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 STATISTICAL INFERENCE OF COINTEGRATING VECTORS  

 

ABSTRACT 

 

     Cointegration analysis states that, in case the economic variable to be analyzed is 

not stationary, a linear combination of these series would be stationary. Put it 

differently, cointegration studies the linear combination of non-stationary variables. 

A simulation study is conducted in Chapter Four for the estimation of the coefficient 

matrix for the cointegrated vector autoregressive process. This study, in the last 

chapter, gives information about the performances of Johansen Trace and Maximum 

Eigenvalue tests, used for testing cointegration, depending on the size of the sample 

and the number of the variables in the system.     

            

Keywords: Cointegration, least square method, maximum likelihood method, trace 

test, maximum eigenvalue test 
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EŞBÜTÜNLEŞME VEKTÖRÜ İÇİN İSTATİSTİKSEL ÇIKARSAMA  

 

ÖZ 

 

     Eşbütünleşme analizi incelenen ekonomik değişkenin durağan olmaması 

durumunda, bu serilerden oluşturulan doğrusal bir birleşimin durağan olacağını ifade 

etmektedir. Yani başka bir ifadeyle eşbütünleşme durağan olmayan değişkenlerin 

doğrusal bir birleşimi ile ilgilenmektedir. Eşbütünleşik ikinci dereceden vektör 

otoresgresif sürecin katsayılar matrisinin tahmini için dördüncü bölümde simülasyon 

çalışması yapılmıştır. Bu çalışmanın son bölümünde eşbütünleşme testi için 

kullanılan Johansen trace ve maximum eigen value testlerinin örneklem büyüklüğüne 

ve sistemde yer alan değişken sayısına göre performansları hakkında bilgi 

vermektedir.                        

            

Anahtar sözcükler: Eşbütünleşme, maksimum olabilirlik yöntemi,  en küçük kareler 

yötemi, iz testi, en büyük özdeğer testi 
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CHAPTER ONE 

INTRODUCTION 

     A time series is a sequence of the values a variable has for successive time units. 

Time series analysis is the statistical investigation of the data observed in time. It is 

possible to estimate the future values of the economic time series by making use of 

the values it had in the past. Time series can be discussed under two categories, 

stationary and non-stationary, with regard to the deviations from the mean value they 

exhibit.  

     In the econometric time series, the most important hypothesis for obtaining 

econometrically significant relations between the variables is the requirement for the 

time series to be analyzed to be stationary series. If the mean and variance of the time 

series do not change with regard to time, and if the covariance between two steps 

depends on the distance between these two steps rather than time stationarity is 

present. Therefore, stationarity concept has an important place in time series. On the 

contrary, economic time series show a tendency of increasing in time. This means 

that most of the economic time series are not stationary.  

     There are some consequences for using non-stationary time series variables in 

times series analyses. Spurious regression issue is one of the major issues and this 

would cause problems in hypothesis tests. In case of using stationary series these 

issues are solved to a great extent.  

     There are substantial differences between the stationary and non-stationary time 

series. A stationary time series shows an inclination of returning to the mean level in 

the long term. Covariance has a finite value and does not change in time. On the 

other hand, variance and mean of a non-stationary time series depend on time. 

Chapter two of this study summarizes the concept of stationarity in time series.  

     The domains in the time series field which have been focused recently are the 

studies that question the determination of the unit root, whether or not the time series 

are stationary, at which order the series are cointegrated and whether there is a 

cointegration relation between the series. If the series is not a stationary one, it 

should be made stationary using various methods. One of the main reasons of 
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making the series stationary is providing the hypothesis about the error terms. 

Therefore, a unit rooted series is tried to be made stationary by taking difference. 

However, taking difference method causes long term data loss in variables and it 

causes statistically erroneous results in the analysis of the series. 

     Cointegration analysis states that, in case the economic variables to be analyzed 

are not stationary, a linear combination of these series would be stationary. Put it 

differently, cointegration studies the linear combination of non-stationary variables.  

     Studies in which the cointegration analysis is used can be listed as follows: 

relations between expenses and revenues, relations between the long and short term 

interest rates, and the relations between the production and sales volume.  

