
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

MODELING AND QUERYING BITEMPORAL

SEMISTRUCTURED DATA WAREHOUSES

by

Gözde ASLAN

July, 2013

İZMİR

MODELING AND QUERYING BITEMPORAL

SEMISTRUCTURED DATA WAREHOUSES

A Thesis Submitted to the

 Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Computer Engineering, Computer Engineering Program

by

Gözde ASLAN

July, 2013

İZMİR

ii

M.Sc THESIS EXAMINATION RESULT FORM

 We have read the thesis entitled “MODELING AND QUERYING

BITEMPORAL SEMISTRUCTURED DATA WAREHOUSES” completed by

GÖZDE ASLAN under supervision of ASST. PROF. DR. CANAN EREN ATAY

and we certify that in our opinion it is fully adequate, in scope and in quality, as a

thesis for the degree of Master of Science.

iii

ACKNOWLEDGEMENTS

I would like to present my sincere gratitude to my advisor Asst. Prof. Dr. Canan

Eren Atay for her significant guidance, help, suggestions, patience, and support

throughout all the phases of this study.

I would like to also thank to parents Ayla Aslan and Reşat Aslan and my brother

Ali Uğur Aslan for their worthy patient and support.

Furthermore, I also thank to my fiancée Ahmet Burak Alp for his continuous

patient and support. He listen my concerns every time and encouraged me.

Lastly, I would like to extend my sincere gratitude to all the staff and academic

personnel of the Computer Engineering Department and Graduate School of Natural

and Applied Sciences.

Gözde ASLAN

iv

MODELING AND QUERYING BITEMPORAL SEMISTRUCTURED

DATA WAREHOUSES

ABSTRACT

Data Warehouse is very common and achieved prominence in recent years is a

system that supplies more effective and rapid reports. Warehouse data is stored in a

non-transactional repository. Easy reporting and reasoning via prepared warehouse

cubes is ensured. It is important to understand customer’s tendencies and increase the

customer satisfaction in corporations. At this point warehouse is a great solution.

Temporal approaches are very important while analyzing historical data.

Knowledge of old times is required on data analysis. To gain time- based realistic

reports, changed data has to be stored in a certain order. Bitemporal approach is one

of the temporal data storage approaches.

Various methods may be used to store data in less space. Generating nested

database tables is one of these methods. Nested tables compose a semi-structured

format in database.

The aim of this study is designing warehouse cubes which stores temporal values

in bitemporal form, semi-structured format. Additionally cubes are queried and

results are discussed. Outcomes may be used for analysis and data strategy

development of companies.

For supplying semi-structured form nested tables and nested types are used. 66

percent less disk space usage is provided. A dimensional database is designed.

Queries are run in this dimensional database and results are discussed. Results are

explained and supported with diagrams and charts.

Keywords: Data warehouse, bitemporal data model, semi-structured data, Oracle

warehouse builder.

v

YARI- YAPILI, ÇİFT ZAMANLI VERİ AMBARLARININ

MODELLENMESİ VE SORGULANMASI

ÖZ

Son yıllarda yaygın olarak kullanılan ve önem kazanan Veri Ambarı, daha hızlı ve

efektif raporlama imkanı sağlayan bir sistemdir. Veri ambarında veriler, işlem

olmayan depolama alanlarında tutulur. Veri ambarı küpleri aracılığıyla, kolay

raporlama ve muhakeme sağlanır. İşletmelerde müşterinin eğilimlerini saptamak ve

müşteri memnuniyetini arttırmak önemlidir. Bu noktada veri ambarı çok iyi bir

çözümdür.

Veri analizi yaparken eski tarihlere ait bilgilere ihtiyaç duyulur. Zamana dayalı

gerçekçi raporlar alabilmek için, değişen veriler geçerlilik sürelerine göre belli bir

düzende tutulmalıdır. Çift zamanlı yaklaşım zamansal veri saklama

yaklaşımlarından biridir.

Verilerin daha az yer kaplamaları için çeşitli metotlar kullanılabilir.

Veritabanındaki tabloları iç içe oluşturmak bu yöntemlerden biridir.

Bu uygulamanın amacı, zamansal değerleri çift zamanlı yapıda tutan, yarı yapılı

bir dataset üzerinden veri ambarı küpleri oluşturmak ve oluşan küpleri sorgulamaktır.

Ayrıca sorguların sonuçları da incelenmiştir. Sonuçlar veri analizinde ve şirketlerin

strateji geliştirmesinde kullanılabilir.

Yarı yapılılığı sağlamak için nested tablolar ve nested typelar kullanılmıştır.

Yüzde 66 daha az disk alanı kullanımı sağlanmıştır. Boyutsal bir veritabanı

modellenmiştir. Sorgular boyutsal veritabanında çalıştırılmış, sonuçlar tartışılmıştır.

Sonuçlar diyagramlar ve grafikler ile açıklanmış ve desteklenmiştir.

Anahtar Sözcükler: Veri ambarı, çift zamanlı veri modeli, yarı yapılı veri, Oracle

veri ambarı yaratıcısı.

vi

CONTENTS

Page

M.SC THESIS EXAMINATION RESULT FORM.. ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZ .. v

LIST OF FIGURES .. x

LIST OF TABLES ..xii

CHAPTER ONE - INTRODUCTION .. 1

1.1 General ... 1

1.2 Purpose ... 2

1.3 Organization of Thesis .. 2

CHAPTER TWO – DATA WAREHOUSING SYSTEMS 4

2.1 Big Data .. 4

2.2 What is Data Warehouse ... 5

2.3 Warehousing Concepts .. 6

2.3.1 Metadata ... 6

2.3.2 Fact Table ... 7

2.3.3 Dimension .. 7

2.3.4 Level .. 8

2.3.5 Hierarchy .. 9

2.3.6 Cube ..10

2.3.7 Measures ...11

2.4 Warehousing Structures ...11

vii

2.4.1 ETL ...11

2.4.2 OLAP ..12

2.4.3 Data Marts ...13

2.5 Oracle Warehousing Tools ...13

2.5.1 Sql Developer ..14

2.5.2 Repository Browser ...14

2.5.3 Warehouse Builder Design Center ...15

CHAPTER THREE - TEMPORAL APPROACHES ...16

3.1 Modeling Time ..16

3.1.1 Time Point ...16

3.1.2 Time Interval ...16

3.1.3 Temporal Element ...17

3.2 Representing Temporal Data ..17

3.2.1 User Defined Time ..17

3.2.2 Valid Time ..17

3.2.3 Transaction Time ...18

3.3 Time-Stamping Data ..18

3.3.1 Tuple Time Stamping ..18

3.3.2 Attribute Time Stamping ...20

3.4 Temporal Databases ...21

3.4.1 Snapshot Databases ...21

3.4.2 Historical Databases ..22

3.4.3 Transaction Databases ...22

3.4.3 Bitemporal Databases ..23

CHAPTER FOUR - SEMI STRUCTURED DATA MODEL24

4.1 Semi-Structured Data ...24

4.2 Semi-Structured Form ..24

4.3 Nested Types ...26

viii

4.4 Nested Tables ..26

4.5 XML Databases ...27

CHAPTER FIVE - BENCHMARKING AND DATA TRANSFER29

5.1 Importance of Benchmarking ...29

5.2 The Data Used in This Study ..29

5.3 Data Transfer ...34

5.3.1 Creating Tables..37

5.3.2 Inserting Data ..40

CHAPTER SIX - IMPLEMENTATION AND RESULTS41

6.1 Cube1- CubeProductListPrice ..41

6.1.1 Design ...41

6.1.2 Mapping ..45

6.1.2.1 Mapping Dim_UnitMeasure ..46

6.1.2.2 Mapping Dim_SubCategory ..47

6.1.2.3 Mapping Dim_Model ..48

6.1.2.4 Mapping Cube_ProductListPrice ...49

6.1.3 Querying ...50

6.2 Cube2- CubeProductCostHistory ...61

6.2.1 Design ...61

6.2.2 Mapping ..62

6.2.2.1 Mappinng CubeProductCostHistory ..62

6.2.3 Querying ...62

6.3 Cube3- CubeProductCostHistory2Dim ...69

6.3.1 Design ...69

6.3.2 Mapping ..70

6.4 Cube4- CubeProductListPrice2Dim ...70

6.4.1 Design ...70

6.4.2 Mapping ..71

ix

6.5 Cube5- Cube_Workorder_OrderQty...71

6.5.1 Design ...71

6.5.2 Mapping ..75

6.5.2.1 Mapping Dim_Product ..75

6.5.2.2 Mapping Cube_Workorder_OrderQty ...75

6.5.3 Querying ...76

CHAPTER SEVEN - CONCLUSION AND DISCUSSION83

REFERENCES ...85

x

LIST OF FIGURES

Page

Figure 2.1 Example snowflake schema... 7

Figure 2.2 Time dimension diagram ... 9

Figure 2.3 Hierarchy structure .. 9

Figure 2.4 The diagram of dimensional objects ...10

Figure 2.5 Welcome page of Repository Assistant ..14

Figure 2.6 General view from Oracle Warehouse Builder. Mapping, transformations,

dimensions, cubes... parts are used for creating dimensional objects.15

Figure 3.1 Time line ..16

Figure 3.2 A temporal element ..17

Figure 5.1 Adventure Works relational database diagram, 1-130

Figure 5.2 Adventure Works relational database diagram, 1-231

Figure 5.3 Adventure Works relational database diagram, 1-332

Figure 5.4 Adventure Works relational database diagram, 1-433

Figure 5.5 Oracle Adventure Works, relational, bitemporal and semi-structured

database diagram Part 1 ..35

Figure 5.6 Oracle Adventure Works, relational, bitemporal and semi-structured

database diagram Part 2 ..36

Figure 6.1 A snowflake schema based on Product fact table42

Figure 6.2 Diagram of CubeProductListPrice cube's dimensional objects44

Figure 6.3 The hierarchy of DIM_SUBCATEGORY dimension44

Figure 6.4 All dimensional objects in cube ..45

Figure 6.5 Some mapping objects in Warehouse Builder ...46

Figure 6.6 Mapping diagram of DIM_UNITMEASURE ...47

Figure 6.7 Mapping diagram of DIM_SUBCATEGORY ..47

Figure 6.8 Mapping diagram of DIM_MODEL part 1 ...48

Figure 6.9 Mapping diagram of DIM_MODEL part 2 ...49

Figure 6.10 Mapping diagram of Cube_ProductListPrice ..49

Figure 6.11 Query result screenshot ..50

xi

Figure 6.12 Chart shows six average execution time in each environment. The

seventh measure is the average execution times. ...51

Figure 6.13 Query result screenshot ..52

Figure 6.14 Chart shows six average execution time in each environment. The

seventh measure is the average execution times. ...53

Figure 6.15 Query result screenshot ..53

Figure 6.16 Query comparison chart ...54

Figure 6.17 Query result screenshot ..55

Figure 6.18 Query comparison chart ...55

Figure 6.19 Query result screenshot ..56

Figure 6.20 Query comparison chart ...57

Figure 6.21 Query result screenshot ..58

Figure 6.22 Query comparison chart ...58

Figure 6.23 Query result screenshot ..59

Figure 6.24 Query comparison chart ...59

Figure 6.25 Query result screenshot ..60

Figure 6.26 Query comparison chart ...61

Figure 6.27 Diagram of dimensional snowflake schema based on Cube_Product_

CostHistory cube ..61

Figure 6.28 Mapping diagram of CubeProductCostHistory62

Figure 6.29 Query result screenshot ..63

Figure 6.30 Query comparison chart ...63

Figure 6.31 Query result screenshot ..64

Figure 6.32 Query comparison chart ...64

Figure 6.33 Query result screenshot ..65

Figure 6.34 Query comparison chart ...65

Figure 6.35 Query result screenshot ..66

Figure 6.36 Query comparison chart ...67

Figure 6.37 Query result screenshot ..67

Figure 6.38 Query comparison chart ...68

Figure 6.39 Query result screenshot ..68

Figure 6.40 Query comparison chart ...69

xii

Figure 6.41 Diagram of dimensional star schema based on Cube_Product_Cost

History2Dim cube ...70

Figure 6.42 Diagram of dimensional star schema based on Cube_Product_ListPrice2

Dim cube ..71

Figure 6.43 Snowflake schema based on Workorder fact table72

Figure 6.44 Dimensional relations diagram of objects ...73

Figure 6.45 The hierarchy of DIM_PRODUCT ...74

Figure 6.46 All objects in Cube_Workorder_OrderQty ...74

Figure 6.47 Mapping diagram of DIM_PRODUCT dimension75

Figure 6.48 Mapping diagram of Cube_Workorder_OrderQty cube76

Figure 6.49 Query result screenshot ..77

Figure 6.50 Query comparison chart ...77

Figure 6.51 Query result screenshot ..78

Figure 6.52 The chart contains six execution time in each system and an average

measurement as seventh edge ..79

Figure 6.53 Query result screenshot ..80

Figure 6.54 Query comparison chart ...81

Figure 6.55 Query result screenshot ..82

Figure 6.56 Query comparison chart ...82

xiii

LIST OF TABLES

Page

Table 3.1 The view of table that has valid time attributes ..18

Table 3.2 Tuple is stamped with time points..19

Table 3.3 Tuple is stamped with validity time intervals. ..19

Table 3.4 Tuple is stamped with validity and transaction time intervals.20

Table 3.5 List price and cost attributes are time stamped ...21

Table 3.6 The view of example table after updating according to bitemporal approach

 ...23

Table 4.1 Nested table with bitemporal attributes ..25

Table 4.2 The view of nested table after update transaction25

Table 4.3 Creation script of nested type ..26

Table 4.4 Creation Script of Nested table ..27

Table 5.1 Comparison of regular table creation scripts ..37

Table 5.2 Comparison of nested table and regular tables creation scripts part 138

Table 5.3 Comparison of nested table and regular tables creation scripts part 239

Table 5.4 Example insert statement to nested product table40

Table 6.1 Query of question ..50

Table 6.2 Query of question written with relational objects50

Table 6.3 Query of question with dimensional database objects51

Table 6.4 Query of question written with relational objects52

Table 6.5 Query of question ..53

Table 6.6 Query of question written with relational objects54

Table 6.7 Query of question ..54

Table 6.8 Query of question written with relational objects55

Table 6.9 Query of question ..56

Table 6.10 Query of question written with relational objects56

Table 6.11 Query of question ..57

Table 6.12 Query of question written with relational objects58

Table 6.13 Query of question ..59

Table 6.14 Query of question written with relational objects59

xiv

Table 6.15 Query of question ..60

Table 6.16 Query of question written with relational objects60

Table 6.17 Query of question ..62

Table 6.18 Query of question written with relational objects63

Table 6.19 Query of question ..63

Table 6.20 Query of question written with relational objects64

Table 6.21 Query of question ..65

Table 6.22 Query of question written with relational objects65

Table 6.23 Query of question ..66

Table 6.24 Query of question written with relational objects66

Table 6.25 Query of question ..67

Table 6.26 Query of question written with relational objects67

Table 6.27 Query of question ..68

Table 6.28 Query of question written with relational objects69

Table 6.29 Query of question ..76

Table 6.30 Query of question written with relational objects77

Table 6.31 Query of question ..78

Table 6.32 Query of question written with relational objects79

Table 6.33 Query of question ..80

Table 6.34 Query of question written with relational objects80

Table 6.35 Query of question ..81

Table 6.36 Query of question written with relational objects82

1

CHAPTER ONE

INTRODUCTION

1.1 General

Since technology became an indispensable part of people's life, communication

and shopping habits revolutionized. People are online nearly 7/24. When surfing on

social web sides a lot of data is left unconsciously. A lot of companies collects this

data and generates strategies for offering impressive campaigns to their customers.

