DOKUZ EYLUL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED
SCIENCES

MODELING AND QUERYING BITEMPORAL
SEMISTRUCTURED DATA WAREHOUSES

by
Gozde ASLAN

July, 2013

iZMIR

MODELING AND QUERYING BITEMPORAL
SEMISTRUCTURED DATA WAREHOUSES

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of Dokuz Eyliil University
In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Computer Engineering, Computer Engineering Program

by

Gozde ASLAN

July, 2013

iZMIiR

M.Sc THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “MODELING AND QUERYING
BITEMPORAL SEMISTRUCTURED DATA WAREHOUSES” completed by
GOZDE ASLAN under supervision of ASST. PROF. DR. CANAN EREN ATAY
and we certify that in our opinion it is fully adequate, in scope and in quality, as a
thesis for the degree of Master of Science.

Vel boe De. Conon A Aﬂﬁ

i A

Supzarvisor
{)Ot ‘. D&Ae’v\)\lmﬂew Hek ol . Batl. 10Ty
(Jury Member) (Jury Member)

P

=

Prof.Dr. Ayse OKUR
Di-ector

Graduate School of Natural and Applied Sciences

ACKNOWLEDGEMENTS

| would like to present my sincere gratitude to my advisor Asst. Prof. Dr. Canan
Eren Atay for her significant guidance, help, suggestions, patience, and support
throughout all the phases of this study.

I would like to also thank to parents Ayla Aslan and Resat Aslan and my brother
Ali Ugur Aslan for their worthy patient and support.

Furthermore, | also thank to my fiancée Ahmet Burak Alp for his continuous
patient and support. He listen my concerns every time and encouraged me.

Lastly, I would like to extend my sincere gratitude to all the staff and academic
personnel of the Computer Engineering Department and Graduate School of Natural

and Applied Sciences.

Gozde ASLAN

MODELING AND QUERYING BITEMPORAL SEMISTRUCTURED
DATA WAREHOUSES

ABSTRACT

Data Warehouse is very common and achieved prominence in recent years is a
system that supplies more effective and rapid reports. Warehouse data is stored in a
non-transactional repository. Easy reporting and reasoning via prepared warehouse
cubes is ensured. It is important to understand customer’s tendencies and increase the

customer satisfaction in corporations. At this point warehouse is a great solution.

Temporal approaches are very important while analyzing historical data.
Knowledge of old times is required on data analysis. To gain time- based realistic
reports, changed data has to be stored in a certain order. Bitemporal approach is one
of the temporal data storage approaches.

Various methods may be used to store data in less space. Generating nested
database tables is one of these methods. Nested tables compose a semi-structured

format in database.

The aim of this study is designing warehouse cubes which stores temporal values
in bitemporal form, semi-structured format. Additionally cubes are queried and
results are discussed. Outcomes may be used for analysis and data strategy

development of companies.

For supplying semi-structured form nested tables and nested types are used. 66
percent less disk space usage is provided. A dimensional database is designed.
Queries are run in this dimensional database and results are discussed. Results are

explained and supported with diagrams and charts.

Keywords: Data warehouse, bitemporal data model, semi-structured data, Oracle

warehouse builder.

YARI- YAPILI, CIFT ZAMANLI VERi AMBARLARININ
MODELLENMESI VE SORGULANMASI

0z
Son yillarda yaygin olarak kullanilan ve 6nem kazanan Veri Ambari, daha hizli ve
efektif raporlama imkani saglayan bir sistemdir. Veri ambarinda veriler, islem
olmayan depolama alanlarinda tutulur. Veri ambar1 kiipleri araciligiyla, kolay
raporlama ve muhakeme saglanir. Isletmelerde miisterinin egilimlerini saptamak ve

miisteri memnuniyetini arttirmak onemlidir. Bu noktada veri ambar1 ¢ok iyi bir

¢Ozimdiir.

Veri analizi yaparken eski tarihlere ait bilgilere ihtiya¢ duyulur. Zamana dayali
gercekei raporlar alabilmek i¢in, degisen veriler gecerlilik siirelerine gore belli bir
diizende tutulmalidir. Cift zamanlh yaklasim zamansal veri saklama

yaklagimlarimdan biridir.

Verilerin daha az yer kaplamalari i¢in ¢esitli metotlar kullanilabilir.

Veritabanindaki tablolari i¢ ige olusturmak bu yontemlerden biridir.

Bu uygulamanin amaci, zamansal degerleri ¢ift zamanh yapida tutan, yar1 yapili
bir dataset iizerinden veri ambari kiipleri olusturmak ve olusan kiipleri sorgulamaktir.
Ayrica sorgulari sonuglar1 da incelenmistir. Sonuglar veri analizinde ve sirketlerin

strateji gelistirmesinde kullanilabilir.

Yar1 yapililig1r saglamak i¢in nested tablolar ve nested typelar kullanilmstir.
Yiizde 66 daha az disk alami kullanimi saglanmistir. Boyutsal bir veritabani
modellenmistir. Sorgular boyutsal veritabaninda c¢alistirilmis, sonuglar tartigilmstir.

Sonuglar diyagramlar ve grafikler ile agiklanmis ve desteklenmistir.

Anahtar Sozciikler: Veri ambari, ¢ift zamanli veri modeli, yar1 yapili veri, Oracle

veri ambar1 yaraticisi.

CONTENTS

Page

M.SC THESIS EXAMINATION RESULT FORM........ccoviviieieeiiiieeee e i
ACKNOWLEDGEMENTS ... e e e e e ii
AB ST R A CT L. et e e et e e e e s ————aas WY}
@ /2T Vv
LIST OF FIGUREScoo oottt e e e e e e e e e s X
LIST OF TABLESttt e e e e Xii
CHAPTER ONE - INTRODUCTION ..ot a e 1
1L GBNEIAL ...t 1

1.2 PUIPOSE .ottt e et e e e e e e e e e e a 2

1.3 Organization Of THESISvveiiiee et 2
CHAPTER TWO — DATA WAREHOUSING SYSTEMS ... 4
N = T To T B - PSSR 4

2.2 What is Data WarehoUSEoouiiiiiiiii it 5

2.3 WarehouSing CONCEPLS.....cccuvreeiiieeiiee e et e itre et se e e e saee e 6
2.3 L IMELATALA. ...t 6

2.3 2 FACE TADIE...ciiieiieeee s 7

2.3.3 DIMENSION ...ttt ettt e e anes 7

2.3 4 LEVEL .. 8

2.3.5 HIBIArCNYooiiiiee e 9

2.3.8 CUDB ...t 10

2.3.7 IMIBASUIES ...ttt ettt e et e e e e e e e e anees 11

2.4 WarehousSing StIUCLUIESccoiuiee i 11

Vi

24 L ETL oo 11

242 OLAP .. 12
2.4.3 Data MarTS.......eeiiiiiiiiie et 13
2.5 Oracle Warehousing TOOISooiiiiiiiiiiiiieie e 13
2.5.1 SOl DEVEIOPETeieeiiiee e 14
2.5.2 REPOSITONY BIrOWSETooiiieiiiiiie sttt 14
2.5.3 Warehouse Builder Design Centercccovveeirieneeiiieniee e 15
CHAPTER THREE - TEMPORAL APPROACHEScooi i, 16
3.1 MOAElNG THIME ..o 16
TN 11 T= o [PSSR STR 16
3.1.2TIME INEIVAL.....oeieiieece e 16
3.1.3Temporal EIBMENtcooiiiiiiiiie e 17
3.2 Representing Temporal Data...........cooovveiieiiiieiiieiie e 17
3.2.1User Defined TIMEeiiiiiiieeiee et 17
3.2.2VAlI TIME ittt 17
3.2.3 TransaCtion TiMEcocuuiiiieiie et 18
3.3 TImMe-Stamping Data........ccccvreiiiieiiiie et se e e saae e 18
3.3.1 Tuple Time StamMPINgooeiiiieiiee e 18
3.3.2 Attribute Time StampPINgcc.ccovvveeiire e 20
3.4 Temporal Databasescccvveiiiie e 21
3.4.1 SNapsShot Databasescccvuvveiiiiie i 21
3.4.2 Historical Databasesccoviiiiiiiiiiiiie e 22
3.4.3 Transaction DAtabaSsesc.cerueriuieiieieiie it 22
3.4.3 Bitemporal Databasesc.ccovvveiiiee i 23
CHAPTER FOUR - SEMI STRUCTURED DATA MODEL........ccccceevvviiiennnnn, 24
4.1 SeMi-StrUCtUred Dat@........ceevvieiiieiie e 24
4.2 SeMi-STrUCTUrEd FOMMooiiiiiieiie e 24
4.3 INESEEU TYPBS ..vvreiieiiiiiie e ettt e e ettt e et e e e et e e e et a e e e et a e e e sbb e e e s ebbeaae s 26

vii

A4 NESEEA TADIES ..o ettt 26

4.5 XML DatabaSescuvveeiueieeiiiieeiiieeaieeeaiieeastteesstte e stee e sseeeesneeeesnteeesnseee s 27
CHAPTER FIVE - BENCHMARKING AND DATA TRANSFER 29
5.1 Importance of Benchmarkingccocveiiiiiiiiiii e 29
5.2 The Data Used in ThiS STUAY........cocveiiiiiiiiiieiicesee e 29
G DL L1 B I - 0] (- SRS 34
5.3.1 Creating TabIes.........oouiiiiieieee e 37
5.3.2 INSEItING DAtccouviiiiiiiieiie e 40
CHAPTER SIX - IMPLEMENTATION AND RESULTS ..., 41
6.1 Cubel- CubeProduCtLIStPIICEcccvveeciiie e 41
B. 1.1 DIBSIGN ..ttt ettt 41
TN T o 1o SRS 45
6.1.2.1 Mapping Dim_UNItMEaSUIeccccvreiiiee e eciee e 46
6.1.2.2 Mapping Dim_SubCategoryccccvveiiiieeiieeesiee e 47
6.1.2.3 Mapping Dim_Model..........ccoeeiiiieiiie e 48
6.1.2.4 Mapping Cube_ProductLiStPriCe...........cccceeviveiiiie e, 49
TG T @ 1N T oY/ T PSSP TR 50
6.2 Cube2- CubeProductCOStHISIONYcccuveeiiieeciie e 61
B.2.1 DESIGN ..ottt 61
I Y T o1 1o o PSPPSR 62
6.2.2.1 Mappinng CubeProductCostHIStoryccocveeviveiiiie s, 62
6.2.3 QUEIYING ..ttt e e e e e et a e et e e et e e e e e e anaeeeanes 62
6.3 Cube3- CubeProductCostHIStOry2Dim.........c..ccovvveiiiee e 69
B.3.1 DESIGN ..ttt 69
6.3.2 MAPPING ..ttt 70
6.4 Cubed- CubeProductLiStPrice2Dimcccocveiiiiiieiiieiiie e 70
B.4.1 DESIGN ..ottt 70
6.4.2 IMAPPING ..eeeeeiiiiee ettt e e e e e e e 71

viii

6.5 Cube5- Cube_Workorder_OrderQty........cccouueeeiieeeiiiie e 71

B.5.1 DBSIGN ..eeeeieteie ettt anes 71

6.5.2 IMPPING ..ttt 75
6.5.2.1 Mapping DIM_ProduCtccoeiiiiiiieiiieiie e 75

6.5.2.2 Mapping Cube_Workorder_OrderQtycccooveriienieiiieniieninnn 75

6.5.3 QUETYING ..ottt 76
CHAPTER SEVEN - CONCLUSION AND DISCUSSION........cccccoviiieniianinens 83
REFERENCESottt 85

LIST OF FIGURES

Page
Figure 2.1 Example snowflake SChema............ccocooiiiii i 7
Figure 2.2 Time dimension diagramcueoeeiiieniieiie i 9
Figure 2.3 HIErarchy StrUCTUIE.oiiiiiiieiieeree e 9
Figure 2.4 The diagram of dimensional 0DJECEScccoviiiiiiiiiiiicee 10
Figure 2.5 Welcome page of Repository ASSISantcccocverieeiieiiieniienee e 14
Figure 2.6 General view from Oracle Warehouse Builder. Mapping, transformations,
dimensions, cubes... parts are used for creating dimensional objects........................ 15
FIQUIE 3.1 TIME TN ..o 16
Figure 3.2 Atemporal lement..........cooiiiiiiiie e 17
Figure 5.1 Adventure Works relational database diagram, 1-1........c.ccccooviiiirnnnnne 30
Figure 5.2 Adventure Works relational database diagram, 1-2..........c.cccooeiviiennnnne 31
Figure 5.3 Adventure Works relational database diagram, 1-3..........ccccceviiiiiennnnne 32
Figure 5.4 Adventure Works relational database diagram, 1-4..........cc..cccceevvveennen. 33
Figure 5.5 Oracle Adventure Works, relational, bitemporal and semi-structured
database diagram Part 1cocoveiiiieiiiie e e e 35
Figure 5.6 Oracle Adventure Works, relational, bitemporal and semi-structured
database diagram Part 2cocieiiiie e 36
Figure 6.1 A snowflake schema based on Product fact table.............c..cccooveevieeennn. 42
Figure 6.2 Diagram of CubeProductListPrice cube's dimensional objects................. 44
Figure 6.3 The hierarchy of DIM_SUBCATEGORY dimensionccccccevveennen. 44
Figure 6.4 All dimensional 0bjects in CUbE...........cccvvveiiiiii e, 45
Figure 6.5 Some mapping objects in Warehouse Builder................ccccoeevveeiieennnn. 46
Figure 6.6 Mapping diagram of DIM_UNITMEASUREccccccooeviivineeiiiieeen, 47
Figure 6.7 Mapping diagram of DIM_SUBCATEGORYccccccevveeviineeiieeeen, 47
Figure 6.8 Mapping diagram of DIM_MODEL part 1.........ccccccovveiiiveeiine e, 48
Figure 6.9 Mapping diagram of DIM_MODEL part 2.........cccccceeveiviieeiine e, 49
Figure 6.10 Mapping diagram of Cube_ProductListPricec..cccocveeviveeiiieennnnn. 49
Figure 6.11 Query result SCreenshotccvveeiiie e 50

Figure 6.12 Chart shows six average execution time in each environment. The

seventh measure is the average eXecution tIMES.cccervereriieeiiiiee e siee e 51
Figure 6.13 Query result SCreenShOLooiiiiiiiiie e 52
Figure 6.14 Chart shows six average execution time in each environment. The
seventh measure is the average eXecution tiMes.ccccevvveiieriieinie e 53
Figure 6.15 Query result SCreenShOtcoiiiiiiiiiee e 53
Figure 6.16 Query COmMPAriSON CNAITcoiviiiiriiiieiie et 54
Figure 6.17 Query result SCreenShOLooiiiiiiiiiie e 55
Figure 6.18 Query COmMPAriSON CNAITcoviiiiiiiiierie e 55
Figure 6.19 Query result SCreenShOLooiiiiiiiiie e 56
Figure 6.20 Query COmMPAriSON CRAITooviiiiiiiiieie e 57
Figure 6.21 Query result SCreenShOLcoiviiiii i 58
Figure 6.22 Query COmMPAriSON CRAITooviiiiiiiierie e 58
Figure 6.23 Query result SCreenShOLooiviiiiiiiee e 59
Figure 6.24 Query COMPAriSON CAITooviiiiiiiiere e 59
Figure 6.25 Query result SCreenShOtccvveiiiie e 60
Figure 6.26 Query compariSon Chartccccoccveeiiee i 61
Figure 6.27 Diagram of dimensional snowflake schema based on Cube_Product_
COSEHISTONY CUDEeeeieiee ettt e e e e eeanees 61
Figure 6.28 Mapping diagram of CubeProductCostHIStoryccccceevveeviieeennnen. 62
Figure 6.29 Query result SCreenshotccuveeiive e 63
Figure 6.30 Query compariSon Chartccccociveeiiie e 63
Figure 6.31 Query result SCreenShotccuveeiiie i 64
Figure 6.32 Query compariSon Chartccccociveeiiie i 64
Figure 6.33 Query result SCreenshotccuvviiiie i 65
Figure 6.34 Query compariSon Chartc.ccocoveeiiiie i 65
Figure 6.35 Query result SCreenshotccvveeiiei i 66
Figure 6.36 Query compariSon Chartccccveeiiie i 67
Figure 6.37 Query result SCreenshotccvveiiiie i 67
Figure 6.38 Query compariSon Chartccccveeiiii i 68
Figure 6.39 Query result SCreenshotccvveeiiei e 68
Figure 6.40 Query compariSon Chartcocove i 69

Xi

Figure 6.41 Diagram of dimensional star schema based on Cube_Product_Cost

HIStOIY2DIm CUDE ... 70
Figure 6.42 Diagram of dimensional star schema based on Cube_Product_ListPrice2

DM CUDE ..ot e e 71
Figure 6.43 Snowflake schema based on Workorder fact tablecccccooienen 72
Figure 6.44 Dimensional relations diagram of ODJECESccvevviiiiiiiiiniiciiee 73
Figure 6.45 The hierarchy of DIM_PRODUCTcooiiiiiiiiieiiee e 74
Figure 6.46 All objects in Cube_Workorder_OrderQtycccoceeveeiiieniiinieiienne 74
Figure 6.47 Mapping diagram of DIM_PRODUCT dimension............c.cccovvervenenen 75
Figure 6.48 Mapping diagram of Cube_Workorder_OrderQty cubec........ 76
Figure 6.49 Query result SCreenShOLooiiiiiiiiie e 77
Figure 6.50 Query COmMParisSON CAItcooviiieiiienie e 77
Figure 6.51 Query result SCreenShotcooviiiiiiiieiie e 78
Figure 6.52 The chart contains six execution time in each system and an average
measurement as SEVENTN BAQE.........oiuiiiie e 79
Figure 6.53 Query result SCreenShOtccvveeiiee e 80
Figure 6.54 Query compariSon Chartccccocoveeiie e 81
Figure 6.55 Query result SCreenShotccuveeiiee e 82
Figure 6.56 Query compariSon Chartccccoccveeiie e 82

Xii

LIST OF TABLES

Page
Table 3.1 The view of table that has valid time attributesccccovieiiiieeiiinnnns 18
Table 3.2 Tuple is stamped With time POINES..........cceeviieeiiieeiiiie e 19
Table 3.3 Tuple is stamped with validity time intervals.ccccoooe i 19
Table 3.4 Tuple is stamped with validity and transaction time intervals................... 20
Table 3.5 List price and cost attributes are time stampedccccceviriieniinineen. 21

Table 3.6 The view of example table after updating according to bitemporal approach

... 23
Table 4.1 Nested table with bitemporal attributes ..., 25
Table 4.2 The view of nested table after update transaction.............c.cccoovevvieinenne. 25
Table 4.3 Creation script 0f NESLEd TYPEccvvviiiiiie e 26
Table 4.4 Creation Script of Nested table ..., 27
Table 5.1 Comparison of regular table creation SCriptS.........ccccoeveeviveiiiieeiiieeiiinnn 37
Table 5.2 Comparison of nested table and regular tables creation scripts part 1....... 38
Table 5.3 Comparison of nested table and regular tables creation scripts part 2........ 39
Table 5.4 Example insert statement to nested product table.................cccceevvveinnnnn, 40
Table 6.1 QUErY OF QUESTION ..o et eaee e 50
Table 6.2 Query of question written with relational objects............ccccoccveeviieeiinnnn, 50
Table 6.3 Query of question with dimensional database objectscccccccvvevvnenn 51
Table 6.4 Query of question written with relational objects............cc.cccooveeiiiieiinnn, 52
Table 6.5 QUErY Of QUESTIONccuuiieiiee e 53
Table 6.6 Query of question written with relational objects............cccccccveiiiiieinnnnn, 54
Table 6.7 QUErY OF QUESTIONccuiie i 54
Table 6.8 Query of question written with relational objects............cccccooveeviieeiinnnn, 55
Table 6.9 QUErY OF QUESTIONccuiieiie e 56
Table 6.10 Query of question written with relational objects................ccceevieiinnnn, 56
Table 6.11 QUErY OF QUESLIONccuvieeiiiee ettt 57
Table 6.12 Query of question written with relational objectsccccevieiinnn, 58
Table 6.13 QUErY OF QUESLIONcvvieeiiiec ettt 59
Table 6.14 Query of question written with relational objectsccccoviieeinnen, 59

Xiii

Table 6.15 QUEIY OF QUESTIONccvveieiiiieiiiie ettt e e eneee s 60

Table 6.16 Query of question written with relational objectsccccevviveiinnnnn 60
Table 6.17 QUErY OF QUESTIONcvviiiiieiie e 62
Table 6.18 Query of question written with relational objects.............ccccevviveiinnnn, 63
Table 6.19 QUErY OF QUESTIONovviiiiieiie e 63
Table 6.20 Query of question written with relational objects..........c.ccccccevviveiiennns 64
Table 6.21 QUErY OF QUESTIONouviiiiiiiee s 65
Table 6.22 Query of question written with relational objects..............ccceevvveinenn. 65
Table 6.23 QUErY OF QUESTIONccueeeeiiiie et see e e e eenneeee s 66
Table 6.24 Query of question written with relational objects..............cccceeviveinnnn. 66
Table 6.25 QUErY OF QUESTIONccuveieiiiie ettt e e e snaeee s 67
Table 6.26 Query of question written with relational objects................ccceevivveiinen, 67
Table 6.27 QUErY OF QUESTIONouviiiiiciie s 68
Table 6.28 Query of question written with relational objects...............ccceevvveiiennn 69
Table 6.29 QUErY OF QUESTIONoueiiiiiiiie s 76
Table 6.30 Query of question written with relational objects................ccceevvveinnnnn, 77
Table 6.31 QUErY OF QUESLIONccvvieeiiiie ittt e e eaee e 78
Table 6.32 Query of question written with relational objects................cccceevvveinnnn. 79
Table 6.33 QUErY OF QUESLIONccvvieeiiiie ettt e e saee e 80
Table 6.34 Query of question written with relational objects................ccceevveeiinnn, 80
Table 6.35 QUErY OF QUESLIONccvviieiiiie e e e enee e 81
Table 6.36 Query of question written with relational objects...............ccceeviveeiinnn, 82

Xiv

CHAPTER ONE
INTRODUCTION

1.1 General

Since technology became an indispensable part of people's life, communication
and shopping habits revolutionized. People are online nearly 7/24. When surfing on
social web sides a lot of data is left unconsciously. A lot of companies collects this

data and generates strategies for offering impressive campaigns to their customers.