     A simulation study is conducted in Chapter Four for the estimation of the 

coefficient matrix for the cointegrated vector autoregressive process. In this 

simulation, the asymptotic properties of    ̂    ve    ̂    , for  and   values 

of the coefficient matrix A, are investigated for different conditions as per the 

method used for obtaining the unit root. For instance, the unit root in the process can 

be obtained in two ways depending on 1 and 1 or 1 and 1 . 

     There are two separate hypothesis test methods frequently used for the 

determination of the existence of cointegration. These are the Engle-Granger and 

Johansen cointegration tests. Engle and Granger (1987) argues that if times with 

common trend are also integrated at the same order and the difference between the 

time series is stationary, then these series are cointegrated. Johansen (1988) method, 

on the other hand, is the multivariate generalization of the Engle-Granger method.  

While only one cointegration is found between variables in Engle-Granger method, 

more than one cointegration relations can be found in Johansen cointegration test. 

Also, while Engle-Granger test uses the least squares method for the estimation of 

the cointegration vector, Johansen test uses the Maximum Likelihood method.  

     This study, in the last chapter, gives information about the performances of 

Johansen Trace and Maximum Eigenvalue tests, used for testing cointegration, 

depending on the size of the sample and the number of the variables in the system. 

2000 sample groups will be randomly generated, sample size being 30 and 400, using 
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a simulation method with varying f and g parameters. The presence of cointegration 

in the sample groups, generated with regard to the        significance level which 

is mostly preferred in the literature, will be investigated with reference to the 

rejection ratios of  H0 hypothesis, and the power of the tests for each method will be 

questioned.  
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CHAPTER TWO 

STATIONARY AND NON-STATIONARY TIME SERIES 

2.1 Graphical Investigation of Stationary and Non-stationary Time Series  

      Stationary series have mean and variance that do not change in time. Such series 

would present a constant oscillation and move around its own mean. For 

nonstationary series, on the other hand, the variance of the series becomes a function 

of time. All statistical tests give correct results under the assumption that the series is 

a stationary one.  

     For stating the series    , defined for t=1,2,…,T times, as stationary, the three 

conditions given below should be met:  

a) Constant mean,                         

b) Constant and finite variance,                               

c)                  ve                       ,       

     The series which do not have a constant oscillation around a constantmean and 

which do not satisfy the three conditions above are called the nonstationary time 

series. The stationarity of the AR (1) model given in Equation 2.1 depends on the    

coefficient. 

                                                                      (2.1) 

     If  |  |   , then the process is called stationary; and if     , then the process 

is called nonstationary process. In case of      equity, the process is unit rooted 

and called random walk process. In order to present the differences between the unit 

rooted (nonstationary) series and the stationary series, two AR (1) process with 

sample sizes of 300 and with (0,  ) distributed error terms, were produced. In the 

AR(1) process in Figure 2.1, while the    coefficient is 0.8 and the process is 

stationary, in the AR(1) process in Figure 2.2, the    coefficient is 1 and unit rooted, 

i.e. nonstationary. 
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Figure 2.1               Stationary AR (1) model 

 

Figure 2.2            Nonstationary AR (1) model (Random walk process) 

 

     Stationarity is a significant issue in a univariate time series as it is in multivariate 

time series. Let 

    i=1,2,…,k  t=1,2,…,T 

be a k dimensional t time indexed time series variable. The stationarity conditions for 

the k dimensional     variable are as below; 

      a) If the     vector has time independent mean vector, 

                           

     b) If the covariance between the k dimensional     variable, which is realized 

in t time, and the     variable, which is realized in s time, depends only and only 

the time interval between these two variables, expressed as below:  

                (               )           
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Figure 2.3 Three dimensional stationary VAR(1) process 

 

     The time series graph of the VAR (1) process, which has three variables, is 

presented in Figure 2.3. The equation of the process is given below:  

[

   
   
   

]  [
 
 
 
]  [

         
     
      

] [

     
     
     

]  [

   
   
   

] 

 

