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INVENTORY POLICIES FOR PERISHABLE ITEMS

ABSTRACT

Inventory simply means the goods and services that businesses hold in stock.
However, there are several different types of inventory. Inventory of perishable
product is one of them. Inventory control is the supervision of supply, storage and
accessibility of items, in an optimum way for an organization. Inventory control is an
important problem for many companies because, it is impossible to have an

indefinitely supply on hand and on the other hand holding stock has a big cost.

Perishable products have specific life time and cannot be used after its life is
ended. For this reason, inventory control of perishable items requires different
methods rather than that of durable products. The usage of perishable products is
huge such as food industry and healthcare services (fresh foods, chemicals, blood
and blood products etc.). Many inventory systems assume that life time is
indefinitely. Hence, for perishable products inventory management unlike the

traditional methods, some different methods have been used.

The purpose of this study is to examine the inventory system for perishable
products with two different policies; such as continuous review and periodic review.
For this purpose, the continuous review approach is examined through a numerical
study. Moreover, the system is analyzed by periodic review approach with similar
assumptions. Mathematical formulas of cost functions and numerical results are
obtained for different positive lead times with using MATLAB. As a result, the

optimal order quantity determined which has minimum cost for each policy.

Keywords: Perishable products, continuous review, periodic review, lead time,

Poisson demand.



BOZULABILIR URUNLER ICIN ENVANTER POLITIKALARI

(0Y/

Envanter, en basit tanimiyla sirketlerin stok altindaki tuttuklari drlinler ve
hizmetler olarak tanmimlanabilir. Ancak, birka¢ farkli tiirde envanter vardir.
Bozulabilir iriinler envanteri bunlardan biridir. Envanter kontrolii, iiriin depolama ve
erisilebilirliginin isletmelere optimum yarar1 saglayacak bi¢cimde denetlenmesidir.
Envanter kontrolii ¢ogu isletme i¢in 6nemli bir problemdir ¢iinkii elde siiresiz kaynak

tutmak imkansizdir ve diger yandan envanter bulundurmak biiyiik bir maliyettir.

Bozulabilir tirtinler belirli bir 6mrii olan ve émrii bittikten sonra kullanilamayan
tirtinlerdir. Bu nedenle bozulabilir iirlinler i¢in envanter kontrolii, dayanikli iiriinler
icin kullanilan yontemlerden daha farkli yontemler gerektirir. Bozulabilir tirlinlerin
gida sektoriinden saglik alanina kadar genis bir kullanim alani bulunmaktadir (taze
yiyecekler, kimyasallar, kan ve kan tirtinleri vs.). Bozulabilir envanter sistemleri ile
ilgili arastirmalar gok fazla sayidadir. Cogu envanter modeli {irlinleri siiresiz olarak
elde tutabildigini varsayar. Bu nedenle bozulabilir {iriinlerin envanter yonetiminde

geleneksel modellerden farkli yaklagimlar kullanilmaktadir.

Bu ¢alismanin amaci bozulabilir iiriinler i¢in envanter sistemini, siirekli gdozden
gecirme ve periyodik gozden gecirme gibi iki farkli politika altinda incelemektir. Bu
ama¢ dogrultusunda siirekli gozden gecirme yaklasimi niimerik bir calisma ile
incelenmistir. Ayrica periyodik gozden gecirme politikasi yaklagimi kullanilarak ve
benzer varsayimlar altinda sistem modellenmistir. Modelden yararlanilarak maliyet
fonksiyonlarinin matematiksel formiilleri elde edilmis ve MATLAB yardimi ile
farkli tedarik stireleri i¢in nlimerik sonuglar elde edilmistir. Sonug olarak, her bir

yaklasim i¢in en diigiilk maliyete sahip uygun siparis miktar1 elde edilmistir.

Anahtar Kelimeler: Bozulabilir iiriinler, siirekli gozden gegirme, periyodik gozden

gecirme, tedarik siiresi, Poisson talep.
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CHAPTER ONE
INTRODUCTION

Inventory control means keeping the current costs associated with having
inventory as low as possible without any problems. It is impossible to have an
unlimited supply on hand.

Inventory control involves the optimal supply, care and disposition of material
required in a retailing process. They are many different reasons why inventory
management is so important. Most business wants to know how many of products
sold, how many of them stolen and exactly how much needs to be ordered. It is able

to know exactly how many of items you have in stock with control policy.

When studying with perishable products, it is important for businesses to maintain
the correct amount of inventory if businesses keep too few items; they are losing
profit because customers will not be able to purchase the items they want. However,
if they storage too many items, they will have to discard them after the items perish
and lose money. For this reason, inventory control is really important about
perishable products.

In this study, we examined the perishable items with two different approaches.
Firstly, we studied on a continuous (s,S) policy model with respect to Poisson
demand, zero lead time, random life time and stock out policy. Secondly, we
examined the periodic review policy with a Poisson demand, positive lead time,
fixed life time and lost sales policy. We calculated the costs for both policies and will

find out which policy is optimal.

The remainder of this study is organized as follows. In Chapter two, we defined
the inventory, inventory costs, and deterministic and stochastic inventory models.
Later we presented an extensive literature review. In Chapter three, we examined the
probability of inventory level in the steady state and cost functions for the continuous

model. Then we gave the numerical study and sensitivity analysis for the continuous



review policy. For the periodic review policy we defined the cost functions and order
quantity for a positive lead time. Then, we examined the experimental results for
different level of lead times, different mean demands and different initial order
quantities. Also, tables and figures are presented in Chapter three which summarizes
the results. Consequently, optimal order quantity and optimal order policies that
minimize the expected total cost are obtained for different values. Chapter four

includes the conclusions, commentaries and led the way for further researches.



CHAPTER TWO
LITERATURE REVIEW

Inventory is a quantity or store of goods that is stock of items kept to meet future
demand. Inventory can refer to both the total amount of goods and the act of
counting them. Many companies take an inventory of their supplies on a regular
basis in order to avoid running out of popular items. Others take an inventory to
insure the number of items ordered matches the actual number of items counted.
Inventory Management system provides information to efficiently manage the flow
of materials, effectively utilize people and equipment, coordinate internal activities
and communicate with customers. The main purpose of inventory management is to
determine ‘how many units to order’ and ‘when to order’.

Usually companies need to keep inventory. Why they hold inventories? There are
many answers for this question. Companies usually want to balance against
uncertainty, ensure a high level of customer service, prevent speculations on future
events, meet seasonal or cycling demand and take advantage of price discounts. Also,
inventory control provides independence between stages and avoids work stoppages
and independence from vendors. Some of the basic notations used in the control of
inventory.

e D: Demand

e L:Leadtime

e T: Review time

Inventory models usually use cost minimization. All inventories bring with it a

number of costs. Some of costs involved in inventory models:

1) Ordering and Setup Cost (C,): Set-up costs are the costs incurred from
getting a machine ready to produce the desired good. In a manufacturing setting this
would require the use of a skilled technician who disassembles the tooling that is
currently in use on the machine. If the firm purchases the part or raw material, then
an order cost, rather than a set-up cost, is incurred. Also, some firms include the cost

of shipping the purchased goods in the order cost.



2) Purchasing Cost (p): Purchasing cost is simply the cost of the purchased item
itself. If the firm purchases a part that goes into its finished product, the firm can
determine its annual purchasing cost by multiplying the cost of one purchased unit
(p) by the number of finished products demanded in a year (D). The purchasing cost
includes the variable labor cost, variable overhead cost and raw material cost
associated with purchasing or production a single unit. If goods are ordered from an

external source, the unit purchase cost must include shipping cost.

3) Holding or Carrying Cost (Cy,): The cost of carrying one unit of inventory for
the unit time-period. Holding costs are the costs that result from maintaining the
inventory. Inventory in excess of current demand frequently means that its holder
must provide a place for its storage when not in use. Storage facilities also require
heating, cooling, lighting, and water. The holding cost usually includes storages
cost, insurance cost, taxes on inventory, and a cost due to the possibility of spoilage,

theft or obsolesce. All of these things add cost to holding or carrying inventory.

4) Stockout or Shortage Cost (Cy): When a customer demands a product and the
demand is not met on time, a stockout, or shortage, is said to occur. If customer will
accept delivery at a later date, we say that demands may be back-ordered. If no

customer will accept late delivery, we are in the lost sales case.

2.1 Deterministic Inventory Models

This model based on the assumptions that all parameters and variables are known
or can be computed with certainty. Demand is assumed to occur at a constant rate
and lead time for each order is constant and independent of the demand.

Deterministic inventory models can be classified into four groups.