This big data is processed and rendered into expressive form. There are some
techniques to operate this data. The effective applications are prepared by data
mining or decision support system algorithms. Data warehousing is a reporting

system, to provide gaining more effective reports.

Data warehouse is architecture, corporates prefer for data analysis. Detailed
reports are taken from data warehouses. Problems about specific work area can be
solved by warehousing reports. Data in data warehouses is stored in a special
repository. There are no update, insert, delete actions in warehousing repository; it is
only used for querying. Therefore querying performance is high. Warehousing

reports are faster and more effective than database reports.

Time variable has major importance on analysis reports of corporate. The change
or data in a specific period, in a specific year is asked. Time limitation is one of the
most important components in warehousing reports. Data changes by time. Keeping
old data is important for temporal deepness. Bitemporal database model is an

appropriate approach in order to keep temporal depth.

Semi-structured form is provided by nested tables in databases. Storing tables as

nested tables improve performance and ensure using less disk space.

1.2 Purpose

The aim of this study is to design and query a data warehouse to obtain more
effective and faster reporting system with using most proper temporal data modeling
approach and data storage method.

The most suitable temporal approach is discussed. Bitemporal approach is used in
design of data warehouse for providing efficiency. Reports may be taken according
to different time intervals that are supported by bitemporal date-time data modeling
approach. However bitemporal approach causes redundant growth of data in some

cases.

Semi-structured data storage method is used for avoiding unnecessary growth of
data. Semi-structured structure provides wasting less disk space, using less database
objects and fewer relations. Database operations are simpler in semi-structured form

and it provides high performance.

Hereby the most suitable methods are elected and used while designing the
database application for ensuring more effective and faster reports. To the best
knowledge of the author of this thesis, this study is the first which uses bitemporal

approach with semi-structured model in data warehouses for better reporting.

1.3 Organization of Thesis

This thesis consists seven chapters. The organization of chapters as follows.
In chapter 2, data warehousing systems and concepts are explained.

In chapter 3, database model explained. The reason of using bitemporal structure

is explained.

In chapter 4, semi-structured data model in databases is mentioned. The reason of

using semi-structured form is explained.

In chapter 5, data used in this study is described. Data is changed in order to
provide semi-structured and bitemporal form. This chapter contains information

about data transformation.

In chapter 6, creating dimensional objects from relational database tables is
explained by created warehousing cubes and dimensions. Query and query results of
dimensional objects are discussed.

Finally in chapter 7, conclusion of this thesis is reported.

CHAPTER TWO
DATA WAREHOUSING SYSTEMS

2.1 Big Data

The global size of the data is dazzling. Some authorities use ‘Big Data’ term for

describing this data.

There are 6 billion mobile subscribers around the world. There are 1.1 billion
Facebook users. 400 million tweets are throwing in average every day. 90 percent of
the data that exists in the world developed in last two years and it is getting bigger in
every second due to the mobile phones and internet. In 2016 61 percent of internet
traffic will be provided from the wireless machines and the other 39 percent will be
provided by cabled networks. When digital content in online world is 2.7 zeta byte
now in 2012, it will reach 7.9 zeta byte in 2016.

What can the trade marks gain by using ‘Big Data’? Firstly attaining the user data,
giving meaning to this data, and developing strategies make ‘Big Data’ significant. If

we list benefits of this processes:

1. Transparent and useful information can be obtained. ’Big Data’ can
give us key information. This information helps companies to make better
decisions for the purpose of accessing to the customers.

2. By collecting and storing more digital data, companies can aggregate
more correct and detailed information about their purchase and order.
Companies use this data in performance increasing actions.

3. ‘Big Data’ gives opportunity of presenting more special product or
services to the narrow segmentation of customer.

4. The good analyze of ‘Big Data’ renders complicated data. Mixed data
become more meaningful and provide serious convenience to trade marks in
having decision.

5. Companies can have an idea about the next product or service by

using this data.

Big Analyze necessity has been brought by Big Data. The old analyze methods
that examine age; gender and cell number not enough in today’s world. Nowadays,
advanced methodologies, new analyzing methods that come from high technology
and experience combinations appeared. Before analyzing the existing data, it have to
be decided that for which purposes will be used the results. The special solutions can
be gathered with respect to the problems.

2.2 What is Data Warehouse

Data warehousing is an activities chain that contains:

e Collecting and sorting out the data in settled or outer systems.
e Preparing data for servicing to decision support systems.

e Storing data in the best way.

¢ Providing access to data via end user applications

e Finding deterministic data relations.

Data warehousing is a technical, organizational and financial multi-dimensional
investment. Customer relationship management (CRM), global e-commerce
enterprises, supply chain management (SCM), Enterprise resource planning (ERP)
systems, corporate information portals, strategy management informatics are related
with Warehousing (Adamson & Venerable, 1998) . Warehousing becomes the basic

integral part of the mentioned systems.

Warehousing presents attaining specially prepared data in an easy and quick way.
This data is used in management reports, in a variety of queries, decision support

systems, manager information systems and data mining applications.

Temporal features are very important in data warehousing. Data warehouse has
abundant data collection. This data grows rapidly and has a historical depth.

Warehousing queries usually look into long time periods.

Data is extracted from special repositories and used just for reporting. Because of

this, reports are getting faster and useful reports can be obtained.

The aim of using data warehouses is:

e Identifying hidden purchasing disposition of customers.
e Focusing on sales analysis and trends.
¢ Financial analysis.

e Strategic analysis.

2.3 Warehousing Concepts

2.3.1 Metadata

Metadata is data about data. This concept appeared on librarian's area. There are a
lot of books in library, namely charged amount of data exist in librarian area. The
problem is indexing this data and figuring out the content data of books. Metadata, in
other words data about data is appeared from this requirement. Publisher of the book,
publishing time, print numbers all of them are data about data.

Database objects also have metadata. Some examples are:

e Number of user in database.
e Number of tables.

e Total records in tables.

e Total utilized disk area.

¢ Data type of table attributes.

2.3.2 Fact Table

Patient

g Appointment
g - Depariment
Patientid Department

. . o
Ot w—p-| Cepartmentid

FatientName

PatientAddress Departmentid

CepartmentName
Patientid
Doctorid 1

AppointmentTime

Doctor p
S B | ProcezsTime §UbDe artme,m
. Sublepzartmentid
Doctorid -
FPayment Cepartmentid

DoctorName
= SublepartmentName

StartDate

Figure 2.1 Example snowflake schema

Figure 2.1 is used to describe fact table and contains a snowflake schema.
Appointment table is the fact table and the other tables connected to this fact table
via foreign keys. Departmentid, Patientid, Doctorid columns in Appointment are
foreign key attributes. Appointment table comprises data about appointment in
hospital. Other attributes of Appointment table are fact attributes. Fact table is the

center table in snowflake or star schemas.

2.3.3 Dimension

Dimension tables are the tables around the fact table. Patient, Doctor, Department
are dimension tables. Dimension tables are not connected to each other. Dimensions
often have one or multiple hierarchies (Inmon, 2002). Hierarchies categorize data.
Dimensions have attributes about dimensional value. Multiple dimensions related to
fact objects provide to solve guestions. Dimensions have hierarchies for aggregating
data.

Data Warehouses aims to present flexible data reports. It must support to
contribute or compare data along dimensions. Bebel, Eder, Koncilia, Morzy &
Wrembel (2004) aimed improving a useful architecture which combines new

temporal versions, dimensions in their study.

Ram’irez & Guerrero (2006) created a model for changing, adding, removing
dimensions easily and a query language is presented to manage multidimensional
schemas. When a change is made to a multidimensional schema, a new
multidimensional database version having a new associated temporal pertinence is

created.

2.3.4 Level

As in the Figure 2.1, Department is a dimension. Department is related to
Subdepartment table. Every department can have one or more subdepartments.
Subdepartment table contains detailed department information. In this example
Department is a dimension, department and subdepartment are levels of this

dimension.

There can be one or more attributes in a level. Attributes in levels can be

categorized by their functionalities.

Level key attributes: The unique instance of the level is key attribute. This
attribute is not duplicated. SubDepartmentid column in Subdepartment table is a key

attribute of Subdepartment level of Department dimension.

Related attributes: A collection of optional attributes that provide additional
information about the instances of the levels that are defined as level key attributes.
All related attributes must be functionally determined by the level key attributes. For

example, a SubDepartment level might have related SubDepartmentname attribute.

Year

Yearid

Time

Timeid
Yearid
Monthid
Czyld

- YesrDescription

Month
Monthid

MonthDescription

There are four tables in Figure 2.2. This view is about time dimension and its

levels.

2.3.5 Hierarchy

Hierarchies are the navigations of levels. Hierarchies provide a parent child
relationship between levels and help indexing data and measures. In the Figure 2.2
time is a dimension. Year, Month, Day are levels. There is a time hierarchy. Year

comprises months, month comprises days in it. Time hierarchy is shown in Figure

2.3.

Day
Dayid

DayDescription

Figure 2.2 Time dimension diagram

Time Hierarchy

Year

Month

Figure 2.3 Hierarchy structure

2.3.6 Cube

Cubes are the main components of warehousing reports. All previous objects,
dimensions, hierarchies, levels are created for generating a cube. Cube is a result for

dimensional systems.

Cubes in data warehouses are formed by foreign key attributes which connects to
dimension tables and measure attributes. Warehousing cubes not like cube shapes.
They do not have to be three dimensioned. Cubes can be designed with one or more
dimensions. The fact tables in relational databases are matched with cube tables in
dimensional databases. Dimension tables were connected to cube table and they gave
a brief of one or more table's information. The primary keys of these summary tables
are connected to cube table. The dimensions that are bind to cube is connected each
other via cube table. Other attributes in fact table are measure attributes.

Patient Dimension

Appointment Cube

Department Dimension i - | P2tizntid
Departmentid . i
Departmentid T FatientName
@ | Fatientid SR ~
CepartmentName PatientAddress

Doctorid

SubDepartmentid

AppointmentTime e | Doctor Dimension

SubDepartmentName

Fayment Doctorid

DoctorNzame

StartDate

Figure 2.4 The diagram of dimensional objects

In appointment cube table, AppointmentTime and Payment are measurable
attributes. Cube table's give result of some questions which have criterions about its
dimensions. The results are the measures of the cube. Some questions that the cube is

answered can be:
Which doctor gains the maximum payment?
How much many totally gained per department in June of 2013?

What is the earning average of departments according to months of 2013?

10

Which patient pays the maximum charge on May of 2013?

These questions also can be answered by relational database tables with sql
queries but the answer of question comes with more simple queries and quicker with

dimensional structure.

2.3.7 Measures

Measure is the measurable attributes of cube. Measure is the result attribute. In
Appointment_Cube, AppointmentTime and Payment are measures.

2.4 Warehousing Structures

241ETL

ETL (Extract, Transform and Load) layer is the most important part of the any
data warehouse application. ETL gets source data from the source system and
transform data into new data model and provides to see outcome in warehouse. ETL
systems consumes more time than the other operations in business intelligence

environment.

Extract: Extract is fetching data from the source system. There are a lot of kinds
of different source system, and flat files are used in warehouse systems. Data is

collected from many different source systems by helpful systems or code.

Transform: Data in warehouses is fetched from different sources. Transferred data
must be converted in form of warehouse structure. Also this data must be cleared and

quality of data must be increased.

Load: Load is fetching data from source system and loading it to target system.

11

2.4.2 OLAP

Olap is a multidimensional query based method that supports multi-dimensional
data analysis. Olap (Online Analytical Processing) enables to reach, live, real and
prepared data.

Olap technology provides building multi-dimensional data cubes from the data
that is stored in relational databases. Users use data for answering complicated
problems. Olap provides more supreme performance than the relational databases. In
addition, Olap provides opportunity to find answers for complicated queries that is
hard or impossible to do in relational databases. Moreover, it is possible to extract
future analysis with Olap reports with a good statistical knowledge (Hurtado,
Mendelzon & Hofling, 1999).

The data in olap cubes is updated and worked out again in certain hours of the day
(generally at night). Totals, averages and the other operations is calculated again with
this new live data. When a report is presented via Olap cubes there is no calculation
when reporting. All calculated values generally stored in Olap cubes before. The

only process is calling the report and showing it.

Olap Data Warehouses are generally stored in separate machines in the companies
that have up to date information. Division of weight has good reflect on user. The

important criterions are given below:

e Data Propriety: This data has to be designed for the company's
requirements. If you want to see; how many cars will you sell next year; the
data in your warehouse has to be useful and available for collecting car and
sales statistics data. Unnecessary data is a burden for you.

e Data Quality: Data must be clear and in good quality. Imagine that,
you will organize a special offer with respect to gender for selling your car.
And you are analyzing for future prediction. Gender data is stored as F/M
in your sales system while gender data is stored as Female/Male in your
customer system. This data do not provide integrity. Data also becomes bad
if user enters wrong data instead of F/M or Female/Male. Dirty data has to

be cleared.

12

o Historical Depth: Data warehouse is already set up in this structure.
But it is an important concept. It is useful to know this. If you want to guess
next three years, you cannot do this with analyzing past one year. For
instance, when you wonder the fullness rate of a dam for next year,
analyzing 10 years data will give more certain results. It will be more

useful if we can analyze statistics in seasonal or monthly sliced time zones.

2.4.3 Data Marts

Data Marts are subsets of data warehouses. While data warehouses provide a
complete view for a business problem, data marts provide view for only a part of it.

All employees of a company do not need to analyze all data. Otherwise some
users must be permitted to reach to limited area. Data mart represents subset of data
warehouse about a specific subject. The information in data marts is not detailed like

in data warehouses. So data marts are more understandable and routable.

There are two types of data marts; these are dependent data marts and independent

data marts.

e Independent Data Marts: Data in data mart is directly fetched from the
operational systems or outer resources. Independent data marts are preferred
while there is an analyze necessity in separate departments or branches of a
company.

e Dependent Data Marts: Data in data mart is directly fetched from the
data warehouse. When there is an analyze necessity for a specific subject of

company, dependent data marts are preferred.

Data marts are created, queried, replied faster than the data warehouses. Data

marts save performance for analytical querying process.

2.5 Oracle Warehousing Tools

Oracle Warehouse Builder is used to design cubes. Oracle Database 11g R2

edition is free available. Oracle 11g R2 automatically comes with the warehouse

13

builder installed. Oracle 11g R2 Warehouse Builder does not correctly work in every

operating system.

2.5.1 Sql Developer

Sql Developer is free Oracle software for managing database. Developer connects
to Oracle users via Sql developer. Queries can be written in this platform and
developer can manage all objects of database and write queries easily on code editor.

2.5.2 Repository Browser

While generating data warehouse, data is transferred to special storage area.
Dimension, cube, measures etc. all elements are created in this special field.
Repository Browser is a tool for creating, browsing and managing warehouse
repository. The screenshot of Repository Browser welcome page is given in figure
2.5.

EEX

Repository Assistant - Welcome

Welcome

Welcome to the Warehouse Builder Repository Assistant

Use this assistant to create and manage workspaces and workspace users and control the use of
optional features of Warehouse Builder. The workspace user created here can be used as a target
schema during the deployment. DBA credentials are required for creation of a new database user.

Step 1: Enter the database connection information.
Step 2: Choose a repository management operation.

The remaining steps depend upon the operation you select in Step 2.

Click Next to continue.

[Skip this page next time.

Help Next = Cancel
ek | Lhex- | | cancel |

Figure 2.5 Welcome page of Repository Assistant

14

2.5.3 Warehouse Builder Design Center

Warehouse builder itself has enough tools for designing dimensions and cubes
also mapping data from real database tables to cube or dimension tables stored in
warehouse builder repository.

4| Oracle Warehouse Builder

File Edit View Search Tools Window Help

B X E B Y Y |bErauLT_CONFIGURATL... v |

[|Projects Havigator l @Locations | ZiGlobals =)
®x W
SRE] -~ WORKSPACE

L5 Template Mappings
BE& Databases
- =55 orace

- 2-“F5 ORACLE 1

@ Mappings

b Transformations
m Data Auditors
Cjﬁ Dimensions
fB Cubes
~ @ Tables
; f:p External Tahles
; @ Views
@ Materialized Views
1‘:2? Sequences
@ User Defined Types
%‘2 Queues

Figure 2.6 General view from Oracle Warehouse Builder. Mapping, transformations, dimensions,

cubes... parts are used for creating dimensional objects.

Figure 2.6 is a general view of Oracle Warehouse builder. Database objects can be

imported to warehouse builder workspace.

15

CHAPTER THREE
TEMPORAL APPROACHES

3.1 Modeling Time

Databases are an information world that real world’s data is stored. Data may be
as string, numeric or logical type and may be set to value or null. Some part of this
information is composed by time values. Now divides time into two fragments, past
and future. There can be other values like now, that divides time into several
sections. Data in databases are important in a specific time-line. Dividing time into
several logical sections and modeling time is required for reasoning important

outcomes.

3.1.1 Time Point

Time point is a moment in time. When an event occurs, there is a specific
realization moment of event in time plane. Status of the object is changed at t1 time
point in Figure 3.1. This condition is changed again at t2 time point. Condition is
valid from t2 moment to t2 moment. Time points are important in terms of

determining state changes.

tl t

A

W2
Y

<
-
b—

Figure 3.1 Time line

3.1.2 Time Interval

Time interval is a time period that has beginning and end. Some throughputs are
always true and time independent. “Turkish Republic is founded on 1923”, is an
independent knowledge. Some throughputs change. Changing data has effectiveness

session. This session is the span between begin and end times. Point interval is the

16

time period between beginning and end time points. The condition in Figure 3.1 is

valid in time interval t2- t1.

3.1.3 Temporal Element

A temporal element is the finite union of disjoint time intervals (Gadia, 1988).
Temporal element is an element that has time points and time intervals in it. Figure
4.2 contains a temporal element. X, z, t, v are time intervals, y is a time point. These

five time elements comprise a temporal element.

Figure 3.2 A temporal element

3.2 Representing Temporal Data

Temporal data means that the data is defined to have some time-related

information associated with them.

3.2.1 User Defined Time

Temporal attributes are stored in DATE, TIME or DATE-TIME types in
databases. These attributes are not rendered by DBMS and are called as user defined
time. There is no difference of temporal attributes than the attributes in other types
(NUMBER, VARCHAR, BYTE...) for DBMS. The meaning of temporal data is

significant only for the user.