This big data is processed and rendered into expressive form. There are some

techniques to operate this data. The effective applications are prepared by data

mining or decision support system algorithms. Data warehousing is a reporting

system, to provide gaining more effective reports.

Data warehouse is architecture, corporates prefer for data analysis. Detailed

reports are taken from data warehouses. Problems about specific work area can be

solved by warehousing reports. Data in data warehouses is stored in a special

repository. There are no update, insert, delete actions in warehousing repository; it is

only used for querying. Therefore querying performance is high. Warehousing

reports are faster and more effective than database reports.

Time variable has major importance on analysis reports of corporate. The change

or data in a specific period, in a specific year is asked. Time limitation is one of the

most important components in warehousing reports. Data changes by time. Keeping

old data is important for temporal deepness. Bitemporal database model is an

appropriate approach in order to keep temporal depth.

Semi-structured form is provided by nested tables in databases. Storing tables as

nested tables improve performance and ensure using less disk space.

2

1.2 Purpose

The aim of this study is to design and query a data warehouse to obtain more

effective and faster reporting system with using most proper temporal data modeling

approach and data storage method.

The most suitable temporal approach is discussed. Bitemporal approach is used in

design of data warehouse for providing efficiency. Reports may be taken according

to different time intervals that are supported by bitemporal date-time data modeling

approach. However bitemporal approach causes redundant growth of data in some

cases.

Semi-structured data storage method is used for avoiding unnecessary growth of

data. Semi-structured structure provides wasting less disk space, using less database

objects and fewer relations. Database operations are simpler in semi-structured form

and it provides high performance.

Hereby the most suitable methods are elected and used while designing the

database application for ensuring more effective and faster reports. To the best

knowledge of the author of this thesis, this study is the first which uses bitemporal

approach with semi-structured model in data warehouses for better reporting.

1.3 Organization of Thesis

This thesis consists seven chapters. The organization of chapters as follows.

In chapter 2, data warehousing systems and concepts are explained.

In chapter 3, database model explained. The reason of using bitemporal structure

is explained.

In chapter 4, semi-structured data model in databases is mentioned. The reason of

using semi-structured form is explained.

3

In chapter 5, data used in this study is described. Data is changed in order to

provide semi-structured and bitemporal form. This chapter contains information

about data transformation.

In chapter 6, creating dimensional objects from relational database tables is

explained by created warehousing cubes and dimensions. Query and query results of

dimensional objects are discussed.

Finally in chapter 7, conclusion of this thesis is reported.

4

CHAPTER TWO

DATA WAREHOUSING SYSTEMS

2.1 Big Data

The global size of the data is dazzling. Some authorities use ‘Big Data’ term for

describing this data.

There are 6 billion mobile subscribers around the world. There are 1.1 billion

Facebook users. 400 million tweets are throwing in average every day. 90 percent of

the data that exists in the world developed in last two years and it is getting bigger in

every second due to the mobile phones and internet. In 2016 61 percent of internet

traffic will be provided from the wireless machines and the other 39 percent will be

provided by cabled networks. When digital content in online world is 2.7 zeta byte

now in 2012, it will reach 7.9 zeta byte in 2016.

What can the trade marks gain by using ‘Big Data’? Firstly attaining the user data,

giving meaning to this data, and developing strategies make ‘Big Data’ significant. If

we list benefits of this processes:

1. Transparent and useful information can be obtained. ’Big Data’ can

give us key information. This information helps companies to make better

decisions for the purpose of accessing to the customers.

2. By collecting and storing more digital data, companies can aggregate

more correct and detailed information about their purchase and order.

Companies use this data in performance increasing actions.

3. ‘Big Data’ gives opportunity of presenting more special product or

services to the narrow segmentation of customer.

4. The good analyze of ‘Big Data’ renders complicated data. Mixed data

become more meaningful and provide serious convenience to trade marks in

having decision.

5. Companies can have an idea about the next product or service by

using this data.

5

Big Analyze necessity has been brought by Big Data. The old analyze methods

that examine age; gender and cell number not enough in today’s world. Nowadays,

advanced methodologies, new analyzing methods that come from high technology

and experience combinations appeared. Before analyzing the existing data, it have to

be decided that for which purposes will be used the results. The special solutions can

be gathered with respect to the problems.

2.2 What is Data Warehouse

Data warehousing is an activities chain that contains:

 Collecting and sorting out the data in settled or outer systems.

 Preparing data for servicing to decision support systems.

 Storing data in the best way.

 Providing access to data via end user applications

 Finding deterministic data relations.

Data warehousing is a technical, organizational and financial multi-dimensional

investment. Customer relationship management (CRM), global e-commerce

enterprises, supply chain management (SCM), Enterprise resource planning (ERP)

systems, corporate information portals, strategy management informatics are related

with Warehousing (Adamson & Venerable, 1998) . Warehousing becomes the basic

integral part of the mentioned systems.

Warehousing presents attaining specially prepared data in an easy and quick way.

This data is used in management reports, in a variety of queries, decision support

systems, manager information systems and data mining applications.

Temporal features are very important in data warehousing. Data warehouse has

abundant data collection. This data grows rapidly and has a historical depth.

Warehousing queries usually look into long time periods.

Data is extracted from special repositories and used just for reporting. Because of

this, reports are getting faster and useful reports can be obtained.

6

The aim of using data warehouses is:

 Identifying hidden purchasing disposition of customers.

 Focusing on sales analysis and trends.

 Financial analysis.

 Strategic analysis.

2.3 Warehousing Concepts

2.3.1 Metadata

Metadata is data about data. This concept appeared on librarian's area. There are a

lot of books in library, namely charged amount of data exist in librarian area. The

problem is indexing this data and figuring out the content data of books. Metadata, in

other words data about data is appeared from this requirement. Publisher of the book,

publishing time, print numbers all of them are data about data.

Database objects also have metadata. Some examples are:

 Number of user in database.

 Number of tables.

 Total records in tables.

 Total utilized disk area.

 Data type of table attributes.

7

 2.3.2 Fact Table

Figure 2.1 Example snowflake schema

Figure 2.1 is used to describe fact table and contains a snowflake schema.

Appointment table is the fact table and the other tables connected to this fact table

via foreign keys. Departmentid, Patientid, Doctorid columns in Appointment are

foreign key attributes. Appointment table comprises data about appointment in

hospital. Other attributes of Appointment table are fact attributes. Fact table is the

center table in snowflake or star schemas.

 2.3.3 Dimension

Dimension tables are the tables around the fact table. Patient, Doctor, Department

are dimension tables. Dimension tables are not connected to each other. Dimensions

often have one or multiple hierarchies (Inmon, 2002). Hierarchies categorize data.

Dimensions have attributes about dimensional value. Multiple dimensions related to

fact objects provide to solve questions. Dimensions have hierarchies for aggregating

data.

Data Warehouses aims to present flexible data reports. It must support to

contribute or compare data along dimensions. Bebel, Eder, Koncilia, Morzy &

Wrembel (2004) aimed improving a useful architecture which combines new

temporal versions, dimensions in their study.

8

Ram´ırez & Guerrero (2006) created a model for changing, adding, removing

dimensions easily and a query language is presented to manage multidimensional

schemas. When a change is made to a multidimensional schema, a new

multidimensional database version having a new associated temporal pertinence is

created.

2.3.4 Level

As in the Figure 2.1, Department is a dimension. Department is related to

Subdepartment table. Every department can have one or more subdepartments.

Subdepartment table contains detailed department information. In this example

Department is a dimension, department and subdepartment are levels of this

dimension.

There can be one or more attributes in a level. Attributes in levels can be

categorized by their functionalities.

Level key attributes: The unique instance of the level is key attribute. This

attribute is not duplicated. SubDepartmentid column in Subdepartment table is a key

attribute of Subdepartment level of Department dimension.

Related attributes: A collection of optional attributes that provide additional

information about the instances of the levels that are defined as level key attributes.

All related attributes must be functionally determined by the level key attributes. For

example, a SubDepartment level might have related SubDepartmentname attribute.

9

Figure 2.2 Time dimension diagram

There are four tables in Figure 2.2. This view is about time dimension and its

levels.

2.3.5 Hierarchy

Hierarchies are the navigations of levels. Hierarchies provide a parent child

relationship between levels and help indexing data and measures. In the Figure 2.2

time is a dimension. Year, Month, Day are levels. There is a time hierarchy. Year

comprises months, month comprises days in it. Time hierarchy is shown in Figure

2.3.

Figure 2.3 Hierarchy structure

10

2.3.6 Cube

Cubes are the main components of warehousing reports. All previous objects,

dimensions, hierarchies, levels are created for generating a cube. Cube is a result for

dimensional systems.

Cubes in data warehouses are formed by foreign key attributes which connects to

dimension tables and measure attributes. Warehousing cubes not like cube shapes.

They do not have to be three dimensioned. Cubes can be designed with one or more

dimensions. The fact tables in relational databases are matched with cube tables in

dimensional databases. Dimension tables were connected to cube table and they gave

a brief of one or more table's information. The primary keys of these summary tables

are connected to cube table. The dimensions that are bind to cube is connected each

other via cube table. Other attributes in fact table are measure attributes.

Figure 2.4 The diagram of dimensional objects

 In appointment cube table, AppointmentTime and Payment are measurable

attributes. Cube table's give result of some questions which have criterions about its

dimensions. The results are the measures of the cube. Some questions that the cube is

answered can be:

Which doctor gains the maximum payment?

How much many totally gained per department in June of 2013?

What is the earning average of departments according to months of 2013?

11

Which patient pays the maximum charge on May of 2013?

These questions also can be answered by relational database tables with sql

queries but the answer of question comes with more simple queries and quicker with

dimensional structure.

2.3.7 Measures

Measure is the measurable attributes of cube. Measure is the result attribute. In

Appointment_Cube, AppointmentTime and Payment are measures.

2.4 Warehousing Structures

2.4.1 ETL

ETL (Extract, Transform and Load) layer is the most important part of the any

data warehouse application. ETL gets source data from the source system and

transform data into new data model and provides to see outcome in warehouse. ETL

systems consumes more time than the other operations in business intelligence

environment.

Extract: Extract is fetching data from the source system. There are a lot of kinds

of different source system, and flat files are used in warehouse systems. Data is

collected from many different source systems by helpful systems or code.

Transform: Data in warehouses is fetched from different sources. Transferred data

must be converted in form of warehouse structure. Also this data must be cleared and

quality of data must be increased.

Load: Load is fetching data from source system and loading it to target system.

12

2.4.2 OLAP

Olap is a multidimensional query based method that supports multi-dimensional

data analysis. Olap (Online Analytical Processing) enables to reach, live, real and

prepared data.

Olap technology provides building multi-dimensional data cubes from the data

that is stored in relational databases. Users use data for answering complicated

problems. Olap provides more supreme performance than the relational databases. In

addition, Olap provides opportunity to find answers for complicated queries that is

hard or impossible to do in relational databases. Moreover, it is possible to extract

future analysis with Olap reports with a good statistical knowledge (Hurtado,

Mendelzon & Höfling, 1999).

The data in olap cubes is updated and worked out again in certain hours of the day

(generally at night). Totals, averages and the other operations is calculated again with

this new live data. When a report is presented via Olap cubes there is no calculation

when reporting. All calculated values generally stored in Olap cubes before. The

only process is calling the report and showing it.

Olap Data Warehouses are generally stored in separate machines in the companies

that have up to date information. Division of weight has good reflect on user. The

important criterions are given below:

 Data Propriety: This data has to be designed for the company's

requirements. If you want to see; how many cars will you sell next year; the

data in your warehouse has to be useful and available for collecting car and

sales statistics data. Unnecessary data is a burden for you.

 Data Quality: Data must be clear and in good quality. Imagine that,

you will organize a special offer with respect to gender for selling your car.

And you are analyzing for future prediction. Gender data is stored as F/M

in your sales system while gender data is stored as Female/Male in your

customer system. This data do not provide integrity. Data also becomes bad

if user enters wrong data instead of F/M or Female/Male. Dirty data has to

be cleared.

13

 Historical Depth: Data warehouse is already set up in this structure.