2.1.1 The Basic Economic Order Quantity Model (EOQ)

The EOQ model is one of the oldest and most well known inventory control
techniques. The EOQ helps to determining how much to order. This model based on
a number of assumptions;

1. Demand rate is known and constant
2. Shortages are not permitted
3. Lead time known and constant
4. The cost include
a) Order and setup cost C, per order placed
b) Holding cost Cy, holding inventory per unit time
It

Max. Inv. Level order

v

q/D 2q/D Time

Figure 2.1 Behavior of I (t) in basic EOQ model

In the EOQ model only ordering and holding cost need to be minimized. All other
costs are assumed constant. The EOQ model do not depend the purchasing cost. To
find the optimal order quantity, first, we determine the annual total cost. Let TC (q)

be the total annual cost.
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Figure 2.2 Trade-off between holding cost and ordering cost

TC(q) = annual cost of placing orders + annual purchasing cost + annual holding cost
TC(g)=2eP 4 pD+% @.)
q

To find the value of g that minimizes TC(q), calculate TC(g)=0. And find the EOQ
or economic order quantity (q)

. (2cpY
q —{ c } (2.2)

u

2.1.2 Quantity Discount Model

A quantity discount model is a reduced unit price based on purchasing a large
quantity. The general quantity discount model described as follows:
If g < X4, each item costs p;
If X1 < q < xjp, €ach item costs p
If Xn1 < q < xp, €ach item costs p,
X1, X2, ... , Xp are price break points. To find the order quantity minimizing total
annual costs, we use these steps:

1. Calculate g* for each discount price



2. If g* is too small to qualify for that price, adjust g* upward
3. Calculate total cost for each g*

4. Select the g* with the lowest total cost
2.1.3 The Continuous Rate EOQ Model
The EOQ model assumes inventory is obtained from an outside supplier and

arrives instantaneously. But the Continuous rate EOQ assumes inventory is being

produced at a rate of ‘r’ units per time period.

It A

%(r—D) ———————————————

Slope r-D Slope -D

v

glr q/D t

Figure 2.3 Variation of the inventory for continuous rate

Total expected cost function is

TC(q):£+pD+%
q

Using the EOQ formula and (ordering cost + holding cost) equation, we find,

1 1

5 1

optimal run size = _2Cbr = EOQ(LJ2 (2.3)
C,(r-D) r-D



2.1.4 The EOQ Model with Backorders Allowed

In reality, demand is not met on time, and shortages occur. Let C, be the shortage
cost per unit per time. All demand are backlogged, C, is the setup cost, Cy is the
holding cost, D is the demand. To determine the order policy, Winston (2004) define

q = order quantity

g-M = maximum shortage that occurs under an ordering policy

»

I(t) 1

e
M
qi
. >
i Time
Figure 2.4 EOQ model with backorders allowed
and the annual total cost
M?C, (q—-M)?c, C,D
TC(q, M) = + + (2.4)
2q 2q q
TC (g, M) is minimized for g and M
1
* = EO (Ch+c“)2 2.5
and
1
M* = EO ( Cu )2 2.6
=E0Q Cu+Cy, (2.6)

and maximum shortage is calculated as g -M".



2.2 Stochastic Inventory Models

This model based on the assumptions that the average for inventory items is
reasonably constant over time. It is possible to describe the probability distribution of
the demand and lead time for each order is nonzero and random. When demand is
assumed to be stochastic, inventory is managed according to two principles; such as

continuous review and periodic review policy.

2.2.1 The (r, q) Continuous Review Policy

We consider the (r, g) inventory policy, alternatively called the reorder point,
order quantity system. When the level on-hand inventory reaches a reorder point
level r, place an order for q units. The order arrives to replenishment the inventory
after a lead time L. During which a stock out might occur, the order received. Figure

2.5 shows the inventory pattern determined by the (r, ) inventory policy.

Inventory

L i

v

A
<4

|

| |
Order Order

Placed Avrrivals

Figure 2.5 Continuous review (r, q) policy
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The model assumes;
1. The system is continuous review. That is demands are reordered as they occur,
and the level of on-hand inventory is known at all times.
2. Demand is random and stationary.
3. There is a fixed positive lead time L for placing an order.
4. The following costs are assumed:
Co,: ordering cost
Ch: holding cost
Csg: cost incurred for each unit short
Cus: cost incurred for each lost sales
We also require the following definitions:
D: random variable representing annual demand with mean E(D), variance
varD, and standard deviation op.
L: lead time for each order
g: quantity ordered each time an order takes place
r: reorder level at which order is placed (reorder point)
X: random variable representing demand during lead time
B,: random variable representing the number of stock outs or backorders during

a cycle if the reorder pointis r

If we assume that L is relatively small compared to the expected time required to
exhaust the quantity q, it is likely that only one order is outstanding at any one time.
This is the case illustrated in the Figure 2.5. We call the period between two
consecutive order arrivals as an order cycle. The cycle begins with the receipt of the
lot, it progresses as demand depletes the inventory to the level s, and then it
continues for the time L when the next lot is received. As we see in the Figure (2.5),
the inventory level increases instantaneously by the amount g with the receipt of an
order. We desire to determine the optimal q and r to minimize the annual expected
total cost. In the first case, we assumed all demand must be met and no sales are lost.

So, we need the total cost for the backordered case.
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Define expected annual total cost
TC(r, g)= (expected annual holding cost)+(expected annual ordering cost)+(expected

annual shortage cost). Hence, we calculate the

expected annual holding cost =C, (%+ r— E(X)j

expected annual shortage cost = w
q
expected annual order cost = _COE(D)
q

and we obtain

TC(r, q) = Cy, (% o E(X)) N CBE(B(;)E(D) N COEq(D)

There are two variables in this cost function, q and r. To find the optimal policy that

2.7)

minimizes total cost, we take the partial derivatives of the expected cost, (2.7), with
respect to each variable and set them equal to zero. First, the partial derivative with

respect to g is

1
qQ* = <—C ) (2.8)
h
and taking the partial derivative with respect to the variable r,
Chq”
>r") = )
P(X=>T1Y) CE(D) (2.9)

As a second case we assume that all stockout results in lost sales. In this case, the

optimal order quantity will be

1
2CoE(D)\?2
q= <0—()> (2.10)
Ch
And for the reorder point (2.11) is obtained
C *
P(X>r%) = hd (2.11)

Chq* + CsE(D)

In many circumstances, the stockout cost, C,, is difficult to estimate. For this
reason, it is common business practice to set inventory levels to meet a specified

service objective instead. The two most common service objectives are:
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1. Type 1 service: Choose r so that the probability of not stocking out in the lead
time is equal to a specified value.
2. Type 2 service: Choose both g and r so that the proportion of demands

satisfied from stock equals a specified value.

2.2.2 The (s, S) Continuous Review Policy

An order could be placed exactly at the point when the inventory level reached the
reorder point r. We used this policy to compute the expected inventory level at the
beginning and the end of a cycle. Inventory level is likely to overshoot the reorder
point r, making it impossible to place on order the instant the inventory reaches r.
Then the (r, g) model may not yield a policy that minimizes expected annual cost
function. In this situation, is has been shown that an (s, S) policy is optimal. The (s,S)
policy is when the level of on-hand inventory is less than or equal to s, the size of the

order is sufficient to raise the inventory level to S.

If u is the starting inventory level in any period, then the (s,S) policy is

u<s ,order S-u
u<s ,do not order

If

Determining optimal values of (s, S) is extremely difficult and several approximation
have been suggested. Set S-s = g and s = r. This approximation will give reasonable
results. (Nahmias, 1997)

2.2.3 The (R, S) Periodic Review Policy

The inventory level is reviewed periodically at regular time intervals in this
policy. A convenient quantity is ordered after each review. A different way to
manage a stochastic inventory system is the (R, S) periodic review policy. Every R
units of time (years, months, etc...), the on-hand inventory level is reviewed and an
order is placed to bring up the on-order inventory level S. After a lead time interval

L, the replenishment order is delivered. Figure 2.6 shows the (R, S) inventory policy.
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Time

Figure 2.6 The (R, S) periodic review policy

In general (R, S) policy will incur higher holding costs than a cost minimizing
(r, g) policy. The analysis of this policy is much like that for the (r, ) policy. The
model assumes

1. All shortages are backlogged

2. Demand is a continuous random variable

3. The per-unit purchase price is constant

4. The following costs are assumed:

C,: ordering cost
Ch: holding cost per unit
J: cost of reviewing inventory level
Cag: cost per unit short in the backlogged case
Cys: cost per unit short in the lost sales case
We also require the following definitions:
D: random variable representing annual demand with mean E(D), variance
varD, and standard deviation op.
L: lead time for each order
R: time between reviews

D.+r: demand during a time interval of length L+R with mean E(D+r)
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Define expected annual cost
TC(R, S)= (expected annual holding cost)+(annual ordering cost)+(expected annual
shortage cost)+(annual review cost). Hence, each component of the total cost is

calculated as:

C
annual order cost = —2

R
annual review cost = —

expected annual shortage cost = %"(CNI :CgorCp)

expected annual holding cost =C, (S—E(D,_.z)+ E(D)R)
J E(D)R
TC(R,S) = EO R ?M Ch (S —EDL4r) + — ) (2.12)

Both order and review costs are independent of S. Thus, the value of S that
minimizes the sum of the annual expected holding cost and annual expected shortage
cost is optimal. In the backlogged case given a value of R, the value of S is
determined from

RC,
P(Di4r = 9) = ~ (2.13)
B

and in the lost sale case, S is determined from

RC,

P(Dp4g = 9S) = RC, 1 Cs

(2.14)

2.3 Recent Studies

Continuous deteriorating inventory models have so far analyzed extensively either
form deterministic or stochastic approach. In deterministic approach the parameters
are assumed to be known under fixed constraints. In real world inventory of
deterioration items, the information is not always well defined and the mathematical

modeling of deterioration items is a significant subject.

