

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

SECURE DATA TRANSMISSION OVER

WIRELESS NETWORKS

by

Bakytbek ESHMURZAEV

January, 2012

İZMİR

SECURE DATA TRANSMISSION OVER

WIRELESS NETWORKS

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Computer Engineering, Computer Engineering Program

by

Bakytbek ESHMURZAEV

January, 2012

İZMİR

iii

ACKNOWLEDGMENTS

 I would like to show my gratitude to my supervisor Asst. Prof. Dr. Gökhan

DALKILIÇ for his guidance, suggestions and patience.

Furthermore, I would like to thank to one of the authors of EAP-FAST protocol

Hao Zhou for his guidance on learning the protocol details and I am also thankful to

Tigran S. Avanesov and Laurent Vigneron who helped me in modeling the protocol

in HLPSL.

I would also thankful to all Ph.D. students for their help.

Finally, I would like to thank to my friends and to my family for their great

support and love.

Bakytbek ESHMURZAEV

iv

SECURE DATA TRANSMISSION OVER WIRELESS NETWORKS

ABSTRACT

 Authentication and encryption are the core security concepts of Wireless LAN.

Today, very strong security mechanisms for WLAN do exist. If proper WLAN

security solutions are deployed, a wireless network can be as secure as the wired

network. An 802.1X/EAP framework allows a variety of specific methods to be used

for the authentication and key management procedures. There are two major sets of

EAP-methods, which are password-based and certificate-based. The password-based

EAP-types provide lightweight processing and are very convenient. But many of

them are susceptible to the offline dictionary attacks, and hence considered weak. On

the other hand, the certificate-based methods provide strong security as well as allow

password-based authentication methods to be used. The certificate-based methods

achieve these security properties using Transport Layer Security (TLS) Handshake

protocol that establishes authenticated and encrypted tunnel. Within tunnel,

password-based methods can run securely. The significant downside of certificate-

based methods is the requirement of Public Key Infrastructure (PKI) which is costly

to implement and hard to manage. This research's aim is an analysis of TLS-based

EAP protocols used in WLAN. We have chosen only wide deployed RFC-based

EAP types because of their availabilities and standards based property. We mainly

focus on the EAP-FAST protocol because of its attracting security features. The

EAP-FAST protocol differs from other TLS-based EAP types on using shared secret

keys instead of certificates, thus significantly increasing performance. EAP-FAST

provides not only the same security level as other strong TLS-based methods, but

also convenience and efficiency by using PACs. We validated different

authentication scenarios of EAP-FAST protocol using an AVISPA model checker.

Keywords: Wireless LAN Security, 802.1X, Extensible Authentication Protocol

(EAP), 802.11 Authentication and Key Management, Tunnel-based EAP methods,

AVISPA.

v

KABLOSUZ AĞLAR ÜZERİNDEN GÜVENLİ VERİ İLETİMİ

ÖZ

 Kimlik doğrulama ve şifreleme Kablosuz Yerel Alan Ağları’nın (KYAA) temel

güvenlik kavramlarıdır. Günümüzde KYAA için çok güçlü güvenlik çözümleri

mevcuttur. Eğer uygun KYAA güvenlik çözümleri uygulanırsa, kablosuz ağ da

kablolu ağ kadar güvenli olabilir. 802.1X/EAP taslağı kimlik doğrulama ve anahtar

yönetimi prosedürlerinde kullanılmak üzere çeşitli özellikli metotlara izin verir. EAP

metotları şifre-bazlı ve sertifika-bazlı olarak iki ana gruba ayrılırlar. Şifre-bazlı EAP

metotları hafif işlerde kullanılır ve çok elverişlidirler. Ama birçoğu şifre-bazlı

metotlar çevrimdışı sözlük saldırılarına elverişlidir ve dolayısıyla zayıftırlar. Diğer

taraftan, sertifika-bazlı metotlar güçlü güvenlik sağlarlar, aynı zamanda zayıf sayılan

şifre-bazlı metotların da kullanılmasına izin verirler. Sertifika-bazlı metotlar bu

güvenliği doğrulanmış ve şifrelenmiş tünel oluşturan TLS protokolünü kullanarak

elde ederler. Bu tünelde şifre-bazlı metotlar güvenli olarak çalışırlar. Sertifika-bazlı

metotların kötü yanı uygulaması pahalı ve yönetimi zor olan Açık Anahtar

Altyapısına ihtiyaç duymalarıdır. Bu çalışmanın amacı KYAA’nda kullanılan TLS-

bazlı EAP protokollerinin analizidir. Sadece geniş çaplı kullanılan RFC tabanlı EAP

tiplerini seçmemizin nedeni kullanılabilirlikleri ve standart tabanlı özelliğidir.

Cezbedici güvenlik özelliklerinden dolayı özellikle EAP-FAST protokolünü

odaklandık. EAP-FAST protokolü diğer TLS-bazlı EAP tiplerinden sertifikalar

yerine paylaşılmış gizli anahtar kullanımlarından dolayı ayrılmaktadır ki bu da

önemli şekilde performansı arttırmaktadır. EAP-FAST sadece diğer güçlü TLS-bazlı

metotlar gibi aynı güvenlik seviyesini sağlamamakta aynı zamanda PAC’leri

kullanarak elverişliliği ve verimliliği de sağlamaktadır. Bu çalışmada, EAP-FAST

metodunun değişik doğrulama mekanizmalarını AVISPA model denetçisi ile

onayladık.

Anahtar sözcükler: Kablosuz yerel ağ güvenliği, 802.1X, Genişletilebilir Kimlik

Doğrulama Protokolü (EAP), 802.11 Kimlik Doğrulama ve Anahtar Yönetimi,

Tünel-bazlı EAP metotları, AVISPA.

vi

CONTENTS

Page

M.SC THESIS EXAMINATION RESULT FORM ... II

ACKNOWLEDGMENTS ... III

ABSTRACT ... IV

ÖZ ... V

CHAPTER ONE - INTRODUCTION ... 1

1.1 Evolution of WLAN Security .. 3

1.2 RSNA Establishment ... 6

1.3 Organization of Thesis .. 7

CHAPTER TWO - AUTHENTICATION AND KEY MANAGEMENT 8

2.1 Stage 1: Discovery of Security Capabilities .. 10

2.2 Stages 2 and 3: 802.11 Authentication and Association 12

2.2.1 802.11 Authentication Methods... 13

2.2.1.1 Open System Authentication vs. Shared Key Authentication 13

2.2.2 802.11 Association .. 15

2.3 Stage 4: An 802.1X/EAP Authentication .. 15

2.3.1 The 802.1X Standard ... 15

2.3.2 Extensible Authentication Protocol (EAP) .. 18

2.3.3 EAP Carrier Protocols ... 19

2.3.3.1 EAPOL Protocol .. 19

2.3.3.2 RADIUS Protocol .. 20

2.3.4 EAP Methods ... 21

2.4 Stages 5, 6 and 7: Key Management ... 23

2.4.1 RSNA Key Hierarchy .. 23

2.4.2 The Four-Way Handshake ... 26

vii

2.4.3 The Group Key Handshake ... 27

2.5 Stage 8: Secure Data Communication ... 28

CHAPTER THREE - TLS-BASED EAP METHODS ... 36

3.1 TLS-Based EAP Methods Overview .. 36

3.2 EAP-TLS ... 38

3.3 EAP-TTLS ... 39

3.4 PEAP ... 40

3.5 EAP-FAST .. 41

3.5.1 PAC Types ... 42

3.5.2 Dynamic PAC Provisioning .. 43

3.5.3 EAP-FAST Provisioning Modes ... 45

3.5.4 MITM on Tunnel-Based EAP Methods .. 46

3.5.5 EAP-FAST MiTM Attack Protection .. 47

3.5.6 Summary of EAP-FAST Features ... 48

3.6 Comparison of TLS-Based EAP Methods .. 48

CHAPTER FOUR - THE AVISPA TOOL .. 50

4.1 The High Level Protocol Specification Language (HLPSL) 51

4.2 The Dolev-Yao Intruder .. 55

4.3 The Back-End Analyzers ... 56

4.4 The SPAN Tool ... 57

4.5 Summary of AVISPA Features ... 59

4.6 AVISPA Modeling Limitations ... 60

4.7 AVISPA Usage Recommendations ... 61

CHAPTER FIVE - VALIDATION OF PROTOCOLS .. 62

5.1 Dynamic Provisioning using EAP-FAST.. 63

5.1.1 Server-Authenticated Provisioning Mode ... 63

viii

5.1.2 Server-Unauthenticated Provisioning Mode.. 67

5.2 EAP-FAST Authentication Mechanisms .. 70

5.2.1 Tunnel Establishment with Tunnel PAC ... 71

5.2.2 Inner Authentication with User-Authorization PAC 72

5.3 The Four-Way Handshake Protocol .. 73

CHAPTER SIX - CONCLUSION .. 75

REFERENCES ... 77

APPENDIX A - AVISPA FAQ.. 84

APPENDIX B - EAP-FAST AUTHENTICATION .. 86

B.1 Tunnel PAC Usage ... 86

B.2 User Authorization PAC Usage .. 91

APPENDIX C - DYNAMIC PROVISIONING USING EAP-FAST 95

C.1 Server-Authenticated Provisioning ... 95

C.2 Server-Unauthenticated Provisioning ... 100

APPENDIX D - THE FOUR-WAY HANDSHAKE PROTOCOL 108

1

CHAPTER ONE

INTRODUCTION

Nowadays, wireless is being offered everywhere and it is becoming more and

more popular. The main reasons of preferring wireless network to wired network are

(Dengg & others, 2009):

 Flexibility

 Mobility

 High productivity

 Easy of deployment

 Expandability

 Lower cost

Contrary to the aforementioned features, wireless networking introduces new

security issues that require new security solutions. Here is some example:

Wireless technology works only at the Physical layer and the Media Access

Control (MAC) sublayer of the Data-Link layer of the OSI model. The Logical Link

Control (LLC) sublayer of the Data-Link layer and other upper layers are identical

for all 802 - based networks. The physical layer for wireless is air (Figure 1.1). So,

attackers do not need physical access to get data that is being transmitted freely and

openly in the air. Thus strong encryption is needed to ensure data privacy (Coleman,

Westcott, Harkins & Jackman, 2010).

Most wireless networks provide a portal into wired networks. Portals have to

provide strong authentication solution, which allows to pass only authorized users to

the network resources.

Today, very strong security mechanisms for wireless local area networks

(WLAN) do exist. If proper WLAN security solutions are deployed, a wireless

network can even be more secure than the wired network. For instance, in small

2

office/home office (SOHO) environments, WPA2-Personal mechanism should be

used with strong passwords in order to secure the network, where enterprise

corporate wireless networks should be secured with WPA2-Enterprise mechanism.

Another example, there is no security at most Wi-Fi hot spots such that airports,

cafe’s, metro, hotels. Such networks can be secured with VPN technology and

Captive portals. The Virtual Private Networks (VPN) provides data privacy for

remote access while Captive portals provide authentication. We can give many

similar examples, and it is certain that with proper implementation of the security

architectures, without doubt, we can be sure about the security of wireless network.

Figure 1.1 Wireless operating layers (Institute of Electrical and Electronics

Engineers [IEEE], 2007).

Coleman, Westcott, Harkins & Jackman (2010) lists the five major wireless

security components (Figure 1.2):

 Data Confidentiality

 Authentication

 Segmentation

 Monitoring

 Policy

Among above components, authentication and data confidentiality, which we

analyzed in this research, are most important.

3

Figure 1.2 Major wireless security components.

1.1 Evolution of WLAN Security

The original 802.11 standard was published in June 1997 as IEEE Std. 802.11-

1997, and it defined an encryption protocol called Wired Equivalent Privacy (WEP)

and two methods of authentication: Open System authentication and Shared Key

authentication. These methods provided the authentication, confidentiality and

integrity of WLAN in the past (Coleman & Westcott, 2009). Although now there

exists much better and faster methods, the legacy methods are also being used

because of legacy hardware which are not capable to support new authentication and

confidentiality methods. These legacy security methods have been deprecated except

Open System authentication. The deprecated methods should be avoided to use

because of their weaknesses.

In 2003, the Wi-Fi Alliance introduced the Wi-Fi Protected Access (WPA)

certification as a snapshot of the not-yet-released 802.11i amendment. WPA

introduced new 802.1X/EAP authentication and TKIP/RC4 dynamic encryption-key

generation methods (Coleman, Westcott, Harkins & Jackman, 2010). Temporal Key

Integrity Protocol (TKIP), uses the RC-4 stream cipher algorithm. It was basically an

enhancement of WEP encryption and was considered just an interim solution. In

2008, some flaws were found in TKIP/RC4.

4

In 2004, the 802.11i amendment was ratified by the IEEE and published as IEEE

Std. 802.11i-2004. The same year, the Wi-Fi Alliance introduced a more complete

implementation of the 802.11i amendment which is referred to as Wi-Fi Protected

Access 2 (WPA2) certification. The 802.11i amendment was one of the most

important enhancements to the original 802.11 standard. The amendment fully

defined a robust security network (RSN) with stronger encryption and better

authentication methods. The major enhancement of the amendment was a stronger

encryption method called Counter Mode with Cipher Block Chaining Message

Authentication Code Protocol (CCMP), which uses the Advanced Encryption

Standard (AES) algorithm. The encryption method is often abbreviated as

CCMP/AES or just CCMP. The 802.11i amendment also defines an optional

encryption method TKIP/RC4 (Figure 1.3) (IEEE, 2004b).

Figure 1.3 The 802.11 security timeline.

Both WPA and WPA2 have two versions:

 WPA/WPA2-Personal defines security mechanisms for a Small Office/Home

Office (SOHO) environment.

 WPA/WPA2-Enterprise defines security mechanisms for enterprise corporate

networks.

The main differences between these versions are authentication methods. IEEE

802.1X authorization framework or (PSKs). An IEEE 802.1X/EAP authentication

method used within WPA/WPA2-Enterprise while preshared key (PSK) based

authentication is used within WPA/WPA2-Personal.

5

In June 2007, IEEE published new IEEE Std. 802.11-2007 standard which

includes eight amendments. The 802.11i security amendment is also now part of the

802.11-2007 standard. All aspects of the 802.11i ratified security amendment can be

found in clause 8 of the 802.11-2007 standard (Figure 1.4). The 802.11-2007

standard as the most current guideline to provide operational parameters for WLANs

(Table 1.1) (IEEE, 2007).

Table 1.1 The 802.11 standards and certifications (Coleman, Westcott, Harkins & Jackman, 2010).

802.11

Standard

Wi-Fi Alliance

Certification

Authenticatio

n Method

Encryption

Method
Cipher

Key

Generation

802.11-1997

Open system,

Shared Key
WEP RC4 Static

 WPA-Personal WPA PSK TKIP RC4 Dynamic

 WPA-Enterprise 802.1X/EAP TKIP RC4 Dynamic

802.11-2007 WPA2-Personal WPA2 PSK CCMP (mandatory) AES Dynamic

 TKIP (optional) RC4

802.11-2007
WPA2-

Enterprise
802.1X/EAP CCMP (mandatory) AES Dynamic

 TKIP (optional) RC4

Figure 1.4 The 802.11 security evolution.

6

The 802.11-2007 standard defines a robust security network (RSN) and robust

security network associations (RSNAs). RSNA is an association, in which two

stations authenticate and associate with each other as well as create dynamic

encryption keys that are unique between those two stations. A robust security

network (RSN) is a network that allows for the creation of only robust security

network associations (RSNAs). In RSN, CCMP/AES encryption is the mandated

encryption method, while TKIP/RC4 is an optional encryption method. It is also

possible to create pre-robust security network associations (pre-RSNAs) using legacy

security methods, defined in the 802.11-1997 standard, in the same basic service set

(BSS) along with RSN-security defined mechanisms. Such networks referred to as

Transition Security Networks (TSN). The summary of security mechanisms used in

WLANs is shown in Figure 1.5.

1.2 RSNA Establishment

RSNA establishment procedure consists of 802.1X authentication and key

management protocol known as the Four-Way Handshake. RSNA establishment

procedure involves three entities: the wireless station which may be laptop or PDA,

access point and authentication server that is typically RADIUS server. A successful

RSNA established means that the station and the access point verified each other’s

identity and derived some keys for secure data communication with each other. The

RSNA establishment stages in enterprise network may be listed as follows:

 Discovery of the network and its capabilities

 Open System authentication and association to the network

 802.1X/EAP Authentication

 Generation of Master and Temporal keys

 Secure data communication

In SOHO environments, where there is no RADIUS server, preshared keys will be

used in generation of Master keys. Thus the 802.1X/EAP authentication step will be

omitted.

7

Figure 1.5 The 802.11-2007 standards security.

This research discusses RSNA establishment procedures in infrastructure

networks and analyzes tunnel-based Extensible Authentication Protocols (EAP)

which are used within 802.1X/EAP framework (Figure 1.5). We have chosen only

wide deployed RFC-based EAP types because of their availabilities and standards

based property. We mainly focus on the EAP-FAST protocol because of its attracting

security features. The EAP-FAST protocol differs from other tunnel-based EAP

types on using shared secret keys instead of certificates, thus significantly increasing

performance. EAP-FAST provides not only the same security level as other strong

tunnel-based methods, but also convenience and efficiency by using Protected

Access Credentials (PACs). We validated different authentication scenarios of the

EAP-FAST protocol and the four-way handshake key management protocol using an

Automated Validation of Internet Security Protocols and Applications (AVISPA)

model-checker.

1.3 Organization of Thesis

This research consists of six chapters. Chapter two describes the RSNA

Establishment procedures. Chapter three discusses and compares the TLS-based EAP

methods. Chapter four introduces the AVISPA tool. Chapter five focuses on

validation of protocols and analyzes the output results. Finally, chapter six concludes

the research.

8

CHAPTER TWO

AUTHENTICATION AND KEY MANAGEMENT

This chapter fully focuses on RSNA establishment procedures. RSNAs

established using authentication and key management (AKM) services which is

defined in the 802.11-2007 standard. The AKM services consist of a set of

algorithms which require both authentication processes and the generation and

management of encryption keys. Many of these algorithms are non-IEEE-802

protocols that were defined by other standards organizations, such as the Internet

Engineering Task Force (IETF). An authentication and key management protocol

(AKMP) can be either a preshared key (PSK) or an EAP protocol used during

802.1X authentication. The main goals of 802.1X/EAP are the validation of stations'

credentials (authentication) and granting access for the station to network resources

(authorization). Although authentication and encryption have different goals and are

different processes, they are linked together in AKM services. Authorization is not

finalized until encryption keys are created and encryption keys cannot be created

without authentication.

Figure 2.1 The AKM operations within enterprise.

9

In enterprise network, where the 802.1X/EAP authentication solution is used,

AKM operations will be as shown in Figure 2.1.

In SOHO environments, generally there is no use of the 802.1X/EAP

authorization framework, the AKM procedures will look like as shown in Figure 2.2.

In this environment, preshared key becomes the Master key which is consequently

used in derivation of data encryption/decryption keys.

Figure 2.2 The AKM operations within SOHO.

Before discussing details in each stage of AKM process, it is important to

understand some concepts of WLAN such as BSS, IBSS and ESS.

WLAN operates in ad-hoc mode or infrastructure mode.

In infrastructure mode, the wireless network contains at least one wireless access

point (AP), a device that bridges wireless stations to each other and to a wired

network. Stations that are members of a BSS are termed as “associated”. Stations

cannot communicate directly with each other unless they go through the access point.

The infrastructure mode is also referred as Basic Service Set (BSS) (Figure 2.3). Two

10

or more basic service sets connected by a distribution system is called an extended

service set (ESS). In this research, we will focus on only infrastructure networks.

In ad-hoc mode, the wireless network contains no wireless APs. Wireless stations

connect and communicate directly with each other. The ad-hoc mode is also known

as Independent Basic Service Set (IBSS).

Figure 2.3 The infrastructure network (BSS).

 The following sections will explain all stages of Figure 2.1 and Figure 2.2 in

details.

2.1 Stage 1: Discovery of Security Capabilities

Within a BSS, prior to authentication to occur, a station and an access point (AP)

should learn the RSN capabilities of each other. RSN security can be identified by a

RSN information element (RSNIE) field found in certain 802.11 management

frames. The RSN information element identifies the supported encryption cipher

suites (WEP, TKIP, CCMP/AES) and the supported authentication methods

(802.1X/EAP or PSK) of both the AP and the station (Figure 2.4). The RSN

information element field is found in four different 802.11 management frames:

beacon frames, probe response frames, association request frames and reassociation

request frames.

11

Figure 2.4 The RSN information element (IEEE, 2007).

The station discovers an access point by either active or passive scanning. In

passive scanning, the station listens for the beacon frames that are continuously

being sent by the access points (Figure 2.5). In active scanning, the station transmits

probe requests to the AP which in turn replies with probe response (Figure 2.6). If

the station hears beacons or receives probe responses from multiple access points, it

will connect to the AP which has the best signal strength and quality.

 Figure 2.5 Passive scanning (IEEE, 2007).

 Figure 2.6 Active scanning (IEEE, 2007).

The access point learns about the station's security capabilities through association

request frames or reassociation request frames send by the station (Figure 2.7).

12

Figure 2.7 The 802.11 association (IEEE, 2007).

2.2 Stages 2 and 3: 802.11 Authentication and Association

The authentication and association states in WLAN are often misunderstood.

Authentication is the first of two steps required to connect to the 802.11 network.

Here, authentication doesn't mean to enter username and passwords in order to get

access to the network resources. This authentication occurs at Layer 2 of the OSI

model to create an initial connection between two stations. After the station has

authenticated with the access point, the association process takes place. Once

authentication and association occurs, the client STA establishes a Layer 2

connection to the AP and is considered as a member of the BSS. Only the associated

station can send data through the access point to another device on the network. Both

authentication and association must occur, in that order. Figure 2.8 shows the

authentication and association states.

Figure 2.8 The 802.11 authentication and

association states (Coleman & Westcott, 2009).

13

2.2.1 802.11 Authentication Methods

Open System authentication is considered as a null authentication. Every station is

validated during Open System authentication, because there is no exchange or

verification of identity between the devices. To provide data privacy, WEP

encryption can be used only after authentication and association occur. Although

Open System authentication does not provide any identity verifications, it is still used

prior to the 802.1X/EAP authentication (Coleman, Westcott, Harkins & Jackman,

2010). It is the only pre-RSNA security mechanism that has not been deprecated.

Open system authentication is a two-way authentication frame exchange, as shown in

Figure 2.9.

 Figure 2.9 The 802.11 open system authentication (IEEE, 2007).

Shared Key authentication uses WEP keys to authenticate stations. The same

static WEP keys must be manually configured on the AP and on all stations i.e.

members of the BSS. Authentication will not work if the static WEP keys do not

match. The same static WEP key that was used during the Shared Key authentication

process will also be used to encrypt the 802.11 data frames (Figure 2.10).

2.2.1.1 Open System Authentication vs. Shared Key Authentication

It might seem Shared Key authentication is more secure than Open System

authentication, since the Open System authentication offers no real authentication.

