEY)   =|>  

     State':= 18 /\ SND(eap_success)  

 

end role 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

role peer( 

          S, P     : agent, 

          Password : symmetric_key, 

          Kca      : public_key, 

          Hash1    : hash_func, 



97 

 

 

 

          Hash2    : hash_func, 

          PRF      : hash_func, 

          KEYGEN   : hash_func, 

          SND, RCV : channel (dy)  ) 

  played_by P def= 

 

  local  

    State      : nat,  

    Snonce     : text,  

    Pnonce     : text,  

    SessionID  : text,  

    Csuite     : text,  

    PMS        : text,  

    CCspec     : text, 

    MS         : hash(text.text.text), 

    Finished   : hash(hash(text.text.text).agent.agent.text.text.text), 

    ClientKEY  : hash(agent.text.text.hash(text.text.text)), 

    ServerKEY  : hash(agent.text.text.hash(text.text.text)), 

    Kserver    : public_key,  

    UserID     : text,  

    FASTv1     : text, 

    TLSv1      : text,  

    CsuiteList : text, 

    SHelloDone : text, 

    Schallenge : text,  

    Pchallenge : text,  

    NTResponse : hash(symmetric_key.text.text.agent), 

    Inter_result_tlv : text, 

    Bind_version     : text,  

    CMKnonce         : text, 

    MasterKey        : hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)), 

    MasterSendKey    : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))), 

    MasterReceiveKey : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))), 

    MSK              : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                       hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))), 

    Seed             : hash(hash(text.text.text).text.text.text),  

    CMK              : hash( hash(hash(text.text.text).text.text.text).text. 

                       hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))),  

    Compound_MAC1    : hash( hash( hash(hash(text.text.text).text.text.text).text. 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))) 

                     .text.text.text.text ), 

    Compound_MAC2    : hash( hash( hash(hash(text.text.text).text.text.text).text. 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))) 

                     .text.text.text.text ), 

    Crypto_bind_request : text.text.text.text. 

                     hash( hash( hash(hash(text.text.text).text.text.text).text. 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))) 

                     .text.text.text.text ), 

    Crypto_bind_response: text.text.text.text. 

                     hash( hash( hash(hash(text.text.text).text.text.text).text. 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))). 

                     hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))) 

                     .text.text.text.text ), 

    PAC_type         : text, 

    Result_tlv       : text, 

    PAC_key          : symmetric_key, 

    PAC_lifetime     : text, 

    A_ID             : text, 

    PAC_info         : text.text.text.text, 

    PAC_opaque       : {symmetric_key.text.text.text.text}_symmetric_key, 

    PAC_ack          : text 

 

  init State := 1 

       

  transition 

 

  1. State  = 1 /\ RCV(eap_request_id) =|> 

     State':= 3 /\ UserID' := new()  

                /\ SND(UserID') 

         

  2. State  = 3 /\ RCV(start_fast.FASTv1'.a_id_info) =|> 

     State':= 5 /\ TLSv1'     := new() 

                /\ Pnonce'    := new() 

                /\ CsuiteList':= new() 

                /\ SND(FASTv1'.TLSv1'.session_id_0.Pnonce'.CsuiteList') 

 

  3. State  = 5 /\ RCV(TLSv1.Snonce'.SessionID'.Csuite'.{S.Kserver'}_inv(Kca).SHelloDone') =|> 

     State':= 7 /\ PMS'       := new() 

                /\ CCspec'    := new() 

                /\ MS'        := PRF(PMS'.Pnonce.Snonce') 
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                /\ Finished'  := Hash1(MS'.P.S.Pnonce.Csuite'.SessionID') 

                /\ ClientKEY' := KEYGEN(P.Pnonce.Snonce'.MS') 

                /\ ServerKEY' := KEYGEN(S.Pnonce.Snonce'.MS') 

                /\ SND({PMS'}_Kserver'.CCspec'.{Finished'}_ClientKEY') 

 

  %%%%%%%%%%%% Phase 2 %%%%%%%%%%%%  

 

  4. State  = 7 /\ RCV(CCspec.{Finished.eap_request_id}_ServerKEY) =|> 

     State':= 9 /\ SND({P}_ClientKEY)  

                /\ secret(ClientKEY,sec_clientkey,{P,S}) 

                /\ secret(ServerKEY,sec_serverkey,{P,S}) 

                /\ request(P,S,nonces,Pnonce.Snonce)  

 

  5. State  = 9  /\ RCV({Schallenge'}_ServerKEY) =|> 

     State':= 11 /\ Pchallenge' := new()  

                 /\ NTResponse' := Hash2(Password.Pchallenge'.Schallenge'.P) 

                 /\ SND({Pchallenge'.NTResponse'}_ClientKEY)  

                 /\ witness(P,S,peer_proof,NTResponse') 

 

  6. State  = 11 /\ RCV({Hash2(Password.Pchallenge)}_ServerKEY) =|> 

     State':= 13 /\ SND({auth_ack}_ClientKEY)  

                 /\ MasterKey'        := Hash2(Hash2(Hash2(Password)).NTResponse) 

                 /\ MasterSendKey'    := PRF(MasterKey') 

                 /\ MasterReceiveKey' := KEYGEN(MasterKey') 

                 /\ MSK'              := MasterReceiveKey'.MasterSendKey' 

                 /\ Seed'             := PRF(MS.seed_label.Pnonce.Snonce) 

                 /\ CMK'              := PRF(Seed'.cmk_label.MSK')  

 

  %%%%%%%%%%%% PAC Provisioning %%%%%%%%%%%%  

 

  7. State  = 13  

     /\ RCV({Inter_result_tlv'.Bind_version'.FASTv1.zero.CMKnonce'.Compound_MAC1'}_ServerKEY) 

                 /\ Compound_MAC1' = Hash2(CMK.Bind_version'.FASTv1.zero.CMKnonce')  =|> 

     State':= 15 /\ Compound_MAC2'        := Hash2(CMK.Bind_version'.FASTv1.one.CMKnonce') 

                 /\ Crypto_bind_response' := Bind_version'.FASTv1.one.CMKnonce'.Compound_MAC2' 

                 /\ PAC_type'             := new()  