Early studies on deteriorating inventory systems assume a periodic review

approach. Nahmias (1982) classified both inventory deterioration with fixed lifetime
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and inventory decaying with a random lifetime. Nahmias (1982) considers both
deterministic and stochastic demand for single and multiple products. Later, Rafaat
(1991) present a comprehensive and up-to-date survey of inventory literature for the
deteriorating inventory models where deterioration was consider as function of the
on-hand level of inventory. But he did not touch on the effect of constant decay into
the variety of existing inventory models. Furthermore, deteriorating inventory
models need to be developed to consider the effects of quality discount and multiple-
item stocking. So Goyal and Giri (2001) studied the deteriorating inventory models

under these conditions.

Kalpakam and Arrivarignan (1988) studied a continuous review (s, S) model with
Poisson demand with zero lead time and an exponential lifetime. By assuming no
backorders and instantaneous delivery of orders, the steady state probability
distribution of the stock level and mean time between successive reorders are
delivered. Besides they calculated that reorder point s should be set to zero. Liu
(1990) allows backorders for the same model but used an alternative approach which
gives the stationary probability distribution of the stock level and suggested that the

reorder point s would be smaller than one.

When a positive lead time is introduced in the problem the analysis becomes
extremely complex. Kalpakam and Sapna (1994) consider extensions of Kalpakam
and Arrivarignan (1988) model. They investigate a lost-sales (s,S) system with
exponential leadtimes for items with exponential lifetimes. They used to Markov
process which satisfied the Kolmogorov’s forward differential equations and derived
an exact cost function. Kalpakam and Shanthi (2006) analyzed the same model under
renewal demand. They formulated the system using semi-regenerative process which

applied to obtain the various operating characteristics.

Lian and Liu (1999) study a continuous review (s,S) model with a fixed shelf life
and renewal arrival where degradation is only detected at demands arrival. They used
Laplace-Stieltjes transforms and analyzed the structure of the cost function with

random batch size. But this method is rather complicated for models with batch
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demand. So Lian and Liu (2001) used the Markov chain for the same model. They
provide a heuristic for positive lead time. Also they studied the effect of the demand
rate and the lifetime which is the missing part of the Lian and Liu (1999).

Giirler and Ozkaya (2008) assumed a random shelf-life and allowing backorders
for the Lian and Liu (1999) and Lian and Liu (2001) models. Also they extensively
investigate the impact of the shelf-life distributions and show that the expected cost
rate function is quasi-convex in (s,S) for unit demand. Giirler and Ozkaya (2008) also
provide a heuristic and the heuristic they proposed performs as well as Lian and Liu
(2001).

Lian, Liu and Zhao (2009) studied an (s, S) continuous review model for items
with exponential lifetime and a general Markovian renewal demand process. By
constructing Markovian renewal equations they compared the numerical results of
Markovian renewal process (MRD) and renewal process (RD). They approximated
on MRD model by an RD model and they found the cost is higher than the minimum
cost.

A good summary of fixed life perishability problem can be found in Goyal and
Giri(2001), Nahmias(1982) and Uckun, Karaesmen and Savas. (2008). They
basically consider continuous time inventory control models where deterioration of
inventories. Uckun, Karaesmen and Savas. (2008) review the supply chain
management literature of perishable products having fixed or random lifetimes. They
classify the literature into periodic and continuous review inventory control. They
provide a detailed classification specific model assumption, e.g. replenishment policy

and lead time.

Wagner and Within (1958) presented a simply algorithm for solving the dynamic
version of the economic lot size model. Veinott (1960) studied periodic review and

known demand. Veinott (1960), consider three problems;
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1. Determining an optimal ordering policy when the disposal and issuing
policies are given,

2. Determining optimal ordering and disposal policies when the issuing
policy is given,

3. Determining optimal issuing and disposal policies when the ordering

policy is given.

Veinott (1960) shows that when the life time function is non-increasing in the
items age at issue and for Problem 1 a FIFO issuing policy is used on optimal order

policy will order an amount equal to demand.

Van Zyl (1964) investigate a periodic review problem of a product having a two
period life time, zero lead time and FIFO issuing policy with the minimize expected
costs. Nahmias and Pierskalla (1973) and Fries (1975) extended van Zyl’s model and
derive ordering policies for a general life time of n-periods. Nahmias and Pierskalla
(1973) consider optimal policy for the multi-period version of van Zyl’s model with
ordering and holding costs. Nahmias (1975) and Fries (1975) both consider the zero
lead time and constant lifetime. By the dynamic programming approach, they show
that the base-stock policy is a good approximation of the real optimal policy. Also
Nahmias and Pierskalla (1973) considered only shortage and outdate cost of the same
model. Pierskalla and Roach (1975) show that FIFO is optimal issuing policy when
the objective is minimize total inventory holding costs. Nahmias (1977) suggest to
group older on hand items together in order to reduce the state space. And they
conclude the order quantity is more sensitive to the fresh inventory rather than older
inventory. Nahmias (1977) extend the van Zyl’s model to include a positive set-up

cost for ordering and derive the solution for the single period.

Nandakumar and Morton (1993) derive near myopic upper and lower bounds on
the order quantities for the base-stock inventory policy with fixed lifetime and used
the bounds to evaluate the performance of the resulting heuristics. Jain and Silver
(1994) developed a stochastic dynamic programming model to determine the optimal

order policy for a random life time perishable. They assumed life time as a discrete
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random variable which follows an arbitrary probability distribution. They also
presented two approximate solution methods based on Silver-Meal heuristic and
Wagner-Within algorithm.

All previously studies assume lead time zero and have the objective of minimizing
cost. Inventory models, including positive finite lead time, lost sales and service level
constraints, have little attention in the literature, although these problems are highly
relevant in retailing. Williams and Patuwo (1999, 2004) analyzed a periodic review
inventory control problem of a single perishable product having two period life time.
The lead time is positive and any unmet demand is lost. They derive optimal order
quantities based on system recursion for a single-period problem. And optimal order
quantities for lead times up to four-periods are computed for different demands
distributions. Kapalka (1999) investigate a single-product, periodic review inventory
problem with fixed positive lead time under the lost sales assumption which
minimizes long-run average cost under a service level constraint. Van Donselaar
(1996) present a dynamic replenishment policy for a lost sales inventory control
system without perishability and compare the performance of the dynamic method to
a base-stock policy. Minner and Transchel (2010) present a numerical approach to
dynamically determine replenishment quantities for perishable items with limited life
time, positive lead time, FIFO and LIFO issuing policy and multiple service level
constraints. They show that a constant order policy might provide good results under

stationary demand, short life time and LIFO inventory depletion.

Also, Zipkin(2000) and Kouki, Sahin, Jamei and Dallery (2010) studies are

examined.



CHAPTER THREE
TWO INVENTORY MANAGEMENT APPROACHES FOR PERISHABLE
PRODUCTS

In this chapter, we study two types of inventory control policies for perishable
products, such as continuous review policy and periodic review policy. In this

chapter both policies will be explained in detailed with two similar models.
3.1 (s,S) Continuous Review Approach

Liu (1990) consider an (s,S) continuous review inventory system with Poisson
demand and exponential lifetime distribution. Backlogs are allowed in the model but
lead time is assumed to be zero. Liu (1990) solved this model with two different
approaches and presented numerical analysis for these approaches and compare the

results. We paraphrase the same model with Liu (1990) in this part.

Previous studies show what the conditions are under which random lifetime for
items are equivalent to the corresponding proportional decay of the mean inventory
level. Liu (1990) consider steady state behavior of the system in which demands
occur in single units following a Poisson process with constant rate x. The life time

of inventory is exponentially distributed with a constant failure rate A. I(t) is a

Markov process with a discrete state space {s+1, ..., S}, s<-1,S$>0. Lead time is
zero. P, (t) is probability that inventory level I(t) is n at time t. [Pn () =P{I(t) = n}]

In Figure 3.1 shows the state transition diagram for Markov process with a discrete
state space (0 <n < S). We generated the probability formula (3.1) with the help of
Figure 3.1.