But it is an important concept. It is useful to know this. If you want to guess

next three years, you cannot do this with analyzing past one year. For

instance, when you wonder the fullness rate of a dam for next year,

analyzing 10 years data will give more certain results. It will be more

useful if we can analyze statistics in seasonal or monthly sliced time zones.

2.4.3 Data Marts

Data Marts are subsets of data warehouses. While data warehouses provide a

complete view for a business problem, data marts provide view for only a part of it.

All employees of a company do not need to analyze all data. Otherwise some

users must be permitted to reach to limited area. Data mart represents subset of data

warehouse about a specific subject. The information in data marts is not detailed like

in data warehouses. So data marts are more understandable and routable.

There are two types of data marts; these are dependent data marts and independent

data marts.

 Independent Data Marts: Data in data mart is directly fetched from the

operational systems or outer resources. Independent data marts are preferred

while there is an analyze necessity in separate departments or branches of a

company.

 Dependent Data Marts: Data in data mart is directly fetched from the

data warehouse. When there is an analyze necessity for a specific subject of

company, dependent data marts are preferred.

Data marts are created, queried, replied faster than the data warehouses. Data

marts save performance for analytical querying process.

2.5 Oracle Warehousing Tools

Oracle Warehouse Builder is used to design cubes. Oracle Database 11g R2

edition is free available. Oracle 11g R2 automatically comes with the warehouse

14

builder installed. Oracle 11g R2 Warehouse Builder does not correctly work in every

operating system.

2.5.1 Sql Developer

Sql Developer is free Oracle software for managing database. Developer connects

to Oracle users via Sql developer. Queries can be written in this platform and

developer can manage all objects of database and write queries easily on code editor.

2.5.2 Repository Browser

While generating data warehouse, data is transferred to special storage area.

Dimension, cube, measures etc. all elements are created in this special field.

Repository Browser is a tool for creating, browsing and managing warehouse

repository. The screenshot of Repository Browser welcome page is given in figure

2.5.

Figure 2.5 Welcome page of Repository Assistant

15

2.5.3 Warehouse Builder Design Center

Warehouse builder itself has enough tools for designing dimensions and cubes

also mapping data from real database tables to cube or dimension tables stored in

warehouse builder repository.

Figure 2.6 General view from Oracle Warehouse Builder. Mapping, transformations, dimensions,

cubes... parts are used for creating dimensional objects.

Figure 2.6 is a general view of Oracle Warehouse builder. Database objects can be

imported to warehouse builder workspace.

16

CHAPTER THREE

TEMPORAL APPROACHES

3.1 Modeling Time

Databases are an information world that real world’s data is stored. Data may be

as string, numeric or logical type and may be set to value or null. Some part of this

information is composed by time values. Now divides time into two fragments, past

and future. There can be other values like now, that divides time into several

sections. Data in databases are important in a specific time-line. Dividing time into

several logical sections and modeling time is required for reasoning important

outcomes.

3.1.1 Time Point

Time point is a moment in time. When an event occurs, there is a specific

realization moment of event in time plane. Status of the object is changed at t1 time

point in Figure 3.1. This condition is changed again at t2 time point. Condition is

valid from t2 moment to t2 moment. Time points are important in terms of

determining state changes.

Figure 3.1 Time line

3.1.2 Time Interval

Time interval is a time period that has beginning and end. Some throughputs are

always true and time independent. “Turkish Republic is founded on 1923”, is an

independent knowledge. Some throughputs change. Changing data has effectiveness

session. This session is the span between begin and end times. Point interval is the

17

time period between beginning and end time points. The condition in Figure 3.1 is

valid in time interval t2- t1.

3.1.3 Temporal Element

A temporal element is the finite union of disjoint time intervals (Gadia, 1988).

Temporal element is an element that has time points and time intervals in it. Figure

4.2 contains a temporal element. X, z, t, v are time intervals, y is a time point. These

five time elements comprise a temporal element.

Figure 3.2 A temporal element

3.2 Representing Temporal Data

Temporal data means that the data is defined to have some time-related

information associated with them.

3.2.1 User Defined Time

Temporal attributes are stored in DATE, TIME or DATE-TIME types in

databases. These attributes are not rendered by DBMS and are called as user defined

time. There is no difference of temporal attributes than the attributes in other types

(NUMBER, VARCHAR, BYTE…) for DBMS. The meaning of temporal data is

significant only for the user.

3.2.2 Valid Time

Valid time indicates the validity period of a fact according to the real world. For

instance, list price of a product may be changed in time. If we examine Table 3.1;

validity lower bound is pointed as VT_LB, validity upper bound is pointed as

VT_UB. List price of “Mountain Bike 1” was 1191.17 between 25.09.2001 and

18

01.07.2002. Validity period of 1191.17 list price is the time period between two date

value. After 01.07.2002 list price of “Mountain Bike 1” is set 1226.9 validity begins

and does not end. It is still valid.

Table 3.1 The view of table that has valid time attributes

Product Name Color List Price VT_LB VT_UB

Mountain Bike 1 Black 1191.17 25.09.2001 01.07.2002

Mountain Bike 1 Black 1226.9 01.07.2002 now

Metal Bar 2 Yellow 120.43 18.10.2002 now

Metal Plate Red 150 30.07.2002 now

Metal Angle Black 35.89 18.10.2002 now

Touring Rim Black 22.11 30.07.2002 now

3.2.3 Transaction Time

Transaction time represents the recording time of the values in the database.

When a record is added, updated namely a transaction happen, happening begin and

end times of this transaction is recorded in database. Transaction time lower bound is

pointed as TT_LB; transaction upper bound is pointed as TT_UB in this study.

Transaction time is a system-generated value.

3.3 Time-Stamping Data

A timestamp is the date or time value, connected to data value. Multiple time-

related attributes may exist about a data. Time-related information is used for

recording varied views of temporal truths (Jensen, Soo & Snodgrass, 1994).

3.3.1 Tuple Time Stamping

Tuple is considered to be a row in the table. Temporal attributes of a row is row’s

or tuple’s time-stamps. When row is updated, a new row is added to table and

19

temporal attributes are updated. One or more temporal attribute may exist in tuple.

Data may be specified as a time-point or time-interval.

In Table 3.2 product name, color, list price, price time columns are existed. Price

time attribute is a time- point for each object.

Table 3.2 Tuple is stamped with time points.

Product Name Color List Price Price Time

Mountain Bike 1 Black 1191.17 25.09.2001

Mountain Bike 1 Black 1226.9 01.07.2002

Metal Bar 2 Yellow 120.43 18.10.2002

Metal Plate Red 150 30.07.2002

Metal Angle Black 35.89 18.10.2002

Touring Rim Black 22.11 30.07.2002

In Table 3.3 price start and price end attributes exist for determining temporal

validity period. Each list price value in rows has a validity start and end time.

Namely each row has a valid time-interval.

Table 3.3 Tuple is stamped with validity time intervals.

Product Name Color List Price Price Start Price End

Mountain Bike 1 Black 1191.17 25.09.2001 01.07.2002

Mountain Bike 1 Black 1226.9 01.07.2002 now

Metal Bar 2 Yellow 120.43 18.10.2002 now

Metal Plate Red 150 30.07.2002 now

Metal Angle Black 35.89 18.10.2002 now

Touring Rim Black 22.11 30.07.2002 now

Transaction times may be included into tuple alongside the valid time attributes.

In Table 3.4 from and to date typed attributes are added for specifying transaction

interval.

20

Table 3.4 Tuple is stamped with validity and transaction time intervals.

Product Name Color List Price Price Start Price End From To

Mountain Bike 1 Black 1191.17 25.09.2001 01.07.2002 26.09.2002 26.09.2002

Mountain Bike 1 Black 1226.9 01.07.2002 now 02.07.2002 02.07.2002

Metal Bar 2 Yellow 120.43 18.10.2002 now 20.10.2002 20.10.2002

Metal Plate Red 150 30.07.2002 now 01.08.2002 01.08.2002

Metal Angle Black 35.89 18.10.2002 now 20.10.2002 20.10.2002

Touring Rim Black 22.11 30.07.2002 now 01.08.2002 01.08.2002

As a result tuple time stamping is adding temporal aspects to row of tables.

3.3.2 Attribute Time Stamping

Attribute is used to describe the column in database. Attributes is defined in a

certain or user defined data type. In table 4.4 all temporal attributes are about the

change of list price attribute. Namely all time-values in table are one attribute’s time

stamps. Attribute time stamping requires nested relations. Table 3.5 has product

name, color, list price and cost attributes. List price and cost attributes are nested

attributes. These attributes have value and temporal data in it. Validity of list price

“Mountain Bike 1” is 1191.17 between 25.09.2001 and 01.07.2002. It is 1226.9 after

01.07.2002. Cost of “Mountain Bike 1” is 605 between 25.09.2001 and 01.01.2003. It is

750 after 01.01.2003.

21

Table 3.5 List price and cost attributes are time stamped

Product

Name
Color List Price Cost

Mountain

Bike 1
Black

{<[25.09.2001,01.07.2002],1191.17

>,

<[01.07.2002,now],1226.9>}

{<[25.09.2001,01.01.2003],605

>,

<[01.01.2003,now],750>} }

Metal Bar

2

Yello

w
{<[18.10.2002,now],120.43>} {<[18.10.2002,now],100>}

Metal

Plate
Red {<[30.07.2002,now],150>} {<[30.07.2002,now],122.11>}

Metal

Angle
Black {<[18.10.2002,now],35.89>} {<[18.10.2002,now],22.11>}

Touring

Rim
Black {<[30.07.2002,now],22.11>} {<[30.07.2002,now],18.11>}

3.4 Temporal Databases

Temporal databases are the databases which have temporal data modeled.

In this section some temporal database types are mentioned. These are: Snapshot

databases, historical databases, transactional databases and bitemporal databases. The

most suitable database type for Data Warehousing is tried to figure out.

3.4.1 Snapshot Databases

Snapshot database is a copy or image of database at that moment. Snapshots

contain committed data and transactions. If there are some uncommitted transactions

in database, these changes are not existed in snapshot.

The Advantages of Snapshot Databases:

1. In some cases the report of a particular time is needed, taking

snapshots is an excellent feature for these conditions. Through this feature

steady data is read and reported.

2. Snapshot provides keeping historical data for creating report.

22

3. Snapshot does not generate physical copy that is why it can be used as

a replica.

4. Backing up is quicker than the database.

The Disadvantages of Snapshot Databases:

1. For the databases that require performance, snapshotting is

overcharge. It copies every changing page on database to disk. This

overcharges disk.

2. If main database collapses, snapshot cannot be reached.

3. Snapshot is not an effective back-up restore process.

4. Snapshot database is read only. No data changes. If it is prompted to

change, snapshot is taken again.

5. Snapshot and database have to stand on the same instance.

6. It is not recommended for the databases that too much transaction.

7. Snapshot process supports only NTFS file system.

3.4.2 Historical Databases

Historical databases contain cases over the valid time line. Historical database

consist historical data storage structure in it. Historical time values change according

to historic knowledge. The current time of historical database is always now. It may

not be set to a past time. In this regard, historical databases are parallel with snapshot

databases. If an error acquired, and an update process has to be applied; the previous

values are discarded and lost in historical databases.

3.4.3 Transaction Databases

Insert, update, create, select operations are transactions in databases. When a

query run, the alterations are not saved in the first moment, for saving changes

transactions must be committed. Or if someone is prompted to undo query,

transaction may be rolled back. The revocable activities are stored in transaction

databases. Rolling back the transactions in other words rolling the database to a point

in the past is probable in transaction databases.

23

3.4.3 Bitemporal Databases

Historical databases design temporal information of objects and do not keep

system modifications. Transaction databases do not form the real changes of system.

If the reality is formed completely, historical and transactional databases must be

combined (also valid and transaction time components must be existed). Bitemporal

databases have both valid time and transaction time. In this manner, bitemporal

databases demonstrate real world’s data according to real time (Koncilia, 2003).

Sample table is shown in the Table 3.6. Validity period of product's list price is

the time period between VT_LB and VT_UB. If a record is valid in current time

VT_UB value is set to null or now. In this structure all previous status and the

current status are stored with their validity period. Beside this, all the previous and

the current list price values have TT_LB and TT_UB. The transaction time for

“Mountain Bike 1” list priced 1191.17 is 26.09.2002. The last transaction applied on

this value is insert, when list price of “Mountain Bike 1” updated another row is

added into table and VT_UB attribute of first record is updated. If so many updates

acquire, table can be expanded vertically and consume too much disk space.

Table 3.6 The view of example table after updating according to bitemporal approach

Product Name Color
List

Price
VT_LB VT_UB TT_LB TT_UB

Mountain Bike 1 Black 1191.17 25.09.2001 01.07.2002 26.09.2002 26.09.2002

Mountain Bike 1 Black 1226.9 01.07.2002 now 02.07.2002 02.07.2002

Metal Bar 2 Yellow 120.43 18.10.2002 now 20.10.2002 20.10.2002

Metal Plate Red 150 30.07.2002 now 01.08.2002 01.08.2002

Metal Angle Black 35.89 18.10.2002 now 20.10.2002 20.10.2002

24

CHAPTER FOUR

SEMI STRUCTURED DATA MODEL

4.1 Semi-Structured Data

A lot of techniques are improved for storing data. Information may be stored in

excel tables or relational databases. However some information has hierarchy inside.

Organizing and creating a suitable form according to some tags is required for

storing data. The necessity of using semi-structured data is increased by the

expansion of internet and application variety.

4.2 Semi-Structured Form

For avoiding overmuch expansion of table, using semi-structured table forms is

beneficial. Change in sampled table is occurred in list price column. VT_LB(Valid

time lower bound), VT_UB(Valid time upper bound), TT_LB(Transaction time

lower bound), TT_UB(Transaction time upper bound) attributes also for storing

temporal depth of list price column. In other words temporal attributes in this table is

about one attribute, they are attribute's timestamps.

