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TESTING UNIT ROOT USING BOOTSTRAP METHOD 

 

ABSTRACT 

 

     The aim of this study is to give general information about the bootstrap and the 

time series and, to evaluate the performance of the bootstrap unit root test which has 

drawn much attention especially in economics and other related fields.      

 

     In this study, first of all, the concept of bootstrap is given; implementation of the 

bootstrap for both independent and dependent data are told; the fields where the 

bootstrap method are used to obtain asymptotic refinements are given; the Edgeworth 

Expansions and the Cornish-Fisher Expansions on which the proof that the bootstrap 

provides asymptotic refinements is based are told; the Sufficient Bootstrap which 

provides an important reduction in the sample size is told briefly. Later, the concept 

of time series and, the fundamental concepts which are necessary to understand the 

logic of time series are given; representations of the time series processes are 

showed; the stationarity and the nonstationarity situations are told. After giving brief 

information about the other concepts of time series such as model selection criteria, 

the unit root processes which are the basic concept for this thesis are told in details. 

The most popular unit root tests, Dickey-Fuller tests and Phillips-Perron tests are 

examined and the intuition behind these tests is given.   

 

     Three different methods are compared for their powers on the unit root tests: 

Asymptotic, bootstrap, and sufficient bootstrap methods. Independent and dependent 

residuals have been studied separately. Finally, the concluding remarks obtained as a 

result of the simulation study are listed. 

 

Keywords: Bootstrap, asymptotic refinement, Edgeworth expansion, Cornish-Fisher 

expansion, sufficient bootstrap, time series, stationarity, nonstationarity, unit root 

process, residual, Dickey-Fuller test, Phillips-Perron test. 
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BOOTSTRAP YÖNTEMİ İLE BİRİM KÖK TESTİ 

 

ÖZ 

 

     Bu çalışmanın amacı, bootstrap ve zaman serisi hakkında genel bilgi vermek ve 

özellikle ekonomide ve diğer ilgili alanlarda fazla dikkat çeken bootstrap birim kök 

testinin performansını değerlendirmektir.  

 

     Bu çalışmada, ilk olarak, bootstrap kavramı verilir; bootstrap’ in hem bağımsız 

hem de bağımlı verilere uygulanışı anlatılır; bootstrap yönteminin asimptotik 

netlikler elde etmek amacıyla kullanıldığı alanlar verilir; bootstrap’ in asimptotik 

netlikler vermesine ilişkin kanıtın dayandırıldığı Edgeworth açılımları ve Cornish-

Fisher açılımları anlatılır; örneklem ölçümünde önemli bir azalma sağlayan 

Sufficient Bootstrap kısaca anlatılır. Daha sonra, zaman serisi kavramı ve zaman 

serisi mantığını anlamak için gerekli olan temel kavramlar verilir; zaman serisi 

süreçlerinin sunumları gösterilir; durağan olma ve durağan olmama durumları 

anlatılır. Model seçim kriteri gibi zaman serisinin diğer kavramları hakkında kısa bir 

bilgi verdikten sonra, bu tez için temel kavramlar olan birim kök süreçleri 

detaylarıyla anlatılır. En popüler birim kök testleri, Dickey-Fuller testleri ve Phillips-

Perron testleri incelenir ve bu testlerin arkasındaki mantık verilir.    

 

     Üç farklı yöntem birim kök testleri üzerindeki güçleri açısından karşılaştırılırlar: 

Asymptotic, bootstrap, ve sufficient bootstrap yöntemleri. Bağımsız ve bağımlı 

artıklar ayrı incelenirler. Sonunda, simulasyon çalışması sonucunda elde edilen 

çıkarsamalı ifadeler listelenir. 

 

Anahtar kelimeler: Bootstrap, asimptotik netlik, Edgeworth açılımı, Cornish-Fisher 

açılımı, sufficient bootstrap, zaman serisi, durağan olma, durağan olmama, birim kök 

süreci, artık, Dickey-Fuller testi, Phillips-Perron testi.  
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CHAPTER ONE 

  INTRODUCTION 

 

     Horowitz (2001) defines that “the bootstrap is a method for estimating the 

distribution of an estimator or test statistic by resampling one’s data” (p. 3161). In 

bootstrap technique, you behave the original sample as if it is the population itself. 

Generally, bootstrap provides more accurate approximations compared to those of 

first-order asymptotic theory. However, this accuracy depends on whether the data 

are a random sample from a distribution or a time series.  

 

If the data are i.i.d., independently and identically distributed, the bootstrap can be 

implemented by sampling the data randomly with replacement or by sampling a 

parametric model of the distribution of the data....The situation is more 

complicated when the data are a time series because bootstrap sampling must be 

carried out in a way that suitably captures the dependence structure of the data 

generation process (DGP) (Härdle, Horowitz, & Kreiss, 2001, p. 1). 

 

     Their work also shows that the errors made by the bootstrap converge to zero 

more slowly when the data are a time series than they are a random sample. For 

implementing the bootstrap technique for a time series, a several methods have been 

developed, such as the block bootstrap, the sieve bootstrap etc. All these techniques 

have been developed to obtain more accurate approximations.  

 

     Wei (2006) defines a time series as an ordered sequence of observations. The 

observations in a time series are dependent or correlated, and therefore the order of 

the observations is important. Hence, statistical procedures and techniques that rely 

on independence assumption are no longer applicable, and different methods are 

needed. The body of statistical methodology available for analyzing time series is 

referred to as time series analysis. To understand the time series analysis technique, it 

is compulsory to understand the concept of stochastic process well since the 

developed theory for the time series analysis is based on the stochastic processes.    
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     The unit root hypothesis has drawn much attention for the past three decades, 

especially in economics and other related field. Chang & Park (2000) point out that 

“the hypothesis has an important implication on, in particular, whether or not the 

shocks to an economic system have a permanent effect on the future path of the 

economy” (p. 379). It is known that many of important economic and financial time 

series display unit root characteristics. Phillips & Perron (1988) states that “formal 

statistical tests of the unit root hypothesis are of additional interest to economists 

because they can help to evaluate the nature of the nonstationarity that most 

macroeconomic data exhibit” (p. 335). The tests developed by Dickey & Fuller 

(1979, 1981) are the most commonly used. However, Chang & Park (2000) state that 

“the tests by Said-Dickey and Phillips-Perron are often preferred to the Dickey-Fuller 

tests in practical applications, since they do not require any particular parametric 

specification and yet are applicable for a wide class of unit root models” (p. 380). 

The disadvantage of all these tests is to have considerable size distortions in finite 

samples where the bootstrap method may perform better. In this thesis, performance 

of the bootstrap method has been investigated under finite samples.     

 

     In Chapter 2, the bootstrap technique is defined. Implementation of the bootstrap 

technique to both independent and dependent data is told. The bootstrap iteration and 

the intuition behind this technique are given. The bootstrap principle and the 

Edgeworth Expansion on which the proof that the bootstrap provides asymptotic 

refinements is based are told giving the theoretical information. The concept of the 

sufficient bootstrapping is given. In Chapter 3, basic definitions connected with the 

time series analysis are given. How the time series processes are represented as an 

autoregressive (AR), a moving average (MA), and a mixed autoregressive and 

moving average (ARMA) models are showed. Both stationary and nonstationary 

time series models are told giving their basic properties. The unit root processes, the 

most popular unit root tests and the intuition behind these tests are given. The 

bootstrap unit root tests and accuracy of these tests are told. In Chapter 4, simulation 

results are presented. Asymptotic, bootstrap, and sufficient bootstrap methods are 

compared as regards their powers on the unit root tests. Independent and dependent 
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residuals have been studied separately. Finally, in Chapter 5, the concluding remarks 

obtained as a result of the simulation study are listed. 

 

     The explanations and theoretical proofs in Chapter 2 are based on Horowitz 

(2001) and Boik (2006). The explanations and theoretical proofs in Chapter 3 are 

based on Wei (2006) and Enders (1948). The notation used for time series models is 

the same with Wei (2006). MATLAB R2011b is used for the simulation study. The 

codes of the programme are given in Appendices.   
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CHAPTER TWO 

BOOTSTRAP 

 

2.1 Definition of the Bootstrap 

 

     Horowitz (2001) defines that “the bootstrap is a method for estimating the 

distribution of an estimator or test statistic by resampling one’s data” (p. 3161). In 

bootstrap technique, you behave the original sample as if it is the population itself. 

Hall (1992) explains the idea behind the bootstrap by comparing the population mean 

and the sample mean. He states that estimation of a functional of a population 

distribution F, such a population mean   

 

                                                                   ∫     ( )                                                (     ) 

                                             

is done by employing the same functional of the empirical (or sample) distribution 

function, which is the sample mean 

 

                                                             ̅    ∫    ̂( )                                                  (     ) 

 

     The empirical distribution is a function which assigns the same probability to each 

of the sample individuals. The term of functional may be described as follows: If 

 ̂    
 

 
∑   

 
    , then  ̂  is a function of x. If   ∫     ( ) , then   is a functional 

which takes away the distribution function to a real value.  

 

     Hall (1992) states how the bootstrap statistics are calculated more easily as 

follows:    

 

Efron (1979) also showed that in many complex situations, where bootstrap 

statistics are awkward to compute, they may be approximated by Monte Carlo 

“resampling”. That is, same-size resamples may be drawn repeatedly from the 

original sample, the value of a statistic computed for each individual resample, 
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and the bootstrap statistic approximated by taking an average of an appropriate 

function of these numbers. The approximation improves as the number of 

resamples increases (Hall, 1992, p. 1). 

 

     Hall (1992) explains the bootstrap principle by a Russian “matryoshka” doll and 

the number of freckles on its face. In this thesis it is given the short summary of the 

theory in his book. 

 

     Let n0 be the number of freckles on the biggest doll’ s face, and n1 be the number 

of freckles on the second biggest doll’ s face, and n2 be the number of freckles on the 

third biggest doll’ s face, and etc. Let us try to estimate n0. Since the second biggest 

doll is smaller than the biggest doll, only considering n1 is likely to be an 

underestimate of   .  However, because the ratio of    to    should be close to the 

ratio of    to   , that is,     ⁄        ⁄  , 

 

                                                                 ̂      
   ⁄                                                      (     ) 

                                                 

might be a reasonable estimate of   . By the same reason, while    is the population 

distribution function and    is the sample distribution function, the population 

equation may be defined as follows: 

 

                                                            {  (     )|  }                                                (     ) 

                                          

     This is defined as the population equation since if it is solved exactly, the 

properties of the population should be known. However, since these properties are 

unknown, an approximate solution for this equation may be found by the sample 

equation  

 

                                                           {  (     )|  }                                                 (     ) 

                                         

     This is defined as the sample equation since if the sample distribution    is 

known, this equation can be solved exactly.  
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     This sense may be defined as the bootstrap principle. 

 

     Hall (1992) shows that the bootstrap principle may be used for the bias reduction, 

since as B which is the number of bootstrap samples goes to infinity, the parameter 

estimator obtained from the bootstrap samples behaves like the parameter estimator 

obtained from the original sample. As B goes to infinity, the mean of estimators 

obtained from the bootstrap samples equals to the estimator obtained from the 

original sample. He states that while the actual variance may have increased a little 

as a result of bootstrap bias reduction, the first-order asymptotic formula for variance 

has not changed. See Hall (1992) for the details. 

 

     The bootstrap has been the object of much research in statistics since its 

development by Efron (1979). Horowitz (2001) states that “under mild regularity 

conditions, the bootstrap yields an approximation to the distribution of an estimator 

or test statistic that is at least as accurate as the approximation obtained from first-

order asymptotic theory” (p. 3161). Such improvements are called asymptotic 

refinements. This is resulted from the ability of the bootstrap on bias reduction and 

mean-square-error. Thus, the bootstrap provides a way to substitute computation for 

mathematical analysis if calculating the asymptotic distribution of an estimator or 

statistic is difficult.  

 

     However, there are some restrictions for using the bootstrap. The bootstrap 

technique may be used to estimate the probability distribution of an asymptotically 

pivotal statistic or the critical value of a test based on an asymptotically pivotal 

statistic whenever such a statistic is available. On the other hand, the bootstrap 

technique should not be used to estimate the probability distribution of a non-

asymptotically-pivotal statistic such as a regression slope coefficient if an 

asymptotically pivotal statistic is available. See Horowitz (2001) for the details. 
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2.2 Pivotal Statistics and Consistency of the Bootstrap 

 

     The statistic whose distribution is dependent of the population parameters is 

called pivotal. Pivotal statistics are not available in most econometric applications. 

Many econometric statistics are asymptotically pivotal in the meaning of the statistic 

whose asymptotic distribution does not depend on unknown population parameters, 

or asymptotically normally distributed. Horowitz (2001) states that “if an estimator is 

asymptotically normally distributed, then its asymptotic distribution depends on at 

most two unknown parameters, the mean and the variance, that can often be 

estimated without great difficulty” (p. 3164). 

 

     Horowitz (2001) defines the consistency of the bootstrap with details. Roughly 

speaking, as     if the bootstrap estimator which is given as an approximation to 

the exact finite-sample CDF of    is converges in probability to the asymptotic CDF 

of    , then the bootstrap is said to be consistent. 

 

     On the other hand, in the cases of the heavy-tailed distributions, the distribution of 

the square of the sample average, the distribution of the maximum of a sample, the 

bootstrap is inconsistent. Also, the bootstrap does not consistently estimate the 

distribution of a parameter estimator when the true parameter point is on the 

boundary of the parameter space. The details are given in Horowitz (2001). 

 

2.3 Asymptotic Refinements 

 

     In applied econometrics, the bootstrap provides a higher-order asymptotic 

approximation to the distribution of a statistic for many situations. To explain the 

refinements resulted from the bootstrap method, it is assumed that the data are a 

simple random sample from some distribution. 

 

Many important econometric estimators, including maximum-likelihood and 

generalized-method-of-moments estimators, are either functions of sample 

moments or can be approximated by functions of sample moments with an 
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approximation error that approaches zero rapidly as the sample size increases 

(Horowitz, 2001, p. 3172).  

 

     Let’s assume that, the inferential problem is to obtain a point estimate of a 

univariate parameter θ that can be expressed as a smooth function of a vector of 

population moments. Also assume that θ can be estimated consistently by 

substituting population moments with sample moments in the smooth function. 

 

2.3.1 Bias Reduction 

 

     In the case of inference with a sample, the bias is caused by not knowing all 

values in the population and so not knowing the true population distribution. 

Because, in the bootstrap method we treat the original sample as if they were the 

population, we can calculate the difference between the estimator obtained from the 

original sample and the estimator obtained from the bootstrap sample. Hence, we can 

add the bias which is resulted from the bootstrap sampling to the estimator obtained 

from the original sample. As a result, the bias reduction is verified. Now, the new 

estimator is called as the bias-corrected estimator. Whereas the bias obtained by the 

first-order asymptotic approximations is  (   ), the bias obtained by the bootstrap 

approximation is  (   ). 

 

     To be specific, let X  be a random vector, and set     ( ). Assume that the true 

value of θ  is      ( ), where   is a known, continuous function. Suppose that the 

data consist of a random sample {            }  of X. Then θ is estimated 

consistently by 

 

                                                                         ( ̅)                                                     (     ) 

 

Monte Carlo procedure for computing the bootstrap bias estimator,   
 , is given in 

Horowitz (2001) as  follows:  

 

B1: Use the estimation data to compute   . 
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B2: Generate a bootstrap sample of size n by sampling the data randomly with 

replacement. Compute   
    ( ̅ ). 

B3: Compute   (  
 ) by averaging the results of many repetitions of step B2. Set  

  
      (  

 )     . 

(Horowitz, 2001, p. 3174). 

 

     The criteria in choosing the number of repetitions, m, of step B2 is that to choose 

m sufficiently large that the estimate of   (  
 ) does not change significantly if m is 

increased further. See Horowitz (2001) for the details. Andrews and Buchinsky 

(2000) discuss more formal methods for choosing the number of bootstrap 

replications. 

 

2.3.2 The Distributions of Statistics 

 

     The proof that the bootstrap provides asymptotic refinements is based on an 

Edgeworth expansion of a sufficiently high-order Taylor-series approximation to   .  

Hence, it is necessary to explain Smooth Function Model and Cramer Condition at 

this stage.  

 

SFM (Smooth Function Model): (i)        ⁄ [ ( ̅)    (  )], where H(z) is 6 

times continuously partially differentiable with respect to any mixture of components 

of z in a neighbourhood of   . (ii)   (  )    . (iii) The expected value of the 

product of any 16 components of Z exists. 

 

Assumption SFM insures that H has derivatives and Z has moments of sufficiently 

high order to obtain the Taylor series and Edgeworth expansions that are used to 

obtain a bootstrap approximation to the distribution of    that has an error of size 

 (   )... See Hall (1992a, pp. 52-56; 238-259) for a statement of the regularity 

conditions needed to obtain various levels of asymptotic and bootstrap 

approximations (Horowitz, 2001, p. 3176). 
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Cramer condition:  

 

                                                         
‖ ‖  

| [   (    )]|                                        (     ) 

 

where √  .  

 

Cramer condition is satisfied if the distribution of Z has a non-degenerate absolutely 

continuous component in the sense of the Lebesgue decomposition. 

 

     Under the assumption of the smooth function model, the first-order asymptotic 

approximations to the exact finite-sample distribution of    make an error of size 

 (    ⁄ ). If    is not an asymptotically pivotal statistic, then the bootstrap has an 

error of size  (    ⁄ ) almost surely, which is the same as the size of the error made 

by the first-order asymptotic approximations. However, if    is an asymptotically 

pivotal statistic, then the bootstrap has an error of size  (   )  Thus, in this case, the 

bootstrap is more accurate than the first-order asymptotic theory for estimating the 

distribution of a smooth asymptotically pivotal statistic.  

 

     Whereas the error made by the first-order asymptotic approximations to the 

symmetrical distribution function is  (   ) , the error made by the bootstrap 

approximation is  (    ⁄ )  in the case of asymptotically pivotal statistic. These 

errors are  (    ⁄ ) and  (   ), respectively, for the approximation to the one-sided 

distribution function. 

