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HANDLE DECOMPOSITIONS OF 4-DIMENSIONAL SMOOTH

MANIFOLDS

ABSTRACT

The topology of manifold theory relates to many diverse fields of mathematics such

as abstract algebra, differential and algebraic geometry, and analysis. Therefore there

are many approaches to manifold theory among mathematicians.

Our study based on topological viewpoint relating algebraic topology and geometric

topology. In this thesis, we study handlebodies of four dimensional closed connected

smooth manifolds. In order to work with smooth handles we use handle operations.

These operations are basically handle sliding, handle cancelling and carving. Then by

using these operations we investigate Gluck twisting.

four dimensional smooth manifolds has its own significance among other manifolds,

its importance is related to the classification problem. All techniques that are used

in this thesis historically have been developed over the years to classify smooth four

dimensional manifolds.

Keywords: Four dimensional smooth manifolds, handlebody, handle sliding, handle

cancelling, carving, Gluck twist.
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4-BOYUTLU PÜRÜZSÜZ MANİFOLDLARIN KULP DAĞILIMLARI

ÜZERİNE

ÖZ

Manifold teorisi, cebir, differansiyel, cebirsel geometri ve analiz gibi matematiğin

birçok alanı ile ilişkilidir. Bu sebeple matematikçiler arasında manifold teorisine birçok

yaklaşım bulunmaktadır.

Biz manifold teorisine topolojik bir bakış açısıyla yaklacsacağız dolayısıyla bu

çalışma cebirsel ve geometrik topoloji ile ilişkili olacak. Bu tezde dört boyutlu,

pürüzsüz, kapalı ve baglantılı manifoldların kulp yapıları incelenecek. Kulplarla

çalışmanın bazı avantajları bulunmaktadır. Örneğin kulplar üzerinde çeşitli operasyonlar

tanımlanabilir bunlar kulpların kaydırılması, iptali ve oyulması işlemleridir. Ayrıca bu

calışmada Gluck twist operasyonu incelenecektir.

Bilindiği gibi dört boyutlu pürüzsüz manifoldların sınıflandırılma açısından özel

bir önemi bulunmaktadır. Bu tezde çalışılan bütün teknikler aslında bu sınıflandırma

problemine olası çözüm yaklaşımları olarak geliştirilmişlerdir.

Anahtar sözcükler : Dört boyutlu pürüzsüz manifoldlar, kulpların kaydırılması,

kulpların oyulması, kulpların iptali, Gluck twist.
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CHAPTER ONE

INTRODUCTION

The manifold theory goes back to the late 1800’s. It is first introduced by Riemann

as higher dimensional analogues of surfaces and curves which are 2 and 1-dimensional

manifolds, respectively. Shortly after Henri Poincare studied 3 and 4-dimensional

manifolds, he conjectured some classification problems of the low dimensional

manifolds. His main conjecture states: Every simply connected, closed 3-manifold

is homeomorphic to the 3-sphere. Later his conjecture have been generalized to the

conjecture "Every homotopy n-sphere is homeomorphic to n-sphere". In 1961 Stephan

Smale and John Stallings proved this conjecture for the manifolds of dimension grater

than 4. In 1982 Michael Freedman proved this conjecture in dimension four. Finally,

3-dimensional case was resolved by Grigori Perelman in 2003.

There is also a smooth version of this question. It is known that in dimensions

greater than four there could be smoothly exotic spheres which were first discovered by

John Milnor and Michael Kerveire. But in dimension four this is still not known, more

specifically it is not known whether there is a smooth 4-manifold which homemorphic

but not diffeomorphic to the 4-sphere. Until now, a lot of results related to this

conjecture have been proven by using various approaches. But the main problem

remains open. This fact makes the smooth 4-manifolds special among others.

There are many books available for understanding manifold theory in general,

but our main goal here is to understand 4-dimensional smooth manifolds in terms

of handlebody theory which is related to the Morse theory. The advantage of the

handlebody theory lies in the fact that in 4-dimension it is a powerful method to

visualise them. Moreover, the tools of handle sliding, cancelling and carving makes this

approach particularly useful in understanding 4-manifolds. The standard textbooks on

the theory of handlebody are Akbulut (2012), Gompf & Stipsicz (1999). Milnor et al.

(1965), and Matsumoto (2002).

In recent years, the value of using handlebody theory has emerged as a promising
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tool. Indeed it provides an alternative way to see many problems in geometric topology

and allows to use impressive and computable techniques.

This thesis has 5 chapters. Next we discuss the content of these chapters.

In Chapter 2, as a motivation we start with some basic definitions about general

notion of the manifold theory. Then, we discuss handles in general dimension. After

that by using Morse theory and notion of framing we examine visualisation of 4-

dimensional smooth manifolds. Afterwards, we discuss intersection form of smooth

4-manifolds, and give examples of some smooth 4-dimensional handlebodies.

In Chapter 3, we investigate the general notion of the surgery operations. Then we

introduce our main concepts, namely sliding, cancelling and carving handles. As an

application we construct the diffeomorphism S 2 × S 2#CP2 � CP2#CP2#CP2, which

was originally proved by Hirzebruch.

In chapter 4, we will give a brief introduction to Gluck construction operation.

Gluck construction is an important technique in 4-dimensional smooth manifold

theory. For example many candidates of exotic 4-sphere were obtained by Gluck

twisting to S 2 in S 4. After introduction we will investigate the Gluck construction

operation by using handles. Finally, we end our work by giving some examples to

demonstrate the methods. The basic reference for this notion is Akbulut (2012).
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CHAPTER TWO

PRELIMINARIES

Here we give a brief introduction to some fundamental notions of handle decomposition

of 4-manifolds which are necessary to understand the deeper handle theory.

2.1 Basic Definitions

Definition 2.1.1. A second countable, Hausdorff topological space X is a n-dimensional

topological manifold if

(∀p ∈ X)(∃Uopen ⊂ X)(p ∈ U) such that ∃ f : Uopen → Vopen ⊂ R+
n is an

homeomorphism where R+
n = {(x1, . . . , xn) | xn ≥ 0} is the upper half space of Rn

Example 2.1.2. Here we give a simple example

S 4 = {(x1, x2, x3, x4, x5)|x2
1 + x2

2 + x2
3 + x2

4 + x2
5 = 1} ⊂ R5 as a topological manifold.