/\ SND({Inter_result_tlv'.Bind_version'.FASTv1.one.CMKnonce'.Compound_MAC2'.PAC_type'}_ClientKEY) 

 

  8. State  = 15 /\ RCV({Result_tlv'.PAC_key'.PAC_opaque'.PAC_info'}_ServerKEY) 

                 /\ PAC_info' = PAC_lifetime'.A_ID'.a_id_info.PAC_type'   =|> 

     State':= 17 /\ PAC_ack' := new() 

                 /\ SND({Result_tlv'.PAC_ack'}_ClientKEY) 

 

  9. State  = 17 /\ RCV(eap_success) =|>  

     State':= 19  

 

end role 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

role session( 

             S, P     : agent, 

             Password : symmetric_key, 

             Kserver  : public_key, 

             Kca      : public_key, 

             Hash1    : hash_func, 

             Hash2    : hash_func, 

             PRF      : hash_func, 

             KEYGEN   : hash_func  ) 

def= 

  local PSND,PRCV,SSND,SRCV : channel (dy) 

 

  composition  

           server (S,P,Password,Kserver,Kca,Hash1,Hash2,PRF,KEYGEN,SSND,SRCV)  

        /\ peer   (S,P,Password,        Kca,Hash1,Hash2,PRF,KEYGEN,PSND,PRCV)  

 

end role 

 

role environment() def= 

 

  const  

    eap_request_id, start_fast: text, 

    auth_ack, eap_success     : text, 

    a_id_info                 : text,  

    session_id_0              : text,     % SessionID = 0  

    seed_label, cmk_label     : text, 

    zero, one                 : text, 

 

    sec_packey, sec_pacopaque,  

    nonces, peer_proof,  

    sec_clientkey,  

    sec_serverkey             : protocol_id,  

    s,p,i                     : agent, 

    kps,kis,kpi               : symmetric_key, 
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    kserver,ki,kca            : public_key, 

    hash1,hash2               : hash_func, 

    prf                       : hash_func, 

    keygen                    : hash_func 

 

   intruder_knowledge = { s,p,hash1,hash2,prf,keygen,kca,kserver,ki,inv(ki),kpi,kis } 

 

   composition 

            session(s,p,kps,kserver,kca,hash1,hash2,prf,keygen) 

        /\  session(s,i,kis,kserver,kca,hash1,hash2,prf,keygen) 

        /\  session(i,p,kpi,ki,     kca,hash1,hash2,prf,keygen) 

 

end role 

 

goal 

 

    secrecy_of sec_clientkey, sec_serverkey  

    secrecy_of sec_packey, sec_pacopaque 

 

    authentication_on nonces          % server authentication  

    authentication_on peer_proof      % peer authentication  

 

end goal 

 

environment() 

 
 

 

C.1.2 The Output Results 
 

 
root@ebakyt-laptop:/avispa# avispa Server-auth-prov.hlpsl --cl-atse 

 

SUMMARY 

  SAFE 

 

DETAILS 

  BOUNDED_NUMBER_OF_SESSIONS 

  TYPED_MODEL 

 

PROTOCOL 

  /avispa/avispa-1.1//testsuite/results/Server-auth-prov.if 

 

GOAL 

  As Specified 

 

BACKEND 

  CL-AtSe 

 

STATISTICS 

 

  Analysed   : 632832 states 

  Reachable  : 265869 states 

  Translation: 0.72 seconds 

  Computation: 85.82 seconds 

 

 

 

root@ebakyt-laptop:/avispa# avispa Server-auth-prov.hlpsl --typed_model=no --cl-atse 

 

SUMMARY 

  SAFE 

 

DETAILS 

  BOUNDED_NUMBER_OF_SESSIONS 

  UNTYPED_MODEL 

 

PROTOCOL 

  /avispa/avispa-1.1//testsuite/results/Server-auth-prov.if 

 

GOAL 

  As Specified 

 

BACKEND 

  CL-AtSe 

 

STATISTICS 

 

  Analysed   : 2238920 states 

  Reachable  : 966873 states 

  Translation: 0.71 seconds 

  Computation: 284.28 seconds 
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C.2 Server-Unauthenticated Provisioning 

 

 Phase 1: TLS Tunnel Establishment using Diffie-Hellman Key Exchange. 

 Phase 2: EAP-FAST-MSCHAPv2 method and Tunnel PAC Provisioning. 
 

C.2.1 The HLPSL Specification 

 
role server( 

             S, P     : agent,  

             Password : symmetric_key,  

             G        : nat, 

             Hash1    : hash_func, 

             Hash2    : hash_func,  

             PRF      : hash_func,  

             KEYGEN   : hash_func, 

             PRF1     : hash_func,  

             PRF2     : hash_func,  

             SND, RCV : channel (dy)  )  

  played_by S def= 

 

  local  

    State      : nat,  

    Snonce     : text,  

    Pnonce     : text,  

    SessionID  : text,  

    Csuite     : text,  

    PMS        : message,  

    CCspec     : text, 

    MS         : message,  

    Finished   : message,  

    ClientKEY  : message,  

    ServerKEY  : message, 

    UserID     : text,  

    FASTv1     : text,  

    TLSv1      : text, 

    CsuiteList : text, 

    SHelloDone : text, 

    Inter_result_tlv : text, 

    Bind_version     : text,  

    CMKnonce         : text, 

    Schallenge       : message,  

    Pchallenge       : message,  

    RealServerCH     : text, 

    RealPeerCH       : text, 

    NTResponse       : message,  

    MasterKey        : message, 

    MasterSendKey    : message, 

    MasterReceiveKey : message, 

    MSK              : message, 

    Seed             : message,  

    CMK              : message,  

    Compound_MAC1    : message,   % server --> peer  

    Compound_MAC2    : message,   % peer   --> server  

    Crypto_bind_request  : text.text.text.text.message, 

    Crypto_bind_response : text.text.text.text.message, 

    PAC_type         : text, 

    Result_tlv       : text, 

    PAC_key          : symmetric_key, 

    PAC_lifetime     : text, 

    A_ID             : text, 

    PAC_info         : text.text.text.text, 

    PAC_enc_key      : symmetric_key, 

    PAC_opaque       : {symmetric_key.text.text.text.text}_symmetric_key, 

    PAC_ack          : text 

 

  init State := 0 

 

  transition 

 