14

However, it is quite the opposite. With Open System authentication, anyone can

associate to the access point but they can't pass traffic because they don't have the

WEP key. When using Shared Key authentication, it is possible to derive the key

stream used for the handshake by capturing the challenge frames. Hence, using Open

System authentication together with WEP encryption is better than Shared Key

authentication with WEP encryption (Figure 2.11) (Coleman, Westcott, Harkins &

Jackman, 2010).

Figure 2.10 The 802.11 shared key authentication (Coleman,

Westcott, Harkins & Jackman, 2010).

Figure 2.11 The vulnerability of shared key authentication.

15

2.2.2 802.11 Association

As it is said earlier, association occurs only after authentication. Associated

station means that the station is a member of a basic service set (BSS) and it can send

data through the access point. Association is also simple process that is done by two-

way frame exchange as shown in Figure 2.7.

2.3 Stage 4: An 802.1X/EAP Authentication

The IEEE 802.11-2007 WLAN standard defines how 802.1X mechanisms are

used for authentication and port control within an 802.11 WLAN. These mechanisms

will be described in detail in this section. Before getting into the details of

802.1X/EAP Authorization framework, we should be sure about the following

security concepts:

 Authentication is the verification of users’ identity and credentials.

 Authorization is the allowing authenticated users to access to network

resources and services. As it is clear, authentication occurs before

authorization.

2.3.1 The 802.1X Standard

An IEEE 802.1X-2004 is a port-based access control standard that defines the

mechanisms necessary to authenticate and authorize devices to use network

resources. The 802.1X standard does not specify all of the components needed to

implement a complete port-based authentication system, but it requires the use of

several other standards and protocols, written by different organizations, such as an

Extensible Authentication Protocol (EAP) and Remote Authentication Dial-in User

Service (RADIUS) protocol. All of these standards and protocols work together and

enable an 802.1X port-based authentication system to operate. The 802.1X operates

at Layer 2 of OSI model with virtual ports of access points in WLAN. Every station

within BSS is associated with the access point through virtual ports (IEEE, 2004a).

16

The 802.1X/EAP Authorization Framework consists of three main components:

Supplicant: A software application that performs the 802.1X endpoint services on

a client device such as a laptop or PDA. There are many different types of supplicant

client utility software exist (Figure 2.12). Each has its advantages and drawbacks.

Some of them are free while some come with cost. Generally costly ones offer a

more robust set of configuration parameters and can operate on multiple OS

platforms and device platforms. When choosing supplicants the very important

property is: its support for EAP-method type that is used within 802.1X/EAP

authentication. Each supplicant has unique authentication credentials that are verified

by the authentication server.

Figure 2.12 Windows 7 supplicant (right) and a secureW2 (left) which is

the open-source EAP-TTLS client for Microsoft Windows platforms.

Depending on which EAP-method type is used, the supplicant identity credentials

can be in many different forms as follows:

 Usernames and passwords

 Preshared keys (PSK)

 Digital certificates

 Smart cards

 Token devices

 RFID tags

 Biometrics

17

Authenticator: A Layer 2 device that blocks or allows traffic to pass through its

port entity. It maintains two virtual ports: an uncontrolled port and a controlled port.

The uncontrolled port allows only EAP authentication traffic to pass through, while

the controlled port stays closed until the authentication server verifies the credentials

of the supplicant. The authenticator does not validate the supplicant’s credentials, it

is essentially an intermediary device that passes certain messages between the

supplicant and the authentication server. It is also important to understand that the

authenticator doesn't need to know any specific EAP-method type, but just requires

EAP authentication. In a WLAN, the authenticator is usually either an Access Point

or a WLAN controller.

Authentication Server: A server that validates the credentials of the supplicant that

is requesting access. The authentication server and the supplicant communicate using

a Layer 2 EAP authentication protocol. If the supplicant's credentials are successfully

verified, the authentication server notifies the authenticator that the supplicant has

been authorized. The Table 2.1 contains several examples of authentication servers.

Typically a Remote Authentication Dial-in User Service (RADIUS) server is used as

an authentication server. But any Lightweight Directory Access Protocol (LDAP) -

compliant database can be used as the authentication server, too.

Table 2.1 Widely deployed authentication servers (Coleman, Westcott, Harkins & Jackman, 2010).

Product Name Protocol

Cisco ACS RADIUS

Juniper Steel Belted RADIUS RADIUS

Microsoft NAP (Windows Server 2008) RADIUS

Microsoft AD 2003 and higher Kerberos and LDAP

FreeRADIUS (open source) RADIUS

The authentication server will maintain a user database or may proxy with an

external user database to authenticate user credentials (Figure 2.13). In some cases,

the authentication server may be embedded in the authenticators. This authentication

server model significantly reduces authentication traffic over the network, thus

increases authentication performance. This can be particularly useful in small sites.

18

The embedded authentication servers that are incorporated into many of the WLAN

APs and controllers are not as full featured as the dedicated RADIUS servers.

Figure 2.13 Proxy authentication (Coleman, Westcott, Harkins & Jackman, 2010).

In order to communicate with each other, the RADIUS server and the

authenticator need to be configured with each others' IP Adresses, UDP ports (1645

or 1812) and with a shared secret. The shared secret is only used to validate and

encrypt the communication link between the authenticator and the server.

Not only the supplicant, but also the authentication server needs to present its

credentials to the supplicant when there is mutual authentication. Strong EAP

authentication methods provide mutual authentication between the supplicant and the

server to prevent primarily man-in-the-middle attacks and other such attacks.

2.3.2 Extensible Authentication Protocol (EAP)

The Extensible Authentication Protocol (EAP) is the Layer 2 protocol used within

an 802.1X framework. EAP is designed flexible to support many different specific

authentication protocols. EAP is a lock-step protocol, which means only one packet

is delivered at a time in order, out of order reception is not supported. In other words,

other than the initial Request, a new Request cannot be sent prior to receiving a valid

response. The 802.1X components are referred to as the followings:

 Supplicant : Peer

 Authenticator : Network Access Server (NAS)

 Authentication server : EAP server/AAA server

19

NAS devices need to support the 802.1X in order to use EAP, but they do not

have to understand each authentication method and may act as a pass-through agent

for a backend authentication server (Figure 2.14) (Aboba, Blunk, Vollbrecht, Carlson

& Levkowetz, 2004).

Figure 2.14 Pass-through mode of authenticator (Aboba, Blunk, Vollbrecht, Carlson &

Levkowetz, 2004).

There are four EAP frame types: Request, Response, Success and Failure. The

supplicant can only issue EAP-Response frames, and the authenticator can perform

EAP-Request, Success, and Failure frames. EAP-Request and EAP-Response

packets carry the specific EAP-Method protocol data while EAP-Success and EAP-

Failure packets carry no data but the result of the authentication process.

2.3.3 EAP Carrier Protocols

2.3.3.1 EAPOL Protocol

A specific EAP-method protocol implements the actual authentication process

between a supplicant and an authentication server. EAP packets carry the EAP-

Method protocol data. EAPOL packets transport the EAP packets, and 802.11 data

frames carry the EAPOL packets between the supplicant and the authenticator. The

encapsulation of packets is shown in Figure 2.15.

20

Figure 2.15 EAPOL encapsulation (Geier, 2008).

There are five major types of EAPOL messages, from which only one type carries

EAP packets. Table 2.2 summarizes the EAPOL frames.

Table 2.2 EAPOL packets (Coleman, Westcott, Harkins & Jackman, 2010).

Name Description

EAP-Packet Only this frame carries EAP packets.

EAPOL-Start
The supplicant can use this frame to initiate the EAP process. This frame is

optional.

PEAPOL-Logoff
This frame terminates an EAP session and return the authenticated port to an

unauthorized state.

EAPOL-Key This frame is used to exchange dynamic keying information.

EAPOL-Encapsulated-

ASF-Alert
This frame is used to send alerts.

The EAPOL-Start and the EAPOL-Encapsulated-ASF-Alert frames are only sent

by the supplicant to authenticator, while other frames can be sent to each side.

2.3.3.2 RADIUS Protocol

RADIUS provides the “transportation” of the EAP packets between the

authenticator and the authentication server. RADIUS frames are sent using a lock-

step mechanism i.e. frames are sent in order. All EAP-method data is transported in

encrypted format (Aboba & Calhoun, 2003). The followings are RADIUS frame

types:

21

 Access-Request

 Access-Challenge

 Access-Accept

 Access-Reject

 Accounting-Request

 Accounting-Response

An Access-Request and an Accounting-Request frames are sent by the

authenticator to the RADIUS server. The other frames are sent by RADIUS server to

the authenticator. As it is seen, the authenticator acts as a translator between the

supplicant and the RADIUS server (Figure 2.16).

 Figure 2.16 Authenticator acts as a translator (Geier, 2008).

2.3.4 EAP Methods

 Figure 2.17 An 802.1X layering (Haas, 2010).

22

An EAP-Method actually implements the authentication process, whereas other

protocols, such as EAPOL and RADIUS, merely transport the EAP-Method data.

The layered authentication framework is shown in Figure 2.17 and the generic EAP

exchange is shown in Figure 2.18.

Figure 2.18 Generic EAP exchange (Coleman, Westcott, Harkins & Jackman, 2010).

There are a number of EAP-methods, some are defined in RFCs and many others

are proprietary. EAP-Methods make use of different types of credentials, such as

username/passwords, pre-shared keys and digital certificates. The EAP specification,

RFC 3748, defines three EAP-methods. They are EAP-MD5 (MD5 Challenge),

EAP-OTP (One-Time Passwords) and EAP-GTC (Generic Token Card). These EAP-

methods are very simple and provide only one-way authentication, thus there is no

generation of keys. These methods do not meet requirements of EAP protocol, they

should be avoided. All EAP implementations are required to support these methods.

As weak EAP-methods do exist, there are also very strong EAP-methods. In next

chapter we will discuss in details the TLS-based EAP methods, which are very

popular and widely used in today's networks.

23

2.4 Stages 5, 6 and 7: Key Management

The IEEE 802.11-2007 WLAN standard defines how 802.11 and 802.1X

mechanisms are used together to provide for robust secure key management. This

section focuses on key management procedures.

The goals of authentication and encryption are very different. Authentication

provides mechanisms for verification of users’ identity and credentials, while

encryption provides mechanisms for data privacy or confidentiality. But they are

linked together in AKM services. The authentication process provides the seeding

material to create the necessary encryption keys i.e. encryption keys cannot be

created without authentication.

2.4.1 RSNA Key Hierarchy

A successful 802.1X/EAP mutual authentication will generate a key known as

Master Session Key. Both, the supplicant and the authentication server will create the

same MSK separately. The generation of the MSK from the EAP process is EAP

method specific. The MSK is also referred to as the AAA key.

The MSK is used as seeding material to create another master key called Pairwise

Master Key (PMK). The PMK is simply computed as the first 256 bits (bits 0–255)

of the MSK. The PMK derivation will occur in both parties: the supplicant and the

authentication server. Every supplicant will have its own unique PMK. PMK is

generated every time the supplicant authenticates or reauthenticates (IEEE, 2007).

After the generation of the PMK, the authentication server securely transfers the

PMK to authenticator (Figure 2.1, Stage 5). The server will delete the PMK from its

disk.

In SOHO environments, where there is no 802.1X/EAP solution, preshared key

becomes the PMK (Figure 2.2, Stage 4). In fact, SOHO users are more familiar with

using passwords rather than preshared keys. In this case, preshared key can be

24

generated from password. The formula to convert a password to a PSK is given

below:

PSK = PBKDF2 (passphrase, ssid, ssidLength, 4096, 256)

where

PSK : preshared key,

PBKDF2 : password-based key generation function,

passphrase : user password,

ssid : an 802.11 wireless network name,

ssidLength : the number of octets of the ssid,

4096 : the number of times the passphrase is hashed,

256 : the number of bits output by the passphrase mapping.

The above PSK generation process will occur in each station that is a member of

BSS in SOHO environment. As a result, every station will have the same PMK. It

should be noted that, weak passwords are highly susceptible to social engineering

attacks and offline dictionary attacks (Coleman, Westcott, Harkins & Jackman,

2010).

Figure 2.19 Key hierarchy of RSN.

Another master key, known as the group master key (GMK), is randomly created

on the authenticator. The PMK and the GMK master keys are not used to encrypt or

decrypt 802.11 data. They will be used as seeding material for the Four-Way

Handshake process which creates temporal keys that are used to encrypt and decrypt

25

802.11 data frames between the station and the access point. The keys generated

from the Four-Way Handshake are called the pairwise transient key (PTK) and the

group temporal key (GTK). The PTK is generated using the PMK and the GTK is

generated using GMK keys (Figure 2.19) (IEEE, 2007).

The PTK is unique between each individual station and the access point and it

encrypts all unicast transmissions between them. PTK is composed of three sub keys:

 Key Confirmation Key (KCK) is used to provide data integrity during the 4-

Way Handshake and Group Key Handshake.

 Key Encryption Key (KEK) is used by the EAPOL-Key frames to provide

data privacy during the 4-Way Handshake and Group Key Handshake.

 Temporal Key (TK) is used to encrypt and decrypt the 802.11 data frames

between the supplicant and the authenticator (Figure 2.20).

Figure 2.20 Pairwise transient key (Coleman, Westcott,

Harkins & Jackman, 2010).

The GTK is shared among all stations and the single access point. GTK is used to

encrypt all broadcast and multicast frames (Figure 2.21).

The PTKs and the GTKs used for encryption are either CCMP/AES or

TKIP/RC4.

26

Figure 2.21 Group temporal key (Coleman,

Westcott, Harkins & Jackman, 2010).

2.4.2 The Four-Way Handshake

Figure 2.22 The four-way handshake protocol (IEEE, 2007).

27

As mentioned above, the Four-Way Handshake finalizes the AKM process by

generating PTK for encryption of unicast transmissions and a GTK for encryption of

broadcast/multicast transmissions. The Four-Way Handshake process occurs

between the supplicant and the authenticator. The EAPOL-Key frame messages are

used within Four-Way Handshake process to confirm the existence of the same

PMK, verify the selection of the cipher suite, derive and install a fresh PTK for the

following data session. The authenticator might also distribute a GTK to the

supplicant if necessary. After the successful Four-Way Handshake, the virtual

controlled port of the authenticator is unblocked. All 802.11 data frames that are

encrypted with appropriate keys are can pass through the authenticator (Figure 2.22).

The complete message exchange details of the Four-Way Handshake process are

given in chapter four in Alice & Bob Notation form.

2.4.3 The Group Key Handshake

An authenticator may change the GTK on disassociation or deauthentication of a

client station. In such cases, the authenticator will generate a fresh Group Transient

Key (GTK) and distribute this GTK to the supplicants. The Group Key Handshake is

used only to issue a new GTK to all stations that already have an original GTK

generated by an earlier Four-Way Handshake. The Group Key Handshake is

identical to the last two frames of the Four-Way Handshake process (Figure 2.23).

 Figure 2.23 The group key handshake protocol (IEEE, 2007).

28

2.5 Stage 8: Secure Data Communication

The 802.11-2007 standard defines three encryption methods that operate at Layer

2 of the OSI model: WEP, TKIP, and CCMP. All these encryption methods use

symmetric algorithms. Symmetric algorithms are faster and require less computer

processing power than asymmetric algorithms. Using the PTK (or GTK) and the

negotiated cipher suite from above handshakes, all upper layer data, through layer 3

to layer 7, is encrypted prior to transmission and then decrypted after being received.

The PTKs and the GTKs used for encryption may be either TKIP/RC4 or

CCMP/AES (Coleman, Westcott, Harkins & Jackman, 2010) (Figure 2.24).

Wired Equivalent Privacy (WEP) is a Layer 2 security protocol that uses the RC4

streaming cipher. WEP uses a preconfigured static key that is shared between access

point and all stations. WEP runs a cyclic redundancy check (CRC) for data integrity.

It is not cryptographically strong integrity protection. Due to its many vulnerabilities,

WEP has been deprecated. WEP is still supported only for backward compatibility

within TSN.

Figure 2.24 RSNA within BSS.

Temporal Key Integrity Protocol (TKIP) is an enhancement of WEP that also uses

the RC4 algorithm as WEP does. It was created to provide a stronger security

solution without requiring users to replace their legacy equipment. With just a

firmware upgrade, it is possible to use TKIP within legacy equipments. TKIP uses

dynamically created encryption keys and a stronger data integrity check known as

29

the Message Integrity Code (MIC). TKIP addresses many known weaknesses of

WEP. They are social engineering attacks, replay attacks, reinjection attacks, weak

key attacks, bit-flipping attacks, forgery attacks, impersonation attacks,

fragmentation attacks.

TKIP was a short term solution. TKIP has been successfully used for five years

until when some flaws were found in TKIP such as Beck-Tews attack, Ohiagi/Morii

attack (Coleman, Westcott, Harkins & Jackman, 2010).

Counter Mode with Cipher-Block Chaining Message Authentication Code

Protocol (CCMP) was designed to replace TKIP and WEP. CCMP uses the AES

block cipher algorithm. Legacy 802.11 devices that only supported WEP and TKIP

had to be replaced with newer hardware to support CCMP/AES encryption

processing. CCMP is made up of many different components that provide different

functions. The Counter Mode (CTR) is used to provide data confidentiality. The

Cipher-Block Chaining Message Authentication Code (CBC-MAC) is used for

authentication and integrity. CCMP is mandatory in WPA2 networks, while

TKIP/RC4 is mandatory in WPA networks (Coleman, Westcott, Harkins & Jackman,

2010). The Table 2.3 depicts the properties of encryption methods used in 802.11.

Table 2.3 The 802.11 encryption methods.

Encryption method Cipher
Key

Generation
Integrity Comments

WEP

(Wired Equivalent Privacy)
RC4 Static ICV (CRC)

 Has weaknesses

 Has been cracked

 Still deployed in enterprise

TKIP

(Temporal Key Integrity Protocol)
RC4 Dynamic MIC

 Enhancement of WEP

 Needs firmware upgrade

 Has flaws

CCMP

(Counter Mode with Cipher-Block

Chaining Message Authentication

Code Protocol)

AES Dynamic CBC-MAC Processor intensive

36

CHAPTER THREE

TLS-BASED EAP METHODS

The 802.1X does not specify an exact authentication method. The 802.1X uses the

concept of an EAP framework that allows a variety of specific methods to be used

for the authentication procedure. An EAP-method actually implements the

authentication process between a peer and an authentication server. There are two

major sets of EAP-methods, which are password-based and certificate-based. The

password-based EAP-types provide lightweight processing and are very convenient.

But many of them are susceptible to the offline dictionary attacks, and hence

considered weak. On the other hand, the certificate-based methods provide strong

security as well as allow password-based authentication methods to be used. The

certificate-based methods achieve these security properties using Transport Layer

Security (TLS) Handshake protocol that establishes authenticated and encrypted

tunnel (Dierks & Rescorla, 2006, 2008). Within tunnel, password-based methods can

run securely. The significant downside of certificate-based methods is the

requirement of Public Key Infrastructure (PKI) which is costly to implement and

hard to manage. As a result, there is a need for an EAP method that can provide the

same level of security as certificate-based types as well as allows password-based

methods run on it. EAP-FAST is the exactly protocol that we need. The EAP-FAST

does not use certificates, instead it uses shared secret within TLS handshake protocol

to establish secure tunnel and it does allow any password-based EAP-methods run

within the tunnel.

3.1 TLS-Based EAP Methods Overview

In this chapter, we will discuss and compare the security properties of the widely

used TLS-based EAP-methods which are defined in IETF RFCs used in WLAN

(Table 3.1). Table 3.2 lists the EAP types that currently included in the Wi-Fi

Alliance Certification program. All these EAP-methods use a TLS Handshake

protocol. EAP-TTLS, PEAP and EAP-FAST methods are tunnel-based methods that

extend the EAP-TLS protocol. Tunnel-based methods are constructed as combination

37

of two protocols: an outer protocol and an inner protocol. The outer protocol is the

TLS Handshake protocol which establishes encrypted TLS tunnel to protect the

exchange of the inner protocol messages. The inner protocol is usually the weak

password-based protocol. Weak, legacy protocols are used as an inner protocol

because they are already widely deployed and work lightweight. The tunnel-based

protocols provide mutual authentication and run in two phases. In the first phase, the

outer protocol runs and authenticates the server to the peer. The inner protocol is

typically used for peer authentication, in the second phase. As a result of successful

authentications, both the outer and the inner protocols derive some keys (Figure 3.1).

Among TLS-based protocols, in this chapter we mainly focus on the EAP-FAST

protocol because of its attracting security features.

Table 3.1 TLS-based EAP methods defined in IETF RFCs.

EAP-types RFCs Category Publication Date

EAP-TLS RFC 5216 Standards Track March, 2008

EAP-TTLSv0 RFC 5281 Informational August, 2008

EAP-TTLSv1 draft-funk-eap-ttls-v1-01.txt Informational March, 2006

PEAPv0 draft-kamath-pppext-peapv0-00.txt Informational October, 2002

PEAPv1 draft-josefsson-pppext-eap-tls-eap-05.txt Informational September, 2002

PEAPv2 draft-josefsson-pppext-eap-tls-eap-10.txt Informational October, 2004

EAP-FASTv1 RFC 4851 Informational May, 2006

EAP-FASTv2 draft-ietf-emu-eap-tunnel-method-01.txt Standards Track October, 2011

Table 3.2 TLS-based EAP methods included in the WFA certification program

EAP Types Comments

EAP-TLS Client certificate can be stored on a smartcard

EAP-TTLS/MSCHAPv2 Well supported by Cisco and Microsoft

PEAPv1/EAP-GTC Not supported by Windows OS, so not really deployed

PEAPv0/EAP-MSCHAPv2 Method mainly supported by Microsoft

EAP-FAST A protocol proposal by Cisco Systems

38

Figure 3.1 Tunnel-based EAP methods overview (Hoeper & Chen, 2009).

Tunnel-based EAP methods were introduced for several reasons:

 To enable the use of password-based authentication methods for peers. As

mentioned before, without tunneling, widely deployed password-based

authentication methods are insecure.

 To enable privacy protection. Not only the peer identity but also the server

identity can be protected.

 To enable the execution of multiple authentication methods. In cases, where

both a machine authentication and the user authentication are required we

will need to provide multiple authentications. Since a tunnel-based EAP

method is considered as one authentication method and, thus, multiple

authentication methods may be executed within the protective tunnel.

3.2 EAP-TLS

EAP-Transport Layer Security (EAP-TLS) is defined in RFC 5216 and is

considered one of the most secure EAP methods available today. The EAP-TLS has

the broadest support in supplicants and authentication servers. EAP-TLS requires

both the peer and the authentication server have X.509 certificates for authentication.

This means that each client requires a unique digital certificate. It is difficult to

39

manage the certificates in a large enterprise network, since certificates add

administrative overhead. As a result, EAP-TLS is rarely deployed. EAP-TLS is best

for enterprises that have digital certificates already deployed. Another drawback of

EAP-TLS is that the peer identity is exchanged in the clear. So, a passive attack can

easily obtain the usernames. EAP-TLS provides mutual authentication as shown in

Figure 3.2 (Simon, Aboba & Hurst, 2008).