It can be generalise to n-sphere. It is obvious that S 4 Hausdorff and second countable

since it is subspace of R5. It is locally Euclidean since we can cover it with open sets

U+
i ,U

−
i where i = 1, ..., 4

U+
i = {(x1, x2, x3, x4, x5) ∈ S 4|xi > 0} ,U−i = {(x1, x2, x3, x4, x5) ∈ S 4|xi < 0} and define

the homeomorphisms φ±i ; U±i → B4 given by φ±i (x1, . . . , x5) = (x1, . . . , x̂i, . . . , x5).

Where B4 = {x ∈ R4| | x |< 1}

Definition 2.1.3. A pair (Uα, φα) of such neighborhood and homeomorphism is called

a chart.

Definition 2.1.4. A collection {(Uα, φα) | α ∈ A} of charts is an atlas if it is a cover of

X.

Definition 2.1.5. The map φα ◦φβ−1 on φβ(Uα∩Uβ) is the transition functions between

the charts (Uα, φα) and (Uβ, φβ).

Definition 2.1.6. A topological manifold is a a smooth manifold if the transition

functions are C∞.
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Example 2.1.7. As we show in Example 2.1.2 S 4 is a 4-dimensional topological

manifolds. Here we show the standard smooth structure on it using same charts in

the Example 2.1.2.

Indeed, ∀i, j ∈ {1, . . . , 5} , (φ±i )◦(φ±j )−1(x1, . . . , x4) = (x1, . . . , x̂i, . . . ,±
√

1− | a |2, . . . , x4)

where a = (x1, . . . , x4). It is easily can be seen that (φ±i ) ◦ (φ±j )−1 = idB4 . Therefore S 4

is a smooth manifold and the atlas {U±i , φ
±
i } is called standard smooth structure on S 4.

After that according to our terminology with a manifold we always mention smooth

manifold.

Definition 2.1.8. The boundary of the n-dimensional manifolds X defined

∂X = {x ∈ X | x corresponding to points in{(x1, . . . , xn) | xn = 0}}. The boundary

manifold form a submanifold with dimension n − 1.

Definition 2.1.9. A closed manifold is a compact manifold without boundary.

Definition 2.1.10. A diffeomorphism between two manifolds is a homeomorphism

f : X → X
′

such that f and f −1 are both C∞ on any chart of the given atlas.

Definition 2.1.11. Let N and M be manifolds. The isotopy from N to M is a map

H : N × I → M such that ∀t ∈ I the map

Ht : N → M

is a diffeomorphism. So we call H0 and H1 are isotopic.

In addition if N = M with H0 = IdM then the isotopy is called a ambient isotopy (or

diffeotopy).

2.2 Gluing

Suppose X1 and X2 are n-dimensional smooth manifolds, we can obtain a new

manifold from given two manifolds by using gluing operation. Here we discuss some

of gluing operations; the boundary sum which corresponds to attaching handles and

the connected sum which is also an important tool in smooth category. These two
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operations are special since when we take connected sum or boundary connected sum

of two smooth manifolds we get again a smooth manifold as resulting manifold. For

this section we just give the definition of this operations and the main reference book

for this section is Kosinski (1993).

Definition 2.2.1. Suppose X1 and X2 are n-dimensional smooth manifolds and Dn
i ⊂ Xi

is an embedded disc for i = 1, 2.

Let φ : Dn
1 → Dn

2 be an orientation-reversing diffeomorphism.

The connected sum of X1 and X2 is constructed by deleting interior of the embedding

balls and identifying resulting boundary ∂D1 and ∂D2 by diffeomorphism.

X1#X2 = (X1 − intD1) ∪φ|∂D1
(X2 − intD2)

,

Here #mX denotes connected sum of m copies of X for m ≥ 0 if m = 0 then

#mX = S n by definition.

Example 2.2.2. X = S 1 × S 1

����
����
����
����
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����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

deleting interior of balls then identfying boundaries

Figure 2.1 X#X Connected sum

Definition 2.2.3. Suppose X1 and X2 are n-dimensional smooth manifolds with

boundaries ∂X1 and ∂X2. Suppose Zi ⊆ Xi are co-dimension zero compact submanifold

of the boundaries with Zi homeomorphic to Dn−1.
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Let φ : Z1 → Z2 be an orientation-reversing diffeomorphism.

The boundary sum of X1 and X2 is constructed by identifying Z1 with Z2 by

diffeomorphism.

X1\X2 = X1 ∪φ X2,

Here \mX denotes boundary sum of m copies of X for m ≥ 0 if m = 0 then \mX = Dn

by definition.

Example 2.2.4. X = S 1 × D2
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identifying balls

Figure 2.2 X\X Boundary connected sum

2.3 Handles in n-dimension

Studying on manifolds with handles gives us some conveniences in terms of

classification of manifolds as smooth topological objects. In this section we will

consider handles abstractly and introduce these objects in n-dimension.

Definition 2.3.1. For 0 ≤ k ≤ n , an n-dimensional k-handle denoted by hk, is defined

to be a homeomorphic copy of

Dk × Dn−k

where Dn = {(x1, . . . , xn) | x2
1 + · · · + x2

n ≤ 1} ⊆ Rn .

Definition 2.3.2. Attaching k-handle hk to the n-dimensional monifold M by an

embedding; A k-handle hk is attached to the boundary of n-manifold M along ∂Dk ×
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Dn−k if there is an embedding ϕ : S k−1 × Dn−k ↪→ ∂M such that we attach the handle

by identifying

x ∈ S k−1 × Dn−k with ϕ(x) ∈ ∂M therefore we obtain a new manifold M
′

from M by

attaching hk.

M
′

= [Dk × Dn−k t M]
/
x ∼ ϕ(x)

here ϕ is called the attaching map of handle. Furthermore,

∂Dk × Dn−k is called the attaching region of handle,

Dk × 0 is called the core of handle,

0 × Dn−k is called the cocore of handle,

∂Dk × 0 is called the attaching sphere of handle,

0 × ∂Dn−k is called the belt sphere of handle,

Example 2.3.3. 3-dimensional handles are given below

0-handle is h0 = D0 × D3 ,

1-handle is h1 = D1 × D2 ,

2-handle is h2 = D2 × D1 ,

3-handle is h3 = D3 × D0 ,

Now let us look at h1 closer

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���� ����
����
����
����

�����
�����
�����
�����
���� ��

��
��
��

attaching region

attaching sphere attaching sphere

cocore

belt sphere (boundary of cocore)

core

Figure 2.3 Anatomy of 1-handle in 3-dimension

.
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2.4 Handle Decomposition of 4-Manifolds

Handle decompositions of manifolds are based on Morse theory. In this study we

discuss handle decomposition of any arbitrary 4-manifold deeply. So, some essential

theorems and definitions must be given here.