  1. State  = 0 /\ RCV(start) =|> 

     State':= 2 /\ SND(eap_request_id)  

 

  2. State  = 2 /\ RCV(UserID') =|> 

     State':= 4 /\ FASTv1' := new()  

                /\ SND(start_fast.FASTv1'.a_id_info)  

 

  3. State  = 4 /\ RCV(FASTv1.TLSv1'.session_id_0.Pnonce'.CsuiteList') =|> 

     State':= 6 /\ Snonce'    := new() 

                /\ SessionID' := new() 

                /\ Csuite'    := new() 

                /\ SHelloDone':= new() 

                /\ SND(TLSv1'.Snonce'.SessionID'.Csuite'.G.exp(G,Snonce').SHelloDone') 
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                /\ witness(S,P,nonces,Pnonce'.Snonce')        

 

  4. State  = 6 /\ RCV(exp(G,Pnonce).CCspec'.{Finished'}_ClientKEY') 

  /\ Finished' = Hash1(PRF(exp(exp(G,Pnonce),Snonce).Pnonce.Snonce).P.S.Pnonce.Csuite.SessionID) 

  /\ ClientKEY' = KEYGEN(P.Pnonce.Snonce.PRF(exp(exp(G,Pnonce),Snonce).Pnonce.Snonce))  =|> 

     State':= 8 /\ PMS'       := exp(exp(G,Pnonce),Snonce) 

                /\ MS'        := PRF(PMS'.Pnonce.Snonce) 

                /\ ServerKEY' := KEYGEN(S.Pnonce.Snonce.MS') 

                /\ SND(CCspec'.{Finished'.eap_request_id}_ServerKEY') 

 

  %%%%%%%%%%%% Phase 2 %%%%%%%%%%%%  

 

  5. State  = 8  /\ RCV({P}_ClientKEY) =|> 

     State':= 10 /\ Schallenge'   := PRF1(PMS.Pnonce.Snonce)  

                 /\ Pchallenge'   := PRF2(PMS.Pnonce.Snonce) 

                 /\ RealServerCH' := new()  

                 /\ SND({RealServerCH'}_ServerKEY)  

 

  6. State  = 10 /\ RCV({RealPeerCH'.NTResponse'}_ClientKEY) 

                 /\ NTResponse' = Hash2(Password.Pchallenge.Schallenge.P)  =|> 

     State':= 12 /\ SND({Hash2(Password.Pchallenge)}_ServerKEY)  

                 /\ request(S,P,peer_proof,{RealPeerCH'.NTResponse'}_ClientKEY) 

              %% /\ request(S,P,peer_proof,NTResponse') 

 

  7. State  = 12 /\ RCV({auth_ack}_ClientKEY) =|>  

     State':= 14 /\ Inter_result_tlv' := new()     % success 

                 /\ Bind_version'     := new()     % same version 

                 /\ CMKnonce'         := new() 

                 /\ MasterKey'        := Hash2(Hash2(Hash2(Password)).NTResponse) 

                 /\ MasterSendKey'    := PRF1(MasterKey') 

                 /\ MasterReceiveKey' := PRF2(MasterKey')  

                 /\ MSK'              := MasterReceiveKey'.MasterSendKey' 

                 /\ Seed'             := PRF(MS.seed_label.Pnonce.Snonce)  

                 /\ CMK'              := PRF(Seed'.cmk_label.MSK')  

                 /\ Compound_MAC1'    := Hash2(CMK'.Bind_version'.FASTv1.zero.CMKnonce') 

                 /\ Crypto_bind_request' := Bind_version'.FASTv1.zero.CMKnonce'.Compound_MAC1' 

       /\ SND({Inter_result_tlv'.Bind_version'.FASTv1.zero.CMKnonce'.Compound_MAC1'}_ServerKEY) 

 

  %%%%%%%%%%%% PAC Provisioning %%%%%%%%%%%%  

 

  8. State  = 14  

  /\ RCV({Inter_result_tlv.Bind_version.FASTv1.one.CMKnonce.Compound_MAC2'.PAC_type'}_ClientKEY)  

                 /\ Compound_MAC2' = Hash2(CMK.Bind_version.FASTv1.one.CMKnonce)  =|> 

     State':= 16 /\ Result_tlv'  := new() 

                 /\ PAC_key'     := new() 

                 /\ PAC_lifetime':= new() 

                 /\ A_ID'        := new() 

                 /\ PAC_info'    := PAC_lifetime'.A_ID'.a_id_info.PAC_type' 

                 /\ PAC_enc_key' := new() 

                 /\ PAC_opaque'  := {PAC_key'.PAC_info'}_PAC_enc_key'    % PAC-Opaque  

                 /\ SND({Result_tlv'.PAC_key'.PAC_opaque'.PAC_info'}_ServerKEY) 

                 /\ secret(PAC_key',sec_packey,{S,P})  

                 /\ secret(PAC_opaque',sec_pacopaque,{S,P}) 

 

  9. State  = 16 /\ RCV({Result_tlv.PAC_ack'}_ClientKEY)   =|>  

     State':= 18 /\ SND(eap_success)  

 

end role 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

role peer( 

          S, P     : agent, 

          Password : symmetric_key, 

          G        : nat, 

          Hash1    : hash_func, 

          Hash2    : hash_func, 

          PRF      : hash_func, 

          KEYGEN   : hash_func, 

          PRF1     : hash_func,  

          PRF2     : hash_func,  

          SND, RCV : channel (dy)  ) 

  played_by P def= 

 

  local  

    State      : nat,  

    Snonce     : text,  

    Pnonce     : text,  

    SessionID  : text,  

    Csuite     : text,  

    PMS        : message,  

    CCspec     : text, 

    MS         : message,  

    Finished   : message,  
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    ClientKEY  : message,  