Figure 3.2 EAP-TLS authentication mechanism (Simon, Aboba & Hurst, 2008).

3.3 EAP-TTLS

EAP-Tunneled Transport Layer Security (EAP-TTLS) is a two-phase

authentication protocol that establishes encrypted tunnel in phase one, and then

performs user authentication within encrypted tunnel in phase two. The EAP-TTLS

requires only server-side certificates for server authentication. The users can

authenticate themselves to the server through the use of a password, rather than a

certificate. This significantly reduces the complexity of the port-based authentication

system. The EAP-TTLS supports both EAP protocols and non-EAP protocols such

40

as PAP, CHAP, MS-CHAPv1, MS-CHAPv2 within encrypted tunnel. TTLS uses the

TLS tunnel to exchange "attribute-value pairs" (AVPs), much like RADIUS. Note

that, in phase one the real user identity is hidden (Funk & Blake-Wilson, 2008).

3.4 PEAP

Protected Extensible Authentication Protocol (PEAP) is often called as "EAP

inside EAP". PEAP is the most common and most widely supported EAP-method.

PEAP operates in two phases similar to EAP-TTLS. PEAP also supports the identity

hiding, as EAP-TTLS. Moreover, PEAP provides the chaining of several EAP-

methods, cryptographic binding of outer and inner methods. These properties

differentiates PEAP from EAP-TTLS. Figure 3.3 illustrates the PEAP authentication.

Note that, EAP-TTLS is very similar to PEAP (Palekar & others, 2004).

Figure 3.3 PEAP authentication mechanism (Palekar & others, 2004).

41

3.5 EAP-FAST

Flexible Authentication via Secure Tunneling EAP (EAP-FAST) is a

"lightweight" and convenient protocol that can provide the same level security as

PEAP and EAP-TTLS. Unlike PEAP and EAP-TTLS, EAP-FAST uses a Protected

Access Credential (PAC) to establish a TLS tunnel instead of X.509 digital

certificates. With using PACs, EAP-FAST authentication acts more like a session

resumption, hence the authentication occurs much more faster than complete

authentication. Use of server certificates is optional in EAP-FAST (Cam-Winget,

McGrew, Salowey & Zhou, 2007).

Figure 3.4 EAP-FAST authentication (Cam-Winget, McGrew, Salowey & Zhou, 2007).

42

EAP-FAST consists of three phases: Phase 0 is an optional phase in which the

PAC can be provisioned manually or dynamically. This phase may be skipped in the

case of the peer has appropriate PACs. PAC provisioning is only done once to set up

the PAC secret between the server and client and all subsequent EAP-FAST sessions

skip "Phase 0". Phase 0 is independent of other phases. In Phase 1, the client and the

AAA server uses the PAC to establish TLS tunnel. In Phase 2, the client credentials

are exchanged inside the encrypted tunnel. Figure 3.4 depicts the EAP-FAST

process.

3.5.1 PAC Types

 Tunnel PAC is used to establish an authenticated and encrypted tunnel

between the peer and the authentication server. The Tunnel PAC is consists

of PAC-Key, PAC-Opaque and PAC-Info. PAC-Key is a shared secret key

that will be used within generation of tunnel key. PAC-Opaque is the

protected data that can not be interpreted by the peer. Only the authentication

server can decrypt it. Figure 3.5 depicts the Tunnel PAC.

Figure 3.5 Tunnel PAC.

 Machine Authentication PAC contains PAC-Opaque that is used in

identification of the machine. This PAC can be provisioned during the

authentication of a user and can also be used in establishing a secure tunnel as

the Tunnel PAC.

 User Authorization PAC is also PAC-Opaque that holds user identity

information. When this PAC is presented in phase 2 of EAP-FAST, inner

authentication process may be skipped.

43

3.5.2 Dynamic PAC Provisioning

As shown in Figure 3.5, the Tunnel PAC contains the PAC-Key, PAC-Opaque

and PAC-Info. The PAC-Opaque contains the PAC-Key, initiator ID (I-ID) and the

Key Lifetime. I-ID is assigned by the authentication server to the peer and it is only

used by the server for peer identification. The PAC Info contains the Authenticator

ID (A-ID) and A-Info, both of which identify the particular authentication server that

created the PAC for the specific I-ID (Peer). All of these are created by the

authentication server. The authentication server encrypts the PAC-Opaque with its

own Master Key. Within encrypted tunnel, the authentication server sends the

created Tunnel PAC to the peer. The authentication server deletes the Tunnel PAC

from its memory to save the storage capacity.

After possessing the valid Tunnel PAC, the peer will reathenticate to use PAC.

The peer will skip the phase 0 and starts directly from phase 1. In phase 1 the

authentication server will send its A-ID to the peer. The peer uses the A-ID to select

the correct PAC from its inventory (it may have multiple PACs, one for each Server

it may authenticate with). The peer sends the correct PAC-Opaque to the

authentication server. The authentication server decrypts the PAC-Opaque using its

Master Key (the same one that originally encrypted the PAC-Opaque) and obtains

the PAC-Key. Now both partes, the peer and the authentication server holds the same

key. Thus they use this key in generation a Tunnel Key. A secure tunnel is now

created between them.

In short, the authentication server creates the Tunnel PAC and gives it to the peer.

Then during authentication phase 1, the peer just sends back the PAC-Opaque

portion of the Tunnel PAC to the authentication server.

In the same manner, User Authorization PAC is also created by the authentication

server and it is also opaque to the peer which means the peer does not understand

what is in it and it cannot interpret it. The peer just sends it to the server within phase

2, to authenticate itself to the server. In this case, any inner authentication method

44

may be skipped. It should be noted that User Authorization PAC does not include

PAC-Key. Thus it should be bounded to the Tunnel PAC (Cam-Winget, McGrew,

Salowey & Zhou, 2009). Figure 3.6 illustrates the usage of Tunnel PAC as well as

User Authorization PAC.

Figure 3.6 EAP-FAST authentication: User-Authorization-PAC usage.

45

3.5.3 EAP-FAST Provisioning Modes

 Server-Authenticated Provisioning Mode: The protected tunnel is established

using server-side certificates (Figure 3.7).

 Server-Unauthenticated Provisioning Mode: The protected tunnel is

established based on anonymous Diffie-Hellman key exchange (Figure 3.8).

Figure 3.7 Server-authenticated dynamic provisioning.

46

Figure 3.8 Server-unauthenticated dynamic provisioning (Cam-Winget, McGrew, Salowey

& Zhou, 2009).

3.5.4 MITM on Tunnel-Based EAP Methods

Asokan, Niemi & Nyberg (2002) describe the vulnerability of tunnel-based EAP

methods to man-in-the-middle attack. This attack can be launched as follows:

An adversary, acting as a peer, initiates a tunnel-based EAP method with the

authentication server. The adversary executes a tunnel protocol with the

authentication server in which the authentication server authenticates to the

adversary. As a result of a successful tunnel protocol execution, both the adversary

47

and the authentication server obtain tunnel key (TK). The server then initiates an

inner authentication method inside the protective tunnel. The adversary, acting as an

authentication server, initiates a parallel session with a peer using the same

authentication method outside a tunnel. The adversary then replays the peer’s

response into the tunnel, making the authentication server believe that the messages

are coming from the other end of the tunnel. Thus, the inner authentication method,

and the tunnel-based EAP method are executed successfully, and both the adversary

and the authentication server subsequently share the established MSK if it is derived

from the tunnel key (TK). Figure 3.9 shows the man-in-the-middle attack against

tunnel-based EAP methods.

Figure 3.9 Man-in-the-middle attack on tunnel-based methods (Hoeper & Chen, 2009).

3.5.5 EAP-FAST MiTM Attack Protection

EAP-FAST provides protection from aforementioned man-in-the-middle attacks

in two ways (Cam-Winget, McGrew, Salowey & Zhou, 2007):

1. By using the PAC-Key: In phase 1, the tunnel PAC is not only used for server

authentication but also server can authenticate peer through information

found in tunnel PAC. Thus, mutually authentication mitigates the man-in-the-

middle attack described above.

48

2. By using the Crypto-Binding TLVs: In phase 2, Crypto-Binding TLVs are

used to bind the outer authentication protocols with inner authentication

protocols through derived keys from both authentication methods. Crypto-

Binding assures that the outer authentication and inner authentication is

occured between the same peer and the server.

3.5.6 Summary of EAP-FAST Features

 It provides not only strong security but also convenience and efficiency by

using PACs. Since it uses shared secrets that have strong entropy, it is much

more faster than PEAP and EAP-TTLS.

 Enables the network access communication to be computationally

lightweight. Uses PAC in lightweight devices.

 PACs are unique to each client identity. A different client cannot use the

same PAC file or authentication will fail.

 Using PAC, allows faster TLS tunnel establishment.

 Supports crypto-binding, mixing the tunnel encryption key with the inner

EAP method key to prevent MITM attack.

 Supports anonymous provisioning and manual provisioning of PAC,

eliminate the need for PKI or use of server certificate.

 Supports EAP inner method chaining.

 Supports authorization PAC to allow fast session resumption without server

state, allowing endpoints to roam the sessions across multiple AAA servers

(Salowey, Zhou, Eronen & Tschofenig, 2008).

3.6 Comparison of TLS-Based EAP Methods

Table 3.3 and Table 3.4 show an in-depth comparison of the TLS-based EAP

methods.

49

Table 3.3 EAP Security Claims (Cam-Winget, McGrew, Salowey & Zhou, 2007, Funk & Blake-

Wilson, 2008, Palekar & others, 2004, Simon, Aboba & Hurst, 2008).

EAP Security Claims
EAP-TLS

(RFC 5216)

EAP-TTLSv0

(RFC 5281)

PEAPv2

(Draft, 2004)

EAP-FASTv1

(RFC 4851)

Ciphersuite negotiation Yes Yes Yes Yes

Mutual authentication Yes Yes Yes Yes

Integrity protection Yes Yes Yes Yes

Replay protection Yes Yes Yes Yes

Confidentiality Yes Yes Yes Yes

Key derivation Yes Yes Yes Yes

Key strength Variable Up to 384 bits Variable Variable

Dictionary attack protection Yes Yes Yes Yes

Fast reconnection Yes Yes Yes Yes

Cryptographic binding N/A No Yes Yes

Session independence Yes Yes Yes Yes

Fragmentation Yes Yes Yes Yes

Channel binding No No No No

Table 3.4 Summary of TLS-based EAP methods (Coleman, Westcott, Harkins & Jackman, 2010).

Features
EAP-TLS

(RFC 5216)

EAP-TTLSv0

(RFC 5281)

PEAPv2

(Draft, 2004)

EAP-FASTv1

(RFC 4851)

Server authentication Certificate Certificate Certificate PAC

Client authentication Certificate Any method Any EAP method Any EAP method

Server certificate Required Required Required Optional

Client certificate Required Optional Optional Optional

Tunnel establishment Optional Necessary Necessary Necessary

User identity protection No Yes Yes Yes

Ease of deployment Hard Moderate Moderate Moderate

Security strength Highest Medium High High

50

CHAPTER FOUR

THE AVISPA TOOL

 To validate the EAP-FAST protocol we used the automatic protocol analyzer

AVISPA (Armando & others, 2005). Its good expressive form and ease-of-use are

the attractive features of the tool, but the main advantage of AVISPA is the ability to

use different verification techniques on the same protocol specification. In AVISPA,

security protocols are specified by High Level Protocol Specification Language

(HLPSL). As indicated in Chevalier & others (2004), the HLPSL language has

already proven itself to be an effective language for modeling security protocols:

many protocols of varying levels of complexity. We have chosen AVISPA mainly

because it is concluded as more efficient tool to falsify and verify security protocols

than the other several widely used tools (Patel & others, 2010). Figure 4.1 depicts the

classification of formal methods for security protocol analysis (Modersheim, Vigano

& von Oheimb, 2005).

Figure 4.1 Protocol analysis techniques (Modersheim, Vigano & von Oheimb, 2005).

51

 AVISPA (Automated Validation of Internet Security Protocols and Applications)

is a research tool that automatically validates and analyzes formal models of

security-sensitive protocols. In AVISPA (Automated Validation of Internet Security

Protocols and Applications [AVISPA], 2006b), protocols and their security

requirements are described using HLPSL language. A hlpsl2if translator takes as

input a HLPSL specification and translates it into a corresponding Intermediate

Format (IF) specification automatically. IF (AVISPA, 2003b) is a lower-level

language than HLPSL and is read directly by the state-of-the-art back-ends

embedded in AVISPA. The IF specification of a protocol is then analyzed by back-

end tools to test if the security goals are satisfied or violated (Figure 4.2). If any

attack is found back-ends return it in an intuitive and readable output format. The

command-line AVISPA Tool outputs attack traces in an Alice&Bob notation. The

web interface displays an attack trace in the form of a Message Sequence Chart

(Figure 4.3).

 Figure 4.2 Architecture of the AVISPA tool (AVISPA, 2006b).

4.1 The High Level Protocol Specification Language (HLPSL)

 HLPSL (AVISPA, 2003a) is a role-based language. It is easier to specify a

protocol from Alice&Bob notation. Alice-Bob notation describes the security

protocols using flow of messages between the involved parties (Figure 4.4).

52

 Figure 4.3 Attack trace of AVISPA web tool (Armando & others, 2005).

Figure 4.4 Analysis steps using AVISPA.

The HLPSL consists of following sections:

 Basic roles specifies the initial knowledge and the behaviour of each honest

participant in a protocol. Basic roles contain a set of transitions. Generally,

each transition represents the receipt of a message and the sending of a reply

message. A transition consists of a trigger, or precondition, and an action to

be performed when the trigger event occurs.

53

 Composed roles instantiate the participants(basic roles) and specify how they

interact with one another. Usually, roles are executed simultaneously

(parallel) as independent state-machines.

 Environment role is a top level role which contains a composition of one or

more sessions, where the intruder may play some roles as a legitimate user. It

also contains global constants and describes what knowledge the intruder

initially has.

 Goals: AVISPA supports different forms of authentication and secrecy. In

this section, goals are specified by using predefined macros which are:

o the secrecy of some information,

o the strong authentication of agents on some information,

o the weak authentication of agents on some information.

Each goal is identified by a constant, referring to predefined predicates (secret,

witness, request and wrequest) declared explicitly in transitions. Here, 'witness' and

'request' pair specifies strong authentication while 'witness' and 'wrequest' pair used

for weak authentication. One pair of witness/request serves for unilateral

authentication, so for mutual authentication there should be defined two pairs. When

a sender sends any message, he/she may issue a 'witness' to denote that he/she needs

the message to be correctly delivered to the receiver. On the other hand, the receiver

should issue a 'request' to answer the 'witness' (AVISPA, 2006a). For instance,

 witness(A,B,authNonce,Nonce')

means "'A' wishes to prove his identity to 'B', and presents Nonce'. 'A' wants

to ensure that 'B' received the exact value of Nonce' that is sent".

 request(B,A,authNonce,Nonce')

means " 'B' authenticates 'A' on Nonce', i.e. 'B' wants to ensure that 'A' sent

this value of the Nonce' which is received".

Here; 'A' and 'B' are agents, 'authNonce' is a constant 'protocol_id' identifying

the 'witness-and-request' statements in the goals section.

54

The main rule to remember when putting 'requests' is to put them as late as

possible. On the other hand since the secrecy check takes effect only after the events

have been issued, the 'secrecy' events should be given as early as possible i.e. right

when the secret term has been created in the respective role transition.

The above described 'witness-and-request' predicates are defined in transitions of

basic roles. In the 'Goal' section those properties specified as following:

goal

secrecy of na % na is a constant 'protocol_id' representing secret term

authentication_on authNonce

end goal

AVISPA mainly covers the following Goals, but also several other goals may be

approximated (AVISPA, 2003c):

 Authentication (unicast and multicast)

o Entity authentication

o Message origin and integrity

o Replay protection

 Key agreement (reduced to authentication)

o Key authentication

o Key confirmation

o Fresh key derivation

 Confidentiality (Secrecy)

Basic types in HLPSL:

o agent : names of principles

o public_key : asymmetric keys

o symmetric_key : symmetric keys

o nat : natural numbers

55

o hash_func : to model hash functions etc

o bool : boolean values for modeling flags

o channel(dy) : for exchanging messages. The intruder is modeled by the

'dy' channel (the Dolev-Yao intruder) over which the communication takes

places. Communication in HLPSL is synchronous, via immediate transitions.

HLPSL supports cryptographic primitives such as nonces, hash functions,

signatures, encryption, etc. and algebraic properties like concatenation ('.'), exclusive

or (xor()), exponential (exp()) (AVISPA, 2006a).

4.2 The Dolev-Yao Intruder

AVISPA implements the Dolev-Yao intruder model. Dolev–Yao is known as the

most general and the strongest possible intruder model for formal protocol analysis

(Cervesato, n.d.). Under this model, the intruder has full control over the network,

meaning that each message received by a participant has also been received by the

intruder. The model (Dolev & Yao, 1983) states that the active intruder has the

capability to :

 read all messages

 block any message

 arbitrarily re-direct messages

 store messages it receives indefinitely

 build new messages with the different constructors

 arbitrarily re-order messages

 decompose messages into their components

 encrypt/decrypt messages and modify them if it possesses the appropriate

key (Black-box perfect crypto)

The only restriction that is placed on the Dolev-Yao intruder is that it cannot

break encryption. If it receives an encrypted message, it cannot learn the contents of

the message unless it has knowledge of the appropriate key.

56

Naturally, it is hardly realistic that a process performing all of a Dolev-Yao

attacker’s actions is active on a physical network, but if a protocol can withstand a

Dolev-Yao attacker, then it is reasonably certain that any real-world attacks will fail

as well.

4.3 The Back-End Analyzers

OFMC (On-the-fly Model-Checker) is based on two lazy techniques: the first is

lazy demand-driven search and second is the lazy intruder, which reduces the

computational effort. Lazy demand-driven search uses lazy data types to model

infinite state-space of protocol. Lazy data types model the protocol and attacker as

infinite tree on the fly, in a demand driven way. The nodes of the tree are traces and

children represent the next step of protocol or an action of an attacker. Properties of

nodes represent the security properties. Lazy intruder techniques model a lazy Dolev-

Yao intruder whose actions are generated in a demand-driven way. Now, the OFMC

is renamed as Open source Fixed-point Model-Checker (Basin, Modersheim &

Vigano, 2005).

CL-AtSe (Constraint-Logic-based Attack Searcher) is OCaml-based

(programming language) implementation of the deduction rules. These rules allow

user to interpret and automatically execute the protocols in every possible way in the

presence of Dolev-Yao intruder Capabilities. The main design goals of CL-Atse are

modularity (easily extend the class of the protocols to be analyzed) and performance

(obtain the results using large number of protocol sessions). The analysis algorithm

used by CL-AtSe is designed for a bounded number of loops, i.e. a bounded number

of protocol steps in any trace. Any state-based properties (like secrecy, authentication

etc) and algebraic properties of operators like XOR, exponentiation can be modeled

and analyzed (Turuani, 2006).

SATMC (SAT-based Model-Checker) is an open and flexible platform for

SATbased bounded model checking. Protocol descriptions are specified as rewrite

formalism in IF format. SAT compiler generates the formula for each step of the

57

protocol using encoding techniques. Each formula is then tested using SAT solver -

whether formula is satisfiable or it leads to an attack. SATMC performs bounded

analysis by considering finite sessions of the protocol with Dolev-Yao intruder

capabilities (Armando & Compagna, 2004).

TA4SP (Tree Automata based on Automatic Approximations for th Analysis of

Security Protocols): is based on abstraction-based approximation method.

Abstraction provides a way to prove correctness or security of a protocol by over-

estimating the possibility of failure. This tool language represents an over-

approximation or under-approximation of the intruder knowledge with an unbounded

number of sessions. For secrecy properties, TA4SP can show whether a protocol is

flawed (by under-approximation) or whether it is safe for any number of sessions (by

over-approximation) (Boichut, Heam, Kouchnarenko & Oehl, 2004).

4.4 The SPAN Tool

 SPAN (a Security Protocol ANimator for AVISPA) is an animation tool that

makes HLPSL specification debugging more easy. SPAN allows us to have a better

understanding of the specification, check that it is executable and that it corresponds

to what is expected (Figure 4.5). From an HLPSL specification, it is possible to

interactively produce a Message Sequence Chart (MSC) corresponding to an

execution of the specification step by step (Figure 4.6) (Glouche, Genet & Houssay,

2008). AVISPA is very convenient, especially when visualized with SPAN. Here are

some features of SPAN:

 Supports the editing of protocol specifications.

 Allows to select and configure the back-ends integrated into the tool.

 It is possible to go back in the execution.

 Hide/show content of variables of roles.

 Can represent one or more sessions of the protocol in parallel.

58

Figure 4.5 SPAN animator for AVISPA.

SPAN allows to launch three different modes:

 Protocol Simulation for simulating the protocol and build a particular MSC

corresponding to the HLPSL specification (Figure 4.6).

 Intruder Simulation for simulating the protocol with an active/passive

intruder (Figure 4.7).

 Attack Simulation for automatic building of MSC attacks from the output of

either OFMC or CL-ATSE tools.

 Figure 4.6 Protocol simulation in SPAN.

59

 Figure 4.7 Intruder simulation in SPAN.

4.5 Summary of AVISPA Features

 Usefulness: The main advantages of AVISPA are its good expressive form and

ease of use.

 Scalability and flexibility: AVISPA has been successfully validated a number of

security protocols developed by the IEEE, IETF Working Groups, and others. The

AVISPA Library is the best publicly available library that comprises a large

collection of security protocols, specified together with their properties in HLPSL

(AVISPA, 2005)

 Availability: Freely available web interface to experiment the AVISPA Tool

(Figure 4.8). It can be accessed at the URL, http://www.avispa-project.org/web-

interface.

 Visualization:

o Provided a very helpful HLPSL XEmacs mode. Its syntax highlighting and

menus are very practical for editing protocol specifications (Figure 4.9).

o A Security Protocol ANimator for AVISPA (SPAN) helps in interactively

producing Message Sequence Charts from an HLPSL specification.

 High performance: AVISPA is capable of analyzing the model and its properties

in a short period of time.

60

 Figure 4.8 AVISPA's web interface.

Figure 4.9 XEmacs mode of AVISPA (Armando & others, 2005).

4.6 AVISPA Modeling Limitations

The HLPSL language is simple and capable of expressing most authentication and

key exchange protocols, but also have a number of limitations:

61

 Lack of support algebraic equations (arithmetic expressions such as '+', '-', '*', '/',

'>', '<', "mod")

 Lack of support for fairness constraints, timestamps, timeouts and delays.

 Could not be used to model security protocols with non-repudiation

requirements.

 Does not support anonymity goals (like; identity privacy, location privacy)

 Supports only a single intruder model; the Dolev-Yao intruder model. This is the

most powerful intruder model, and is generally the type of intruder which

protocols are designed to be secure against. However communication mediums

are becoming more diverse and this model is no longer suitable in all cases.