Definition 2.4.1. With the n- handlebodies of a m-manifold M, we illustrate attaching

m-dimensional n-handles to the boundary of Dm :

Dm ∪ hn ∪ · · · ∪ hn, (2.4.1)

Theorem 2.4.2. (Matsumoto, 2002, Theorem 3.4) When a Morse function f : M → R

is given on a closed manifold M, a structure of a handlebody on M is determined by

f . The handles of this handlebody correspond on to the critical points of f , and the

indices of the handles coincide with the indices of the corresponding critical point.

In other words, M can be expressed as a handlebody.

Theorem 2.4.3. (Matsumoto, 2002, page 47) Let M be a closed m-manifold and

g : M → R be a smooth function defined on M. Then there exists a Morse function

f : M → R arbitrarily close to g : M → R.

Therefore any closed 4-manifold can be obtained from D4 by attaching 4-dimensional

handles.

Definition 2.4.4. When a manifold is expressed as a handlebody, it is called a handle

decomposition.

Theorem 2.4.5. (Matsumoto, 2002, page 128) Let M be a closed m-dimensional

manifold. If M is connected, then there is a Morse function f : M → R on M with

only one critical point of index 0 and one critical point of index m

So, if M4 is closed, connected 4-dimensional manifold then it has handlebody

consist of only one h0, some h1 handles, some h2 handles, some h3 handles and only

8



one h4.

M4 = h0 ∪ k1.h1 ∪ k2.h2 ∪ k3.h3 ∪ h4

0-handle

1-handles

2-handles

3-handles

4-handle

Figure 2.4 Handlebody of a closed-connected 4-manifold

.

If a handle decomposition of M4 is obtained from any Morse function f : M → R

then the attaching maps of handles determined by a gradient-like vector field of f .

Therefore, there are various of choices for attaching map according to gradient-like

vector fields of f .

2.5 Visualize Handlebody of a 4-Manifold and Framing

The main purpose of this section is to understand attaching maps of the handles.

Hence firstly, we discuss framing deeply , because framing is an important tool for 4-

manifolds and must be understood well. Let us start with some necessary definitions.

Definition 2.5.1. A smooth vector bundle is a triple (π, E, B) where

i) E and B are smooth manifolds

ii) π : E → B surjective smooth map

iii) ∀Uopen ⊂ B, π−1(U) � U × F where F has finite dimensional vector space

structure.
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Such that

1. the diagram commutes,

U × F
φ:� //

p1

��

π−1(U)

π
yy

U
in other words φ is fiberwise π(φ(u, f )) = u , u ∈ U and f ∈ F,

2. φ : π−1(b)→ {b} × F is an isomorphism.

The third condition means that it is locally trivial. In the above structure

E is called as total space

B is called as base space

F is called as fiber of bundle

we often show this bundle with the notation F // E
p1 // B

As a simple example of the vector bundle we can consider the product space of any

smooth manifold B and Rn over B with projection map onto first factor. Obviously this

vector bundle is trivial bundle.

Rn // B × Rn p1 // B

Definition 2.5.2. A local section of Uopen ⊂ B of the bundle F // E
p1 // B is a

continuous map s : U → E satisfies π ◦ s = IdU . Thus we can conclude that s maps

every point of the b ∈ U to the vector in π−1(b) × F.

Example 2.5.3. Any smooth n-manifold M has canonical vector bundle which is

tangent bundle T M.

T M =
⊔
p∈M

TpM =
⋃
p∈M

{(p, v) | v ∈ TpM}

with projection π1 : T M → M , π(x, v) = x obviously it maps the vector space TpM

to a single point.

10



If h : Kn → Mm is an embedding then we can see tangent bundle Rn // T K
π1 // K

in M. Then the normal bundle is given by NK = T M/T K ;

NK =
⊔
p∈K

NpK =
⊔
p∈K

Th(p)M/TpK

Definition 2.5.4. Generally n-frame in n-dimensional vector space E is an ordered set

of n linearly independent vectors in E.

With this notion we define a framing of a vector bundle as section of the associated

vector bundle such that these sections form a basis for the fibers at any point of the

base space. With a normal framing we mention choice of isotopy class of sections of

the normal bundle. Such two framings are isotopic if they are isotopic as bundle maps

so it coincides with the choice of isotopy class of a trivialisation.

Proposition 2.5.5. For a vector bundle F // E π // B is trivial over U ⊂ B iff

there exists a frame {s1, . . . , sn}.

Proof. Let {e1, . . . , en} be a standard basis for the vector space F and assume

φ : U × F → π−1(U) be a trivialisation then define

si : U → π−1(U) b 7→ (b, ei) .

Conversely Let {s1, . . . , sn} be a given frame on U then we can form trivialisation

φ : U × F → π−1(U) φ(b,
∑

aiei) 7→
∑

aisi(b).

�

The below discussion will be helpful to understand what framing is and why it is

important.

An embedding φ : ∂Dk × Dn−k → ∂Mm is constructed by

φ : S k−1 → ∂Mm and gluing φ : S k−1 × Dn−k to a tubular neighbourhood of the

embedded sphere. That is saying normal bundle of embedded sphere is trivial in ∂M.

In addition, the diffeomorphism type of the space Dk ×Dn−k ⊔
φ M is determined by

11



the φ up to isotopy. Since if φ and φ̃ are isotopic, then we get

Dk × Dn−k
⊔
φ

∂M � Dk × Dn−k
⊔
φ̃

∂M

Therefore, the diffeomorhism type of a space Dk×Dn−k ⊔
φ ∂M is determined by the

two pieces of data;

1. an embedding φ : S k−1 → ∂M.

2. a framing of φ(S k−1) in ∂M.

What is the relation between the isotopy classes of framings of the normal bundle

νφ(S k−1) and homotopy group of the orthogonal group πk−1O(n − k). The goal is now

to identify the difference of framing as an element of πk−1O(n − k). As we will show,

that we do not identify a framing, indeed we identify difference of two framings with

an element of homotopy group. The question is what is the difference of two framings?

The difference of two framings is f ◦ f0
−1 as a convention.

Let f , f0 : S k−1 × Rn−k
→ νφ(S k−1) two framings where S k−1 × Rn−k is the trivial

n − k bundle over S k−1.