Figure 2.4 Three dimensional unrelated nonstationary VAR (1) process 
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Figure 2.5 Three dimensional related nonstationary VAR (1) process 

 

     Figure 2.4 and Figure 2.5 presents two examples for nonstationary VAR (1) 

process with three variables. The models of these processes are given in Equations 

2.2 and 2.3 respectively. Each variable in the model presented in Figure 2.4 were 

produced from the random walk process. In Figure 2.5, on the other hand, the 

processes    ,    and     were produced from the nonstationary random walk 

processes. While the variables in the model presented in Figure 2.4 are independent 

of each other, the first variable in the model in Figure 2.5 depends on the delay of 

other variables.  

[

   
   
   

]  [
  
  
 
]  [

   
   
   

] [

     
     
     

]  [

   
   
   

]                                    (2.2) 

[

   
   
   

]  [
 
 
 
]  [

         
   
   

] [

     
     
     

]  [

   
   
   

]                                 (2.3) 

     The process in Figure 2.4 can be transformed into a stationary one by taking the 

difference of each series. On the contrary, the process in Figure 2.5 could not be 

transformed into a stationary one by taking the differences. This study aims at 

investigating the cointegrated relationships of the processes that cannot be smooth by 

difference operations.  
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2.2 Stationary VAR (p) Process 

     Before introducing the stationary VAR (p) process, brief information about the 

notation of the k dimensional    vector and the matrix notation of the covariance 

matrix. 

     Let   vector present k variables observed in t time.  

   [

   
   
 
   

]           

     If k time series are observed in a certain time interval,    vector for t=1,2,…,T 

could be expanded to a kxT dimension. 

   [          ]  [

          
          
 
   

 
   

 
 

 
   

] 

     Each row of Y matrix shows the univariate time series and the each column shows 

the values for the     variable in time t.  

     The covariance coefficient for the      step between the      and the      

component of the    vector is defined as below: 

          (          )                       

     The kxk dimensional variance-covariance matrix of k variables for the      step is 

expressed as below: 

      [    ][      ]  [

                   

                   
 

      
 

      
 
 

 
      

] 

     Let     shows the white noise process; the model of a     order autoregressive 

process AR(p) in univariate time series, is written as below:  
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     In the multivariate time series model, on the other hand,  the dependency structure 

of the       variable with other k variables. The model is as below: 

                                           

                                     

                                     

    

                                                     

     The       parameter shows the       time series, k indicates the related variable, 

and p shows the delay degree of the model. The     order vector autoregressive 

process VAR (p) can be written with matrix notation as below: 

   [

   
   
 
   

]  [

  
  
 
  

]  

[
 
 
 
                

                
 

     

 
     

 
 

 
     ]

 
 
 

[

     
     
 

     

]     

   

[
 
 
 
 
                

                
 

     

 
     

 
 

 
     ]

 
 
 
 

[

     
     
 

     

]    [

   
   
 
   

] 

or  

                                

     In the equation, 

    is the kx1 dimensional random time vector, 

    is the kxk dimensional autoregressive coefficients matrix i=1,2,…,p, 

   is the kx1 dimensional constant term vector, 

    is the kx1 dimensional white noise process vector. 
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     The expected value and the variance-covariance matrices of the white noise 

process are as below: 

        

     
 
      

[
 
 
 
     

                     

              
            

 
         

 
         

 
 

 
     

  ]
 
 
 

   

     Where    is the positively defined variance-covariance matrix. Because of this 

property,    
   is existing. 

 

2.3 Stationary VAR (1) Process 

     After a brief information about the VAR (p) processes, the investigations will 

continue on the basis of VAR (1) process, in order to interpret the statistical 

properties of the process more easily.  

 

2.3.1 Model Definition 

     1
st
 order autoregressive process VAR (1) is presented in the equation below:  

                

     This model can be expressed using a backshift operator.  

                 

     In the equation above the L is called as the backshift operator, and it shifts the 

variable it precedes backwards by the power of the operator (         ). 