 Cannot detect attacks such as DoS attacks, Guessing attacks, Downgrade attacks,

Dictionary attacks, Brute-force attacks.

4.7 AVISPA Usage Recommendations

 Check the executability of the protocol before run it against the security

properties to find attacks. Use the step-by-step simulation of the protocol to see

that the specification is what it should be and all the states are reachable.

Examples of checking the executability (runnable) of HLPSL specification is

given below:

 avispa protocol_model.hlpsl --cl-atse -noexec

avispa protocol_model.hlpsl --ofmc -sessco

avispa protocol_model.hlpsl --satmc --check_only_executability=true

 Tools stop the search at the first attack if they find out. So it is recommended to

drop the goal that was found violated, to see if the other goals of the protocol do

hold.

 It is not possible to disable the intruder completely, because AVISPA relies on

him to relay messages. It is very useful to specify only one session, between

only honest agents, and then run to see how protocol works.

 It is preferred to use compound types rather than the most general type

'message'. For instance, if X={Na.Nb}_Kab; where Na, Nb are nonces and Kab

is a symmetric key, X should be declared as {text.text}_symmetric_key.

62

CHAPTER FIVE

VALIDATION OF PROTOCOLS

We have modeled the Dynamic Provisioning mechanisms, EAP-FAST

authentication mechanisms and the Four-Way Handshake protocol in HLPSL. In this

chapter, we will show the A&B notations of each protocol and output results of

AVISPA tool. A&B notation shows a clear illustration of the messages exchanged in

a normal run of a given protocol (AVISPA, 2006a). It is convenient and very helpful

to get protocols in the form of flow of messages before specify them in HLPSL.

AVISPA has its web interface just as a demo for presenting the tool. Because, the

resources (memory and time) assigned to each test are significantly limited on it. We

used local version of AVISPA: AVISPA-1.1 and SPAN-1.6 on UBUNTU 10.04.

The statistics given by each tool are not uniform. There are some timings, for

parsing/translating the HLPSL specification into a back-end usable specification, and

for the total execution time. Each backend has its own output format. For instance

OFMC output results mean:

parseTime: 0.00s > the time for reading the input file

searchTime: 0.27s > the time for the analysis of the protocol

visitedNodes: 119 nodes > the number of nodes in the tree

depth: 8 plies > the depth of the tree

In the analysis of protocols, we mainly used Cl-Atse model checker supported by

AVISPA. Because in Vigano (2006), the CL-AtSe has shown better properties than

other model checkers, implemented in the tool, such as OFMC, SATMC or TA4SP.

EAP-FAST authentication process occurs in three phases. Phase 0 is an optional

phase in which the PAC can be provisioned manually or dynamically. PAC

provisioning is only done once to set up the PAC secret between the server and client

and all subsequent EAP-FAST sessions skip "Phase 0". In Phase 1, the peer and the

63

authentication server uses the PAC to establish TLS tunnel. In Phase 2, the peer

authenticates to the server by another EAP method inside the encrypted tunnel.

Figure 5.1 depicts the EAP-FAST process.

Figure 5.1 EAP-FAST authentication phases.

5.1 Dynamic Provisioning using EAP-FAST

 Dynamic Provisioning occurs in the Phase 0 of EAP-FAST protocol. The Phase 0

is independent of other phases which may be skipped in the case of the peer has

appropriate PACs. There are two modes of Dynamic PAC provisioning:

 Server-Authenticated Provisioning

 Server-Unauthenticated Provisioning

In both modes, only Tunnel PAC is allowed to be provisioned (Cam-Winget,

McGrew, Salowey & Zhou, 2009).

5.1.1 Server-Authenticated Provisioning Mode

In this mode, the secure tunnel is established using the TLS handshake protocol

and within the tunnel the peer is authenticated to the server with EAP-MSCHAPv2

protocol. The server is authenticated to the peer twice: in phase 1 by certificates and

64

in phase 2 by challenge/responses. A Figure 5.2 illustrates the A&B notation of the

Server-Authenticated provisioning mode of EAP-FAST protocol (Cam-Winget,

McGrew, Salowey & Zhou, 2009).

 Figure 5.2 Server-authenticated provisioning.

where,

A and B : Server and Peer respectively

A-ID_Info : Server realm or hint

Kserver : Server's Public key

Kca : Certificate Authority's Public key

Client_Hello : TLS_version.Session_ID.Peer_nonce.CiphersuiteList

Server_Hello : TLS_version.Session_ID.Server_nonce.Ciphersuite

Server_Certificate : {A.Kserver}_inv(Kca)

Server_Hello_Done : Informative message

Client_Key_Exchange : {PMS}_Kserver

PMS : Pre-Master-Secret = Randomly generated value by Peer

Change_Cipher_Spec : Informative message

Finished : Encrypted hash of all previous messages with MS

65

MS : Master-Secret = PRF(PMS.Peer_nonce.Server_nonce)

Client_Key : Client Session Key = PRF0(B.Peer_nonce.Server_nonce.MS)

Server_Key : Server Session Key = PRF0(A.Peer_nonce.Server_nonce.MS)

%% Within tunnel all messages are encrypted with Server's or Peer's session keys

Server_Challenge : Randomly generated value by Server

Peer_Challenge : Randomly generated value by Peer

Password : Shared Secret between the Server and the Peer

NT_Response : Hash(Password.(Peer_Challenge.Server_Challenge.User_ID))

Inter_Result_TLV : Success or Failure

Result_TLV : Success or Failure

PAC_Request : PAC type

TunnelPAC : PAC_key.PAC_opaque.PAC_info

PAC_key : Shared Secret between Server and Peer

PAC_info : Necessary information about PAC

SMK : Server's Master Key

PAC-opaque : {PAC_Key.PAC_info}_SMK

Crypto_Bind_Request :

Bind_version.FAST_version.zero.CMK_Nonce.Compound_MAC1

Crypto_Bind_Response :

Bind_version.FAST_version.one.CMK_Nonce.Compound_MAC2

Generating inner method (MSCHAPv2) MSK (Microsoft Corporation, 2001,

Zorn, 2000, 2001):

MasterKey = HMAC(Hash(Hash(Password)), NT_Response)

MasterSendKey = PRF1(MasterKey)

MasterReceiveKey = PRF2(MasterKey)

MSK = MasterReceiveKey.MasterSendKey

%Calculating Compound_MAC (Cam-Winget, McGrew, Salowey & Zhou, 2007):

Seed_Label : "Seed"

66

CMK_Label : "CMK"

Seed : Session Key Seed = PRF0(MS, Seed_Label, Peer_nonce.Server_nonce)

CMK : Compound Session Key = PRF(Seed, CMK_Label, MSK)

Compound_MAC1 =

 HMAC(CMK, Bind_version.FAST_version.zero.CMK_Nonce)

Compound_MAC2 = HMAC(CMK, Bind_version.FAST_version.one.CMK_Nonce)

In Step2, the UserID is a bogus user ID. It may be "realm" or "anonymous". But

in step 8, it is the real user ID.

In the end of the protocol run, in step 17, the server allowed the peer to access the

network. Here, it should be noted that the server may also deny the access even if the

authentication and provisioning were successful. It is up to network policy of the

authentication server.

The Server-Authenticated provisioning is validated against the goals shown in

Figure 5.3 and the output of the validation is shown in Figure 5.4. It is important to

note that, only EAP methods that provide mutual authentication and key derivation

should be used within the tunnel. Otherwise, this mode will be vulnerable to man-in-

the-middle attack introduced in Asokan, Niemi & Nyberg (2002).

 Figure 5.3 Validation goals of server-authenticated mode.

67

Figure 5.4 The output results.

To validate the protocols we used CL-AtSe analyzer which does falsification. The

CL-AtSe analyzer searches for attacks that falsify the goals of the protocol. There are

two possible results that the analyzer may bring us: SAFE or UNSAFE. A protocol

validated with AVISPA is SAFE or UNSAFE within the scope of security goals and

the analysis scenario given.

5.1.2 Server-Unauthenticated Provisioning Mode

 This mode enables any wireless client to be provisioned with new PAC. The

server-side certificate is not necessary to establish the encrypted tunnel. The tunnel is

established through anonymous handshake by Diffie-Hellman key exchange

protocol. The clients, that don't have valid information to authenticate the server, can

use this alternative provisioning mode to get PACs. After getting provisioned with

PACs, the wireless clients have to reauthenticate to the network with new PACs.

The differences between this mode and the Server-Authenticated mode are the

followings:

 The secure tunnel is established using the Diffie-Hellman Key Exchange

protocol. Instead of using server-side certificates, the both parties exchange

some seed materials to generate master keys separately:

o G : Public value

o Server_Key_Exchange : G.exp(G,Server_nonce)

o Client_Key_Exchange : exp(G,Peer_nonce)

o PMS = exp(exp(G,Server_nonce),Peer_nonce)

68

 The inner authentication protocol is EAP-FAST-MSCHAPv2 protocol, in

which the server and the peer challenges are not transferred to each other.

Both parties generate the challenges on themselves. Only the hash of

challenges are exchanged.

o Server_challenge : PRF1(PMS.Server_nonce.Peer_nonce)

o Peer_challenge : PRF2(PMS.Server_nonce.Peer_nonce)

 In the end of the protocol run, in step 17, the server denies the access to the

network, even if the authentication and provisioning were successful.

The Server-Unauthenticated provisioning mode is validated against the same

goals as Server-Authenticated provisioning mode. A Figure 5.5 depicts the A&B

notation of the Server-Unauthenticated provisioning mode (Cam-Winget, McGrew,

Salowey & Zhou, 2009).

 Figure 5.5 Server-unauthenticated provisioning.

Since the Server-Unauthenticated provisioning mode is using anonymous Diffie-

Hellman key exchange protocol which is vulnerable to MiTM attack, AVISPA also

69

found this attack (Figure 5.6). Cam-Winget & others (2009) states that the Server-

Unauthenticated provisioning mode is able to detect the MiTM attacks by two

techniques:

 Using EAP-FAST-MSCHAPv2 method. Unlike EAP-MSCHAPv2, in this

method, the peer and the server challenges are derived separately in both

parties as part of the tunnel key derivation and they are not transferred to each

other. It makes hard to launch active attacks. For this reason, only EAP-

FAST-MSCHAPv2 can be used as inner authentication method in this

provisioning mode.

 Cryptographically binding the keys derived from phase 1 with keys derived

from phase 2.

However, in AVISPA, MiTM attack is not detected by aforementioned techniques

(Figure 5.7). As expected, here MiTM is not generating EAP-FAST-MSCHAPv2

challenges but resending them. Also, MiTM just replays crypto-binding messages, as

it cannot change the concept. As a result, MiTM was successful to disclosure of the

PAC-key that is transmitted within the tunnel.

Figure 5.6 The output results.

70

Figure 5.7 Attack trace of server-unauthenticated provisioning mode.

5.2 EAP-FAST Authentication Mechanisms

 Authentication using PACs makes the EAP-FAST protocol lightweight. Because

the PAC is the kind of shared secret, EAP-FAST protocol uses the symmetric

cryptography. In the following subsections we will discuss the validation of EAP-

FAST protocol when it uses the Tunnel PAC and User Authorization PAC.

71

5.2.1 Tunnel Establishment with Tunnel PAC

In this EAP-FAST authentication mechanism, the secure tunnel is established by

abbreviated TLS Handshake protocol. The encrypted PAC-Key, which is located in

Tunnel PAC (sent in Client Hello message) becomes the pre-master-key (PMS)

(Salowey, Zhou, Eronen & Tschofenig, 2008). An A&B notation of the Tunnel PAC

usage in establishing secured tunnel is shown in Figure 5.8.

 Figure 5.8 Tunnel PAC usage.

 When the secure TLS tunnel is established using Tunnel PAC, to avoid

aforementioned MiTM attack, it is not necessary to use EAP methods that derive

keys. Since the tunnel is established by mutually authenticating the peer and the

server using Tunnel PAC, it is possible to use weak EAP methods such EAP-MD5 or

EAP-GTC. This property allows the EAP-FAST to be more lightweight.

This protocol mechanism is validated against the goals shown in Figure 5.9 and

the output of the validation is shown in Figure 5.10.

72

 Figure 5.9 Validation goals of EAP-FAST protocol.

Figure 5.10 The output results.

5.2.2 Inner Authentication with User-Authorization PAC

 It is possible to skip the inner authentication by using the User-Authorization

PAC. The crypto-binding TLVs also will not be exchanged due to the absence of any

derived inner keys. It should be noted that, the User Authorization PAC does not

include PAC-Key. Thus, it should be bounded to the Tunnel PAC (Cam-Winget,

McGrew, Salowey & Zhou, 2009). We bounded it with Tunnel PAC by inserting the

hash of the Tunnel PAC into the User Authorization PAC. A Figure 5.11 depicts the

A&B notation of the User-Authorization PAC usage within the tunnel.

73

 Figure 5.11 User-authorization PAC usage.

This protocol mechanism is validated against the same goals as Tunnel PAC

usage mechanism with extra "secrecy of New User Authentication PAC" goal in the

second phase. The output of the validation is shown in Figure 5.12.

Figure 5.12 The output results.

5.3 The Four-Way Handshake Protocol

 After each successful authentication, the Four-Way handshake process occurs to

generate user data encryption keys (PTK) from the seed material derived as the result

of the EAP-FAST protocol (IEEE, 2007). An A&B notation of the Four-Way

Handshake protocol is depicted in Figure 5.13 and the output shown in Figure 5.14.

74

Figure 5.13 The four-way handshake protocol.

where,

A and B : Authenticator and Supplicant respectively

PMK : (Pre-existing) Pairwise Master Key

SQN : Sequence Number

PMKID : Used for Roaming, PMKID = HMAC(PMK.A.B)

PTK : Pairwise Temporal Key = PRF(PMK.A.B.ANonce.SNonce)

GMK : Group Master Key = Randomly generated value

GNonce : Group Nonce generated by Authenticator

GTK : Group Temporal Key = PRF(GMK.A.GNonce)

MIC : Message Integrity Code

MIC1 = MIC(PMK.SNonce. SQN.B_RSNIE)

MIC2 = MIC(PTK.ANonce.(SQN+1).A_RSNIE.{GTK}_PTK)

MIC3 = MIC(PTK.(SQN+1))

Figure 5.14 The output results.

75

CHAPTER SIX

CONCLUSION

In this research, we discussed authentication, confidentiality and integrity

methods of Wireless LAN Security, the RSNA establishment procedures in

infrastructure networks, compare the security properties of the widely used TLS-

based EAP-methods which are defined in IETF RFCs. We mainly focused on the

EAP-FAST protocol because of its attracting security features such as using PACs

(shared secrets) to establish a TLS tunnel instead of digital certificates. Using

AVISPA model-checker, we validated the different EAP-FAST authentication

scenarios and the Four-Way Handshake key management protocol.

Since, manually deploying PACs is not efficient, PACs are typically deployed

dynamically. Server-unauthenticated provisioning mode of dynamic PAC

deployment doesn’t need certificates for PAC distribution. But, based on the results

of AVISPA, this provisioning mode is vulnerable to MiTM attack, which couldn't be

detected and prevented as stated in Cam-Winget & others (2009). Moreover, this

mode is also highly vulnerable to offline-dictionary attack.

According to the output results of AVISPA, EAP-FAST protocol can be SAFE in

spite of authentication service when PAC is provisioned in server-authenticated

provisioning mode. It means, EAP-FAST is still dependent on at least server-side

certificate to provision the wireless clients with valid (and unique) PACs.

Note that, EAP-FAST requires the server certificate only once in the beginning

(when the user has not valid PAC) and all subsequent EAP-FAST sessions skip the

PAC provisioning. It makes EAP-FAST faster than other certificate-based EAP

methods. Thus, EAP-FAST can be the best alternative authentication method in

environments where certificate-based methods are already deployed. Furthermore,

there is available an EAP-FAST version 2 as an Internet draft which provides an

additional security property known as channel binding.

76

Authors of AVISPA are currently working on the AVANTSSAR project which is

the successor of AVISPA. AVANTSSAR supports new versions of most model-

checkers those are capable of analyzing including all AVISPA's constraints. For

now, AVANTSSAR is not as much popular. As a future work, the EAP-FAST

protocol can be analyzed using AVANTSSAR toolset and may be defined new

method to distribute PACs to the wireless clients.

77

REFERENCES

Aboba, B. & Calhoun, P. (2003). RADIUS (Remote Authentication Dial In User

Service) Support For Extensible Authentication Protocol (EAP). IETF RFC 3579,

Informational. Retrieved June 10, 2011, from http://tools.ietf.org/pdf/rfc3579.pdf.

Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., & Levkowetz, H. (2004). Extensible

Authentication Protocol (EAP). IETF RFC 3748, Standards Track. Retrieved

November 20, 2010, from http://tools.ietf.org/pdf/rfc3748.pdf.

Armando, A. & Compagna, L. (2004). SATMC: A sat-based model checker for

security protocols. Alferes, J.J., Leite, J. (Ed.) JELIA 2004. LNCS (LNAI), vol.

3229, Springer, Heidelberg. 730–733. Retrieved June 10, 2011, from

http://www.avispa-project.org/papers/satmc-sd-jelia04.ps.

Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J.,

Drielsma, P. H., Heam, P. C., Kouchnarenko, O., Mantovani, J., Modersheim, S.,

von Oheimb, D., Rusinowitch. M., Santiago, J., Turuani, M., Vigano, L., &

Vigneron, L. (2005). The AVISPA tool for the automated validation of internet

security protocols and Applications. Etessami, K. and Rajamani S. K. (Ed.). 17th

International Conference on Computer Aided Verification, CAV 2005, LNCS 3576

of Lecture Notes in Computer Science, 281–285. Springer. Retrieved January 13,

2011, from http://www.avispa-project.org/papers/avispa-cav05.ps.

Asokan, N., Niemi, V., & Nyberg, K. (2002). "Man-in-the-middle in tunneled

authentication protocols". IACR ePrint Archive Report 2002/163. Retrieved June

10, 2011, from http://eprint.iacr.org/2002/163.pdf.

Automated Validation of Internet Security Protocols and Applications (2003a).

Deliverable 2.1: The High-Level Protocol Specification Language. Retrieved

January 13, 2011, from http://www.avispa-project.org/delivs/2.1/d2-1.pdf.

78

Automated Validation of Internet Security Protocols and Applications (2003b).

Deliverable 2.3: The Intermediate Format. Retrieved January 13, 2011, from

http://www.avispa-project.org/delivs/2.3/d2-3.pdf.

Automated Validation of Internet Security Protocols and Applications (2003c).

Deliverable 6.1: List of selected problems. Retrieved January 13, 2011, from

http://www.avispa-project.org/delivs/6.1/d6-1.ps

Automated Validation of Internet Security Protocols and Applications (2005).

Deliverable 6.2: Specification of the Problems in the High-Level Specification

Language. Retrieved December 11, 2010, from http://www.avispa-

project.org/delivs/6.2/d6-2.pdf.

Automated Validation of Internet Security Protocols and Applications (2006a).

HLPSL Tutorial. Retrieved December 11, 2010, from http://www.avispa-

project.org/package/tutorial.pdf.

Automated Validation of Internet Security Protocols and Applications (2006b).

AVISPA v1.1 User Manual. Retrieved November 20, 2010, from

http://www.avispa-project.org/package/user-manual.pdf.

Basin, D., Modersheim, S., & Vigano, L. (2005). OFMC: A symbolic model-checker

for security protocols. International Journal of Information Security, 4(3), 181–

208. Retrieved June 10, 2011, from http://www.avispa-project.org/papers/ofmc-

jis05.pdf.

Boichut, Y., Heam, P.C., Kouchnarenko, O., & Oehl, F. (2004). Improvements on

the Genet and Klay technique to automatically verify security protocols. Proc. Int.

Workshop on Automated Verification of Infinite-State Systems (AVIS 2004), joint

to ETAPS 2004, 1–11. Retrieved December 11, 2010, from http://www.avispa-

project.org/papers/boichutheamkouchnarenkoAVIS.ps.

79

Cam-Winget, N., McGrew, D., Salowey, J., & Zhou, H. (2007). The Flexible

Authentication via Secure Tunneling Extensible Authentication Protocol Method

(EAP-FAST). IETF RFC 4851, Informational. Retrieved February 8, 2011, from

http://tools.ietf.org/pdf/rfc4851.pdf.

Cam-Winget, N., McGrew, D., Salowey, J., & Zhou, H. (2009). Dynamic

Provisioning Using Flexible Authentication via Secure Tunneling Extensible

Authentication Protocol (EAP-FAST). IETF RFC 5422, Informational. Retrieved

February 8, 2011, from http://tools.ietf.org/pdf/rfc5422.pdf.

Cervesato, I. The Dolev-Yao intruder is the most powerful attacker. Advanced

Engineering and Sciences Division. ITT Industries. Inc. 2560 Huntington Avenue,

Alexandria, VA 22303-1410-USA. Retrieved January 13, 2011, from

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=FFB7BE7DFE78AC3C

10FC90FE46C2046B?doi=10.1.1.21.2903&rep=rep1&type=ps.

Chevalier, Y., Compagna, L., Cuellar, J., Drielsma, P. H., Mantovani, J.,

Modersheim, S. & Vigneron, L. (2004). A high-level protocol specification

language for industrial security-sensitive protocols. Automated Software

Engineering. Proceedings of the Workshop on Specifcation and Automated

Processing of Security Requirements, SAPS 04, Austrian Computer Society, 193-

205. Retrieved January 13, 2011, from http://www.avispa-

project.org/papers/hlpsl-saps04.ps.

Coleman, D. D., & Westcott, D. A. (2009). CWNA: Certified wireless network

administrator study guide. Indiana: Wiley Publishing. Retrieved March 10, 2010,

from http://my.safaribooksonline.com/book/certification/cwna/9780470438909.

Coleman, D. D., Westcott, D. A., Harkins, B., & Jackman, S. (2010). CWSP:

Certified wireless security professional official study guide (1st ed.). Indiana:

Wiley Publishing. Retrieved May 10, 2010, from

http://my.safaribooksonline.com/book/certification/cwsp/9780470438916.

80

Dengg, J., Friedl, W., Hortler, P., Jager, M., Lehner, M., Macskasi, C., Matscheko,

M., Pumberger, G., Ritt, A. & Wasilewski, M. (2009). WLAN security &

encryption. Retrieved February 8, 2011, from http://tuxworld.homelinux.org/pape

rs/Wlan_Security_paper.pdf.

Dierks, T. & Rescorla, E. (2006). The Transport Layer Security (TLS) Protocol

Version 1.1. IETF RFC 4346, Standards Track. Retrieved February 8, 2011, from

http://tools.ietf.org/pdf/rfc4346.pdf.

Dierks, T. & Rescorla, E. (2008). The Transport Layer Security (TLS) Protocol

Version 1.2. IETF RFC 5246, Standards Track. Retrieved February 8, 2011, from

http://tools.ietf.org/pdf/rfc5246.pdf.