List price and its temporal attributes represent a structure or a new type. This type

is not like regular database types e.g. number, varchar, date etc. Table can be

converted to semi-structured nested table as shown in Table 4.1. List price column

now is a table inside table, that has five columns Value, VT_LB, VT_UB, TT_LB,

TT_UB. When update of list price occurred, new row is added to specified person's

list price column's nested table. Only nested table expands on updates, changing

attribute and its temporal components grow. Consequently, semi- structured form

prevents unnecessary grow of data.

If Mountain Bike 1’s list price is determined as 1300.00 on 05.10.2003 and this

record is committed on 06.10.2003 (Transaction time) then the change on table is

shown in Table 4.2.

25

Table 4.1 Nested table with bitemporal attributes

Product Name Color List Price

Mountain Bike

1
Black

{<1191.17,[25.09.2001,01.07.2002],[01.07.2002,01.07.2002] >,

 <1226.9, [01.07.2002, now], [02.07.2002, 02.07.2002]>}

Metal Bar 2 Yellow {<120.43 , [18.10.2002,now], [20.10.2002,20.10.2002]>}

Metal Plate Red {<150 , [30.07.2002,now], [01.08.2002,01.08.2002]>}

Metal Angle Black {<35.89 , [18.10.2002,now], [20.10.2002, 20.10.2002]>}

Touring Rim Black {<22.11 , [30.07.2002,now], [01.08.2002, 01.08.2002]>}

Table 4.2 The view of nested table after update transaction

Product Name Color List Price

Mountain Bike

1
Black

{<1191.17,[25.09.2001,01.07.2002],[01.07.2002,01.07.2002] >,

 <1226.9, [01.07.2002,now], [02.07.2002, 02.07.2002]>,

<1300, [05.10.2003, now], [06.10.2003, 06.10.2003]>}

Metal Bar 2 Yellow {<120.43 , [18.10.2002,now], [20.10.2002,20.10.2002]>}

Metal Plate Red {<150 , [30.07.2002,now], [01.08.2002,01.08.2002]>}

Metal Angle Black {<35.89 , [18.10.2002,now], [20.10.2002, 20.10.2002]>}

Touring Rim Black {<22.11 , [30.07.2002,now], [01.08.2002, 01.08.2002]>}

According to the data in Table 4.1, if list price value changes new situation will be

as in Table 4.2. A similar study is worked out by Malinowski & Zimanyi (2006).

They designed Multidimensional ER model that use Valid and transaction time

together. This study tries to find the answer of, “If one row changes, how it effects to

other rows and how it effects to relationships between them?” question.

The disadvantage of bitemporal approach is the risk of expanding too much

vertically. With semi-structured form of table, redundant expand risk is prevented.

Combi, Oliboni & Pozzi (2009) deal with temporal semi structured data

warehouses, their modeling and querying. They proposed a graph-based data model

to represent semi structured temporal data warehouses and a query language to

26

suitably retrieve the considered information. The data is stored as xml document.

And also a query language is generated to manage and order data.

4.3 Nested Types

Nested types are used to define special table column types. These columns contain

multiple attributes. If there is a necessity for storing more than one attributes in a

column, nested types are created. An example creation script of nested type is shown

in Table 4.3. TAX type has five attributes in it. TT_UB, TT_LB, VT_LB, VT_LB

are DATE attributes, VALUE is NUMBER attribute.

Table 4.3 Creation script of nested type

CREATE TYPE TAX AS OBJECT (

 TT_UB DATE,

 TT_UB DATE,

 VT_LB DATE,

 VT_UB DATE,

 VALUE NUMBER);

4.4 Nested Tables

NESTED TABLE is an Oracle data type used to support columns

containing multivalued attributes. In this case, columns can hold an entire sub-table.

A sample for usage nested types when creating tables are shown in Table 4.4. TAX

attribute's data type is TAX. Also nested tables must be specified as shown in bottom

of statement.

http://www.orafaq.com/wiki/Data_type
http://www.orafaq.com/wiki/Multivalued_attribute

27

Table 4.4 Creation Script of Nested table

CREATE TYPE Tax AS TABLE OF Tax;

CREATE TABLE PRODUCT

 (PRODUCTID NUMBER ,

 NAME VARCHAR2(50 BYTE) ,

 TAX TAX,

 SIZEE VARCHAR2(5 BYTE),

 WEIGHT NUMBER,

 DAYSTOMANUFACTURE NUMBER ,

 PRODUCTLINE CHAR(2 BYTE),

 CLASSS CHAR(2 BYTE),

 STYLEE CHAR(2 BYTE),

 PRODUCTMODELID NUMBER,

 SUBCATEGORYID NUMBER)

 NESTED TABLE TAX STORE AS TAX_TABLE2;

4.5 XML Databases

Xml is Extensible Markup Language and a semi-structured data storage method

that created after SGML. Structured Generalized Markup Language (SGML) is a

XML like technology that exists before XML. It is evolved before 1980, it become

an ISO standard in 1986. HTML technology is started to develop in 1990. The

improvement of XML started in 1996 and recommended by World Wide Web

Consortium by 1998. The developers of XML took the advantages of SGML,

combined HTML experiences.

Xml database is a software system that gives permission to store data in XML

format. XML is used for organizing and modeling data with customizable tags and

one of the basic storing methods of data. It entailed using special data structures and

database systems on data exchange. It provides flexibility on storage.

XML databases are easy accessible, thus it is commonly used. XML databases are

separated into three categories. These are Native XML (NXD), XML Enabled

Database (XEDB) and Hybrid XML Database (HXD). These types are used to store

different sort of data.

28

1. Native XML Database (NXD): NXD describes a pattern for XML documents.

It stores and regulates documents with respect that pattern. XML info set,

Xpath data model are some examples of NXD. XML documents are used as

elementary unit of logical storage in NXD. The similar relationship is seen

between relational databases and rows. NXD databases can be established on

any kind of database, it does not need a special format.

2. XML Enabled Database (XEDB): XEDB is an XML mapping stage added

database. XML mapping systems are added database applications. XML

solutions of Sql Server, Oracle, Mysql or third party applications are in this

class.

3. Hybrid XML Database (HXD): HXD can be acted as NXD or XEDB with

respect to the requirements of the application.

XML databases are sometimes the best solution for storing data. In some

situations XML databases predominate on relational database systems. They are

often used in:

 Information services of companies.

 Membership databases.

 Product catalogs.

 Hospital Database applications.

 Business document exchange applications.

29

CHAPTER FIVE

BENCHMARKING AND DATA TRANSFER

5.1 Importance of Benchmarking

One of the major problems of academic studies about computer science is finding

data. In terms of the application results' reliability, real data is preferred to use.

Random generated imaginary data is not generally used to prove scientific realities.

Importance of using real data, changes according to subject of study. In decision

support systems or data mining applications real data usage is prominent. In these

systems exactness of system is realized from data.

Besides this; the data which is verified and specially created for scientific or

educational studies is preferable for scientific applications.

Thereupon; ready, authentic data is explored. Microsoft Adventure Works

database is selected among many datasets and sample databases.

5.2 The Data Used in This Study

Adventure Works is a relational database established for Sql Server. It has five

modules in it. These are Sales, Purchasing, Person, Production, Human Resources.

Adventure works database firstly installed on Sql server. Production module of the

database transferred to Oracle Database 11g R2.

The fact table of Production module is Product table, depicted in Figure 5.1,

Figure 5.2, Figure 5.3 and Figure 5.4.

30

Figure 5.1 Adventure Works relational database diagram, 1-1

31

Figure 5.2 Adventure Works relational database diagram, 1-2

32

Figure 5.3 Adventure Works relational database diagram, 1-3

33

Figure 5.4 Adventure Works relational database diagram, 1-4

34

5.3 Data Transfer

The data and tables created in data warehouse fetched from AdventureWorks

database. The tables in Sql server AdventureWorks and Oracle is not exactly same.

Some tables rendered into nested structure. While there were 25 tables in Sql Server

AdventureWorks' database product module, there are 15 tables in Oracle

AdventureWorks user product module. As a result; necessities of joining two or more

tables' data as one insert statement occurred while transferring data. Relational

database design of Oracle product module is shown in the Figure 5.5 and Figure 5.6.

35

Figure 5.5 Oracle Adventure Works, relational, bitemporal and semi-structured database diagram Part

1

36

Figure 5.6 Oracle Adventure Works, relational, bitemporal and semi-structured database diagram Part

2

37

5.3.1 Creating Tables

While transferring tables, creation script of tables extracted from Sql Server and

organized as available on Oracle database. One of these translations is shown in

Table 5.1. This example does not contain nested type in it.

Table 5.1 Comparison of regular table creation scripts

Sql Server Creation Script Oracle Creation Script

CREATE TABLE [Production].[Location](

 [LocationID] [smallint] IDENTITY(1,1)

NOT NULL,

 [Name] [dbo].[Name] NOT NULL,

 [CostRate] [smallmoney] NOT NULL,

 [Availability] [decimal](8, 2) NOT NULL,

 [ModifiedDate] [datetime] NOT NULL);

 CREATE TABLE

ADVENTUREWORKS2.LOCATION

 (LOCATIONID NUMBER,

 NAME VARCHAR2(50 BYTE),

 COSTRATE NUMBER,

 AVAILABILITY NUMBER,

 MODIFIEDDATE DATE);

ProductCostHistory, ProductListPriceHistory, Product tables's creation scripts are

given on left side of the Table 5.2 and Table 5.3. ProductCostHistory,

ProductListPriceHistory tables are embedded as nested table into Product table in

Oracle. Creation scripts of nested types and tables are given on the right side of the

Table 5.2.

ProductCostHistory table have StartDate, EndDate, ModifiedDate as date

attributes. If these date values are thought as bitemporal attributes, StartDate is

VT_LB (Valid Time Lower Bound), EndDate is VT_UB (Valid Time Upper Bound).

Transaction happens at a time, ModifiedDate is TT_LB(Transaction Time Lower

Bound) and TT_UB(Transaction Time Upper Bound). Namely TT_LB and TT_UB

supposed to be same.

38

Table 5.2 Comparison of nested table and regular tables creation scripts part 1

Sql Server Creation Script Oracle Creation Script

CREATE TABLE

[Production].[ProductCostHistory](

[ProductID] [int] NOT NULL,

[StartDate] [datetime] NOT NULL,

[EndDate] [datetime] NULL,

[StandardCost] [money] NOT NULL,

[ModifiedDate] [datetime] NOT NULL);

CREATE TABLE

[Production].[ProductListPriceHistory](

[ProductID] [int] NOT NULL,

[StartDate] [datetime] NOT NULL,

[EndDate] [datetime] NULL,

[ListPrice] [money] NOT NULL,

[ModifiedDate] [datetime] NOT NULL);

CREATE TABLE [Production].[Product](

 [ProductID] [int] IDENTITY(1,1)

NOT NULL,

 [Name] [dbo].[Name] NOT NULL,

 [ProductNumber] [nvarchar](25) NOT

NULL,

 [MakeFlag] [dbo].[Flag] NOT NULL,

 [FinishedGoodsFlag] [dbo].[Flag] NOT

NULL,

 [Color] [nvarchar](15) NULL,

 [SafetyStockLevel] [smallint] NOT

NULL,

 [ReorderPoint] [smallint] NOT NULL,

CREATE OR REPLACE

TYPE BT_NUMBER AS OBJECT (

TT_LB DATE,

TT_UB DATE,

VT_LB DATE,

VT_UB DATE,

VALUE NUMBER);

CREATE OR REPLACE

TYPE PRODUCTCOSTHISTORY

AS TABLE OF BT_NUMBER;

CREATE OR REPLACE

TYPE PRODUCTLISTPRICEHISTORY

AS TABLE OF BT_NUMBER;

CREATE TABLE

ADVENTUREWORKS2.PRODUCT

(PRODUCTID NUMBER NOT NULL

ENABLE,

NAME VARCHAR2(50 BYTE) NOT

NULL ENABLE,

PRODUCTNUMBER VARCHAR2(25

BYTE) NOT NULL ENABLE,

MAKEFLAG VARCHAR2(5 BYTE) NOT

NULL ENABLE,

FINISHEDGOODSFLAG VARCHAR2(5

BYTE) NOT NULL ENABLE,

COLOR VARCHAR2(15 BYTE),

SAFETYSTOCKLEVEL NUMBER NOT

NULL ENABLE,

REORDERPONUMBER NUMBER NOT

NULL ENABLE,

39

Table 5.3 Comparison of nested table and regular tables creation scripts part 2

Sql Server Creation Script Oracle Creation Script

 [StandardCost] [money] NOT

NULL,

 [ListPrice] [money] NOT

NULL,

 [Size] [nvarchar](5) NULL,

 [SizeUnitMeasureCode]

[nchar](3) NULL,

 [WeightUnitMeasureCode]

[nchar](3) NULL,

 [Weight] [decimal](8, 2) NULL,

 [DaysToManufacture] [int]

NOT NULL,

 [ProductLine] [nchar](2) NULL,

 [Class] [nchar](2) NULL,

 [Style] [nchar](2) NULL,

 [ProductSubcategoryID] [int]

NULL,

 [ProductModelID] [int] NULL,

 [SellStartDate] [datetime] NOT

NULL,

 [SellEndDate] [datetime]

NULL,

 [DiscontinuedDate] [datetime]

NULL,

 [rowguid] [uniqueidentifier]

ROWGUIDCOL NOT NULL,

 [ModifiedDate] [datetime] NOT

NULL);

PRODUCTCOSTHISTORY

ADVENTUREWORKS2.PRODUCTCOSTHISTORY

,

PRODUCTLISTPRICEHISTORY

ADVENTUREWORKS2.PRODUCTLISTPRICEHIST

ORY ,

SIZEE VARCHAR2(5 BYTE),

SIZEUNITMEASURECODE CHAR(3 BYTE),

WEIGHTUNITMEASURECODE CHAR(3

BYTE),

WEIGHT NUMBER,

DAYSTOMANUFACTURE NUMBER NOT

NULL ENABLE,

PRODUCTLINE CHAR(2 BYTE),

CLASSS CHAR(2 BYTE),

STYLEE CHAR(2 BYTE),

PRODUCTMODELID NUMBER,

SELLSTARTDATE DATE NOT NULL ENABLE,

SELLENDDATE DATE,

DISCONTINUEDDATE DATE,

ROWGUID_UNIQUEIDENTIFIER

VARCHAR2(100 BYTE) NOT NULL ENABLE,

MODIFIEDDATE DATE NOT NULL ENABLE,

SUBCATEGORYID NUMBER)

NESTED TABLE PRODUCTCOSTHISTORY

STORE AS

PRODUCTCOSTHISTORY_TABLE2,

NESTED TABLE

PRODUCTLISTPRICEHISTORY

STORE AS

PRODUCTLISTPRICEHISTORY_TABLE2;

40

5.3.2 Inserting Data

In order to insert data to Oracle nested Product table, combining three tables' data

into one insertion script is required. There can be multiple ProductListPriceHistory

or ProductCostHistory record for one product record. Insertion script is organized via

Microsoft excel by taking into account any condition. The insertion script which adds

record to nested Product table is given in Table 5.4.