S k−1 × Rn−k f //

p1

��

νφ(S k−1)

π

��

S k−1 × Rn−kf0oo

p1

��
S k−1 φ // φ(S k−1) S k−1φoo

Then we have a diffeomorphism given as follows.

f ◦ f0
−1 : S k−1 × Rn−k

→ S k−1 × Rn−k

(x, y) 7→ (x, θ(x, y))

Then, ∀x ∈ S k−1, we have a map

12



θx : Rn−k
→ Rn−k

y 7→ θ(x, y)

Therefore ∀x ∈ S k−1 we obtain a self diffeomorphism of Rn−k and so an element of

GL(n − k). Now we can construct a map from S k−1 to GL(n − k) this map is exactly

what we are looking for;

h : S k−1 → GL(n − k) such that h(p) = θp ∈ GL(n − k) realise that if we fixed any

framing f then for any other framing f0 we identify f0 as an element of πk−1GL(n − k)

we are almost done. As a last step using Gram-Schmidt orthogonalisation process it

can be shown that O(n) is a deformation retract of GL(n) so πiGL(n) ≈ πiO(n).

Conversely, it is much easer to show that for every element of πk−1O(n − k) we can

find a bundle map. Indeed, if A ∈ πk−1(O(n − k)) then A is in the form

A : S (k−1) → O(n − k). Then ∀x ∈ S (k−1), we have a self diffeomorphism of Rn−k say

A(x).

A(x) : Rn−k
→ Rn−k

y 7→ A(x).y

then construct a self diffeomorphism of S k−1 × Rn−k as follows:

Â : S k−1 × Rn−k
→ S k−1 × Rn−k

(x, y) 7→ (x, A(x).y)

For a fixed framing f we can obtain the desired framing :

f ◦ Â : S k−1 × Rn−k
→ νφ(S k−1).

13



Main goal of this section; visualizing handlebody of a 4-manifold by drawing their

attaching regions. Here we only consider 4-dimensional connected closed smooth

manifolds.

4-dimensional handles are given as below

0-handle is h0 = D0 × D4

1-handle is h1 = D1 × D3

2-handle is h2 = D2 × D2

3-handle is h3 = D3 × D1

4-handle is h4 = D4 × D0

Using Theorem 2.4.5 we know that any closed connected 4-manifolds can be obtain

from one 1-handle , one 4-handle , some 2- and 3-handles.

Firstly let us visualise the one-handle attachment to the boundary of D4;

In 4-dimension a 1-handle is D1 × D3 with the attaching region ∂D1 × D3 is given

in the figure 2.5 :

x

y

z z

x

-y

Figure 2.5 Attaching region of 1-handle ∂D1 × D3

.

It is attached by an embedding φ : ∂D1 × D3 → ∂D4. As we discuss above it is

determined by φ0(S 0) with trivial normal bundle and a framing of φ0(S 0). So there is

only two embedding since π0(O(3)) = Z2. This means there are exactly two manifolds

which can be obtained from 1- handle attachment to D4. If we consider the orientation

there is only one orientable manifold. We picture it as above or as a circle with dot.

Secondly, let us visualise the two-handle attachment to the boundary of D4.

Attaching 2-handle is given by an embedding φ(∂D2 × D2)→ S 3 is determined by

14



i) φ0(S 1) = K which is a knot in S 3 and

ii) normal framing of K

So we visualise 2-handle attachment by a knot and a normal framing, such two data

gives us Framed Knot. In Matsumoto (2002) there is a figure to illustrate a framed close

curve as below. Also note that by orienting K and using this orientation, one normal

vector field u determines the other normal vector field v.

A framed closed curve
Figure 2.6 A framed closed curve

The question is how many embeddings we can write which are not isotopic. We

easily see that there are infinitely many embeddings and they are not isotopic. Indeed,

π1(O(2)) = Z. Our next goal is to identify every framing by an integer.

Now time to specialise notion of framing for a knot K in S 3. Let K = φ(S 1) be an

embedding knot , together with a normal framing e = {u, v} of its normal bundle in R3

where u and v normal vector field of K. This framing determines the embedding ;

φ : ∂D2 × D2 → S 3 by

φ(x, λ, ν) = (x, λu + νv)

So here is the definition of zero framing;

Definition 2.5.6. Since every closed curve in S 3 bounds an oriented surface which is

called Seifert surface. Zero framing is induced from the Seifert surface of the knot by
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pushing the knot K into the Seifert surface. Namely, taking a tangent vector of the

surface which is pointing inwards of the surface and perpendicular to the knot.

When we use the term knot it make sense but let us give some basic definition

related knot theory.

Definition 2.5.7. Rolfsen (1976) Let X be any topological space, a subset K of X

is a knot if K is homeomorphic copy of S p. More generally, K is a link if K is

homeomorphic copy of disjoint union of spheres S p1 t · · · t S pr .

In this thesis we always consider a knot as an embedding of S 1 in S 3. In the same

manner a link as an embedding of disjoint union of spheres S 1 t · · · t S 1.

Definition 2.5.8. The linking number is defined for links let K be a link with

component and K1,K2 the linking number given by the formula:

Lk(K1,K2) = (Positive crossing number - negative crossing number) /2

To make convention positive and negative crossing illustrated in the below picture

-

positive crossing negative crossing

+

Figure 2.7 Signed of crossing

Definition 2.5.9. The writhe is defined for knots, let K be a knot the writhe given by

the formula:

w(K) =
∑

p∈C(K)

ε(p)

where C(K) is the set of crossing point and ε(p) is the sign of the crossing.

Assume K
′

obtained from K by pushing it in the direction of the vector u where {u, v}

is given framing. If {u, v} is obtained from the Seifert surface then linking number of

K and K
′

is always zero.
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With this convention, we assign an integer to any framing as linking number of C

and C
′

where C is a simple closed curve and C
′

is obtained from C by pushing it along

the direction of the one component of the framing .

Definition 2.5.10. Let K be a knot and K
′

is the paralel copy of K then the framing

coefficient of the blackboard framing of a knot K is given by BB(K) = Lk(K,K
′

) and it

can be seen that it satisfy the equation:

BB(K) = w(K)

Example 2.5.11. Here we show that, writhe of right hand trefoil is equal to blackboard

framing.

+1+1

+1

+1

right hand trefoil

w(K) = 3

blackboard framing

K
0

K

K

Lk(K, K
0
) =

P
p2C(K) ✏(p) = 6/2 = 3

+1

+1

+1

+1

+1

Figure 2.8 Blackboard framing of right hand trefoil

As a conclusion, 2-handle attachment is visualised by framed link and we illustrate

it by a knot and corresponding integer.