Dolev, D., & Yao, A. (1983). On the security of public-key protocols. IEEE

Transactions on Information Theory, 2(29), 198-208. Retrieved January 13, 2011,

from http://www.cs.huji.ac.il/~dolev/pubs/dolev-yao-ieee-01056650.pdf.

Funk, P., & Blake-Wilson, S. (2008). Extensible Authentication Protocol Tunneled

Transport Layer Security Authenticated Protocol Version 0 (EAP-TTLSv0). IETF

RFC 5281, Informational. Retrieved December 11, 2010, from

http://tools.ietf.org/pdf/rfc5281.pdf.

Geier, J. (2008). Implementing 802.1X security solutions for wired and wireless

networks. Indiana: Wiley Publishing. Retrieved February 8, 2011, from

http://www.scribd.com/doc/25919421/Implementing-802-1X-Security-Solutions-

for-Wired-and-Wireless-Networks.

Glouche, Y., Genet, T. & Houssay, E. (2008). SPAN: a security protocol animator

for AVISPA. Version 1.5 user manual. INRIA/IRISA. LANDE Project. Retrieved

May 20, 2011, from http://www.irisa.fr/celtique/genet/Publications/papier_artist.

pdf.

81

Haas, H. (2010). WLAN: Security summary. Retrieved February 8, 2011, from

https://www.ict.tuwien.ac.at/lva/384.081/modules/slides/B4-WLAN-Sec.pdf.

Hoeper, K., & Chen, L. (2007). Where EAP security claims fail. The 4th

International Conference on Heterogeneous Networking for Quality, Reliability,

Security and Robustness. Retrieved December 11, 2010, from

http://eudl.icst.org/pdf/10.4108/icst.qshine.2007.1150.

Hoeper, K., & Chen, L. (2009). Recommendation for EAP Methods Used in Wireless

Network Access Authentication. NIST Special Publication 800-120. Retrieved

March 10, 2011, from http://csrc.nist.gov/publications/nistpubs/800-120/sp800-

120.pdf.

Institute of Electrical and Electronics Engineers (2004a). Local and Metropolitan

Area Networks: Port-Based Network Access Control. IEEE Std. 802.1X-2004.

Retrieved March 10, 2010, from http://ieeexplore.ieee.org/iel5/9828/30983/01438

730.pdf.

Institute of Electrical and Electronics Engineers (2004b). Supplement to Standard for

Telecommunications and Information Exchange Between Systems - LAN/MAN

Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC)

and Physical Layer (PHY) Specifications: Specification for Enhanced Security.

IEEE Std. 802.11i-2004. Retrieved December 11, 2010, from

http://ieeexplore.ieee.org/stampPDF/getPDF.jsp?tp=&arnumber=1318903.

Institute of Electrical and Electronics Engineers (2007). Information technology -

Telecommunications and information exchange between systems - Local and

metropolitan area networks - Specific Requirements Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE

Std. 802.11-2007. Retrieved May 10, 2010, from

http://standards.ieee.org/getieee802/download/802.11-2007.pdf.

82

Microsoft Corporation (2011). MS-CHAP: Extensible Authentication Protocol

Method for Microsoft Challenge Handshake Authentication Protocol (CHAP)

Specification. EAP-MSCHAPv2. Retrieved May 20, 2011, from

http://msdn2.microsoft.com/en-us/library/cc224612.aspx.

Modersheim, S., Vigano, L. & von Oheimb, D. (2005). Automated validation of

security protocols (AVASP'05). The 8th European Joint Conference on Theory

and Practice of Software (ETAPS 2005). Retrieved February 8, 2011, from

http://www.avispa-project.org/avasp/module1and3-avasp05.pdf.

Palekar, A., Simon, D., Salowey, J., Zhou, H., Zorn, G., & Josefsson, S. (2004).

Protected EAP Protocol (PEAP) Version 2. Internet-Draft, Informational.

Retrieved December 11, 2010, from http://tools.ietf.org/pdf/draft-josefsson-

pppext-eap-tls-eap-10.pdf.

Patel, R., Borisaniya, B., Patel, A., Patel, D., Rajarajan, M., & Zisman, A. (2010).

Comparative analysis of formal model checking tools for security protocol

verification. CCIS 89, Springer, 152–163. Retrieved February 8, 2011, from

http://www.springerlink.com/content/t4hu114351x67524/fulltext.pdf.

Salowey, J., Zhou, H., Eronen, P., & Tschofenig, H. (2008). Transport Layer

Security (TLS) Session Resumption without Server-Side State. IETF RFC 5077,

Standards Track. Retrieved May 20, 2011, from

http://tools.ietf.org/pdf/rfc5077.pdf.

Simon, D., Aboba, B., & Hurst, R. (2008). The EAP-TLS Authentication Protocol.

IETF RFC 5216, Standards Track. Retrieved December 11, 2010, from

http://tools.ietf.org/pdf/rfc5216.pdf.

Stanley, D., Walker, J., & Aboba, B. (2005). Extensible Authentication Protocol

(EAP) Method Requirements for Wireless LANs. IETF RFC 4017, Informational.

Retrieved January 13, 2011, from http://tools.ietf.org/pdf/rfc4017.pdf.

83

Turuani, M. (2006). The CL-Atse protocol analyser. Pfenning, F. (Ed.), Proceedings

of 17th International Conference on Rewriting Techniques and Applications, RTA,

Lecture Notes in Computer Science, Seattle (WA), Springer. Retrieved May 20,

2011, from http://www.springerlink.com/content/u24t310898j11612/fulltext.pdf.

Vigano, L. (2006). Automated security protocol analysis with the AVISPA tool.

Electronic Notes in Theoretical Computer Science 155, 61–86. Retrieved

December 11, 2010, from http://www.avispa-project.org/papers/avispa-

mfps21.pdf.

Zhou, H., Cam-Winget, N., Salowey, J., & Hanna, S. (2011). Flexible Authentication

via Secure Tunneling Extensible Authentication Protocol (EAP-FAST) Version 2.

Internet-Draft, Standards Track. (work in progress). Retrieved December 20,

2011, from http://tools.ietf.org/pdf/draft-ietf-emu-eap-tunnel-method-01.pdf.

Zorn, G. (2000). Microsoft PPP CHAP Extensions, Version 2. IETF RFC 2759,

Informational. Retrieved May 20, 2011, from http://tools.ietf.org/pdf/rfc2759.pdf.

Zorn, G. (2001). Deriving Keys for use with Microsoft Point-to-Point Encryption

(MPPE). IETF RFC 3079, Informational. Retrieved May 20, 2011, from

http://tools.ietf.org/pdf/rfc3079.pdf.

84

APPENDIX A

AVISPA FAQ

The following selected questions were answered by AVISPA Team members in mailing list. We

decided to give this in questions and answers form since it is more expressive.

Q1: Why does AVISPA uses terms "SAFE" and "UNSAFE" rather than Secure and either Not-

Secure, Non-Secure or Insecure?

A1: A protocol validated with AVISPA is SAFE within the scope of security goals and the analysis

scenario given. Since AVISPA is not analyzing all possible executions of the protocol, it cannot

be assumed "ABSOLUTELY SECURE".

Q2: Why does AVISPA uses the term "validation" instead of "verification"?

A2: OFMC, CL-AtSe and SATMC back-end analyzers search for attacks, or traces that falsify the

goals of the protocol. Thus they do 'FALSIFICATION' (i.e. detection of attacks). Only TA4SP

analyzer does 'VERIFICATION' (i.e. proving the protocol is correct). So, AVISPA's goal is both

falsification and (bounded) verification, not exclusively one or the other. Hence, VALIDATION.

Q3: Is HLPSL a programming language or not?

A3: HLPSL is a (formal) modeling language but not a programming language. The semantics is

based on the Temporal Logic of Actions, so it's closer to a logic.

Q4: Are there any known instances of False Positives (i.e. AVISPA says SAFE, even when there is a

known attack in the literature or community) or False Negatives (i.e. AVISPA says UNSAFE,

although the attack proposed is not a valid attack)?

A4: It depends on the model and the modeler. The modeler can model the protocol incorrectly. All

attacks that are found are really attacks on the model (even if the model is constructed badly),

and no attacks on the specified analysis scenario are missed.

Q5: If AVISPA tools detect many attacks, will it show all those attacks?

A5: Only the first attack found is shown. After fixing this attack or removing the respective goal from

the goals section, by re-running the tools, any further attack will be shown.

Q6: What is the difference between weak authentication and strong authentication in AVISPA?

A6: Strong authentication allows to check for replay attacks, while weak authentication does not. To

search for replay attacks simply put two sessions between a and b in parallel. For instance:

 role environment()

 def=

 ...

 composition

 session(a,b,ka,kb)

 /\ session(a,b,ka,kb)

 end role

 But note that parallel sessions may generate other kinds of attacks.

Q7: Is it possible to model Keyed Hash Functions (HMAC/CMAC) in AVISPA?

A7: Yes, AVISPA supports keyed hash functions. It depends on the key material of the protocol.

Simply you can use H(K,Msg), where H is a hash_func, K is a symmetric_key and Msg is the

message. If you want to model MACs based on public key signature, you can use

{Msg}_inv(Kp), where Kp is a public_key.

Q8: What is the difference between modeling symmetric encryption and asymmetric encryption in

AVISPA?

A8: The syntax for encryption is the same: {Msg}_K, whatever is the type of K (symmetric key,

public key, private key). In AVISPA private key = inv(public_key). So it is considered that

85

{{Msg}_inv(K)}_K is equal to Msg. But in the real world signing, encrypting and decrypting

messages are done by different algorithms.

Q9: Is it possible to model conditional states (like IF-THEN-ELSE) in AVISPA?

A9: The left-hand side of transitions are conditions, so by writing two transitions, one for each case,

both having the same state number it can be modeled. So the analyzer will have to test the two

solutions. For instance:

 IF Var1 = Var2 then SND(Answer1) else SND(Answer2)

 1a. State = 1 /\ Var1 = Var2 /\ RCV(Message') =|> State':= 2 /\ SND(Answer1)

 1b. State = 1 /\ Var1 /= Var2 /\ RCV(Message') =|> State':= 3 /\ SND(Answer2)

Q10: Does AVISPA support wireless environment?

A10: AVISPA tools handle only Dolev-Yao channel/intruder. Anyway, Dolev-Yao has most strict

requirements, so if the protocol is safe with Dolev-Yao model, you can be sure that it will be

safe also for wireless environments.

Q11: Does AVISPA support algebraic equations?

A11: Only CL-AtSe supports XOR and exponentiation, while OFMC supports only exponentiation.

The other back-ends do not support these properties. In addition OFMC is capable of handling

user defined algebraic expressions (equations). (Now, new versions of all back-ends with new

features are already available)

Q12: Does AVISPA support unbounded sessions?

A12: TA4SP can handle unbounded number of sessions on some restricted classes of protocols and

for secrecy only. The other back-ends do not support it.

Q13: Many protocols assume that the server is trusted and not compromised. How can I model this

assumption in AVISPA?

A13: Specifying sessions; depends on the protocol and what sorts of attacks the protocol might be

vulnerable to. For instance, if a protocol between A and B is vulnerability to Man-in-the-

middle attacks, sessions between (A,B) (A,I) and (I,B) are good bets. In case where the server

is assumed trusted; there is no need to analyze a session where the intruder plays the role of the

server.

86

APPENDIX B

EAP-FAST Authentication Mechanism

B.1 Tunnel PAC Usage

 Phase 1: TLS Tunnel Establishment using Tunnel PAC.

 Phase 2: EAP-MSCHAPv2 method and new Tunnel PAC Provisioning.

B.1.1 The HLPSL Specification

role server(

 S, P : agent,

 Password : symmetric_key,

 PACinfo : text,

 Kserver : symmetric_key,

 Hash1 : hash_func,

 Hash2 : hash_func,

 PRF : hash_func,

 KEYGEN : hash_func,

 SND, RCV : channel (dy))

 played_by S def=

 local

 State : nat,

 Snonce : text,

 Pnonce : text,

 SessionID : text,

 Csuite : text,

 CCspec : text,

 MS : hash(symmetric_key.text.text),

 Finished : hash(hash(symmetric_key.text.text).agent.agent.text.text.text),

 ClientKEY : hash(agent.text.text.hash(symmetric_key.text.text)),

 ServerKEY : hash(agent.text.text.hash(symmetric_key.text.text)),

 UserID : text,

 FASTv1 : text,

 TLSv1 : text,

 CsuiteList : text,

 Schallenge : text,

 Pchallenge : text,

 NTResponse: hash(symmetric_key.text.text.agent),

 Inter_result_tlv : text,

 Bind_version : text,

 CMKnonce : text,

 MasterKey : hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)),

 MasterSendKey : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))),

 MasterReceiveKey : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))),

 MSK : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))),

 Seed : hash(hash(symmetric_key.text.text).text.text.text),

 CMK : hash(hash(hash(symmetric_key.text.text).text.text.text).text.

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))),

 Compound_MAC1 : hash(hash(hash(hash(symmetric_key.text.text).text.text.text).text.

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))))

 .text.text.text.text),

 Compound_MAC2 : hash(hash(hash(hash(symmetric_key.text.text).text.text.text).text.

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))))

 .text.text.text.text),

 Crypto_bind_request : text.text.text.text.

 hash(hash(hash(hash(symmetric_key.text.text).text.text.text).text.

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))))

 .text.text.text.text),

 Crypto_bind_response: text.text.text.text.

 hash(hash(hash(hash(symmetric_key.text.text).text.text.text).text.

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))))

 .text.text.text.text),

 PAC_type : text,

 Result_tlv : text,

 PAC_key : symmetric_key,

 PAC_lifetime : text,

 A_ID : text,

 PAC_info : text.text.text.text,

 PAC_enc_key : symmetric_key,

87

 PAC_opaque : {symmetric_key.text.text.text.text}_symmetric_key,

 PAC_ack : text,

 PACkey : symmetric_key

 init State := 0

 transition

 1. State = 0 /\ RCV(start) =|>

 State':= 2 /\ SND(eap_request_id)

 2. State = 2 /\ RCV(UserID') =|>

 State':= 4 /\ FASTv1' := new()

 /\ SND(start_fast.FASTv1'.a_id_info)

 3. State = 4 /\ RCV(FASTv1.TLSv1'.session_id_0.Pnonce'.CsuiteList'.{PACkey'.PACinfo}_Kserver)

=|>

 State':= 6 /\ Snonce' := new()

 /\ SessionID' := new()

 /\ Csuite' := new()

 /\ CCspec' := new()

 /\ MS' := PRF(PACkey'.Snonce'.Pnonce')

 /\ Finished' := Hash1(MS'.P.S.Pnonce'.Csuite'.SessionID')

 /\ ClientKEY' := KEYGEN(P.Pnonce'.Snonce'.MS')

 /\ ServerKEY' := KEYGEN(S.Pnonce'.Snonce'.MS')

 /\ SND(TLSv1'.Snonce'.SessionID'.Csuite'.CCspec'.{Finished'}_ServerKEY')

 /\ witness(S,P,nonces,Pnonce'.Snonce')

 /\ secret(PACkey',sec_pac,{S,P})

 %%%%%%%%%%%% Phase 2 %%%%%%%%%%%%

 4. State = 6 /\ RCV(CCspec.{Finished}_ClientKEY) =|>

 State':= 8 /\ SND({eap_request_id}_ServerKEY)

 5. State = 8 /\ RCV({P}_ClientKEY) =|>

 State':= 10 /\ Schallenge' := new()

 /\ SND({Schallenge'}_ServerKEY)

 6. State = 10 /\ RCV({Pchallenge'.NTResponse'}_ClientKEY)

 /\ NTResponse' = Hash2(Password.Pchallenge'.Schallenge.P) =|>

 State':= 12 /\ SND({Hash2(Password.Pchallenge')}_ServerKEY)

 /\ request(S,P,peer_proof,NTResponse')

 7. State = 12 /\ RCV({auth_ack}_ClientKEY) =|>

 State':= 14 /\ Inter_result_tlv' := new() % success

 /\ Bind_version' := new() % same version

 /\ CMKnonce' := new()

 /\ MasterKey' := Hash2(Hash2(Hash2(Password)).NTResponse)

 /\ MasterSendKey' := PRF(MasterKey')

 /\ MasterReceiveKey' := KEYGEN(MasterKey')

 /\ MSK' := MasterReceiveKey'.MasterSendKey'

 /\ Seed' := PRF(MS.seed_label.Pnonce.Snonce)

 /\ CMK' := PRF(Seed'.cmk_label.MSK')

 /\ Compound_MAC1' := Hash2(CMK'.Bind_version'.FASTv1.zero.CMKnonce')

 /\ Crypto_bind_request' := Bind_version'.FASTv1.zero.CMKnonce'.Compound_MAC1'

 /\ SND({Inter_result_tlv'.Bind_version'.FASTv1.zero.CMKnonce'.Compound_MAC1'}_ServerKEY)

 %%%%%%%%%%%% PAC Provisioning %%%%%%%%%%%%

 8. State = 14

 /\ RCV({Inter_result_tlv.Bind_version.FASTv1.one.CMKnonce.Compound_MAC2'.PAC_type'}_ClientKEY)

 /\ Compound_MAC2' = Hash2(CMK.Bind_version.FASTv1.one.CMKnonce) =|>

 State':= 16 /\ Result_tlv' := new()

 /\ PAC_key' := new()

 /\ PAC_lifetime':= new()

 /\ A_ID' := new()

 /\ PAC_info' := PAC_lifetime'.A_ID'.a_id_info.PAC_type'

 /\ PAC_enc_key' := new()

 /\ PAC_opaque' := {PAC_key'.PAC_info'}_PAC_enc_key'

 /\ SND({Result_tlv'.PAC_key'.PAC_opaque'.PAC_info'}_ServerKEY)

 /\ secret(PAC_key',sec_packey,{S,P})

 /\ secret(PAC_opaque',sec_pacopaque,{S,P})

 9. State = 16 /\ RCV({Result_tlv.PAC_ack'}_ClientKEY) =|>

 State':= 18 /\ SND(eap_success)

end role

%%%

role peer(

 S, P : agent,

 Password : symmetric_key,

 PACkey : symmetric_key,

88

 PACinfo : text,

 Ticket : {symmetric_key.text}_symmetric_key,

 Hash1 : hash_func,

 Hash2 : hash_func,

 PRF : hash_func,

 KEYGEN : hash_func,

 SND, RCV : channel (dy))

 played_by P def=

 local

 State : nat,

 Snonce : text,

 Pnonce : text,

 SessionID : text,

 Csuite : text,

 CCspec : text,

 MS : hash(symmetric_key.text.text),

 Finished : hash(hash(symmetric_key.text.text).agent.agent.text.text.text),

 ClientKEY : hash(agent.text.text.hash(symmetric_key.text.text)),

 ServerKEY : hash(agent.text.text.hash(symmetric_key.text.text)),

 UserID : text,

 FASTv1 : text,

 TLSv1 : text,

 CsuiteList: text,

 Schallenge : text,

 Pchallenge : text,

 NTResponse: hash(symmetric_key.text.text.agent),

 Inter_result_tlv : text,

 Bind_version : text,

 CMKnonce : text,

 MasterKey : hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)),

 MasterSendKey : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))),

 MasterReceiveKey : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))),

 MSK : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))),

 Seed : hash(hash(symmetric_key.text.text).text.text.text),

 CMK : hash(hash(hash(symmetric_key.text.text).text.text.text).text.

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))),

 Compound_MAC1 : hash(hash(hash(hash(symmetric_key.text.text).text.text.text).text.

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))))

 .text.text.text.text),

 Compound_MAC2 : hash(hash(hash(hash(symmetric_key.text.text).text.text.text).text.

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))))

 .text.text.text.text),

 Crypto_bind_request : text.text.text.text.

 hash(hash(hash(hash(symmetric_key.text.text).text.text.text).text.

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))))

 .text.text.text.text),

 Crypto_bind_response: text.text.text.text.

 hash(hash(hash(hash(symmetric_key.text.text).text.text.text).text.