Table 5.4 Example insert statement to nested product table

Insert into PRODUCT (PRODUCTID,NAME,PRODUCTNUMBER,

MAKEFLAG,FINISHEDGOODSFLAG,COLOR,SAFETYSTOCKLEVEL,

REORDERPONUMBER,PRODUCTCOSTHISTORY,PRODUCTLISTPRICEHISTORY,

SIZEE,SIZEUNITMEASURECODE,WEIGHTUNITMEASURECODE,WEIGHT,

DAYSTOMANUFACTURE,PRODUCTLINE,CLASSS,STYLEE,PRODUCTMODELID,

SELLSTARTDATE,SELLENDDATE,DISCONTINUEDDATE,

ROWGUID_UNIQUEIDENTIFIER, MODIFIEDDATE,SUBCATEGORYID) values (759,'Road-

650 Red, 58','BK-R50R-58','1','1','Red',100,75,

ADVENTUREWORKS2.BT_NUMBER(ADVENTUREWORKS2.BT_NUMBER(2001-07-01

00:00:00.0,2002-06-30 00:00:00.0, 2003-10-06 00:00:00.0,2003-10-06 00:00:00.0,4131463),

ADVENTUREWORKS2.BT_NUMBER(2002-07-01 00:00:00.0,2003-06-30

00:00:00.0,2003-10-06 00:00:00.0,2003-10-06 00:00:00.0,4867066)),

ADVENTUREWORKS2.BT_NUMBER(ADVENTUREWORKS2.BT_NUMBER(2001-01-07

00:00:00.0,

2002-06-30 00:00:00.0,2002-06-30 00:00:00.0,2002-06-30 00:00:00.0,699.0982),

ADVENTUREWORKS2.BT_NUMBER(2002-01-07 00:00:00.0,2003-06-30 00:00:00.0,2003-

06-30 00:00:00.0,2003-06-30 00:00:00.0,782.99)),

'58','CM ','LB ',19.79,4,'R ','L ','U ',30, to_timestamp('01/07/2001','DD/MM/YYYY'),

to_timestamp('30/06/2003','DD/MM/YYYY'),

null,'6711d6bc-664f-4890-9f69-

af1de321d055',to_timestamp('11/03/2004','DD/MM/YYYY'),17);

41

CHAPTER SIX

IMPLEMENTATION AND RESULTS

Data warehousing data is stored in an independent repository. Firstly a new

repository is created by Oracle Repository Browser. Then AdventureWorks database

objects imported into warehouse builder workspace. Cubes and dimensions are

designed with respect to dimensional system requirements.

6.1 Cube1- CubeProductListPrice

6.1.1 Design

Small part of product module is shown in Figure 6.1. These tables comprise a

snowflake schema. Arrows show foreign keys between tables. Product table is the

fact table with ProductModel, ProductModelDescriptionCulture, Unitmeasure_t,

ProductSubCategory_t, ProductCategory_t are dimension tables. Model dimension

has three dimension levels ProductModel and Description and Culture, UnitMeasure

dimension has one level, Subcategory dimension has two levels ProductSubCategory

and ProductCategory.

The primary key in each primary dimension table (Subcategory, Model, and

UnitMeasure) is joined to the corresponding foreign key in the Product fact table. For

example:

 ProductSubcategory_t.Productsubcategoryid=Product.SubcategoryId

 ProductModel.ProductModelId=Product.ProductModelId

 UnıtMeasure_T.Unitmeasurecode=Product.Sizeunitmeasurecode

 UnıtMeasure_T.Unitmeasurecode= Product.Weightunitmeasurecode

The cube model based on Product snowflake schema is constituted around the

Product fact object. Cubes have dimensions and measures. Measures describe how to

calculate data from columns in the Product fact table. Product cube have

Subcategory, Model, and UnitMeasure dimensions. Cube table fact object includes

42

attributes that correspond to the foreign keys in the fact table that are used to join the

dimensions to the facts object. The fact object has six measures: VT_LB (Valid time

lower bound), VT_UB (Valid time upper bound), TT_LB (Transaction time lower

bound), TT_UB (Transaction time upper bound), ListPriceValue, ProductId. Cube

and has 3 attributes: ModelId, SubcategoryId, UnitMeasureId.

Figure 6.1 A snowflake schema based on Product fact table

Dimensions are connected to the facts object in a cube model like the dimension

tables are connected to the fact table in a star schema. Columns of data from

relational tables are represented by attribute objects referenced by the dimension.

Subcategory dimension references the following attributes.

 DIMENSION_KEY

 SUBCATEGORY_ID

 SUBCATEGORY_NAME

 SUBCATEGORY_MDFYDATE

 CATEGORY_ID

43

 CATEGORY_NAME

 CATEGORY_MDFYDATE

Model dimension references the following attributes

 DIMENSION_KEY

 MODEL_ID

 MODEL_NAME

 MODEL_MDFYDATE

 DESCRIPTION_ID

 DESCRIPTION_MDFYDATE

 LONG_DESC

 CULTURE_ID

 CULTURE_NAME

 IDVARCHAR

UnitMeasure dimension references the following attributes. Only one level is

forbidden in creating dimensions, therefore two level created for unitmeasure

dimension. Only one of them unitmeasure level is used.

 UNITMEASURE_ID

 UNITMEASURE_NAME

 UNITMEASURE_DATE

 LEVEL2_ID

 LEVEL2_NAME

 LEVEL2_DATE

A join is created to connect each dimension to the facts object. The three joins in

this example are Model, Unitmeasure and Subcategory.

44

Figure 6.2 Diagram of CubeProductListPrice cube's dimensional objects

Hierarchies store information about how the attributes grouped into levels within

a dimension are related to each other and structured. As a metadata object, a

hierarchy provides a way to calculate and navigate across the dimension. Each

dimension has a corresponding hierarchy with levels that group related attributes as

in Figure 6.3. In a cube model, each dimension can have multiple hierarchies.

Figure 6.3 The hierarchy of DIM_SUBCATEGORY dimension

45

One or more cubes may be built for the cube model. The AdventureWorks user

product module has five cubes, but only the CubeProductListPrice is described here.

Cube Product ListPrice is shown in Figure 6.4.

Figure 6.4 All dimensional objects in cube

6.1.2 Mapping

After creating necessary dimensional objects, we have loaded data into them.

Warehouse builder mapping tool is used to extract data from database and load to

target warehouse builder repository.

Mapping tool has a design page, dimensional objects and the database objects can

be put in this designer. The component pallet in mapping tool is shown in Figure

6.5.

46

Figure 6.5 Some mapping objects in Warehouse Builder

6.1.2.1 Mapping Dim_UnitMeasure

When Dim_unitmeasure created, D1_UNITMEASURE_TAB is automatically

created in the same form with dimension in warehousing repository. There are no

data in this dimension table at first.

Figure 6.6 is the map for loading D1_UNITMEASURE_TAB. Unitmeasure_t is

the database object. D1_UNITMEASURE_TAB dimension table is the warehouse

object. As seen in Figure 6.6, related columns are connected each other via arrows.

This mapping is compiled with no errors. Then for starting data transformation the

red marked part is clicked. D1_UNITMEASURE_TAB table is filled by data. This is

the simplest mapping example because one dimension is loaded from only one

regular table.

47

Figure 6.6 Mapping diagram of DIM_UNITMEASURE

6.1.2.2 Mapping Dim_SubCategory

When Dim_SubCategory created, D2_SUBCATEGORY_TAB is automatically

created in the same form with dimension in warehousing repository. There is no data

in this dimension table at first.

Dim_SubCategory gets data from two different tables. One of them is

ProductSubcategory_t and the other one is ProductCategory_t. For connecting

multiple tables with dimension table, joiner control must be used.

Joiner is a mapping control which is stated in component palette. This control has

two input groups and an output group. Two input group is bounded via a join

condition. All inputs are shown up in output group. After joining two tables, outputs

are bind to D2_SUBCATEGORY_TAB. Mapping compiled with no errors and run.

D2_SUBCATEGORY_TAB is filled by dimension table's data.

Figure 6.7 Mapping diagram of DIM_SUBCATEGORY

48

6.1.2.3 Mapping Dim_Model

When Dim_Model created, D4_PRODUCTMDC_TAB is automatically created

in the same form with dimension in warehousing repository. There are no data in this

dimension table at first.

While creating dimensions, a lot of experiments gained. Dimension table start

with D4.., in here 4 means, this is the fourth dimension creation experiment of

dim_model.

D4_PRODUCTMDC_TAB gets data from Productmodel and

ProductModelDescriptionCulture tables. Culture and Description levels' data come

from ProductModelDescriptionCulture's ProductDescription and Culture nested

tables.

In the Figure 6.8 ProductModelDescriptionCulture table is seen. This table

contains two nested tables. These nested tables is expanded by using Varray Iterator

control and Expand Object.

Varray iterator gets nested table types and converts them to nested types. Expand

objects gets nested types and returns attributes of mentioned nested type as output.

Figure 6.8 Mapping diagram of DIM_MODEL part 1

The outputs of expand objects and productmodel table is merged by joiner object.

Outputs are bind to D4_PRODUCTMDC_TAB dimension table. This mapping is

compiled and run successfully.

49

Figure 6.9 Mapping diagram of DIM_MODEL part 2

6.1.2.4 Mapping Cube_ProductListPrice

When Cube_ProductListPrice created, C_LISTPRICE_3DIM_TAB is

automatically created in the same form with cube in warehousing repository. There

are no data in this cube table at first. C_LISTPRICE_3DIM_TAB's dimensional

attributes are bind from Product fact table by arrows. The measure of the cube is

come from nested ProductListPriceHistory column. ProductListPriceHistory

expanded by using Varray iterator and Expand objects components. VT_LB,

VT_UB, TT_LB, TT_UB and value outputs of BT_NUMBER nested table are

connected to cube table's measure attributes by arrows.

Figure 6.10 Mapping diagram of Cube_ProductListPrice

50

6.1.3 Querying

Olap queries are the queries that get result from cube or dimensions. Some olap

queries are written with cubeproductlistprice and its dimensions for understanding

resulting features of data warehouse.

Query 1: What is the average list price of Bikes according to years?

The query which answers these questions is written in Table 6.1.

Cubeproductlistprice cube and Dim_Subcategory dimension tables are used. The

result contains three rows. Each of them is the result of year (2001, 2002, 2003).

Table 6.1 Query of question

SELECT VT_LB,VT_UB,TT_LB,TT_UB,ROUND(AVG(LISTPRICE),2)

FROM cubeproductlistprice WHERE dim_subcategory_key

IN (SELECT DIMENSION_KEY FROM DIM_SUBCATEGORY

WHERE CATEGORY_NAME='Bikes') GROUP BY VT_LB,VT_UB,TT_LB,TT_UB;

Figure 6.11 Query result screenshot

The solution of this query also can be written in relational database form of

AdventureWorks database. This solution query is given in Table 6.2; it is a longer

statement than the statement which was constituted with warehousing objects.

Table 6.2 Query of question written with relational objects

select StartDate AS VT_LB, EndDate AS VT_UL, ModifiedDate AS TTLB, ModifiedDate AS

TT_UB, AVG(ListPrice) from Production.ProductListPriceHistory

where ProductID in (select ProductID from Production.Product

where ProductSubcategoryID in(select ProductSubcategoryID from

Production.ProductSubcategory where ProductCategoryID= (select ProductCategoryID from

Production.ProductCategory where Name='Bikes'))) GROUP BY StartDate,EndDate,ModifiedDate;

51

System performance or some other variants can effect on query performance.

Both queries are run 6 times and query execution times are calculates according to

milliseconds. The chart in Figure 6.12 shows execution times of queries in 6

operations.

Figure 6.12 Chart shows six average execution time in each environment. The seventh measure is the

average execution times.

Query 2: What is the average list price of all products according to years,

categories and subcategories?

The key query for this question is given in Table 6.3. Category and Subcategory

were in separate tables before. After designing dimensional model,

Dim_SubCategory is created automatically. Only Dim_SubCategory table is enough

to reach Subcategory and Category tables' information.

Table 6.3 Query of question with dimensional database objects

SELECT VT_LB,VT_UB,TT_LB,TT_UB,ROUND(AVG(LISTPRICE),2),

(SELECT category_name FROM DIM_SUBCATEGORY

WHERE dimension_key= dim_subcategory_key) CATEGORY_NAME,

(SELECT subcategory_name FROM DIM_SUBCATEGORY

WHERE dimension_key= dim_subcategory_key) SUBCATEGORY_NAME

FROM cubeproductlistprice

GROUP BY VT_LB,VT_UB,TT_LB,TT_UB,dim_subcategory_key

ORDER BY dim_subcategory_key;

0

5

10

15

20

25

30

35

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

Data Warehouse Query

Relational Database Query

52

Figure 6.13 Query result screenshot

The answer query of this question is also written with relational database objects.