What about 3-handles? A 3-handle D3 × D1 is attached by an embedding

φ : S 2 ×D1. Unfortunately, it is not easy to visualise embedding of S 2 in the boundary

of the manifold. On the other hand we do not really need to deal with 3-handles and

4-handle since they do not effect the diffeomorphism type of the closed connected

manifold. We will give this fact here as a theorem with sketch of the proof.
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Theorem 2.5.12. Let M be closed connected orientable 4-manifold. So it is in the form

M4 = h0∪k1.h1∪k2.h2∪k3.h3∪h4. Then the diffeomorphism type of M determined by N.

More explicitly if M and M
′

are two closed connected orientable manifolds obtained

from N by attaching 3-handles and a 4-handle then they are diffeomorphic.

Where N = h0 ∪ k1.h1 ∪ k2.h2.

Proof. The complement M − int(N) = N∗ is the 4-manifold consist of 3-handles

and a 4-handle. Using up-side down method (changing the Morse function f by − f

) we can see, that it is in the handle decomposition of a 0-handle and 1-handles.

Obviously diffeomorphism type of N∗ determined by 1-handles. So there is unique

oriented manifold which is obtained from 0-handle by attaching 1-handles which

is N∗ = \k3(S 1 × D3) . It is not hard to see that ∂N∗ � #k3(S 1 × S 2). Also we

have ∂N∗ = ∂N. Therefore the self diffeomorphims h : ∂N → ∂N∗ is exactly

h : #k3(S 1 × S 2)→ #k3(S 1 × S 2). By the Laudenbach (1972) any self diffeomorphism

of #k3(S 1 × S 2) extents over \k3(S 1 × D3) uniquely. Then we conclude that, if a 4-

manifold M
′

constructed from N by attaching k3 3-handles and a 4-handle then the self

diffeomorphism of N extends over M
′

. �

This useful fact gives us an efficient tool to see relation between 4-manifolds.

Indeed, if we consider diffeomorphism type of closed connected oriented 4-manifolds

then we will only consider only 0-handle through 2-handles.

2.6 Homology of Handles

There is an easy definition of homology of handlebody using cellular homology.

This definition quoted from Scorpan (2005).

Remark 2.6.1. Here we need to emphasise that, attaching k − handle to the 0 − handle

can be seen as attaching k − cell to the 0 − cell since any k − handle, Dk × Dn−k in

n − dimension is the thickened of the k − cell = Dk so they have same homotopy type.

Homology of handlebody is defined by using cellular homology. n-chains are

18



defined free abelian groups generated by n-handles. And the boundary map

∂ : Ck → Ck−1 is defined by ∂hk
α = d(α,β).hk−1

β where d(α, β) is the intersection number

of attaching sphere of hk
α and the belt sphere of hk−1

β .

Definition 2.6.2. The nth homology of M is given by the formula Hn(M) = ker∂n/im∂n+1.

Notice that we use same notation with singular homology since they are identical.

Example 2.6.3. Let us compute the homology groups of CPn complex projective n-

space. It is well known CPn has handle decomposition as CPn = h0 + h2 + · · · + h2n, so

we can compute its homology groups easily;

C2n(CPn)
∂2n // C2n−1(CPn)

∂2n−1 // . . .C1(CPn)
∂1 // C0(CPn)

Z
∂2n // 0

∂2n−1 // . . . 0
∂1 // Z equaly Z 0 // 0 id // . . . 0 id // Z

Therefore Hm(CPn) = ker∂m/im∂m+1 =

 Z if m is even

0 if m is odd

2.7 Intersection Form of 4-Manifold

Finally, we introduce the intersection form of 4-dimensional closed oriented smooth

manifolds then we will be able to see picture of some important manifolds.

Definition 2.7.1. Let L = (Lc1
1 , L

c2
2 , . . . L

cn
n ) be a framed link in S 3. The linking matrix

of L is defined as m×m symmetric matrix [ai j]m×m where the components of the matrix

are:

ai j =

 lk(Li, L j) if i , j

framing coefficient of Li if i = j

Definition 2.7.2. Let M be a closed, oriented, smooth 4-manifold and let [M] denotes

its fundamental class.

Define QM : H2(M) ⊗ H2(M) → Z by QM(a, b) = (a ^ b, [M]) This symmetric

bilinear form is called the intersection form of M.

19



We will argue here a more geometric way of defining this bilinear form in terms of

intersections of embedded surfaces.

Let M be a 4-manifold obtained by attaching 2-handles to D4 and one 4-handle. We

represent M be a framed link L = (Lc1
1 , L

c2
2 , . . . L

cn
n ) where every component of the L

corresponds to the attaching sphere of 2-handle.

Say H2(M) = 〈α1, . . . αn〉, and Fi = ∂Li be a Seifert surface of Li. We obtain closed

oriented smoothly embedded surface F̂i from Fi by pushing intFi into D4 and attaching

core of 2-handle along Li. We may assume that F̂i and F̂ j intersect transversely in

M. Assign each intersection point by a number ±1. The sign depends on whether

the induced orientation of Tx(F̂i) ⊕ Tx(F̂ j) agree with Tx(M) or not. The sum of this

numbers is called intersection product of αi and α j and it is denoted by αi.α j. Let us

give the formal definition of it.

Definition 2.7.3. The intersection product of αi and α j is defined by

αi.α j = PD(D(αi) ^ D(α j))

where H2(M) = 〈D(αi)〉 where D = PD−1 : H2(M,Z)→ H2(M) , a = D(a) _ [M].

Here the another interpretation of the intersection form using intersection product :

αi.α j = (D(αi) _ [M]).(D(α j) _ [M])

= (D(αi) ^ (D(α j)) _ [M]

= (D(αi) ^ (D(α j), [M]) = QM(D(αi),D(α j)).

As any reader could notice that we gave geometric interpretation of intersection

product and we use formal definition to define intersection form. Details can be found

in (Bredon, 1993, Intersection Theory).

Therefore we can compute the cup product of co-homology class of M which

are dual to the orientation class of sub-manifolds F̂i and F̂ j of M by looking at the

intersection of F̂i and F̂ j. The geometric interpretation of [F̂i ∩ F̂ j] is sum of sign of

intersection points. So [F̂i ∩ F̂ j] = αi.α j.
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More generally;

Proposition 2.7.4. (Gompf & Stipsicz, 1999, Proposition 1.2.3) Let X be oriented

closed smooth 4-manifold then every element of H2(X,Z) can be represented by an

embedded surface.