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))))

 .text.text.text.text),

 PAC_type : text,

 Result_tlv : text,

 PAC_key : symmetric_key,

 PAC_lifetime : text,

 A_ID : text,

 PAC_info : text.text.text.text,

 PAC_opaque : {symmetric_key.text.text.text.text}_symmetric_key,

 PAC_ack : text

 init State := 1

 transition

 1. State = 1 /\ RCV(eap_request_id) =|>

 State':= 3 /\ UserID' := new()

 /\ SND(UserID')

 2. State = 3 /\ RCV(start_fast.FASTv1'.a_id_info) =|>

 State':= 5 /\ TLSv1' := new()

 /\ Pnonce' := new()

 /\ CsuiteList':= new()

 /\ SND(FASTv1'.TLSv1'.session_id_0.Pnonce'.CsuiteList'.Ticket)

 3. State = 5 /\ RCV(TLSv1.Snonce'.SessionID'.Csuite'.CCspec'.{Finished'}_ServerKEY')

 /\ Finished' = Hash1(PRF(PACkey.Snonce'.Pnonce).P.S.Pnonce.Csuite'.SessionID')

 /\ ServerKEY' = KEYGEN(S.Pnonce.Snonce'.PRF(PACkey.Snonce'.Pnonce)) =|>

 State':= 7 /\ MS' := PRF(PACkey.Snonce'.Pnonce)

 /\ ClientKEY' := KEYGEN(P.Pnonce.Snonce'.MS')

89

 /\ SND(CCspec'.{Finished'}_ClientKEY')

 %%%%%%%%%%%% Phase 2 %%%%%%%%%%%%

 4. State = 7 /\ RCV({eap_request_id}_ServerKEY) =|>

 State':= 9 /\ SND({P}_ClientKEY)

 /\ secret(ClientKEY,sec_clientkey,{P,S})

 /\ secret(ServerKEY,sec_serverkey,{P,S})

 /\ request(P,S,nonces,Pnonce.Snonce)

 5. State = 9 /\ RCV({Schallenge'}_ServerKEY) =|>

 State':= 11 /\ Pchallenge' := new()

 /\ NTResponse' := Hash2(Password.Pchallenge'.Schallenge'.P)

 /\ SND({Pchallenge'.NTResponse'}_ClientKEY)

 /\ witness(P,S,peer_proof,NTResponse')

 6. State = 11 /\ RCV({Hash2(Password.Pchallenge)}_ServerKEY) =|>

 State':= 13 /\ SND({auth_ack}_ClientKEY)

 /\ MasterKey' := Hash2(Hash2(Hash2(Password)).NTResponse)

 /\ MasterSendKey' := PRF(MasterKey')

 /\ MasterReceiveKey' := KEYGEN(MasterKey')

 /\ MSK' := MasterReceiveKey'.MasterSendKey'

 /\ Seed' := PRF(MS.seed_label.Pnonce.Snonce)

 /\ CMK' := PRF(Seed'.cmk_label.MSK')

 %%%%%%%%%%%% PAC Provisioning %%%%%%%%%%%%

 7. State = 13

 /\ RCV({Inter_result_tlv'.Bind_version'.FASTv1.zero.CMKnonce'.Compound_MAC1'}_ServerKEY)

 /\ Compound_MAC1' = Hash2(CMK.Bind_version'.FASTv1.one.CMKnonce') =|>

 State':= 15 /\ Compound_MAC2' := Hash2(CMK.Bind_version'.FASTv1.one.CMKnonce')

 /\ Crypto_bind_response' := Bind_version'.FASTv1.one.CMKnonce'.Compound_MAC2'

 /\ PAC_type' := new()

 /\SND({Inter_result_tlv'.Bind_version'.FASTv1.one.CMKnonce'.Compound_MAC2'.PAC_type'}_ClientKEY)

 8. State = 15 /\ RCV({Result_tlv'.PAC_key'.PAC_opaque'.PAC_info'}_ServerKEY)

 /\ PAC_info' = PAC_lifetime'.A_ID'.a_id_info.PAC_type' =|>

 State':= 17 /\ PAC_ack' := new()

 /\ SND({Result_tlv'.PAC_ack'}_ClientKEY)

 9. State = 17 /\ RCV(eap_success) =|>

 State':= 19

end role

%%%

role session(

 S, P : agent,

 Password : symmetric_key,

 PACkey : symmetric_key,

 PACinfo : text,

 Kserver : symmetric_key,

 Ticket : {symmetric_key.text}_symmetric_key,

 Hash1 : hash_func,

 Hash2 : hash_func,

 PRF : hash_func,

 KEYGEN : hash_func)

def=

 local PSND,PRCV,SSND,SRCV : channel (dy)

 composition

 server (S,P,Password, PACinfo, Kserver, Hash1,Hash2,PRF,KEYGEN,SSND,SRCV)

 /\ peer (S,P,Password,PACkey,PACinfo, Ticket, Hash1,Hash2,PRF,KEYGEN,PSND,PRCV)

end role

role environment() def=

 const

 eap_request_id, start_fast: text,

 auth_ack, eap_success : text,

 a_id_info : text,

 session_id_0 : text, % SessionID = 0

 seed_label, cmk_label : text,

 zero, one : text,

 sec_pac,

 sec_packey, sec_pacopaque,

 nonces, peer_proof,

 sec_clientkey,

 sec_serverkey : protocol_id,

 s,p,i : agent,

 kps,kis,kpi : symmetric_key,

90

 packey, pacpi, pacsi : symmetric_key,

 pacinfo : text,

 kserver, ksi : symmetric_key,

 hash1,hash2 : hash_func,

 prf : hash_func,

 keygen : hash_func

 intruder_knowledge = { s,p,hash1,hash2,prf,keygen,kpi,kis,pacpi,pacsi,ksi } % pacinfo

 composition

 session(s,p,kps, packey,pacinfo, kserver,{packey.pacinfo}_kserver, hash1,hash2,prf,keygen)

 /\ session(s,i,kis, pacpi, pacinfo, kserver,{pacpi.pacinfo}_kserver, hash1,hash2,prf,keygen)

 /\ session(i,p,kpi, packey,pacinfo, ksi, {pacsi.pacinfo}_ksi, hash1,hash2,prf,keygen)

end role

goal

 secrecy_of sec_pac

 secrecy_of sec_clientkey, sec_serverkey

 secrecy_of sec_packey, sec_pacopaque

 authentication_on nonces % server authentication

 authentication_on peer_proof % peer authentication

end goal

environment()

B.1.2 The Output Results

root@ebakyt-laptop:/avispa# avispa Tunnel-establish-pac.hlpsl --cl-atse

SUMMARY

 SAFE

DETAILS

 BOUNDED_NUMBER_OF_SESSIONS

 TYPED_MODEL

PROTOCOL

 /avispa/avispa-1.1//testsuite/results/Tunnel-establish-pac.if

GOAL

 As Specified

BACKEND

 CL-AtSe

STATISTICS

 Analysed : 26164 states

 Reachable : 6540 states

 Translation: 0.72 seconds

 Computation: 2.41 seconds

root@ebakyt-laptop:/avispa# avispa Tunnel-establish-pac.hlpsl --typed_model=no --cl-atse

SUMMARY

 SAFE

DETAILS

 BOUNDED_NUMBER_OF_SESSIONS

 UNTYPED_MODEL

PROTOCOL

 /avispa/avispa-1.1//testsuite/results/Tunnel-establish-pac.if

GOAL

 As Specified

BACKEND

 CL-AtSe

STATISTICS

 Analysed : 26164 states

 Reachable : 6540 states

 Translation: 0.71 seconds

 Computation: 2.39 seconds

91

B.2 User Authorization PAC Usage

 Phase 1 : TLS Tunnel Establishment using Tunnel PAC.

 Phase 2: Authenticate user with User Authorization PAC, new Tunnel PAC and new User Authorization PAC
Provisioning.

B.2.1 The HLPSL Specification

role server(

 S, P : agent,

 Password : symmetric_key,

 PACinfo : text,

 Kserver : symmetric_key,

 Hash1 : hash_func,

 Hash2 : hash_func,

 PRF : hash_func,

 KEYGEN : hash_func,

 SND, RCV : channel (dy))

 played_by S def=

 local

 State : nat,

 Snonce : text,

 Pnonce : text,

 SessionID : text,

 Csuite : text,

 CCspec : text,

 MS : hash(symmetric_key.text.text),

 Finished : hash(hash(symmetric_key.text.text).agent.agent.text.text.text),

 ClientKEY : hash(agent.text.text.hash(symmetric_key.text.text)),

 ServerKEY : hash(agent.text.text.hash(symmetric_key.text.text)),

 UserID : text,

 FASTv1 : text,

 TLSv1 : text,

 CsuiteList : text,

 Inter_result_tlv : text,

 PAC_type : text,

 PAC_type3 : text,

 Result_tlv : text,

 PAC_key : symmetric_key,

 PAC_lifetime : text,

 A_ID : text,

 PAC_info : text.text.text.text,

 PAC_enc_key : symmetric_key,

 PAC_opaque : {symmetric_key.text.text.text.text}_symmetric_key,

 PAC_ack : text,

 PACkey : symmetric_key,

 UserAuthID : text,

 NUserAuthID : text,

 TunnelPAC : hash({symmetric_key.text}_symmetric_key),

 UserPAC : {hash({symmetric_key.text}_symmetric_key).text}_symmetric_key,

 NewUserPAC : {hash({symmetric_key.text.text.text.text}_symmetric_key).text}_symmetric_key

 init State := 0

 transition

 1. State = 0 /\ RCV(start) =|>

 State':= 2 /\ SND(eap_request_id)

 2. State = 2 /\ RCV(UserID') =|>

 State':= 4 /\ FASTv1' := new()

 /\ SND(start_fast.FASTv1'.a_id_info)

 3. State = 4

 /\ RCV(FASTv1.TLSv1'.session_id_0.Pnonce'.CsuiteList'.{PACkey'.PACinfo}_Kserver) =|>

 State':= 6 /\ TunnelPAC' := hash1({PACkey'.PACinfo}_Kserver)

 /\ Snonce' := new()

 /\ SessionID' := new()

 /\ Csuite' := new()

 /\ CCspec' := new()

 /\ MS' := PRF(PACkey'.Snonce'.Pnonce')

 /\ Finished' := Hash1(MS'.P.S.Pnonce'.Csuite'.SessionID')

 /\ ClientKEY' := KEYGEN(P.Pnonce'.Snonce'.MS')

 /\ ServerKEY' := KEYGEN(S.Pnonce'.Snonce'.MS')

 /\ SND(TLSv1'.Snonce'.SessionID'.Csuite'.CCspec'.{Finished'}_ServerKEY')

 /\ witness(S,P,nonces,Pnonce'.Snonce')

 /\ secret(PACkey',sec_pac,{S,P})

 %%%%%%%%%%%% Phase 2: User Authorization PAC usage %%%%%%%%%%%%

 4. State = 6 /\ RCV(CCspec.{Finished}_ClientKEY) =|>

92

 State':= 8 /\ SND({eap_request_id}_ServerKEY)

 5. State = 8 /\ RCV({UserPAC'}_ClientKEY)

 /\ UserPAC' = {TunnelPAC.UserAuthID'}_Kserver =|>

 State':= 10 /\ Inter_result_tlv' := new()

 /\ SND({Inter_result_tlv'}_ServerKEY)

 /\ secret(UserAuthID',sec_useridentity,{S,P})

 %%%%%%%%%%%% PAC Provisioning %%%%%%%%%%%%

 6. State = 10 /\ RCV({Inter_result_tlv.PAC_type'}_ClientKEY) =|>

 State':= 12 /\ PAC_key' := new()

 /\ PAC_lifetime':= new()

 /\ A_ID' := new()

 /\ PAC_info' := PAC_lifetime'.A_ID'.a_id_info.PAC_type'

 /\ PAC_enc_key' := new()

 /\ PAC_opaque' := {PAC_key'.PAC_info'}_PAC_enc_key'

 /\ SND({PAC_key'.PAC_opaque'.PAC_info'}_ServerKEY)

 /\ secret(PAC_key',sec_packey,{S,P})

 /\ secret(PAC_opaque',sec_pacopaque,{S,P})

 7. State = 12 /\ RCV({PAC_ack'.PAC_type3'}_ClientKEY) =|>

 State':= 14 /\ Result_tlv' := new()

 /\ NUserAuthID' := new()

 /\ NewUserPAC' := {hash1(PAC_opaque).NUserAuthID'}_PAC_enc_key

 /\ SND({Result_tlv'.NewUserPAC'}_ServerKEY)

 /\ secret(NUserAuthID',sec_userauthid,{S,P})

 /\ secret(NewUserPAC',sec_newuserpac,{S,P})

 /\ request(S,P,peerauth,UserPAC)

 8. State = 14 /\ RCV({Result_tlv}_ClientKEY) =|>

 State':= 16 /\ SND(eap_success)

end role

%%%

role peer(

 S, P : agent,

 Password : symmetric_key,

 PACkey : symmetric_key,

 PACinfo : text,

 UserAuthID : text,

 Ticket : {symmetric_key.text}_symmetric_key,

 UserPAC : {hash({symmetric_key.text}_symmetric_key).text}_symmetric_key,

 Hash1 : hash_func,

 Hash2 : hash_func,

 PRF : hash_func,

 KEYGEN : hash_func,

 SND, RCV : channel (dy))

 played_by P def=

 local

 State : nat,

 Snonce : text,

 Pnonce : text,

 SessionID : text,

 Csuite : text,

 CCspec : text,

 MS : hash(symmetric_key.text.text),

 Finished : hash(hash(symmetric_key.text.text).agent.agent.text.text.text),

 ClientKEY : hash(agent.text.text.hash(symmetric_key.text.text)),

 ServerKEY : hash(agent.text.text.hash(symmetric_key.text.text)),

 UserID : text,

 FASTv1 : text,

 TLSv1 : text,

 CsuiteList : text,

 Inter_result_tlv : text,

 PAC_type : text,

 PAC_type3 : text,

 Result_tlv : text,

 PAC_key : symmetric_key,

 PAC_lifetime : text,

 A_ID : text,

 PAC_info : text.text.text.text,

 PAC_opaque : {symmetric_key.text.text.text.text}_symmetric_key,

 PAC_ack : text,

 NewUserPAC : {hash({symmetric_key.text.text.text.text}_symmetric_key).text}_symmetric_key

 init State := 1

 transition

 1. State = 1 /\ RCV(eap_request_id) =|>

93

 State':= 3 /\ UserID' := new()

 /\ SND(UserID')

 2. State = 3 /\ RCV(start_fast.FASTv1'.a_id_info) =|>

 State':= 5 /\ TLSv1' := new()

 /\ Pnonce' := new()

 /\ CsuiteList':= new()

 /\ SND(FASTv1'.TLSv1'.session_id_0.Pnonce'.CsuiteList'.Ticket)

 3. State = 5 /\ RCV(TLSv1.Snonce'.SessionID'.Csuite'.CCspec'.{Finished'}_ServerKEY')

 /\ Finished' = Hash1(PRF(PACkey.Snonce'.Pnonce).P.S.Pnonce.Csuite'.SessionID')

 /\ ServerKEY' = KEYGEN(S.Pnonce.Snonce'.PRF(PACkey.Snonce'.Pnonce)) =|>

 State':= 7 /\ MS' := PRF(PACkey.Snonce'.Pnonce)

 /\ ClientKEY' := KEYGEN(P.Pnonce.Snonce'.MS')

 /\ SND(CCspec'.{Finished'}_ClientKEY')

 %%%%%%%%%%%% Phase 2: User Authorization PAC usage %%%%%%%%%%%%

 4. State = 7 /\ RCV({eap_request_id}_ServerKEY) =|>

 State':= 9 /\ SND({UserPAC}_ClientKEY)

 /\ secret(ClientKEY,sec_clientkey,{P,S})

 /\ secret(ServerKEY,sec_serverkey,{P,S})

 /\ request(P,S,nonces,Pnonce.Snonce)

 /\ witness(P,S,peerauth,UserPAC)

 %%%%%%%%%%%% PAC Provisioning %%%%%%%%%%%%

 5. State = 9 /\ RCV({Inter_result_tlv'}_ServerKEY) =|>

 State':= 11 /\ PAC_type' := new() % = '1' for Tunnel PAC

 /\ SND({Inter_result_tlv'.PAC_type'}_ClientKEY)

 6. State = 11 /\ RCV({PAC_key'.PAC_opaque'.PAC_info'}_ServerKEY)

 /\ PAC_info' = PAC_lifetime'.A_ID'.a_id_info.PAC_type =|>

 State':= 13 /\ PAC_type3' := new() % = '3' for User Auth. PAC

 /\ PAC_ack' := new()

 /\ SND({PAC_ack'.PAC_type3'}_ClientKEY)

 7. State = 13 /\ RCV({Result_tlv'.NewUserPAC'}_ServerKEY) =|>

 State':= 15 /\ SND({Result_tlv'}_ClientKEY)

 8. State = 15 /\ RCV(eap_success) =|>

 State':= 17

end role

%%%

role session(

 S, P : agent,

 Password : symmetric_key,

 PACkey : symmetric_key,

 PACinfo : text,

 Kserver : symmetric_key,

 UserAuthID : text,

 Ticket : {symmetric_key.text}_symmetric_key,

 UserPAC : {hash({symmetric_key.text}_symmetric_key).text}_symmetric_key,

 Hash1 : hash_func,

 Hash2 : hash_func,

 PRF : hash_func,

 KEYGEN : hash_func)

def=

 local PSND,PRCV,SSND,SRCV : channel (dy)

 composition

 server(S,P,Password, PACinfo, Kserver, Hash1,Hash2,PRF,KEYGEN,SSND,SRCV)

/\ peer(S,P,Password,PACkey,PACinfo,UserAuthID,Ticket,UserPAC,Hash1,Hash2,PRF,KEYGEN,PSND,PRCV)

end role

role environment() def=

 const

 eap_request_id, start_fast: text,

 auth_ack, eap_success : text,

 a_id_info : text,

 session_id_0 : text, % SessionID = 0

 seed_label, cmk_label : text,

 zero, one : text,

 sec_pac,sec_useridentity,

 sec_packey, sec_pacopaque,

 nonces, sec_userauthid,

 sec_newuserpac,

 peerauth,

94

 sec_clientkey,

 sec_serverkey : protocol_id,

 s,p,i : agent,

 kps,kis,kpi : symmetric_key,

 packey, pacpi, pacsi : symmetric_key,

 pacinfo : text,

 userauthid : text,

 kserver, ksi : symmetric_key,

 hash1,hash2 : hash_func,

 prf : hash_func,

 keygen : hash_func

intruder_knowledge = { s,p,hash1,hash2,prf,keygen,kpi,kis,pacpi,pacsi,ksi }

 composition

 session(s,p,kps,packey,pacinfo,kserver,userauthid,{packey.pacinfo}_kserver,

 {hash1({packey.pacinfo}_kserver).userauthid}_kserver,hash1,hash2,prf,keygen)

 /\ session(s,i,kis, pacpi, pacinfo,kserver,userauthid,{pacpi.pacinfo}_kserver,

 {hash1({pacpi.pacinfo}_kserver).userauthid}_kserver, hash1,hash2,prf,keygen)

 /\ session(i,p,kpi, packey,pacinfo,ksi, userauthid,{pacsi.pacinfo}_ksi,

 {hash1({pacsi.pacinfo}_ksi).userauthid}_ksi, hash1,hash2,prf,keygen)

end role

goal

 secrecy_of sec_pac

 secrecy_of sec_clientkey, sec_serverkey

 secrecy_of sec_useridentity

 secrecy_of sec_packey, sec_pacopaque

 secrecy_of sec_userauthid

 secrecy_of sec_newuserpac

 authentication_on nonces % server authentication

 authentication_on peerauth % peer authentication

end goal

environment()

B.2.2 The Output Results

root@ebakyt-laptop:/avispa# avispa Tunnel-and-user-pac.hlpsl --cl-atse

SUMMARY

 SAFE

DETAILS

 BOUNDED_NUMBER_OF_SESSIONS

 TYPED_MODEL

PROTOCOL

 /avispa/avispa-1.1//testsuite/results/Tunnel-and-user-pac.if

GOAL

 As Specified

BACKEND

 CL-AtSe

STATISTICS

 Analysed : 39082 states

 Reachable : 12447 states

 Translation: 0.42 seconds

 Computation: 5.95 seconds

root@ebakyt-laptop:/avispa# avispa Tunnel-and-user-pac.hlpsl --typed_model=no --cl-atse

SUMMARY

 SAFE

DETAILS

 BOUNDED_NUMBER_OF_SESSIONS

 UNTYPED_MODEL

PROTOCOL

 /avispa/avispa-1.1//testsuite/results/Tunnel-and-user-pac.if

GOAL

 As Specified

BACKEND

 CL-AtSe

STATISTICS

 Analysed : 46655 states

 Reachable : 15541 states

 Translation: 0.42 seconds

 Computation: 28.31 seconds

95

APPENDIX C

EAP-FAST Dynamic Provisioning Mechanism

C.1 Server-Authenticated Provisioning

 Phase 1: TLS Tunnel Establishment using Server Certificates.

 Phase 2: EAP-MSCHAPv2 method and Tunnel PAC Provisioning.

C.1.1 The HLPSL Specification

role server(

 S, P : agent,

 Password : symmetric_key,

 Kserver : public_key,

 Kca : public_key,

 Hash1 : hash_func,

 Hash2 : hash_func,

 PRF : hash_func,

 KEYGEN : hash_func,

 SND, RCV : channel (dy))

 played_by S def=

 local

 State : nat,

 Snonce : text,

 Pnonce : text,

 SessionID : text,

 Csuite : text,

 PMS : text,

 CCspec : text,

 MS : hash(text.text.text),

 Finished : hash(hash(text.text.text).agent.agent.text.text.text),

 ClientKEY : hash(agent.text.text.hash(text.text.text)),

 ServerKEY : hash(agent.text.text.hash(text.text.text)),

 UserID : text,

 FASTv1 : text,

 TLSv1 : text,

 CsuiteList : text,

 SHelloDone : text,

 Schallenge : text,

 Pchallenge : text,

 NTResponse : hash(symmetric_key.text.text.agent),

 Inter_result_tlv : text,

 Bind_version : text,

 CMKnonce : text,

 MasterKey : hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)),

 MasterSendKey : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))),

 MasterReceiveKey : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))),

 MSK : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))),

 Seed : hash(hash(text.text.text).text.text.text),

 CMK : hash(hash(hash(text.text.text).text.text.text).text.

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))),

 Compound_MAC1 : hash(hash(hash(hash(text.text.text).text.text.text).text.

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))))

 .text.text.text.text),

 Compound_MAC2 : hash(hash(hash(hash(text.text.text).text.text.text).text.

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))))

 .text.text.text.text),

 Crypto_bind_request : text.text.text.text.

 hash(hash(hash(hash(text.text.text).text.text.text).text.

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))))

 .text.text.text.text),

 Crypto_bind_response: text.text.text.text.

 hash(hash(hash(hash(text.text.text).text.text.text).text.

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))))

 .text.text.text.text),

 PAC_type : text,

 Result_tlv : text,

 PAC_key : symmetric_key,

 PAC_lifetime : text,

 A_ID : text,

96

 PAC_info : text.text.text.text,

 PAC_enc_key : symmetric_key,

 PAC_opaque : {symmetric_key.text.text.text.text}_symmetric_key,

 PAC_ack : text

 init State := 0

 transition

 1. State = 0 /\ RCV(start) =|>

 State':= 2 /\ SND(eap_request_id)

 2. State = 2 /\ RCV(UserID') =|>

 State':= 4 /\ FASTv1' := new()

 /\ SND(start_fast.FASTv1'.a_id_info)

 3. State = 4 /\ RCV(FASTv1.TLSv1'.session_id_0.Pnonce'.CsuiteList') =|>

 State':= 6 /\ Snonce' := new()

 /\ SessionID' := new()

 /\ Csuite' := new()

 /\ SHelloDone':= new()

 /\ SND(TLSv1'.Snonce'.SessionID'.Csuite'.{S.Kserver}_inv(Kca).SHelloDone')

 /\ witness(S,P,nonces,Pnonce'.Snonce')

 4. State = 6 /\ RCV({PMS'}_Kserver.CCspec'.{Finished'}_ClientKEY')

 /\ Finished' = Hash1(PRF(PMS'.Pnonce.Snonce).P.S.Pnonce.Csuite.SessionID)

 /\ ClientKEY' = KEYGEN(P.Pnonce.Snonce.PRF(PMS'.Pnonce.Snonce)) =|>

 State':= 8 /\ MS' := PRF(PMS'.Pnonce.Snonce)

 /\ ServerKEY':= KEYGEN(S.Pnonce.Snonce.MS')

 /\ SND(CCspec'.{Finished'.eap_request_id}_ServerKEY')

 %%%%%%%%%%%% Phase 2 %%%%%%%%%%%%

 5. State = 8 /\ RCV({P}_ClientKEY) =|>

 State':= 10 /\ Schallenge' := new()

 /\ SND({Schallenge'}_ServerKEY)

 6. State = 10 /\ RCV({Pchallenge'.NTResponse'}_ClientKEY)

 /\ NTResponse' = Hash2(Password.Pchallenge'.Schallenge.P) =|>

 State':= 12 /\ SND({Hash2(Password.Pchallenge')}_ServerKEY)

 /\ request(S,P,peer_proof,NTResponse')

 7. State = 12 /\ RCV({auth_ack}_ClientKEY) =|>

 State':= 14 /\ Inter_result_tlv' := new() % success

 /\ Bind_version' := new() % same version

 /\ CMKnonce' := new()

 /\ MasterKey' := Hash2(Hash2(Hash2(Password)).NTResponse)

 /\ MasterSendKey' := PRF(MasterKey')

 /\ MasterReceiveKey' := KEYGEN(MasterKey')

 /\ MSK' := MasterReceiveKey'.MasterSendKey'

 /\ Seed' := PRF(MS.seed_label.Pnonce.Snonce)

 /\ CMK' := PRF(Seed'.cmk_label.MSK')

 /\ Compound_MAC1' := Hash2(CMK'.Bind_version'.FASTv1.zero.CMKnonce')

 /\ Crypto_bind_request' := Bind_version'.FASTv1.zero.CMKnonce'.Compound_MAC1'

 /\ SND({Inter_result_tlv'.Bind_version'.FASTv1.zero.CMKnonce'.Compound_MAC1'}_ServerKEY)

 %%%%%%%%%%%% PAC Provisioning %%%%%%%%%%%%

 8. State = 14

 /\ RCV({Inter_result_tlv.Bind_version.FASTv1.one.CMKnonce.Compound_MAC2'.PAC_type'}_ClientKEY)

 /\ Compound_MAC2' = Hash2(CMK.Bind_version.FASTv1.one.CMKnonce) =|>

 State':= 16 /\ Result_tlv' := new()

 /\ PAC_key' := new()

 /\ PAC_lifetime':= new()

 /\ A_ID' := new()

 /\ PAC_info' := PAC_lifetime'.A_ID'.a_id_info.PAC_type'

 /\ PAC_enc_key' := new()

 /\ PAC_opaque' := {PAC_key'.PAC_info'}_PAC_enc_key'

 /\ SND({Result_tlv'.PAC_key'.PAC_opaque'.PAC_info'}_ServerKEY)

 /\ secret(PAC_key',sec_packey,{S,P})

 /\ secret(PAC_opaque',sec_pacopaque,{S,P})

 9. State = 16 /\ RCV({Result_tlv.PAC_ack'}_ClientKEY) =|>

 State':= 18 /\ SND(eap_success)

end role

%%%

role peer(

 S, P : agent,

 Password : symmetric_key,

 Kca : public_key,

 Hash1 : hash_func,

97

 Hash2 : hash_func,

 PRF : hash_func,

 KEYGEN : hash_func,

 SND, RCV : channel (dy))

 played_by P def=

 local

 State : nat,

 Snonce : text,

 Pnonce : text,

 SessionID : text,

 Csuite : text,

 PMS : text,

 CCspec : text,

 MS : hash(text.text.text),

 Finished : hash(hash(text.text.text).agent.agent.text.text.text),

 ClientKEY : hash(agent.text.text.hash(text.text.text)),

 ServerKEY : hash(agent.text.text.hash(text.text.text)),

 Kserver : public_key,

 UserID : text,

 FASTv1 : text,

 TLSv1 : text,

 CsuiteList : text,

 SHelloDone : text,

 Schallenge : text,

 Pchallenge : text,

 NTResponse : hash(symmetric_key.text.text.agent),

 Inter_result_tlv : text,

 Bind_version : text,

 CMKnonce : text,

 MasterKey : hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)),

 MasterSendKey : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))),

 MasterReceiveKey : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))),

 MSK : hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))),

 Seed : hash(hash(text.text.text).text.text.text),

 CMK : hash(hash(hash(text.text.text).text.text.text).text.