 

   2.3.2 General Linear Process 

     If we rewrite the VAR (1) model using the backshift method we obtain the 

equation below: 
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     After performing n replacements VAR (1) model is expanded to the form below:  

   (       
      

 )    
            

                  

     As the VAR (1) model will become close to zero, when the    
   

 coefficient of 

       variable is    , and thus become negligible, VAR (1) becomes a model 

which comprises only of random shocks. Therefore, VAR (1) model, which has the 

property of invertibility in its nature, becomes a stationary model. If it is accepted 

that the kxk dimensional matrix with the    coefficient has s linear independent 

eigenvectors, s being less than or equal to k, the    matrix is tried to be decomposed 

using the Jordan Decomposition method.      being any matrix that is not singular, 

the equation below can be written: 

         

     The   matrix with the diagonal elements being    and other elements being zero 

is presented as below: 

   [
    
   
    

] 

     The    matrix, with the diagonal elements comprising of the eigenvalues       

i=1,2,…,k )  obtained from the    matrix, and with other elements, crossover the 

diagonal elements, being zero, is written as below: 
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[
 
 
 
 
      
     
 
 
 

 
 

 

 

 
 
 

 
 
  ]
 
 
 
 

 

    Then, the     power of the    matrix, decomposed using the Jordan 

Decomposition method, can easily be obtained by using the equation below, with the 

help of the decomposed matrices: 

  
                  

     If the absolute values of the eigenvalues of the     matrix are less than 1, for 

   ,   
            will be close.Since it would converge to 

  
            value    

          can be neglected in the model. Therefore VAR 

(1) model is stationary (Hamilton 1994). 

 

2.4 Near-Stationary Process  

     This section will cover the process  which  are close to unit root, except a unit root 

case. This process which was introduced into the literature by Philips (1987b) is 

widely used in the application; since the financial or economic data are either unit 

rooted or have parameters close to unit root.  

     If we consider the AR (1), it is written as below:  

                                                                                                                                  

     Here    is independent and has         distribution. When | |    and 

        
          ,{  } is a stationary process. On the other hand, if     and   

    , {  } is first order integrated (I(1)) and nonstationary; the variance of the 

series varies depending on t, i.e. the variance is equal to the value     . 

     In case | |    and very close to 1; i.e. for  <0, when the    value is defined as 

      for the small   values, the equation will be as below: 
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          [                      ] 

                   

     Therefore, the variance would behave as a trend equation. In other words, the 

process would behave as a first order integrated process although it is an 

asymptotically stationary.  

     A more appropriate parameterisation could be used for a near-stationary process:  

     (
 

 
)           

     This parameterisation will create a local alternative series for     series. When 

   , it will result in    , and   will obtain a value less than 1 but very close to 1 

for the smaller   values, if  <0. Put it another way, for    , it will converge to 

    value. Thus, the process will be called as near-integrated process; because the 

process, for the smaller   values, for  <0, will behave as a first order integrated 

process. 

 

2.5 Non-stationary Time Series 

     Nonstationary time series would yield unit rooted parameters in the prediction and 

regression equations.  It will be give brief information about the nonstationary, in this 

section univariate and multivariate time series models which include unit roots.  

 

2.5.1 Unit Root Status in Univariate Time Series 

     The situation that the univariate time series has a unit root means that the series 

under investigation is nonstationary.  Series like this contains a stochastic trend. If 

we are to consider the AR (1) model 

               

in case of    , the parameter is unit rooted and the process is nonstationary. As it 

is mentioned in the previous sections, processes like these are called random walk 

process.  When the errors are assumed as zero mean, with unit variance and normal 
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distribution and when initial value is     , the random walk process will be 

obtained as below:  

              

          

     The variance in y at  time t and s is below, 

                     

                 

     The variance of the    process at the time interval between s and t is distributed 

normally.  This situation will be investigated in detail in the following chapters. The 

processes which are nonstationary,  such as random walk process, will be divided 

into parts based on equal intervals, and the distribution of the divided parts will be 

obtained using the Wiener process.  