3.2.2 Valid Time

Valid time indicates the validity period of a fact according to the real world. For
instance, list price of a product may be changed in time. If we examine Table 3.1;
validity lower bound is pointed as VT_LB, validity upper bound is pointed as
VT _UB. List price of “Mountain Bike 1” was 1191.17 between 25.09.2001 and

17

01.07.2002. Validity period of 1191.17 list price is the time period between two date
value. After 01.07.2002 list price of “Mountain Bike 1” is set 1226.9 validity begins

and does not end. It is still valid.

Table 3.1 The view of table that has valid time attributes

Product Name Color (ListPrice |VT_LB VT_UB
Mountain Bike 1 Black 1191.17|25.09.2001 | 01.07.2002
Mountain Bike 1 Black 1226.9101.07.2002 | now
Metal Bar 2 Yellow 120.43|18.10.2002 | now
Metal Plate Red 1501 30.07.2002 | now
Metal Angle Black 35.89118.10.2002 | now
Touring Rim Black 22.11130.07.2002 | now

3.2.3 Transaction Time

Transaction time represents the recording time of the values in the database.
When a record is added, updated namely a transaction happen, happening begin and
end times of this transaction is recorded in database. Transaction time lower bound is
pointed as TT_LB; transaction upper bound is pointed as TT_UB in this study.

Transaction time is a system-generated value.

3.3 Time-Stamping Data

A timestamp is the date or time value, connected to data value. Multiple time-
related attributes may exist about a data. Time-related information is used for

recording varied views of temporal truths (Jensen, Soo & Snodgrass, 1994).

3.3.1 Tuple Time Stamping

Tuple is considered to be a row in the table. Temporal attributes of a row is row’s

or tuple’s time-stamps. When row is updated, a new row is added to table and

18

temporal attributes are updated. One or more temporal attribute may exist in tuple.

Data may be specified as a time-point or time-interval.

In Table 3.2 product name, color, list price, price time columns are existed. Price

time attribute is a time- point for each object.

Table 3.2 Tuple is stamped with time points.

Product Name |Color |ListPrice |Price Time

Mountain Bike 1 | Black 1191.17| 25.09.2001
Mountain Bike 1 [Black 1226.9| 01.07.2002
Metal Bar 2 Yellow 120.43| 18.10.2002
Metal Plate Red 150(30.07.2002
Metal Angle Black 35.89| 18.10.2002
Touring Rim Black 22.11| 30.07.2002

In Table 3.3 price start and price end attributes exist for determining temporal

validity period. Each list price value in rows has a validity start and end time.

Namely each row has a valid time-interval.

Table 3.3 Tuple is stamped with validity time intervals.

Product Name | Color |ListPrice |Price Start |Price End
Mountain Bike 1 | Black 1191.17| 25.09.2001| 01.07.2002
Mountain Bike 1 | Black 1226.9| 01.07.2002 | now

Metal Bar 2 Yellow 120.43| 18.10.2002 | now

Metal Plate Red 150| 30.07.2002 | now

Metal Angle Black 35.89| 18.10.2002 | now
Touring Rim Black 22.11| 30.07.2002 | now

Transaction times may be included into tuple alongside the valid time attributes.

In Table 3.4 from and to date typed attributes are added for specifying transaction

interval.

19

Table 3.4 Tuple is stamped with validity and transaction time intervals.

Product Name |Color |ListPrice | Price Start |Price End | From To

Mountain Bike 1 | Black 1191.17| 25.09.2001| 01.07.2002| 26.09.2002 | 26.09.2002
Mountain Bike 1 | Black 1226.9| 01.07.2002 | now 02.07.2002 | 02.07.2002
Metal Bar 2 Yellow 120.43] 18.10.2002 | now 20.10.2002 | 20.10.2002
Metal Plate Red 150| 30.07.2002 | now 01.08.2002 | 01.08.2002
Metal Angle Black 35.89| 18.10.2002 | now 20.10.2002 | 20.10.2002
Touring Rim Black 22.11| 30.07.2002 | now 01.08.2002 (01.08.2002

As a result tuple time stamping is adding temporal aspects to row of tables.

3.3.2 Attribute Time Stamping

Attribute is used to describe the column in database. Attributes is defined in a

certain or user defined data type. In table 4.4 all temporal attributes are about the

change of list price attribute. Namely all time-values in table are one attribute’s time

stamps. Attribute time stamping requires nested relations. Table 3.5 has product

name, color, list price and cost attributes. List price and cost attributes are nested

attributes. These attributes have value and temporal data in it. Validity of list price
“Mountain Bike 17 is 1191.17 between 25.09.2001 and 01.07.2002. It is 1226.9 after

01.07.2002. Cost of “Mountain Bike 1” is 605 between 25.09.2001 and 01.01.2003. It is
750 after 01.01.2003.

20

Table 3.5 List price and cost attributes are time stamped

Product
Color |List Price Cost
Name
) {<[25.09.2001,01.07.2002],1191.17| {<[25.09.2001,01.01.2003],605
Mountain
Black >, >,
Bike 1
<[01.07.2002,now],1226.9>} <[01.01.2003,now],750>} }
Metal Bar | Yello
5 {<[18.10.2002,now],120.43>} {<[18.10.2002,now],100>}
w
Metal
Plat Red {<[30.07.2002,now],150>} [{<[30.07.2002,now],122.11>}
ate
Metal
Andl Black {<[18.10.2002,now],35.89>} {<[18.10.2002,now],22.11>}
ngle
Touring
R Black {<[30.07.2002,now],22.11>} {<[30.07.2002,now],18.11>}
im

3.4 Temporal Databases

Temporal databases are the databases which have temporal data modeled.

In this section some temporal database types are mentioned. These are: Snapshot

databases, historical databases, transactional databases and bitemporal databases. The

most suitable database type for Data Warehousing is tried to figure out.

3.4.1 Snapshot Databases

Snapshot database is a copy or image of database at that moment. Snapshots

contain committed data and transactions. If there are some uncommitted transactions

in database, these changes are not existed in snapshot.

The Advantages of Snapshot Databases:

1.In some cases the report of a particular time is needed, taking

snapshots is an excellent feature for these conditions. Through this feature

steady data is read and reported.

2. Snapshot provides keeping historical data for creating report.

21

3. Snapshot does not generate physical copy that is why it can be used as
a replica.
4.Backing up is quicker than the database.

The Disadvantages of Snapshot Databases:

1.For the databases that require performance, snapshotting is
overcharge. It copies every changing page on database to disk. This
overcharges disk.

2. If main database collapses, snapshot cannot be reached.

3. Snapshot is not an effective back-up restore process.

4.Snapshot database is read only. No data changes. If it is prompted to
change, snapshot is taken again.

5. Snapshot and database have to stand on the same instance.

6. It is not recommended for the databases that too much transaction.

7. Snapshot process supports only NTFS file system.

3.4.2 Historical Databases

Historical databases contain cases over the valid time line. Historical database
consist historical data storage structure in it. Historical time values change according
to historic knowledge. The current time of historical database is always now. It may
not be set to a past time. In this regard, historical databases are parallel with snapshot
databases. If an error acquired, and an update process has to be applied; the previous

values are discarded and lost in historical databases.

3.4.3 Transaction Databases

Insert, update, create, select operations are transactions in databases. When a
query run, the alterations are not saved in the first moment, for saving changes
transactions must be committed. Or if someone is prompted to undo query,
transaction may be rolled back. The revocable activities are stored in transaction
databases. Rolling back the transactions in other words rolling the database to a point

in the past is probable in transaction databases.

22

3.4.3 Bitemporal Databases

Historical databases design temporal information of objects and do not keep
system modifications. Transaction databases do not form the real changes of system.
If the reality is formed completely, historical and transactional databases must be
combined (also valid and transaction time components must be existed). Bitemporal
databases have both valid time and transaction time. In this manner, bitemporal
databases demonstrate real world’s data according to real time (Koncilia, 2003).

Sample table is shown in the Table 3.6. Validity period of product's list price is
the time period between VT_LB and VT_UB. If a record is valid in current time
VT_UB value is set to null or now. In this structure all previous status and the
current status are stored with their validity period. Beside this, all the previous and
the current list price values have TT_LB and TT_UB. The transaction time for
“Mountain Bike 1” list priced 1191.17 is 26.09.2002. The last transaction applied on
this value is insert, when list price of “Mountain Bike 1” updated another row is
added into table and VT_UB attribute of first record is updated. If so many updates

acquire, table can be expanded vertically and consume too much disk space.

Table 3.6 The view of example table after updating according to bitemporal approach

Product Name | Color :;I:; VT LB VT _UB TT LB TT_UB

Mountain Bike 1 |Black | 1191.17(25.09.2001|01.07.2002|26.09.2002| 26.09.2002
Mountain Bike 1 | Black 1226.9]01.07.2002 | now 02.07.2002| 02.07.2002
Metal Bar 2 Yellow | 120.43]18.10.2002 | now 20.10.2002 20.10.2002
Metal Plate Red 150 30.07.2002 [now 01.08.2002 01.08.2002
Metal Angle Black 35.8918.10.2002 | now 20.10.2002 20.10.2002

23

CHAPTER FOUR
SEMI STRUCTURED DATA MODEL

4.1 Semi-Structured Data

A lot of techniques are improved for storing data. Information may be stored in
excel tables or relational databases. However some information has hierarchy inside.
Organizing and creating a suitable form according to some tags is required for
storing data. The necessity of using semi-structured data is increased by the
expansion of internet and application variety.

4.2 Semi-Structured Form

For avoiding overmuch expansion of table, using semi-structured table forms is
beneficial. Change in sampled table is occurred in list price column. VT_LB(Valid
time lower bound), VT _UB(Valid time upper bound), TT_LB(Transaction time
lower bound), TT_UB(Transaction time upper bound) attributes also for storing
temporal depth of list price column. In other words temporal attributes in this table is

about one attribute, they are attribute's timestamps.

List price and its temporal attributes represent a structure or a new type. This type
is not like regular database types e.g. number, varchar, date etc. Table can be
converted to semi-structured nested table as shown in Table 4.1. List price column
now is a table inside table, that has five columns Value, VT LB, VT _UB, TT_LB,
TT_UB. When update of list price occurred, new row is added to specified person's
list price column's nested table. Only nested table expands on updates, changing
attribute and its temporal components grow. Consequently, semi- structured form

prevents unnecessary grow of data.

If Mountain Bike 1’s list price is determined as 1300.00 on 05.10.2003 and this
record is committed on 06.10.2003 (Transaction time) then the change on table is

shown in Table 4.2.

24

Table 4.1 Nested table with bitemporal attributes

Product Name | Color [List Price

Mountain Bike Black {<1191.17,[25.09.2001,01.07.2002],[01.07.2002,01.07.2002] >,
1 <1226.9, [01.07.2002, now], [02.07.2002, 02.07.2002]>}
Metal Bar 2 | Yellow | {<120.43, [18.10.2002,now], [20.10.2002,20.10.2002]>}
Metal Plate | Red {<150, [30.07.2002,now], [01.08.2002,01.08.2002]>}
Metal Angle Black {<35.89, [18.10.2002,now], [20.10.2002, 20.10.2002]>}
Touring Rim |Black | {<22.11, [30.07.2002,now], [01.08.2002, 01.08.2002]>}

Table 4.2 The view of nested table after update transaction

Product Name [Color | List Price
Mountain Bike {<1191.17,[25.09.2001,01.07.2002],[01.07.2002,01.07.2002] >,
1 Black <1226.9, [01.07.2002,now], [02.07.2002, 02.07.2002]>,
<1300, [05.10.2003, now], [06.10.2003, 06.10.2003]>}
Metal Bar 2 | Yellow | {<120.43, [18.10.2002,now], [20.10.2002,20.10.2002]>}
Metal Plate Red {<150, [30.07.2002,now], [01.08.2002,01.08.2002]>}
Metal Angle Black {<35.89, [18.10.2002,now], [20.10.2002, 20.10.2002]>}
Touring Rim | Black {<22.11, [30.07.2002,now], [01.08.2002, 01.08.2002]>}

According to the data in Table 4.1, if list price value changes new situation will be

as in Table 4.2. A similar study is worked out by Malinowski & Zimanyi (2006).

They designed Multidimensional ER model that use Valid and transaction time

together. This study tries to find the answer of, “If one row changes, how it effects to

other rows and how it effects to relationships between them?”” question.

The disadvantage of bitemporal approach is the risk of expanding too much

vertically. With semi-structured form of table, redundant expand risk is prevented.

Combi, Oliboni & Pozzi (2009) deal with temporal semi structured data

warehouses, their modeling and querying. They proposed a graph-based data model

to represent semi structured temporal data warehouses and a query language to

25

suitably retrieve the considered information. The data is stored as xml document.
And also a query language is generated to manage and order data.

4.3 Nested Types

Nested types are used to define special table column types. These columns contain
multiple attributes. If there is a necessity for storing more than one attributes in a
column, nested types are created. An example creation script of nested type is shown
in Table 4.3. TAX type has five attributes in it. TT_UB, TT_LB, VT_LB, VT_LB
are DATE attributes, VALUE is NUMBER attribute.

Table 4.3 Creation script of nested type

CREATE TYPE TAX AS OBJECT (
TT_UB DATE,
TT_UB DATE,
VT_LB DATE,
VT_UB DATE,
VALUE NUMBER);

4.4 Nested Tables

NESTED TABLEis an Oracledata typeused to support columns
containing multivalued attributes. In this case, columns can hold an entire sub-table.
A sample for usage nested types when creating tables are shown in Table 4.4. TAX
attribute’s data type is TAX. Also nested tables must be specified as shown in bottom

of statement.

26

http://www.orafaq.com/wiki/Data_type
http://www.orafaq.com/wiki/Multivalued_attribute

Table 4.4 Creation Script of Nested table

CREATE TYPE Tax AS TABLE OF Tax;
CREATE TABLE PRODUCT
(PRODUCTID NUMBER |,
NAME VARCHAR2(50 BYTE) |,
TAX TAX,
SIZEE VARCHAR2(5 BYTE),
WEIGHT NUMBER,
DAYSTOMANUFACTURE NUMBER
PRODUCTLINE CHAR(2 BYTE),
CLASSS CHAR(2 BYTE),
STYLEE CHAR(2 BYTE),
PRODUCTMODELID NUMBER,
SUBCATEGORYID NUMBER)
NESTED TABLE TAX STORE AS TAX_TABLE?;

4.5 XML Databases

Xml is Extensible Markup Language and a semi-structured data storage method
that created after SGML. Structured Generalized Markup Language (SGML) is a
XML like technology that exists before XML. It is evolved before 1980, it become
an 1SO standard in 1986. HTML technology is started to develop in 1990. The
improvement of XML started in 1996 and recommended by World Wide Web
Consortium by 1998. The developers of XML took the advantages of SGML,

combined HTML experiences.

Xml database is a software system that gives permission to store data in XML
format. XML is used for organizing and modeling data with customizable tags and
one of the basic storing methods of data. It entailed using special data structures and

database systems on data exchange. It provides flexibility on storage.

XML databases are easy accessible, thus it is commonly used. XML databases are
separated into three categories. These are Native XML (NXD), XML Enabled
Database (XEDB) and Hybrid XML Database (HXD). These types are used to store

different sort of data.

27

1. Native XML Database (NXD): NXD describes a pattern for XML documents.
It stores and regulates documents with respect that pattern. XML info set,
Xpath data model are some examples of NXD. XML documents are used as
elementary unit of logical storage in NXD. The similar relationship is seen
between relational databases and rows. NXD databases can be established on
any kind of database, it does not need a special format.

2. XML Enabled Database (XEDB): XEDB is an XML mapping stage added
database. XML mapping systems are added database applications. XML
solutions of Sql Server, Oracle, Mysql or third party applications are in this
class.

3. Hybrid XML Database (HXD): HXD can be acted as NXD or XEDB with
respect to the requirements of the application.

XML databases are sometimes the best solution for storing data. In some
situations XML databases predominate on relational database systems. They are

often used in:

e Information services of companies.
e Membership databases.

e Product catalogs.

e Hospital Database applications.

e Business document exchange applications.

28

CHAPTER FIVE
BENCHMARKING AND DATA TRANSFER

5.1 Importance of Benchmarking

One of the major problems of academic studies about computer science is finding
data. In terms of the application results' reliability, real data is preferred to use.
Random generated imaginary data is not generally used to prove scientific realities.
Importance of using real data, changes according to subject of study. In decision
support systems or data mining applications real data usage is prominent. In these
systems exactness of system is realized from data.

Besides this; the data which is verified and specially created for scientific or
educational studies is preferable for scientific applications.

Thereupon; ready, authentic data is explored. Microsoft Adventure Works

database is selected among many datasets and sample databases.

5.2 The Data Used in This Study

Adventure Works is a relational database established for Sql Server. It has five
modules in it. These are Sales, Purchasing, Person, Production, Human Resources.
Adventure works database firstly installed on Sqgl server. Production module of the

database transferred to Oracle Database 11g R2.

The fact table of Production module is Product table, depicted in Figure 5.1,
Figure 5.2, Figure 5.3 and Figure 5.4.

29

ProductPhoto

PK | ProductPhotolD

ThumbNailPhoto
ThumbnailPhotoFileName
LargePhoto
LargePhotoFileName
ModifiedDate

ProductProductPhoto

PK,FK1
PK,FK2

ProductlD

ProductPhotolD

Primary
ModifiedDate

ProductListPriceHistory } =
PK,FK1 | ProductlD PK |ProductlD
PK StartDate
ProductCostHistory U1 | Name
EndDate U2 | ProductNumber
ListPrice PK,FK1 | ProductlD MakeFlag
ModifiedDate | PK StartDate Ei;ghodGoodsFlag
EndDate SafetyStockLevel
StandardCost ReorderPoint
ModifiedDate StandardCost
ProductReview ListPrice
H Size
PK | ProductReviewlD FK3 | SizeUnitMeasureCode
FK4 | WeightUnitMeasureCode
EK1 | ProductlD Weight
i ReviewerName TransactionHistory DaysToManufacture
3 ReviewDate PK ProductLine
g EmailAddress TranzacrionlD Class
- Rating Style
= Comments Fal Mgm renceOrderlD FK2 | ProductSubcategorylD
= ModifiedDate I TransactionDate FK1 | ProductModellD
5 TransactionType SellStartDate
5 Quantity SellEndDate
i ActualCost DiscontinuedDate
- |ModifiedDate U3, |rowguid
= ReferenceOrderLinelD ModifiedDate

Figure 5.1 Adventure Works relational database diagram, 1-1

30

lllustration I ProductModellllustration
PK,FK2 | ProductModellD
Hlustrationit
PK | lllustrationiD I ™| PK.FK1 | lllustrationiD |
- | Riagram :
, ModifiedDate I ModifiedDate
ProductModel
Product
PK | ProductModellD
PK |PBroductiD
U1 | Name
U1 | Name CatalogDescription
U2 | ProductNumber Instructions
MakeFlag U2 | rowguid
FinishedGoodsFlag ModifiedDate
Color —
SafetyStockLevel
ReorderPoint ProductModelProductDescriptionCulture
StandardCost
ListPrice PK.FK3 |ProductModellD
Size PK,FK2 |ProductDescriptionlD
FK3 | SizeUnitMeasureCode PK,FK1 | CulturelD
FK4 | WeightUnitMeasureCode
Weight ModifiedDate
DaysToManufacture
ProductLine
Class Y
Style uctDescription
FK2 | ProductSubcategorylD fired Culture
FK1 | ProductModellD PK | ProductDescriptioniD PK |CulturelD
SellStartDate
SellEndDate o Description
DiscontinuedDate U1 | rowguid w m
U3 |rowguid 7 MedifiedDate -
ModifiedDate

Figure 5.2 Adventure Works relational database diagram, 1-2

31

Product
! ScrapReason
PK |ProductiD
PK |ScrapReasoniD
U1 Name |
U2 | ProductNumber U1 [Name
MakeFlag = McodifiedDate
FinishedGoodsFlag
Color l
SafetyStockLevel -
ReorderPoint R— WorkOrde
ListPrice |
Size FK1 | ProductiD
FK3 | SizeUnitMeasureCode OrderQty
FK4 | WeightUnitMeasureCode StockedQty
Weight ScrappedQty
StartDate
DaysToManufacture EndDate
ProductLine | DueDate
Class I FK2 | ScrapReasonID
Style ModifiedDate
FK2 | ProductSubcategorylD
FK1 | ProductModellD
SellStartDate —
SellEndDate : WorkOrderRouting
DiscontinuedDate PK,FK2 | WorkOrderlD
U3 rowguid PK ProductiD
ModifiedDate PK OperationSequence
A FK1 LocationlID
ScheduledStartDate
Location ScheduledEndDate
ActualStartDate
PK | LocationID p— ActualEndDate
ActualResourceHrs
U1l | Name PlannedCost
= CostRate ActualCost
2 Availability ModifiedDate
= MeodifiedDate
TransactionHistoryArchive
P‘Oducunveﬂm Il PK | Tran ion
PK.FK2 | ProductlD - | ProductiD
PK,FK1 | LocationiD I f rderl
- | IransactionDate
Shelf IransactionType
Bin - | Quantity
Quantity - |ActualCost
rowguid
Modiiedriate ! Wm&”@mn

Figure 5.3 Adventure Works relational database diagram, 1-3

32

BillOfMaterials

PK

BillofMaterialsiD

FK1,U1
FK2,U1
U1

FK3

ProductAssemblylD
ComponentiD
StartDate

EndDate
UnitMeasureCode
BOMLevel
PerAssemblyQty
ModifiedDate

l

UnitMeasure

PK

UnitMeasureCode

Name
ModifiedDate

Product

PK

ProductlD

U1
U2

FK3
FK4

FK2
FK1

u3

Name
ProductNumber
MakeFlag
FinishedGoodsFlag
Color
SafetyStockLevel
ReorderPoint
StandardCost
ListPrice

Size
SizeUnitMeasureCode
WeightUnitMeasureCode
Weight
DaysToManufacture
ProductLine

Class

Style
ProductSubcategorylD
ProductModellD
SellStartDate
SellEndDate
DiscontinuedDate
rowguid
ModifiedDate

i

ProductDocument

PK,FK2
PK,FK1

ProductiD
DocumentNode

ModifiedDate

:

PK

Document
DocumentNode

FK1
4 U1
U1

DocumentLevel
Title

Owner
FolderFlag
FileName
FileExtension
Revision
ChangeNumber
Status
DocumentSummary
Document
rowguid
ModifiedDate

Figure 5.4 Adventure Works relational database diagram, 1-4

33

5.3 Data Transfer

The data and tables created in data warehouse fetched from AdventureWorks
database. The tables in Sqgl server AdventureWorks and Oracle is not exactly same.
Some tables rendered into nested structure. While there were 25 tables in Sql Server
AdventureWorks' database product module, there are 15 tables in Oracle
AdventureWorks user product module. As a result; necessities of joining two or more
tables' data as one insert statement occurred while transferring data. Relational
database design of Oracle product module is shown in the Figure 5.5 and Figure 5.6.