Proposition 2.7.5. (Gompf & Stipsicz, 1999, Proposition 1.2.5) For a, b ∈ H2(X,Z)

and α, β ∈ H2(X,Z) be Poincare duals of a and b then QX(a, b) is the number of points

in the intersection of representative surfaces Fα ∩ Fβ counted with sign.

Definition 2.7.6. If we fix the basis H2(M) = 〈α1, . . . αn〉 then we call the [QM] =

[αi.α j] matrix form of the intersection form or intersection matrix.

We conclude from above discussion for a 2-handlebody the intersection matrix is

given by linking matrix; {αi, α j} = [F̂i ∩ F̂ j] = lk(Li, L j).

Example 2.7.7. Let M = S 2×S 2 so H2(M) generated by α1 = {x}×S 2 and α2 = S 2×{y}

for a base point (x, y) ∈ M. It is obvious that α1 and α2 intersect transversely in one

point. Then αi.αi = 1 by choosing orientation agree with M. Since α2
i = 0 then the

intersection matrix is

QM =

 0 1

1 0

 .
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Therefore, we can draw the picture

S2 ⇥ S2

0 0

Figure 2.9 Handlebody description of S 2 × S 2

Example 2.7.8. Other well known spaces are CP2 , CP
2

and S 2×̃S 2. Their intersection

forms and pictures are below.

0 1

QS2×̃S2 =

(
0 1
1 1

)

±1

QCP2 = (±1)

Figure 2.10 Examples of handlebody descriptions
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CHAPTER THREE

CALCULATION WITH HANDLES

The main purpose of this chapter is define some methods which is called Handle

Calculus includes handle sliding, handle cancelling, and carving operations. These

operations can be seen as tools to change handle decomposition of a manifold without

changing its smooth structure. Therefore this operations quite useful methods to show

relation between two smooth manifolds. The reason for using this calculations that

it allows more simple and impressive way of description of being same between

two given manifolds. Thus, this makes everything more computable. In this chapter

these methods will be described and end of the chapter some examples will be given.

The fundamental references for this chapter are Akbulut (2012), Milnor et al. (1965),

Gompf & Stipsicz (1999) and Matsumoto (2002).

3.1 Surgery

Dehn Surgery is an important method to construct 3-manifolds. It was introduced

by Max Dehn in 1910 to construct homology sphere. In the early 1960 Lickorish and

Wallace proved independently that; any closed orientable 3-manifolds can be obtained

by Dehn surgery operation on a framed link in S 3 with ±1 surgery coefficient. Its

importance comes after this theorems, as we will see in this section all closed orientable

3-manifold bounds a simply-connected compact 4-manifolds. The first two definitions

help us to understand the general idea of the surgery theory. After that we will give

the definition of the Dehn surgery. In this section we only consider the connected and

orientable manifold and this section base on Rolfsen (1976).

Definition 3.1.1. The surgery operation on a manifold generally can be defined by

cutting out part of a manifold and replacing it with another manifold. The point here

this two manifold must have same boundary.

Definition 3.1.2. Assume that φ : S k → Mm be an embedding with a normal framing.

This define the embedding φ : S k × Dm−k → Mm uniquely up to isotopy. The surgery
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on S k is defined removing φ(S k × Dm−k) and replacing it by Dk+1 × S m−k−1 with a map

φ.

In same manner the idea of the Dehn Surgery is defined as surgery operation on a

knot in S 3.

Definition 3.1.3. Let K be a knot in S 3 and νK be a closed tubular neighbourhood of

K which is solid torus. Then one can define Dehn surgery on a knot K as removing

intνK from the manifold and gluing in S 1 × D2 along boundary of the solid torus by

any diffeomorphism. This is exactly same to say that, removing interior of the solid

torus and glue it back by a any boundary diffeomorphism.

Definition 3.1.4. Let V1 and V2 two manifold homeomorphic to solid torus and

h : ∂V1 → ∂V2 be a homeomorphism.

Define a space

M3 = V1

∐
h

V2 = (V1

∐
V2)

/
x ∼ h(x)

h

m2 m1

l1

V1 V2

Figure 3.1 Construction of lens space

< l1,m1 > is generator for π1(∂V1) and h∗(m2) = pl1 + qm1 where gcd(p, q) = 1.

The resulting manifold M3 is called the lens space of type (p, q)

M3 = L(p, q)
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3.2 Handle Sliding

In this section we describe handle sliding in terms of Morse theory and explain

how it is related framing coefficient handle attachment in 4-dimension and end of this

section we will be able to use some technique related handle sliding. We start by giving

some fundamental notions from Morse Theory and H-Cobordism, see Milnor et al.

(1965) , Matsumoto (2002).

Firstly remember that when a Morse function f : M → R on a m−dimensional

closed manifold M and a vector field X of f are given then the handle decomposition

of the manifold M defined by f and X. And also we can arrange the Morse function

such that different critical points have different critical values.

Let p0, . . . , pn be n + 1 critical points of ascending order according to their critical

values.

To simplify the notation for a handle decomposition of this manifold

M = h0 ∪φαi
hαi ∪φαi+1

hαi+1 · · · ∪φn hn (3.2.1)

we use the notation

M = (Dm; φ1, . . . , φn)

By Mi we denote the subhandlebody obtained by attahcing handles from 0− handle

truogh ith − handle. So we write Mi = (Dm; φ1, . . . , φi)

After clarify notations we can give main theorem of this section.

Theorem 3.2.1. (Matsumoto, 2002, Theorem 3.21, page 106) Given an isotopy ht of the

boundary ∂Mi−1, the attaching map φi of the αi−handle = Dαi ×Dm−αi can be replaced

by h1 ◦ φi. Also by this replacement of the ith attaching map, the diffeomorphism type

of each subhandlebodies does not change.
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Proof. The proof is too long and include many details so we will skip some of details

and discuss here just the main ideas of the proof.

Start with the handlebody (3.2.1), let ci be the critical value of f corresponding

critical point pi. Let us look at closely to the ith hanle and its attaching map φαi

φ : Dαi × Dm−αi → ∂Mci−ε (3.2.2)

notice that here we identify Mi with Mci−ε for sufficiently small ε where

Mci−ε = {x ∈ M| f (x) ≤ ci − ε} (3.2.3)

Lemma 3.2.2. (Milnor et al., 1965, Theorem 3.4, page 21)

If the Morse number µ of the triad (W; V0,V1) is zero, then (W; V0,V1) is a product

cobordism.