    ServerKEY  : message,  

    UserID     : text,  

    FASTv1     : text, 

    TLSv1      : text,  

    CsuiteList : text, 

    SHelloDone : text, 

    Inter_result_tlv : text, 

    Bind_version     : text,  

    CMKnonce         : text, 

    Schallenge       : message,  

    Pchallenge       : message,  

    RealServerCH     : text, 

    RealPeerCH       : text, 

    NTResponse       : message,  

    MasterKey        : message,  

    MasterSendKey    : message,  

    MasterReceiveKey : message,  

    MSK              : message,  

    Seed             : message,  

    CMK              : message,  

    Compound_MAC1    : message,   % server --> peer  

    Compound_MAC2    : message,   % peer   --> server  

    Crypto_bind_request  : text.text.text.text.message, 

    Crypto_bind_response : text.text.text.text.message, 

    PAC_type         : text, 

    Result_tlv       : text, 

    PAC_key          : symmetric_key, 

    PAC_lifetime     : text, 

    A_ID             : text, 

    PAC_info         : text.text.text.text, 

    PAC_opaque       : {symmetric_key.text.text.text.text}_symmetric_key, 

    PAC_ack          : text 

 

  init State := 1 

       

  transition 

 

  1. State  = 1 /\ RCV(eap_request_id) =|> 

     State':= 3 /\ UserID' := new()  

                /\ SND(UserID') 

         

  2. State  = 3 /\ RCV(start_fast.FASTv1'.a_id_info) =|> 

     State':= 5 /\ TLSv1'     := new() 

                /\ Pnonce'    := new() 

                /\ CsuiteList':= new() 

                /\ SND(FASTv1'.TLSv1'.session_id_0.Pnonce'.CsuiteList') 

 

  3. State  = 5 /\ RCV(TLSv1.Snonce'.SessionID'.Csuite'.G.exp(G,Snonce').SHelloDone') =|> 

     State':= 7 /\ PMS'       := exp(exp(G,Snonce'),Pnonce) 

                /\ CCspec'    := new() 

                /\ MS'        := PRF(PMS'.Pnonce.Snonce') 

                /\ Finished'  := Hash1(MS'.P.S.Pnonce.Csuite'.SessionID') 

                /\ ClientKEY' := KEYGEN(P.Pnonce.Snonce'.MS') 

                /\ ServerKEY' := KEYGEN(S.Pnonce.Snonce'.MS') 

                /\ SND(exp(G,Pnonce).CCspec'.{Finished'}_ClientKEY') 

 

  %%%%%%%%%%%% Phase 2 %%%%%%%%%%%%  

 

  4. State  = 7 /\ RCV(CCspec.{Finished.eap_request_id}_ServerKEY) =|> 

     State':= 9 /\ SND({P}_ClientKEY)  

                /\ secret(ClientKEY,sec_clientkey,{P,S}) 

                /\ secret(ServerKEY,sec_serverkey,{P,S}) 

                /\ request(P,S,nonces,Pnonce.Snonce)  

 

  5. State  = 9  /\ RCV({RealServerCH'}_ServerKEY) =|> 

     State':= 11 /\ Pchallenge' := PRF2(PMS.Pnonce.Snonce)  

                 /\ Schallenge' := PRF1(PMS.Pnonce.Snonce)  

                 /\ RealPeerCH' := new() 

                 /\ NTResponse' := Hash2(Password.Pchallenge'.Schallenge'.P) 

                 /\ SND({RealPeerCH'.NTResponse'}_ClientKEY)  

                 /\ witness(P,S,peer_proof,{RealPeerCH'.NTResponse'}_ClientKEY) 

              %% /\ witness(P,S,peer_proof,NTResponse') 

 

 

  6. State  = 11 /\ RCV({Hash2(Password.Pchallenge)}_ServerKEY) =|> 

     State':= 13 /\ SND({auth_ack}_ClientKEY)  

                 /\ MasterKey'        := Hash2(Hash2(Hash2(Password)).NTResponse) 

                 /\ MasterSendKey'    := PRF1(MasterKey') 

                 /\ MasterReceiveKey' := PRF2(MasterKey') 

                 /\ MSK'              := MasterReceiveKey'.MasterSendKey' 

                 /\ Seed'             := PRF(MS.seed_label.Pnonce.Snonce) 

                 /\ CMK'              := PRF(Seed'.cmk_label.MSK')  
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  %%%%%%%%%%%% PAC Provisioning %%%%%%%%%%%%  

 

  7. State  = 13  

    /\ RCV({Inter_result_tlv'.Bind_version'.FASTv1.zero.CMKnonce'.Compound_MAC1'}_ServerKEY)  

                 /\ Compound_MAC1' = Hash2(CMK.Bind_version'.FASTv1.zero.CMKnonce')  =|> 

     State':= 15 /\ Compound_MAC2'        := Hash2(CMK.Bind_version'.FASTv1.one.CMKnonce') 

                 /\ Crypto_bind_response' := Bind_version'.FASTv1.one.CMKnonce'.Compound_MAC2' 

                 /\ PAC_type'             := new()  

/\ SND({Inter_result_tlv'.Bind_version'.FASTv1.one.CMKnonce'.Compound_MAC2'.PAC_type'}_ClientKEY) 

 

  8. State  = 15 /\ RCV({Result_tlv'.PAC_key'.PAC_opaque'.PAC_info'}_ServerKEY)  

                 /\ PAC_info'   = PAC_lifetime'.A_ID'.a_id_info.PAC_type'   =|>  

     State':= 17 /\ PAC_ack' := new() 

                 /\ SND({Result_tlv'.PAC_ack'}_ClientKEY) 

 

  9. State  = 17 /\ RCV(eap_success) =|>  

     State':= 19  

 

end role 

 

role session( 

             S, P     : agent, 

             Password : symmetric_key, 

             G        : nat, 

             Hash1    : hash_func, 

             Hash2    : hash_func, 

             PRF      : hash_func, 

             KEYGEN   : hash_func, 

             PRF1     : hash_func,  

             PRF2     : hash_func   ) 

def= 

  local PSND,PRCV,SSND,SRCV : channel (dy) 

 

  composition  

           server (S,P,Password,G,Hash1,Hash2,PRF,KEYGEN,PRF1,PRF2,SSND,SRCV)  

        /\ peer   (S,P,Password,G,Hash1,Hash2,PRF,KEYGEN,PRF1,PRF2,PSND,PRCV)  