34

PRODUCT2 PRODUCTSUBCATEGORY T
FRODUCTID NUMBER PRODUCTSUBCATEGORYID NUMBER

NAME VARCHAR2(50 BYTE) | PRODUCTCATEGORYID NUMBER
2 2)
PRODUCTNUMBER VARCHAR2{2S BYTE) NAMEVARCHAR2(50 BYTE)

MAKEFLAG VARCHAR2(S BYTE)
RCWGUID VARCHAR2(100 BYTE)
FINISHEDGOODSFLAG VARCHAR2!S BYTE) MODIEIEDDATE DATE

COLOR VARCHAR2(1S BYTE) f-

SAFETYSTOCKLEVEL NUMBER
PRODUCTCATEGORY T

R MBER R
FOPDERTONUBARCR HLNE PRCDUCTCATEGORYID NUMBER
PRODUCTCOSTHISTORY PRODUCTCOSTHISTORY
NAMEE VARCHAR2(50 BYTE)

PRODUCTLISTPRICEHISTORY PRODUCTLISTPRICEHISTCRY

ROWGUID VARCHAR2(100 BYTE)
SIZEE VARCHAR2(S BYTE)

MODIFIEDDATE DATE
SIZEUNITMEASURECODE CHAR(3 BYTE)
WEIGHTUNITMEASURECODE CHAR(3 BYTE)

WEIGHT NUMBER UNITMEASURE T
AYSTOM FACTUR! 1
Ry N UNITMEASURECODE CHAR(3 BYTE)
PRODUCTLINE CHAR(2 BYTE)
NAME VARCHAR2(50 BYTE)

CLASSS CHAR(2 BYTE)
MODIFIEDDATE DATE
STYLEE CHAR(2 BYTE)

PRODUCTMODELID NUMBER
SELLSTARTDATE DATE TransactionHistory

TransactionID number

SELLENDDATE DATE 1-—\

DISCONTINUEDDATE DATE ProductID number
ROWGUID VARCHAR2{100 BYTE) ReferenceOrderlD number
MODIFIEDDATE DATE :lejfr::’eer:'ceOrdeereID

SUBCATEGORYID NUMBER

TransactionDate date

1 TranszactionType varchar2(1)
Productinventory Sty nombel.
L e ActualCost NUMBER
LecationlD number MIHSILE g
Shelfvarchar2{10) WORKORDER
Bin number \WORKORDERID NUMBER,

Quantity number PRODUCTID NUMBER
rowguid varchar2(100) ORDERQTY_NESTED TYPE_ORDERQTY
ModifiedCate date STOCKEDQTY_NESTED TYPE_STOCKEDQTY
1 SCRAPPEDQTY_NESTED TYPE_SCRAFPEDQTY
DUEDATE DATE

Location SCRAPREASON SCRAPREASON

LocationID number | T | \WORKORDERROUTING WORKORDERROUTING

Name Varchar{50) VT_LB DATE,

CostRate number VT_UB DATE

Avazilzbility number TT_LB DATE

ModifiedCate date TT_UB DATE

Figure 5.5 Oracle Adventure Works, relational, bitemporal and semi-structured database diagram Part
1

35

Figure 5.6 Oracle Adventure Works, relational, bitemporal and semi-structured database diagram Part

2

PRODUCT2
PRODUCTID NUMBER

NAME VARCHAR2(SO BYTE)
PRODUCTNUMBER VARCHAR2(2S BYTE)
MAKEFLAG VARCHAR2(S BYTE)
FINISHEDGOODSFLAG VARCHAR2(S BYTE)
COLOR VARCHAR2{15 BYTE)
SAFETYSTOCKLEVEL NUMBER
REORDERPONUMBEER NUMBER
PRODUCTCOSTHISTORY PRODUCTCOSTHISTORY
PRODUCTLISTPRICEHISTORY PRODUCTLISTPRICEHISTORY
SIZEE VARCHAR2(S BYTE)
SIZEUNITMEASURECODE CHAR(3 BYTE)
WEIGHTUNITMEASURECODE CHAR(3 BYTE)
WEIGHT NUMBER

DAYSTOMANUFACTURE NUMBER
PRODUCTLINE CHAR(2 BYTE)

CLASSS CHAR(2 BYTE)

STYLEE CHAR{2 BYTE)

PRODUCTMODELID NUMBER
SELLSTARTDATE DATE

SELLENDDATE DATE

DISCONTINUEDDATE DATE

ROWGUID VARCHAR2(100 BYTE) ?

MOOIFIEDDATE DATE
SUBCATEGCRYID NUMBER

ProductModelDescriptionCulture
ProductModellD number

ModifiedDate date
PRODUCTDESCRIPTION PRODUCTDESCRIPTION
CULTURE CULTURE

'

ProductModel
ProductModellD number

Name Varchar(50)
Catzloglescription xmlitype
NULL

Instructions xmitype NULL

rowguid varchar(100)

ModifiedDate date

1

ProductModellllustration
ProductModellD number

Illustration lllustration

ModifiedDate date

ProductReview ProductDocument

ProductReviewlD number ProductiD number

ProductID number Documentld

3 Document
ReviewerName Varchar({50)

ModifiedDate date

BillOfMaterials

BillCfMaterialsID number
ProductAzsemblylD number
NULL

ComponentiD number
StartDate date

EndDate date NULL
UnitMeasure UnitMeasure
BOMLevel number
PerAzzemblyQty number
ModifiedDate date

ReviewDate date

EmailAddress varchar2|50)
Rating number

Comments varchar2({32850)
NULL
ModifiedDate date

36

TransactionHistoryArchive
TransactionlD number
ProductID number
ReferenceOrderID number
ReferenceOrderlinelD number
TransactionDate date
TransactionType varchar2(1)
Quantity number

ActualCost NUMBER

ModifiedDate date

5.3.1 Creating Tables

While transferring tables, creation script of tables extracted from Sql Server and
organized as available on Oracle database. One of these translations is shown in
Table 5.1. This example does not contain nested type in it.

Table 5.1 Comparison of regular table creation scripts

Sql Server Creation Script Oracle Creation Script

CREATE TABLE [Production].[Location](CREATE TABLE
[LocationID] [smallint] IDENTITY(1,1) ADVENTUREWORKS2.LOCATION

NOT NULL, (LOCATIONID NUMBER,

[Name] [dbo].[Name] NOT NULL, NAME VARCHAR2(50 BYTE),
[CostRate] [smallmoney] NOT NULL, COSTRATE NUMBER,
[Availability] [decimal](8, 2) NOT NULL, AVAILABILITY NUMBER,
[ModifiedDate] [datetime] NOT NULL): MODIFIEDDATE DATE);

ProductCostHistory, ProductListPriceHistory, Product tables's creation scripts are
given on left side of the Table 5.2 and Table 5.3. ProductCostHistory,
ProductListPriceHistory tables are embedded as nested table into Product table in
Oracle. Creation scripts of nested types and tables are given on the right side of the
Table 5.2.

ProductCostHistory table have StartDate, EndDate, ModifiedDate as date
attributes. If these date values are thought as bitemporal attributes, StartDate is
VT_LB (Valid Time Lower Bound), EndDate is VT_UB (Valid Time Upper Bound).
Transaction happens at a time, ModifiedDate is TT_LB(Transaction Time Lower
Bound) and TT_UB(Transaction Time Upper Bound). Namely TT LB and TT_UB

supposed to be same.

37

Table 5.2 Comparison of nested table and regular tables creation scripts part 1

Sql Server Creation Script

Oracle Creation Script

CREATE TABLE
[Production].[ProductCostHistory](
[ProductID] [int] NOT NULL,
[StartDate] [datetime] NOT NULL,
[EndDate] [datetime] NULL,
[StandardCost] [money] NOT NULL,
[ModifiedDate] [datetime] NOT NULL);
CREATE TABLE
[Production].[ProductListPriceHistory](
[ProductID] [int] NOT NULL,
[StartDate] [datetime] NOT NULL,
[EndDate] [datetime] NULL,
[ListPrice] [money] NOT NULL,
[ModifiedDate] [datetime] NOT NULL);

CREATE TABLE [Production].[Product](
[ProductID] [int] IDENTITY(1,1)
NOT NULL,
[Name] [dbo].[Name] NOT NULL,
[ProductNumber] [nvarchar](25) NOT
NULL,
[MakeFlag] [dbo].[Flag] NOT NULL,
[FinishedGoodsFlag] [dbo].[Flag] NOT
NULL,
[Color] [nvarchar](15) NULL,
[SafetyStockLevel] [smallint] NOT
NULL,
[ReorderPoint] [smallint] NOT NULL,

CREATE OR REPLACE

TYPE BT_NUMBER AS OBJECT (
TT_LB DATE,

TT_UB DATE,

VT_LB DATE,

VT_UB DATE,

VALUE NUMBER);

CREATE OR REPLACE
TYPE PRODUCTCOSTHISTORY
AS TABLE OF BT_NUMBER,;

CREATE OR REPLACE
TYPE PRODUCTLISTPRICEHISTORY
AS TABLE OF BT_NUMBER,

CREATE TABLE
ADVENTUREWORKS2.PRODUCT

(PRODUCTID NUMBER NOT NULL
ENABLE,

NAME VARCHAR2(50 BYTE) NOT
NULL ENABLE,

PRODUCTNUMBER VARCHAR2(25
BYTE) NOT NULL ENABLE,

MAKEFLAG VARCHAR2(5 BYTE) NOT
NULL ENABLE,

FINISHEDGOODSFLAG VARCHAR2(5
BYTE) NOT NULL ENABLE,

COLOR VARCHAR2(15 BYTE),

SAFETYSTOCKLEVEL NUMBER NOT
NULL ENABLE,

REORDERPONUMBER NUMBER NOT
NULL ENABLE,

38

Table 5.3 Comparison of nested table and regular tables creation scripts part 2

Sql Server Creation Script

Oracle Creation Script

[StandardCost] [money] NOT
NULL,

[ListPrice] [money] NOT
NULL,

[Size] [nvarchar](5) NULL,

[SizeUnitMeasureCode]
[nchar](3) NULL,

[WeightUnitMeasureCode]
[nchar](3) NULL,

[Weight] [decimal](8, 2) NULL,

[DaysToManufacture] [int]
NOT NULL,

[ProductLine] [nchar](2) NULL,

[Class] [nchar](2) NULL,

[Style] [nchar](2) NULL,

[ProductSubcategorylD] [int]
NULL,

[ProductModelID] [int] NULL,

[SellStartDate] [datetime] NOT
NULL,

[SellEndDate] [datetime]
NULL,

[DiscontinuedDate] [datetime]
NULL,

[rowguid] [uniqueidentifier]
ROWGUIDCOL NOT NULL,

[ModifiedDate] [datetime] NOT
NULL);

PRODUCTCOSTHISTORY
ADVENTUREWORKS2.PRODUCTCOSTHISTORY

PRODUCTLISTPRICEHISTORY
ADVENTUREWORKS2.PRODUCTLISTPRICEHIST
ORY ,

SIZEE VARCHAR2(5 BYTE),

SIZEUNITMEASURECODE CHAR(3 BYTE),

WEIGHTUNITMEASURECODE CHAR(3
BYTE),

WEIGHT NUMBER,

DAYSTOMANUFACTURE NUMBER NOT
NULL ENABLE,

PRODUCTLINE CHAR(2 BYTE),

CLASSS CHAR(2 BYTE),

STYLEE CHAR(2 BYTE),

PRODUCTMODELID NUMBER,

SELLSTARTDATE DATE NOT NULL ENABLE,

SELLENDDATE DATE,

DISCONTINUEDDATE DATE,

ROWGUID_UNIQUEIDENTIFIER
VARCHAR2(100 BYTE) NOT NULL ENABLE,

MODIFIEDDATE DATE NOT NULL ENABLE,

SUBCATEGORYID NUMBER)

NESTED TABLE PRODUCTCOSTHISTORY

STORE AS
PRODUCTCOSTHISTORY _TABLE2,

NESTED TABLE
PRODUCTLISTPRICEHISTORY
STORE
PRODUCTLISTPRICEHISTORY TABLE2;

AS

39

5.3.2 Inserting Data

In order to insert data to Oracle nested Product table, combining three tables' data
into one insertion script is required. There can be multiple ProductListPriceHistory
or ProductCostHistory record for one product record. Insertion script is organized via
Microsoft excel by taking into account any condition. The insertion script which adds

record to nested Product table is given in Table 5.4.

Table 5.4 Example insert statement to nested product table

Insert into PRODUCT (PRODUCTID,NAME,PRODUCTNUMBER,
MAKEFLAG,FINISHEDGOODSFLAG,COLOR,SAFETYSTOCKLEVEL,
REORDERPONUMBER,PRODUCTCOSTHISTORY ,PRODUCTLISTPRICEHISTORY,
SIZEE,SIZEUNITMEASURECODE, WEIGHTUNITMEASURECODE ,WEIGHT,
DAYSTOMANUFACTURE,PRODUCTLINE,CLASSS,STYLEE,PRODUCTMODELID,
SELLSTARTDATE,SELLENDDATE,DISCONTINUEDDATE,
ROWGUID_UNIQUEIDENTIFIER, MODIFIEDDATE,SUBCATEGORYID) values (759,'Road-
650 Red, 58','BK-R50R-58','1","1''Red',100,75,
ADVENTUREWORKS2.BT_NUMBER(ADVENTUREWORKS2.BT_NUMBER(2001-07-01
00:00:00.0,2002-06-30 00:00:00.0, 2003-10-06 00:00:00.0,2003-10-06 00:00:00.0,4131463),
ADVENTUREWORKS2.BT_NUMBER(2002-07-01 00:00:00.0,2003-06-30
00:00:00.0,2003-10-06 00:00:00.0,2003-10-06 00:00:00.0,4867066)),
ADVENTUREWORKS2.BT_NUMBER(ADVENTUREWORKS2.BT_NUMBER(2001-01-07
00:00:00.0,
2002-06-30 00:00:00.0,2002-06-30 00:00:00.0,2002-06-30 00:00:00.0,699.0982),
ADVENTUREWORKS2.BT_NUMBER(2002-01-07 00:00:00.0,2003-06-30 00:00:00.0,2003-
06-30 00:00:00.0,2003-06-30 00:00:00.0,782.99)),
'58''CM ''LB ',19.79,4'R"'L"''U ",30, to_timestamp('01/07/2001','DD/MM/YYYY"),
to_timestamp('30/06/2003','DD/MM/YYYY"),
null,'6711d6hc-664f-4890-9f69-
af1de321d055' to_timestamp('11/03/2004','DD/MM/YYYY"),17);

40

CHAPTER SIX
IMPLEMENTATION AND RESULTS

Data warehousing data is stored in an independent repository. Firstly a new
repository is created by Oracle Repository Browser. Then AdventureWorks database
objects imported into warehouse builder workspace. Cubes and dimensions are
designed with respect to dimensional system requirements.

6.1 Cubel- CubeProductListPrice

6.1.1 Design

Small part of product module is shown in Figure 6.1. These tables comprise a
snowflake schema. Arrows show foreign keys between tables. Product table is the
fact table with ProductModel, ProductModelDescriptionCulture, Unitmeasure _t,
ProductSubCategory t, ProductCategory t are dimension tables. Model dimension
has three dimension levels ProductModel and Description and Culture, UnitMeasure
dimension has one level, Subcategory dimension has two levels ProductSubCategory

and ProductCategory.

The primary key in each primary dimension table (Subcategory, Model, and
UnitMeasure) is joined to the corresponding foreign key in the Product fact table. For

example:

e ProductSubcategory_t.Productsubcategoryid=Product.Subcategoryld
e ProductModel.ProductModelld=Product.ProductModelld
e UnitMeasure T.Unitmeasurecode=Product.Sizeunitmeasurecode

e UnitMeasure T.Unitmeasurecode= Product. Weightunitmeasurecode

The cube model based on Product snowflake schema is constituted around the
Product fact object. Cubes have dimensions and measures. Measures describe how to
calculate data from columns in the Product fact table. Product cube have

Subcategory, Model, and UnitMeasure dimensions. Cube table fact object includes

41

attributes that correspond to the foreign keys in the fact table that are used to join the
dimensions to the facts object. The fact object has six measures: VT_LB (Valid time
lower bound), VT_UB (Valid time upper bound), TT_LB (Transaction time lower
bound), TT_UB (Transaction time upper bound), ListPriceValue, Productld. Cube
and has 3 attributes: Modelld, Subcategoryld, UnitMeasureld.

PRODUCT2 e
ProductModel ProductModelDescriptionCulture
PRODUCTID NUMBER = e .
ProductModellD number ProductModellD number
NAME VARCHAR2(50 BYTE)
Name Varchar(50) MedifiedDate date
PRODUCTNUMBER VARCHAR2(25 BYTE) T o ~ “
CatalogDescription xmitype PRODUCTDESCRIPTION PRODUCTDESCRIPTION
MAKEFLAG VARCHAR2(S BYTE) NULL
, CULTURE CULTURE
FINISHEDGOODSFLAG VARCHAR2(S BYTE) Instructions xmitype NULL
COLOR VARCHAR2(15 BYTE) rowguid varchar{100)
SAFETYSTOCKLEVEL NUMBER ModifiedDate date
REORDERPONUMBER NUMBER UNITMEASURE T
PRODUCTCOSTHISTORY PRODUCTCOSTHISTORY = - UNITMEASURECODE CHAR(3 BYTE)
PRODUCTLISTPRICEHISTORY PRODUCTLISTPRICEHISTORY NAME VARCHAR2(50 BYTE)
SIZEE VARCHAR2(S BYTE) PRODUCTSUBCATEGORY T MODIFIEDDATE DATE
SIZEUNITMEASURECODE CHAR(3 BYTE) PRODUCTSUBCATEGORYID NUMBER
WEIGHTUNITMEASURECODE CHAR(3 BYTE) PRODUCTCATEGORYID NUMBER
WEIGHT NUMBER NAME VARCHAR2(50 BYTE)
DAYSTOMANUFACTURE NUMBER ROWGUID VARCHAR2(100 BYTE)
PRODUCTLINE CHAR(2 BYTE) MODIFIEDDATE DATE
CLASSS CHAR(2 BYTE) f

STYLEE CHAR(2 BYTE)

PRODUCTCATEGORY T
PRODUCTCATEGORYID NUMBER

PROCUCTMODELID NUMBER

SELLSTARTDATE DATE
NAMEE VARCHAR2(50 BYTE)
SELLENDDATE DATE
ROWGUID VARCHAR2(100 BYTE)
DISCONTINUEDDATE DATE
MODIFIEDDATE DATE

RCWGUID VARCHAR2(100 BYTE)

MODIFIEDDATE DATE
SUBCATEGORYID NUMBER

Figure 6.1 A snowflake schema based on Product fact table

Dimensions are connected to the facts object in a cube model like the dimension
tables are connected to the fact table in a star schema. Columns of data from

relational tables are represented by attribute objects referenced by the dimension.