As a consequence of the above theorem we can conclude that

For the given Morse function f has no critical value in the interval [ci−1 + ε, ci − ε]

then we have diffeomorphism

ψ : f −1([ci−1 + ε, ci − ε])→ ∂Mci−1+ε × [0, 1] (3.2.4)

The interval {p} × I in the right hand side corresponds to the integral curve γp(t) on

the left hand side. Using above theorem we can show that

f −1([ci−1 + ε/2, ci−1 + ε]) ' ∂Mci−1+ε × [0, 1] also

f −1([ci−1 + ε/2, ci − ε]) ' ∂Mci−1+ε × [0, 1] then we can conclude that there is a

diffeomorphism h : M[ci−1+ε/2,ci−1+ε] → M[ci−1+ε/2,ci−ε] so define a diffeomorphism

Φ = id ∪ h : Mci−1+ε/2 ∪ M[ci−1+ε/2,ci−1+ε] → Mci−1+ε/2 ∪ M[ci−1+ε/2,ci−ε]

Φ : Mci−1+ε → Mci−ε (3.2.5)
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p

@Mci�1+✏

@Mci�✏

�p(t)

Figure 3.2 Flow diffeomorphism

Geometrically Mci−1+ε flow along a gradient like vector field X of f and coincide with

Mci−ε . It is time for last step of proof, let us illustrate given isotopy with {ht}t∈I . Using

this isotopy we have smooth level-preserving embedding H : ∂Mci−1+ε × I → Mci−1+ε × I

H(x, t) = (ht(x), t)

Also we can define another level-preserving embedding

H̃ : ∂Mci−1+ε × I → Mci−1+ε × I by H̃(x, t) = (h1−t(x), t)

Just perturb the gradient like vector field X to Y using H̃.

p→ h(p)

∂M[ci−ε]

∂M[ci−1+ε]

Y

Figure 3.3 New vector field

A new diffeomorphism can be defined by a new vector field Y and f

Ψ : Mci−1+ε → Mci−ε (3.2.6)

so the ith handle attached to Mi−1 = Mci−1+ε by the attaching map
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Ψ−1 ◦ φ = h1 ◦ Φ−1 ◦ φ (3.2.7)

It is obvious that the handlebody up to i− 1 handle does not change since the vector

field Y differs from X only after M[ci−1+ε] then the handlebody of M[ci−1+ε] remains

unchanged. Also we can easly conclude that the diffeomorphism type of M[c j+ε] does

not change for any j since the definition of Mc j+ε = {x ∈ M| f (x) ≤ c j + ε} does not

involve the gradient like vector field.

�

3.2.1 Visualise Handle Sliding

In this section, our main goal to understand handle slide in diagrammatic language.

We have already seen that, how to draw picture of smooth closed connected 4-

dimensional manifolds with framed links. Now we will discuss handle slide in this

way. The main reference book for this section will be Akbulut (2012) and Scorpan

(2005).

Let Kr1
1 and Kr2

2 be knots in S 3 they are allowed to be linked and let K
′

1 be a push

of K1 in the direction of its frame r1. We define the connected sum along a band b

K
′

1#bK2 then replace K2 by K
′

1#bK2 this move corresponds to handle sliding namely

sliding h2 over h1 where they are corresponding handles . Why?

As we define in the previous section handle slide is defined as changing the attaching

map of the handle by an isotopy.

When one slide any 2-handle h2 = D2 × D2 over the boundary of the rest of

manifolds then it might slide over boundary of another 2-handle h1 = D2 × D2. Means

the attaching sphere of h2 (S 1) is goes over ∂h1 = D2 × pt obviously this process

might change the attaching map of h2 therefore the boundary operator. 2-handle sliding

over another two handle has two possible resulting movements. These are addition and
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subtraction. To understand better we will examine the below picture.

attaching sphere of hkα attaching sphere of hkβ

hk−1

∂hkα = 0 ∂hkβ = hk−1

∂hkα = hk−1 ∂hkα = −hk−1

sliding hkα over hkβ

Figure 3.4 How sliding change the boundary operator

The change of boundary operation obviously change the basis element h2
α ∈ H2(M)

to h2
α + h2

β ∈ H2(M) or h2
α ∈ H2(M) to h2

α − h2
β ∈ H2(M) .

To avoid abuse of notation we use α and β instead of h2
α and h2

β. Thus it is easy to

conclude that framing coefficient will be change from α.α to

(α ± β).(α ± β) = α2 + β2 ± 2αβ = r1 + r2 ± 2lk(Kr1
1 ,K

r2
2 )

since the intersection form is given with respect to the linking matrix of the framed

link.

Therefore if one slides hα over hβ then the sliding operation corresponds the below

changes where the matrix represents the linking matrix.
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hα

hβ

k l

l m

 −→ hα ± hβ

hβ

k ± 2l + m l + m

l + m m


This obviously represents the 2-handle slide over 2-handle according to above

discussion. It works also for 2-handle slides over 1-handle since 1-handle can be seen

zero framing 2-handle.

3.3 Handle Cancellation

If the attaching sphere of the k-handle intersect transversely ones with the belt

sphere of the (k-1)-handle then this two handle create a cancelling pair. Or in other

word we can describe this condition with the boundary map.

hk
α and hk−1

β create a cancelling pair iff ∂hk
α = ±hk−1

β

Proof of Cancellation theorem is explained in many book for example in Matsumoto

(2002) or in Milnor et al. (1965). Here we avoid the proof of theorem but in the below

picture the idea of cancelling can be seen.

0-handle

1-handle

2-handle

attaching sphere of 2-handle
belt sphere of the 1-handle

∼=

Figure 3.5 One dimensional cancelling pair

In 4-dimension it is visualised in same manner, but we need to first define dotted

notation of one-handle.

30



3.4 Carving and Dotted Circle Notation

What we investigate here was introduced by Selman Akbulut. The dotted circle

notation is one of the useful methods to draw one handle in the handle decomposition.

Not all of them but some aspects of its power will be discuss in this section.

The dotted circle is used as alternative notation of one-handle attachment to the 0-

handle. Let us start with an example which has an important place in the history of

notation. The dotted circle notation used first to distinguish the one handle which is

obtained in a way explained below example. This example is one of the exercises from

Akbulut (2012).