This statement is given in Table 6.4. As it appears, statement has more join

conditions than the one written with dimensional objects.

Table 6.4 Query of question written with relational objects

SELECT StartDate AS VT_LB, EndDate AS VT_UL,

PLP.ModifiedDate AS TTLB,PLP.ModifiedDate AS TT_UB,

PC.Name AS CATEGORY_NAME,

PSC.Name AS SUBCATEGORY_NAME, AVG(PLP.ListPrice)

FROM Production.ProductListPriceHistory PLP,

Production.ProductSubcategory PSC, Production.Product P,

Production.ProductCategory PC WHERE PLP.ProductID=P.ProductID

AND PSC.ProductSubcategoryID=P.ProductSubcategoryID

AND PC.ProductCategoryID=PSC.ProductCategoryID

GROUP BY StartDate,EndDate,PLP.ModifiedDate,PC.Name,PSC.Name;

Figure 6.14 shows query execution times according to data warehouse query and

relational database query as milliseconds for six times. Seventh measurement is

average performance.

53

Figure 6.14 Chart shows six average execution time in each environment. The seventh measure is the

average execution times.

Query 3: What is the average list price according to models?

Table 6.5 Query of question

SELECT ROUND(AVG(LISTPRICE),2),

(SELECT MODEL_NAME FROM DIM_MODEL

WHERE dimension_key=DIM_PRODUCTMDC_KEY) MODEL_NAME

FROM cubeproductlistprice GROUP BY DIM_PRODUCTMDC_KEY

ORDER BY DIM_PRODUCTMDC_KEY;

Figure 6.15 Query result screenshot

0

5

10

15

20

25

aE
xe

cu
ti

o
n

 t
im

e
(m

s)

 Data Warehouse Query

Relational Database
Query

54

Table 6.6 Query of question written with relational objects

SELECT StartDate AS VT_LB, EndDate AS VT_UL, PLP.ModifiedDate AS

TTLB,PLP.ModifiedDate AS TT_UB, PM.Name AS MODEL_NAME,AVG(PLP.ListPrice)

FROM Production.ProductListPriceHistory PLP, Production.ProductModel PM,

Production.Product P WHERE PLP.ProductID=P.ProductID AND

PM.ProductModelID=P.ProductModelID

GROUP BY StartDate,EndDate,PLP.ModifiedDate,PM.Name;

Figure 6.16 Query comparison chart

Query 4: Query 4: What is the average list price of Bikes According to Cultures

between 01.01.2000 and 01.01.2004?

Query result shows that Chinese originate bikes are the cheapest ones. English

originate bikes are the most expensive ones.

Table 6.7 Query of question

SELECT ROUND(AVG(LISTPRICE),2) Average_Bike_Price,

DIM_MODEL.CULTURE_NAME FROM cubeproductlistprice,

DIM_MODEL WHERE DIM_MODEL.DIMENSION_KEY=

cubeproductlistprice.dim_productmdc_key

and cubeproductlistprice.PRODUCT_ID IN (SELECT PRODUCTID

FROM PRODUCT2 WHERE SUBCATEGORYID IN(SELECT SUBCATEGORY_ID

FROM DIM_SUBCATEGORY WHERE CATEGORY_NAME='Bikes')) and

vt_lb>to_date('01.01.2000','DD/MM/YYYY') and vt_ub<to_date('01.01.2004','DD/MM/YYYY')

GROUP BY DIM_MODEL.CULTURE_NAME

ORDER BY DIM_MODEL.CULTURE_NAME;

0

5

10

15

20

25

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Data Warehouse Query

Relational Database
Query

55

Figure 6.17 Query result screenshot

Table 6.8 Query of question written with relational objects

select AVG(PL.ListPrice), C.Name from Production.ProductListPriceHistory PL,

Production.ProductModel PM, Production.Product P,

Production.ProductModelProductDescriptionCulture PMDC, Production.Culture C

where P.ProductModelID=PM.ProductModelID AND PL.ProductID=P.ProductID

AND PM.ProductModelID=PMDC.ProductModelID AND PMDC.CultureID=C.CultureID

AND PL.StartDate>convert(DATE, '01.01.2000', 103) and PL.EndDate<convert(DATE,

'01.01.2004', 103) AND PL.ProductID in (select ProductID from Production.Product

where ProductSubcategoryID in(select ProductSubcategoryID

from Production.ProductSubcategory where ProductCategoryID=
(select ProductCategoryID from Production.ProductCategory where Name='Bikes'))) GROUP BY

C.Name ;

Figure 6.18 Query comparison chart

Query 5: What is the average list price of Components According to Cultures?

Query result in Table 6.19 shows that French originate components are the

cheapest ones in average. Hebrew originate components are the most expensive ones.

0

10

20

30

40

50

60

70

80

90

100

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

Data Warehouse Query

56

Table 6.9 Query of question

SELECT ROUND(AVG(LISTPRICE),2) Average_Component_Price,

DIM_MODEL.CULTURE_NAME

FROM cubeproductlistprice,DIM_MODEL WHERE DIM_MODEL.DIMENSION_KEY=

cubeproductlistprice.dim_productmdc_key

and cubeproductlistprice.PRODUCT_ID IN (SELECT PRODUCTID

FROM PRODUCT2 WHERE SUBCATEGORYID IN(SELECT SUBCATEGORY_ID

FROM DIM_SUBCATEGORY WHERE CATEGORY_NAME='Components'))

GROUP BY DIM_MODEL.CULTURE_NAME;

ORDER BY DIM_MODEL.CULTURE_NAME;

Figure 6.19 Query result screenshot

Table 6.10 Query of question written with relational objects

select AVG(PL.ListPrice), C.Name from Production.ProductListPriceHistory PL,

Production.ProductModel PM, Production.Product P,

Production.ProductModelProductDescriptionCulture PMDC, Production.Culture

where P.ProductModelID=PM.ProductModelID AND PL.ProductID=P.ProductID

AND PM.ProductModelID=PMDC.ProductModelID AND PMDC.CultureID=C.CultureID AND

PL.ProductID in (select ProductID from Production.Product

where ProductSubcategoryID in(select ProductSubcategoryID

from Production.ProductSubcategory where ProductCategoryID=

(select ProductCategoryID from Production.ProductCategory where Name='Components')))

GROUP BY C.Name ;

57

Figure 6.20 Query comparison chart

Query 6: What is the average list price of Components According to Cultures

AND Models?

The query of this question is given in Table 6.11. CubeProductListPrice and

Dim_model is joined. In oracle relational database design there were two tables

about model dimension. One of them was ProductModelDescriptionCulture which

contains PRODUCTDESCRIPTION and CULTURE nested types in it. This three

different table and nested tables are stored in one dimension table.

Table 6.11 Query of question

SELECT ROUND(AVG(LISTPRICE),2) Average_Component_Price,

DIM_MODEL.CULTURE_NAME, DIM_MODEL.MODEL_NAME

FROM cubeproductlistprice,DIM_MODEL WHERE DIM_MODEL.DIMENSION_KEY=

cubeproductlistprice.dim_productmdc_key

and cubeproductlistprice.PRODUCT_ID IN (SELECT PRODUCTID

FROM PRODUCT2 WHERE SUBCATEGORYID IN(SELECT SUBCATEGORY_ID

FROM DIM_SUBCATEGORY WHERE CATEGORY_NAME='Components'))

GROUP BY DIM_MODEL.MODEL_NAME,DIM_MODEL.CULTURE_NAME

ORDER BY DIM_MODEL.CULTURE_NAME, DIM_MODEL.MODEL_NAME;

0

5

10

15

20

25

30

35

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Data Warehouse Query

Relational Database
Query

58

Figure 6.21 Query result screenshot

Table 6.12 Query of question written with relational objects

select AVG(PL.ListPrice), C.Name , PM.Name

from Production.ProductListPriceHistory PL, Production.ProductModel PM,

Production.Product P,

Production.ProductModelProductDescriptionCulture PMDC, Production.Culture C where
P.ProductModelID=PM.ProductModelID AND PL.ProductID=P.ProductID

AND PM.ProductModelID=PMDC.ProductModelID AND PMDC.CultureID=C.CultureID

AND PL.ProductID=P.ProductID AND PL.ProductID in (select ProductID from

Production.Product where ProductSubcategoryID in(select ProductSubcategoryID from

Production.ProductSubcategory where ProductCategoryID= (select ProductCategoryID from

Production.ProductCategory where Name='Components'))) GROUP BY C.Name,PM.Name ;

Figure 6.22 Query comparison chart

0

10

20

30

40

50

60

70

80

90

100

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

Data Warehouse Query

Relational Database
Query

59

Query 7: What is the average list price of Components According to Categories?

Table 6.13 Query of question

SELECT ROUND(AVG(LISTPRICE),2) Average_Component_Price,

DIM_SUBCATEGORY.CATEGORY_NAME FROM cubeproductlistprice,DIM_SUBCATEGORY

WHERE DIM_SUBCATEGORY.DIMENSION_KEY=cubeproductlistprice.DIM_SUBCATEGORY_KEY

GROUP BY DIM_SUBCATEGORY.CATEGORY_NAME ORDER BY

DIM_SUBCATEGORY.CATEGORY_NAME;

Figure 6.23 Query result screenshot

Table 6.14 Query of question written with relational objects

select AVG(PL.ListPrice), PC.Name from Production.ProductListPriceHistory PL, Production.Product P,
Production.ProductSubcategory PS,
Production.ProductCategory PC where P.ProductSubcategoryID= PS.ProductSubcategoryID AND
PS.ProductCategoryID=PC.ProductCategoryID
 AND PL.ProductID=P.ProductID AND PL.ProductID in (select ProductID from Production.Product where
ProductSubcategoryID in(select ProductSubcategoryID from Production.ProductSubcategory where
ProductCategoryID= (select ProductCategoryID from Production.ProductCategory where
Name='Components'))) GROUP BY PC.Name;

Figure 6.24 Query comparison Chart

Query 8: What is the average list price of Components According to Categories

and SubCategories?

0

20

40

60

80

100

120

140

160

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Data Warehouse Query

Relational Database
Query

60

The result query of this question is given in Table 6.15. It provides acces to two

levels of Dim_Subcategory dimension.

Table 6.15 Query of question

SELECT ROUND(AVG(LISTPRICE),2) Average_Component_Price,

DIM_SUBCATEGORY.CATEGORY_NAME,DIM_SUBCATEGORY.SUBCATEGORY_NA

ME FROM cubeproductlistprice,DIM_SUBCATEGORY

WHERE DIM_SUBCATEGORY.DIMENSION_KEY=

cubeproductlistprice.DIM_SUBCATEGORY_KEY GROUP BY

DIM_SUBCATEGORY.CATEGORY_NAME,

DIM_SUBCATEGORY.SUBCATEGORY_NAME

ORDER BY DIM_SUBCATEGORY.CATEGORY_NAME,

DIM_SUBCATEGORY.SUBCATEGORY_NAME;

Figure 6.25 Query result screenshot

Table 6.16 Query of question written with relational objects

select AVG(PL.ListPrice), pc.Name category, ps.Name subcategory

from Production.ProductListPriceHistory PL, Production.Product P,

Production.ProductSubcategory pc, Production.ProductSubcategory PS

where PS.ProductCategoryID= PL.ProductID and pc.ProductCategoryID= ps.ProductCategoryID

and pl.ProductID in (select ProductID from Production.Product where ProductSubcategoryID

in(select ProductSubcategoryID from Production.ProductSubcategory where
ProductCategoryID= (select ProductCategoryID from Production.ProductCategory where

Name='Components'))) GROUP BY pc.Name , ps.Name ;

61

Figure 6.26 Query comparison Chart

6.2 Cube2- CubeProductCostHistory

6.2.1 Design

CubeProductCostHistory is nearly same with CubeProductListprice.

CubeProductCostHistory cube also has Dim_Model, Dim_Unitmeasure,

Dim_Subcategory dimensions. CubeProductCostHistory has Cost, VT_LB, VT_UB,

TT_LB, TT_UB, Product_Id as measures and D1_Measure, D2_subcategory,

D4_ProductMDC attributes for binding them to dimensions.

Figure 6.27 Diagram of dimensional snowflake schema based on Cube_Product_CostHistory cube

0

20

40

60

80

100

120

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Data Warehouse Query

Relational Database
Query

62

CubeProductCostHistory cube as depicted in Figure 6.27 has snowflake structure

and the same dimensions with CubeProductListprice. Same dimensions are used to

create diffirent cubes.

6.2.2 Mapping

6.2.2.1 Mappinng CubeProductCostHistory

Figure 6.28 Mapping diagram of CubeProductCostHistory

6.2.3 Querying

CubeProductCostHistory and its dimensions are used to solve the questions in this

part.

Query 1: What is the average cost of Components according to years?

CubeProductCostHistory cube and Dim_Subcategory dimension is used to write

solution query. The result according to years (2001, 2002, 2003) are also shown in

Table 6.17.

Table 6.17 Query of question

SELECT VT_LB,VT_UB,TT_LB,TT_UB,ROUND(AVG(cost),2)

FROM cubeproductcosthistory WHERE dim_subcategory_key IN

(SELECT DIMENSION_KEY FROM DIM_SUBCATEGORY

WHERE category_id=(select productcategoryid

from productcategory_t WHERE NAMEE='Components'))

GROUP BY VT_LB,VT_UB,TT_LB,TT_UB;

63

Figure 6.29 Query result screenshot

Table 6.18 Query of question written with relational objects

select StartDate AS VT_LB, EndDate AS VT_UL, ModifiedDate AS TTLB, ModifiedDate AS

TT_UB, AVG(PC.StandardCost) from Production.ProductCostHistory PC where ProductID in

(select ProductID from Production.Product where ProductSubcategoryID in(select

ProductSubcategoryID from Production.ProductSubcategory where ProductCategoryID= (select

ProductCategoryID from Production.ProductCategory where Name='Components'))) GROUP BY

StartDate,EndDate,ModifiedDate;

Figure 6.30 Query comparison chart

Query 2: What is the average list cost of all product according to years, categories

and subcategories?