Subcategory dimension references the following attributes.

e DIMENSION_KEY

e SUBCATEGORY_ID

e SUBCATEGORY_NAME

e SUBCATEGORY_MDFYDATE
e CATEGORY_ID

42

e CATEGORY_NAME
e CATEGORY_MDFYDATE

Model dimension references the following attributes

e DIMENSION_KEY

e MODEL_ID

e MODEL_NAME

e MODEL_MDFYDATE

e DESCRIPTION_ID

e DESCRIPTION_MDFYDATE
e LONG_DESC

e CULTURE_ID

e CULTURE_NAME

e IDVARCHAR

UnitMeasure dimension references the following attributes. Only one level is

forbidden in creating dimensions, therefore two level created for unitmeasure

dimension. Only one of them unitmeasure level is used.

e UNITMEASURE_ID

e UNITMEASURE_NAME
e UNITMEASURE_DATE
e LEVELZ_ID

e LEVELZ2_NAME

e LEVEL2 DATE

A join is created to connect each dimension to the facts object. The three joins in

this example are Model, Unitmeasure and Subcategory.

43

\T_LB DATE
\T_UB DATE
TT_LB DATE
TT_UB DATE

DIM_MODEL

DIMENSION_KEY NUMBER NOT NULL ENABLE

MODEL_ID NUMBER(20)

MODEL_NAME VARCHAR2(50 BYTE)
MODEL_MDFYDATE DATE
DESCRIPTION_ID NUMBER(20)
DESCRIPTION_MDFYDATE DATE
LONG_DESC VARCHAR2(400 BYTE)
CULTURE_|D NUMBER(80)
CULTURE_NAME VARCHAR2(50 BYTE)
IDVARCHAR VARCHAR2(E BYTE)

Cube Product ListPrice
LISTPRICE NUMBER(82)

PRODUCT_ID NUMBER
D1_UNITMEASURE VARCHAR2(3 BYTE)
D2_SUBCATEGORY NUMBER
D4_PRODUCTMDC NUMBER

DIM _UNITMEASURE

UNITMEASURE_ID VARCHAR2(3 BYTE)
UNITMEASURE_NAME VARCHAR2(50 BYTE)
UNITMEASURE_DATE DATE

LEVEL2_|D VARCHAR2(3 BYTE) NOT NULL ENABLE
LEVEL2_NAME VARCHAR2(50 BYTE}

LEVEL2_DATE DATE

DIM SUBCATEGORY

DIMENSION_KEY NUMBER NOT NULL ENABLE
SUBCATEGORY_ID NUMBER
SUBCATEGORY_NAME VARCHAR2(S0 BYTE)
SUBCATEGORY_MDFYDATE DATE
CATEGORY_ID NUMBER

CATEGORY_NAME VARCHAR2(50 BYTE}
CATEGORY_MDFYDATE DATE

Figure 6.2 Diagram of CubeProductListPrice cube's dimensional objects

Hierarchies store information about how the attributes grouped into levels within

DIM SUBCATEGORY

Subcategory Hierarchy

a dimension are related to each other and structured. As a metadata object, a
hierarchy provides a way to calculate and navigate across the dimension. Each
dimension has a corresponding hierarchy with levels that group related attributes as

in Figure 6.3. In a cube model, each dimension can have multiple hierarchies.

Subcategory Level

SUBCATEGORY_ID NUMBER
SUBCATEGORY_NAME VARCHAR2(S0 BYTE)
SUBCATEGORY_MDFYDATE DATE

Category Level
CATEGCRY_ID NUMBER

CATEGORY_NAME VARCHAR2(50 BYTE)
CATEGCRY_MDFYDATE DATE

Figure 6.3 The hierarchy of DIM_SUBCATEGORY dimension

44

One or more cubes may be built for the cube model. The AdventureWorks user
product module has five cubes, but only the CubeProductListPrice is described here.
Cube Product ListPrice is shown in Figure 6.4.

Cube Product
ListPrice l
DIM_MODEL DIM SUBCATEGORY Dim_UnitMeasure

Model_Hierarchy | m— ‘ l

l Subcategory Hierarchy UnitMeasure Hierarchy
Description Level JR—
DESCRIPTION_ID NUMBER(20)
DESCRIPTION_MDFYDATE DATE
LONG_DESC VARCHAR2(400 BYTE)
Subcategory Level Unit Measure Level
Culture Level
) SUBCATEGORY_ID NUMBER UNITMEASURE_ID VARCHAR2(3 BYTE)
CULTURE_ID NUMBER(80)
SUBCATEGORY_NAME VARCHAR2(S0 BYTE) UNITMEASURE_NAME VARCHAR2(50 BYTE)
CULTURE_NAME VARCHAR2(50 BYTE)
) SUBCATEGORY_MDFYDATE DATE UNITMEASURE_DATE DATE
IDVARCHAR VARCHAR2(6 BYTE)
Level2
Model Level Category Level
CATEG LEVEL2_ID VARCHAR2(3 BYTE) NOT NULL ENABLE
MODEL_ID NUMBER(80) EATEGORY 1D NUM BER » d
-0 4 2(50 BYTE) LEVEL2_NAME VARCHAR2(S0 BYTE)
MMODEL_NAME VARCHAR2(S0 BYTE) CATEGORY_NAME VARCHAR2(50 BYTE) _NAM
0 o LEVEL2_DATE DATE
MODEL_MDFYDATE DATE CATEGORY_MDFYDATE DATE _DA

Figure 6.4 All dimensional objects in cube

6.1.2 Mapping

After creating necessary dimensional objects, we have loaded data into them.
Warehouse builder mapping tool is used to extract data from database and load to

target warehouse builder repository.

Mapping tool has a design page, dimensional objects and the database objects can

be put in this designer. The component pallet in mapping tool is shown in Figure
6.5.

45

ﬁECumpunem Palette E]

|Data SourcesTargets > |

' Constart

B Construct Object

ﬂ Cube Operstor

E_j_a;ﬁ Data Generator

:)T Dimension Operstar
% Expand Object

gj? External Takle Operstar
Flat File Operator
Materialized Wiew Operator
QLI Giueue Operatar

_ 155 Sequence Operator

B Table Operator

| @é, Warray terator

% Wiewe Operatar

Figure 6.5 Some mapping objects in Warehouse Builder

6.1.2.1 Mapping Dim_UnitMeasure

When Dim_unitmeasure created, D1_UNITMEASURE_TAB is automatically
created in the same form with dimension in warehousing repository. There are no

data in this dimension table at first.

Figure 6.6 is the map for loading D1_UNITMEASURE_TAB. Unitmeasure_t is
the database object. D1_UNITMEASURE_TAB dimension table is the warehouse
object. As seen in Figure 6.6, related columns are connected each other via arrows.
This mapping is compiled with no errors. Then for starting data transformation the
red marked part is clicked. D1_UNITMEASURE_TAB table is filled by data. This is
the simplest mapping example because one dimension is loaded from only one

regular table.

46

o’ M1_UNITMEASURE]
m L E M I NSEEEE D B

T T = EJ D1_UNITMEASURE_TAB <
; 2 BINOUTGRPI >
& = (e}
Q, REC % » 1> i T s
? UNITY — . 1" UNITMEASURE_NAME o, >
o » UNITMEASURE_DATE & @
= S =
MODIFIEDDATE Gl » f:\\\\ » @ LEVELZ ID e
4. LEVELZ_NAME b @
» LEVEL2_DATE e

Figure 6.6 Mapping diagram of DIM_UNITMEASURE

6.1.2.2 Mapping Dim_SubCategory

When Dim_SubCategory created, D2_SUBCATEGORY_TAB is automatically
created in the same form with dimension in warehousing repository. There is no data

in this dimension table at first.

Dim_SubCategory gets data from two different tables. One of them is
ProductSubcategory t and the other one is ProductCategory t. For connecting

multiple tables with dimension table, joiner control must be used.

Joiner is a mapping control which is stated in component palette. This control has
two input groups and an output group. Two input group is bounded via a join
condition. All inputs are shown up in output group. After joining two tables, outputs
are bind to D2_SUBCATEGORY _TAB. Mapping compiled with no errors and run.
D2_SUBCATEGORY_TAB is filled by dimension table's data.

[E PRODUCTSUBCATEGORY T 71 H

4o JOIHER 7.
o T [E n2_suecatEGORY_TAB o<
% EINGRPI = — §
PRODUCTSU... — | o PRODUCTSUBCATE.. o 5 8INOUTGRPI = [
PRODUCTCAT... o FRODUCTCATEGOR... o » DIMERNSION_KEY Ty o
MAME . . R — Y SUBCATEGORY_ID Ty o
ROWGLID . T TETEE E: » SUBCATEGORY_NAME &, o
MODIFIEDDATE B = L] = SINGRP2 » SUBCATEGORY _MDFYD... g
» PRODUCTCATEGOR... 1 4 CATEQORY. (D llre
- T » CATEGORY_MAME %, o>
L4 A n
[E proDUCTCATEGORY T 71 2 - NAMEE , =% L T
y - » MODIFIEDDATE 5]
9, PRODUCTCA.. T .
MAMEE a, PRODUCTSUBCATE... ?sg »
B T) PRODUCTCATEGOR... Ts
n)
> MODIF IEDDATE MAME b %
MODIFIEDDATE »
PRODUCTCATEGOR... Ts ®
NAMEE h, »
MODIFIEDDATE_1 H »

Figure 6.7 Mapping diagram of DIM_SUBCATEGORY

47

6.1.2.3 Mapping Dim_Model

When Dim_Model created, D4 PRODUCTMDC_TAB is automatically created
in the same form with dimension in warehousing repository. There are no data in this

dimension table at first.

While creating dimensions, a lot of experiments gained. Dimension table start
with DA4.., in here 4 means, this is the fourth dimension creation experiment of

dim_model.

D4 PRODUCTMDC_TAB gets data from Productmodel and
ProductModelDescriptionCulture tables. Culture and Description levels' data come
from ProductModelDescriptionCulture's ProductDescription and Culture nested
tables.

In the Figure 6.8 ProductModelDescriptionCulture table is seen. This table
contains two nested tables. These nested tables is expanded by using Varray lterator
control and Expand Object.

Varray iterator gets nested table types and converts them to nested types. Expand

objects gets nested types and returns attributes of mentioned nested type as output.

E PRODUCTMODELDESCRIPTIONCUL... 71 ¥
{

B INOUTGRP1 = i
PRODUCTMODELID Ty »
MODIFIEDDATE Gl = 1 X
PRODUCTDESCRIPTION £5 »
CULTURE & By

|33 TYPE_PRODUCTDESCRIPTION 7

BINGRP1
TYPE_PRODUCTDESCRIPTION

&

L AREIR TR &

=)

PRODUCTDESCRIPTION =]

=

PRODUCTDESCRIPTION & » FaD G R TIOND

T

DESCRIFTION B, »
ROWGUID W, o
MODIFIEDDATE Bl » v
|3 TYPE_CULTURE X
& BINGRP1

» TYPE_CULTURE &%
ULTUREID B, »
NAMEE b, »
MODIFIEDDATE G =»

Figure 6.8 Mapping diagram of DIM_MODEL part 1

The outputs of expand objects and productmodel table is merged by joiner object.
Outputs are bind to D4 PRODUCTMDC_TAB dimension table. This mapping is

compiled and run successfully.

48

[E8 ProDUCTMODEL 7.t

|24 JomER 7

= 2 INOUTGRP =

» @ PRODUCTMODELD oy » i

o MAME By, PRODUCTMOD... T
o CATALOGDESCRIPTION < & MNAME L
o INSTRUCTIO NS o o MODIFIEDDATE Bl
o ROWGUID %y & =lINGRP2

w MODIFIEDDATE M » PRODUCTMOD.. o

E.tE\ TYPE_PRODUCTDE SCRIPTION

DESCRIPTION U

= 2 NGRP1 MODIFIEDDATE [

»
»
»
o
»
o PRODUCTDES.. T
»
»
»
»
»

SNV

TYPE_PRODUCTDESCRIFTION ULTUREID , [E7 na_producTiic TaB 71 2
= NAMER . > BINOUTGRPI
EESS;‘E?OESCR'PT'ON'D %, i MODIEELDAIE LB a5 » & DIMENSION_. :eg z
ROWG UID W, o PRODUCTMOD... T # : mgggtﬁ\m a:: 2
MODIFIEDDATE B e - NAME W = oDER =
4 MODFIEREATE. o) 8 » DESCRPTIO... T o
PRODUCTMOD... fy & 4 e
PRODUCTDES.. T # = e
DESCRIFTION 8, # > T
MODIFIEDDATE 1 B = CUnEED o 2
ULTUREID SEIRED i b LB
NAMEE o e = » IDVARCHAR
MODFIEDDATE B » «f oo =

Figure 6.9 Mapping diagram of DIM_MODEL part 2

6.1.2.4 Mapping Cube_ProductListPrice

When Cube ProductListPrice created, C _LISTPRICE 3DIM TAB is
automatically created in the same form with cube in warehousing repository. There
are no data in this cube table at first. C_LISTPRICE_3DIM _TAB's dimensional
attributes are bind from Product fact table by arrows. The measure of the cube is
come from nested ProductListPriceHistory column. ProductListPriceHistory
expanded by using Varray iterator and Expand objects components. VT_LB,
VT _UB, TT_LB, TT_UB and value outputs of BT_NUMBER nested table are

connected to cube table's measure attributes by arrows.

|E PRODUCT2 X [%BT_NUNBER 7
INOUTGRP - SINGRP

@ @ PRODUCTID Tty »

% HAME iy

> PRODUCTHMUMBER b

> MAKEFLAG iy 1
e FIM SHEDGO ODSFLAG by =
o COLOR o, o % BINOUTGRP =B
% SAFETYSTOCKLEVEL g @ » LISTPRICE Ty o
e REORDERFOMUMEER g o L VT LB >
> PRODUCTCOSTHSTORY 5 > FRODUCTLISTPRICEHISTORY - VT:UE §¢
% PRODUCTLISTPRICEHISTORY 2 = » TT_LE o
=3 SIFZEE e & » TT_UEB B o
o SIZEUNITMEASURECODE b, W * PRODUCT ID Ty
% WEIGHTUMTMEASURECODE %, o » D1_UMTMEASURE %, o
o WEIGHT g o * D2 SUBCATEGD... Ty o
> DAYETOMANUFACTURE Ty ES D4_PRODUCTMDC Ta o
= PRODUCTLIME i, o

Figure 6.10 Mapping diagram of Cube_ProductListPrice

49

6.1.3 Querying

Olap queries are the queries that get result from cube or dimensions. Some olap

queries are written with cubeproductlistprice and its dimensions for understanding
resulting features of data warehouse.

Query 1: What is the average list price of Bikes according to years?

The query which answers these questions is written in Table 6.1.
Cubeproductlistprice cube and Dim_Subcategory dimension tables are used. The
result contains three rows. Each of them is the result of year (2001, 2002, 2003).

Table 6.1 Query of question

SELECT VT _LB,VT_UB,TT_LB,TT_UB,ROUND(AVG(LISTPRICE),2)

FROM cubeproductlistprice WHERE dim_subcategory_key

IN (SELECT DIMENSION_KEY FROM DIM_SUBCATEGORY

WHERE CATEGORY_NAME='Bikes') GROUP BY VT LB,VT UB,TT LB, TT UB,;

Resulks;
yT 16 [vt us (B Trus B TT_UB |{ ROUNDIAVGLISTPRICE),Z) |
1 07012001 30/06/2002 30/06/2002 30/06/2002 1275.22
2 07/01/2003 (null) 06/10/2003 06/10/2003 914.13
3 07/01/2002 30j06/2003 30/06/2003 30/06/2003 707.72

Figure 6.11 Query result screenshot

The solution of this query also can be written in relational database form of
AdventureWorks database. This solution query is given in Table 6.2; it is a longer

statement than the statement which was constituted with warehousing objects.

Table 6.2 Query of question written with relational objects

select StartDate AS VT _LB, EndDate AS VT_UL, ModifiedDate AS TTLB, ModifiedDate AS
TT_UB, AVG(ListPrice) from Production.ProductListPriceHistory

where ProductID in (select ProductID from Production.Product

where ProductSubcategorylD in(select ProductSubcategorylD from
Production.ProductSubcategory where ProductCategorylD= (select ProductCategorylD from
Production.ProductCategory where Name='Bikes'))) GROUP BY StartDate,EndDate, ModifiedDate;

50

System performance or some other variants can effect on query performance.
Both queries are run 6 times and query execution times are calculates according to
milliseconds. The chart in Figure 6.12 shows execution times of queries in 6

operations.

35

w
o

N
u

N
o

[EnY
(%2}

I M Data Warehouse Query

|
L l il Relational Database Query
F

=
o

Execution time (ms)

o un
1 |

Figure 6.12 Chart shows six average execution time in each environment. The seventh measure is the

average execution times.

Query 2: What is the average list price of all products according to years,

categories and subcategories?

The key query for this question is given in Table 6.3. Category and Subcategory
were in separate tables before. After designing dimensional model,
Dim_SubCategory is created automatically. Only Dim_SubCategory table is enough

to reach Subcategory and Category tables' information.

Table 6.3 Query of question with dimensional database objects

SELECT VT _LB,VT_UB,TT_LB,TT_UB,ROUND(AVG(LISTPRICE),2),
(SELECT category_name FROM DIM_SUBCATEGORY

WHERE dimension_key= dim_subcategory _key) CATEGORY_NAME,
(SELECT subcategory_name FROM DIM_SUBCATEGORY

WHERE dimension_key= dim_subcategory _key) SUBCATEGORY_NAME
FROM cubeproductlistprice

GROUP BY VT_LB,VT _UB,TT LB, TT_UB,dim_subcategory key
ORDER BY dim_subcategory_key;

51

vt [{ viue @ trie [§ 17ue |[§ Rrounpiavs(sTRRICE)2)H caTEGORY_NAME [SUBCATEGORY_NAME

07/01/2001 30/06/2002 30j06/2002 30/06/2002 2049,5 Eikes Mountain Bikes
07/01/2002 30/06/2005 30/06/2003 30/06/2003 659,08 Bikes Maountain Bikes
07/01/200% (null) 08/10§200% 061072003 1014.29 Bikes Mauntain Bikes
07/01/2001 30/06/2002 30/08j2002 30/06/2002 1455 Eikes Road Bikes
07/01/2002 30/06/200% 30/06/2003 30/06/2003 997,33 Bikes Road Bikes
07(01/2003 (null) 08/10/2003 06/10/2003 720,25 Eikes Road Bikes
07/01/2001 30/06/2002 30/06j2002 30/06/2002 956,67 Bikes Tauring Eikes
07/01/2002 30/06/200% 30/06j2003 30/06/2003 43,67 Bikes Tauring Eikes
07/01200% (null) 08/10§2003 06102003 100556 Eikes Touring Eikes
07j01/2001 30/06/2002 30/06j2002 30/06/2002 1512.43 Companents Handlebars
07/01/2002 30/06/2003 30/06/2005 30062003 95,41 Companents Handlebars
070012003 (null) 0641042003 06/10/2003 423,67 Components Handlebars
07j01/2001 30/06/2002 30/06j2002 30/06/2002 1395.89 Companents Battam Brackets

Figure 6.13 Query result screenshot

The answer query of this question is also written with relational database objects.
This statement is given in Table 6.4. As it appears, statement has more join

conditions than the one written with dimensional objects.