A+u (n)A+p (n+1)A+p SA+u

Figure 3.1 State transition diagrams for discrete state space (0<n <\S).
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P, (t+ At)=Pp,1 (D [(N+1)A + p)At] + P, ()[1-(nA+)At] (3.1)
Rearranging (3.1);
P,(t+ At) = P, () (n + 1)AA + P, (t)puAt + P, (t) — P,(t) (nA + p)At
P, (t+ At) — P, (V)

= ®O M+ DA+ P, Op - P, ®0mA) + P, (Dp

dt — tn+1
dp,
dt(t) = —k[nPn (t) — (n + 1)Pn+1 (t)] - M[Pn (t) - Pn+1 (t)]
dP, (t)

22+ AP () = (0 + Dt (9] = = WP () = Puya (9], 0=0sS (32)

Similarly in Figure 3.2 and Figure 3.3 shows the state transition diagram for (n=S)
and (0 < n < S). The probability formula (3.3) and (3.4) was generated with the
Figure 3.2 and Figure 3.3.

SA+U
Figure 3.2 State transition diagrams for discrete state space (n = S).

Ps(t + At) = Ps 1 (DpAt + Ps(t)[1 — (SA + p)At]

dPSEt) + ASPs (1) = —p[Ps(t) — P41 ()], n=s (3.3)
SIOMOIOIONNO
A R ‘\u/
[ " m

Figure 3.3 State transition diagrams for discrete state space (-s <n <0).
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P,(t+ At) = P, 1 (QuAt + P, (0)[1 — (nA + p)At]
P,(t+ At) = Pht1 (DpAt + B, (t) — P, (DAt

T W ~ P (O], s<n<0 34)

The time periods any two consecutive reorder points are independent and
identically distributed. Liu (1990) defined these time periods reorder cycles in Figure
3.4. Let T denote the reorder cycle in the steady state. T consists of two distinct
periods. The first period Ty is the inventory level is positive. The second period Ty is
the inventory level is zero or negative.

T(j) : the end of the j-th reorder cycle

T1(j):the time period in the (j+1)-th cycle in which inventory level drops from S to 0.
M(t) : the mean inventory level.

S;: positive reorder point

S,: negative reorder point

S1

i i Time
T4(1) ! T1(2) :
S2. 17 v I i i t """"""""""""" j B 'i
Reorder cyclel Reorder cycle 2

Figure 3.4 (s,S) policy with reorder
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Let T(0) =0. Readjusting (3.1)-(3.3) according to the reorder cycles, for0 <n<S
we have;

B, ()

20 4 AP ~ (04 DRyt (0] = — B ()  Prsa (D], 00sS
S S

dp,
e (t)uz [0, = (0 + D1 (] =~ Y 1 [B(O) ~ By (0]
n=1 = n=1

S
M(t)

=—xz (0B () = (0 + DRy 1 (O] = 1 ) n[nB(®) = (n+ DRy 1 (0]

n=1
= =A[1[1.P (1) = 2. P, (O] + -+ + S[S. Ps(t) — (S + P11 (D]

S S
= —AZ nP, — uz P,
n=1 n=1

dM(t) : N
S+ AM(O = —p, TOETETL() (3.5)

And for s+1 < n <0 we have;

< dP (O =
Z n = Z n [Py(t) — Poyq ()]

n=s+1 n=s+1
dM(D)
0 U5+ DIPa () — Rea®] + -+ (~D[P = 1) ~ B(O)]
aL® _ [Py +P, +..+P,]
dt
e —uZP TG+ Tal) < t< T(+1) (3.6)

Liu (1990) consider the system behavior in the steady state. Let P, be the
probability that the inventory level is n in the steady state. Letting t—oo and
simplifying (3.2)-(3.4);

dp, (t)
i TANR®O-M+ D RO = —uP® - P(®],0=n<S

n=0=A0-P )] =—uP(t) — P (V)]

“AP,(t) = Py (1) —pP,(t) = P,()=—"—P,
n+2A



n=1= AP () - 2P, (O] = —u[P (O — P (V)]

WP, () — 24P, (1) = P, (t) = P,()=——P,

L+ 2h
forn=n = P, = s P,
LT
dP, (t)
;t = —p[P,() = P,;1 (D], s<n<0

n=0= puPy(t) =P (t) = Py() =P (D)
n=-1=pP_;(t) = phy(t) = P_1 (1) = P (V)
for n=n =P, (t) = Py(t)

n=s—1
-1 S -1 S
il
P Yn1o Y me Y
n=s-—1 n=0 n=s—1 n=o
S
U U
—s)P, Z Pp=1 - Py|—s+ =
(=) + u+n7\0 B + nA
n=1 n=1
S
W i
o )
0|7+ 1+ nA — /7S i+ nA
n=1 n=1
S -1
Po=|) —Fo—s| =@ -5
1u+n7\
n=

@, = p/(nu+n) is the conditional probability that given n items in stock.
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(3.7)

(3.8)

(3.9)

With (3.7)-(3.9) the mean and variance of the steady state inventory level can be

obtained. Mean inventory level can be obtained as follows:

S S 0 S 0
u
E[n] =Z:nPn = anﬂ +Z:nPn =Znu+kP0+ZnP0
= n=s n=1 n=s

n=s n=1

S

:EZ
A Ein

n=1 )

Py|+ [-Po(14+ 2+ -+ 5)]
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>l=

:; zs: z P, —[PO%S(S-F].)]

n=1

:;- Zi: P ] [PO s(s+1)]

= ; [S— ®(S)] — Es(s + 1)” PoE[N]

n

>=
+

_ l; S - o) - [5s(s+ 1)]] [®(5) — ]! (3.10)

o°: the variance of the inventory level in steady state.

2 _

( SS+1) - —(s +2)(s + 1)5) [b(S) —s]™! — (E

ot E[n]) E[n] (3.11)

>)I'C

Let V; be the time for the inventory level to drop from i to i-1 (s <i <S). The

distribution function for V; is given by;

(1—eWHx 0<i<S§
Fi(x) = {1 e s<i<0 (3.12)
Since
T:T1 +T2 = (VS+"‘+V1)+(V0+"'+VS+1) (313)

the Laplace-Stieltjes transform of T is the product of Laplace-Stieltjes transforms of
the V;’s,

S
o i
fr(w) = fr, (W)fr, (W) = ( - ::r m) (W i “) (3.14)

i=1

From (3.14), Liu (1990) obtain the mean length and variance of the reorder cycle;

Elnly = Elnly, + Elnly, = 50(S) + 1L (=s) (3.15)
S
1 (=s)
= 0%1 + GZTZ = nzzl (u n n)\)Z + uz (316)

( a ] . The Laplace-Stieltjes transforms of the waiting time of i-th backlog
W+

demand.
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3.1.1 The Expected Operating Costs

The following notations are used for the corresponding unit costs by Liu (1990).
Ch: the inventory holding cost per unit per unit time;
C.: the replacement cost per unit decaying;
C.: the shortage penalty per unit short;
Cs: the shortage penalty per unit per unit time;
Co: the ordering cost per order.
For convenience, Liu (1990) used x=-s instead of s. x can be interpreted as the
backlogging level. The inventory holding cost incurs only when the inventory level is
positive. The mean length of this period is E[n]r,. Liu (1990) calculated the mean

inventory level during this period as

-1

S S S
, , M M i _
E[n] = HZZIHPH = ;n(u_i_n}\l)()) (Zmpo> = X[S— CD(S)]CI) 1(5) (317)

n=1

The total inventory holding cost in a reorder cycle is
ChE[n]r,E[n] = C,A7L[S — &(S)] (3.18)
The deterioration can occur in period T;. The mean rate of deterioration in this period
is AE[n]” and the mean total replenishment cost per cycle is
C.E[n] E[n]r, = C.[S — @(S)] (3.19)

The period which backlogs exist has a mean rate E[n]y, — ﬁ = % The number of

backlogs is (x-1), and the mean backlog level is%(x — 1). The total shortage penalty

cost is

(x—1)°

TG, = ¢~

+C(x—1) (3.20)

Liu (1990) summing up the three costs and ordering cost Cy and divided E[n]+ and

obtain the expected total costs per unit time

(x—1)°

Co+Cs

+Cy(x—1) + [CLA™L + C.][S — @(9)]
u [ (S) + x]

TC(x,S) = (3.21)
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Co +Cy(x—1) + [CuA™1 + C][S — ®(5)]
B L I[D(S) + x][®(S) + x + 1]
Cy(@(S) +1) = C, — [CLA™! + C,][S — @(9)]

ATCR ) = I0(S) + X[ + x+ 1] (3-22)
Thus, Liu (1990) conclude: when
Cy(@(S)+1)—C, — [CLA™L + C][S — @(S)] > 0
Cu(@(S) + 1) > Cy + [CoA™L + C][S — D(S)]
-1 _
c. > Co + [CLA™H + C.][S — @(9)] (323)

d(S)+1
TC(X, S) a strictly increasing function of x and, as a result, no backlogging will be
permitted in the system; when

Co + [CLA™L + C,][S — @(S)]
®(S) + 1
TC(x, S) is a strictly decreasing function of x and all demands should be backlogged

C, <

and no feasible optimal solution is available for this system. When

o Cot [ChA™t + C][S — @(S)]
v ®(S) + 1

TC(x, S) is independent of x. An artificial limit may be unrealistic for practical

systems. Thus a positive Cs is important to the modeling of inventory systems with
shortages.