 

2.3.3 Bootstrap Critical Values for Hypothesis Tests 

 

     Let    be a statistic for testing a hypothesis    about the sampled population. 

Assume that under   ,    is asymptotically pivotal and satisfies assumptions of 

Smooth Function Model and Cramer condition.  
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     In the case of a symmetrical and two-sided test, if    is an asymptotically pivotal 

statistic, then the asymptotic critical value approximates the exact finite sample 

critical value with an error of size  (   ). In contrast, the bootstrap critical value for 

the same test differs from the exact, finite-sample critical value by  (    ⁄ ) almost 

surely. Hence, bootstrap gives more correct critical value. 

 

     In the case of a symmetrical and two-sided test, when the test statistic is 

asymptotically pivotal, the difference between the nominal and true Rejection 

Probabilities (RP) is  (   )  with the asymptotic critical value. However, the 

nominal RP with a bootstrap critical value differs from the true RP by  (   ). The 

bootstrap does not achieve the same accuracy for one-tailed tests. For such tests, the 

difference between the nominal and true RP’s with asymptotic critical values is 

 (    ⁄ ), whereas the difference with a bootstrap critical value is usually  (   ). 

For the details, see Hall (1992, p. 102-103).Horowitz (2001) states that “tests based 

on statistics that are asymptotically chi-square distributed behave like symmetrical, 

two-tailed tests” (p. 3183). It is necessary to remind that if the distribution of    is 

symmetrical about 0, then equal-tailed and symmetrical tests are the same. 

Otherwise, they are different. 

 

2.3.4 Confidence Intervals 

 

     Let    be asymptotically pivotal and satisfy assumptions of Smooth Function 

Model and Cramer condition.  

 

     When the asymptotic critical value is used, the true and nominal coverage 

probabilities of a symmetrical and two-sided confidence intervals differ by  (   ), 

whereas they differ by  (   )  when the bootstrap critical value is used. With 

asymptotic critical values, the true and nominal coverage probabilities of for one-

sided and equal-tailed confidence intervals differ by  (    ⁄ ) , whereas the 

differences are  (   ) with bootstrap critical values. In special cases such as the 

slope coefficients of homoscedastic, linear, mean-regressions, the differences with 

bootstrap critical values are  (    ⁄ ) as mentioned in Horowitz (2001). 
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2.3.5 The Importance of Asymptotically Pivotal Statistics 

 

     When the bootstrap techniques applied to statistics that are not asymptotically 

pivotal, it can’t provide higher-order approximations to their distributions. Horowitz 

(2001) states that “the errors of bootstrap estimates of the distributions of statistics 

that are not asymptotically pivotal converge to zero at the same rate as the errors 

made by first-order asymptotic approximations” (p. 3185). However, it is possible to 

obtain higher-order approximations to the distributions of statistics that are not 

asymptotically pivotal through the use of bootstrap iteration [Beran (1987,1988); 

Hall(1992)] or bias-correction methods [Efron (1987)]. On the other hand, Horowitz 

(2001) also states that “bias correction methods are not applicable to symmetrical 

tests and confidence intervals”, and “bootstrap iteration is highly computationally 

intensive, which makes it unattractive when an asymptotically pivotal statistic is 

available” (p. 3185). 

 

2.3.6 Recentering 

 

     Horowitz (2001) explains the importance of recentering for the bootstrap with 

theoretical details. Roughly speaking, implementing the moment condition which is 

not hold in the population but the bootstrap samples, makes the bootstrap estimator 

of the distribution of the statistic for testing the overidentifying restrictions 

inconsistent. Because of this problem, the bootstrap method does not give asymptotic 

refinements. To solve this problem, recentering procedure is implied. 

 

2.4 Dependent Data 

 

     Using independent bootstrap samples, asymptotic refinements with dependent 

data can’t be obtained. Hence, in the case of working with dependent data, Horowitz 

(2001) states that “bootstrap sampling must be carried out in a way that suitably 

captures the dependence of the data-generation process” (p. 3188). This section 

describes several methods for doing this. 
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2.4.1 Methods for Bootstrap Sampling with Dependent Data 

 

     Horowitz (2001) states that “bootstrap sampling that captures the dependence of 

the data can be carried out relatively easily if there is a parametric model, such as an 

ARMA model, that reduces the data-generation process to a transformation of 

independent variables” (p. 3188). In this case and under suitable regularity 

conditions, the bootstrap has properties that are essentially the same as they are when 

the data are i.i.d. See Andrews (1999) and Bose (1988, 1990). However, when there 

is no parametric model that reduces the data-generation process to independent 

sampling from some probability distribution, the bootstrap can be implemented using 

the Block Bootstrap and the Sieve Bootstrap methods. 

 

     2.4.1.1 The Block Bootstrap 

 

     This method includes dividing the data into blocks and sampling the blocks 

randomly with replacement. The block bootstrap is important in GMM estimation 

with dependent data, because the moment conditions on which GMM estimation is 

based usually do not specify the dependence structure of the GMM residuals. 

 

The blocks may be non-overlapping [Carlstein (1986)] or overlapping [Hall 

(1985), Künsch (1989), Politis and Romano (1994)]. To describe these blocking 

methods more precisely, let the data consist of observations {           }. 

With non-overlapping blocks of length l, block 1 is observations {           }  

block 2 is observations {             } , and so forth. With overlapping blocks 

of length l, block 1 is observations {           } , block 2 is observations 

{             } and so forth. The bootstrap sample is obtained by sampling 

blocks randomly with replacement and laying them end-to-end in the order 

sampled. It is also possible to use overlapping blocks with lengths that are 

sampled randomly from the geometric distribution [Politis and Romano (1994)]. 

The block bootstrap with random block lengths is also called the stationary 

bootstrap because the resulting bootstrap data series is stationary, whereas it is not 
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with overlapping or non-overlapping blocks of fixed (non-random) lengths 

(Horowitz, 2001, p. 3189). 

 

Regardless of whether the blocks are overlapping or non-overlapping, the block 

length must increase with increasing sample size n to make bootstrap estimators 

of moments and distribution functions consistent (Carlstein 1986, Künsch 1989, 

Hallet al. 1995). The block length must also increase with increasing n to enable 

the block bootstrap to achieve asymptotically correct coverage probabilities for 

confidence intervals and rejection probabilities for tests. When the objective is to 

estimate a moment or distribution function, the asymptotically optimal block 

length may be defined as the one that minimizes the asymptotic mean-square-

error of the block bootstrap estimator. When the objective is to form a confidence 

interval or test a hypothesis, the asymptotically optimal block length may be 

defined as the one that minimizes the ECP (the error in the coverage probability) 

of the confidence interval or ERP (the error in the rejection probability) of the 

test. The asymptotically optimal block length and the corresponding rates of 

convergence of block bootstrap estimation errors, ECP’s and ERP’s depend on 

what is being estimated (e.g., bias, a one-sided distribution function, a 

symmetrical distribution function, etc.) (Härdle et al., 2002, p. 9). 

 

Hall, Horowitz, & Jing (1995) showed that with either overlapping or non-

overlapping blocks with non-random lengths, the asymptotically optimal block-

length is        , where       ⁄  for estimating bias or variance,       ⁄  for 

estimating a one-sided distribution function, and       ⁄  for estimating a 

symmetrical distribution function. Hall et al. (1995) also show that overlapping 

blocks provide somewhat higher estimation efficiency than non-overlapping ones. 

The efficiency difference is likely to be very small in applications, however. 

(Horowitz, 2001, p. 3190). 

 

     Lahiri (1999) investigated the asymptotic efficiency of the stationary bootstrap. 

He states that at least in terms of asymptotic RMSE (the root-mean-square estimation 
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error), the stationary bootstrap is unattractive relative to the block bootstrap with 

fixed-length blocks. 

 

Implementation of the block bootstrap in an application requires a method for 

choosing the block length with a finite sample. Hall et al. (1995) describe a 

subsampling method for doing this when the block lengths are non-random. The 

idea of the method is to use subsamples to create an empirical analogous of the 

mean-square error of the bootstrap estimator of the quantity of interest (Horowitz, 

2001, p. 3190). 

 

Hall et al. (1995) and Lahiri (1999) have compared the estimation errors made by 

the overlapping- and non-overlapping-blocks bootstraps....They find that the 

bootstrap is less accurate with non-overlapping blocks because the variance of the 

bootstrap estimator is larger with non-overlapping blocks than with overlapping 

ones. The bias of the bootstrap estimator is the same for non-overlapping and 

overlapping blocks. It should be noted, however, the differences between the 

AMSE’s (the asymptotic mean-square-error) with the two types of blocking 

occurs in higher-order terms of the statistics of interest and, therefore, is often 

very small in magnitude (Härdle et al., 2002, p. 17). 

 

     2.4.1.2 The Sieve Bootstrap 

 

     This method has been proposed by Kreiss (1992) and Bühlmann (1997). In this 

method, the infinite-order autoregression is replaced by an approximating 

autoregression with a finite-order that increases at a suitable rate as     . 

Horowitz (2001) defines the procedure as “the coefficients of the finite-order 

autoregression are estimated, and the bootstrap is implemented by sampling the 

centered residuals from the estimated finite-order model” (p. 3190). Bühlmann 

(1997) gives conditions under which this procedure yields consistent estimators of 

variances and distribution functions.  
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2.4.2 Companion Stochastic Process 

 

     In their study, Kreiss & Paparoditis (2011) investigate which bootstrap procedures 

asymptotically work (are consistent or valid for short) for what kind of statistics and 

why this is the case or, in the negative case, why it is not the case. By the phrase the 

bootstrap asymptotically works they mean that the approximation error of the 

bootstrap distribution for the standardized distribution of the estimator converges to 

zero as the sample size increases to infinity. They explain the key points regarding to 

this aim as follows: 

 

One key point is to work out what a specific bootstrap procedure really mimics 

and another one is to investigate what features of the underlying data generating 

process necessarily have to be mimicked in order to be able to lead to a consistent 

bootstrap method. Of course the latter question is not only related to the 

underlying data generating mechanism but also to the statistic and parameter of 

interest. To be a little bit more precise, let us assume that we are interested in the 

expectation of the underlying process and that we consider the mean of our 

observed data as an estimator. Under rather mild assumptions on the dependence 

structure of an underlying stationary process we obtain that the asymptotic 

distribution of the mean only depends on the whole autocovariance function (to be 

precise, the sum overall autocovariances) or equivalently on the spectral density 

evaluated at zero frequency. This means that for a consistent bootstrap procedure 

in such a situation it suffices to correctly imitate the second-order properties of the 

underlying process. For consistency of a bootstrap proposal it is not necessary to 

mimic further parts of the possibly much more complicated dependence structure 

of the data. However, it may be advantageous to mimic features of the 

dependence structure beyond second-order properties in order to improve the 

finite sample size behaviour of the bootstrap approximation of the distribution of 

the estimator of interest. Anyway it is of general interest to know what a specific 

bootstrap procedure really does. To shed light on this property we introduce for 

some bootstrap procedures so-called companion processes of the underlying 

processes (Kreiss & Paparoditis, 2011, p. 358). 
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     They define the companion process as a process which only depends on the 

underlying stochastic process and the particular bootstrap procedure, and not on the 

statistics and parameter of interest. If for a particular bootstrap method and a statistic 

of interest, the asymptotic distribution of the relevant test statistic does not change if 

we switch from the underlying process to its companion process, then this bootstrap 

method asymptotically works for these specific estimators. Otherwise, the particular 

bootstrap method is not able to lead to valid results. Briefly, if the limit distribution 

of the test statistic obtained from the underlying process and the limit distribution of 

the test statistic obtained from the companion process are the same, bootstrap 

asymptotically works. The adequate condition is that both processes have the same 

first-order and second-order probabilistic qualifications. Hence, a proper bootstrap 

procedure should be able to mimic at least the necessary parts of the dependence 

structure of the data generating process. See Kreiss & Paparoditis (2011) for the 

details. 

 

2.5 Bootstrap Iteration 

 

     If an asymptotic pivot is not available, asymptotic refinements can be obtained by 

applying the bootstrap to the bootstrap-generated asymptotic-pivot. The 

computational procedure is called bootstrap iteration or prepivoting because it 

entails drawing bootstrap samples from bootstrap samples as well as using the 

bootstrap to create an asymptotically pivotal statistic. Beran (1987) explains how to 

use prepivoting to form confidence regions. Hall (1986) describes an alternative 

approach to bootstrap iteration. The computational procedure for carrying out 

prepivoting and bootstrap iteration is given by Beran (1988). 

 

     Iteration can also be explained through the Russian martyoshka doll example.   

This approach is used in Hall (1992). In this thesis the results are given more 

explicitly. The iterative procedure is given until the third iteration as follows: 
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     Here,    may be thought of a multiple of   ; that is,         for some     , or 

 

           

 

which is called the population equation. Then the sample equation may be defined as 

 

           

 

                     ⁄               ̂   

 

              ̂         ⁄     ̂    ̂      (    ⁄ )       
   ⁄  

 

or 

 

    ⁄        ⁄             
     ̂       

   ⁄ . 

 

     Now, the new population equation is 

 

     
  

 

  
    

 

and the new sample equation is 

 

     
  

 

  
      

 

     The second iteration is started with 

 

    ⁄        ⁄             
  

 

    

  
    

    

  
     ̂     
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       ̂    

    

  
    

 

     Now, the new population equation is 

 

     
  

   

  
     

 

and the new sample equation is 

 

     
  

   

  
       

 

     The third iteration is started with 

 

    ⁄        ⁄             
  

 

    

  
    

    

  
      ̂    
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 ̂      ̂   ̂     
    

 

  
   

  
   

  
    

(    )
 

  
   

   

 

     Now, the new population equation is 

 

     
(    )

 

  
   

    

 

and the new sample equation is 
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(    )

 

  
   

      

 

     Bootstrap iteration proceeds in an entirely analogous manner. For the details see 

Hall (1992, p. 21). 

 

2.6 Special Problems 

 

     The bootstrap provides asymptotic refinements because it amounts to a one-term 

Edgeworth expansion which will be explained in the following subsection. Horowitz 

(2001) states that “the bootstrap cannot be expected to perform well when an 

Edgeworth expansion provides a poor approximation to the distribution of interest” 

(p. 3212). Besides, this technique does not perform well when the variance estimator 

used for Studentization has a high variance itself. Horowitz (2001) states that “in 

such cases Studentization is carried out with an estimator of the variance of an 

estimated variance” (p. 3212). Other problem is the behaviour of the bootstrap when 

the null hypothesis is false. See Horowitz (2001) for the details. 

  

2.7 The Bootstrap and Edgeworth Expansion 

 

2.7.1 Principles of Edgeworth Expansion 

  

     Classical statistical theory uses the expansions to provide analytical corrections 

similar to those that the bootstrap gives by numerical means. The arguments showing 

that the bootstrap yields asymptotic refinements are based on Edgeworth expansion 

of (     ). Therefore, in this section, it is concentrated on this expansion. This 

expansion, derived by Edgeworth in 1905, relates the pdf of a standard normal 

random variable Y to the  (     )  using the Chebyshev-Hermite polynomials. 

Before giving this expansion and the Cornish-Fisher expansion, special mathematical 

functions connected with this expansion are told briefly. These functions are 

Characteristic Function, Moment Generating Function, Cumulant Generating 
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Function, Hermite Polynomials, and Power Series. The theoretical explanations 

presented in this section are based on Boik (2006).  

 

     2.7.1.1 The Characteristic Function 

 

     The characteristic function of the random variable Y is  

 

                                           ( )    (     )    ∫          ( )                                  (     ) 

 

where     √   and t  is a fixed p-vector. 

 

The characteristic function is the expectation of  

 

                                                       (   )        (   )                                       (     )  

 

The probability density function of Y is defined as 

 

                                  ( )    
 

  
  ( )    

 

  
∫         ( )  

 

  

                           (     ) 

 

This equation is the result of the inversion theorem (See the equation 2.7.29). 

 

     2.7.1.2 The Moment Generating Function 

 

     The moment generating function of the random variable Y is  

 

                                             ( )    (    )    ∫         ( )                               (     ) 

 

where t  is a fixed p-vector. 
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     2.7.1.3 The Cumulant Generating Function 

 

     Let Y be a scalar random variable whose MGF is   ( ). If   [  ( )] is expanded 

in a Taylor series around     , the result is called the cumulant generating function 

 

                                                ( )      [  ( )]    ∑
  

  

 

   

                                     (     ) 

 

where   ’ s are named as cumulant.   