Table 6.19 Query of question

SELECT VT_LB,VT_UB,TT_LB,TT_UB,ROUND(AVG(cost),2), (SELECT category_name FROM

DIM_SUBCATEGORY WHERE dimension_key= dim_subcategory_key) CATEGORY_NAME,

(SELECT subcategory_name FROM DIM_SUBCATEGORY WHERE dimension_key=

dim_subcategory_key) SUBCATEGORY_NAME FROM cubeproductcosthistory GROUP BY

VT_LB,VT_UB,TT_LB,TT_UB,dim_subcategory_key ORDER BY dim_subcategory_key;

0

10

20

30

40

50

60

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

Data Warehouse Query

Relational Database
Query

64

Figure 6.31 Query result screenshot

Table 6.20 Query of question written with relational objects

SELECT StartDate AS VT_LB, EndDate AS VT_UL,

PCP.ModifiedDate AS TTLB,PCP.ModifiedDate AS TT_UB,

PC.Name AS CATEGORY_NAME,

PSC.Name AS SUBCATEGORY_NAME, AVG(PCP.StandardCost)

FROM Production.ProductCostHistory PCP,

Production.ProductSubcategory PSC, Production.Product P,

Production.ProductCategory PC WHERE PCP.ProductID=P.ProductID

AND PSC.ProductSubcategoryID=P.ProductSubcategoryID

AND PC.ProductCategoryID=PSC.ProductCategoryID

GROUP BY StartDate,EndDate,PCP.ModifiedDate,PC.Name,PSC.Name;

Figure 6.32 Query comparison chart

0

5

10

15

20

25

30

35

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

Data Warehouse Query

Relational Database
Query

65

Query 3: What is the average cost for all years according to models?

Table 6.21 Query of question

SELECT ROUND(AVG(cost),2), (SELECT MODEL_NAME FROM DIM_MODEL

WHERE dimension_key=DIM_PRODUCTMDC_KEY) MODEL_NAME,VT_LB,VT_UB,

TT_LB,TT_UB FROM cubeproductcosthistory GROUP BY DIM_PRODUCTMDC_KEY,

VT_LB, VT_UB,TT_LB,TT_UB ORDER BY DIM_PRODUCTMDC_KEY,VT_LB,VT_UB;

Figure 6.33 Query result screenshot

Table 6.22 Query of question written with relational objects

SELECT StartDate AS VT_LB, EndDate AS VT_UL, PCP.ModifiedDate AS

TTLB,PCP.ModifiedDate AS TT_UB, PM.Name AS MODEL_NAME,

AVG(PCP.StandardCost) FROM Production.ProductCostHistory PCP,

Production.ProductModel PM, Production.Product P WHERE PCP.ProductID=P.ProductID

AND PM.ProductModelID=P.ProductModelID GROUP BY

StartDate,EndDate,PCP.ModifiedDate,PM.Name;

Figure 6.34 Query comparison chart

0

5

10

15

20

25

30

35

Ex
e

cu
ti

o
n

 t
im

e
(m

s)

Data Warehouse Query

Relational Database
Query

66

Query 4: What is the average cost for all years according to cultures?

Table 6.23 Query of question

SELECT ROUND(AVG(cost),2), dim_productmdc_key,

(SELECT CULTURE_NAME FROM DIM_MODEL

WHERE dimension_key=DIM_PRODUCTMDC_KEY) CULTURE_NAME,

VT_LB,VT_UB,TT_LB,TT_UB

FROM cubeproductcosthistory

GROUP BY DIM_PRODUCTMDC_KEY,VT_LB,VT_UB,TT_LB,TT_UB

ORDER BY DIM_PRODUCTMDC_KEY,VT_LB,VT_UB;

Figure 6.35 Query result screenshot

Table 6.24 Query of question written with relational objects

select AVG(PC.StandardCost), C.Name
from Production.ProductCostHistory PC, Production.ProductModel PM, Production.Product P,

Production.ProductModelProductDescriptionCulture PMDC, Production.Culture C

where P.ProductModelID=PM.ProductModelID AND PC.ProductID=P.ProductID

AND PM.ProductModelID=PMDC.ProductModelID AND PMDC.CultureID=C.CultureID

AND PC.StartDate>convert(DATE, '01.01.2000', 103) and PC.EndDate<convert(DATE,

'01.01.2004', 103)

AND PC.ProductID in (select ProductID from Production.Product

where ProductSubcategoryID in(select ProductSubcategoryID

from Production.ProductSubcategory where ProductCategoryID=

(select ProductCategoryID from Production.ProductCategory where Name='Bikes'))) GROUP

BY C.Name ;

67

Figure 6.36 Query comparison chart

Query 5: What is the average list price of products According to Categories?

Table 6.25 Query of question

SELECT ROUND(AVG(COST),2) Average_Component_Price,

DIM_SUBCATEGORY.CATEGORY_NAME FROM cubeproductcosthistory,

DIM_SUBCATEGORY WHERE DIM_SUBCATEGORY.DIMENSION_KEY=

cubeproductcosthistory.DIM_SUBCATEGORY_KEY

GROUP BY DIM_SUBCATEGORY.CATEGORY_NAME

ORDER BY DIM_SUBCATEGORY.CATEGORY_NAME;

Figure 6.37 Query result screenshot

Table 6.26 Query of question written with relational objects

select AVG(PC.StandardCost), C.Name

from Production.ProductCostHistory PC, Production.ProductModel PM, Production.Product P,

Production.ProductModelProductDescriptionCulture PMDC, Production.Culture C

where P.ProductModelID=PM.ProductModelID AND PC.ProductID=P.ProductID
AND PM.ProductModelID=PMDC.ProductModelID AND PMDC.CultureID=C.CultureID

GROUP BY C.Name ;

0

20

40

60

80

100

120

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

Data Warehouse Query

Relational Database
Query

68

Figure 6.38 Query comparison chart

Query 6: What is the average list price of products According to Categories and

SubCategories?

Table 6.27 Query of question

SELECT ROUND(AVG(COST),2) Average_Component_Price,

DIM_SUBCATEGORY.CATEGORY_NAME,DIM_SUBCATEGORY.SUBCATEGORY_NAME

FROM cubeproductcosthistory,DIM_SUBCATEGORY

WHERE DIM_SUBCATEGORY.DIMENSION_KEY=

cubeproductcosthistory.DIM_SUBCATEGORY_KEY

GROUP BY DIM_SUBCATEGORY.CATEGORY_NAME,

DIM_SUBCATEGORY.SUBCATEGORY_NAME

ORDER BY DIM_SUBCATEGORY.CATEGORY_NAME,

DIM_SUBCATEGORY.SUBCATEGORY_NAME;

Figure 6.39 Query result screenshot

0

5

10

15

20

25

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Data Warehouse Query

Relational Database
Query

69

Table 6.28 Query of question written with relational objects

select AVG(PC.StandardCost), C.Name , PM.Name

from Production.ProductCostHistory PC, Production.ProductModel PM, Production.Product P,

Production.ProductModelProductDescriptionCulture PMDC, Production.Culture C

where P.ProductModelID=PM.ProductModelID AND PC.ProductID=P.ProductID

AND PM.ProductModelID=PMDC.ProductModelID AND PMDC.CultureID=C.CultureID AND

PC.ProductID=P.ProductID
AND PC.ProductID in (select ProductID from Production.Product

where ProductSubcategoryID in(select ProductSubcategoryID

from Production.ProductSubcategory where ProductCategoryID=

(select ProductCategoryID from Production.ProductCategory where Name='Components')))

GROUP BY C.Name,PM.Name ;

Figure 6.40 Query comparison chart

6.3 Cube3- CubeProductCostHistory2Dim

6.3.1 Design

While mathematical cubes have three dimensions, warehousing cubes can be

designed by two, one, three, four or more dimensions. This

CubeProductCostHistory2Dim cube is created by two dimensions. These dimensions

are Dim_Model, Dim_Subcategory dimensions and Cost, VT_LB, VT_UB, TT_LB,

TT_UB, ProdId measures.

0

20

40

60

80

100

120

140

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

Data Warehouse Query

Relational Database
Query

70

Figure 6.41 Diagram of dimensional star schema based on Cube_Product_CostHistory2Dim cube

6.3.2 Mapping

CubeProductCostHistory2Dim is very similar with mapping of

CubeProductCostHistory. The only difference is connecting two dimension attributes

from product fact table.

6.4 Cube4- CubeProductListPrice2Dim

6.4.1 Design

This CubeProductListPrice2Dim cube is also created by two dimensions. These

dimensions are Dim_Model, Dim_Subcategory dimensions and ListPrice, VT_LB,

VT_UB, TT_LB, TT_UB, ProdId measures.

71

Figure 6.42 Diagram of dimensional star schema based on Cube_Product_ListPrice2Dim cube

6.4.2 Mapping

CubeProductListPrice2Dim is very similar with mapping of

CubeProductListPrice. The only difference is connecting two dimension attributes

from product fact table.

6.5 Cube5- Cube_Workorder_OrderQty

6.5.1 Design

A snowflake schema is shown in Figure 6.43. Arrows show foreign keys between

tables. WorkOrder table is the fact table with Product, ProductSubCategory_t,

ProductCategory_t dimension tables. Product dimension has three dimension levels

ProductSubCategory and ProductCategory.

72

Figure 6.43 Snowflake schema based on Workorder fact table

The primary key in dimension table (Subcategory, Model, and UnitMeasure) is

joined to the corresponding foreign key in the Workorder fact table. For example,

Product.ProductId=Workorder. ProductId .

The cube model based on Workorder snowflake schema is constituted arount the

Workorder fact object. Workorder cube have Product dimension. Cube table fact

object includes attributes that correspond to the foreign keys in the fact table that are

used to join the dimensions to the facts object. The fact object has five measures:

VT_LB, VT_UB, TT_LB, TT_UB and Value. And has 1 attributes: D5_PRODUCT.

Product dimension references the following attributes:

 DIMENSION_KEY

 PRODUCT_ID

 PRODUCT_NAME

73

 PRODUCT_MDFDATE

 SUBCATEGORY_ID

 SUBCATEGORY_NAME

 SUBCATEGORY_MDFDATE

 CATEGORY_ID

 CATEGORY_NAME

 CATEGORY_MDFDATE

A join is created to connect dimension to the fact object.

Figure 6.44 Dimensional relations diagram of objects

Product dimension has one hierarchy and three levels in it as shown in Figure

6.45.

74

Figure 6.45 The hierarchy of DIM_PRODUCT

Figure 6.46 All objects in Cube_Workorder_OrderQty

75

6.5.2 Mapping

6.5.2.1 Mapping Dim_Product

When Dim_Product created, D5_PRODUCT_TAB is automatically created in the

same form with dimension in warehousing repository. There are no data in this

dimension table at first.

A mapping is designed to fill dimension table with data. Dim_Product's three

levels come from three different tables. These are ProductSubCategory_T,

ProductCategory_t and Product table. For loading three tables data into dimension

table, using two joiner operators required.

Map is compiled and run. Dim_product is filled by data.

Figure 6.47 Mapping diagram of DIM_PRODUCT dimension

6.5.2.2 Mapping Cube_Workorder_OrderQty

When Cube_Workorder_OrderQty created, C_WORKORDER1_TAB is

automatically created in the same form with cube in warehousing repository. There

are no data in this dimension table at first.

There are four objects in Figure 6.48. The one on the left side is Workorder

database table. The second one on left side is Varray Iterator. It converts

OrderQty_Nested nested table to nested BT_number type. The third one is the

Expand Object this object. This object expands all attributes in BT_number nested

type. BT_number expand objects's outputs are connected to C_workorder1_tab's

76

measure attributes. And ProductId column of Workorder table is connected to cube

table's dimensional attribute.

Figure 6.48 Mapping diagram of Cube_Workorder_OrderQty cube

6.5.3 Querying

The queries about CUBE_WORKORDER_ORDERQTY and its dimension are

given in this part. CUBE_WORKORDER_ORDERQTY has 24031 records.

Query 1: List of all work orders in ordered by according to category, subcategory

and product_name.

CUBE_WORKORDER_ORDERQTY contains only one dimension,

Dim_Product. Dim_Product has three levels. The question above requires accessing

three levels of DimProduct.

Table 6.29 Query of question

SELECT CUBE_WORKORDER_ORDERQTY.VT_LB, CUBE_WORKORDER_ORDERQTY.VT_UB,

CUBE_WORKORDER_ORDERQTY.TT_LB, CUBE_WORKORDER_ORDERQTY.TT_UB,

CUBE_WORKORDER_ORDERQTY.VALUE OrderQty, DIM_PRODUCT.CATEGORY_NAME,

DIM_PRODUCT.SUBCATEGORY_NAME, DIM_PRODUCT.PRODUCT_NAME FROM

CUBE_WORKORDER_ORDERQTY, DIM_PRODUCT WHERE DIM_PRODUCT.DIMENSION_KEY=

CUBE_WORKORDER_ORDERQTY.DIM_PRODUCT_KEY ORDER BY

DIM_PRODUCT.CATEGORY_NAME,DIM_PRODUCT.SUBCATEGORY_NAME,

DIM_PRODUCT.PRODUCT_NAME;

77

Figure 6.49 Query result screenshot

Table 6.30 Query of question written with relational objects

SELECT WO.StartDate VT_LB, WO.EndDate VT_UB, WO.ModifiedDate, WO.ModifiedDate

TT_UB, WO.OrderQty, PS.Name, PC.Name, P.Name FROM Production.WorkOrder WO,

Production.Product P, Production.ProductSubcategory PS, Production.ProductCategory PC

WHERE P.ProductID=WO.ProductID AND P.ProductSubcategoryID=PS.ProductSubcategoryID

AND PS.ProductCategoryID=PC.ProductCategoryID ORDER BY PS.Name, PC.Name,P.Name

Figure 6.50 Query comparison chart

Query 2: List work orders in decreasing order according to category and

subcategory.