(b) Cs>0. TC(X, S) is no longer a simple monotone function of x. Letting
g.(x,S) = %[TC(X —1,5) + TC(x + 1,5)] — TC(x,S) (3.24)

We have from (3.24)

2p{Co + [ChA™" + G[S — @(9)] — Cu[®(S) + 1]} + Cs[2(S) + 1)°
2[@(S) + x — 1][®(S) + x][(S) + x + 1]

Thus, Liu (1990) conclude: when

8x (x,9) =

2u{C, + [CLA™E + C.][S — @(S)] — Cu[®(S) + 1]} + C[@(S) + 1] = 0
2uC, + 2u[CLA™E + C,][S — @(S)] + C4[®(S) + 1]? s
2u[D(S) + 1] -

Co + [CLA™ + C][S — @(S)] [@(S) + 1]
B(S) + 1] 2 > C, (3.25)
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TC(x, S) is a convex function of x; otherwise it is a concave function of x and the

minimum is at x =1, that is, no backlogging should be allowed.

Letting A, TC(x,S) = 0 and [C,A™! + C.][S — ®(S)] = A, from (3.21),

2 _ 2
Co +C§—’:l+cu(x)+A Co +%+cu(x— 1D +A
o) Fxr 1] WD (S) + =0
2 2uC,
X +x(1+20(9) = 2 (C +A) + | @) + D (1- )|
x2 +x(1+420(S)) —k(S) =0 (3.26)
in which
2u B 2uC,
K(S) = 2 (€ + [GA! + CIIS = B(S)D) + [((ID(S) +1) (1 -= )] (3.27)
Thus, when TC(x, S) is a convex function of x, the positive solution of (3.26) is given by
x* = /[®(S) + 0.5]2 + k(S) — [®(S) + 0.5] (3.28)
and the cost function is minimized at
x=[x"]+1 (3.29)

where [x*] is the largest integer which is smaller than or equal to x". There exists a
finite backlogging level x which will minimize the expected inventory costs. In
conclusion, when C,=0, which is a realistic assumption when Cs>0, the TC(X, S) is
always a convex function of x.

(c) If there exists a local minimum point, then TC(x, S) is a unimodal function of S
for S>0. While fixing x, Liu (1990) consider the increment of TC(x, S).Letting

A, TC(x,S) = TC(x, S + 1) — TC(x, S) (3.30)

and
A, TC(x,S) = TC(x,S) — TC(x,S — 1) (3.31)

Liu (1990) calculate from (3.21),
A TC(x,S) = Hg1 (%, S) (3.32)
[+ (5 + DA + x1[#09) + % + b5

and

A,TC(%,S) = he (. 5) (3.33)

[ + SAI[D(S) + x] [(D(S) LRTE Y fs;\]
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in which
g1(x,9) = [CLA™ 1 + C ][ + (S + DAJD(S)
—uC(x) — [CoA™ 1 + C.][Sp — (S + 1DAx] (3.34)
g2(x,8) = [CuA™" + C ][ + SA]®(S) — uC(x)
—[CyA™t + C.][n — Ax]S (3.35)
and
C(x) = C, + C, & ;u1)2 +C,(x—1) (3.36)

If S” is a local minimum,
[CoA™E + C [+ (S* + DA]DP(S™) — uC(x) — [CLA™1 + C,][S*u — (S* + 1)Ax] = 0
[CLA™ L+ C [+ (S* + DA]P(S*) = uC(x) + [CLA™t + C1[S* u — (S* + 1)Ax]
(3.37)
[CLA™E + C ][ + S*A]P(S*) — uC(x) — [CLA™ L + C,][p — Ax]S* = 0
[ChA™Y + C ][ + S*A]D(S*) = uC(x) + [CLA™t + C,][n — Ax]S*  (3.38)

Considering A;TC(x,S +1) and A, TC(x,S -1),

1

108" + 1) = 816 S + [0y + €A [0S + e +

X]>0

(3.39)

0, (%S* — 1) = g,(x ) — [Cy + C.A] [q>(s*) - + x] <0 (340

i+ S*A
By the same procedure, Liu (1990) then has g;(x,S* + 2) > 0 andg,(x,S* — 2) < 0.
Thus, through induction, the following can be established to complete the proof:
g1(x,S)>0if S >S" (3.41)
and
g,(x,S) <0if S<S* (3.42)

Noticing from (3.41) and (3.42) that TC(X, S) is strictly unimodal, the existence of
a local minimum is almost certain unless the minimum is at S=0. When S =0, the

optimal policy is to order one unit at a time to meet the demand just received.
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3.1.2 Numerical Analysis

In this section we present numerical analysis to show the impact of perishability
on the optimal policy with respect to cost parameters. And the model allows to stock
out for all analysis. Firstly, we compare the impact of the order cost C, and reorder
level s on total cost (TC). Table 3.1 shows the total cost under these assumptions:
Cs=15, u =100, 4 =0.1, C, =15, C, =15, C,, =4.5 and the same maximum inventory

level S=7.

Table 3.1 The impact of the order cost (C,) and reorders level (s) on total cost

Co S TC

40 -5 -

40 -1 -

40 1 268,9622
40 5 679,2281
50 -5 -

50 -1 41,46207
50 1 389,5192
50 5 760,5631
60 -5 -

60 -1 200,3225
60 1 510,0761
60 5 841,8981

We draw a conclusion from Table 3.1. That when C, =40, we pick the reorder
level s =1 for minimizing the total cost. Same as when C, =50 and C, =60, the
optimal s values are -1 and 1, respectively. And for the minimum total cost, the

optimal s value is -1 and the optimal C, value is 50, respectively.
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Table 3.2 shows the impact of holding cost C, and shortage cost C, on total cost
under these assumptions: S =7, 4=100, 4 =0.1, C; =15, C, =15, C, =50 and a fixed

reorder level s = -1.

Table 3.2 The impact of holding cost (Cy) and shortage cost (Cs) on total cost

Ch Cs TC

5 15 18,04335
10 15 -
20 15 -
4.5 5 38,28486
4.5 10 39,87347
4.5 20 43,05068

In Table 3.2, when shortage cost Cs is fixed, if we increase holding cost Cy, total
cost will be meanless. When holding cost C, is stable, if we increase Cs, total cost

will increase. Total cost is minimum, when C;, =5 and Cs =15.

Table 3.3 shows the impact replacement cost C, and reorder level s on total cost
with S =7, ©=100, A =0.1, C, =15, C, =50, Cs =15, Cy, =4.5.
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Table 3.3 The impact of replacement cost (C,) and reorders level (s) on TC

Cr S TC
5 -5 -
5 -1 88,2995
5 1 425,0635
5 5 784,5434
10 -5 -
10 -1 64,88079
10 1 407,2913
10 5 772,5532
15 -5 -
15 -1 41,46207
15 1 389,5192
15 5 760,5631

In Table 3.3, if we examined variance of reorder level s for different C, values.
For example for C, =5 the optimal s =-1 and for C, =10 and C, =15 the optimal s =-1
too. For this reason s value is independent from C, and always s =-1. If C, increases,
total cost would decrease. So the optimal C, value has to be set 15 to find the

minimum total cost.

Table 3.4 shows the impact of shortage cost C, and reorder level s on total cost
For S =7, =100, 2=0.1, C, =50, C; =15, C, =4.5, C, =15.



Table 3.4 The impact of shortage cost (C,) and reorders level (s) on TC

s C. TC
-10 0 -
5 0 1525,599
-1 0 518,0434
1 0 389,5192
5 0 272,5532
10 0 221,9447
110 15 4569,591
5 15 -
1 15 41,46207
1 15 389,5192
5 15 760,5631
10 15 755,4795
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For minimizing the total cost, when C, =0 and C, =15 the optimal reorder level s
=10 and s= -1, respectively. When s increases; if C, =0, total cost decreases and if C,
=15 total cost is convex. For minimum Total cost, s and C, should be -1 and 15,

respectively.