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent)))),

 Compound_MAC1 : hash(hash(hash(hash(text.text.text).text.text.text).text.

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))))

 .text.text.text.text),

 Compound_MAC2 : hash(hash(hash(hash(text.text.text).text.text.text).text.

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))))

 .text.text.text.text),

 Crypto_bind_request : text.text.text.text.

 hash(hash(hash(hash(text.text.text).text.text.text).text.

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))))

 .text.text.text.text),

 Crypto_bind_response: text.text.text.text.

 hash(hash(hash(hash(text.text.text).text.text.text).text.

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))).

 hash(hash(hash(hash(symmetric_key)).hash(symmetric_key.text.text.agent))))

 .text.text.text.text),

 PAC_type : text,

 Result_tlv : text,

 PAC_key : symmetric_key,

 PAC_lifetime : text,

 A_ID : text,

 PAC_info : text.text.text.text,

 PAC_opaque : {symmetric_key.text.text.text.text}_symmetric_key,

 PAC_ack : text

 init State := 1

 transition

 1. State = 1 /\ RCV(eap_request_id) =|>

 State':= 3 /\ UserID' := new()

 /\ SND(UserID')

 2. State = 3 /\ RCV(start_fast.FASTv1'.a_id_info) =|>

 State':= 5 /\ TLSv1' := new()

 /\ Pnonce' := new()

 /\ CsuiteList':= new()

 /\ SND(FASTv1'.TLSv1'.session_id_0.Pnonce'.CsuiteList')

 3. State = 5 /\ RCV(TLSv1.Snonce'.SessionID'.Csuite'.{S.Kserver'}_inv(Kca).SHelloDone') =|>

 State':= 7 /\ PMS' := new()

 /\ CCspec' := new()

 /\ MS' := PRF(PMS'.Pnonce.Snonce')

98

 /\ Finished' := Hash1(MS'.P.S.Pnonce.Csuite'.SessionID')

 /\ ClientKEY' := KEYGEN(P.Pnonce.Snonce'.MS')

 /\ ServerKEY' := KEYGEN(S.Pnonce.Snonce'.MS')

 /\ SND({PMS'}_Kserver'.CCspec'.{Finished'}_ClientKEY')

 %%%%%%%%%%%% Phase 2 %%%%%%%%%%%%

 4. State = 7 /\ RCV(CCspec.{Finished.eap_request_id}_ServerKEY) =|>

 State':= 9 /\ SND({P}_ClientKEY)

 /\ secret(ClientKEY,sec_clientkey,{P,S})

 /\ secret(ServerKEY,sec_serverkey,{P,S})

 /\ request(P,S,nonces,Pnonce.Snonce)

 5. State = 9 /\ RCV({Schallenge'}_ServerKEY) =|>

 State':= 11 /\ Pchallenge' := new()

 /\ NTResponse' := Hash2(Password.Pchallenge'.Schallenge'.P)

 /\ SND({Pchallenge'.NTResponse'}_ClientKEY)

 /\ witness(P,S,peer_proof,NTResponse')

 6. State = 11 /\ RCV({Hash2(Password.Pchallenge)}_ServerKEY) =|>

 State':= 13 /\ SND({auth_ack}_ClientKEY)

 /\ MasterKey' := Hash2(Hash2(Hash2(Password)).NTResponse)

 /\ MasterSendKey' := PRF(MasterKey')

 /\ MasterReceiveKey' := KEYGEN(MasterKey')

 /\ MSK' := MasterReceiveKey'.MasterSendKey'

 /\ Seed' := PRF(MS.seed_label.Pnonce.Snonce)

 /\ CMK' := PRF(Seed'.cmk_label.MSK')

 %%%%%%%%%%%% PAC Provisioning %%%%%%%%%%%%

 7. State = 13

 /\ RCV({Inter_result_tlv'.Bind_version'.FASTv1.zero.CMKnonce'.Compound_MAC1'}_ServerKEY)

 /\ Compound_MAC1' = Hash2(CMK.Bind_version'.FASTv1.zero.CMKnonce') =|>

 State':= 15 /\ Compound_MAC2' := Hash2(CMK.Bind_version'.FASTv1.one.CMKnonce')

 /\ Crypto_bind_response' := Bind_version'.FASTv1.one.CMKnonce'.Compound_MAC2'

 /\ PAC_type' := new()

/\ SND({Inter_result_tlv'.Bind_version'.FASTv1.one.CMKnonce'.Compound_MAC2'.PAC_type'}_ClientKEY)

 8. State = 15 /\ RCV({Result_tlv'.PAC_key'.PAC_opaque'.PAC_info'}_ServerKEY)

 /\ PAC_info' = PAC_lifetime'.A_ID'.a_id_info.PAC_type' =|>

 State':= 17 /\ PAC_ack' := new()

 /\ SND({Result_tlv'.PAC_ack'}_ClientKEY)

 9. State = 17 /\ RCV(eap_success) =|>

 State':= 19

end role

%%%

role session(

 S, P : agent,

 Password : symmetric_key,

 Kserver : public_key,

 Kca : public_key,

 Hash1 : hash_func,

 Hash2 : hash_func,

 PRF : hash_func,

 KEYGEN : hash_func)

def=

 local PSND,PRCV,SSND,SRCV : channel (dy)

 composition

 server (S,P,Password,Kserver,Kca,Hash1,Hash2,PRF,KEYGEN,SSND,SRCV)

 /\ peer (S,P,Password, Kca,Hash1,Hash2,PRF,KEYGEN,PSND,PRCV)

end role

role environment() def=

 const

 eap_request_id, start_fast: text,

 auth_ack, eap_success : text,

 a_id_info : text,

 session_id_0 : text, % SessionID = 0

 seed_label, cmk_label : text,

 zero, one : text,

 sec_packey, sec_pacopaque,

 nonces, peer_proof,

 sec_clientkey,

 sec_serverkey : protocol_id,

 s,p,i : agent,

 kps,kis,kpi : symmetric_key,

99

 kserver,ki,kca : public_key,

 hash1,hash2 : hash_func,

 prf : hash_func,

 keygen : hash_func

 intruder_knowledge = { s,p,hash1,hash2,prf,keygen,kca,kserver,ki,inv(ki),kpi,kis }

 composition

 session(s,p,kps,kserver,kca,hash1,hash2,prf,keygen)

 /\ session(s,i,kis,kserver,kca,hash1,hash2,prf,keygen)

 /\ session(i,p,kpi,ki, kca,hash1,hash2,prf,keygen)

end role

goal

 secrecy_of sec_clientkey, sec_serverkey

 secrecy_of sec_packey, sec_pacopaque

 authentication_on nonces % server authentication

 authentication_on peer_proof % peer authentication

end goal

environment()

C.1.2 The Output Results

root@ebakyt-laptop:/avispa# avispa Server-auth-prov.hlpsl --cl-atse

SUMMARY

 SAFE

DETAILS

 BOUNDED_NUMBER_OF_SESSIONS

 TYPED_MODEL

PROTOCOL

 /avispa/avispa-1.1//testsuite/results/Server-auth-prov.if

GOAL

 As Specified

BACKEND

 CL-AtSe

STATISTICS

 Analysed : 632832 states

 Reachable : 265869 states

 Translation: 0.72 seconds

 Computation: 85.82 seconds

root@ebakyt-laptop:/avispa# avispa Server-auth-prov.hlpsl --typed_model=no --cl-atse

SUMMARY

 SAFE

DETAILS

 BOUNDED_NUMBER_OF_SESSIONS

 UNTYPED_MODEL

PROTOCOL

 /avispa/avispa-1.1//testsuite/results/Server-auth-prov.if

GOAL

 As Specified

BACKEND

 CL-AtSe

STATISTICS

 Analysed : 2238920 states

 Reachable : 966873 states

 Translation: 0.71 seconds

 Computation: 284.28 seconds

100

C.2 Server-Unauthenticated Provisioning

 Phase 1: TLS Tunnel Establishment using Diffie-Hellman Key Exchange.

 Phase 2: EAP-FAST-MSCHAPv2 method and Tunnel PAC Provisioning.

C.2.1 The HLPSL Specification

role server(

 S, P : agent,

 Password : symmetric_key,

 G : nat,

 Hash1 : hash_func,

 Hash2 : hash_func,

 PRF : hash_func,

 KEYGEN : hash_func,

 PRF1 : hash_func,

 PRF2 : hash_func,

 SND, RCV : channel (dy))

 played_by S def=

 local

 State : nat,

 Snonce : text,

 Pnonce : text,

 SessionID : text,

 Csuite : text,

 PMS : message,

 CCspec : text,

 MS : message,

 Finished : message,

 ClientKEY : message,

 ServerKEY : message,

 UserID : text,

 FASTv1 : text,

 TLSv1 : text,

 CsuiteList : text,

 SHelloDone : text,

 Inter_result_tlv : text,

 Bind_version : text,

 CMKnonce : text,

 Schallenge : message,

 Pchallenge : message,

 RealServerCH : text,

 RealPeerCH : text,

 NTResponse : message,

 MasterKey : message,

 MasterSendKey : message,

 MasterReceiveKey : message,

 MSK : message,

 Seed : message,

 CMK : message,

 Compound_MAC1 : message, % server --> peer

 Compound_MAC2 : message, % peer --> server

 Crypto_bind_request : text.text.text.text.message,

 Crypto_bind_response : text.text.text.text.message,

 PAC_type : text,

 Result_tlv : text,

 PAC_key : symmetric_key,

 PAC_lifetime : text,

 A_ID : text,

 PAC_info : text.text.text.text,

 PAC_enc_key : symmetric_key,

 PAC_opaque : {symmetric_key.text.text.text.text}_symmetric_key,

 PAC_ack : text

 init State := 0

 transition

 1. State = 0 /\ RCV(start) =|>

 State':= 2 /\ SND(eap_request_id)

 2. State = 2 /\ RCV(UserID') =|>

 State':= 4 /\ FASTv1' := new()

 /\ SND(start_fast.FASTv1'.a_id_info)

 3. State = 4 /\ RCV(FASTv1.TLSv1'.session_id_0.Pnonce'.CsuiteList') =|>

 State':= 6 /\ Snonce' := new()

 /\ SessionID' := new()

 /\ Csuite' := new()

 /\ SHelloDone':= new()

 /\ SND(TLSv1'.Snonce'.SessionID'.Csuite'.G.exp(G,Snonce').SHelloDone')

101

 /\ witness(S,P,nonces,Pnonce'.Snonce')

 4. State = 6 /\ RCV(exp(G,Pnonce).CCspec'.{Finished'}_ClientKEY')

 /\ Finished' = Hash1(PRF(exp(exp(G,Pnonce),Snonce).Pnonce.Snonce).P.S.Pnonce.Csuite.SessionID)

 /\ ClientKEY' = KEYGEN(P.Pnonce.Snonce.PRF(exp(exp(G,Pnonce),Snonce).Pnonce.Snonce)) =|>

 State':= 8 /\ PMS' := exp(exp(G,Pnonce),Snonce)

 /\ MS' := PRF(PMS'.Pnonce.Snonce)

 /\ ServerKEY' := KEYGEN(S.Pnonce.Snonce.MS')

 /\ SND(CCspec'.{Finished'.eap_request_id}_ServerKEY')

 %%%%%%%%%%%% Phase 2 %%%%%%%%%%%%

 5. State = 8 /\ RCV({P}_ClientKEY) =|>

 State':= 10 /\ Schallenge' := PRF1(PMS.Pnonce.Snonce)

 /\ Pchallenge' := PRF2(PMS.Pnonce.Snonce)

 /\ RealServerCH' := new()

 /\ SND({RealServerCH'}_ServerKEY)

 6. State = 10 /\ RCV({RealPeerCH'.NTResponse'}_ClientKEY)

 /\ NTResponse' = Hash2(Password.Pchallenge.Schallenge.P) =|>

 State':= 12 /\ SND({Hash2(Password.Pchallenge)}_ServerKEY)

 /\ request(S,P,peer_proof,{RealPeerCH'.NTResponse'}_ClientKEY)

 %% /\ request(S,P,peer_proof,NTResponse')

 7. State = 12 /\ RCV({auth_ack}_ClientKEY) =|>

 State':= 14 /\ Inter_result_tlv' := new() % success

 /\ Bind_version' := new() % same version

 /\ CMKnonce' := new()

 /\ MasterKey' := Hash2(Hash2(Hash2(Password)).NTResponse)

 /\ MasterSendKey' := PRF1(MasterKey')

 /\ MasterReceiveKey' := PRF2(MasterKey')

 /\ MSK' := MasterReceiveKey'.MasterSendKey'

 /\ Seed' := PRF(MS.seed_label.Pnonce.Snonce)

 /\ CMK' := PRF(Seed'.cmk_label.MSK')

 /\ Compound_MAC1' := Hash2(CMK'.Bind_version'.FASTv1.zero.CMKnonce')

 /\ Crypto_bind_request' := Bind_version'.FASTv1.zero.CMKnonce'.Compound_MAC1'

 /\ SND({Inter_result_tlv'.Bind_version'.FASTv1.zero.CMKnonce'.Compound_MAC1'}_ServerKEY)

 %%%%%%%%%%%% PAC Provisioning %%%%%%%%%%%%

 8. State = 14

 /\ RCV({Inter_result_tlv.Bind_version.FASTv1.one.CMKnonce.Compound_MAC2'.PAC_type'}_ClientKEY)

 /\ Compound_MAC2' = Hash2(CMK.Bind_version.FASTv1.one.CMKnonce) =|>

 State':= 16 /\ Result_tlv' := new()

 /\ PAC_key' := new()

 /\ PAC_lifetime':= new()

 /\ A_ID' := new()

 /\ PAC_info' := PAC_lifetime'.A_ID'.a_id_info.PAC_type'

 /\ PAC_enc_key' := new()

 /\ PAC_opaque' := {PAC_key'.PAC_info'}_PAC_enc_key' % PAC-Opaque

 /\ SND({Result_tlv'.PAC_key'.PAC_opaque'.PAC_info'}_ServerKEY)

 /\ secret(PAC_key',sec_packey,{S,P})

 /\ secret(PAC_opaque',sec_pacopaque,{S,P})

 9. State = 16 /\ RCV({Result_tlv.PAC_ack'}_ClientKEY) =|>

 State':= 18 /\ SND(eap_success)

end role

%%%

role peer(

 S, P : agent,

 Password : symmetric_key,

 G : nat,

 Hash1 : hash_func,

 Hash2 : hash_func,

 PRF : hash_func,

 KEYGEN : hash_func,

 PRF1 : hash_func,

 PRF2 : hash_func,

 SND, RCV : channel (dy))

 played_by P def=

 local

 State : nat,

 Snonce : text,

 Pnonce : text,

 SessionID : text,

 Csuite : text,

 PMS : message,

 CCspec : text,

 MS : message,

 Finished : message,

102

 ClientKEY : message,

 ServerKEY : message,

 UserID : text,

 FASTv1 : text,

 TLSv1 : text,

 CsuiteList : text,

 SHelloDone : text,

 Inter_result_tlv : text,

 Bind_version : text,

 CMKnonce : text,

 Schallenge : message,

 Pchallenge : message,

 RealServerCH : text,

 RealPeerCH : text,

 NTResponse : message,

 MasterKey : message,

 MasterSendKey : message,

 MasterReceiveKey : message,

 MSK : message,

 Seed : message,

 CMK : message,

 Compound_MAC1 : message, % server --> peer

 Compound_MAC2 : message, % peer --> server

 Crypto_bind_request : text.text.text.text.message,

 Crypto_bind_response : text.text.text.text.message,

 PAC_type : text,

 Result_tlv : text,

 PAC_key : symmetric_key,

 PAC_lifetime : text,

 A_ID : text,

 PAC_info : text.text.text.text,

 PAC_opaque : {symmetric_key.text.text.text.text}_symmetric_key,

 PAC_ack : text

 init State := 1

 transition

 1. State = 1 /\ RCV(eap_request_id) =|>

 State':= 3 /\ UserID' := new()

 /\ SND(UserID')

 2. State = 3 /\ RCV(start_fast.FASTv1'.a_id_info) =|>

 State':= 5 /\ TLSv1' := new()

 /\ Pnonce' := new()

 /\ CsuiteList':= new()

 /\ SND(FASTv1'.TLSv1'.session_id_0.Pnonce'.CsuiteList')

 3. State = 5 /\ RCV(TLSv1.Snonce'.SessionID'.Csuite'.G.exp(G,Snonce').SHelloDone') =|>

 State':= 7 /\ PMS' := exp(exp(G,Snonce'),Pnonce)

 /\ CCspec' := new()

 /\ MS' := PRF(PMS'.Pnonce.Snonce')

 /\ Finished' := Hash1(MS'.P.S.Pnonce.Csuite'.SessionID')

 /\ ClientKEY' := KEYGEN(P.Pnonce.Snonce'.MS')

 /\ ServerKEY' := KEYGEN(S.Pnonce.Snonce'.MS')

 /\ SND(exp(G,Pnonce).CCspec'.{Finished'}_ClientKEY')

 %%%%%%%%%%%% Phase 2 %%%%%%%%%%%%

 4. State = 7 /\ RCV(CCspec.{Finished.eap_request_id}_ServerKEY) =|>

 State':= 9 /\ SND({P}_ClientKEY)

 /\ secret(ClientKEY,sec_clientkey,{P,S})

 /\ secret(ServerKEY,sec_serverkey,{P,S})

 /\ request(P,S,nonces,Pnonce.Snonce)

 5. State = 9 /\ RCV({RealServerCH'}_ServerKEY) =|>

 State':= 11 /\ Pchallenge' := PRF2(PMS.Pnonce.Snonce)

 /\ Schallenge' := PRF1(PMS.Pnonce.Snonce)

 /\ RealPeerCH' := new()

 /\ NTResponse' := Hash2(Password.Pchallenge'.Schallenge'.P)

 /\ SND({RealPeerCH'.NTResponse'}_ClientKEY)

 /\ witness(P,S,peer_proof,{RealPeerCH'.NTResponse'}_ClientKEY)

 %% /\ witness(P,S,peer_proof,NTResponse')

 6. State = 11 /\ RCV({Hash2(Password.Pchallenge)}_ServerKEY) =|>

 State':= 13 /\ SND({auth_ack}_ClientKEY)

 /\ MasterKey' := Hash2(Hash2(Hash2(Password)).NTResponse)

 /\ MasterSendKey' := PRF1(MasterKey')

 /\ MasterReceiveKey' := PRF2(MasterKey')

 /\ MSK' := MasterReceiveKey'.MasterSendKey'

 /\ Seed' := PRF(MS.seed_label.Pnonce.Snonce)

 /\ CMK' := PRF(Seed'.cmk_label.MSK')

103

 %%%%%%%%%%%% PAC Provisioning %%%%%%%%%%%%

 7. State = 13

 /\ RCV({Inter_result_tlv'.Bind_version'.FASTv1.zero.CMKnonce'.Compound_MAC1'}_ServerKEY)

 /\ Compound_MAC1' = Hash2(CMK.Bind_version'.FASTv1.zero.CMKnonce') =|>

 State':= 15 /\ Compound_MAC2' := Hash2(CMK.Bind_version'.FASTv1.one.CMKnonce')

 /\ Crypto_bind_response' := Bind_version'.FASTv1.one.CMKnonce'.Compound_MAC2'

 /\ PAC_type' := new()

/\ SND({Inter_result_tlv'.Bind_version'.FASTv1.one.CMKnonce'.Compound_MAC2'.PAC_type'}_ClientKEY)

 8. State = 15 /\ RCV({Result_tlv'.PAC_key'.PAC_opaque'.PAC_info'}_ServerKEY)

 /\ PAC_info' = PAC_lifetime'.A_ID'.a_id_info.PAC_type' =|>

 State':= 17 /\ PAC_ack' := new()

 /\ SND({Result_tlv'.PAC_ack'}_ClientKEY)

 9. State = 17 /\ RCV(eap_success) =|>

 State':= 19

end role

role session(

 S, P : agent,

 Password : symmetric_key,

 G : nat,

 Hash1 : hash_func,

 Hash2 : hash_func,

 PRF : hash_func,

 KEYGEN : hash_func,

 PRF1 : hash_func,

 PRF2 : hash_func)

def=

 local PSND,PRCV,SSND,SRCV : channel (dy)

 composition

 server (S,P,Password,G,Hash1,Hash2,PRF,KEYGEN,PRF1,PRF2,SSND,SRCV)

 /\ peer (S,P,Password,G,Hash1,Hash2,PRF,KEYGEN,PRF1,PRF2,PSND,PRCV)

end role

role environment() def=

 const

 eap_request_id, start_fast: text,

 auth_ack, eap_success : text,

 a_id_info : text,

 session_id_0 : text, % SessionID = 0

 seed_label, cmk_label : text,

 zero, one : text,

 sec_packey, sec_pacopaque,

 nonces, peer_proof,

 sec_clientkey,

 sec_serverkey : protocol_id,

 s,p,i : agent,

 kps,kis,kpi : symmetric_key,

 g : nat,

 hash1,hash2 : hash_func,

 prf : hash_func,

 keygen : hash_func,

 prf1 : hash_func,

 prf2 : hash_func

 intruder_knowledge = { s,p,hash1,hash2,prf,keygen,prf1,prf2,g,kpi,kis }

 composition

 session(s,p,kps,g,hash1,hash2,prf,keygen,prf1,prf2)

 /\ session(s,i,kis,g,hash1,hash2,prf,keygen,prf1,prf2)

 /\ session(i,p,kpi,g,hash1,hash2,prf,keygen,prf1,prf2)

end role

goal

 authentication_on nonces % server authentication

 authentication_on peer_proof % peer authentication

 secrecy_of sec_clientkey

 secrecy_of sec_serverkey

 secrecy_of sec_packey

 secrecy_of sec_pacopaque

end goal

environment()

104

C.2.2 The Output Results

When the hlpsl tested against the only goal "authentication_on peer_proof", other goals are

disabled.