The result of this query shows the most popular, highly preferred components and

bikes together in decreasing order.

0

200

400

600

800

1,000

1,200

1,400

1,600

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

Data Warehouse Query

Relational Database
Query

78

Table 6.31 Query of question

SELECT * FROM(

SELECT MAX(CUBE_WORKORDER_ORDERQTY.VALUE) OrderQty,

DIM_PRODUCT.CATEGORY_NAME,

DIM_PRODUCT.SUBCATEGORY_NAME, DIM_PRODUCT.PRODUCT_NAME

FROM CUBE_WORKORDER_ORDERQTY, DIM_PRODUCT WHERE

DIM_PRODUCT.DIMENSION_KEY=

CUBE_WORKORDER_ORDERQTY.DIM_PRODUCT_KEY

GROUP BY DIM_PRODUCT.CATEGORY_NAME,

DIM_PRODUCT.SUBCATEGORY_NAME,

DIM_PRODUCT.PRODUCT_NAME ORDER BY DIM_PRODUCT.CATEGORY_NAME ,

DIM_PRODUCT.SUBCATEGORY_NAME,DIM_PRODUCT.PRODUCT_NAME)

ORDER BY OrderQty DESC;

Figure 6.51 Query result screenshot

The answer query of question can be written with relational database objects as

statement in Table 6.32. As it appears, there are more join conditions than the one

written with dimensional objects.

79

Table 6.32 Query of question written with relational objects

SELECT X.ORDER_QTY, X.CATEGORY_NAME, X.PRODUCT_NAME,

X.SUBCATEGORY_NAME FROM (SELECT MAX(WO.OrderQty) AS ORDER_QTY,PC.Name AS

CATEGORY_NAME, PSC.Name AS SUBCATEGORY_NAME, P.Name AS PRODUCT_NAME FROM

Production.ProductSubcategory PSC, Production.Product P, Production.ProductCategory PC,

Production.WorkOrder WO WHERE WO.ProductID=P.ProductID AND PSC.ProductSubcategoryID=

P.ProductSubcategoryID AND PC.ProductCategoryID=PSC.ProductCategoryID GROUP BY PC.Name,

PSC.Name, P.Name) X ORDER BY X.ORDER_QTY DESC

Both queries operate on same quantity of data. Performance changes with respect

to system characteristics and querying methods. In our sample relational query is run

on more strong system. Even so the data warehouse fetched results quicker. Figure

6.52 contains 6 measurements of these queries. The average of 6 measurements is

shown as result 7. Data warehouse query's feedback is faster in average.

Figure 6.52 The chart contains six execution time in each system and an average measurement as

seventh edge

Query 3: List work orders in increasing order according to category and

subcategory.

The result of this query shows the least popular, least preferred components and

bikes together in increasing order.

0

20

40

60

80

100

120

140

160

180

200

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

Data Warehouse Query

Relational Database
Query

80

Table 6.33 Query of question

SELECT * FROM(

SELECT MAX(CUBE_WORKORDER_ORDERQTY.VALUE) OrderQty,

DIM_PRODUCT.CATEGORY_NAME, DIM_PRODUCT.SUBCATEGORY_NAME,

DIM_PRODUCT.PRODUCT_NAME FROM CUBE_WORKORDER_ORDERQTY,

DIM_PRODUCT

WHERE DIM_PRODUCT.DIMENSION_KEY=

CUBE_WORKORDER_ORDERQTY.DIM_PRODUCT_KEY

GROUP BY DIM_PRODUCT.CATEGORY_NAME,

DIM_PRODUCT.SUBCATEGORY_NAME,

DIM_PRODUCT.PRODUCT_NAME ORDER BY DIM_PRODUCT.CATEGORY_NAME ,

DIM_PRODUCT.SUBCATEGORY_NAME,DIM_PRODUCT.PRODUCT_NAME)

ORDER BY OrderQty ASC;

Figure 6.53 Query result screenshot

Table 6.34 Query of question written with relational objects

SELECT MAX(WO.OrderQty) ORDER_QTY,
PS.Name SUBCATEGORY_NAME, PC.Name CATEGORY_NAME, P.Name

PRODUCT_NAME FROM Production.WorkOrder WO,

Production.Product P, Production.ProductSubcategory PS, Production.ProductCategory PC

WHERE P.ProductID=WO.ProductID AND P.ProductSubcategoryID=PS.ProductSubcategoryID

AND PS.ProductCategoryID=PC.ProductCategoryID GROUP BY PS.Name, PC.Name, P.Name

ORDER BY ORDER_QTY DESC

81

Figure 6.54 Query comparison chart

Query 4: List the total product workorder according to category and subcategory

between 01/01/2002 and 31/12/2002 in decreasing order .

The result of query in Table 6.35 shows the most sold category and subcategory

of products in decreasing order.

Table 6.35 Query of question

SELECT * FROM

(SELECT SUM(CUBE_WORKORDER_ORDERQTY.VALUE) TotalOrderQty,

DIM_PRODUCT.CATEGORY_NAME, DIM_PRODUCT.SUBCATEGORY_NAME

FROM CUBE_WORKORDER_ORDERQTY, DIM_PRODUCT

WHERE DIM_PRODUCT.DIMENSION_KEY=

CUBE_WORKORDER_ORDERQTY.DIM_PRODUCT_KEY

GROUP BY DIM_PRODUCT.CATEGORY_NAME,

DIM_PRODUCT.SUBCATEGORY_NAME

ORDER BY DIM_PRODUCT.CATEGORY_NAME

,DIM_PRODUCT.SUBCATEGORY_NAME)

ORDER BY TotalOrderQty DESC;

0

20

40

60

80

100

120

140

160

180

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Data Warehouse Query

Relational Database
Query

82

Figure 6.55 Query result screenshot

Table 6.36 Query of question written with relational objects

SELECT SUM(WO.OrderQty) ORDER_QTY,

PS.Name SUBCATEGORY_NAME, PC.Name CATEGORY_NAME, P.Name

PRODUCT_NAME FROM Production.WorkOrder WO,

Production.Product P, Production.ProductSubcategory PS, Production.ProductCategory PC
WHERE P.ProductID=WO.ProductID AND P.ProductSubcategoryID=PS.ProductSubcategoryID

AND PS.ProductCategoryID=PC.ProductCategoryID AND

WO.StartDate>convert(DATE, '01/01/2002', 103) and WO.EndDate<convert(DATE,

'31/12/2002', 103)GROUP BY PS.Name, PC.Name, P.Name

ORDER BY ORDER_QTY DESC

Figure 6.56 Query comparison chart

0

20

40

60

80

100

120

140

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

Data Warehouse Query

Relational Database
Query

83

CHAPTER SEVEN

CONCLUSION AND DISCUSSION

Excessive amount of data exist in web and database systems. People share their

personal information on web pages. It is very important to process data and get a grip

on data. Results provide offering personal advertising and services. Some companies

generate their strategies according to results of the processed data. Data warehousing

is a favorite reporting system on reporting field. Today many enterprises use data

warehousing technologies. Getting more effective and more expeditious results on

reports are reasons of using warehousing systems. In data warehousing, reports are

fetched from dimensional databases. Multiple tables are associated as levels. Less

join statements are required and less background operations occur. Hence warehouse

reports achieve high performance.

Temporal depth is very important on data warehousing systems. When a value or

cell is updated, old data must be stored. Reporting can be required according to

previous time periods. Bitemporal structure is determined to use for storing temporal

data. Bitemporal structure stores validity period and transaction period of data. When

a cell is updated, old data's valid time upper bound component is filled by today’s

date, validity of old data ends. At the same time valid time lower bound component

of new data is filled by today’s date, validity of new data begins. A new row is added

to table when a column updates. If so many updates happen, tables may expand

unrestrainedly. In order to avoid uncontrolled expansion, tables must be created in

semi-structured form. Updated column and its bitemporal attributes are stored as

nested table. Bitemporal columns are; validity lower and upper bounds: VT_LB

(Valid time lower bound), VT_UB (Valid time upper bound). Transaction lower and

upper bounds: TT_LB (Transaction time lower bound), TT_UB (Transaction time

upper bound). Updated column, VT_LB, VT_UB, TT_LB, TT_UB compose a nested

type. Temporal nested column is added to table as nested table. When an update

occurs in temporal column, only a row is added to nested table. Semi-structured form

prevents repeating unchanged columns.

84

In this study, a database module which is specially prepared in SQL server is

transferred to Oracle database and semi-structured, bitemporal data warehouse is

designed. For supplying semi-structured form nested tables and nested types are

used. While tables in relational database use 34688 KB disk space, dimensional

tables use only 11392 KB. A dimensional database is designed. Queries are run in

this dimensional database and results are discussed. Results are explained and

supported with diagrams and charts. Results and reports can be used for specifying

the strategies of Corporates. Also the results are used to analyze conditions. In this

application, a bicycle corporate data is used. Products can be reported with respect to

their categories, models etc.

Data in data warehouse may be analyzed according to different time intervals with

the flexibility of bitemporal structure. Purchasing habits of customers may be

analyzed in time line. The efficient periods of year can be figured out. These and

similar beneficial conditions may be analyzed faster than the other systems, together

with the benefits of data warehouse and semi-structured data storage. Outcomes help

corporates for determining their strategy.

85

REFERENCES

Adamson, C., & Venerable, M. (1998). Data warehousing design solutions (286-

425). New York: Wiley Press.

AdventureWorks database summary (n.d). Retrieved March 1, 2013, from

http://www.dbdesc.com/output_samples/htmlbrowse_AdventureWorks.html

Atay, C. E., & Tansel, A. U. (2009). Bitemporal databases: Modeling and

implementation. Germany: VDM Publishing.

Atay, C.E. (2008). Nested bitemporal relational data model. Retrieved January, 25,

2013 from http://www.google.com.tr/books?hl=en&lr=&id=zO2-CpgVt-

MC&oi=fnd&pg=PR4&dq=nested+bitemporal+relational+data+model&ots=Q-

ILAOcEVB&sig=EQ31wUmDWoEj_Dxt4r7q9Je72h4&redir_esc=y

Bebel, B., Eder, J., Koncilia, C., Morzy, T., & Wrembel, R. (2004). Creation and

management of versions in multiversion data warehouse. Proceedings of the The

Association for Computing Machinery Symposium on Applied Computing, 717–

723.

Ben-Zvi, J. (1982). The time relational model. Los Angeles: University Microfilms.

Benitez, E., Guerrero, C., & Adiba, M. (2003). The WHES approach to data

warehouse evolution. Digital journal e-Gnosis. Retrieved February 14, 2013,

from http://www.e-gnosis.udg.mx.

Bhargava, G., & Gadia, S. (1993). Relational database systems with zero

information loss. Institute of Electrical and Electronics Engineers Transactions

on Knowledge and Data Engineering. 5(1).

Blaschka, M., Sapia, C., & Höfling, G. (1999). On schema evolution in

multidimensional databases. Data Warehousing and Knowledge Discovery

Conference, 153–164, Florence: Springer.

http://www.dbdesc.com/output_samples/htmlbrowse_AdventureWorks.html
http://www.google.com.tr/books?hl=en&lr=&id=zO2-CpgVt-MC&oi=fnd&pg=PR4&dq=nested+bitemporal+relational+data+model&ots=Q-ILAOcEVB&sig=EQ31wUmDWoEj_Dxt4r7q9Je72h4&redir_esc=y
http://www.google.com.tr/books?hl=en&lr=&id=zO2-CpgVt-MC&oi=fnd&pg=PR4&dq=nested+bitemporal+relational+data+model&ots=Q-ILAOcEVB&sig=EQ31wUmDWoEj_Dxt4r7q9Je72h4&redir_esc=y
http://www.google.com.tr/books?hl=en&lr=&id=zO2-CpgVt-MC&oi=fnd&pg=PR4&dq=nested+bitemporal+relational+data+model&ots=Q-ILAOcEVB&sig=EQ31wUmDWoEj_Dxt4r7q9Je72h4&redir_esc=y
http://www.e-gnosis.udg.mx/

86

Combi, C., Oliboni, B. , & and Pozzi, G. (2009). Modeling and querying temporal

semistructured data warehouses. New Trends in Data Warehousing and Data

Analysis Annals of Information Systems, 1-25, New York: Springer.

Gadia, S. K. (1988). A homogeneous relational model and query languages for

temporal databases. Association for Computing Machinery Transactions on

Database Systems, 418-448.

Hurtado, C. A., Mendelzon, A. O., & Vaisman, A. A. (1999). Updating OLAP

dimensions. 2nd Institute of Electrical and Electronics Engineers – Data

Warehousing and Olap Workshop, 60–66.

Inmon, W. (2002). Building the data warehouse, United States: Wiley.

Janet, E., Ramirez , R., & Guerrero, E. B. (2006). A model and language for

bitemporal schema versioning in data warehouses. Proceedings of the 15th

International Conference on Computing, 309-314.

Jensen, C. S., Soo, M. D., & Snodgrass, R. T. (1994). Unifying temporal data

models via a conceptual model. Information Systems (513-547). USA: Elsevier

Press.

Koncilia, C. (2003). A bitemporal data warehouse model. CAiSE Short Paper

Proceedings, Central Europe Workshop Proceedings, Retrieved December, 28,

2012 from http://www.CEUR-WS.org.

Malinowski, E., & Zimanyi, E. (2006). A conceptual solution for representing time

in data warehouse dimensions. 3rd Asia-Pacific Conference on Conceptual

Modeling, 45–54.

Martin, C., & Abello, A. (2002). The data warehouse: A temporal database.

Jornadas de Ingeniería del Software y Bases de Datos, 675-684.