Table 6.4 Query of question written with relational objects

SELECT StartDate AS VT_LB, EndDate AS VT_UL,

PLP.ModifiedDate AS TTLB,PLP.ModifiedDate AS TT_UB,

PC.Name AS CATEGORY_NAME,

PSC.Name AS SUBCATEGORY_NAME, AVG(PLP.ListPrice)

FROM Production.ProductListPriceHistory PLP,
Production.ProductSubcategory PSC, Production.Product P,
Production.ProductCategory PC WHERE PLP.ProductiD=P.ProductID
AND PSC.ProductSubcategorylD=P.ProductSubcategorylD

AND PC.ProductCategorylD=PSC.ProductCategorylD

GROUP BY StartDate,EndDate,PLP.ModifiedDate,PC.Name,PSC.Name;

Figure 6.14 shows query execution times according to data warehouse query and
relational database query as milliseconds for six times. Seventh measurement is

average performance.

52

25

H Data Warehouse Query

i Relational Database
Query

aExecution time (ms)

& é’o é’o é’\) e"\) & v
K& F o FE

S

Figure 6.14 Chart shows six average execution time in each environment. The seventh measure is the

average execution times.

Query 3: What is the average list price according to models?

Table 6.5 Query of question

SELECT ROUND(AVG(LISTPRICE),2),

(SELECT MODEL_NAME FROM DIM_MODEL

WHERE dimension_key=DIM_PRODUCTMDC_KEY) MODEL_NAME
FROM cubeproductlistprice GROUP BY DIM_PRODUCTMDC_KEY
ORDER BY DIM_PRODUCTMDC_KEY;

ROUND{AYS{LISTPRICE),) | MODEL_NAME
566.5 Classic Vest
454 Cyeling Cap
611,17 Full-Finger Gloves
1518.67 Half-Finger Gloves
599,25 HL Maunkain Frame
646,27 HL Road Frame
965,56 HL Touring Frame
756,25 LL Foad Frame

Figure 6.15 Query result screenshot

53

Table 6.6 Query of question written with relational objects

SELECT StartDate AS VT_LB, EndDate AS VT_UL, PLP.ModifiedDate AS
TTLB,PLP.ModifiedDate AS TT_UB, PM.Name AS MODEL_NAME,AVG(PLP.ListPrice)
FROM Production.ProductListPriceHistory PLP, Production.ProductModel PM,
Production.Product P WHERE PLP.ProductlD=P.ProductiD AND
PM.ProductModelID=P.ProductModelID

GROUP BY StartDate,EndDate,PLP.ModifiedDate,PM.Name;

25

N
o
|

[ERN

w
L
—

H Data Warehouse Query

[E
o
|
=

i Relational Database
Query

Execution time (ms)

u
|

N v » ™ 5 b’bog,

N
.o .
S S
O > R

() ()
R R s s S o

Figure 6.16 Query comparison chart

Query 4: Query 4: What is the average list price of Bikes According to Cultures
between 01.01.2000 and 01.01.2004?

Query result shows that Chinese originate bikes are the cheapest ones. English

originate bikes are the most expensive ones.

Table 6.7 Query of question

SELECT ROUND(AVG(LISTPRICE),2) Average_Bike_Price,

DIM_MODEL.CULTURE_NAME FROM cubeproductlistprice,

DIM_MODEL WHERE DIM_MODEL.DIMENSION_KEY=

cubeproductlistprice.dim_productmdc_key

and cubeproductlistprice. PRODUCT_ID IN (SELECT PRODUCTID

FROM PRODUCT2 WHERE SUBCATEGORY ID IN(SELECT SUBCATEGORY_ID

FROM DIM_SUBCATEGORY WHERE CATEGORY_NAME='Bikes')) and
vt_Ib>to_date('01.01.2000','DD/MM/YYYY") and vt_ub<to_date('01.01.2004','DD/MM/YYYY")

GROUP BY DIM_MODEL.CULTURE_NAME

ORDER BY DIM_MODEL.CULTURE_NAME;

54

] AHERAGE_BIKE_F'RICE|EE CULTURE_MNAME
752,75 Arabic
630,93 Chinese
1122.5 English
Q36,94 French
931,25 Thai

Figure 6.17 Query result screenshot

Table 6.8 Query of question written with relational objects

select AVG(PL.ListPrice), C.Name from Production.ProductListPriceHistory PL,
Production.ProductModel PM, Production.Product P,
Production.ProductModelProductDescriptionCulture PMDC, Production.Culture C

where P.ProductModelID=PM.ProductModellD AND PL.ProductlD=P.ProductiD

AND PM.ProductModelID=PMDC.ProductModelID AND PMDC.CulturelD=C.CulturelD
AND PL.StartDate>convert(DATE, '01.01.2000', 103) and PL.EndDate<convert(DATE,
'01.01.2004', 103) AND PL.ProductID in (select ProductID from Production.Product
where ProductSubcategorylD in(select ProductSubcategoryl D

from Production.ProductSubcategory where ProductCategorylD=

(select ProductCategorylD from Production.ProductCategory where Name='Bikes'))) GROUP BY
C.Name ;

100

40 M Data Warehouse Query
30 i

Execution time (ms)
(O3]
o

Figure 6.18 Query comparison chart

Query 5: What is the average list price of Components According to Cultures?

Query result in Table 6.19 shows that French originate components are the

cheapest ones in average. Hebrew originate components are the most expensive ones.

55

Table 6.9 Query of question

SELECT ROUND(AVG(LISTPRICE),2) Average_Component_Price,
DIM_MODEL.CULTURE_NAME

FROM cubeproductlistprice, DIM_MODEL WHERE DIM_MODEL.DIMENSION_KEY=
cubeproductlistprice.dim_productmdc_key

and cubeproductlistprice. PRODUCT_ID IN (SELECT PRODUCTID

FROM PRODUCT2 WHERE SUBCATEGORYID IN(SELECT SUBCATEGORY_ID
FROM DIM_SUBCATEGORY WHERE CATEGORY_NAME='Components'))

GROUP BY DIM_MODEL.CULTURE_NAME;

ORDER BY DIM_MODEL.CULTURE_NAME;

B AVERAGE_COMPONENT_PRICE ||§ CULTURE_MAME
343,41 Arabic
785.67 Chinese
625,69 English
620,91 French
549,24 Hebrew
794,93 Thai

Figure 6.19 Query result screenshot

Table 6.10 Query of question written with relational objects

select AVG(PL.ListPrice), C.Name from Production.ProductListPriceHistory PL,
Production.ProductModel PM, Production.Product P,
Production.ProductModelProductDescriptionCulture PMDC, Production.Culture

where P.ProductModellID=PM.ProductModelID AND PL.ProductID=P.ProductID

AND PM.ProductModelID=PMDC.ProductModellID AND PMDC.CulturelD=C.CulturelD AND
PL.ProductID in (select ProductID from Production.Product

where ProductSubcategorylD in(select ProductSubcategoryl D

from Production.ProductSubcategory where ProductCategorylD=

(select ProductCategorylD from Production.ProductCategory where Name='Components')))
GROUP BY C.Name ;

56

w
w

w
o

N
w

N
o

H Data Warehouse Query

[
(O3]
|

i Relational Database
Query

Execution time (ms)
[EnY
o

o
1

Figure 6.20 Query comparison chart

Query 6: What is the average list price of Components According to Cultures
AND Models?

The query of this question is given in Table 6.11. CubeProductListPrice and
Dim_model is joined. In oracle relational database design there were two tables
about model dimension. One of them was ProductModelDescriptionCulture which
contains PRODUCTDESCRIPTION and CULTURE nested types in it. This three

different table and nested tables are stored in one dimension table.

Table 6.11 Query of question

SELECT ROUND(AVG(LISTPRICE),2) Average_Component_Price,
DIM_MODEL.CULTURE_NAME, DIM_MODEL.MODEL_NAME

FROM cubeproductlistprice, DIM_MODEL WHERE DIM_MODEL.DIMENSION_KEY=
cubeproductlistprice.dim_productmdc_key

and cubeproductlistprice. PRODUCT _ID IN (SELECT PRODUCTID

FROM PRODUCT2 WHERE SUBCATEGORYID IN(SELECT SUBCATEGORY_ID
FROM DIM_SUBCATEGORY WHERE CATEGORY_NAME='Components'))

GROUP BY DIM_MODEL.MODEL_NAME,DIM_MODEL.CULTURE_NAME
ORDER BY DIM_MODEL.CULTURE_NAME, DIM_MODEL.MODEL_NAME;

57

AYERAGE_COMPOMENT_PRICE |[§E CULTURE_NAME@ MODEL_MAME

290 Arabic All-Purpose Bike Skand
810,33 Arabic ML Mauntain Frame-'
1246 frabic Road-650
1176.5 Arabic Sport-100
593.67 Arabic Wamen's Mountain Shorks
762 Chinese Chain
512 Chinese Fender Set - Mountain
1307 Chinese Hitch Rack - 4-Bike

Figure 6.21 Query result screenshot

Table 6.12 Query of question written with relational objects

select AVG(PL.ListPrice), C.Name , PM.Name

from Production.ProductListPriceHistory PL, Production.ProductModel PM,
Production.Product P,

Production.ProductModelProductDescriptionCulture PMDC, Production.Culture C where
P.ProductModelID=PM.ProductModellD AND PL.ProductlD=P.ProductiD

AND PM.ProductModelID=PMDC.ProductModelID AND PMDC.CulturelD=C.CulturelD
AND PL.ProductiD=P.ProductID AND PL.ProductID in (select ProductID from
Production.Product where ProductSubcategorylD in(select ProductSubcategorylD from
Production.ProductSubcategory where ProductCategorylD= (select ProductCategorylD from
Production.ProductCategory where Name='"Components'))) GROUP BY C.Name,PM.Name ;

100
90
80 -
70 ~
60 -
50 - H Data Warehouse Query
40 -
30 - ki Relational Database
20 - , : Query
10 - — —
0 .

Execution time (ms)

SN © &
L °

+“’C)+"'°
< <

O

() ()
s R s

Figure 6.22 Query comparison chart

58

Query 7: What is the average list price of Components According to Categories?

Table 6.13 Query of question

SELECT ROUND(AVG(LISTPRICE),2) Average_Component_Price,
DIM_SUBCATEGORY.CATEGORY_NAME FROM cubeproductlistprice, DIM_SUBCATEGORY
WHERE DIM_SUBCATEGORY.DIMENSION_KEY =cubeproductlistprice. DIM_SUBCATEGORY_KEY
GROUP BY DIM_SUBCATEGORY.CATEGORY_NAME ORDER BY
DIM_SUBCATEGORY.CATEGORY_NAME;

MERAGE_CDMPONENT_PRICE|Et CATEGORY _MAME
851,19 Bikes

735,25 Components

Figure 6.23 Query result screenshot

Table 6.14 Query of question written with relational objects

select AVG(PL.ListPrice), PC.Name from Production.ProductListPriceHistory PL, Production.Product P,
Production.ProductSubcategory PS,

Production.ProductCategory PC where P.ProductSubcategorylD= PS.ProductSubcategorylD AND
PS.ProductCategorylD=PC.ProductCategorylD

AND PL.ProductID=P.ProductID AND PL.ProductID in (select ProductID from Production.Product where
ProductSubcategoryID in(select ProductSubcategorylD from Production.ProductSubcategory where
ProductCategorylD= (select ProductCategoryID from Production.ProductCategory where
Name='Components'))) GROUP BY PC.Name;

160
140
120
100

M Data Warehouse Query

40 i Relational Database
Query

Execution time (ms)
(0]
o

Figure 6.24 Query comparison Chart

Query 8: What is the average list price of Components According to Categories

and SubCategories?

59

The result query of this question is given in Table 6.15. It provides acces to two
levels of Dim_Subcategory dimension.

Table 6.15 Query of question

SELECT ROUND(AVG(LISTPRICE),2) Average_Component_Price,

DIM_SUBCATEGORY.CATEGORY_NAME,DIM_SUBCATEGORY.SUBCATEGORY_NA
ME FROM cubeproductlistprice,DIM_SUBCATEGORY

WHERE DIM_SUBCATEGORY.DIMENSION_KEY=

cubeproductlistprice. DIM_SUBCATEGORY_KEY GROUP BY
DIM_SUBCATEGORY.CATEGORY_NAME,

DIM_SUBCATEGORY.SUBCATEGORY_NAME

ORDER BY DIM_SUBCATEGORY.CATEGORY_NAME,

DIM_SUBCATEGORY.SUBCATEGORY_NAME;

P.'-.-'ERP.GE_COMPONENT_PRICE| CATEGORY _NAME | SUBCATEGORY _MAME

893.5 Bikes Mountain Bikes
899,78 Bikes R.oad Bikes
G41.44 Bikes Touring Bikes

73,9 Camponents Bottam Brackeks
A36.27 Companents Brakes
938,66 Components Zhains
691,77 Components Cranksets

Figure 6.25 Query result screenshot

Table 6.16 Query of question written with relational objects

select AVG(PL.ListPrice), pc.Name category, ps.Name subcategory

from Production.ProductListPriceHistory PL, Production.Product P,
Production.ProductSubcategory pc, Production.ProductSubcategory PS

where PS.ProductCategorylD= PL.ProductID and pc.ProductCategorylD= ps.ProductCategorylD
and pl.ProductID in (select ProductID from Production.Product where ProductSubcategorylD
in(select ProductSubcategorylD from Production.ProductSubcategory where
ProductCategorylD= (select ProductCategorylD from Production.ProductCategory where
Name="Components'))) GROUP BY pc.Name , ps.Name ;

60

120

100

[0}
o

[e2)
o

N
o

Execution time (ms)

N
o

0 -

\) N\ \§'\o
(&) (&) () (&)
FF &K

& g
+Q’°°
%

N
&

H Data Warehouse Query

i Relational Database
Query

Figure 6.26 Query comparison Chart

6.2 Cube2- CubeProductCostHistory

6.2.1 Design

CubeProductCostHistory is
CubeProductCostHistory

nearly same

cube also has

Dim_Model,

with CubeProductListprice.

Dim_Unitmeasure,

Dim_Subcategory dimensions. CubeProductCostHistory has Cost, VT _LB, VT_UB,

TT LB, TT_UB, Product Id

as measures and D1 _Measure, D2_subcategory,

D4 _ProductMDC attributes for binding them to dimensions.

Cube Product CostHistory
COST NUMBER(82)

VT_LB DATE

VT_UB DATE

TT_LB DATE

TT_UB DATE

PRODUCT_ID NUMBER

D2_SUBCATEGORY NUMBER
D4_PRODUCTMDC NUMBER

DIM_MODEL
DIMENSICN_KEY NUMBER NOT NULLENABLE |

D1_UNITMEASURE VARCHAR2(3 BYTE)

DIM_UNITMEASURE

UNITMEASURE_ID VARCHAR2(3 BYTE)
UNITMEASURE_NAME VARCHAR2(50 BYTE)
UNITMEASURE_DATE DATE

LEVEL2_|D VARCHAR2(3 BYTE) NOT NULL ENABLE
LEVEL2_NAME VARCHAR2(50 BYTE)
LEVEL2_DATE DATE

DIM SUBCATEGORY

DIMENSION_KEY NUMBER NOT NULL ENABLE

MODEL_ID NUMBER(80)
MODEL_NAME VARCHAR2(50 BYTE)
MODEL_MDFYDATE DATE
DESCRIPTION_ID NUMBER(20)
DESCRIPTION_MDFYDATE DATE
LONG_DESC VARCHAR2(400 BYTE)
CULTURE_ID NUMBER(20)
CULTURE_NAME VARCHAR2(50 BYTE)
IDVARCHAR VARCHAR2(E BYTE)

SUBCATEGORY_ID NUMBER
SUBCATEGORY_NAME VARCHAR2(S0 BYTE)
SUBCATEGORY_MDFYDATE DATE

CATEGORY_NAME VARCHAR2(S0 BYTE)

CATEGORY_ID NUMBER
CATEGORY_MDFYDATE DATE

Figure 6.27 Diagram of dimensional snowflake schema based on Cube_Product_CostHistory cube

61

CubeProductCostHistory cube as depicted in Figure 6.27 has snowflake structure
and the same dimensions with CubeProductListprice. Same dimensions are used to
create diffirent cubes.

6.2.2 Mapping

6.2.2.1 Mappinng CubeProductCostHistory

FEEUDNEESI DR

L4
IE FRODUCT? 3.4 @ BT_HUMBER X
5 GINGRP
® & PRODUCTID W E BT NUMBER [E c_costhis_som a8 X
> NAME #, o ’ =
5 BINOUTGRP 5

> PRODUCTNUMBER & o
> MAKEFLAG ,bz o |[RODUCTCOSTHIST TT_LB Gl » b > cosT o O

»
> FINSHEDGOODSFLAG % o E—Eg g 2 & : xi_bE; g z
> COLOR W, o - 2. i

»
» SAFETYSTOCKLEVEL T © x;—l_ﬂg fﬂ 2 \ » T8 B o
> REORDERPONUMBER Tig & : TT_UB o Z
® PRODUCTCOSTHISTORY & # PRODUCTID i
> PRODUCTLISTPRICEHI.. & o % DI_UNITMEASURE % o
> SIZEE W, % D2 SUBCATEGO.. Tty
> SIZEUNITMEASURECO.. &, # » D4_PRODUCTMDC 75 &

Figure 6.28 Mapping diagram of CubeProductCostHistory
6.2.3 Querying
CubeProductCostHistory and its dimensions are used to solve the questions in this
part.
Query 1: What is the average cost of Components according to years?

CubeProductCostHistory cube and Dim_Subcategory dimension is used to write
solution query. The result according to years (2001, 2002, 2003) are also shown in
Table 6.17.

Table 6.17 Query of question

SELECT VT_LB,VT_UB,TT_LB,TT_UB,ROUND(AVG(cost),2)
FROM cubeproductcosthistory WHERE dim_subcategory key IN
(SELECT DIMENSION_KEY FROM DIM_SUBCATEGORY
WHERE category_id=(select productcategoryid

from productcategory t WHERE NAMEE="Components'))
GROUP BY VT_LB,VT _UB,TT_LB,TT_UB;

62

wite (@ wius [§ trie [§ s [§ rouwb(avs(cosTz)

01/07/2001 30406/2002 06{10/2003 08/10/2003 790865.5
01j07(2003 (ull) 06/10/2003 06/10/2003 Z11677.68
01J07(2002 304062003 06/10/2003 08/10/2003 253725,64

Figure 6.29 Query result screenshot

Table 6.18 Query of question written with relational objects

select StartDate AS VT _LB, EndDate AS VT_UL, ModifiedDate AS TTLB, ModifiedDate AS
TT_UB, AVG(PC.StandardCost) from Production.ProductCostHistory PC where ProductID in
(select ProductID from Production.Product where ProductSubcategorylD in(select
ProductSubcategorylD from Production.ProductSubcategory where ProductCategorylD= (select
ProductCategoryID from Production.ProductCategory where Name='Components'))) GROUP BY
StartDate,EndDate, ModifiedDate;

60

Ul
o
|

iy
o
|

M Data Warehouse Query

Execution time (ms)
w
o

20 1 id Relational Database
Que
10 - i
O .
N &) ™ © e
,;\o° &\ooq’ S &\oo y;\oo% &\00 e}fb%
S N N 3 3 QRS

() () () ()
R R s s S o

Figure 6.30 Query comparison chart

Query 2: What is the average list cost of all product according to years, categories

and subcategories?

Table 6.19 Query of question

SELECT VT _LB,VT UB,TT_LB,TT_UB,ROUND(AVG(cost),2), (SELECT category_name FROM
DIM_SUBCATEGORY WHERE dimension_key= dim_subcategory _key) CATEGORY_NAME,

(SELECT subcategory_name FROM DIM_SUBCATEGORY WHERE dimension_key=
dim_subcategory_key) SUBCATEGORY_NAME FROM cubeproductcosthistory GROUP BY
VT_LB,VT_UB,TT_LB,TT_UB,dim_subcategory_key ORDER BY dim_subcategory key;

63

wiis (@ vius [§ tris [§ TTus | ROUNDGAWGICOSTY,Z) (] CATEGORY MaME | SUBCATEGORY _NAME

0107/2001 30/06/2002 0&/10/2003 0&/10/2003 370387 Companents Handlebars
01/07/2002 S0/06/2003 06/10/2005 06102003 375468.5 Companents Handlebars
010712003 {rull) 0&/10/2003 0&6/10/2003 112163 Components Handlebars
01407§2001 30/06/2002 0&/10/2003 0&6/10/2003 120278 Companents Bottom Brackets
01/07/2002 30/06/2003 06/10/2003 06/10/2003 156709 Camponents Bottom Brackets
010712003 (null) 0&/10/2003 0&/10/2003 253653 Components Bottom Erackets
01/07/2002 S0/06/2003 06/ 10/2003 06102003 232537.5 Companents Brakes
017072003 (null) 06/10/2003 06/10/2003 192719.5 Components Brakes

Figure 6.31 Query result screenshot

Table 6.20 Query of question written with relational objects

SELECT StartDate AS VT _LB, EndDate AS VT _UL,

PCP.MadifiedDate AS TTLB,PCP.ModifiedDate AS TT_UB,

PC.Name AS CATEGORY_NAME,

PSC.Name AS SUBCATEGORY_NAME, AVG(PCP.StandardCost)
FROM Production.ProductCostHistory PCP,
Production.ProductSubcategory PSC, Production.Product P,
Production.ProductCategory PC WHERE PCP.ProductID=P.ProductID
AND PSC.ProductSubcategorylD=P.ProductSubcategorylD

AND PC.ProductCategorylD=PSC.ProductCategorylD

GROUP BY StartDate,EndDate, PCP.ModifiedDate,PC.Name,PSC.Name;

w
(0]

w
o

N
(9]

N
o

M Data Warehouse Query

[E
(5]
|

i Relational Database
Query

[E
o
|

Execution time (ms)

Figure 6.32 Query comparison chart

64

Query 3: What is the average cost for all years according to models?