And also when "witness(P,S,peer_proof,NTResponse')" and "request(S,P,peer_proof,NTResponse')"

predicates are used.

root@ebakyt-laptop:/avispa# avispa Server-unauth-prov.hlpsl --cl-atse

SUMMARY

 SAFE

DETAILS

 BOUNDED_NUMBER_OF_SESSIONS

 TYPED_MODEL

PROTOCOL

 /avispa/avispa-1.1//testsuite/results/Server-unauth-prov.if

GOAL

 As Specified

BACKEND

 CL-AtSe

STATISTICS

 Analysed : 365 states

 Reachable : 263 states

 Translation: 0.77 seconds

 Computation: 0.00 seconds

--

When the hlpsl tested against the only goal "authentication_on peer_proof", other goals are

disabled.

And also when " witness(P,S,peer_proof,{RealPeerCH'.NTResponse'}_ClientKEY)" and
" request(S,P,peer_proof,{RealPeerCH'.NTResponse'}_ClientKEY)" predicates are used.

root@ebakyt-laptop:/avispa# avispa Server-unauth-prov.hlpsl --cl-atse

SUMMARY

 UNSAFE

DETAILS

 ATTACK_FOUND

 TYPED_MODEL

PROTOCOL

 /avispa/avispa-1.1//testsuite/results/Server-unauth-prov.if

GOAL

 Authentication attack on

(s,p,peer_proof,{RealPeerCH(6).{kps.{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf2.{

exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_({p.n20(Pnonce).n3(Snonce).{

exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen))

BACKEND

 CL-AtSe

STATISTICS

 Analysed : 23 states

 Reachable : 15 states

 Translation: 0.77 seconds

 Computation: 0.00 seconds

105

ATTACK TRACE

 i -> (s,6): start

 (s,6) -> i: eap_request_id

 i -> (s,6): UserID(38)

 (s,6) -> i: start_fast.n38(FASTv1).a_id_info

 i -> (s,3): start

 (s,3) -> i: eap_request_id

 i -> (s,3): UserID(2)

 (s,3) -> i: start_fast.n2(FASTv1).a_id_info

 i -> (p,10): eap_request_id

 (p,10) -> i: n55(UserID)

 i -> (p,10): start_fast.FASTv1(56).a_id_info

 (p,10) -> i: FASTv1(56).n56(TLSv1).session_id_0.n56(Pnonce).n56(CsuiteList)

 i -> (p,4): eap_request_id

 (p,4) -> i: n19(UserID)

 i -> (p,4): start_fast.FASTv1(20).a_id_info

 (p,4) -> i: FASTv1(20).n20(TLSv1).session_id_0.n20(Pnonce).n20(CsuiteList)

 i -> (s,3): n2(FASTv1).TLSv1(3).session_id_0.n20(Pnonce).CsuiteList(3)

 (s,3) -> i: TLSv1(3).n3(Snonce).n3(SessionID).n3(Csuite).g.exp(g,n3(Snonce)).

 n3(SHelloDone)

 i -> (p,4): n20(TLSv1).n3(Snonce).SessionID(21).Csuite(21).g.exp(g,n3(Snonce)).

 SHelloDone(21)

 (p,4) -> i: exp(g,n20(Pnonce)).n21(CCspec).

{{{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf.p.s.n20(Pnonce).Csuite(21).SessionID

(21)}_hash1}_({p.n20(Pnonce).n3(Snonce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_pr

f}_keygen)

 i -> (p,4): n21(CCspec).

{{{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf.p.s.n20(Pnonce).Csuite(21).SessionID

(21)}_hash1.eap_request_id}_({s.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce)

.n3(Snonce)}_prf}_keygen)

 (p,4) -> i:

{p}_({p.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen

)

 & Add p to set_244; Add s to set_244; Add p to set_245;

 & Add s to set_245;

 i -> (p,4):

{RealServerCH(23)}_({s.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonc

e)}_prf}_keygen)

 (p,4) -> i:

{n23(RealPeerCH).{kps.{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n3(Snonc

e)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_({p.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonc

e)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen)

 &

Witness(p,s,peer_proof,{n23(RealPeerCH).{kps.{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce

)}_prf2.{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_({p.n20(Pnonce).n3(

Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen));

 i -> (s,3): exp(g,n20(Pnonce)).CCspec(4).

{{{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf.p.s.n20(Pnonce).n3(Csuite).n3(Sessio

nID)}_hash1}_({p.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_pr

f}_keygen)

 (s,3) -> i: CCspec(4).

{{{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf.p.s.n20(Pnonce).n3(Csuite).n3(Sessio

nID)}_hash1.eap_request_id}_({s.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce)

.n3(Snonce)}_prf}_keygen)

 i -> (s,3):

{p}_({p.n20(Pnonce).n3(Snonce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen

)

 (s,3) -> i:

{n5(RealServerCH)}_({s.n20(Pnonce).n3(Snonce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonc

e)}_prf}_keygen)

 i -> (s,3):

{RealPeerCH(6).{kps.{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n20(Pnonce

)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_({p.n20(Pnonce).n3(Snonce).{exp(g,n20(Pnonce

)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen)

 (s,3) -> i:

{{kps.{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf2}_hash2}_({s.n20(Pnonce).n3(Snon

ce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen)

106

 &

Request(s,p,peer_proof,{RealPeerCH(6).{kps.{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}

_prf2.{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_({p.n20(Pnonce).n3(Sn

once).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen));

When the hlpsl tested against the only goal "secrecy_of sec_packey", other goals are disabled.

root@ebakyt-laptop:/avispa# avispa Server-unauth-prov.hlpsl --cl-atse

SUMMARY

 UNSAFE

DETAILS

 ATTACK_FOUND

 TYPED_MODEL

PROTOCOL

 /avispa/avispa-1.1//testsuite/results/Server-unauth-prov.if

GOAL

 Secrecy attack on (n8(PAC_key))

BACKEND

 CL-AtSe

STATISTICS

 Analysed : 108 states

 Reachable : 41 states

 Translation: 0.77 seconds

 Computation: 0.00 seconds

ATTACK TRACE

 i -> (s,3): start

 (s,3) -> i: eap_request_id

 i -> (s,3): UserID(2)

 (s,3) -> i: start_fast.n2(FASTv1).a_id_info

 i -> (p,4): eap_request_id

 (p,4) -> i: n19(UserID)

 i -> (p,4): start_fast.n2(FASTv1).a_id_info

 (p,4) -> i: n2(FASTv1).n20(TLSv1).session_id_0.n20(Pnonce).n20(CsuiteList)

 i -> (s,3): n2(FASTv1).TLSv1(3).session_id_0.n20(Pnonce).CsuiteList(3)

 (s,3) -> i: TLSv1(3).n3(Snonce).n3(SessionID).n3(Csuite).g.exp(g,n3(Snonce)).

 n3(SHelloDone)

 i -> (p,4): n20(TLSv1).n3(Snonce).SessionID(21).Csuite(21).g.exp(g,n3(Snonce)).

 SHelloDone(21)

 (p,4) -> i: exp(g,n20(Pnonce)).n21(CCspec).

{{{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf.p.s.n20(Pnonce).Csuite(21).SessionID

(21)}_hash1}_({p.n20(Pnonce).n3(Snonce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_pr

f}_keygen)

 i -> (p,4): n21(CCspec).

{{{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf.p.s.n20(Pnonce).Csuite(21).SessionID

(21)}_hash1.eap_request_id}_({s.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce)

.n3(Snonce)}_prf}_keygen)

 (p,4) -> i:

{p}_({p.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen

)

 & Add p to set_240; Add s to set_240; Add p to set_241;

 & Add s to set_241;

 i -> (p,4):

{RealServerCH(23)}_({s.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonc

e)}_prf}_keygen)

 (p,4) -> i:

{n23(RealPeerCH).{kps.{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n3(Snonc

107

e)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_({p.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonc

e)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen)

 i -> (s,3): exp(g,n20(Pnonce)).CCspec(4).

{{{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf.p.s.n20(Pnonce).n3(Csuite).n3(Sessio

nID)}_hash1}_({p.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_pr

f}_keygen)

 (s,3) -> i: CCspec(4).

{{{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf.p.s.n20(Pnonce).n3(Csuite).n3(Sessio

nID)}_hash1.eap_request_id}_({s.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce)

.n3(Snonce)}_prf}_keygen)

 i -> (s,3):

{p}_({p.n20(Pnonce).n3(Snonce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen

)

 (s,3) -> i:

{n5(RealServerCH)}_({s.n20(Pnonce).n3(Snonce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonc

e)}_prf}_keygen)

 i -> (s,3):

{RealPeerCH(6).{kps.{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n20(Pnonce

)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_({p.n20(Pnonce).n3(Snonce).{exp(g,n20(Pnonce

)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen)

 (s,3) -> i:

{{kps.{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf2}_hash2}_({s.n20(Pnonce).n3(Snon

ce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen)

 i -> (p,4):

{{kps.{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf2}_hash2}_({s.n20(Pnonce).n3(Snon

ce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen)

 (p,4) -> i:

{auth_ack}_({p.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf}

_keygen)

 i -> (s,3):

{auth_ack}_({p.n20(Pnonce).n3(Snonce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}

_keygen)

 (s,3) -> i:

{n7(Inter_result_tlv).n7(Bind_version).n2(FASTv1).zero.n7(CMKnonce).{{{{exp(g,n20(Pnonce)*n3(Snon

ce)).n20(Pnonce).n3(Snonce)}_prf.seed_label.n20(Pnonce).n3(Snonce)}_prf.cmk_label.{{{{kps}_hash2}

_hash2.{kps.{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n20(Pnonce)*n3(Sno

nce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_hash2}_prf2.{{{{kps}_hash2}_hash2.{kps.{exp(g,n20(Pn

once)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snon

ce)}_prf1.p}_hash2}_hash2}_prf1}_prf.n7(Bind_version).n2(FASTv1).zero.n7(CMKnonce)}_hash2}_({s.n2

0(Pnonce).n3(Snonce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen)

 i -> (p,4):

{Inter_result_tlv(25).n7(Bind_version).n2(FASTv1).zero.n7(CMKnonce).{{{{exp(g,n3(Snonce)*n20(Pnon

ce)).n20(Pnonce).n3(Snonce)}_prf.seed_label.n20(Pnonce).n3(Snonce)}_prf.cmk_label.{{{{kps}_hash2}

_hash2.{kps.{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n3(Snonce)*n20(Pno

nce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_hash2}_prf2.{{{{kps}_hash2}_hash2.{kps.{exp(g,n3(Sno

nce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snon

ce)}_prf1.p}_hash2}_hash2}_prf1}_prf.n7(Bind_version).n2(FASTv1).zero.n7(CMKnonce)}_hash2}_({s.n2

0(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen)

 (p,4) -> i:

{Inter_result_tlv(25).n7(Bind_version).n2(FASTv1).one.n7(CMKnonce).{{{{exp(g,n3(Snonce)*n20(Pnonc

e)).n20(Pnonce).n3(Snonce)}_prf.seed_label.n20(Pnonce).n3(Snonce)}_prf.cmk_label.{{{{kps}_hash2}_

hash2.{kps.{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n3(Snonce)*n20(Pnon

ce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_hash2}_prf2.{{{{kps}_hash2}_hash2.{kps.{exp(g,n3(Snon

ce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonc

e)}_prf1.p}_hash2}_hash2}_prf1}_prf.n7(Bind_version).n2(FASTv1).one.n7(CMKnonce)}_hash2.n25(PAC_t

ype)}_({p.n20(Pnonce).n3(Snonce).{exp(g,n3(Snonce)*n20(Pnonce)).n20(Pnonce).n3(Snonce)}_prf}_keyg

en)

 i -> (s,3):

{n7(Inter_result_tlv).n7(Bind_version).n2(FASTv1).one.n7(CMKnonce).{{{{exp(g,n20(Pnonce)*n3(Snonc

e)).n20(Pnonce).n3(Snonce)}_prf.seed_label.n20(Pnonce).n3(Snonce)}_prf.cmk_label.{{{{kps}_hash2}_

hash2.{kps.{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n20(Pnonce)*n3(Snon

ce)).n20(Pnonce).n3(Snonce)}_prf1.p}_hash2}_hash2}_prf2.{{{{kps}_hash2}_hash2.{kps.{exp(g,n20(Pno

nce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf2.{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonc

e)}_prf1.p}_hash2}_hash2}_prf1}_prf.n7(Bind_version).n2(FASTv1).one.n7(CMKnonce)}_hash2.PAC_type(

8)}_({p.n20(Pnonce).n3(Snonce).{exp(g,n20(Pnonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen

)

 (s,3) -> i:

{n8(Result_tlv).n8(PAC_key).{n8(PAC_key).n8(PAC_lifetime).n8(A_ID).a_id_info.PAC_type(8)}_n8(PAC_

enc_key).n8(PAC_lifetime).n8(A_ID).a_id_info.PAC_type(8)}_({s.n20(Pnonce).n3(Snonce).{exp(g,n20(P

nonce)*n3(Snonce)).n20(Pnonce).n3(Snonce)}_prf}_keygen)

 & Secret(n8(PAC_key),set_189); Add s to set_189;

 & Add p to set_189; Add s to set_190; Add p to set_190;

108

APPENDIX D

The Four-Way Handshake Protocol

D.1 The HLPSL Specification

role alice(

 A, B : agent,

 PMK : symmetric_key,

 PTK_PRF : hash_func,

 MIC_Hash : hash_func, % MAC hash func

 Succ : hash_func,

 H_MAC : hash_func,

 Snd, Rcv : channel(dy))

 played_by A def=

 local

 State : nat,

 Anonce : text,

 Snonce : text,

 Sqn : text,

 GMK : text,

 GNonce : text,

 GTK_PRF : hash_func,

 GTK : hash(text.agent.text),

 A_rsnie : text,

 B_rsnie : text,

 PMKID : hash(symmetric_key.agent.agent),

 PTK : hash(symmetric_key.agent.agent.text.text),

 MIC1 : hash(symmetric_key.text.text.text),

% MIC2 : hash(hash(symmetric_key.agent.agent.text.text).text.hash(text).text.

% {hash(text.agent.text)}_hash(symmetric_key.agent.agent.text.text)),

 MIC2 : message,

 MIC3 : hash(hash(symmetric_key.agent.agent.text.text).hash(text))

 init

 State := 0

 transition

 1. State = 0 /\ Rcv(start) =|>

 State':= 2 /\ Anonce' := new()

 /\ PMKID' := H_MAC(PMK.A.B)

 /\ Sqn' := new()

 /\ Snd(Anonce'.Sqn'.PMKID')

 /\ witness(A,B,bob_alice_na,Anonce')

 2. State = 2 /\ Rcv(Snonce'.B_rsnie'.Sqn.MIC1')

 /\ MIC1' = MIC_Hash(PMK.Snonce'.Sqn.B_rsnie') =|>

 State':= 4 /\ A_rsnie':= new()

 /\ GMK' := new()

 /\ GNonce' := new()

 /\ GTK' := GTK_PRF(GMK'.A.GNonce')

 /\ PTK' := PTK_PRF(PMK.A.B.Anonce.Snonce')

 /\ MIC2' := MIC_Hash(PTK'.Anonce.Succ(Sqn).A_rsnie'.{GTK'}_PTK')

 /\ Snd(Anonce.A_rsnie'.{GTK'}_PTK'.Succ(Sqn).MIC2')

 /\ secret(GTK',gtk1,{A,B})

 3. State = 4 /\ Rcv(Succ(Sqn).MIC3')

 /\ MIC3' = MIC_Hash(PTK.Succ(Sqn)) =|>

 State':= 6 /\ request(A,B,alice_bob_ns,Snonce)

end role

%%

role bob(

 A, B : agent,

 PMK : symmetric_key,

 PTK_PRF : hash_func,

 MIC_Hash : hash_func,

 Succ : hash_func,

 H_MAC : hash_func,

 Snd, Rcv : channel(dy))

 played_by B def=

 local

 State : nat,

 Anonce : text,

 Snonce : text,

109

 Sqn : text,

 GTK : hash(text.agent.text),

 A_rsnie : text,

 B_rsnie : text,

 PMKID : hash(symmetric_key.agent.agent),

 PTK : hash(symmetric_key.agent.agent.text.text),

 MIC1 : hash(symmetric_key.text.text.text),

% MIC2 : hash(hash(symmetric_key.agent.agent.text.text).text.hash(text).text.

% {hash(text.agent.text)}_hash(symmetric_key.agent.agent.text.text)),

 MIC2 : message,

 MIC3 : hash(hash(symmetric_key.agent.agent.text.text).hash(text))

 init

 State := 1

 transition

 1. State = 1 /\ Rcv(Anonce'.Sqn'.PMKID') =|>

 State':= 3 /\ Snonce' := new()

 /\ B_rsnie' := new()

 /\ PTK' := PTK_PRF(PMK.A.B.Anonce'.Snonce')

 /\ MIC1' := MIC_Hash(PMK.Snonce'.Sqn'.B_rsnie')

 /\ Snd(Snonce'.B_rsnie'.Sqn'.MIC1')

 /\ witness(B,A,alice_bob_ns,Snonce')

 2. State = 3 /\ Rcv(Anonce.A_rsnie'.{GTK'}_PTK'.Succ(Sqn).MIC2')

 /\ MIC2' = MIC_Hash(PTK.Anonce.Succ(Sqn).A_rsnie'.{GTK'}_PTK') =|>

 State':= 5 /\ MIC3' := MIC_Hash(PTK.Succ(Sqn))

 /\ Snd(Succ(Sqn).MIC3')

 /\ request(B,A,bob_alice_na,Anonce)

end role

role session(

 A, B : agent,

 PMK : symmetric_key,

 PTK_PRF : hash_func,

 MIC_Hash : hash_func,

 Succ : hash_func,

 H_MAC : hash_func)

 def=

 local

 SA, RA, SB, RB : channel (dy)

 composition

 alice (A,B,PMK, PTK_PRF, MIC_Hash, Succ, H_MAC, SA,RA)

 /\ bob (A,B,PMK, PTK_PRF, MIC_Hash, Succ, H_MAC, SB,RB)

end role

role environment()

def=

 const

 a, b : agent,

 gtk1,

 alice_bob_ns,

 bob_alice_na : protocol_id,

 pmk_a_b,

 pmk_a_i,

 pmk_i_b : symmetric_key,

 ptk_prf : hash_func,

 mic_hash : hash_func,

 succ : hash_func,

 h_mac : hash_func

 intruder_knowledge = {a,b,ptk_prf,mic_hash,succ,h_mac,pmk_a_i,pmk_i_b}

 composition

 session(a,b, pmk_a_b, ptk_prf, mic_hash, succ, h_mac)

 /\ session(a,i, pmk_a_i, ptk_prf, mic_hash, succ, h_mac)

 /\ session(i,b, pmk_i_b, ptk_prf, mic_hash, succ, h_mac)

end role

goal

 secrecy_of gtk1

 authentication_on alice_bob_ns

 authentication_on bob_alice_na

end goal

environment()

110

D.2 The Output Results

root@ebakyt-laptop:/avispa# avispa Four-way-handshake.hlpsl --cl-atse

SUMMARY

 SAFE

DETAILS

 BOUNDED_NUMBER_OF_SESSIONS

 TYPED_MODEL

PROTOCOL

 /avispa/avispa-1.1//testsuite/results/Four-way-handshake.if

GOAL

 As Specified

BACKEND

 CL-AtSe

STATISTICS

 Analysed : 13 states

 Reachable : 7 states

 Translation: 0.02 seconds

 Computation: 0.00 seconds

root@ebakyt-laptop:/avispa# avispa Four-way-handshake.hlpsl --typed_model=no --cl-atse

SUMMARY

 SAFE

DETAILS

 BOUNDED_NUMBER_OF_SESSIONS

 UNTYPED_MODEL

PROTOCOL

 /avispa/avispa-1.1//testsuite/results/Four-way-handshake.if

GOAL

 As Specified

BACKEND

 CL-AtSe

STATISTICS

 Analysed : 56 states

 Reachable : 33 states

 Translation: 0.01 seconds

 Computation: 0.00 seconds

root@ebakyt-laptop:/avispa# avispa Four-way-handshake.hlpsl --ofmc

% OFMC

% Version of 2006/02/13

SUMMARY

 SAFE

DETAILS

 BOUNDED_NUMBER_OF_SESSIONS

PROTOCOL

 /avispa/avispa-1.1//testsuite/results/Four-way-handshake.if

GOAL

 as_specified

BACKEND

 OFMC

COMMENTS

111

STATISTICS

 parseTime: 0.00s

 searchTime: 5.13s

 visitedNodes: 1588 nodes

 depth: 10 plies

root@ebakyt-laptop:/avispa# avispa Four-way-handshake.hlpsl --typed_model=no --ofmc

% OFMC

% Version of 2006/02/13

SUMMARY

 SAFE

DETAILS

 BOUNDED_NUMBER_OF_SESSIONS

PROTOCOL

 /avispa/avispa-1.1//testsuite/results/Four-way-handshake.if

GOAL

 as_specified

BACKEND

 OFMC

COMMENTS

STATISTICS

 parseTime: 0.00s

 searchTime: 5.32s

 visitedNodes: 2220 nodes

 depth: 10 plies