 

     2.7.1.4 Relations between CF, MGF and CGF 

 

                        
 

  
  ( )    

 

 

 

  
  ( )        ( )                                    (     ) 

 

and 

                 
  

   
  ( )    

 

  
  

   
  ( )           ( )                      (     ) 

 

     2.7.1.5 Hermite Polynomials 

 

     Let z be a scalar and denote the standard normal pdf by  ( ) 

 

                                                        ( )    
 

√  
     ⁄                                                 (     ) 

 

The     Hermite polynomial,   ( ) is defined as 

 

                                                      ( )    
(  ) 

 ( )

   ( )

   
                                            (     ) 

for          

  ( )       ( )     
  ( )

 ( )
   ( )    

   ( )

 ( )
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To generate these polynomials efficiently, note that 

 

         (   )    
 

√  
   

(     ) 

    
 

√  
   

  

   
   

     
  

     ( )      
  

          (      ) 

 

If  (   ) is expanded around      the equations below are obtained: 

 

 (   )     ( )       ( )(  )    
 

  
   ( )(  )         ( )      ( )(  ) 

 

 (   )     ( )       ( )    
  

  
   ( )        

 

  (   )

  
   

 

  
  ( )

  [  ( )    
 

  
  ( )        ( )    

 

  
   ( )

  

  
]               (      ) 

 

For t = 0, Equation (2.7.11) equals to 

 

  (   )

  
      ( )    

 

  
 ( ) 

and 

   (   )

(  ) 
   (  )  ( )( )    (  ) 

   ( )

(  ) 
   

 

By the chain rule, 

 

 (   )     ( )   (  )    ( )    (  ) 
  

  
   ( )        (  ) 
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 (   )    ∑
(  ) 

 ( )

 

   

   ( )

(  ) 

  

  
 ( )    ∑

  

  
  ( )

 

   

 ( ) 

 

 (   )     ( )∑
  

  
  ( )

 

   

  

 

Due to the Equation (2.7.10); 

 

     
  

    ∑
(     

  

 
)

 

  

 

   

   ∑
  

  

 

   

  ( )  

 

Now match coefficients and solve for   ( ).  The result is  

 

                ( )         
      

   

    
   

      
   

    
   

      
   

    
                    (      ) 

 

where 

                                        {

  

(   ) 
                         

 
                                           

                                  (      ) 

    

     The first six Hermite polynomials are the following: 

 

  ( )     

Since 

  ( )    
 

√  

   

 
  

  

       ( ) 

 

the first Hermite polynomial is 

 

                                                 ( )     
  ( )

 ( )
   

  ( )

 ( )
                                  (      ) 
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Since  

   ( )     
 

√  
[   

  

    
  

 
     

  

 ]    (      ) ( ) 

 

the second Hermite polynomial is 

 

                                 ( )    
   ( )

 ( )
   

(     ) ( )

 ( )
                                  (      ) 

 

The rest polynomials are as follows:  

 

                    ( )                                  ( )                                 (      ) 

 

             ( )                         ( )                        (      ) 

 

The following two theorems connected with the Edgeworth Expansion. 

 

Theorem 2.7.1 (Orthogonal Properties of   ). If   ( ) is the     Hermite 

polynomial, then 

 

                      ∫   (  )
 

  

  ( ) ( )     {
                     
                   

                      (      ) 

 

(Boik, 2006, p. 117). 

 

Theorem 2.7.2. Denote the     Hermite polynomial by    ( )  and denote the 

standard normal pdf by  ( ). Then 

 

   
 

  
∫      (   )    

  

   
 

  

   (  )   ( ) ( )                 (      ) 

 

and 
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                    ∫   ( ) ( )  
 

  

  {
         ( )                           
       ( ) ( )               

                   (      ) 

 

(Boik, 2006, p. 118). 

 

     2.7.1.6 Power Series 

 

     The power series is the standard method for solving linear Ordinary Differential 

Equations with variable coefficients. A power series is an infinite series of the form 

 

             ∑   (     )
 

 

   

         (     )     (     )
               (      ) 

 

     Here, x is a variable,            are constants, called the coefficients of the 

series,    is a constant, called the center of the series. The Taylor series of a function 

is a kind of power series. A Taylor expansion of function  ( ) about the value   is 

defined as 

 

 ( )     ( )      ( )(   )   
   ( )(   ) 

  
         

 ( )( )(   ) 

  
       

                                                                                                          (      ) 

 

     Here,    defines the remainder part of the expansion. If     , then this 

expansion is named as the MacLaurin series 

 

                ( )     ( )     ( )   
   ( )  

  
       

 ( )( )  

  
            (      ) 

     

     2.7.1.7 Edgeworth Expansions 

 

     An expansion, derived by Edgeworth in 1905, that relates the pdf,  , of a random 

variable, X, having expectation 0 and variance 1, to the probability density function 

of a standard normal distribution, using the Chebyshev-Hermite polynomials. In this 
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section, a theorem connected with the edgeworth expansion for the sample mean and 

its proof are given.  

 

Theorem 2.7.3 (Edgeworth). If the cdf of Y is continuous and differentiable, the 

the pdf and cdf of the sample mean are 
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(Boik, 2006, p. 119). 

 

Proof: Suppose that    are i.i.d. for          with mean   and variance    and 
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Then the characteristic function of   is 
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since   ( )    (    ).                       
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Now, consider the cumulant generating function, 

 

    ( )        ( )      ([  (
 

 √ 
)]

 

   {
 √     

 
}) 

 

    ( )      [  (
 

 √ 
)]   

√     

 
   (  [  (

 

 √ 
)]   

    

 √ 
)     (      ) 

 

  [  (
 

 √ 
)]    ∑(

  

 √ 
)

   ( )

  

 

   

 

since 

    ( )        ( )   ∑
(  ) 

  

 

   

    

 

Now, since   ( )    ( )      , for      
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Equation (2.7.26) may be rewritten as 
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If this function is expanded, the equation below is obtained: 
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                ( )      
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   √ 
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   (    ⁄ )                (      ) 

 

     Here, instead of the remainder part of the expansion,  (    ⁄ ) is written since, 

if one more term was showed in the expansion, this term would be 
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the expansion would be bounded by a value which is different from zero.   

 

     Because of the inversion theorem, it is well known that 
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With a different presentation, the equation above may be rewritten as follows: 
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By substitution of the expansion above, 
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the equation below is obtained: 
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using Theorem 2.7.2. 

 

     The pdf of Y is obtained by transforming from Z to Y. The cdf of Z is obtained by 

integrating the pdf: 
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To obtain cdf of the sample mean, use  
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                        ̅( ̅)    ( ̅     ̅)    (    )          

  
 ̅    

 √ ⁄
                (      ) 

     Hall (1992) explains the terms in Edgeworth expansion of the sample mean as 

follows: 

 

Third and fourth cumulants    and    are referred to as skewness and kurtosis 

respectively. The term of order     ⁄  corrects the basic Normal approximation 

for the main effect of skewness, while the terms of order     corrects for the 

main effect of kurtosis and the secondary effect of skewness (Hall, 1992, p. 45). 

 

     2.7.1.8 Cornish-Fisher Expansions 

 

     Cornish & Fisher (1937) constructed an expansion so that the percentiles of the 

distribution of Z (or Y) can be expressed in terms of the percentiles of the  (   ) 

distribution and vice-versa. First, however, a preliminary result is required. 

 

Theorem 2.7.4. Denote the 100α  percentile of  

 

    
 ̅    

 √ ⁄
 

 

by    and denote the 100α percentile of the  (   ) distribution by   . Suppose 

that a valid Edgeworth expansion for the distribution of Z exists. Then, 

 

         (    ⁄ ) 

(Boik, 2006, p. 120). 

 

Proof: It follows from the Edgeworth expansion that  
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Specifically,  
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Note that 
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which implies that   
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Theorem 2.7.5 (Cornish-Fisher). Denote the 100α percentile of the distribution of  
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by    and denote the 100α percentile of the  (   ) distribution by   . Then, 
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Furthermore, the above expansions hold for all     (   ) . If α is a random 

variable with a     (   )  distribution, then zα is a realization of a  (   ) 

random variable having the same distribution as 
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Accordingly, 
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where 
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(Boik, 2006, p. 121). 

Proof: It is well known that 
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Expand  (  ) in a Taylor series around         : 
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By the Equation (2.7.9), 
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the Equation (2.7.36) may be rewritten as follows:  
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     Substituting the expansion for  (  ) into the expression for  (  )    (  ) , 
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is obtained. Since  
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The Equation below is may be written: 
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Considering the Equation above and the Equation (2.7.37), the equality below may 

be written: 
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To calculate (      ), it is necessary to find (      )  
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Considering (      ) and (      ) , the equality below is obtained: 
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     The expansions for    and for Z
*
 that were claimed in the statement of the 

theorem are obtained by explicitly writing out the Hermite polynomials. To obtain 

the expansion for    , write    as 
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Substitute this expansion into the right-hand-side of  
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and then collect terms of same order. The result is 
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     When the counterparts of Hermite polynomials in the above equation are written 

with notation  , 
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The right-hand-side of the above equation is zero for all values of ρ3 and ρ4 if and 

only if the  (    ⁄ ) term is zero for           Accordingly, 
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Using these obtained equalities, the equation below is obtained: 
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2.7.2 An Edgeworth View of the Bootstrap 

 

     A key assumption for bootstrap to accurately approximate the “continuity 

correction” terms in an Edgeworth expansion is that the sampling distribution would 

typically be required to satisfy Cramér’s condition. Hence, the performance of the 

bootstrap about this concept is valid under the “smooth function model”.  Hall (1992) 

defines bootstrap as a device for correcting an Edgeworth expansion or a Cornish-
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Fisher expansion for the first error term, due to the main effect of skewness. He also 

explains this matter as follows: 

 

When used correctly, the bootstrap approximation effectively removes the first 

error term in an Edgeworth expansion, and so its performance is generally an 

order of magnitude better than if only the “0th order” term, usually attributable to 

Normal approximation, had been accounted for (Hall, 1992, p. 108).   

 

     These corrections may be done for skewness and kurtosis, not just skewness. 

However, since a finite Edgeworth expansion is generally not a monotone function, 

these corrections do not always perform particularly well. Hence, a second 

Edgeworth correction is sometimes resulted in inferior coverage probability.  

 

2.8 Sufficient Bootstrap 

 

     While the bootstrap which is used in this section in the meaning of “conventional 

bootstrap” is seen as a special case of simple random sampling with replacement 

where the sample size n becomes equal to the population size N, as defined by Singh 

& Sedory (2011), sufficient bootstrap technique is based on retaining only distinct 

individual responses. Hence, in a sufficient bootstrap sample, units never appear 

more than once. However, if more than one unit have the same value in a sufficient 

bootstrap sample, they are seen as different units. So, they all can be in the same 

sufficient bootstrap sample. Singh & Sedory (2011) states that “this is especially 

important when estimating a proportion with the proposed estimator where the 

outcome variable is a Bernoulli variate which only takes on the values 0 and 1” (p. 

1634). It should be taken into consideration that the word “sufficient” is not tightly 

connected with sufficiency in terms of likelihood perspective. Singh & Sedory 

(2011) evaluate the performance of the sufficient bootstrap over the conventional 

bootstrap by considering a population consisting of N = 3 units. Their results are 

summarized and listed as follows: 
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1. The relative bias in the sufficient bootstrapping estimator of standard deviation is 

much less than that based on conventional bootstrapping. 

2. While conventional bootstrapping underestimates the standard deviation, 

sufficient bootstrapping overestimates the standard deviation. 

3. The estimator of the coefficient of variation based on the proposed sufficient 

bootstrapping has less relative bias compared to the value based on the 

conventional bootstrapping. 

 

     They presented the theoretical formulations for the expected value and the 

variance of the sufficient bootstrap estimate for the mean.   

 

     Singh & Sedory (2011) carry out a simulation study considering two different 

situations. Firstly, they check whether the estimators of the mean, the variance, the 

standard deviation and the coefficient of variation for a quantitative variable are 

more unbiased or not when using the sufficient bootstrapping rather than the 

conventional bootstrapping. They state that since the sufficient bootstrapping gives 

more unbiased estimation values for all the parameters mentioned above, as a result 

of using sufficient bootstrapping these parameters have significantly smaller mean 

squared errors than that in the case of conventional bootstrapping, and also the 

estimators obtained by the sufficient bootstrap have higher percent relative 

efficiencies than the estimators obtained by the conventional bootstrapping. 

Moreover, they check whether the estimator of the population proportion for a 

qualitative variable is more unbiased or not when using the sufficient bootstrapping. 

They state that both estimators obtained by two different bootstrap methods have 

nearly equal percent relative biases. However, when considering their mean squared 

errors, since the estimators obtained by using the sufficient bootstrapping have 

smaller mean squared errors, the percent relative efficiency of this estimator is 

higher. Hence, the sufficient bootstrap method should be preferred instead of the 

conventional bootstrap especially if the number of distinct units in a sufficient 

bootstrap sample follows the Feller (1957) distribution. In this thesis, the 

performance of the sufficient bootstrapping for the unit root test will be studied. 
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CHAPTER THREE 

TIME SERIES ANALYSIS 

 

3.1 Basic Definitions 

 

A time series is an ordered sequence of observations. Although the ordering is 

usually through time, particularly in terms of some equally spaced time intervals, 

the ordering may also be taken through other dimensions, such as space.... A time 

series, such as electric signals and voltage that can be recorded continuously in 

time, is said to be continuous. A time series, such as interest rates, yields, and 

volume of sales, which are taken only at specific time intervals, is said to be 

discrete (Wei, 2006, p. 1).  

 

     The observations in a time series are dependent or correlated, and therefore the 

order of the observations is important. Hence, statistical procedures and techniques 

that rely on independence assumption are no longer applicable, and different 

methods are needed. The body of statistical methodology available for analyzing 

time series is referred to as time series analysis.  

 

     A time series that exhibit variation about a fixed level are said to be stationary in 

the mean. A time series that exhibit an overall upward or downward trend are said to 

be nonstationary in the mean. In addition, if the variance of the series increases as 

the level of the series increases, that time series are said to be nonstationary in the 

variance. A time series that exhibit a regular increase or decrease in the same periods 

of a year that is a time series containing seasonal variation are called seasonal time 

series. The seasonal time series are also a kind of nonstationary time series. 

Nonstationary time series can be reduced to stationary series by proper 

transformations. 

 

     The time series approach which uses autocorrelation and partial autocorrelation 

functions to study the evolution of a time series through parametric models is known 

as time domain analysis. An alternative approach which uses spectral functions to 
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study the nonparametric decomposition of a time series into its different frequency 

components is known as frequency domain analysis.  

 

     Univariate time series analysis deals with the observations of only one variable. 

Multivariate time series analysis involves simultaneous observations on several 

variables.  

 

3.2 Fundamental Concepts 

 

A stochastic process is a family of time indexed random variables  (   ), where 

w belongs to a sample space and t belongs to an index set. For a fixed t,  (   ) is 

a random variable. For a given w,  (   ), as a function of t, is called a sample 

function or realization. The population that consists of all possible realizations is 

called the ensemble in stochastic processes and time series analysis. Thus, a time 

series is a realization or sample function from a certain stochastic process (Wei, 

2006, p. 6).  

 

     For a finite set of random variables {             } from a stochastic process 

{ (   )             }, the n-dimensional distribution function is defined by 

 

                                     
(       )    {                      }               (     ) 

 

where   ,           are any real numbers. A process is said to be first-order 

stationary in distribution if its one-dimensional distribution function is time invariant, 

i.e., if     
(  )          

(  )  for any integers   ,   and      ; second-order 

stationary in distribution if         
(     )                

(     ) for any integers   , 

  ,  ,       and      ; and n
th

-order stationary in distribution if  

 

                                        
(       )                  

(       )                      (     ) 
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for any n-tuple (        )  and   of integers. A process is said to be strictly 

stationary if (3.2.2) is true for any  , i.e.,          

 

     For a given real-valued process, that is the process which assumes only real 

values, {                }, the mean function of the process is defined as 

 

                                                                     (  )                                                        (     ) 

 

the variance function of the process is defined as 

 

                                                          
    [(      )

 ]                                               (     ) 

 

the covariance function between     and     is defined as  

 

                                                (     )    [(        )(        )]                      (     ) 

 

the correlation function between     and     is defined as 

 

                                                       (     )    
 (     )

√   
 √   

 

                                              (     ) 

 

     For a strictly stationary process with the first two moments finite, the covariance 

and the correlation between    and      depend only on the time difference  . 

 

     Wei (2006) explains the importance of the autocorrelation functions and the 

partial autocorrelation functions in time series as follows:  

 

A stochastic process is said to be a normal or Gaussian process if its joint 

probability distribution is normal. Because a normal distribution is uniquely 

characterized by its first two moments, strictly stationary and weakly stationary 

are equivalent for a Gaussian process.... Like other areas in statistics, most time 
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series results are established for Gaussian processes. Thus, the autocorrelation 

functions and the partial autocorrelation functions... become fundamental tools in 

time series analysis (Wei, 2006, p. 10). 

 

The covariance between    and      is defined as 

 

                                            (       )    [(     )(       )]                (     ) 

 

the correlation between    and      is defined as 

 

                                                   
   (       )

√   (  )√   (    )
   

  

  
                            (     ) 

 

where    (  )      (    )        As functions of  ,    is called the 

autocovariance function and    is called the autocorrelation function (ACF) in 

time series analysis. 

 

     For a stationary process, the autocovariance function    and the autocorrelation 

function    have the following properties: 

 

1.        (  )         

2. |  |        |  |       

3.          and          for all  , i.e.,    and    are even functions and hence 

symmetric about the lag      since the time difference between    and     , 

and    and      are being the same.  

4.    and    are positive semidefinite in the sense that 
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for any set of time points             and any real numbers            . 

 

     The partial autocorrelation function is defined as the correlation between    and 

     after their mutual linear dependency on the intervening variables 

                    has been removed, that is, 

 

                                                      (       |             )                                 (      ) 

 

         has become a standard notation for the partial autocorrelation between      

and      in time series literature. As a function of k,     is usually referred to as the 

partial autocorrelation function (PACF). 

 

     A process {  } is called a white noise process if it is a sequence of uncorrelated 

random variables from a fixed distribution with constant mean  (  )         usually 

assumed to be 0, constant variance    (  )      
  and        (       )      

for all     . The basic phenomenon of the white noise process is that its ACF and 

PACF are identically equal to zero. This process plays the role of an orthogonal basis 

in the general vector and function analysis. A white noise process is Gaussian if its 

joint distribution is normal., 

 

3.3 Stationary Time Series Models 

 

3.3.1 Autoregressive Processes 

 

                                               ̇       ̇           ̇                                     (     ) 

 

or 

                                                          ( ) ̇                                                               (     ) 

 

where   ( )   (             
 ) and  ̇        .  
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     The process is always invertible. To be stationary, the roots of   ( )     must 

lie outside of the unit circle. The AR processes are useful in describing situations in 

which the present value of a time series depends on its preceding values plus a 

random shock. Yule (1927) used an AR process to describe the phenomena of 

sunspot numbers and the behaviour of a simple pendulum. 

 

     For an autoregressive process, the ACF    tails off as a mixture of exponential 

decays or damped sine waves depending on the roots of   ( )    . Damped sine 

waves appear if some of the roots are complex. The PACF     vanishes after lag  .   