Table 6.21 Query of question

SELECT ROUND(AVG(cost),2), (SELECT MODEL_NAME FROM DIM_MODEL

WHERE dimension_key=DIM_PRODUCTMDC_KEY) MODEL_NAME,VT_LB,VT_UB,
TT LB, TT_UB FROM cubeproductcosthistory GROUP BY DIM_PRODUCTMDC_KEY,
VT LB, VT _UB,TT_LB,TT_UB ORDER BY DIM_PRODUCTMDC_KEY ,VT LB,VT _UB;

ROUND(aYE(COST),2) (B mooeL_wame [{ wie [f wviue [§ Trie [@ TTuB |

739041 Raad-150 01072003 (rull) 061042003 06/10/2003
Z90365.5 (null) 01/07/2001 30/06/2002 O6{10/2003 061042003
2583725.54 (null) 01/07/2002 30/06/2003 06/10/2003 061042003
19742462 (null) 014072003 {null 061042003 06/10/2003

Figure 6.33 Query result screenshot

Table 6.22 Query of question written with relational objects

SELECT StartDate AS VT_LB, EndDate AS VT_UL, PCP.ModifiedDate AS
TTLB,PCP.ModifiedDate AS TT_UB, PM.Name AS MODEL_NAME,
AVG(PCP.StandardCost) FROM Production.ProductCostHistory PCP,
Production.ProductModel PM, Production.Product P WHERE PCP.ProductlD=P.ProductID
AND PM.ProductModelID=P.ProductModelID GROUP BY
StartDate,EndDate,PCP.ModifiedDate,PM.Name;

35

w
o

N
(6]

N
o

M Data Warehouse Query

[any
(2}
I

Execution time (ms)

i Relational Database
Query

[any
o
I

Figure 6.34 Query comparison chart

65

Query 4: What is the average cost for all years according to cultures?

Table 6.23 Query of question

SELECT ROUND(AVG(cost),2), dim_productmdc_key,

(SELECT CULTURE_NAME FROM DIM_MODEL

WHERE dimension_key=DIM_PRODUCTMDC_KEY) CULTURE_NAME,
VT_LB,VT_UB,TT_LB,TT_UB

FROM cubeproductcosthistory

GROUP BY DIM_PRODUCTMDC_KEY,VT_LB,VT_UB,TT_LB,TT_UB
ORDER BY DIM_PRODUCTMDC_KEY,VT_LB,VT_UB;

ROUNDIAYG(COST),2) [oim_propucTMDC KEY [cuuTure Mame [{ vris |{ viue (@ Tris [§ T7ue

739041 25 English 01/07/2003 (null) 06(10/2003F 06/10/2003
2006655 {rully () 01/07/2001 300062002 06(10/2003 06/10/2003
253725.04 frully (rual) 01/07/2002 300062003 06/10/2003 06/10/2003
197424.62 (rully (raly 01/07/2003 (null) 06/10/2003 06/10/2003

Figure 6.35 Query result screenshot

Table 6.24 Query of question written with relational objects

select AVG(PC.StandardCost), C.Name

from Production.ProductCostHistory PC, Production.ProductModel PM, Production.Product P,
Production.ProductModelProductDescriptionCulture PMDC, Production.Culture C

where P.ProductModellID=PM.ProductModellID AND PC.ProductlD=P.ProductiD

AND PM.ProductModelID=PMDC.ProductModelID AND PMDC.CulturelD=C.CulturelD
AND PC.StartDate>convert(DATE, '01.01.2000', 103) and PC.EndDate<convert(DATE,
'01.01.2004', 103)

AND PC.ProductID in (select ProductID from Production.Product

where ProductSubcategorylD in(select ProductSubcategoryl D

from Production.ProductSubcategory where ProductCategorylD=

(select ProductCategorylD from Production.ProductCategory where Name='Bikes"))) GROUP
BY C.Name;

66

120

100

0o
o

H Data Warehouse Query

Execution time (ms)
[e2)
o

4 .
0 i Relational Database
uer
20 Query
0 .
© (2
~o°\, ~o°% o°°) & ~o°<° G
F S
& & & v
F FFFFF

Figure 6.36 Query comparison chart

Query 5: What is the average list price of products According to Categories?

Table 6.25 Query of question

SELECT ROUND(AVG(COST),2) Average_Component_Price,
DIM_SUBCATEGORY.CATEGORY_NAME FROM cubeproductcosthistory,
DIM_SUBCATEGORY WHERE DIM_SUBCATEGORY.DIMENSION_KEY=
cubeproductcosthistory.DIM_SUBCATEGORY_KEY

GROUP BY DIM_SUBCATEGORY.CATEGORY_NAME

ORDER BY DIM_SUBCATEGORY.CATEGORY_NAME;

AVERAGE COMPOMEMT_PRICE | CATEGORY _MAME
23379842 Components

Figure 6.37 Query result screenshot

Table 6.26 Query of question written with relational objects

select AVG(PC.StandardCost), C.Name

from Production.ProductCostHistory PC, Production.ProductModel PM, Production.Product P,
Production.ProductModelProductDescriptionCulture PMDC, Production.Culture C

where P.ProductModelID=PM.ProductModellD AND PC.ProductIlD=P.ProductID

AND PM.ProductModelID=PMDC.ProductModellID AND PMDC.CulturelD=C.CulturelD
GROUP BY C.Name ;

67

N
(9]

N
o

[ERN
w

H Data Warehouse Query

=
o

i Relational Database
Query

Execution time (ms)

Figure 6.38 Query comparison chart

Query 6: What is the average list price of products According to Categories and

SubCategories?

Table 6.27 Query of question

SELECT ROUND(AVG(COST),2) Average_Component_Price,

DIM_SUBCATEGORY.CATEGORY_NAME,DIM_SUBCATEGORY.SUBCATEGORY_NAME
FROM cubeproductcosthistory,DIM_SUBCATEGORY

WHERE DIM_SUBCATEGORY.DIMENSION_KEY=

cubeproductcosthistory.DIM_SUBCATEGORY_KEY

GROUP BY DIM_SUBCATEGORY.CATEGORY_NAME,
DIM_SUBCATEGORY.SUBCATEGORY_NAME

ORDER BY DIM_SUBCATEGORY.CATEGORY_NAME,
DIM_SUBCATEGORY.SUBCATEGORY_NAME;

AVERAGE_COMPONENT_PRICE [CATEGORY_MAME [SUBCATEGORY_MAME

196075, 75 Components Bottom Brackets
219264.83 Components Brakes
229041 Components Chains

203813.17 Components Cranksets

113418.5 Components Derailleurs
293605, 25 Components Forks

300774.58 Components Handlebars
231183.25 Components Headsets
107060.8% Compaonents Mountain Frames

Figure 6.39 Query result screenshot

68

Table 6.28 Query of question written with relational objects

select AVG(PC.StandardCost), C.Name , PM.Name

from Production.ProductCostHistory PC, Production.ProductModel PM, Production.Product P,
Production.ProductModelProductDescriptionCulture PMDC, Production.Culture C

where P.ProductModelID=PM.ProductModellID AND PC.ProductID=P.ProductID

AND PM.ProductModelID=PMDC.ProductModelID AND PMDC.CulturelD=C.CulturelD AND
PC.ProductID=P.ProductID

AND PC.ProductID in (select ProductID from Production.Product

where ProductSubcategorylD in(select ProductSubcategoryl D

from Production.ProductSubcategory where ProductCategorylD=

(select ProductCategorylD from Production.ProductCategory where Name='"Components')))
GROUP BY C.Name,PM.Name ;

140

120

100

[0]
o

M Data Warehouse Query

D
o

i Relational Database
Query

S
o

Execution time (ms)

20

Figure 6.40 Query comparison chart

6.3 Cube3- CubeProductCostHistory2Dim

6.3.1 Design

While mathematical cubes have three dimensions, warehousing cubes can be
designed by two, one, three, four or more dimensions. This
CubeProductCostHistory2Dim cube is created by two dimensions. These dimensions
are Dim_Model, Dim_Subcategory dimensions and Cost, VT _LB, VT _UB, TT_LB,
TT_UB, Prodld measures.

69

DIM SUBCATEGORY
DIMENSICN_KEY NUMBER NOT NULL ENABLE

Cube Product CostHistory2Dim SUBCATEGCRY_ID NUMBER
COST NUMBER(2,2) SUBCATEGORY_NAME VARCHAR2(S0 BYTE)
\T_LB DATE SUBCATEGORY_MDFYDATE DATE
VT_UB DATE CATEGORY_ID NUMBER
TT_LB DATE CATEGORY_NAME VARCHAR2(50 BYTE)
TT_UB DATE CATEGORY_MDFYDATE DATE
PRODID NUMBER

DIM MODEL
D2_SUBCATEGORY NUMBER T

l'\ DIMENSION_KEY NUMBER NOT NULL ENABLE

D4_PRODUCTMDC NUMBER

MODEL_ID NUMBER(80)
MODEL_NAME VARCHAR2(S0 BYTE)
MODEL_MDFYDATE DATE
DESCRIPTION_ID NUMBER(80)
DESCRIPTICN_MDFYDATE DATE
LONG_DESC VARCHAR2(400 BYTE)
CULTURE_ID NUMBER(20)
CULTURE_NAME VARCHAR2(S0 BYTE)

IDVARCHAR VARCHAR2(E BYTE)

Figure 6.41 Diagram of dimensional star schema based on Cube_Product_CostHistory2Dim cube

6.3.2 Mapping

CubeProductCostHistory2Dim is very similar ~ with mapping of
CubeProductCostHistory. The only difference is connecting two dimension attributes

from product fact table.

6.4 Cube4- CubeProductListPrice2Dim

6.4.1 Design

This CubeProductListPrice2Dim cube is also created by two dimensions. These
dimensions are Dim_Model, Dim_Subcategory dimensions and ListPrice, VT LB,
VT _UB, TT_LB, TT_UB, Prodld measures.

70

DIM_SUBCATEGORY
DIMENSION_KEY NUMBER NOT NULL ENABLE

Cube Product ListPrice2Dim SUBCATEGORY_ID NUMBER
LISTPRICE NUMBER(2,2) SUBCATEGORY_NAME VARCHAR2(S0 BYTE)
VT_LB DATE SUBCATEGORY_MDFYDATE DATE
VT_UB DATE CATEGORY_ID NUMBER
TT_LB DATE CATEGORY_NAME VARCHAR2(50 BYTE)
TT_UB DATE CATEGORY_MDFYDATE DATE
PRODID NUMBER

DIM _MODEL
D2_SUBCATEGORY NUMBER T =)

h\ DIMENSION_KEY NUMBER NOT NULL ENABLE

D4_PRODUCTMDC NUMBER

MODEL_ID NUMBER(80)
MODEL_NAME VARCHAR2(S0 BYTE)
MODEL_MDFYDATE DATE
DESCRIPTION_ID NUMBER(80)
DESCRIPTION_MDFYDATE DATE
LONG_DESC VARCHAR2(400 BYTE)
CULTURE_ID NUMBER(80)
CULTURE_NAME VARCHAR2(S0 BYTE)
IDVARCHAR VARCHAR2(E BYTE)

Figure 6.42 Diagram of dimensional star schema based on Cube_Product_ListPrice2Dim cube

6.4.2 Mapping

CubeProductListPrice2Dim is very similar with mapping of
CubeProductListPrice. The only difference is connecting two dimension attributes

from product fact table.

6.5 Cube5- Cube_Workorder_OrderQty

6.5.1 Design

A snowflake schema is shown in Figure 6.43. Arrows show foreign keys between
tables. WorkOrder table is the fact table with Product, ProductSubCategory t,
ProductCategory _t dimension tables. Product dimension has three dimension levels

ProductSubCategory and ProductCategory.

71

PRODUCT2
PRODUCTID NUMBER

NAME VARCHAR2(50 BYTE}
PRODUCTNUMBER VARCHAR2(25 BYTE}
MAKEFLAG VARCHAR2(S BYTE}
FINISHEDGOODSFLAG VARCHAR2(S BYTE)
COLOR VARCHAR2(15 BYTE)
SAFETYSTOCKLEVEL NUMBER
REORDERPONUMBER NUMBER

[PRODUCTCOSTHISTORY PRODUCTCOSTHISTORY

PRODUCTLISTPRICEHISTORY FRODUCTLISTFRICEHISTCRY]

SIZEE VARCHAR2(S BYTE)
SIZEUNITMEASURECODE CHAR(3 BYTE)
WEIGHTUNITMEASURECODE CHAR(3 BYTE)
WEIGHT NUMBER
DAYSTOMANUFACTURE NUMBER
PRODUCTLINE CHAR(2 BYTE)

CLASSS CHAR(2 BYTE)

STYLEE CHAR(2 BYTE)
PRODUCTMODELID NUMBER
SELLSTARTDATE DATE

SELLENDDATE DATE
DISCONTINUEDDATE DATE

ROWGUID VARCHAR2{100 BYTE)
MODIFIEDDATE DATE
SUBCATEGORYID NUMBER

PRODUCTSUBCATEGORY T

PRODUCTSUBCATEGCORYID NUMBER
PRODUCTCATEGORYID NUMBER
NAME VARCHAR2(S0 BYTE)
ROWGUID VARCHAR2(100 BYTE)
MODIFIEDDATE DATE

f

PRODUCTCATEGORY T

PRCDUCTCATEGORYID NUMBER
NAMEE VARCHAR2(50 BYTE)
ROWGUID VARCHAR2(100 BYTE)
MODIFIEDDATE DATE

'| WORKORDER

WORKORDERID NUMBER,
PRODUCTID NUMBER

or DERQTY_NESTED TYPE_ORDERQTY
STOCKEDQTY_NESTED TYPE_STCCKEDQTY
SCRAPPEDQTY_NESTED TYPE_SCRAPPEDQTY

DUEDATE DATE

-
SCRAPREASON SCRAPREASCN

WORKORDERRCUTING WCRKORDERROUTING

VT_LB DATE,
VT_UB DATE
TT_LB DATE
TT_UB DATE

Figure 6.43 Snowflake schema based on Workorder fact table

The primary key in dimension table (Subcategory, Model, and UnitMeasure) is

The cube model based on Workorder snowflake schema is constituted arount the

joined to the corresponding foreign key in the Workorder fact table. For example,
Product.Productld=Workorder. Productld .

Workorder fact object. Workorder cube have Product dimension. Cube table fact
object includes attributes that correspond to the foreign keys in the fact table that are
used to join the dimensions to the facts object. The fact object has five measures:
VT LB, VT _UB, TT_LB, TT_UB and Value. And has 1 attributes: D5_PRODUCT.

Product dimension references the following attributes:

o DIMENSION_KEY
e PRODUCT_ID
« PRODUCT_NAME

72

« PRODUCT MDFDATE

« SUBCATEGORY_ID

« SUBCATEGORY_NAME

« SUBCATEGORY_MDFDATE
« CATEGORY_ID

« CATEGORY _NAME

« CATEGORY_ MDFDATE

A join is created to connect dimension to the fact object.

DIM_PRODUCT
Cube WORKORDER1 OrderQty DIMENSION_KEY NUMBER NOT NULL ENABLE
VT _UB DATE PRODUCT_ID NUMBER(S,0)
W_LB DATE PRODUCT_NAME VARCHAR2(50 BYTE)
TI’_UB DATE & | PRODUCT_MDFDATE DATE
TT_Lg DATE SUBCATEGORY_ID NUMBER(S,0)

VALUE NUMBER(8,2) SUBCATEGORY_NAME VARCHAR2(50 BYTE)

DS_PRODUCT NUMBER

SUBCATEGCRY_MDFDATE DATE

CATEGORY_ID NUMBER(8,0)
CATEGORY_NAME VARCHAR2(S0 BYTE)

CATEGORY_MDFDATE DATE

Figure 6.44 Dimensional relations diagram of objects

Product dimension has one hierarchy and three levels in it as shown in Figure
6.45.

73

DIM _PRODUCT

l

I Product_HierarchYI |

bl

Product Level Category Level

FRCDUCT_ID NUMBER(8,0) CATEGORY_ID NUMBER(S8,0)
PRODUCT_NAME VARCHAR2(S0 BYTE) CATEGORY_NAME VARCHAR2(50 BYTE)
PRODUCT_MDFDATE DATE CATEGORY_MDFDATE DATE

Subcategory Level

SUBCATEGORY_ID NUMBER(2,0)
SUBCATEGORY_NAME VARCHAR2(SO BYTE)
SUBCATEGORY_MDFDATE DATE

Figure 6.45 The hierarchy of DIM_PRODUCT

Cube Workorder
Orderqty

1

| DIM PRODUCT |

-

| Product_Hierarchy | |

: '

Product Level Category Level

PRODUCT_ID NUMBER(2,0) CATEGORY_ID NUMBER(2,0)

PRODUCT_NAME VARCHAR2(50 BYTE) CATEGORY_NAME VARCHAR2(50 BYTE)

PRODUCT_MDFDATE DATE CATEGORY_MDFDATE DATE ‘
\J

Subcategory Level

SUBCATEGORY_ID NUMBER(8,0)
SUBCATEGORY_NAME VARCHAR2(50 BYTE)
SUBCATEGORY_MDFDATE DATE

Figure 6.46 All objects in Cube_Workorder_OrderQty

74

6.5.2 Mapping

6.5.2.1 Mapping Dim_Product

When Dim_Product created, D5_PRODUCT_TAB is automatically created in the
same form with dimension in warehousing repository. There are no data in this

dimension table at first.

A mapping is designed to fill dimension table with data. Dim_Product's three
levels come from three different tables. These are ProductSubCategory T,
ProductCategory t and Product table. For loading three tables data into dimension

table, using two joiner operators required.

Map is compiled and run. Dim_product is filled by data.

I %o JOIHER_0 7.
S— =) = |
i [ENGRP1
E o FINGRP2
e sy |FRODU =
FRODUCTSUBCATEGORY_T PRODUCTSUBCA T PRODUCTID Ty W |§DS_PRO[IUCT_TAB A
PRODUCTCATEG.. ' » NAME UL % EINOUTGRP1 =
HAME b, ® MODIFIEDDATE B = » DIMENSION_KEY R
ROWGUID W, SUBCATEGORYID T & - PRODUCT D T
E MODIFIEDDATE B » PRODUCTSUBCA.. T = » PRODUCT_NAME B,
PRODUCTCATEG... Mg = FRODUCTCATEG . ™ 2 » PRODUCT_MDFDATE ® 2
PRODUCTCATEGDRY_ MNAMEE B NAME_1 e » » SUECATE(EORYJD Ty
ROWIGUID_1 b, W ROWGLID e @ » SUBCATEGORY_MNAME By o
MODIFIEDCATE 1 Bl » MODIFIEDDATE 1 [& » SUBCATEGORY_MDFDATE & o
PRODUCTCATEG.. ™ = » CATEGORY_ID Ty
MNAMEE b ® » CATEGORY_NAME By
ROWGLID_1 2 » CATEGODRY_MDFDATE S
MODIFIEDDATE_1_1 B =

Figure 6.47 Mapping diagram of DIM_PRODUCT dimension

6.5.2.2 Mapping Cube_Workorder_OrderQty

When Cube_Workorder_OrderQty C_WORKORDER1 TAB is

automatically created in the same form with cube in warehousing repository. There

created,

are no data in this dimension table at first.