 

end role 

 

role environment() def= 

 

  const  

    eap_request_id, start_fast: text, 

    auth_ack, eap_success     : text, 

    a_id_info                 : text,  

    session_id_0              : text,    % SessionID = 0  

    seed_label, cmk_label     : text, 

    zero, one                 : text, 

 

    sec_packey, sec_pacopaque,  

    nonces, peer_proof,  

    sec_clientkey,  

    sec_serverkey             : protocol_id,  

    s,p,i                     : agent, 

    kps,kis,kpi               : symmetric_key, 

    g                         : nat, 

    hash1,hash2               : hash_func, 

    prf                       : hash_func, 

    keygen                    : hash_func, 

    prf1                      : hash_func,  

    prf2                      : hash_func 

 

   intruder_knowledge = { s,p,hash1,hash2,prf,keygen,prf1,prf2,g,kpi,kis } 

 

   composition 

        session(s,p,kps,g,hash1,hash2,prf,keygen,prf1,prf2) 

    /\  session(s,i,kis,g,hash1,hash2,prf,keygen,prf1,prf2) 

    /\  session(i,p,kpi,g,hash1,hash2,prf,keygen,prf1,prf2) 

 

end role 

 

goal 

 

   authentication_on nonces        % server authentication  

   authentication_on peer_proof    % peer authentication  

 

   secrecy_of sec_clientkey  

   secrecy_of sec_serverkey  

   secrecy_of sec_packey 

   secrecy_of sec_pacopaque  

 

end goal 

 

environment() 
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C.2.2 The Output Results 
 

 
When the hlpsl tested against the only goal "authentication_on peer_proof", other goals are 

disabled. 

And also when "witness(P,S,peer_proof,NTResponse')" and "request(S,P,peer_proof,NTResponse')" 

predicates are used.  

 

 

root@ebakyt-laptop:/avispa# avispa Server-unauth-prov.hlpsl --cl-atse 

 

 

SUMMARY 

  SAFE 

 

 

DETAILS 

  BOUNDED_NUMBER_OF_SESSIONS 

  TYPED_MODEL 

 

 

PROTOCOL 

  /avispa/avispa-1.1//testsuite/results/Server-unauth-prov.if 

 

 

GOAL 

  As Specified 

 

 

BACKEND 

  CL-AtSe 

 

 

STATISTICS 

 

  Analysed   : 365 states 

  Reachable  : 263 states 

  Translation: 0.77 seconds 

  Computation: 0.00 seconds 

 

 

 

 

---------------------------------------------------------------------------------------------- 

When the hlpsl tested against the only goal "authentication_on peer_proof", other goals are 

disabled. 

 

And also when " witness(P,S,peer_proof,{RealPeerCH'.NTResponse'}_ClientKEY)" and  
" request(S,P,peer_proof,{RealPeerCH'.NTResponse'}_ClientKEY)" predicates are used. 
 

 

 

root@ebakyt-laptop:/avispa# avispa Server-unauth-prov.hlpsl --cl-atse 

 

SUMMARY 

  UNSAFE 

 

 

DETAILS 

  ATTACK_FOUND 

  TYPED_MODEL 

 

 

PROTOCOL 

  /avispa/avispa-1.1//testsuite/results/Server-unauth-prov.if 

 

 

GOAL 

  Authentication attack on  

(s,p,peer_proof,{RealPeerCH(6).{kps.{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf2.{

exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_({p.n20(Pnonce).n3(Snonce).{

exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen)) 

 

 

BACKEND 

  CL-AtSe 

 

 

STATISTICS 

 

  Analysed   : 23 states 

  Reachable  : 15 states 

  Translation: 0.77 seconds 

  Computation: 0.00 seconds 
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ATTACK TRACE 

 i -> (s,6):  start 

 (s,6) -> i:  eap_request_id 

 

 i -> (s,6):  UserID(38) 

 (s,6) -> i:  start_fast.n38(FASTv1).a_id_info 

 

 i -> (s,3):  start 

 (s,3) -> i:  eap_request_id 

 

 i -> (s,3):  UserID(2) 

 (s,3) -> i:  start_fast.n2(FASTv1).a_id_info 

 

 i -> (p,10):  eap_request_id 

 (p,10) -> i:  n55(UserID) 

 

 i -> (p,10):  start_fast.FASTv1(56).a_id_info 

 (p,10) -> i:  FASTv1(56).n56(TLSv1).session_id_0.n56(Pnonce).n56(CsuiteList) 

 

 i -> (p,4):  eap_request_id 

 (p,4) -> i:  n19(UserID) 

 

 i -> (p,4):  start_fast.FASTv1(20).a_id_info 

 (p,4) -> i:  FASTv1(20).n20(TLSv1).session_id_0.n20(Pnonce).n20(CsuiteList) 

 

 i -> (s,3):  n2(FASTv1).TLSv1(3).session_id_0.n20(Pnonce).CsuiteList(3) 

 (s,3) -> i:  TLSv1(3).n3(Snonce).n3(SessionID).n3(Csuite).g.exp(g,n3(Snonce)). 

              n3(SHelloDone) 

 

 i -> (p,4):  n20(TLSv1).n3(Snonce).SessionID(21).Csuite(21).g.exp(g,n3(Snonce)). 

              SHelloDone(21) 

 (p,4) -> i:  exp(g,n20(Pnonce)).n21(CCspec). 

              

{{{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf.p.s.n20(Pnonce).Csuite(21).SessionID

(21)}_hash1}_({p.n20(Pnonce).n3(Snonce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_pr

f}_keygen) 

 

 i -> (p,4):  n21(CCspec). 

{{{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf.p.s.n20(Pnonce).Csuite(21).SessionID

(21)}_hash1.eap_request_id}_({s.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce)

.n3(Snonce)}_prf}_keygen) 

 (p,4) -> i: 

  

{p}_({p.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen

) 

              & Add p to set_244;  Add s to set_244;  Add p to set_245; 

              & Add s to set_245; 

 i -> (p,4): 

{RealServerCH(23)}_({s.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonc

e)}_prf}_keygen) 

 (p,4) -> i: 

{n23(RealPeerCH).{kps.{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n3(Snonc

e)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_({p.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonc

e)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen) 

              & 

Witness(p,s,peer_proof,{n23(RealPeerCH).{kps.{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce

)}_prf2.{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_({p.n20(Pnonce).n3(

Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen)); 

 

 i -> (s,3):  exp(g,n20(Pnonce)).CCspec(4). 