 

     The first-order autoregressive process is named as AR(1) process  

      

                                                           (      ) ̇                                                    (     ) 

or 

                                                            ̇       ̇                                                      (     ) 

 

     The AR(1) process is sometimes called the Markov process since the distribution 

of  ̇    given  ̇     ̇       is exactly the same distribution of  ̇   given  ̇     

 

     In terms of a stationary AR(1) process, it is always referred to the case in which 

the parameter value is less than 1 in absolute value. The ACF of the AR(1) process 

decays exponentially (dies-down). The PACF of the AR(1) process shows a positive 

or negative spike at lag 1 depending on the sign of the parameter and then cuts off.  

 

3.3.2 Moving Average Processes 

 

                                                  ̇                                                     (     ) 

 

or 

                                                                   ̇      ( )                                                  (     ) 

  

where   ( )   (             
 ) and  ̇        . 
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     The process is always stationary. To be invertible, the roots of   ( )     must 

lie outside of the unit circle. The MA processes are useful in describing phenomena 

in which events produce an immediate effect that only lasts for short periods of time. 

The process arose as a result of the study by Slutzky (1927) on the effect of the 

moving average of random events. 

 

     For a MA process, the ACF    will vanish after lag  . The PACF     tails off as 

a mixture of exponential decays or damped sine waves depending on the roots of 

  ( )     Damped sine waves appear if some of the roots are complex. 

 

     The first-order moving average process is named as MA(1) process       

 

                                                      ̇    (      )                                                      (     ) 

 

or 

                                                      ̇                                                                   (     ) 

 

     In terms of an invertible MA(1) process, the case in which the parameter value is 

less than 1 in absolute value is referred. The ACF of the MA(1) process shows a 

positive or negative spike at lag 1 depending on the sign of the parameter and then 

cuts off. The PACF of the MA(1) process decays exponentially (dies-down). 

 

3.3.3 The Dual Relationship Between AR(p) and MA(q) Processes 

 

A finite-order stationary AR(p) process corresponds to an infinite-order MA 

process, and a finite-order invertible MA(q) process corresponds to an infinite-

order AR process. This dual relationship between the AR(p) and MA(q) processes 

also exists in the autocorrelation and partial autocorrelation functions. The AR(p) 

process has its autocorrelations tailing off and partial autocorrelations cutting off, 

but the MA(q) process is the inverse (Wei, 2006, p. 57). 
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3.3.4 Autoregressive Moving Average ARMA(p,q) Processes 

 

                                                         ( ) ̇      ( )                                                 (     ) 

 

where   ( )   (             
 ) and   ( )   (             

 )  

 

     For the process to be invertible, the roots of   ( )    have to lie outside of the 

unit circle. To be stationary, the roots of   ( )     have to lie outside of the unit 

circle. Also, two polynomials,   ( )     and   ( )   , have to share no common 

roots. Here, p and q are used to indicate the orders of the associated autoregressive 

and moving average polynomials, respectively. 

 

The autocorrelation function of an ARMA(p,q) model tails off after lag q just like 

an AR(p) process, which depends only on the autoregressive parameters in the 

model. The first   autocorrelations                however, depend on both 

autoregressive and moving average parameters in the model and serve as initial 

values for the pattern. This distinction is useful in model identification.... Because 

the ARMA process contains the MA process as a special case, its PACF will also 

be a mixture of exponential decays or damped sine waves depending on the roots 

of,   ( )     and   ( )    (Wei, 2006, p. 59). 

 

     It is necessary to note that the sample phenomenon of a white noise series implies 

that the underlying model is either a random noise process or an ARMA process with 

its AR and MA polynomials being nearly equal. The assumption of no common roots 

between   ( )     and   ( )    in the mixed model is needed to avoid this 

confusion. Briefly, if in an ARMA model, at least one of the roots of,   ( )     

and   ( )    is the same, that process changes to a white noise process. 

 

     In modelling time series, the models constructed with only a finite number of 

parameters are used. It is useful to know that for a fixed number of observations, the 

more parameters in a model, the less efficient is the estimation of the parameters. 
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Hence, other things being equal, in general, a simpler model is chosen to describe the 

phenomenon. This modelling criteria is the principle of parsimony in model building 

recommended by Tukey (1967) and Box and Jenkins (1976).   

 

3.4 Nonstationary Time Series Models 

 

     Compared to the class of covariance stationary processes, nonstationary time 

series can occur in many different ways. They could have nonconstant means   , or 

time-varying second moments such as nonconstant variance   
   or both of these 

properties. 

 

3.4.1 Nonstationarity in the Mean 

 

     In this section, two classes of models that are useful in modelling time series 

nonstationary in the mean are introduced.  

 

     3.4.1.1 Deterministic Trend Models 

 

     The mean function of a nonstationary process could be represented by a 

deterministic trend of time. In such a case, a standard regression model might be 

used to describe the phenomenon.  For example, if the mean function    follows a 

linear trend,               then the deterministic linear trend model 

 

                                                                                                                            (     ) 

 

with the    being a zero mean white noise series can be used. For a deterministic 

quadratic mean function,                 
   the model 

 

                                                                       
                                     (     ) 

 

can be used. See Wei (2006), for the details. 
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     3.4.1.2 Stochastic Trend Models and Differencing 

 

     If different parts of a time series behave very much alike except for their 

difference in the local mean levels, this kind of nonstationary behaviour is named as 

homogeneous nonstationary (Box & Jenkins, 1976). In this circumstance, integration 

can be a solution. Wei (2006) defines integrated process as follows: 

 

If a time series    is nonstationary and its     difference,        (   )    is 

stationary and also can be represented as a stationary ARMA(p, q) process, then 

    is said to follow an ARIMA(p, d, q) model. The    in this case is referred to as 

an integrated process or series (Wei, 2006, p. 186).  

 

     In terms of the ARMA models, the process is nonstationary if some roots of its 

AR polynomial do not lie outside of the unit circle. The local behaviour of this kind 

of homogeneous nonstationary series is independent of its level. This kind of series 

can be reduced to a stationary series by taking a suitable difference of the series. In 

other words, the series {  } is nonstationary, but its     differenced series, {(  

 )   }  for some integer     , is stationary. Wei (2006) explains this kind of 

nonstationary series considering     .   

 

                                                           (   )                                                           (     ) 

 

or 

                                                                                                                            (     ) 

 

The level of the series at time   is 

 

                                                                                                                                  (     ) 

 

which is subject to the stochastic disturbance at time (   ). Wei (2006) states that 

for      the mean level of the process    changes through time stochastically, and 

this process is characterized as having a stochastic trend.  
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     Briefly, for the deterministic trend models, the mean level of the series is 

determined only by the time variable,  . On the other hand, for the stochastic trend 

models, the mean level of the series is determined by the previous observations; i.e., 

by      for     , by      for     , etc. 

 

3.4.2 Autoregressive Integrated Moving Average (ARIMA) Models 

 

     In this section, two classes of ARIMA models which are useful in describing 

various homogeneous nonstationary time series are introduced.  

 

     3.4.2.1 The General ARIMA Model 

 

     The differenced series (   )    usually follows the general stationary 

ARMA(p,q) process in (3.3.9). Then, for integrated processes, instead of (3.3.9), the 

model below is used:    

 

                                            ( )(   )            ( )                                  (     ) 

 

where the stationary AR operator   ( )   (             
 )  and the 

invertible MA operator    ( )   (             
 )  share no common 

factors. 

 

The parameter    plays very different roles for      and     . When     , 

the original process is stationary, and...    is related to the mean of the process, 

i.e.,       (            ) . When     , however,    is called the 

deterministic trend term and,... is often omitted from the model unless it is really 

needed (Wei, 2006, p. 72). 

 

        is often omitted when     , since for large  , it can become very dominating 

so that it forces the series to follow a deterministic pattern. 
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     To show why the intercept term causes a deterministic trend, let consider the 

model 

                                                                                                                     (     ) 

or 

                                                                                                             (     ) 

                

By successive substitutions, this process may be defined as 

 

                                 ∑      

 

   

                

            ∑      

 

   

                                                                 (     ) 

since 

                                                    

 

In (3.4.9),  

                             

                              ∑      

 

   

   

 

Enders (1948) explains the importance of knowing the form of the trend as follows: 

 

As the forecast horizon expands, the precise form of the trend becomes 

increasingly important. Stationarity implies the absence of a trend and long-run 

mean reversion. A deterministic trend implies steady increases (or decreases) into 

the infinite future. Forecasts of a series with a stochastic trend converge to a 

steady level... The nature of the trend may have important theoretical formulations 

(Enders, 1948, p. 261).   
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     3.4.2.2 The Random Walk Model 

 

     In (3.4.6), if     ,     , and     , then we have the well-known random 

walk model, which is shown in the section 3.4.1.2.   

 

                                                          (   )                                                         (      ) 

or 

                                                                                                                         (      ) 

 

     This model has been widely used to describe the behaviour of the series of a stock 

price. This behaviour is similar to following a drunken man whose position at time   

is his position at time (   ) plus a step in a random direction at time  . 

 

The random walk model is the limiting process of the   ( )  process (  

   )        with ϕ   1. Because the autocorrelation function of the AR(1) 

process is        , as ϕ    , the random walk model phenomenon can be 

characterized by large, nonvanishing spikes in the sample ACF of the original 

series {  }  and insignificant zero ACF for the differenced series {(   )  } 

(Wei, 2006, p. 72). 

 

When the random walk model has a nonzero constant term, 

 

                                                (   )                                                            (      ) 

or 

                                                                                                                  (      ) 

 

it is named as the random walk model with drift.  

 

3.4.3 Nonstationarity in the Variance and the Autocovariance 

 

     Differencing can be used to reduce a homogeneous nonstationary time series to a 

stationary time series. However, the nonstationarity of the heterogeneous series is not 
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because of their time-dependent means but because of their time-dependent variances 

and autocovariances. To reduce these types of nonstationarity, transformations are 

needed. 

 

     3.4.3.1 Variance and Autocovariance of the ARIMA Models 

 

     A process that is stationary in the mean is not necessarily stationary in the 

variance and the autocovariance. A process that is nonstationary in the mean, 

however, will also be nonstationary in the variance and the autocovariance.  

 

     In Wei (2006), it is shown that the ARIMA model whose mean function is time-

dependent is also nonstationary in its variance and autocovariance functions. There, 

the following results are established: 

 

1. The variance,    (  )  of the ARIMA process is time dependent, and 

   (  )       (    ) for       

2. The variance    (  ) is unbounded as        

3. The autocovariance    (       ) and the autocorrelation     (       ) of 

the process are also time dependent and hence are not invariant with respect to 

time translation. In other words, they are not only functions of the time 

difference k but are also functions of both time origin t and the original 

reference point n0.  

4. If t is large with respect to n0, then...     (       )      Because 

|    (       )|      it implies that the autocorrelation function vanishes 

slowly as k increases. 

(Wei, 2006, p. 83). 

 

     3.4.3.2 Variance Stabilizing Transformations 

 

     Differencing is not an appropriate solution to transform the series which are 

stationary in the mean but are nonstationary in the variance to stationary series. It is 
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very common for the variance of a nonstationary process to change as its level 

changes. Thus, 

                                                       (  )      (  )                                                   (      ) 

 

for some positive constant   and function  . Wei (2006) shows to find a function T  

so that the transformed series,  (  )  has a constant variance. He approximates the 

desired function by a first-order Taylor series about the point    as follows: 

 

Let 

                                     (  )     (  )     (  )(      )                              (      ) 

 

where   (  ) is the first derivative of  (  ) evaluated at   . Now   

 

   [ (  )]    [  (  ) ]
    (  ) 

                                                                      [  (  ) ]
   (  )                             (      ) 

  

Thus, in order for the variance of  (  ) to be constant, the variance stabilizing 

transformation  (  )  must be chosen so that  

 

                                                           (  )    
 

√ (  )
                                          (      ) 

 

Equation (3.4.17) implies that 

 

                                                        (  )    ∫
 

√ (  )
                                    (      ) 

 

For example, if the standard deviation of a series is proportional to the level so 

that     (  )       
 , then 

 

                                                   (  )    ∫
 

√  
 
        (  )                        (      )  
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Hence, a logarithmic transformation (the base is irrelevant) of the series,   (  )  

will have a constant variance (Wei, 2006, p. 84). 

 

More generally, the power transformation 

 

                                                            (  )    
  

    

 
                                               (      ) 

 

introduced by Box and Cox (1964) can be used. Table 3.1 shows some commonly 

used values of λ and their associated transformations. 

 

Table 3.1 Values of λ and their associated transformations  

Values of λ (lambda) Transformation 

-1.0 (  )
   

-0.5 (  )
   ⁄  

0.0   (  ) 

0.5 (  )
  ⁄  

1.0    (no transformation) 

 

     Some important remarks as regards differencing and variance stabilizing 

transformations are given in Wei (2006) as follows: 

 

1. The variance stabilizing transformations introduced above are defined only for 

positive series. This definition, however, is not as restrictive as it seems 

because a constant can always be added to the series without affecting the 

correlation structure of the series. 

2. A variance stabilizing transformation, if needed, should be performed before 

any other analysis such as differencing. 

3. Frequently, the transformation not only stabilizes the variance, but also 

improves the approximation of the distribution by a normal distribution (Wei, 

2006, p. 86). 
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3.5 Forecasting 

 

     Taking into account of the available observations, making predictions for the 

values which may be realize in the future is called as forecasting. Wei (2006) states 

that “forecasting is essential for planning and operation control in a variety of areas 

such as production management, inventory systems, quality control, financial 

planning, and investment analysis” (p. 88). Forecasting may be also considered as 

one of the most important goals of the time series analysis.   

 

In forecasting, our objective is to produce an optimum forecast that has no error or 

as little error as possible, which leads us to the minimum mean square error 

forecast. This forecast will produce an optimum future value with the minimum 

error in terms of the mean square error criterion (Wei, 2006, p. 88).  

 

     Wei (2006) gives details about the minimum mean square error forecasts for 

ARMA and ARIMA models. During the forecasting process, when new observations 

are obtained, they are taken into account of for updating the previous forecasts. 

 

3.6 Model Identification 

 

     Wei (2006) defines that “model identification refers to the methodology in 

identifying the required transformations, such as variance stabilizing transformations 

and differencing transformations, the decision to include the deterministic parameter 

   when     , and the proper orders of p and q for the model” (p. 108). The goal is 

to match patterns in the sample ACF and sample PACF, with the known patterns of 

the population ACF and population PACF. Steps of the model identification can be 

summarized as follows:    

 

Step 1: The time series data are plotted to check the series containing a trend, 

seasonality, outliers, nonconstant variances, and other nonnormal and nonstationary 

phenomena, and if it is necessary, the appropriate transformations are determined. As 

regards the transformations, Wei (2006) stresses that “because variance-stabilizing 
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transformations such as the power transformation require non-negative values and 

differencing may create some negative values, we should always apply variance-

stabilizing transformations before taking differences” (p. 109).  

 

Step 2: If differencing the series is necessary, the sample ACF and the sample PACF 

are computed to determine the degree of differencing which makes the series 

stationary. For example, if the sample ACF decays very slowly, whereas the sample 

PACF cuts off after lag 1, it indicates the differencing is needed. In this condition, 

the unit root test may be proposed.  

 

Some authors argue that the consequences of unnecessary differencing are much 

less serious than those of under-differencing, but do beware of the artifacts 

created by over-differencing so that unnecessary over-parameterization can be 

avoided (Wei, 2006, p. 109) 

 

     Briefly, you should use more parameter than you need instead of less parameter 

than you need. However, it should be noted that unnecessary over-parameterization 

decreases both the degrees of freedom and the efficiency of the estimators.    

 

Step 3: After the series are transformed properly to be stationary, you should 

compute the sample ACF and PACF to identify the orders of p and q. In practice, the 

needed orders are usually less than or equal to 3. Table 3.2 summarizes the important 

results for selecting p and q.  

 

To identify a reasonably appropriate ARIMA model, ideally, we need a minimum 

of       observations, and the number of sample lag-k autocorrelations and 

partial autocorrelations to be calculated should be about   ⁄  (Wei, 2006, p. 109). 

 

Step 4: When     , you should test whether or not the deterministic trend term,   , 

is necessary. Usually,    is included in the initial model, and if the preliminary 

estimation result is not significant, it is discarded at the final model estimation.   
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For the theoretical details and the empirical examples, see Wei (2006).   

 

Table 3.2 Characteristics of theoretical ACF and PACF for stationary processes 

Process ACF PACF 

 

  ( ) 

Tails off exponential decay 

or damped sine wave 

Cuts off after lag   

 

  ( ) 

 

Cuts off after lag   

Tails off exponential decay 

or damped sine wave 

    (   ) Tails off after lag(   ) Tails off after lag(   ) 

 

 

3.7 Parameter Estimation, Diagnostic Checking, and Model Selection Criteria 

 

3.7.1 Parameter Estimation 

 

     In time series analysis, several methods are used to estimate the parameters. In 

this thesis, some of them are mentioned briefly. 

 

     Method of moments estimators are found by equating the sample moments to the 

corresponding population moments, and solving the resulting system of simultaneous 

equations. These estimators are usually called Yule-Walker estimators. Wei (2006) 

points out that the moment estimators are not recommended for final estimation 

results and should not be used if the process is close to being nonstationary or 

noninvertible. 

 

     The Maximum Likelihood Estimator (MLE) is the one for which the probability 

of observing the corresponding sample is maximum. In general, the MLE is a good 

point estimator, possessing some of the optimality properties. 

 

     The ordinary least squares (OLS) estimation developed for linear regression 

models can also be used in time series analysis. However, Wei (2006) points out that 

the OLS estimator for the parameter of an explanatory variable in a regression model 
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will be inconsistent unless the error term is uncorrelated with the explanatory 

variable. For     (   )models, this condition usually does not hold except when  

q = 0. Hence, the other estimation methods discussed above are more efficient and 

commonly used in time series analysis. 

 

     Chang & Park (2000) state that “the Yule-Walker method may be preferred to the 

OLS method in small samples, since it always yields an invertible autoregression; 

see, for example, Brockwell & Davis (1991, section 8.1, 8.2)” (p. 390).  