Example 3.4.1. Let X be a manifold obtained D4 attaching 2-handle with zero framing

X = D4 ∪ h2 and it is obvious that X = S 2 ×D2 we draw this manifold by zero framing

unknot. By surgery S 2 in X, obtain the manifold Y = D3 × S 1. The manifold Y is

exactly = D4 ∪ h1 and it is drawn by dotted circle. In same manner if we surger S 1 in

Y we again obtain X. Notice that this two manifold has same boundary. Changing the

notation from zero framing to dotted circle does not change the boundary of manifold.

S1 surgery

S2 surgery

0

S2 ×D2 D3 × S1

Figure 3.6 Relation between dotted circle and zero framing

Another helpful explanation is for this notation is carving. It is explained by pushing

interior of the embedded D2 in S 3 into D4 and removing open tubular neighbourhood

of D2 from D4.

Remember that if any two handle goes ones over 1-handle then they create 1-2

handle cancelling pair see picture below. So we can conclude that attaching one handle

is equivalent to remove embedded 2-handle from the ∂N. The carving base on these

explanations and the general definition is given in the lecturer note Akbulut (2012).
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k

k

Figure 3.7 1-2 Cancelling pair

We assume that the attaching circle of the 2-handle goes over parallel to dashed line

rather than over 1-handle. We can always remove the unlink cancelling pair from the

diagram. If we add cancelling pair in the diagram we call it 1-2 birth.

Definition 3.4.2. Let Mm be a connected manifold obtained from Nm by attaching k-

handle M = N ∪φ hk . If the attaching sphere of the k-handle φ(S k−1 × 0) bounds a disk

in the ∂N then M is obtained from N by drilling out an open tubular neighbourhood of

the properly embedded disk Dm−k−1. This observation is called carving.

Example 3.4.3. We can always move in an un-knot ±1 framing to the rest of the link

conversely we can always move out an un-knot ±1 framing from the rest of the link.

Result of this movement is seen obviously in the below picture.

k −1
−1

k − 1
k

1

1

k + 1

. . .
. . .

±1

±1

. . .

. . .

Figure 3.8 Two handles sliding over unlinked one handle
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Above observations have some special place in Handle Calculus since it coincides

with Blow-Up operation. This operation is reversible and its reverse is called as Blow-

Down. Let us give definition of it.

Definition 3.4.4. The Blowing up operation is taking connected sum with CP2 or CP2.

In diagrammatic language adding ±1 framing unknot to the diagram without linking.

Here we need to say that, clearly blow-up and blow-down operations does not effect

the boundary of the manifold. Since CP2 is closed simply connected 4-manifold.

We learn many technique up to here so now time to give an concrete example. The

below fact is firstly proved by Hirzebruch.

Example 3.4.5. We will show diffeomorphism between two manifold using sliding

operation. S 2 × S 2#CP2 � CP2#CP2#CP2

0 0

1

0 0 1

0

0 10 0 1

0

slide

1

0

0

0

1−1
slide

0

1−1
slide

−1 1

1

Figure 3.9 Diffeomorphism between 4-manifolds
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CHAPTER FOUR

GLUCK TWIST

Firstly we discuss about the Gluck Twist operation which was introduced first by

Herman Gluck in 1961 in Gluck (1962) and as a result of this operation some candidate

of the exotic 4-spheres are obtained.

4.1 Definitions and Examples

Our main point is to understand description of the Gluck Twist operation. Then we

will try to reinforce our description on some pictures.

Definition 4.1.1. Let T : S 2 × S 1 → S 2 × S 1 be a self diffeomorphism defined by

T (x, y) = (φy(x), y) where φy denote the rotation of S 2 about the diameter through the

north and south poles trough an angle 2πy in some fixed direction. The Gluck twist

operation is cutting out tubular neighbourhood of 2-sphere ν(S 2) = S 2×D2 and gluing

it back by T . Here we need to remark that, the only non-trivial self diffeomorphism of

S 2 × S 1 is T .

X 7→ Xs = (X − ν(S )) ∪T (S 2 × D2)

Assume X is simply connected as explained in Gluck (1962) this operation on

homologically trivial S 2 always gives a homeomorphic copy of X. But the question

is Xs ≈ X or not.

4.1.1 Handlebody Description of Gluck Twist

To see Gluck construction in the handle picture we will prove a theorem.

Theorem 4.1.2. The operation below coincide with the Gluck Twist.
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0 0

0

diffeomorphism

surgerygluck construction

diffeomorphism
0

1

1

Figure 4.1 Construction of Gluck twist

Proof. It coincide with the cutting out D2×S 2 and re-glue it back via self diffeomorphism

of the boundary let illustrate it as φ . As we know there is only two self diffeomorphism

of the S 1 × S 2. Therefore, we only need to show that the self diffeomorphism of the

boundary φ is not identity. To show it we apply the operation to S 2 × S 2.

0
diffeomorphism

surgerygluck construction

sliding + cancelling

100

010

0

01

S2 × S2

CP 2#CP 2

φ

Figure 4.2 Proof of φ is not identity

Since S 2 × S 2 is not diffeomorphic to the CP2#CP2 then we can conclude that,

the operation φ is not identity. Therefore, the operation coincide with the Gluck

construction.
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Corollary 4.1.3. The Gluck twist operation is pictured as below

Gluck construction

±1

0 0
. . . . . .

Figure 4.3 Picture of Gluck twist

Example 4.1.4. We can easily see that Gluck twist operation to unknotted S 2

in S 4 does not change diffeomorphism type of the S 4 by using standard handle

decomposition of S 4. Indeed, We can image S 4 as one 2-handle and one 3-handle

attached to 0-handle and capped with 4-handle. Using Theorem 2.5.12 we do not need

to deal with 3-handles. Therefore its handlebody is shown as un-knotted circle with

zero framing. It can be easily seen that Gluck twist does not change the diffeomorphism

type of the S 4.
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CHAPTER FIVE

CONCLUSION

In this thesis, we have researched into a handlebody decomposition of 4-dimensional

closed connected smooth manifolds. Then we have introduce intersection theory, this

study allows us to understand handlebody theory and calculation with handles deeply.

After this examination, we gave a brief introduction to Gluck construction in the

general sense. Understanding handle decomposition and calculation methods with

handles allows us to understand Gluck twist in terms of handlebody. Using this

technique we easily show that Gluck twist to a trivial S 2 in S 4 does not change the

diffeomorphism type of the S 4.
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