{{{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf.p.s.n20(Pnonce).n3(Csuite).n3(Sessio

nID)}_hash1}_({p.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_pr

f}_keygen) 

 (s,3) -> i:  CCspec(4). 

{{{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf.p.s.n20(Pnonce).n3(Csuite).n3(Sessio

nID)}_hash1.eap_request_id}_({s.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce)

.n3(Snonce)}_prf}_keygen) 

 

 i -> (s,3): 

  

{p}_({p.n20(Pnonce).n3(Snonce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen

) 

 (s,3) -> i: 

{n5(RealServerCH)}_({s.n20(Pnonce).n3(Snonce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonc

e)}_prf}_keygen) 

 

 i -> (s,3): 

{RealPeerCH(6).{kps.{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n20(Pnonce

)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_({p.n20(Pnonce).n3(Snonce).{exp(g,n20(Pnonce

)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen) 

 (s,3) -> i: 

{{kps.{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf2}_hash2}_({s.n20(Pnonce).n3(Snon

ce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen) 
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              & 

Request(s,p,peer_proof,{RealPeerCH(6).{kps.{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}

_prf2.{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_({p.n20(Pnonce).n3(Sn

once).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen)); 

 

 

 

 

--------------------------------------------------------------------------------------------- 

When the hlpsl tested against the only goal "secrecy_of sec_packey", other goals are disabled. 

 

root@ebakyt-laptop:/avispa# avispa Server-unauth-prov.hlpsl --cl-atse 

 

SUMMARY 

  UNSAFE 

 

 

DETAILS 

  ATTACK_FOUND 

  TYPED_MODEL 

 

 

PROTOCOL 

  /avispa/avispa-1.1//testsuite/results/Server-unauth-prov.if 

 

 

GOAL 

  Secrecy attack on (n8(PAC_key)) 

 

 

BACKEND 

  CL-AtSe 

 

 

STATISTICS 

 

  Analysed   : 108 states 

  Reachable  : 41 states 

  Translation: 0.77 seconds 

  Computation: 0.00 seconds 

 

 

ATTACK TRACE 

 

 i -> (s,3):  start 

 (s,3) -> i:  eap_request_id 

 

 i -> (s,3):  UserID(2) 

 (s,3) -> i:  start_fast.n2(FASTv1).a_id_info 

 

 i -> (p,4):  eap_request_id 

 (p,4) -> i:  n19(UserID) 

 

 i -> (p,4):  start_fast.n2(FASTv1).a_id_info 

 (p,4) -> i:  n2(FASTv1).n20(TLSv1).session_id_0.n20(Pnonce).n20(CsuiteList) 

 

 i -> (s,3):  n2(FASTv1).TLSv1(3).session_id_0.n20(Pnonce).CsuiteList(3) 

 (s,3) -> i:  TLSv1(3).n3(Snonce).n3(SessionID).n3(Csuite).g.exp(g,n3(Snonce)). 

              n3(SHelloDone) 

 

 i -> (p,4):  n20(TLSv1).n3(Snonce).SessionID(21).Csuite(21).g.exp(g,n3(Snonce)). 

              SHelloDone(21) 

 (p,4) -> i:  exp(g,n20(Pnonce)).n21(CCspec). 

              

{{{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf.p.s.n20(Pnonce).Csuite(21).SessionID

(21)}_hash1}_({p.n20(Pnonce).n3(Snonce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_pr

f}_keygen) 

 

 i -> (p,4):  n21(CCspec). 

              

{{{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf.p.s.n20(Pnonce).Csuite(21).SessionID

(21)}_hash1.eap_request_id}_({s.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce)

.n3(Snonce)}_prf}_keygen) 

 (p,4) -> i:  

{p}_({p.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen

) 

              & Add p to set_240;  Add s to set_240;  Add p to set_241; 

              & Add s to set_241; 

 

 i -> (p,4):  

{RealServerCH(23)}_({s.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonc

e)}_prf}_keygen) 

 (p,4) -> i:  

{n23(RealPeerCH).{kps.{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n3(Snonc
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e)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_({p.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonc

e)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen) 

 

 i -> (s,3):  exp(g,n20(Pnonce)).CCspec(4). 

              

{{{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf.p.s.n20(Pnonce).n3(Csuite).n3(Sessio

nID)}_hash1}_({p.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_pr

f}_keygen) 

 (s,3) -> i:  CCspec(4). 

              

{{{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf.p.s.n20(Pnonce).n3(Csuite).n3(Sessio

nID)}_hash1.eap_request_id}_({s.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce)

.n3(Snonce)}_prf}_keygen) 

 

 i -> (s,3):  

{p}_({p.n20(Pnonce).n3(Snonce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen

) 

 (s,3) -> i:  

{n5(RealServerCH)}_({s.n20(Pnonce).n3(Snonce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonc

e)}_prf}_keygen) 

 

 i -> (s,3):  

{RealPeerCH(6).{kps.{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n20(Pnonce

)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_({p.n20(Pnonce).n3(Snonce).{exp(g,n20(Pnonce

)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen) 

 (s,3) -> i:  

{{kps.{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf2}_hash2}_({s.n20(Pnonce).n3(Snon

ce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen) 

 

 i -> (p,4):  

{{kps.{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf2}_hash2}_({s.n20(Pnonce).n3(Snon

ce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen) 

 (p,4) -> i:  

{auth_ack}_({p.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf}

_keygen) 

 

 i -> (s,3):  

{auth_ack}_({p.n20(Pnonce).n3(Snonce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}

_keygen) 

 (s,3) -> i:  

{n7(Inter_result_tlv).n7(Bind_version).n2(FASTv1).zero.n7(CMKnonce).{{{{exp(g,n20(Pnonce)*n3(Snon

ce)).n20(Pnonce).n3(Snonce)}_prf.seed_label.n20(Pnonce).n3(Snonce)}_prf.cmk_label.{{{{kps}_hash2}

_hash2.{kps.{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n20(Pnonce)*n3(Sno

nce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_hash2}_prf2.{{{{kps}_hash2}_hash2.{kps.{exp(g,n20(Pn

once)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snon

ce)}_prf1.p}_hash2}_hash2}_prf1}_prf.n7(Bind_version).n2(FASTv1).zero.n7(CMKnonce)}_hash2}_({s.n2