 

3.7.2 Diagnostic Checking 

 

     After parameter estimation, whether the model assumptions are satisfied or not 

have to be checked. This matter is explained in Wei (2006) as follows: 

 

To check whether the errors are normally distributed, one can construct a 

histogram of the standardized residuals  ̂  ̂ ⁄  and compare it with the standard 

normal distribution using the chi-square goodness of fit test or even Tukey’s 

simple five-number summary. To check whether the variance is constant, we can 

examine the plot of residuals. To check whether the residuals are approximately 

white noise, we compute the sample ACF and sample PACF (or IACF) of the 

residuals to see whether they do not form any pattern and are all statistically 

insignificant, i.e., within two standard deviations if          (Wei, 2006, p. 152-

153).  

 

3.7.3 Model Selection 

 

In time series analysis, for a given data set, when there are multiple adequate 

models, the selection criterion is normally based on summary statistics from 

residuals computed from a fitted model or on forecast errors calculated from the 

out-sample forecasts. The latter is often accomplished by using the first portion of 

the series for model construction and the remaining portion as a holdout period for 

forecast evaluation (Wei, 2006, p. 156).  
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Below, some model selection criteria based on residuals are introduced briefly. 

 

     3.7.3.1 Akaike’s AIC 

 

     Akaike (1973,1974) introduced an information criterion to evaluate the quality of 

the model building. The criterion has been called AIC (Akaike’s information 

criterion) in the literature and is defined as 

 

                                        ( )        [                  ]                  (     ) 

 

where   is the number of parameters in the model. For the ARMA model and   

effective number of observations, it is showed in Wei (2006) that the AIC criterion 

reduces to 

 

                                                               ( )        ̂ 
                                      (     ) 

 

     The optimal order of the model is chosen by the value of  , which is a function 

of p and q, so that    ( ) is the minimum. 

 

     Shibata (1976) has shown that the AIC tends to overestimate the order of the 

autoregression.  

 

     3.7.3.2 Akaike’s BIC 

 

     Akaike (1978, 1979) has developed a Bayesian extension of the minimum AIC 

procedure, called the Bayesian information criterion (BIC), which takes the form   

 

             ( )       ̂ 
   (    )   (   

 

 
)         

     [(
 ̂ 

 

 ̂ 
 
   )  ⁄ ]                                                                      (     ) 
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where  ̂ 
  is the maximum likelihood estimate of   

 ,   is the number of parameters, 

and  ̂ 
  is the sample variance of the series. 

 

     Through a simulation study Akaike (1978) has claimed that the BIC is less likely 

to overestimate the order of the autoregression.  

 

     Chang & Park (2000) gives information about the usage of AIC and BIC as 

follows: 

 

If it is known that the true model is generated by a finite order autoregression, the 

order selection based on BIC is consistent, and therefore, it might be preferred. 

Such a case, however, is rare in practical applications. True model is unknown, 

and not likely to be given exactly by a finite order autoregression. We may thus 

use AIC, in favour of BIC, since it leads to asymptotically efficient choice of the 

optimal order for a class of infinite order autoregressive processes (Brockwell & 

Davis, 1991).... Using BIC instead of AIC generally gives higher rejection 

probabilities under both the null and alternative hypotheses. A reversed tendency 

has been observed when we increase the number of maximum lag length. The use 

of AIC with no restriction on the maximum lag length yields the lowest rejection 

probabilities. The highest rejection probabilities are observed with the application 

of BIC with smallest maximum lag length. However, the choice of the selection 

criteria and the maximum lag length do not seem to affect the discriminatory 

powers of the tests. Their affects are rather uniform regardless of the presence or 

absence of the unit root (Chang & Park, 2000, p. 390-391). 

 

 

 

3.8 Unit Root Processes 

 

3.8.1 Definition and Importance of Unit Root Tests 
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     The unit root hypothesis has drawn much attention for the past three decades, 

especially in economics and other related fields. Chang & Park (2000) point out that 

“the hypothesis has an important implication on, in particular, whether or not the 

shocks to an economic system have a permanent effect on the future path of the 

economy” (p. 379). It is known that many of important economic and financial time 

series display unit root characteristics. Phillips & Perron (1988) explain the 

importance of the unit root tests in economy as follows: 

 

One major field of application where the hypothesis of a unit root has important 

implications is economics. This is because a unit root is often a theoretical 

implication of models which postulate the rational use of information that is 

available to economic agents.... Formal statistical tests of the unit root hypothesis 

are of additional interest to economists because they can help to evaluate the 

nature of the nonstationarity that most macroeconomic data exhibit. In particular, 

they help in determining whether the trend is stochastic, through the presence of a 

unit root, or deterministic, through the presence of a polynomial time trend 

(Phillips & Perron, 1988, p. 335). 

 

     The tests by Dickey & Fuller (1979, 1981) are most commonly used. However, 

Chang & Park (2000) state that “the tests by Said-Dickey and Phillips-Perron are 

often preferred to the Dickey-Fuller tests in practical applications, since they do not 

require any particular parametric specification and yet are applicable for a wide class 

of unit root models” (p. 380). The disadvantage of all these tests is to have 

considerable size distortions in finite samples. Therefore, in this thesis whether the 

bootstrap method can improve their finite sample performance or not is investigated.     

 

     In Section 3.4 it is mentioned that a nonstationary time series can often be 

reduced to a stationary time series by differencing. The question of whether a series 

should be differenced is equal to the question of whether a series has a unit root. First 

of all it is useful to summarize the basic properties of both a covariance stationary 

series and a nonstationary series. These properties are given in Enders (1948) as 

follows:  
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We know that a covariance stationary series: 

 

1. Exhibits mean reversion in that it fluctuates around a constant long-run mean. 

2. Has a finite variance that is time-invariant. 

3. Has a theoretical correlogram that diminishes as lag length increases. 

 

.... To aid in the identification of a nonstationary series, we know that: 

 

1. There is no long-run mean to which the series returns. 

2. The variance is time-dependent and goes to infinity as time approaches 

infinity. 

3. Theoretical autocorrelations do not decay but, in finite samples, the sample 

correlogram dies out slowly (Enders, 1948, p. 212). 

 

Let consider a series is generated from the following first-order process: 

 

                                                                                                                         (     ) 

 

where {  } is generated from a white-noise process. 

 

     Why the usual t-test cannot be used to test the unit root hypothesis is explained in 

Enders (1948). He firstly considers to test           and          . Under the 

null hypothesis, (3.8.1) can be estimated using OLS. The fact that at is a white-noise 

process and |  |    guarantee that the {  } sequence is stationary and the estimate 

of the coefficient is efficient. Calculating the standard error of the estimate of 

coefficient, the researcher can use a t-test to determine whether the coefficient is 

significantly different from zero. However, if the hypotheses are established as 

          and     |  |     under the null hypothesis, the {  }  sequence is 

generated by the nonstationary process 
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                                                                        ∑  

 

   

                                                   (     ) 

 

     Now, under the null hypothesis, the variance becomes infinitely large as t 

increases. Then, it is inappropriate to use classical statistical methods to estimate and 

perform significance tests on the coefficient. The process returns to a random walk 

process. The first-order autocorrelation coefficient in a random walk model is 

 

     [(   )  ⁄ ]        

 

     Enders (1948) states that “since the estimate of the coefficient is directly related 

to the value of   , the estimated value of the coefficient is biased to be below its true 

value of unity” (p. 213). Then, the estimated model will mimic that of a stationary 

AR(1) process with a near unit root. In this condition, the usual t-test cannot be used 

to test          . Dickey and Fuller (1979, 1981) devised a procedure to formally 

test for the presence of a unit root. 

 

3.8.2 Unit Roots in a Regression Model 

 

     Enders (1948) explains the unit root situation for a regression model considering 

the regression equation below  

 

                                                                                                                     (     ) 

 

     Under the assumptions of the classical regression model, both the {  } and {  } 

sequences are stationary and the errors have a zero mean and finite variance. 

However, in the presence of nonstationary variables, there might be spurious 

regression as called by Granger and Newbold (1974). A spurious regression has a 

high R
2
, t-statistics that appear to be significant but the results are without any 

economic meaning. The regression output “look good” because the least-squares 

estimates are not consistent and the customary tests of statistical inference do not 

hold. Granger & Newbold (1974) provide a detailed examination to survey the 
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consequences of violating the stationarity assumption by generating two sequences, 

{  } and {  }, as independent random walks using the formulas: 

 

               

and 

               

 

where both     and     are white-noise processes independent of each other.  

 

     Surprisingly, while the Equation (3.8.3) is necessarily meaningless since both 

processes are independent random walks, and any relationship between two variables 

is spurious, Granger & Newbold (1974) have rejected the true null hypothesis, that is 

     , in approximately     of the time compared to true nominal    

significance level. Moreover, the regressions usually had very high R
2
 values and the 

estimated residuals exhibited a high degree of autocorrelation. This result is 

meaningless since the assumption that the error term is a unit root process is 

inconsistent with the distributional theory underlying the use of OLS. This problem 

will not disappear in large samples. To see the details, see Granger & Newbold 

(1974) or Enders (1948).   

 

     Enders (1948) gives the four cases for the econometrician to be careful in working 

with nonstationary variables as follows: 

 

 Case1: Both {  } and {  } are stationary. When both variables are stationary, 

the classical regression model is appropriate. 

 Case2: The {  }  and {  }  sequences are integrated of different orders. 

Regression equations using such variables are meaningless.... 

 Case3: The nonstationary {  } and {  } sequences are integrated of the same 

order and the residual sequence contains a stochastic term. This is the case in 

which the regression is spurious. The results from such spurious regressions 

are meaningless in that all errors are permanent. In this case, it is often 

recommended that the regression equation be estimated in first differences.... 
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 Case4: The nonstationary {  } and {  } sequences are integrated of the same 

order and the residual sequence is stationary. In this circumstance, {  } and 

{  } are cointegrated (Enders, 1948, p. 219).  

 

3.8.3 Some Useful Limiting Distributions 

 

     For the simple   ( ) model 

 

                                                                                                                         (     ) 

 

with           and        where the    is the Gaussian  (    
 )  white noise 

process, the unit root process implies a test for a random walk model. The alternative 

is that the series is stationary. That is          and     | |     

 

     Wei (2006) gives the test statistic formula connected with the OLS estimation as 

follows:            

                                                                 ̂    
∑       

 
   

∑     
  

   

                                            (     ) 

 

Under the hypothesis          ,              , 

 

 ̂    
∑       

 
   

∑     
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Thus, multiplying the equation above with       ⁄      
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 {[ ( )]    }

  
 ∫ [ ( )]    

 

 

   

 

 
{[ ( )]    }

∫ [ ( )]    
 

 

                       (     ) 

 

     Ferretti & Romo (1996) states that “the limit distribution of  ̂ is different for the 

three possible cases: stationary, unstable, and explosive; it is normal for the 

stationary case and nonnormal for the two nonstationary cases” (p. 849). For 

instance, in the unstable case,     , it is known that 

 

    
( ̂    )(∑     

  
   )  ⁄

( ̂ 
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{  
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}
  ⁄

              (     ) 

 

     In this section, it is shown that this test statistic converges weakly to the limit 

distribution above as        where { ( )} is the standard Brownian motion on [0, 

1]. The same approach is used with Wei (2006) who follows the approach of Chan & 

Wei (1988) for developing a desired test statistic. The theoretical approaches are 

given only for AR(1) model without a constant term. Wei (2006) gives the Wiener 

process and its connection with the test statistic of Dickey-Fuller as follows: 

 

A process, ( ), is continuous if its time index t belongs to an interval of a real 

line. For distinction, we often write a continuous process as  ( ) rather than   . 

A process  ( ) is said to be a Wiener process (also known as Brownian motion 

process) if it contains the following properties:  

 

1.  ( )      

2.  [ ( )]      

3.  ( ) follows a nondegenerate normal distribution for each t; and 
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4.  ( )  has independent increments, i.e. [ (  )    (  )]  and [ (  )  

  (  )] are independent for any nonoverlapping time intervals (     )  and 

(     )  

 

With no loss of generality, we consider t in the closed interval between 0 and 1, 

i.e.,     [   ]. Furthermore, if for any t,  ( ) is distributed as  (   )  then the 

process is also called standard Brownian motion. 

 

Given the i.i.d. random variables   , for           with mean 0 and variance 

  
 , define 

 

  ( )    

{
 
 
 

 
 
 

                                                             ⁄   

  √ ⁄                                                  ⁄         ⁄   

(      ) √ ⁄                                   ⁄         ⁄   
                                                                                
                                                                                
                                                                                

 (               ) √ ⁄                                       

 

 

That is, 

                                                             ( )    
 

√ 
∑   

[  ]

   

                                         (     ) 

 

where     [   ] and [  ] represents the integer portion of (  ). Now, 

 

                                     ( )    
 

√ 
∑   

[  ]

   

   
√[  ]

√ 

 

√[  ]
∑   

[  ]

   

               (      )    

 

Because, as       (√[  ] √ ⁄ )    √  and ∑   √[  ]⁄
[  ]
    converges to a 

 (    
 )  random variable by the central limit theorem, it follows that   ( ) 

converges in distribution to √   (    
 )     (     

 ) as         which will be 
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denoted by   ( )
 
  (     

 )  In the following discussion, we also use the 

notation   

 
    to indicate the convergence of    to   in probability as        

 

It can be easily seen that the limit of the sequence of the random variable 

  ( )   ⁄  can be described by a Wiener process, i.e., 
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   ( )                                          (      ) 

or 

                                                                  ( )
 
    ( )                                      (      ) 

 

where  ( ) at time      follows an  (   )  Specifically,  

 

                                                   ( )    ∑
  

√ 

 

   

 
    ( )                                 (      ) 

 

where  ( ) follows an  (   )  

 

Let                     and        We can rewrite   ( )... as   

 

  ( )       

{
 
 
 
 

 
 
 
 

                                     ⁄   

  √ ⁄                          ⁄         ⁄   

  √ ⁄                          ⁄         ⁄   
                                                               
                                                               

                                                                       
  √ ⁄                                                          

                    

                           (      )

  

Then... 
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    ( )                                                 (      ) 

or 
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 [ ( )]                                                 (      ) 

 

Also, it is clear that the integral ∫   ( )   
 

 
 is simply the sum of the area...  
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Similarly, 
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Next, 
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and summing from 1 to   gives 
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Therefore, 

   ∑      
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 {[ ( )]    }              (      ) 

 

which follows from... that  [∑   
  ⁄ 

   ]
 
   

  (Wei, 2006, p. 186-189). 

 

Now (3.8.6) converges in distribution to (3.8.7) following (3.8.18),(3.8.19) and 

that under   , (3.8.4) becomes a random walk model that can be written as 
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Proof for ∑       
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     It is known that the normal and the t-distributions cannot be used when the 

parameter value equals to 1. Wei (2006) also explains the reason why the limiting 

distribution of the test statistic above is skewed to the left as follows: 

 

 ( ) is known to be an  (   ) random variable. Hence [ ( )]  follows the chi-

square distribution with one degree of freedom, i.e.,   ( )  The probability that a 

  ( ) random variable is less than 1 is .6827. Because the denominator is always 

positive, the probability that  ( ̂    )    approaches .6827 as   becomes 

large. The OLS estimator  ̂ clearly underestimates the true value in this case, and 

the limiting distribution of  ( ̂    ) is clearly skewed to the left. As a result, the 

null hypothesis is rejected only when  ( ̂    ) is really too negative, i.e., much 

less than the rejection limit when the normal or the t-distribution is used (Wei, 

2006, p. 190). 

 

     The percentiles for the empirical distribution of  ( ̂    )  in (3.8.20) were 

constructed by Dickey (1976) using the Monte Carlo method and reported in Fuller 

(1996, p. 641). 

 

     The commonly used t-statistic under    is 
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Now, the equation (3.8.6) can be rewritten as follows: 
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which follows from (3.8.18), (3.8.19) and that  ̂ 
  is a consistent estimator of   

 .  

 

     Wei (2006) states that “the nature of the distribution of T is similar to that of 

 ( ̂    ); we reject    if T is too large negatively” (p. 191). The percentiles for the 

empirical distribution of T were also constructed by Dickey (1976) using the Monte 

Carlo method and reported in Fuller (1996, p. 642).  

 

The use of the assumed initial value       is purely for the convenience of 

deriving a limiting distribution; in actual data analysis, we normally use only real 

data points are used; hence (3.8.18) is computed only for          (Wei, 2006, 

p. 191) 

 

3.8.4 Dickey-Fuller Tests 

 

     Dickey and Fuller (1979) consider three different regression equations that can be 

used to test for the presence of a unit root: 
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                                                                                                                      (      ) 

 

                                                                                                                (      ) 

  

                                                                                                         (      ) 

 

where       –     Hence, testing the hypothesis      is equivalent to testing the 

hypothesis       

 

     The first regression model is a pure random walk model, the second adds an 

intercept or drift or constant term, and the third includes not only a drift but also a 

linear time trend. 

 

     The parameter of interest in all the regression equations above is   Having      

means that the {  } sequence contains a unit root. To obtain the estimated value of   

and associated standard error, one (or more) of the equations above are estimated 

using OLS. Using the formula which was given in the previous section, the T value is 

calculated. This value is compared with the appropriate critical value reported in the 

Dickey-Fuller tables. If the calculated T value is less than the critical value, that is 

more negative than the critical value,    is rejected. Otherwise, it is understood that 

this process is a unit root process. This methodology and the decision mechanism is 

precisely the same for all forms of the regression equations given above. It should be 

emphasized that the critical values here do not depend on whether an intercept and/or 

time trend is included in the regression equation. In their Monte Carlo study, Dickey 

and Fuller (1979) found that the critical values for      depend on the form of the 

regression and sample size. As in most hypothesis tests, for any given level of 

significance, the critical values of the T-statistic decrease as sample size increases. 