We fixed the all costs and demand rate x and reorder level s. We just change the

failure rate A to see the variation of total cost.

Table 3.5 The variation of failure rate A

A TC
0,1 41,46207

1 231,1537
10 250,1228

When 1 increases, the total cost increases too. So we must use the minimum A to
minimize the total cost. In Figure 3.5 shows the variation of failure rate A on total

cost with fixed maximum inventory level S =7, constant Poisson rate x=100, order
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cost C, =50, shortage cost Cs =15, holding cost C, =4.5, replacement C, =15 and

reorder level s = -1.

3.2 Periodic Review Approach

Williams and Patuwo (1999) consider a single period, periodic review inventory
system with different continuous demand distributions. The same model utilized with
only a few differences relevant to demand distribution. In this model is similar to Liu
(1990) model demand is assumed to be Poisson distribution. But there are some
differences. For example, lead time is assumed to be a positive constant, lifetime is
known and fixed (m=2 periods) and backlogs are not allowed. To determine the
optimal incoming quantity for a single product for this model we followed Williams

and Patuwo (1999) solutions.

At the start of the period 0, we must make a decision to order quantity, y,, which
will minimizing the total expected costs in period L and order will arrive at period L.

L is defined as the lead time. In period O, the total starting inventory composes the

order quantity, yo, ordered at the period (-L) and the aged inventory X;,X,* ... X,

Xo™: the inventory with (m-1) period useful lifetime remaining, in period O.

In period L, the order quantity y, be used to meet demands to start of the period L
and the end of the period L+m-1. The remainder of the y, will outdate and must be

discarded.

3.2.1 The Model Definition and Assumptions

In this model Williams and Patuwo (1999) consider a single period, periodic
review and positive lead time inventory model. Lead time is fixed and L period. The
lifetime is m periods. So the actual lifetime of the items equal to ‘(m+L) period *. We
used the same model but unlike Williams and Patuwo (1999) we assumed the
demand distribution is Poisson.

Di(.): demand in any period t, t=0, 1, 2 ...
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kki
il
0

G.(.):CDFof D, => G(t) = e

i=
7\,X
g.():pdfof D, => g(x) = e‘k; forx =0,1,2, ...

Co: the ordering cost for per unit

Ch: inventory holding cost for per unit per period

C.: unsatisfied demand or inventory shortage cost for per unit per period.

C.: outdate cost for per period.

All costs are charged in the period in which the order arrives. Finally, all
unsatisfied demands are assumed to be lost. We used the same notations with
Williams and Patuwo (1999);

a;: is the excess demand, [D; — X" in period t

gt density function of a

St: inventory shortage in period t

X starting inventory with one period of life remaining in period t
f,(.): density function of X;*

Yi: incoming order quantity at the beginning period

O™ the quantity of y; that will outdate at the end of period t+m-1

3.2.2 The two period lifetime problem

Williams and Patuwo (1999) used life time m =2 for this model and determine the
optimal quantity, y;.
Total expected cost = expected order cost + expected holding cost +
expected shortage cost + expected outdate cost
E[TCL] = Co.yL + Ch.E[XLs1'] + Cu. E[SL] + Cr. E[O. "] (3.43)
The starting inventory in period L+1 with one period of life remaining is;
Xi+1'= [yi- (D - X' (3.44)
The inventory shortage in period L is;
S = [Di—yi— X (3.45)
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The portion of the order quantity in period L, which will outdate at the end of the
period L+1;
OL"'= [y DL (Dt - X)'T (3.46)

Let fi(x.") represent the pdf for the starting inventory X, for t=1,2,3,...
For t=1;
e x;'=0 => the minimum demand is yo+xo" for period 0
P(Do> yo+Xo') =1-Go(Yo+Xo") = f1(0)
o X">0 => x1'= yo+Xo'-Dg and Do=0 => x;'= yo+xo' the range of the x;* equal
to0< xlls y0+Xo1
P(0<Do< yo-Xo'*- X1) =go(Xo'+Yo-X1') = fa(x1?)
For t=2;
o X'=0 => £,(0) = [1-G(yy)].f(0) + i [1-G (v, +x) |- f0a")

1
x; =0

Yo
o X220 => f(x2") = gu(y1-x2") F1(0) + Z gl(yl +X; _XZl)fl (Xi)

x1=0
At the end for t=1,
1_Go(yo+xol) Xll =0
f,(x)=40,(Xs + Y, —%), 0<x! <X +Y, (3.47)
0 otherwise
And fort=2, 3, 4...
Yi2
1-Goy(y, a0+ D [1-6uyu+x ) (k) x(=0
X, =0
Yi2
£ =000 X0+ Y [0 0o +x —x) ) o 0<x! <y, (349)
X1—11:0
0 ,  otherwise

Consequently, the expected inventory holding cost in period t is;
E[Xw1'] = E[E[Xwa" | X(T] =>

-1 Xt +y¢

BlXE] = Z(yt 2). gt<zt))ft<o>+z D, ot s = ma @R (3:49)

xt—l zt—xt+1
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The expected shortage cost in period t is;
E[S] = E[E[S: | X(1]

© yi—1 0
E[St] = Z (ze — yo)- g (z)f (0) + Z Z (ze —ye — th)'gt(zt) ft(th) (3.50)

Zt =Yt xtlzl zt:xtl+yt+1

To determine the expected outdate we need to determine the density function of
[Di— X", g be the density function of and a; be a random variable.
For a=0;

e x/=0=> this is not possible because the demand cannot be negative.

Yia
o x>0 => q(0)= G(x;)f (x)
xt=1
For a;>0;
e =0 => there is no imported product from previous period.

Yi1

° Xt1>0 => qt(at)=g(at).ft(0) + Z g (Xi + a't )ft (Xi)
xi=1
Fort=1,2,3 ...
Y1
> [ x ) ]f(x) . x!=0
x{=0

q,(a,) = [gt(at)].ft(0)+i[gt(xtl+at)]ft(xtl) , 0<x!<y,t (35

0 ,  otherwise

In conclusion, the expected outdate cost is
E[Ott+1] = E[E[Ott+1 |(Dt _th)+:0]]

E[OEH] :[ Z (yt —Z )'gt+1 (Zt+1):|'qt(0) + i{ 21 (yt —a; _Zt+1)'gt+l(zt+l) 'qt(at) (3'52)

By the substituting Equations (3.49), (3.50) and (3.52) into Equation (3.43) the

total expected cost is;
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Y -1 x,_+y|_
E(TCO=CoY, +Ci Z(yL-zL)g(zL) )+, D, (ubada)f(d)
7 =0 xt=1 z =x{+1
yL—1 i
+Cy Z (5 =Yg A0 + ) Z L=y — g A6
| ZL=YL XL—l Zy, yL+xL+1 ]
o YLTaL
+C, Z (YL — Z1+1)8(Z141)-q1(0) + Z Z (L —aL — z1.41)8(zZL+1)q1(aL)
|z, +1=0 aL=0zy,41=0

(3.53)
Williams and Patuwo (1999) used Equation (3.53) to compute the total inventory
cost in any period for a perishable item with two period lifetimes, an order lead time
of L period and C,, Cy, Cyand C; are per unit ordering, holding, shortage and outdate
cost respectively. Also Williams and Patuwo (1999) determine the optimal order

quantity with the same equation.