 

2.5.2 Unit Root Situation in Multivariate Time Series 

     As it is in univariate processes, unit root situation is encountered in multivariate 

processes.  If the first order autoregressive process with variable vector is considered, 

the model of the process will be as below: 

             

     In the model the equity of the    coefficient matrix to the unit matrix indicates 

that the model includes a unit root.  In this situation the equation of the model will 

become as below:  

           

     If at least one of the elements of the nonstationary multivariate time vector 

(         ) includes a unit root, the process will not have the property of 

stationarity.   
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CHAPTER THREE 

THE ASYMPTOTIC PROPERTIES OF UNIT ROOT PROCESSES  

     This chapter aims give information about the asymptotic distribution of unit 

rooted processes and the properties of these distributions.  For this purpose, first the 

Brownian motion functions and some theorems should be considered.  

 

3.1 Brownian Motion (Wiener process) 

     In statistics, the Wiener process is a continuous-time stochastic process named in 

Norbert Wiener.  It is often called standard Brownian motion,  after Robert Brown. 

 

3.1.1 Random Walk and Brownian Motion 

     It was previously mentioned in Chapter Two that the random walk in Equation 3.1 

is not a stationary process.  

                                                          (3.1) 

     When the process is started to be written with       assuming that the errors in 

the random walk process are with zero mean and unit variance normal distribution 

                   ,     will be obtained as below. 

              

          

     The change in y in times t and s will be as follows, 

                     

                 

and this change will be independent of any changes in r and q times (assuming 

t<s<r<q). When the change of y in time  t-1 and  t is examined by dividing the t-1 

and t time period to n sub-periods, the process will become as follows: 

                      

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Norbert_Wiener
http://en.wikipedia.org/wiki/Brownian_motion
http://en.wikipedia.org/wiki/Robert_Brown_%28botanist%29
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     Here it should be noted that                     . This process has the same 

properties with the random walk process. The limit of this process for     will 

return the continuous times process known as the standard Brownian motion. The 

value of this process in t time is shown with W(t). 

     Brownian motion will be discussed in detail under the functional central limit 

theorem.  

 

3.1.2 Standard Brownian Motion (Standard Wiener Process) 

     The use of continuous timed stochastic processes to obtain the asymptotic 

processes of the unit rooted processes is quite frequent. Wiener process is used for 

describing of the asymptotic properties of the estimated parameters. Standard 

Brownian motion or standard wiener process are examples of the continuous timed 

processes in the range of (W(.)),  [0,1]. 

     For each t [   ], W(t) has the three properties below. 

 (a)W(0)=0; 

 (b) Considering            , for 

              [           ]   [             ] random variables 

are independent form each other and normally distributed. 

 (c) W(t) is a continuous function of t in almost everywhere. 

     In order to develop the unit root asymptotics, generally the       quantity is 

considered. Here 

         ∑           [   ]

⟦  ⟧

   

 

    represents a stationary stochastic process, r  [   ] represents the proportion, 

⟦  ⟧ represents the integer value of Tr expression. Use of       quantity in unit 

rooted processes will be explained in detail when discussing the functional central 

limit theorem.  
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3.2 Functional Central Limit Theorem 

     Using the functional central limit theorem, it is tried to prove, by dividing the unit 

rooted processes into different sub-period intervals,  that the functions belonging to 

these intervals have independent and identical distributions with different 

parameters. 

     As per the central limit theorem, and considering     as being independent 

random variables having the same distribution with a zero mean and    variance,  

the asymptotic distribution of   ̅  sample mean will have a normal distribution as 

shown in Equation 3.3. 

 ̅     ∑   
 
                                                    (3.2) 

√  ̅ 
 
                                                           (3.3) 

     Let us try to obtain the        step function by dividing the sample into certain 

subsections using the function pertaining to the sample mean in order to show the 

functions of the functional central limit theorem.  