These critical values are unchanged if (3.8.24), (3.8.25), and (3.8.26) are replaced 

by the following autoregressive processes: 

 

                                                        ∑          

 

   

                               (      ) 
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                                                      ∑          

 

   

                           (      ) 

 

                                                    ∑          

 

   

                      (      ) 

 

     See Enders (1948) for the details. See also Dickey and Fuller (1981) for the 

additional F-statistics to test joint hypotheses on the coefficients.  

  

The intuition behind the test is as follows. If the series    is stationary (or trend 

stationary), then it has a tendency to return to a constant (or deterministically 

trending) mean. Therefore large values will tend to be followed by smaller values 

(negative changes), and small values by larger values (positive changes). 

Accordingly, the level of the series will be a significant predictor of next period’s 

change, and will have a negative coefficient. If, on the other hand, the series is 

integrated, then positive changes and negative changes will occur with 

probabilities that do not depend on the current level of the series; in a random 

walk, where you are now does not affect which way you will go next (Wikipedia 

(a)). 

 

     The extensions of the Dickey-Fuller tests which are named as Augmented 

Dickey-Fuller (ADF) Tests uses the same procedure, and remove all the structural 

affects (autocorrelation) in the time series. 

 

3.8.5 Extensions of the Dickey-Fuller Tests 

 

     Since it is not possible to represent all time-series processes by the first-order 

autoregressive process, it is possible to extend the Dickey and Fuller tests for higher-

order equations such as (3.8.27), (3.8.28), and (3.8.29). In this thesis, the extension 

is showed for the pth-order autoregressive process which is also considered in Enders 

(1948).  
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     The     order autoregressive process is defined as, 

 

                                                     

                                                                                                           (      ) 

 

     To understand the methodology of the augmented Dickey-Fuller test, add the 

term (                   ) into the equation above: 

 

                                                                

 

                     (       )           (           )       

 

                             (       )                   

       

 

Next, add the term [(       )        (       )      ] to obtain 

 

                                  (       )      

  (       )         (       )                        

 

                      (            )      

 (       )(             )                   

 

                      (            )       (       )        

                   

 

In the third step, the equation below is obtained 
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                     (                 )      

    (            )        (       )        

                   

 

At the end of the step of (   ), the equation below is obtained 
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  (            )             (       )        
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   ∑        
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where 

       ∑  

 

   

   

 

Next, add and subtract      to obtain 
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                                                               ∑          

 

   

                  (      ) 

where 

    ∑  

 

   

      

 

In (3.8.31), the coefficient of interest is  ; if      , this process has a unit root.  

 

The intuition behind the test is that if the series is integrated then the lagged level 

of the series (    ) will provide no relevant information in predicting the change 

in    besides the one obtained in the lagged changes (     ). In that case the 

     ,  null hypothesis is not rejected (Wikipedia (b)). 

 

     Said & Dickey (1984) have shown that the Dickey-Fuller procedure remains valid 

asymptotically for a general ARIMA (p, 1, q) process in which p and q are of 

unknown orders, that is for an autoregressive integrated moving average process of 

the indicated order provided that the lag length in the autoregression increases with 

the sample size,  , at a controlled rate less than    ⁄ .  

 

     Enders (1948) states that “the Dickey-Fuller tests assume that the errors are 

independent and have a constant variance, and this assumption raises four important 

problems related to the fact that we do not know the true data-generating process” (p. 

225). He explains these problems as follows: 

 

First, the true data-generating process may contain both autoregressive and 

moving average components. We need to know how to conduct the test if the 

order of the moving average terms (if any) is unknown. Second, we cannot 

properly estimate   and its standard error unless all the autoregressive terms are 

included in the estimating equation.... However, the true order of the 

autoregressive process is usually unknown to the researcher, so that the problem is 

to select the appropriate lag length. The third problem stems from the fact that the 
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Dickey-Fuller test considers only a single unit root. However, a     order 

autoregression has   characteristic roots; if there are      unit roots, the series 

needs to be differenced   times to achieve stationarity. The fourth problem is that 

it may not be known whether an intercept and/or time trend belongs in     order 

autoregressive process (Enders, 1948, p. 225-226). 

 

     Because, an invertible MA model can be transformed into an autoregressive 

model, the procedure can be generalized to allow for moving average components. It 

is known that  

                                                            ( )      ( )                                              (      ) 

and  

                                                         
 ( )

 ( )
      ( )                                        (      ) 

 

     Since  ( ) will generally be an infinite-order polynomial, Equation (3.8.31) can 

be rewriten as follows:  

 

                                                            ∑          

 

   

                           (      ) 

 

     Enders (1948) reminds that an infinite-order autoregression like (3.8.34) cannot 

be estimated using a finite data set. Said & Dickey (1984) have shown that an 

unknown ARIMA (p, 1, q) process can be well approximated by an ARIMA (n, 1, 0) 

autoregression of order no more than    ⁄ . Thus, the first problem can be solved by 

using a finite-order autoregression to approximate (3.8.34).  

 

     Now, the second problem which is taken into account of in Section 3.2.4 is the 

number of parameters in the model. For a fixed number of observations, the more 

parameters in a model, the less efficient is the estimation of the parameters. Enders 

(1948) points out this matter as follows: 
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Including too many lags reduces the power of the test to reject the null of a unit 

root since the increased number of lags necessitates the estimation of additional 

parameters and a loss of degrees of freedom.... On the other hand, too few lags 

will not appropriately capture the actual error process, so that   and its standard 

error will not be well estimated (Enders, 1948, p. 226-227).  

 

For this problem, the approach which is generally preferred is to start with a 

relatively long lag length and pare down the model by the usual t-test and/or F-tests.    

 

     As regards the problem of multiple unit roots, Dickey & Pantula (1987) suggest a 

simple extension of the basic procedure if more than one unit root is suspected. The 

procedure is that when exactly one root is suspected, the Dickey-Fuller procedure is 

used to estimate an equation such as                    , and when two roots 

are suspected, estimate the equation 

 

                                                                                                            (      ) 

 

and as follows. If    is significantly different from zero, it is understood that the {  } 

sequence is integrated of order 2. Otherwise, the process is detected for one unit root. 

 

     For the fourth problem, it is proposed to use the information criterions some of 

which are told in the Section 3.7. See Enders (1948) for more details. 

 

     Phillips & Perron (1988) state that Dickey-Fuller tests show some problems when 

the parameter value is close to 1, which is named as near-integrated process, and the 

reason of this problem is that “the sample moments of a near-integrated time series 

converge weakly to corresponding functional of a diffusion process rather than 

standard Brownian motion” (p. 342).   
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3.8.6 Phillips-Perron Tests 

 

     The Phillips-Perron test statistics are modifications of the Dickey-Fuller t-

statistics that take into account of the less restrictive nature of the error process. 

While the Dickey-Fuller tests assume the errors to be statistically independent and to 

have a constant variance, the Phillips-Perron tests allow the errors/disturbances to be 

weakly dependent and heterogeneously distributed. Consider the following 

regression equations to understand the procedure: 

 

                                                                                                               (      ) 

and 

                                            ̃    ̃        ̃ (     ⁄ )                             (      ) 

 

where T is the number of observations. Enders (1948) states that “the disturbance 

term    is such that  (  )    , but there is no requirement that the disturbance term 

is serially uncorrelated or homogeneous” (p. 229). The critical values for the 

Phillips-Perron statistics are precisely those given for the Dickey-Fuller tests. Enders 

(1948) explains why the two equations above are not as simple as their appearance. 

For example, let {  }  sequence be generated by the autoregressive process           

     [ ( )  ( )⁄ ]  , where  ( ) and  ( ) are polynomials in the lag operator. 

Given this form of the error process, Equation (3.8.36) may be written in the form 

used in the Dickey-Fuller tests; that is, 

 

                                        ( )        ( )      ( )       ( )                  (      ) 

or 

                                         (       )  ( )        ( )    ( )                     (      ) 

 

Monte Carlo studies have shown that in the presence of negative moving average 

terms, the Phillips-Perron test tends to reject the null of a unit root whether or not 

the actual data-generating process contains a negative unit root. It is preferable to 

use the ADF test when the true model contains negative moving average terms 
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and the Phillips-Perron test when the true model contains positive moving average 

terms (Enders, 1948, p. 232).  

 

     Enders (1948) proposes that since the true-generating process is never known, 

instead of choosing one test, both of these unit root tests should be used. He states 

that “if they reinforce each other, you can have confidence in the results” (p. 233). 

 

     Phillips & Perron (1988) state that unmodified versions of the Dickey-Fuller tests 

are valid asymptotically in the presence of some heterogeneity in the innovation 

sequence provided the innovations are martingale differences and as the sample size 

     , 

 

  ( )    ( )                    

 

where  ( ) is the standard Brownian motion process, and 

 

  ( )        ⁄     [  ]        ⁄         

 

for (   )  ⁄         ⁄ (        ) where [  ] denotes the integral part of   , 

and  

     (  
 )    ∑  (    )

 

   

 

and                 . 

      

In probability theory, a martingale is model of a fair game where knowledge of 

past events never helps predict future winnings. In particular, a martingale is a 

sequence of random variables (i.e., a stochastic process) for which, at a particular 

time in the realized sequence, the expectation of the next value in the sequence is 

equal to the present observed value even given knowledge of all prior observed 

values at a current time. An unbiased random walk (in any number of dimensions) 

is an example of a martingale. Briefly, 
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 (    |            )                               

 

In probability theory, a martingale difference sequence (MDS) is related to the 

concept of the martingale. A stochastic series   is an MDS if its expectation with 

respect to the past is zero. If    is a martingale, then                will be an 

MDS (Wikipedia (c)). 

 

3.8.7 Problems in Testing for Unit Roots 

 

     These problems can be divided into two groups: The power of the test, and the 

determination of the deterministic regressors.  

 

     3.8.7.1 Power of the Test 

 

     The power of a test is equal to the probability of rejecting a false null hypothesis 

(i.e., Power = 1 – Type II error). The Dickey-Fuller and the Phillips-Perron tests have 

low statistical power in that they often cannot distinguish between true unit-root 

processes (    ) and near unit-root processes (  is close to zero). This is called the 

near observation equivalence problem. Hence, these tests will too often indicate that 

a series contains a unit root. Moreover, Enders (1948) states that “they have little 

power to distinguish between trend stationary and drifting processes. In finite 

samples, any trend stationary process can be arbitrarily well approximated by a unit 

root process, and a unit root process can be arbitrarily well approximated by a trend 

stationary process” (p. 251-252). See Enders (1948) who shows that a trend 

stationary process can be made to mimic a unit root process arbitrarily well. 

 

Monte Carlo studies indicate that when the true data-generating process is 

stationary but has a root close to unity, the one-step ahead forecast from a 

differenced model are usually superior to the forecasts from a stationary model 

(Enders, 1948, p. 254). 
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     3.8.7.2 Determination of the Deterministic Regressors 

 

     Since the actual data-generating process is unknown, it may be sensible to use the 

most general of the models to test the hypothesis     , that is, 

 

                      ∑          

 

   

        

 

     Enders (1948) states that “if the true process is a random walk process, this 

regression should find that             ” (p. 254). However, this way may 

cause some problems. For example, the additional estimated parameters reduce 

degrees of freedom and the power of the test. As a result of this situation, the process 

is evaluated as a unit root process by mistake. For the problems and solutions 

concerning unit root tests are explained in Enders (1948).   

 

3.8.8 Structural Change 

 

     Economic structural change is defined as a long-term shift in the fundamental 

structure of an economy, which is often linked to growth and economic development. 

It is an economic condition that occurs when an industry or market changes how it 

functions or operates. 

 

     Enders (1948) shows that “when there are structural breaks, the various Dickey-

Fuller and Phillips-Perron test statistics are biased toward the nonrejection of a unit 

root” (p. 233). Perron (1989) proved with a Monte Carlo study that the bias of the 

Dickey-Fuller tests becomes more pronounced as the magnitude of the break 

increased. Mostly used economic procedure to test for unit roots in the presence of a 

structural break involves splitting the sample into two parts and using Dickey-Fuller 

tests on each part. The problem with this procedure which is also mentioned in 

Enders (1948) is that the degrees of freedom for each of the resulting regressions are 

diminished. It is preferable to have a single test based on the full sample. See Perron 
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(1989) for the alternative procedure. Moreover, Perron & Vogelsang (1992) show 

how to test for a unit root when the precise date of the structural break is unknown. 

 

3.8.9 AR(1) Process Including both a Constant Term and a Linear Time Trend 

and as well as an Autoregressive Error 

 

     In this section, for an AR(1) model including both a constant term and a linear 

time trend is examined. Moreover, the errors are not supposed to be i.i.d. This 

approach is presented in DeJong et al. (1992) and the theoretical proofs are given 

with more details. 

 

     Let the time series {  } be a stochastic process generated by the linear model 

 

                                                                                                                   (      ) 

 

and the first-order autoregressive (AR) process 

 

                                                                                                                       (      ) 

 

where the innovation sequence {  }  is i.i.d.  (    ) , and    is an unknown 

constant. This model can be interpreted as a random walk about a linear trend when 

     and as an asymptotically stationary AR(1) process about a linear trend when 

| |   .     

                    

 

                      

 

At the second step, the equation below is obtained: 

 

        (            )                                 
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         (            )                   

 

At the third step, the equation below is obtained: 

 

                                        

 

With successive substitutions, the equation below is obtained: 

 

                ∑         

   

   

        

 

              (   )    [         ∑         

   

   

       ] 

 

                 [         ∑         

   

   

       ]          

 

Multiply the both sides of      by  : 

 

                                   ∑         

   

   

         

 

                   

                                            

   ∑         

   

   

   ∑         

   

   

                        

    

 

                                               

 

       (     )             (     )               
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where 

      (     )                              (     )   

 

If      , 

                                                                                                                  (      ) 

 

and     . Equation (3.8.42) is a rearrangement of the quasi-first-difference 

transform of (3.8.40). The coefficients of interest are      , and  ; Equation 

(3.8.42) is viewed as the reduced form of (3.8.40)-(3.8.41), and the coefficients   

and   are treated as reduced-form parameters.  

 

3.8.10 Bootstrap Unit Root Tests 

 

     Swensen (2003) states the reason why the bootstrap procedures give generally 

more accurate results than the procedures of asymptotic approximations as follows:   

 

Bootstrap procedures offer an opportunity to take into account such factors as 

sample size, various specifications on the initial condition, and the distribution of 

the errors. They may therefore have more accurate finite-sample properties than 

procedures making use of asymptotic approximations, where such elements 

typically do not enter (Swensen, 2003, p. 32). 

 

Unit root test is the one for which the bootstrap procedures give satisfactory results. 

 

One important aspect to design a bootstrap procedure for testing purposes is that 

the procedure should be able to reproduce the sampling behaviour of the test 

statistic under the null hypothesis (e.g., unit root integration), whether the 

observed series obeys the null hypothesis or not.... The theory developed for 

bootstrapping unit root tests in an autoregressive (AR) context has been concerned 

mainly with the large-sample behaviour of the methods proposed under the 

assumption that the null hypothesis is true (Paparoditis & Politis, 2005, p. 545). 
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     There are several proposed tests concerning with unit root. Many of them are 

based on the restricted residuals, the rest is based on the unrestricted residuals.   

 

     Ferretti & Romo (1996) propose bootstrap tests for unit roots in first-order 

autoregressive models and they establish their asymptotic validity both for 

independent and for autoregressive errors. They state that “in this case, the bootstrap 

methodology directly approaches the asymptotic distribution, making unnecessary 

the usual corrections due to dependence of innovations” (p. 849). Their procedure is 

identical to that based on unrestricted residuals, whereas for higher-order 

autoregressions, it leads to a two-step procedure. With a Monte Carlo study, they 

state that “for the case of independent innovations the power of the test is not lower 

in any case than the power of the other methods and it is more powerful for small 

samples” (p. 858). These mentioned methods are such as the Box-Pierce statistic, the 

likelihood ratio test statistic, Dickey & Fuller test statistic, Phillips & Perron test 

statistics. They also state that “if the errors have an autoregressive structure and the 

AR parameters are negative, their bootstrap tests... improve previous procedures for 

small samples and behave similarly for large ones” (p. 858). Hence, Ferretti & Romo 

(1996) propose that for small sample sizes to use these bootstrap tests should be 

preferred. 

 

     For the unit root tests, Chang & Park (2000) consider the sieve bootstrap which is 

based on an approximation of an infinite dimensional and nonparametric model by a 

sequence of finite dimensional parametric models, and which allows order to 

increase with the sample size. Clearly, it is the most natural bootstrap procedure for 

the tests. Chang & Park (2000) proposed test statistics of   
  and   

  which are the 

bootstrap counterparts of    and    of Dickey-Fuller. They state that the choice of 

the initial value   
  for (  

 )  does not affect the asymptotics as long as it is 

stochastically bounded, however, it may affect the finite sample performance of the 

bootstrap. If the mean or linear time trend is maintained in the formula below and the 

unit root test is performed using the demeaned or detrended data, then the effect of 

the initial value   
  of the bootstrap sample would disappear and   

    .  
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where 

                  

 

With a simulation study Chang & Park (2000) establish that “the bootstrap tests are 

found to have finite sample sizes that are generally much closer to their nominal 

values, especially for models with large negative moving average coefficients” (p. 

394). See Chang & Park (2000) for the details. 

 

     Swensen (2003) considers the power functions of bootstrap unit root tests based 

on differences and on unrestricted residuals in the case of a first-order AR process 

with i.i.d. errors. Swensen shows that for sequences of local alternatives approaching 

the null at a rate equal to the inverse of the sample size, the power functions are the 

same as for ordinary unit root tests. 

 

     Paparoditis & Politis (2005) consider a new proposal based on unrestricted 

residuals. Their study shows that “bootstrap procedures based on differencing the 

observed series suffer from power problems as compared with bootstrap procedures 

based on unrestricted residuals” (p. 545). In their study, they investigate the 

behaviour of the different bootstrap approaches under the null and under fixed 

alternatives and, they analytically compare their relative performance. They consider 

the AR process  

 

                                       

 

where      . Paparoditis & Politis (2005) assume that {  } is a sequence of i.i.d. 

random variables with mean 0 and      
    . They define the summation of the 

parameters as     ∑   
 
   . Paparoditis & Politis (2005) compare the two different 

bootstrap proposals: based on restricted residuals and based on unrestricted residuals. 