0(Pnonce).n3(Snonce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen) 

 

 i -> (p,4):  

{Inter_result_tlv(25).n7(Bind_version).n2(FASTv1).zero.n7(CMKnonce).{{{{exp(g,n3(Snonce)*n20(Pnon

ce)).n20(Pnonce).n3(Snonce)}_prf.seed_label.n20(Pnonce).n3(Snonce)}_prf.cmk_label.{{{{kps}_hash2}

_hash2.{kps.{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n3(Snonce)*n20(Pno

nce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_hash2}_prf2.{{{{kps}_hash2}_hash2.{kps.{exp(g,n3(Sno

nce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snon

ce)}_prf1.p}_hash2}_hash2}_prf1}_prf.n7(Bind_version).n2(FASTv1).zero.n7(CMKnonce)}_hash2}_({s.n2

0(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen) 

 (p,4) -> i:  

{Inter_result_tlv(25).n7(Bind_version).n2(FASTv1).one.n7(CMKnonce).{{{{exp(g,n3(Snonce)*n20(Pnonc

e)).n20(Pnonce).n3(Snonce)}_prf.seed_label.n20(Pnonce).n3(Snonce)}_prf.cmk_label.{{{{kps}_hash2}_

hash2.{kps.{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n3(Snonce)*n20(Pnon

ce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_hash2}_prf2.{{{{kps}_hash2}_hash2.{kps.{exp(g,n3(Snon

ce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonc

e)}_prf1.p}_hash2}_hash2}_prf1}_prf.n7(Bind_version).n2(FASTv1).one.n7(CMKnonce)}_hash2.n25(PAC_t

ype)}_({p.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf}_keyg

en) 

 

 i -> (s,3):  

{n7(Inter_result_tlv).n7(Bind_version).n2(FASTv1).one.n7(CMKnonce).{{{{exp(g,n20(Pnonce)*n3(Snonc

e)).n20(Pnonce).n3(Snonce)}_prf.seed_label.n20(Pnonce).n3(Snonce)}_prf.cmk_label.{{{{kps}_hash2}_

hash2.{kps.{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n20(Pnonce)*n3(Snon

ce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_hash2}_prf2.{{{{kps}_hash2}_hash2.{kps.{exp(g,n20(Pno

nce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonc

e)}_prf1.p}_hash2}_hash2}_prf1}_prf.n7(Bind_version).n2(FASTv1).one.n7(CMKnonce)}_hash2.PAC_type(

8)}_({p.n20(Pnonce).n3(Snonce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen

) 

 (s,3) -> i:  

{n8(Result_tlv).n8(PAC_key).{n8(PAC_key).n8(PAC_lifetime).n8(A_ID).a_id_info.PAC_type(8)}_n8(PAC_

enc_key).n8(PAC_lifetime).n8(A_ID).a_id_info.PAC_type(8)}_({s.n20(Pnonce).n3(Snonce).{exp(g,n20(P

nonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen) 

              & Secret(n8(PAC_key),set_189);  Add s to set_189; 

              & Add p to set_189;  Add s to set_190;  Add p to set_190; 
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APPENDIX D  

 

The Four-Way Handshake Protocol 

 

D.1 The HLPSL Specification 

 
role alice(  

    A, B     : agent,  

    PMK      : symmetric_key,  

    PTK_PRF  : hash_func, 

    MIC_Hash : hash_func,       % MAC hash func 

    Succ     : hash_func,  

    H_MAC    : hash_func,  

    Snd, Rcv : channel(dy)    ) 

 played_by A def= 

 

 local  

  State   : nat, 

  Anonce  : text, 

  Snonce  : text, 

  Sqn     : text, 

  GMK     : text,  

  GNonce  : text,  

  GTK_PRF : hash_func,  

  GTK     : hash(text.agent.text),  

  A_rsnie : text, 

  B_rsnie : text, 

  PMKID   : hash(symmetric_key.agent.agent),  

  PTK     : hash(symmetric_key.agent.agent.text.text),  

  MIC1    : hash(symmetric_key.text.text.text),  

% MIC2    : hash( hash(symmetric_key.agent.agent.text.text).text.hash(text).text.   

%            {hash(text.agent.text)}_hash(symmetric_key.agent.agent.text.text) ),  

  MIC2 : message, 

  MIC3    : hash(hash(symmetric_key.agent.agent.text.text).hash(text))  

 

 init   

  State := 0 

 

 transition 

 

 1. State  = 0 /\ Rcv(start)  =|>  

    State':= 2 /\ Anonce' := new()  

               /\ PMKID'  := H_MAC(PMK.A.B) 

               /\ Sqn'    := new()  

               /\ Snd(Anonce'.Sqn'.PMKID')  

               /\ witness(A,B,bob_alice_na,Anonce') 

 

 2. State  = 2 /\ Rcv(Snonce'.B_rsnie'.Sqn.MIC1')  

               /\ MIC1' = MIC_Hash(PMK.Snonce'.Sqn.B_rsnie')  =|>  

    State':= 4 /\ A_rsnie':= new()  

               /\ GMK'    := new()  

               /\ GNonce' := new()  

               /\ GTK'    := GTK_PRF(GMK'.A.GNonce')  

               /\ PTK'    := PTK_PRF(PMK.A.B.Anonce.Snonce')  

               /\ MIC2'   := MIC_Hash(PTK'.Anonce.Succ(Sqn).A_rsnie'.{GTK'}_PTK')  

               /\ Snd(Anonce.A_rsnie'.{GTK'}_PTK'.Succ(Sqn).MIC2')  

               /\ secret(GTK',gtk1,{A,B}) 

 

 3. State  = 4 /\ Rcv(Succ(Sqn).MIC3')  

               /\ MIC3' = MIC_Hash(PTK.Succ(Sqn))  =|>  

    State':= 6 /\ request(A,B,alice_bob_ns,Snonce) 

 

end role 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

role bob(  

    A, B     : agent,  

    PMK      : symmetric_key,  

    PTK_PRF  : hash_func,  

    MIC_Hash : hash_func,  

    Succ     : hash_func,  

    H_MAC    : hash_func,  

    Snd, Rcv : channel(dy)   ) 

 played_by B def= 

 

 local  

  State   : nat, 

  Anonce  : text, 

  Snonce  : text, 
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  Sqn     : text, 

  GTK     : hash(text.agent.text),  

  A_rsnie : text, 

  B_rsnie : text, 

  PMKID   : hash(symmetric_key.agent.agent),  

  PTK     : hash(symmetric_key.agent.agent.text.text),  

  MIC1    : hash(symmetric_key.text.text.text),  

% MIC2    : hash( hash(symmetric_key.agent.agent.text.text).text.hash(text).text.   