To determine the order quantity that minimizes the cost function is given by
setting the first derivative of the total expected cost function with respect to y,, equal

to zero.
y -1 XL+VL
E(TCD=Coy, +Cy Z(VL'ZL)Q(ZL) f(0)+z Z (y, +xt-z0)9(zy)- fL(xt)
7,=0 xt=1 zp=x{+1
yL—1
Z (= YR (O + ) Z L=y xDg@). ()
ZL=YL xt=1 zp=yp+x{+1
o YL—aL
Z (YL — 2L+1)8(ZL+1)-qL(0) + Z Z —ay, —z141)8(ZL+1)4qu(@L)
z1,+1=0 a,=02zp41=0

From Equation (3.49),

y -1 Xt+yL

BIXE ] = Z(VL 20O ), D (2o A ()

2 =0 Xt=1 zp=x{+1
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dE[xL+1]
dyy,

yL—1xL+yL
(Z (i — 21.)g1(z1.)f(0) + S Z Z (yo +xi —z.) fL(XL)>\

xL—lzL—xL
}f(O)

yL—1
+ {Z [g(xi + 1) +g(x{ +2) + -+ g(x{ + YL)]fL(X[l,)}

—71)

{[gL 0) + - +gLlyD] +

ZL—O

x%=1
yL-1
dE[x}.4]
G = GLODRO) + ) G +xDACD) (3:54)
X]{=0

yL—1
[z (5= RO + ) 2 L= xi)g(zL).Mxi)‘

ZL=YL XL—1 ZL—yL-l-XL-‘rl

dYL = lz (2L —y,)8(z)-f(0) + Z Z el xi)g(zL).fL(xi)‘

Z1=Yy, XL—1 Z1,= yL+XL+1

=—(gly, + 1) + g0y +2) +-++).f(0)

yL—1
= ) @O+ X+ D+ g+ x4 2) )R GD
xizl
—[1 = G(yL)IF(0) = [1 = Gy, + x)IfL (x1)
d =
= [G(y,) — 1]f(0) + Z [G(y, +xb) — 1] fu(x1) (3.55)
XL 1

o YLTAL
E[Ol*1] = [ Z (L — zL+1)8(ZL11)-qL(0) + Z Z (yo—aL— ZL+1)g(ZL+1)qL(aL)]

z,+1=0 a;,=0zp,41=0

dyy,

214+1=0 a,=01zp41=0

dE[0]  d | < SN
M = E[ Z (YL - ZL+1)g(ZL+1)'qL(O) + z z (YL —a — ZL+1)g(ZL+1)qL(aL)“

= (g(0) + g(1) + -+ g(y.))-q.(0)

D (@O + g1 + -+ g — ) aua)

aL=0
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dE OL+1 0o
ElyLL I_ G- a0+ Y (6(y, —a))-qy(an) (3.56)

aL=0

Substituting Eq(3.54)-(3.56) into Eq(3.53) and combining terms;

YL-1
dE[TC, ]
d = Co — Cuf(0) + (Cp + Cy) |G (y)fL(0) + Z G (yL +Xi)fL(Xi)]
YL g
YL-1 YL-1
~Gh ) GODRED — € ) R
xizO X%ZO

+C; |Gr4+1(yL)qL(0) + z GLy1(ap —yi )QL(aL)‘ =0 (357

aL=0

The convexity of Eq(3.57) is establish by showing the second derivative with

respect to y, to be positive,

d2E[TC, ] d ~ ) )
——— = (C, + C) —[GL(yL)fL(0) + z G (yL —xp) | fu(xg)
dy{ dy, =
XL_
yL-1 yL-1
~ G| D G ODRED - G| ) R
dy, | 4 d
=0 t=0
d (oe]
+ Crd_ Gp+1(y1)aqL(0) + Z Gr+1(yL —ap)qrn(ar)
4 =
YL-1
= (Cy + C) [gL ()L (0) + Z gL(yL _Xi)] —C,(0) — C,(0)
X%‘=0

+ G |8L+1(y)aL(0) + Z grr1(yL —aL )qL(aL)‘

aL=0
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YL-1

= (Cy + Cy) (gL (y)fL(0) + Z gL(yL —x1)

1_
x;,=0

+C; [gL+1(yL)qu(0) + Z grr1(yL —ap)qr(a)| >0 (3.58)

aL=O

d?E[TC,]
dy?

The holding, shortage and outdate costs are all positive and the density function

g(.), fL(), gu(.) are all nonnegative. So that the Eq(3.58) must be positive.
3.2.3. Experimental results

The experimental investigation for optimal order quantities will be computed for
lead times (L=1, 2, 3), for the Poisson demand distribution two different level of
mean demands (A=5, 10) and for three different starting order quantity (yo=5, 10, 15)
with a fixed lifetime (m=2). Examinations of the experimental results, shown in
Tables 3.6 — Tables 3.8, indicate that the optimal incoming quantity is a function of
the Lead time. The behavior of the optimal order quantities are differentiated in;

1. When L=1
2. When L=2 (L=m)
3. When L>m

For L=1, the optimal incoming quantity for one period lead time problem,

illustrate in Figure 1, which shows yl* for L=1, A=5, 10 and stationary Poisson

demand distribution and the starting order quantity yo=5, 10, 15.
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Y1
7 7 R —o A5
6 \ - = A=10

Figure 3.6 Optimal incoming quantity y,” for L=1

In Table 3.6, for the mean demand A=5 units per period, the optimal order
quantity in period 1, y; , is equal to 0 when the starting inventory for period 1 is
Xo'+ye>k (k is equal to 10). This implies that it is optimal not to order under this
condition. Where the mean demand is A=10 units per period, K is increasing to 20.
Under these conditions we make a decision by using Yo, because X, is a fixed
number. For A=10;

e When yo=5, the optimal order quantity y; =7 units.
e When y,=10, the optimal order quantity y; =3 units.
e When yo=15, Xo™+ye>20, it is optimal not to order y; =0.



Table 3.6 Optimal incoming quantity y;” for L=1

A=5 A=10
Yo=5 Yo=10 Yo=15 Yo=5 Yo=10 Yo=15
y,:=0 |2,20445 |4,6213 |4,9872 |-2,7208 |-1,6864 |1,4786
yi=1 |3,0357 |4,83255 |4,99645 |-2,6428 [-1,0654 |2,3286
y:=2 |3,8202 |4,9663 |5,00095 |-2,4938 (-0,32415 |3,1316
y:=3 |4,51095 |5,05305 |5,0037 |-2,2408 |0,50835 |3,91685
y:=4 |5,1352 |5,11955 |5,00595 |-1,8433 [1,3936 |4,77735
y:=5 |5,75845 |5,1873 |5,0077 |-1,2753 |2,28785 |5,82285
y:=6 |6,40095 |5,2848 |5,0097 |-0,5338 (3,1546 |7,1721
y.=7 |6,9877 |5,4483 |5,0132 ]0,3517 [3,9686 |8,87535
y:=8 |7,42045 |5,71405 |5,02195 |1,3232 |4,71535 |10,8881
v:=9 |7,6772 |6,08955 |5,0422 |2,3027 (5,38385 |12,59685
y,:=10 |7,81045 |6,5428 |[5,0872 |3,21995 |5,9656 [15,33885
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For L=2, when we increase the order lead time to two periods, Figure 3.7 shows

y,  with a Poisson demand distribution and order quantity for period 1, y;. Also, we

used two different mean demands 4=5, 10 to constitute Figure 3.7.

Y2

— & A5
- --\=10

0123456 7 8 910111213141516 Y0

Figure 3.7 Optimal incoming quantity y, for L=2
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In Table 3.7, similar to the case where L=1, for the mean demand A=5 units per
period, the optimal order quantity in period 2, y, , is equal to O when the starting
inventory in period is 2, Xo'+yo+yl1>k (k is not constant) and this implies that it is
optimal not to order under this condition. For A=10;

e When yo=5, the optimal order quantity y, =7 units.
e When y,=10, the optimal order quantity y, =7 units.
e When y,=15, it is optimal not to order y, =0.

Table 3.7 Optimal incoming quantity y,” for L=2

A=5 A=10

Yo=5 Yo=10 Yo=15 Yo=5 Yo=10 Yo=15

y1=0 y1=0 y1=0 y1=7 yi=3 y1=0
y,=0 [2,21075 4,476 4,97675 |-1,51745 (-0,94035 |[1,4912
y=1 |[2,218 4,4775 4,97775 |-1,67795 |-1,11585 |1,3747
Y= 2,44875 (4,521 4,97875 |-1,7827 |-1,25035 |1,27095
y=3 [2,938 4,6135 4,98275 |-1,7882 [-1,2991 |1,2052
Y= 3,604 4,7375 4,98825 |-1,6352 (-1,2036 |1,21145
y=5 [4,29475 |4,8675 4,99375 |-1,2682 (-0,9036 |1,33245
y,=6 |4,88225 14,9775 4,99825 |-0,65245 (-0,3601 |1,6052
y.=7 |[5,30675 |5,0575 5,00225 (0,20355 [0,4204 2,03595
y,=8 |[5,574 5,10725 (5,004 1,24205 |1,38315 |2,5992
y>=9 |[5,7245 5,13525 (5,005 2,36255 (2,4324 3,2397
y»=10 |5,799 5,14875 |[5,006 3,45805 (3,4639 3,8892

Comparing Table 3.6 and Table 3.7 the optimal incoming quantities for period 1
and period 2 when =5, is found as y; =0, y, =0 respectively for all values of yo. This
implies that for the mean demand is equal to 5; and when the starting inventory is
equal to 5 and the inventory on order is equal to three different values, the optimal
incoming quantity is independent of the order lead time. When A=10, we examined
optimal order quantities for different values of yo. For y,=5 we find the optimal order
quantity for L=1 and L=2 as y, =7 and y, =7, respectively. The optimal order
quantities are equal to the same values It shows that the optimal incoming quantity is
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independent of the order lead time. For y;=10 we find the optimal order quantity for
L=1 and L=2 as y; =3 y, =7, respectively. The optimal order quantities are equal to
different values. This shows that; if lead time increases, order quantity would
increase too. For yo=15 we find the optimal order quantity for L=1y; =0 and for L=2
y, =0. As in the case of y,=5, the optimal incoming quantity is independent of the

order lead time for y,=15.