They state that a difference in the limiting behaviour of the two bootstrap proposals 

appears only if the alternative is true, that is   is a stationary process. In this case 

both bootstrap statistics converge for       to different limits. Furthermore, for 
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    , the limiting distributions are identical. In this case both bootstrap-based tests 

are asymptotically equivalent. 

 

     Paparoditis & Politis (2005) also investigate how the differences in the limiting 

behaviour of the two bootstrap procedures affect their relative performance under the 

alternative. They state theoretically that both tests are consistent in the sense that 

their power approaches unity as the sample size and/or the deviation from the null 

increases. However, with probability tending to 1, the power of the bootstrap test 

based on unrestricted residuals is bounded from below and uniformly in   by the 

power of the test based on differences. Briefly, the power of the test based on 

unrestricted residuals has much more power. 
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CHAPTER FOUR 

NUMERICAL RESULTS 

 

     In this chapter, results for a group of simulation study will be presented to show 

the performance of df-AR Unit Root test which is the basic concept of this thesis. 

Three different methods are compared as regards their powers on the unit root tests: 

Asymptotic, bootstrap, and sufficient bootstrap methods. Two different situations are 

taken into consideration: (1) The residuals are supposed to be independent from each 

other. (2) The residuals are supposed to be dependent on each other. With graphs and 

tables, the presentation is supported.  

 

     For this study, 5% is taken as the nominal significance level. The power values 

obtained are based on 10,000 Monte Carlo simulations and 1,000 bootstrap 

replications.  

 

4.1 Independent Residuals 

 

     In this section, the residuals are supposed to be independent from each other. 

Also, to show the effect of the distribution of the residuals on the power of the test, 

two different distributions are taken into consideration:  (   ) normal distribution, 

and     (   ) lognormal distribution. To see the sample size effect, four different 

sample sizes are taken: 30, 50, 100 and 250. Since this study is done to evaluate 

whether this test captures the unit root situation correctly or not, the parameter values 

are taken as forming a unit root process or a near-unit root process. Instead of taking 

the same parameter values for each sample sizes, the method using by Swensen 

(2003) is used. Swensen (2003) uses the recursion given in (3.8.4). He tests   

         against the local alternative              ⁄  with 

                         . He considers only the situation where the 

random variables    are independent and identically distributed with  (   )  He 

shows that as the sample size increases, the fraction of   ⁄  goes to zero and the 

power of the test is good enough even in the near-unit root process.  
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     To evaluate powers of the tests, the smaller values of   are also used for the 

lognormal distribution. Also to see the results of the situation where the process lost 

the property of causality,            and       are used for both  (   ) 

normal distribution and     (   ) lognormal distribution. The causality means that 

   is expressible in terms of   ,      .  

 

The algorithm for the simulation study is given below: 

 

Step1: For the standard normal distributed residuals, draw a random sample of   

residuals from  (   ) distribution and define this vector as    (For the lognormal 

with 0 mean and 1 variance distributed residuals, draw a random sample of    

residuals from     (   ) distribution). 

 

Step2: Generate   ( ) series by regressing    with the parameter value      

   ⁄  where  ’s has the values defined above, and define this vector as  . 

 

Step3: Calculate the unit root test statistic   given by the formula 3.8.22. 

 

Step4: Calculate the new residuals from the regression equation and define this 

vector as       . 

 

Step5: Recenter the vector       . 

 

Step6: Count the number of acceptances (#( > the critical value)) and rejections. 

 

Step7: Collect the original sample test statistics in a vector.  

 

Step8: Generate B bootstrap sample of size    from the recentered vector        and 

define this matrix as        . 

 

Step9: Generate   ( ) series by regressing         under the assumption of     , 

and define this matrix as       . 
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Step10: Take all elements in the first column of        to be equal to the first value 

of  , since in this way, the confidence interval obtained for           includes the 

real parameter value  . 

 

Step11: Calculate the bootstrap unit root test statistic        by the formula 3.8.22. 

 

Step12: Calculate the bootstrap critical value by finding the  (   )   quantile of 

the ordered test statistics of the bootstrap samples.   

 

Step13: Repeat Step1-Step12, S times. 

 

Step14: Calculate the mean of the bootstrap critical values obtained from all 

simulations. 

 

Step15: For each of the simulations, compare the original test statistic with the mean 

of the bootstrap critical values. 

 

Step16: Count the original test statistics which are smaller than the mean of the 

bootstrap critical values. 

 

Step17: Calculate the significance level for asymptotic DF test by dividing the 

number of test statistics smaller than DF critical value to the number of simulations 

S. 

 

Step18: Calculate the significance level for bootstrapped DF test by dividing the 

number obtained in Step 16 to the number of simulations S. 

 

     For sufficient bootstrap df-AR Unit Root test, the algorithm is same except only 

the unique values of          have been used for Step 9. 

  

The parameter values are listed in Table 4.1. 
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Table 4.1 The values of c and ϕ used for the simulation study for df-AR unit root test with 

i.i.d.  (   ) and      (   ) distributed residuals.  

N  VALUES FOR NORMAL N(0,1) DISTRIBUTED RESIDUALS 

30 
c 10 1 0 -1 -2 -5 -10 -15 -20     

ϕ 1.33 1.03 1.00 0.97 0.93 0.83 0.67 0.50 0.33     

50 
c 10 1 0 -1 -2 -5 -10 -15 -20     

ϕ 1.20 1.02 1.00 0.98 0.96 0.90 0.80 0.70 0.60     

100 
c 10 1 0 -1 -2 -5 -10 -15 -20     

ϕ 1.10 1.01 1.00 0.99 0.98 0.95 0.90 0.85 0.80     

250 
c 10 1 0 -1 -2 -5 -10 -15 -20     

ϕ 1.04 1.004 1.00 0.996 0.992 0.98 0.96 0.94 0.92     

N  VALUES FOR LOGNORMAL LOGN(0,1) DISTRIBUTED RESIDUALS 

30 
c 10 1 0 -1 -2 -5 -10 -15 -20 -24    

ϕ 1.33 1.03 1.00 0.97 0.93 0.83 0.67 0.50 0.33 0.20    

50 
c 10 1 0 -1 -2 -5 -10 -15 -20 -30 -40   

ϕ 1.20 1.02 1.00 0.98 0.96 0.90 0.80 0.70 0.60 0.40 0.20   

100 
c 10 1 0 -1 -2 -5 -10 -15 -20 -30 -40 -50  

ϕ 1.10 1.01 1.00 0.99 0.98 0.95 0.90 0.85 0.80 0.70 0.60 0.50  

250 
c 10 1 0 -1 -2 -5 -10 -15 -20 -30 -40 -50 -100 

ϕ 1.04 1.004 1.000 0.996 0.992 0.98 0.96 0.94 0.92 0.88 0.84 0.80 0.60 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

96 

 

Table 4.2 Empirical rejection probabilities of df-AR unit root test with i.i.d.  (   ) and     (   ) 

distributed residuals (M: method, ϕ: parameter, A: asymptotic method, B: bootstrap method,             

S: sufficient bootstrap method) 

n M NORMAL N(0,1) DISTRIBUTED RESIDUALS 

30 

ϕ  1.33 1.03 1.00 0.97 0.93 0.83 0.67 0.50 0.33     

A 0.00 0.03 0.05 0.08 0.13 0.34 0.79 0.97 1.00     

B 0.00 0.03 0.05 0.07 0.11 0.30 0.75 0.96 1.00     

S  0.00 0.02 0.04 0.07 0.11 0.28 0.71 0.95 1.00     

50 

ϕ 1.20 1.02 1.00 0.98 0.96 0.90 0.80 0.70 0.60     

A 0.00 0.03 0.05 0.08 0.12 0.33 0.78 0.97 1.00     

B 0.00 0.03 0.04 0.07 0.11 0.31 0.75 0.97 1.00     

S  0.00 0.02 0.04 0.07 0.11 0.30 0.72 0.95 1.00     

100 

ϕ 1.10 1.01 1.00 0.99 0.98 0.95 0.90 0.85 0.80     

A 0.00 0.03 0.05 0.08 0.12 0.32 0.77 0.97 1.00     

B 0.00 0.03 0.05 0.07 0.11 0.31 0.75 0.97 1.00     

S  0.00 0.02 0.05 0.07 0.11 0.30 0.72 0.95 1.00     

250 

ϕ 1.04 1.004 1.00 0.996 0.992 0.98 0.96 0.94 0.92     

A 0.00 0.03 0.05 0.08 0.12 0.33 0.77 0.97 1.00     

B 0.00 0.03 0.05 0.08 0.12 0.32 0.76 0.97 1.00     

S  0.00 0.03 0.05 0.08 0.12 0.32 0.73 0.95 1.00     

n M LOGNORMAL LOGN(0,1) DISTRIBUTED RESIDUALS 

30 

ϕ 1.33 1.03 1.00 0.97 0.93 0.83 0.67 0.50 0.33 0.20    

A 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.11 0.51 0.82    

B 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.08 0.44 0.79    

S  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.25    

50 

ϕ 1.20 1.02 1.00 0.98 0.96 0.90 0.80 0.70 0.60 0.40 0.20   

A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.13 0.83 0.99   

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.11 0.81 0.99   

S  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.17 0.76   

100 

ϕ 1.10 1.01 1.00 0.99 0.98 0.95 0.90 0.85 0.80 0.70 0.60 0.50  

A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.20 0.82 0.99  

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.20 0.81 0.99  

S  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.09 0.44  

250 

ϕ 1.04 1.004 1.000 0.996 0.992 0.98 0.96 0.94 0.92 0.88 0.84 0.80 0.60 

A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.32 1.00 

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.33 1.00 

S  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.98 

 

 

     Table 4.2 shows that for  (   ) distributed residuals, df-AR test captures the unit 

root situation,     , with an exact level equals to the given nominal level 5% for 
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even the sample size      . While the parameter value decreases, the power of the 

test increases as expected. This table shows that as the sample size increases, all 

types of df-AR Test have powers well enough for even the near-unit root process, 

since for        when the parameter value is 0.96 which is very close to 1, the 

power of the test is 0.73. For  (   ) distributed residuals, the test reaches the power 

value of 1 at         and         for the sample sizes 250 and 30, respectively. 

Figure 4.1 and Figure 4.2 show the effect of the sample size on powers of the tests. 

 

 

Figure 4.1 Empirical rejection probabilities of df-AR unit root tests with i.i.d.  (   ) distributed 

residuals (     ) 
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Figure 4.2 Empirical rejection probabilities of df-AR unit root tests with i.i.d.  (   ) distributed 

residuals (      ) 

 

     In Section 2.8, it is mentioned that in a sufficient bootstrap sample, units never 

appear more than once. Hence, by the sufficient bootstrap method, an important 

reduction in the sample size can be provided. Table 4.3 shows the percentiles of 

sample size reduction for the sample sizes used in this study.. 

 

Table 4.3 Comparing of the sample sizes used by the asymptotic and the bootstrap method with the 

sample sizes used by the sufficient bootstrap method 

Sample Size used by  

Asymptotic and Bootstrap 

methods 

Sample Size used by 

Sufficient Bootstrap 

method 

Percentiles of  

Sample Size 

reduction 

30 20.15 32.8 % 

50 32.79 34.4 % 

100 64.40 35.6 % 

250 159.22 36.3 % 
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     To evaluate whether a method is successful in testing a hypothesis or not, one 

indicator is the speed of its power being move away from the nominal level of the 

test. Figure 4.3 and Figure 4.4 show that for i.i.d.  (   ) distributed residuals, as the 

sample size increases, the differences between power and 0.05 are nearly the same 

for two different bootstrap methods. 

 

 

Figure 4.3 Difference between power and 0.05 for bootstrap methods with i.i.d.  (   ) distributed 

residuals (     ) 

 

     Briefly, for i.i.d.  (   )  distributed residuals, especially as the sample size 

increases, the satisfactory results are obtained. Even the sufficient bootstrap method 

with almost 35% reduction in sample size gives values nearly as well as given by the 

asymptotic method. 
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Figure 4.4 Difference between power and 0.05 for bootstrap methods with i.i.d.  (   ) distributed 

residuals (      ) 

 

     According to the results in Table 4.2, unlike  (   ) case, under     (   ) all 

three tests do not perform well. For all sample sizes, when     , the exact level of 

the test is 0. This situation does not change until the parameter value being move 

away from the unity. For instance, while for  (   )  distributed residuals and 

      , the unit power is obtained for        ; for     (   )  distributed 

residuals and       , the unit power is obtained for          Moreover, for 

    (   ) distributed residuals the power of the test increases very fast after a 

specific parameter value, while for  (   ) distributed residuals this increment is 

slow. Besides, as the sample size increases two methods, the asymptotic and the 

bootstrap, give the same power values, whereas the sufficient bootstrap does not give 

satisfactory results compared with the others. Like  (   ) distributed residuals case, 

as        the power of the test is zero. Figure 4.5 and Figure 4.6 show the effect of 

the sample size on powers of the tests. 

0

1

0.996 0.992 0.980 0.960 0.940 0.920

D
if

fe
r
en

ce
 

Parameter Value 

Difference between Power and 0.05 for  Bootstrap Methods with i.i.d. 

N(0,1) Distributed Residuals (n = 250) 

Bootstrap

Power - 0.05

Sufficient

Bootstrap

Power - 0.05



 

 

101 

 

 

Figure 4.5 Empirical rejection probabilities of df-AR unit root tests with i.i.d.     (   ) distributed 

residuals (     ) 

 

 

Figure 4.6 Empirical rejection probabilities of df-AR unit root tests with i.i.d.     (   ) distributed 

residuals (      ) 
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Figure 4.7 Bias of bootstrap method for both i.i.d.  (   ) and i.i.d.     (   ) distributed residuals  

(     ) 

 

 

Figure 4.8 Bias of bootstrap method for both i.i.d.  (   ) and i.i.d.     (   ) distributed residuals  

(      ) 

-4

-2

0

2

4

6

8

10

1.033 1.00 0.967 0.933 0.833 0.667 0.500 0.333 0.200

B
o

o
ts

tr
a

p
 B

ia
s 

Parameter Value 

Bias of Bootstrap Method for both i.i.d. N(0,1) and i.i.d. LOGN(0,1) 

Distributed Residuals (n = 30)  

Bias of bootstrap

method for i.i.d.

N(0,1) distributed

residuals

Bias of bootstrap

method for i.i.d.

LOGN(0,1)

distributed residuals

-5

0

5

10

15

20

25

1.004 1.00 0.9960.992 0.98 0.96 0.94 0.92 0.88 0.84 0.80 0.60

B
o

o
ts

tr
a

p
 B

ia
s 

Parameter Value 

Bias of Bootstrap Method for both i.i.d. N(0,1) and LOGN(0,1) Distributed 

Residuals (n = 250) 

Bias of bootstrap

method for i.i.d.

N(0,1) distributed

residuals

Bias of bootstrap

method for i.i.d.

LOGN(0,1)

distributed residuals



 

 

103 

 

     The bias of the bootstrap method has also been calculated. The procedure is as 

follows: For the original sample, the tests statistic is calculated. Later, for 1,000 

bootstrap samples chosen from that original sample, the test statistics are calculated. 

Mean of all these test statistics of the bootstrap samples is subtracted from the test 

statistic of the original sample. For each simulation, one value is calculated. At the 

end of all simulations, mean of these all values is calculated and named as bootstrap 

bias.      

 

     Figures 4.7 and 4.8 illustrate the bias of bootstrap method for sample sizes of 30 

and 250, respectively. For       and for  (   )  distributed residuals, as the 

parameter value decreases, the bootstrap bias takes the negatively large values. On 

the other hand, for     (   )  distributed residuals, at the parameter values for 

which powers of the tests differ from zero, the bootstrap bias takes the negative 

values. Since df-AR Test is a lower-tail test and in this type of test, the null 

hypothesis is rejected if the test statistic is smaller than the critical value, that is the 

test statistic is more negative than the critical value, the bootstrap method tries to 

take a value negatively large to reject the null hypothesis. This is the situation which 

is wanted. That is, there is a positive correlation between the bootstrap bias taking 

the value negatively large and the power of the test. Hence, the bootstrap bias values 

are better for the situation for  (   ) distributed residuals. 

 

     The same thing may be said for Figure 4.8. Moreover, this graph shows that as the 

sample size increases, the negatively large values of the bootstrap bias are obtained 

without the parameter value being far away from the unity.    

 

     For the positive values of  , the bootstrap bias takes the positively large values, 

and as the sample size increases, the magnitude of these values increase too much. 

Hence, for      , the value of bootstrap bias is not included in these figures.  

 

     To show the effect of the distribution of the residuals on the distribution of the 

test statistics, Figure 4.9 and Figure 4.10 are given. Both these graphs are obtained 

for        and the parameter value     . These figures show that the sufficient 
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bootstrap test statistics and the original test statistics are influenced badly when 

    (   ) distributed residuals are used. While the distribution of the sufficient 

bootstrap test statistics is normal for  (   ) distributed residuals, the distribution of 

the sufficient bootstrap test statistics tend to be piled up on a determined value for 

    (   )  distributed residuals. Also, while the distribution of the original test 

statistics seems normal for  (   )  distributed residuals, the distribution of the 

original test statistics is skewed to the left for     (   ) distributed residuals.    

 

 

 

Figure 4.9 The distribution of 1,000 bootstrap test statistics of the last original sample, the 

distribution of 1,000 sufficient bootstrap test statistics of the last original sample, and the distribution 

of 10,000 original test statistics for i.i.d.  (   ) distributed residuals, respectively (           )  
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Figure 4.10 The distribution of 1,000 bootstrap test statistics of the last original sample, the 

distribution of 1,000 sufficient bootstrap test statistics of the last original sample, and the distribution 

of 10,000 original test statistics for i.i.d.     (   )  distributed residuals, respectively                 

(           )      

 

4.2 Dependent Residuals 

 

     In this section, the residuals for the model (3.8.4) are supposed to be dependent 

on each other by the relation given with (4.2.1). Also, to show the effect of the 

magnitude of dependency on the power of the test, two different parameter values for 

dependency considered:        for “weak dependency” and        for “strong 

dependency” using the formulas  

 

                                                                                                                          (     ) 

 

where   ’s are i.i.d.  (   ) distributed residuals. 