%            {hash(text.agent.text)}_hash(symmetric_key.agent.agent.text.text) ),  

  MIC2 : message,  

  MIC3    : hash(hash(symmetric_key.agent.agent.text.text).hash(text))  

 

 init   

  State := 1 

 

 transition 

 

 1. State  = 1 /\ Rcv(Anonce'.Sqn'.PMKID')  =|>  

    State':= 3 /\ Snonce'  := new()  

               /\ B_rsnie' := new()  

               /\ PTK'     := PTK_PRF(PMK.A.B.Anonce'.Snonce')  

               /\ MIC1'    := MIC_Hash(PMK.Snonce'.Sqn'.B_rsnie')  

               /\ Snd(Snonce'.B_rsnie'.Sqn'.MIC1')  

               /\ witness(B,A,alice_bob_ns,Snonce') 

 

 2. State  = 3 /\ Rcv(Anonce.A_rsnie'.{GTK'}_PTK'.Succ(Sqn).MIC2')  

               /\ MIC2' = MIC_Hash(PTK.Anonce.Succ(Sqn).A_rsnie'.{GTK'}_PTK')  =|>  

    State':= 5 /\ MIC3' := MIC_Hash(PTK.Succ(Sqn)) 

               /\ Snd(Succ(Sqn).MIC3') 

               /\ request(B,A,bob_alice_na,Anonce) 

end role 

 

 

role session( 

    A, B     : agent, 

    PMK      : symmetric_key, 

    PTK_PRF  : hash_func, 

    MIC_Hash : hash_func, 

    Succ     : hash_func, 

    H_MAC    : hash_func  ) 

 def= 

 

 local  

    SA, RA, SB, RB : channel (dy) 

 

 composition 

       alice (A,B,PMK, PTK_PRF, MIC_Hash, Succ, H_MAC, SA,RA)  

   /\  bob   (A,B,PMK, PTK_PRF, MIC_Hash, Succ, H_MAC, SB,RB)  

 

end role 

 

role environment() 

def= 

 

 const  

    a, b         : agent, 

    gtk1,  

    alice_bob_ns,  

    bob_alice_na : protocol_id, 

    pmk_a_b, 

    pmk_a_i, 

    pmk_i_b      : symmetric_key,  

    ptk_prf      : hash_func,  

    mic_hash     : hash_func,  

    succ         : hash_func, 

    h_mac        : hash_func 

 

 intruder_knowledge = {a,b,ptk_prf,mic_hash,succ,h_mac,pmk_a_i,pmk_i_b}                   

 

 composition 

        session(a,b, pmk_a_b, ptk_prf, mic_hash, succ, h_mac) 

    /\  session(a,i, pmk_a_i, ptk_prf, mic_hash, succ, h_mac) 

    /\  session(i,b, pmk_i_b, ptk_prf, mic_hash, succ, h_mac) 

 

end role 

 

goal 

    secrecy_of  gtk1 

    authentication_on  alice_bob_ns 

    authentication_on  bob_alice_na 

 

end goal 

 

environment() 
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D.2 The Output Results 
 
 

 

root@ebakyt-laptop:/avispa# avispa Four-way-handshake.hlpsl --cl-atse 

 

SUMMARY 

  SAFE 

 

DETAILS 

  BOUNDED_NUMBER_OF_SESSIONS 

  TYPED_MODEL 

 

PROTOCOL 

  /avispa/avispa-1.1//testsuite/results/Four-way-handshake.if 

 

GOAL 

  As Specified 

 

BACKEND 

  CL-AtSe 

 

STATISTICS 

 

  Analysed   : 13 states 

  Reachable  : 7 states 

  Translation: 0.02 seconds 

  Computation: 0.00 seconds 

 

 

 

 

 

root@ebakyt-laptop:/avispa# avispa Four-way-handshake.hlpsl --typed_model=no --cl-atse  

 

SUMMARY 

  SAFE 

 

DETAILS 

  BOUNDED_NUMBER_OF_SESSIONS 

  UNTYPED_MODEL 

 

PROTOCOL 

  /avispa/avispa-1.1//testsuite/results/Four-way-handshake.if 

 

GOAL 

  As Specified 

 

BACKEND 

  CL-AtSe 

 

STATISTICS 

 

  Analysed   : 56 states 

  Reachable  : 33 states 

  Translation: 0.01 seconds 

  Computation: 0.00 seconds 

 

 

 

 

 

root@ebakyt-laptop:/avispa# avispa Four-way-handshake.hlpsl --ofmc 

 

% OFMC 

% Version of 2006/02/13 

 

SUMMARY 

  SAFE 

 

DETAILS 

  BOUNDED_NUMBER_OF_SESSIONS 

 

PROTOCOL 

  /avispa/avispa-1.1//testsuite/results/Four-way-handshake.if 

 

GOAL 

  as_specified 

 

BACKEND 

  OFMC 

 

COMMENTS 
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STATISTICS 

 

  parseTime: 0.00s 

  searchTime: 5.13s 

  visitedNodes: 1588 nodes 

  depth: 10 plies 

 

 

 

 

 

 

root@ebakyt-laptop:/avispa# avispa Four-way-handshake.hlpsl --typed_model=no --ofmc 

 

% OFMC 

% Version of 2006/02/13 

 

SUMMARY 

  SAFE 

 

DETAILS 

  BOUNDED_NUMBER_OF_SESSIONS 

 

PROTOCOL 

  /avispa/avispa-1.1//testsuite/results/Four-way-handshake.if 

 

GOAL 

  as_specified 

 

BACKEND 

  OFMC 

 

COMMENTS 

 

STATISTICS 

 

  parseTime: 0.00s 

  searchTime: 5.32s 

  visitedNodes: 2220 nodes 

  depth: 10 plies 

 

 

 

 

 

 

 

 



 

 

 

 

 