For L=3, Figure 3.8 shows y.  as a function of y, and y, for Poisson demand

distribution with mean demand 4=5, 10 and three different value of yp.

vs - S5
8 1 =-=--B —m— =10

yo0

Figure 3.8 Optimal incoming quantity y; for L=3

Table 3.8 shows the optimal order quantity for L=3 similar to L=1 and L=2
problems, for the mean demands A=5 and A=10 units per period, the optimal order

quantity in period 2, ys .



Table 3.8 Optimal incoming quantity y; for L=3

A=5 A=10

Yo=5 Yo=10 Yo=15 Yo=5 Yo=10 Yo=15

y>=0 y>=0 y>=0 v>=7 y>=7 y»=0

y=0 |2,21175 |(4,4772 4,97675 |-7,34915 |-2,49365 |1,49335
y:=1 {2,219 4,47845 14,97775 |-7,39865 |-2,67515 |1,3776
y:=2 |2,4495 4,5222 4,97875 |-7,23965 |-2,7834 |1,2741
ys=3 |2,93875 |(4,61345 |4,98275 |-6,7839 |-2,75865 |1,2071

y;=4 |3,6035 4,73845 14,98825 |-5,9244  |-2,5224 |1,21285
ys=5 (4,294 4,86745 14,99375 |-4,5629 |-1,99565 |1,3331
y:=6 |4,88125 |(4,9782 4,99825 |-2,65065 |-1,12665 |1,6046
ys=7 |5,3065 5,0582 5,00225 |-0,2364 |0,07285 |2,0321

y;=8 |5,57375 |5,10795 |5,004 2,52535 |1,52085 |2,59285

y=9 |5,72325 |5,13595 |5,005 5,4016 3,08135 |3,23035

y;=10 |5,79775 |5,14945 |5,006 8,14085 |4,60335 |3,87585
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Comparing the Table 3.6, Table 3.7, Table 3.8 the optimal incoming quantity

when A=5, y3 =0, y, =0 and y; =0 all values of yo. This implies that order quantity is

independent of the order lead time. When 4=10, we examined different values of yj.

Firstly, find optimal order quantities for all the lead time values.

Yo=5 — y1 =7, ¥, =7, y3 =8.
Yo=10 — y1 =3, y» =7, y3 =7

y0:15 — yl*:O, yz*:0, y3*:3.

This implies that; if lead time increases, order quantity would increase too.



CHAPTER FOUR
CONCLUSION

In this study we considered a periodic review policy for perishable items with
Poisson demand, life time of two periods, positive order lead time and a lost sales
policy. We determined the single period optimal incoming quantity by the help of

total expected cost function.

The purpose of this work is to present the form and properties of the optimal
incoming quantity for two different mean demand (A=5, 10), three different starting
order quantity (yo=5, 10, 15) and three different order lead time (L=1, 2, 3) with
Poisson demand and starting inventory Xo=5. For L=1, the optimal incoming
quantity y;  is obtained as a function of y,. When the A=5, we do not need the
optimal order policy is not to order any level of y,. When A=10, the optimal quantity
is depend on yo. The sum of the initial inventory level and the order quantity at the
beginning is greater than k (Xo+ Yo >k). When k equal to 20 the optimal policy is not
to order. If k is between 15 and 20 the optimal order quantity is y; =3 and when k is
between 10 and 15 the optimal order quantity is y; =7. As a result, if Xo+ Yo
increases, the optimal order quantity will also decrease.

For L=2 and L=3, the optimal incoming quantity y, and ys are obtained as the
functions of y,, y1 and y,. When the A=5, the optimal policy is not to order at any
level of yp. It is shown that the optimal order quantity and yo are independent. When
A=10, the optimal quantity depends on Yyo. Xo+ Yo >k and when K is equal to 20, the
optimal policy is not to order. When k is between 15 and 20 the optimal order
quantity is y, =7 and when k is between 10 and 15 the optimal order quantity is
vy, =7. If X+ Yo increases, the optimal order quantity decreases for L=2. Moreover,
for L=3, the same relationship Xo+ yo>k is relevant. If k equals to 20 the optimal
order quantity is ys =8, when k is between 15 and 20 the optimal order quantity is
found as y; =7 and when k is between10 and 15 the optimal order quantity is ys =3.
If Xo+ Yo increases, the optimal order quantity would increase, too.
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In this work we demonstrate the ability to compute the single period, single item
optimal incoming quantity for product with fixed life time of two periods, with
Poisson demand and have positive order lead time. Further research needs to be
studying on the other discrete distributions and the effect of the characteristic

inventory costs on the optimal order quantity as well as the total inventory costs.
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APPENDIX
SIMULATION CODE FOR THE EXPECTED COSTS WITH POSITIVE
LEAD TIME MODELS

Al Simulation code for density function for the starting inventory with L=1

t1=0;

lamda=15;

x0=5; y0=15;

x=x0+y0;
for i1=0:x

t1=t1+((lamda”i)/factorial(i));

end
f1=1-((1/exp(lamda))*t1);
fprintf('.a.=%4.41\n", f1);

A2 Simulation code for starting inventory in period t with L=1

t1=0;
1=0.0830;
lamda=15;

for y=0:10

for i=0:y
t1=t1+((1/exp(lamda))*((lamda’i)/factorial(i)));

end

y1(1,(i+1))=(t1*f1);
t1=0;
end

fori=1:11
fprintf('....y......=%4.40\n’, y1(1,1));
end

and

11=0;t2=0;t3=0;
lamda=15;
y0=15;

x0=5;

for y=0:10
for x=1:y0
for i=0:(x+y)
t1=t1+((1/exp(lamda))*((lamda”i)/factorial(i)));



end
t2=((1/exp(lamda))*((lamda™((x0+y0)-x))/factorial((x0+y0)-x)));

t3=t3+(t1*t2);
t1=0;t2=0;
end
y1(1,(y+1))=t3;
t3=0;
end
for i=1:11
fprintf(....b2................ =%4.4f\n", y1(1,1));
end

A3 Simulation code for shortage inventory in period t with L=1

t1=0;t2=0;t3=0;
lamda=15;
x0=5;y0=15;
for x=0:y0
t2=((1/exp(lamda))*((lamda”((x0+y0)-x))/factorial (x0+y0)-x)));
for i=0:x
t1=t1+((1/exp(lamda))*((lamda’i)/factorial(i)));

end

t3=t3+(t1*t2);

t1=0;t2=0;
end

fprintf('....c......=%4.4f\n’, t3);
and

t1=0:t2=0;
y0=15;x0=5;
lamda=15;

for x=0:y0
t1=((1/exp(lamda))*((lamda”™((x0+y0)-x))/factorial (x0+y0)-x)));

t2=t2+t1;
t1=0;
end

fprintf('....d......=%4.41\n", t2);

52



53

A4 Simulation code for outdate inventory in period t with L=1

t1=0;t2=0;t4=0;

lamda=15;

x0=5;y0=15;

for y=0:10
for i=0:y
t1=t1+((1/exp(lamda))*((lamda’i)/factorial(i)));
end

for x=0:y

for j=0:x

t2=t2+((1/exp(lamda))*((lamda’j)/factorial(j)));

end
t3=((1/exp(lamda))*((lamda™((x0+y0)-x))/factorial (x0+y0)-x)));
t4=t4+(t2*t3);

t5=t4*t1;
t2=0;
end

y1(1,(y+1))=t5;
t1=0:t4=0;

end

fori=1:11
fprintf('....y......=%4.41\n’, y1(1,1));
end

and

11=0;t2=0;t3=0;t7=0;t4=0;t5=0;t6=0;t=0;
lamda=15;

x0=5; y0=15;

f1=0.0830;

for y=0:10
for a=0:(x0+y0)

for i=0:(a-y)
t1=t1+((1/exp(lamda))*((lamda”i)/factorial(i)));

end

t2=f1*((1/exp(lamda))*((lamda”a)/factorial(a)));

for x=1:y0
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t4=((1/exp(lamda))*((lamda™(x+a))/factorial(x+a)));
t5=((1/exp(lamda))*((lamda™((x0+y0)-x))/factorial (x0+y0)-x)));
t=t-+(t4*t5);
end

t6=t+t2;
t7=t7+(t1*t6);
t1=0;t=0;

end
y1(1,(y+1))=t7;
t7=0;

end

for i=1:11
fprintf(....y.coeren =%4.41\n", y1(1,1));
end