There are four objects in Figure 6.48. The one on the left side is Workorder
database table. The second one on left side is Varray Iterator. It converts
OrderQty_Nested nested table to nested BT _number type. The third one is the
Expand Object this object. This object expands all attributes in BT_number nested

type. BT_number expand objects's outputs are connected to C_workorderl tab's

75

measure attributes. And Productld column of Workorder table is connected to cube
table's dimensional attribute.

I NEEEEED

@
.

E WORKORDER 7
= BINOUTGRP1 = I
7
z \;V}-‘(")OR;S;[:ERD 7:: i E C_WORKORDER1_TAB X
> ORDERQTY Ty = BINOUTGRP1 =8
= STOCKEDQTY oy @ o YT_UB H 2
= SCRAPPEDQTY oy @ » VT_LB H 2
> VT_LB Bl o » TT_UB [0
o> YT_UB Gl = 2 TT_LB Gl =
> DUEDATE Gl = _ » YALUE %y
e ~ By "2 oimooern -
> 1T LB E > TYPE_ORDERQTY BT_NUMBER
> TT_UB B
> ORDERQTY_NESTED =5 o»
> STOCKEDQTY_NESTED <% o
> SCRAPPEDQTY_NESTED &% o
Figure 6.48 Mapping diagram of Cube_Workorder_OrderQty cube
6.5.3 Querying

The queries about CUBE_ WORKORDER_ORDERQTY and its dimension are
given in this part. CUBE_WORKORDER_ORDERQTY has 24031 records.

Query 1: List of all work orders in ordered by according to category, subcategory

and product_name.

CUBE_WORKORDER_ORDERQTY contains only one dimension,
Dim_Product. Dim_Product has three levels. The question above requires accessing

three levels of DimProduct.

Table 6.29 Query of question

SELECT CUBE_WORKORDER_ORDERQTY.VT LB, CUBE WORKORDER_ORDERQTY.VT_UB,
CUBE_WORKORDER_ORDERQTY.TT_LB, CUBE_WORKORDER_ORDERQTY.TT_UB,
CUBE_WORKORDER_ORDERQTY.VALUE OrderQty, DIM_PRODUCT.CATEGORY NAME,
DIM_PRODUCT.SUBCATEGORY_NAME, DIM_PRODUCT.PRODUCT_NAME FROM
CUBE_WORKORDER_ORDERQTY, DIM_PRODUCT WHERE DIM_PRODUCT.DIMENSION_KEY=
CUBE_WORKORDER_ORDERQTY.DIM_PRODUCT KEY ORDER BY
DIM_PRODUCT.CATEGORY_NAME,DIM_PRODUCT.SUBCATEGORY NAME,
DIM_PRODUCT.PRODUCT_NAME;

76

vr 18 [f vrue [§ tris @ true [§ oroerqry [@ car..|@ suscate... | ProDUCT NAME

AN e 14052004 26/04/2004 14/05/2004 S Bikes Maountain Bikes L Mountain Frant Wheel
18/04/2004 18042004 O7/04/2004 18/04/2004 Z Bikes Mountain Bikes L Mountain Front Wheel
20/02/2003 200022003 04/02{2003 20/02{2003 2654 Bikes Mountain Bikes L Mountain Front Wheel
06/06,/2004 D6/06/2004 26/05/2004 06/06/2004 1 Bikes Mountain Bikes L Mountain Front Wheel
26/10/2003 2&/10/2003 17/10/2003 25/10/2003 3 Bikes Mountain Bikes LL Mountain Front Wheel
06,/01/2002 06/01/2002 23{12/2001 06/01/2002 & Bikes Mountain Bikes LL Mountain Frant Wheel
02/07/2004 02072004 21/06/2004 02072004 1 Bikes Maountain Bikes L Mountain Frant Wheel
24/01/2002 24/01/2002 06/01/2002 24012002 3 Bikes Mauntain Bikes LL Mountain Frant Wheel
26/02/2003 26/02/2003 15/02/2003 26/02{2003 Z Bikes Mountain Bikes L Mountain Front Wheel

Figure 6.49 Query result screenshot

Table 6.30 Query of question written with relational objects

SELECT WO.StartDate VT_LB, WO.EndDate VT_UB, WO.ModifiedDate, WO.ModifiedDate
TT_UB, WO.OrderQty, PS.Name, PC.Name, P.Name FROM Production.WorkOrder WO,
Production.Product P, Production.ProductSubcategory PS, Production.ProductCategory PC
WHERE P.ProductID=WO.ProductiD AND P.ProductSubcategorylD=PS.ProductSubcategorylD
AND PS.ProductCategorylD=PC.ProductCategorylD ORDER BY PS.Name, PC.Name,P.Name

1,600

1,400

1,200

1,000 - }

800 - M Data Warehouse Query

600 -
i Relational Database

Query

Execution time (ms)

400 -
200 ~

O .

N > ™ 2 © (2
. OQ . 0(:\’ . 00 . OQ . o(\ ’b°0
X S X 'S S

0\5 0\\ N (,0 QS"\)

N
£ & & & &
<! <! < <! <! <

Figure 6.50 Query comparison chart

Query 2: List work orders in decreasing order according to category and

subcategory.

The result of this query shows the most popular, highly preferred components and

bikes together in decreasing order.

77

Table 6.31 Query of question

SELECT * FROM(

DIM_PRODUCT.DIMENSION_KEY=

ORDER BY OrderQty DESC;

CUBE_WORKORDER_ORDERQTY.DIM_PRODUCT_KEY
GROUP BY DIM_PRODUCT.CATEGORY_NAME,
DIM_PRODUCT.SUBCATEGORY_NAME,
DIM_PRODUCT.PRODUCT_NAME ORDER BY DIM_PRODUCT.CATEGORY_NAME ,
DIM_PRODUCT.SUBCATEGORY_NAME,DIM_PRODUCT.PRODUCT_NAME)

SELECT MAX(CUBE_WORKORDER_ORDERQTY.VALUE) OrderQty,
DIM_PRODUCT.CATEGORY_NAME,
DIM_PRODUCT.SUBCATEGORY_NAME, DIM_PRODUCT.PRODUCT_NAME
FROM CUBE_WORKORDER_ORDERQTY, DIM_PRODUCT WHERE

ORDERQTY | CATEGORY_NAME | SUBCATEGORY _NAME | PRODUCT_MAME

3864 Components
2330 Cormponents
3330 Components
2244 Cormponents
3161 Bikes
3144 Bikes
3010 Bikes
2898 Bikes
2898 Components
2804 Cormponents

Figure 6.51 Query result screenshot

Brakes

Touring Frames
Touring Frames
Headsets

Road Bikes
Road Bikes
Road Bikes
Touring Bikes
Brakes

Brakes

Front Derailleur

LL Tauring Handlebars
Road-350-w Yellow, 42
HL Road Seat Assembly
HL Mountain Handlebars
ML Road Fronk Wheel
HL R.oad Handlebars

LL Mountain Rear Wheel
HL Bottom Bracket
Road-650 Black, 58

The answer query of question can be written with relational database objects as

statement in Table 6.32. As it appears, there are more join conditions than the one

written with dimensional objects.

78

Table 6.32 Query of question written with relational objects

SELECT X.ORDER_QTY, X.CATEGORY_NAME, X.PRODUCT_NAME,
X.SUBCATEGORY_NAME FROM (SELECT MAX(WO.OrderQty) AS ORDER_QTY ,PC.Name AS
CATEGORY_NAME, PSC.Name AS SUBCATEGORY_NAME, P.Name AS PRODUCT_NAME FROM
Production.ProductSubcategory PSC, Production.Product P, Production.ProductCategory PC,
Production.WorkOrder WO WHERE WO.ProductID=P.ProductlD AND PSC.ProductSubcategorylD=
P.ProductSubcategorylD AND PC.ProductCategorylD=PSC.ProductCategorylD GROUP BY PC.Name,
PSC.Name, P.Name) X ORDER BY X.ORDER_QTY DESC

Both queries operate on same quantity of data. Performance changes with respect
to system characteristics and querying methods. In our sample relational query is run
on more strong system. Even so the data warehouse fetched results quicker. Figure
6.52 contains 6 measurements of these queries. The average of 6 measurements is
shown as result 7. Data warehouse query's feedback is faster in average.

200
180
160
140
120 -]

100 - M Data Warehouse Query
80 -
60 - il Relational Database
40 - Query

20 ~

Execution time (ms)

Figure 6.52 The chart contains six execution time in each system and an average measurement as

seventh edge

Query 3: List work orders in increasing order according to category and

subcategory.

The result of this query shows the least popular, least preferred components and

bikes together in increasing order.

79

Table 6.33 Query of question

SELECT * FROM(

SELECT MAX(CUBE_WORKORDER_ORDERQTY.VALUE) OrderQty,

DIM_PRODUCT.CATEGORY_NAME, DIM_PRODUCT.SUBCATEGORY_NAME,

DIM_PRODUCT.PRODUCT_NAME FROM CUBE_WORKORDER_ORDERQTY,
DIM_PRODUCT

WHERE DIM_PRODUCT.DIMENSION_KEY=
CUBE_WORKORDER_ORDERQTY.DIM_PRODUCT_KEY

GROUP BY DIM_PRODUCT.CATEGORY_NAME,
DIM_PRODUCT.SUBCATEGORY_NAME,

DIM_PRODUCT.PRODUCT_NAME ORDER BY DIM_PRODUCT.CATEGORY_NAME ,

DIM_PRODUCT.SUBCATEGORY_NAME,DIM_PRODUCT.PRODUCT_NAME)

ORDER BY OrderQty ASC;

CRODERGTY | CATEGORY _NAME | SUBCATEGORY _NAME | PRODUCT_NAME

3 Components Headsets Touring-3000 Yellow, 62

A Compaonents Wheels Maunkain-400-'W Silver, 40

7 Components Detailleurs Maountain-500 Sikver, 40

7 Compaonents Handlebars Touring-2000 Blue, 50

& Bikes Mountain Bikes ML Mountain Handlebars

9 Compaonents Road Frames Touring-3000 Yellow, 50
10 Components Maounkain Frames Maountain-500 Elack, 44
10 Components Cranksets Mauntain-500 Sikver, 48
11 Components Pedals Touring-3000 Yellow, 54
14 Components Pedals Road-450 Red, A0

Figure 6.53 Query result screenshot

Table 6.34 Query of question written with relational objects

SELECT MAX(WO.OrderQty) ORDER_QTY,

PS.Name SUBCATEGORY_NAME, PC.Name CATEGORY_NAME, P.Name
PRODUCT_NAME FROM Production.WorkOrder WO,

Production.Product P, Production.ProductSubcategory PS, Production.ProductCategory PC
WHERE P.ProductID=WO.ProductlD AND P.ProductSubcategorylD=PS.ProductSubcategorylD
AND PS.ProductCategorylD=PC.ProductCategorylD GROUP BY PS.Name, PC.Name, P.Name
ORDER BY ORDER_QTY DESC

80

180
160
140
120
100

H Data Warehouse Query

i Relational Database
Query

Execution time (ms)

Figure 6.54 Query comparison chart

Query 4: List the total product workorder according to category and subcategory
between 01/01/2002 and 31/12/2002 in decreasing order .

The result of query in Table 6.35 shows the most sold category and subcategory

of products in decreasing order.

Table 6.35 Query of question

SELECT * FROM

(SELECT SUM(CUBE_WORKORDER_ORDERQTY.VALUE) TotalOrderQty,

DIM_PRODUCT.CATEGORY_NAME, DIM_PRODUCT.SUBCATEGORY_NAME

FROM CUBE_WORKORDER_ORDERQTY, DIM_PRODUCT

WHERE DIM_PRODUCT.DIMENSION_KEY=
CUBE_WORKORDER_ORDERQTY.DIM_PRODUCT_KEY

GROUP BY DIM_PRODUCT.CATEGORY_NAME,
DIM_PRODUCT.SUBCATEGORY_NAME

ORDER BY DIM_PRODUCT.CATEGORY_NAME
,DIM_PRODUCT.SUBCATEGORY_NAME)

ORDER BY TotalOrderQty DESC;

81

TOTALORDERQTY |E CATEGORY_MAME |E SUBCATEGORY _MAME

120568 Bikes Road Bikes
BZ438 Components Brakes
495303 Bikes Touring Bikes
45070 Camponents Headsets
38590 Bikes Mountain Bikes
37019 Components Mounkain Frames
29012 Camponents Touring Frames
23013 Components Cranksets
12041 Components Saddles
16746 Camponents Zhains

Figure 6.55 Query result screenshot

Table 6.36 Query of question written with relational objects

SELECT SUM(WO.OrderQty) ORDER_QTY,

PS.Name SUBCATEGORY_NAME, PC.Name CATEGORY_NAME, P.Name
PRODUCT_NAME FROM Production.WorkOrder WO,

Production.Product P, Production.ProductSubcategory PS, Production.ProductCategory PC
WHERE P.ProductID=WO.ProductiD AND P.ProductSubcategorylD=PS.ProductSubcategorylD
AND PS.ProductCategorylD=PC.ProductCategorylD AND

WO.StartDate>convert(DATE, '01/01/2002', 103) and WO.EndDate<convert(DATE,
'31/12/2002', 103)GROUP BY PS.Name, PC.Name, P.Name

ORDER BY ORDER_QTY DESC

140

120

100 - ——— |

[0le]
o
|

H Data Warehouse Query

[e2}
o
|

i Relational Database
Query

I
o
1

Execution time (ms)

Figure 6.56 Query comparison chart

82

CHAPTER SEVEN
CONCLUSION AND DISCUSSION

Excessive amount of data exist in web and database systems. People share their
personal information on web pages. It is very important to process data and get a grip
on data. Results provide offering personal advertising and services. Some companies
generate their strategies according to results of the processed data. Data warehousing
is a favorite reporting system on reporting field. Today many enterprises use data
warehousing technologies. Getting more effective and more expeditious results on
reports are reasons of using warehousing systems. In data warehousing, reports are
fetched from dimensional databases. Multiple tables are associated as levels. Less
join statements are required and less background operations occur. Hence warehouse

reports achieve high performance.

Temporal depth is very important on data warehousing systems. When a value or
cell is updated, old data must be stored. Reporting can be required according to
previous time periods. Bitemporal structure is determined to use for storing temporal
data. Bitemporal structure stores validity period and transaction period of data. When
a cell is updated, old data's valid time upper bound component is filled by today’s
date, validity of old data ends. At the same time valid time lower bound component
of new data is filled by today’s date, validity of new data begins. A new row is added
to table when a column updates. If so many updates happen, tables may expand
unrestrainedly. In order to avoid uncontrolled expansion, tables must be created in
semi-structured form. Updated column and its bitemporal attributes are stored as
nested table. Bitemporal columns are; validity lower and upper bounds: VT LB
(\Valid time lower bound), VT_UB (Valid time upper bound). Transaction lower and
upper bounds: TT_LB (Transaction time lower bound), TT_UB (Transaction time
upper bound). Updated column, VT _LB, VT_UB, TT_LB, TT_UB compose a nested
type. Temporal nested column is added to table as nested table. When an update
occurs in temporal column, only a row is added to nested table. Semi-structured form

prevents repeating unchanged columns.

83

In this study, a database module which is specially prepared in SQL server is
transferred to Oracle database and semi-structured, bitemporal data warehouse is
designed. For supplying semi-structured form nested tables and nested types are
used. While tables in relational database use 34688 KB disk space, dimensional
tables use only 11392 KB. A dimensional database is designed. Queries are run in
this dimensional database and results are discussed. Results are explained and
supported with diagrams and charts. Results and reports can be used for specifying
the strategies of Corporates. Also the results are used to analyze conditions. In this
application, a bicycle corporate data is used. Products can be reported with respect to
their categories, models etc.

Data in data warehouse may be analyzed according to different time intervals with
the flexibility of bitemporal structure. Purchasing habits of customers may be
analyzed in time line. The efficient periods of year can be figured out. These and
similar beneficial conditions may be analyzed faster than the other systems, together
with the benefits of data warehouse and semi-structured data storage. Outcomes help

corporates for determining their strategy.

84

REFERENCES

Adamson, C., & Venerable, M. (1998). Data warehousing design solutions (286-
425). New York: Wiley Press.

AdventureWorks database summary (n.d). Retrieved March 1, 2013, from

http://www.dbdesc.com/output_samples/htmlbrowse_AdventureWorks.html

Atay, C. E., & Tansel, A. U. (2009). Bitemporal databases: Modeling and
implementation. Germany: VDM Publishing.

Atay, C.E. (2008). Nested bitemporal relational data model. Retrieved January, 25,
2013 from http://www.google.com.tr/books?hl=en&Ir=&id=z02-CpgVt-
MC&oi=fnd&pg=PR4&dqg=nested+bitemporal+relational+data+model&ots=Q-
ILAOCEVB&sig=EQ31wUmDWoOoE]j_Dxt4r7q9Je72h4&redir_esc=y

Bebel, B., Eder, J., Koncilia, C., Morzy, T., & Wrembel, R. (2004). Creation and
management of versions in multiversion data warehouse. Proceedings of the The

Association for Computing Machinery Symposium on Applied Computing, 717—
723.

Ben-2Zvi, J. (1982). The time relational model. Los Angeles: University Microfilms.

Benitez, E., Guerrero, C., & Adiba, M. (2003). The WHES approach to data
warehouse evolution. Digital journal e-Gnosis. Retrieved February 14, 2013,

from http://www.e-gnosis.udg.mx.

Bhargava, G., & Gadia, S. (1993). Relational database systems with zero
information loss. Institute of Electrical and Electronics Engineers Transactions

on Knowledge and Data Engineering. 5(1).

Blaschka, M., Sapia, C., & Hofling, G. (1999). On schema evolution in
multidimensional databases. Data Warehousing and Knowledge Discovery

Conference, 153-164, Florence: Springer.

85

http://www.dbdesc.com/output_samples/htmlbrowse_AdventureWorks.html
http://www.google.com.tr/books?hl=en&lr=&id=zO2-CpgVt-MC&oi=fnd&pg=PR4&dq=nested+bitemporal+relational+data+model&ots=Q-ILAOcEVB&sig=EQ31wUmDWoEj_Dxt4r7q9Je72h4&redir_esc=y
http://www.google.com.tr/books?hl=en&lr=&id=zO2-CpgVt-MC&oi=fnd&pg=PR4&dq=nested+bitemporal+relational+data+model&ots=Q-ILAOcEVB&sig=EQ31wUmDWoEj_Dxt4r7q9Je72h4&redir_esc=y
http://www.google.com.tr/books?hl=en&lr=&id=zO2-CpgVt-MC&oi=fnd&pg=PR4&dq=nested+bitemporal+relational+data+model&ots=Q-ILAOcEVB&sig=EQ31wUmDWoEj_Dxt4r7q9Je72h4&redir_esc=y
http://www.e-gnosis.udg.mx/

Combi, C., Oliboni, B. , & and Pozzi, G. (2009). Modeling and querying temporal
semistructured data warehouses. New Trends in Data Warehousing and Data
Analysis Annals of Information Systems, 1-25, New York: Springer.

Gadia, S. K. (1988). A homogeneous relational model and query languages for
temporal databases. Association for Computing Machinery Transactions on
Database Systems, 418-448.

Hurtado, C. A., Mendelzon, A. O., & Vaisman, A. A. (1999). Updating OLAP
dimensions. 2nd Institute of Electrical and Electronics Engineers — Data
Warehousing and Olap Workshop, 60-66.

Inmon, W. (2002). Building the data warehouse, United States: Wiley.

Janet, E., Ramirez , R., & Guerrero, E. B. (2006). A model and language for
bitemporal schema versioning in data warehouses. Proceedings of the 15th
International Conference on Computing, 309-314.

Jensen, C. S., Soo, M. D., & Snodgrass, R. T. (1994). Unifying temporal data
models via a conceptual model. Information Systems (513-547). USA: Elsevier

Press.

Koncilia, C. (2003). A bitemporal data warehouse model. CAISE Short Paper
Proceedings, Central Europe Workshop Proceedings, Retrieved December, 28,
2012 from http://www.CEUR-WS.org.

Malinowski, E., & Zimanyi, E. (2006). A conceptual solution for representing time
in data warehouse dimensions. 3rd Asia-Pacific Conference on Conceptual
Modeling, 45-54.

Martin, C., & Abello, A. (2002). The data warehouse: A temporal database.
Jornadas de Ingenieria del Software y Bases de Datos, 675-684.

86