 

     To evaluate powers of the tests, the parameter values used in section 4.1 are also 

used for this study. However, the ones for  (   )are used for the weak dependency, 

while the parameters of     (   ) distributed residuals are preferred for the strong 

dependency case. These values are listed in Table 4.4. 
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Table 4.4 The values of c and ϕ used for the simulation study for df-AR unit root test with weakly 

dependent at  and i.i.d.  (   ) distributed ut residuals, and strongly dependent at and i.i.d.  (   ) 

distributed ut residuals. 

n  VALUES FOR         WEAKLY DEPENDENT at  RESIDUALS 

30 
c 10 1 0 -1 -2 -5 -10 -15 -20     

ϕ 1.33 1.03 1.00 0.97 0.93 0.83 0.67 0.50 0.33     

50 
c 10 1 0 -1 -2 -5 -10 -15 -20     

ϕ 1.20 1.02 1.00 0.98 0.96 0.90 0.80 0.70 0.60     

100 
c 10 1 0 -1 -2 -5 -10 -15 -20     

ϕ 1.10 1.01 1.00 0.99 0.98 0.95 0.90 0.85 0.80     

250 
c 10 1 0 -1 -2 -5 -10 -15 -20     

ϕ 1.04 1.004 1.00 0.996 0.992 0.98 0.96 0.94 0.92     

n  VALUES FOR         STRONGLY DEPENDENT at  RESIDUALS 

30 
c 10 1 0 -1 -2 -5 -10 -15 -20 -24    

ϕ 1.33 1.03 1.00 0.97 0.93 0.83 0.67 0.50 0.33 0.20    

50 
c 10 1 0 -1 -2 -5 -10 -15 -20 -30 -40   

ϕ 1.20 1.02 1.00 0.98 0.96 0.90 0.80 0.70 0.60 0.40 0.20   

100 
c 10 1 0 -1 -2 -5 -10 -15 -20 -30 -40 -50  

ϕ 1.10 1.01 1.00 0.99 0.98 0.95 0.90 0.85 0.80 0.70 0.60 0.50  

250 
c 10 1 0 -1 -2 -5 -10 -15 -20 -30 -40 -50 -100 

ϕ 1.04 1.004 1.000 0.996 0.992 0.98 0.96 0.94 0.92 0.88 0.84 0.80 0.60 

 

 

     The algorithm for dependent residuals is the same with the algorithm for 

independent residuals. However, please note that in Step1, a random sample of n 

residuals from  (   ) distributionis drawn for   ’s,and the residuals    are obtained 

by the Equation (4.2.1). 
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Table 4.5 Empirical rejection probabilities of df-AR unit root test with weakly dependent at and 

i.i.d.   (   )  distributed ut residuals, and strongly dependent at and i.i.d.   (   )  distributed ut  

residuals (M: method, ϕ: parameter, A: asymptotic method, B: bootstrap method, S: sufficient 

bootstrap method) 

n M         WEAKLY DEPENDENT at  RESIDUALS 

30 

ϕ 1.33 1.03 1.00 0.97 0.93 0.83 0.67 0.50 0.33     

A 0.00 0.01 0.02 0.03 0.05 0.15 0.53 0.86 0.98     

B 0.00 0.01 0.02 0.03 0.04 0.13 0.47 0.82 0.97     

S  0.00 0.02 0.03 0.04 0.06 0.15 0.44 0.77 0.95     

50 

ϕ 1.20 1.02 1.00 0.98 0.96 0.90 0.80 0.70 0.60     

A 0.00 0.01 0.02 0.03 0.04 0.14 0.48 0.83 0.97     

B 0.00 0.01 0.01 0.02 0.04 0.12 0.44 0.80 0.96     

S  0.00 0.02 0.03 0.04 0.06 0.16 0.43 0.75 0.94     

100 

ϕ 1.10 1.01 1.00 0.99 0.98 0.95 0.90 0.85 0.80     

A 0.00 0.01 0.02 0.03 0.04 0.12 0.44 0.79 0.96     

B 0.00 0.01 0.01 0.02 0.04 0.11 0.42 0.78 0.96     

S  0.00 0.02 0.03 0.04 0.06 0.16 0.42 0.73 0.93     

250 

ϕ 1.04 1.004 1.00 0.996 0.992 0.98 0.96 0.94 0.92     

A 0.00 0.01 0.02 0.03 0.04 0.12 0.43 0.78 0.95     

B 0.00 0.01 0.02 0.02 0.04 0.12 0.42 0.78 0.95     

S  0.00 0.02 0.03 0.05 0.07 0.16 0.43 0.73 0.92     

n M         STRONGLY DEPENDENT at  RESIDUALS 

30 

ϕ 1.33 1.03 1.00 0.97 0.93 0.83 0.67 0.50 0.33 0.20    

A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.10 0.20    

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.08 0.17    

S  0.00 0.00 0.01 0.01 0.01 0.02 0.04 0.07 0.12 0.19    

50 

ϕ 1.20 1.02 1.00 0.98 0.96 0.90 0.80 0.70 0.60 0.40 0.20   

A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.17 0.48   

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.15 0.44   

S  0.00 0.01 0.01 0.01 0.02 0.02 0.04 0.05 0.08 0.20 0.43   

100 

ϕ 1.10 1.01 1.00 0.99 0.98 0.95 0.90 0.85 0.80 0.70 0.60 0.50  

A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.18 0.42  

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.17 0.41  

S  0.00 0.01 0.01 0.01 0.02 0.02 0.03 0.04 0.06 0.13 0.25 0.42  

250 

ϕ 1.04 1.004 1.000 0.996 0.992 0.98 0.96 0.94 0.92 0.88 0.84 0.80 0.60 

A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.18 0.98 

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.18 0.98 

S  0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.06 0.10 0.18 0.29 0.92 
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     Table 4.5 shows that for weakly dependent residuals with       , all the 

methods give smaller significance levels under     . The power values reach their 

maximum at         for        and         for      . Also it is shown 

that as the sample size increases three methods, the asymptotic, the bootstrap, and 

the sufficient bootstrap give nearly the same power values. However, as        the 

power of the test goes to zero as in i.i.d. distributed residuals. Figure 4.11 and Figure 

4.12 show the effect of the sample size on powers of the tests. 

 

 

Figure 4.11 Empirical rejection probabilities of df-AR unit root tests for weakly dependent residuals 

with        from  (   )distribution (     ) 

 

     Figure 4.13 and Figure 4.14 show that for weakly dependent residuals with 

      , in near-unit root processes the sufficient bootstrap method is more 

successful. Two different methods, the asymptotic and the bootstrap, show nearly the 

same patterns.   
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Figure 4.12 Empirical rejection probabilities of df-AR unit root tests for weakly dependent residuals 

with        from  (   ) distribution (      ) 

 

 

Figure 4.13 Difference between power and 0.05 for bootstrap methods for weakly dependent 

residuals with       from   (   ) distribution (     ) 
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Figure 4.14 Difference between power and 0.05 for bootstrap methods for weakly dependent 

residuals with       from  (   ) distribution (      ) 

 

     Table 4.5 shows that for strongly dependent residuals with       , all df-AR 

tests behave badly under      even for the sample size of 250. For all sample 

sizes, when     , the exact level of the test is 0. This situation does not change 

until the parameter value being far away from the unity except for the method of 

sufficient bootstrap. It is surprising that the sufficient bootstrap method gives more 

satisfactory results than other methods in near-unit root processes. For instance, 

when the sample size        and        ;  the sufficient bootstrap method has a 

power equals to 0.06 while the other methods have a power equals to zero. For the 

same sample size, when        ; the sufficient bootstrap method has a power 

equals to 0.10 while the other methods have a power equals to 0.01. Although, at the 

limit value of the parameters, the other methods have power values which are bigger 

than the values obtained by the sufficient bootstrap method, it can be said that the 

sufficient bootstrap method is more successful. Also it is seen from Table 4.5 that in 

the situation of strongly dependent residuals, all tests can’t even get close to the 

power of one except from the sample size       . For the sample sizes             

      and       , the highest power value is approximately 0.50. Moreover, for 
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both strongly dependent and weakly dependent residuals, the power of the 

asymptotic and the bootstrap tests increase very fast after a specific parameter value, 

while for the sufficient bootstrap method the power increases slowly. Besides, for all 

sample sizes two methods, the asymptotic and the bootstrap, give the same power 

values, whereas the sufficient bootstrap gives more satisfactory results compared 

with the others. However, as        the power of all tests is zero. Figure 4.15 and 

Figure 4.16 show the effect of the sample size on powers of the tests. 

 

 

Figure 4.15 Empirical rejection probabilities of df-AR unit root tests for strongly dependent residuals 

with        from  (   ) distribution (     ) 
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Figure 4.16 Empirical rejection probabilities of df-AR unit root tests for strongly dependent residuals 

with        from  (   ) distribution (      ) 

 

 

Figure 4.17 Bias of bootstrap method for dependent residuals with        and        (     ) 
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     The patterns for the bias of bootstrap are the same for i.i.d. residual case. See 

Figures 4.17 and 4.18.  

 

 

Figure 4.18 Bias of bootstrap method for dependent residuals with        and         (      ) 

 

     To show the effect of the magnitude of dependency on the distribution of the test 

statistics, Figure 4.19 and Figure 4.20 are given. Both these graphs are obtained by 

using the sample size        and the parameter value     . These figures show 

that the sufficient bootstrap test statistics and the original test statistics are influenced 

badly in the situation of strongly dependent residuals. While the distribution of the 

sufficient bootstrap test statistics is normal for weakly dependent residuals, the 

distribution of the sufficient bootstrap test statistics tend to be piled up on several 

determined value for strongly dependent residuals. Also, while the distribution of the 

original test statistics is normal for weakly dependent residuals, the distribution of 

the original test statistics is skewed to the right for strongly dependent residuals. 
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Figure 4.19 The distribution of 1,000 bootstrap test statistics of the last original sample, the 

distribution of 1,000 sufficient bootstrap test statistics of the last original sample, and the distribution 

of 10,000 original test statistics for weakly dependent residuals with        from  (   ) 

distribution, respectively (           ) 

 

 

Figure 4.20 The distribution of 1,000 bootstrap test statistics of the last original sample, the 

distribution of 1,000 sufficient bootstrap test statistics of the last original sample, and the distribution 

of 10,000 original test statistics for strongly dependent residuals with        from  (   ) 

distribution, respectively (           ) 
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CHAPTER FIVE 

CONCLUSIONS 

 

     In this thesis, a group of simulation study is conducted to show the performance 

of asymptotic, bootstrap, and sufficient bootstrap df-AR Unit Root tests. For their 

powers on the unit root tests, two different situations are taken into consideration. 

Firstly, the residuals are supposed to be independent from each other. Secondly, the 

residuals are supposed to be dependent on each other. Considering these different 

situations, obtained results can be summarized as follows: 

 

1. When the residuals are independent from each other and follow the  (   ) 

distribution, all three methods give nearly the same satisfactory results especially 

in the situation of the large sample size. 

 

2. When the residuals are independent from each other and follow the     (   ) 

distribution, asymptotic and bootstrap methods give nearly the same 

unsatisfactory results. The unit power is obtained for a smaller parameter value 

compared with  (   ) distributed residuals. For     (   ) distributed residuals 

the power of the test increases very fast after a specific parameter value as the 

parameter value decreases, while for  (   ) distributed residuals the power of 

the test increases slowly.  

 

3. The bootstrap bias values for  (   )  distributed independent residuals are 

smaller than the bootstrap bias values for     (   ) distributed independent 

residuals for fixed values of n and ϕ.  

 

4. The sufficient bootstrap method which is resulted in nearly 35% decrease in the 

sample size gives satisfactory results compared with the other methods especially 

when the residuals are dependent on each other. Only for     (   ) distributed 

independent residuals, the sufficient bootstrap does not show good performance. 
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5. While the distribution of the sufficient bootstrap test statistics is normal for 

 (   )  distributed residuals, the distribution of the sufficient bootstrap test 

statistics tend to be piled up on a determined value for     (   ) distributed 

residuals. Also, while the distribution of the original test statistics is normal for 

 (   )  distributed residuals, the distribution of the original test statistics is 

skewed to the left for     (   ) distributed residuals.    

 

6. When the residuals are dependent on each other, the sufficient bootstrap method 

gives more satisfactory results than other methods in near-unit root processes.  

 

7. When the residuals are dependent on each other, as the quantity of dependency 

increases from        to       , the power of the test decreases too much. 

The power close to one is obtained only for the sample size         Unlike the 

strong dependency, weak dependency does not affect the power of the test 

significantly.   

 

8. The bootstrap bias values for weakly dependent residuals are smaller than the 

bootstrap bias values for strongly dependent residuals while all the other 

parameters, n and ϕ, are the same.  

 

9. While the distribution of the sufficient bootstrap test statistics is normal for 

weakly dependent residuals, the distribution of the sufficient bootstrap test 

statistics tend to be piled up on several determined value for strongly dependent 

residuals. Also, while the distribution of the original test statistics is normal for 

weakly dependent residuals, the distribution of the original test statistics is 

skewed to the right for strongly dependent residuals. 

 

10. For both independent residuals and dependent residuals, when        the power 

of the test is zero. For the positive values of c, the bootstrap bias takes the 

positively large values, and as the sample size increases, the magnitude of these 

values increase too much. 
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11. The bootstrap method and the sufficient bootstrap method show nearly the same 

pattern as regards the speed of their powers being move away from the nominal 

level of the test. 
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APPENDICES 

 

MATLAB R2011b programme codes for the conducted simulation study 

 

function[asy_sign_level,boot_sign_level,suff_boot_sign_level,Bootstrapbias,mean_l

ength_for_suffboot]=DF_boot_formula_thesis(n,S,B,c,alpha) 

% residuals from N(0,1) distribution 

bias_for_bootstrap=[]; 

TotalH0=0;TotalH1=0;count=0;count_suff=0; 

TS=[]; 

suff_mean_length=[]; 

a=1+(c/n) 

for s=1:S; 

disp('simulation='),disp(s) 

Zt=randn(n,1); 

%Generation of AR(1) series 

X_vec=filter(1,[1 -a],Zt); 

X=X_vec; 

%Dickey-Fuller Unit Root Test results for the original sample 

[h,pValue,stat,coeff,reg] = adftest(X,'lags',0,'alpha',0.05,'model','AR'); 

zt_new = getfield(reg,'res'); 

zt_new=[X(1);zt_new]; 

zt_new=zt_new-mean(zt_new); 

if h==0; 

 TotalH0=TotalH0+1; 

else 

 TotalH1=TotalH1+1; 

end; 

%Test Statistic for the original sample 

TS_original=stat; 

TS=[TS;TS_original]; 

%Bootstrapping the residuals 
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zt_star=zt_new(ceil(rand(length(zt_new),B)*length(zt_new))); 

%Bootstrapping the series 

X_star=filter(1,[1 -1],zt_star); 

X_star(1,:)=X(1); 

TS_boot=[]; 

TS_boot_suff=[]; 

for i=1:B 

[h,pValue,stat_boot] = adftest(X_star(:,i),'lags',0,'alpha',0.05,'model','AR'); 

TS_boot=[TS_boot;stat_boot]; 

end 

meanTestStat_boot=mean(TS_boot); 

bias_for_bootstrap=[bias_for_bootstrap;TS_original-meanTestStat_boot]; 

%percentile for (100*alpha)%(the bootstrap critical value) 

Bootstrap_critical_value(s)=prctile(TS_boot,[(alpha)*100]); 

%for the sufficient bootstrap 

length_suff=[]; 

for i=1:B 

zt_star_suff=zt_new(unique(ceil(rand(length(zt_new),1)*length(zt_new)))); 

%Bootstrapping the series 

X_star_suff=filter(1,[1 -1],zt_star_suff); 

X_star_suff=[X(1); X_star_suff]; 

length_suff=[length_suff;length(X_star_suff)]; 

[h,pValue,stat_boot_suff] = adftest(X_star_suff,'lags',0,'alpha',0.05,'model','AR'); 

TS_boot_suff=[TS_boot_suff;stat_boot_suff]; 

end 

suff_mean_length=[suff_mean_length;mean(length_suff)]; 

%percentile for (100*alpha)%(the sufficient bootstrap critical value) 

Bootstrap_critical_value_suff(s)=prctile(TS_boot_suff,[(alpha)*100]); 

end; 

for s=1:S 

if TS(s,1)<mean(Bootstrap_critical_value); 

count=count+1; 
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end 

end 

for s=1:S 

if TS(s,1)<mean(Bootstrap_critical_value_suff) 

count_suff=count_suff+1; 

end 

end 

Bootstrapbias=mean(bias_for_bootstrap); 

mean_length_for_suffboot=mean(suff_mean_length); 

asy_sign_level=TotalH1/S;%if a=1 then equals to alpha, otherwise equals to power 

boot_sign_level=count/S; 

suff_boot_sign_level=count_suff/S; 

minimum=min(min(TS_boot),min(TS_boot_suff)); 

maximum=max(max(TS_boot),max(TS_boot_suff)); 

binwidth = 0.5; 

bins=minimum:binwidth:maximum; 

subplot(1,3,1); hist(TS_boot,bins) 

title('Bootstrap Test Statistics of LastOriginalSample n=30') 

subplot(1,3,2); hist(TS_boot_suff,bins) 

title('SufficientBootstrap Test Statistics of LastOriginalSample c=-15') 

subplot(1,3,3); hist(TS) 

title('Original Test Statistics of All Simulations alpha=0.05')  

end 

 

(Please note that the values of n, and c have to be changed for the first two figures.) 
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