         ∑           [   ]

⟦  ⟧

   

 

     The step function of      is as below: 

      

{
  
 

  
                                                    

 

 
  
 
                                            

 

 
   

 

 
 

            

 
                      

 

Later,  for all values of r,  as per the central limit theorem,  it is obvious that it would 

be; 

√       
 

√ 
∑   

⟦  ⟧

   

  
√⟦  ⟧

√ 
  

 

√⟦  ⟧
 ∑   

⟦  ⟧
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√⟦  ⟧
 ∑   

⟦  ⟧

   

 
         

Since  
√⟦  ⟧

√ 
  √   , 

√      
 
          

√          
 
        

they will have the distributions above.  

     Similarly, let       , the asymptotic distribution, mean and variance of the 

difference of the two step functions for a  ⟦   ⟧ and a ⟦   ⟧ sample size would fit 

the normal distribution as in Equation 3.4. 

√                  
 
                                                  (3.4) 

     According to all these results, it will have the √           properties  

which takes the      =0 for r=0 ,  

which takes continuous values for each t and  

asymptotic normally distributed for each        value. 

√                

     The Brownian motion provides the possibility of applying the central limit 

theorem in a more general way. Using the functional central limit theorem, the 

traditional central limit theorem for r=1 can easily be reached. In other words; 

         ∑            

 

   

 

√           [   √ ∑  

 

   

]
 
             

is obtained 
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3.3 Continuous Mapping Theorem  

     Let {  }   
 random variables array be a       defined continuous function 

and let X be any random variable.As per the continuous mapping theorem, while  

   , if   
 
   approximates,      

 
      will approximate.Accordingly, 

while    , 

√                                    √      
 
       

can be written.Also if      Is a stochastic function of X random variable 

(i.e.y=∫       
 

 
), it is obvious that       [√      ]

               
 
   [    ] . 

 

3.4 Asymptotic Properties for Unit Root Univariate Time Series  

     Philips (1986, 1987) is the first researcher to investigate the asymptotic 

distributions of the unit rooted processes using the functional central limit theorem. 

In this section, the obtaining process of the asymptotic distributions of the unit rooted 

AR (1) process will be summarized. The equation of the unit rooted AR (1) process 

is presented below: 

            

     For the random walk process if   is accepted as independent and having the same 

distribution with zero mean and    variance and if the process starts with      , 

the model will be as  

                                                         (3.5) 

     The model shown in Equation (3.5),       step function is as below: 

      

{
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    The graph of the step function obtained above is given in Figure 3.1  

 

Figure 3.1 Graph of      step function 

 

     When figure 3.1 is examined; the area below the function will be equal to the 

product of  T  rectangles. In other words, the area of the first rectangle is obtained by 

the product of the length of base     and the height  
  

 
. When all the areas of the 

rectangles are summed, the area of the       step function will between [0,1] 

interval. The mathematical representation is given in (3.6). 

∫      
 

 

   
  
  

   
    
  

 ∑
    
  

 

   

                                     

    When Equation (3.6) is multiplied by  √ ,  the product is: 

∫ √      
 

 

        ∑    

 

   

                                               

     Equation (3.7), will become Wiener process for     as per continuous 

mapping theorem.  

∫ √      
 

 

  
 
  ∫     
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     The information in Equation (3.8), can be used to obtain the asymptotic 

distribution of the       ∑     
 
    function obtained in (3.7).  

     ∑    

 

   

 
  ∫     

 

 

   

When the equation      ∑     
 
    is unfolded until T equation (3.9) is obtained. 

   
 
 ∑    

 

   

    
 
 [                       

                  ] 

                                           

      [                         

 (       )    ]      
 
 ∑       

 

   

 

      ∑  

 

   

    
 
 ∑   

 

   

                                                    

     Hamilton (1994) showed that the function in (3.9) approximated the normal 

distribution, with the parameters given below.  

[
 
 
  

 

√ 
 ∑  

 
 

√ 
 ∑       ]

 
 
 
 
  ([

 
 
]    [

    
      

]) 

     Thus    
 

 ∑     
 
    asymptotically will approximate to the normal distribution 

with 0 mean and 
  

 
 variance. Using the equation in (3.11),   ∫     

 

 
    expression 

will naturally have the same distribution; in other words it will also be N(0,
  

 
 . With 

reference to this information, the asymptotic distribution of the function 

   
 

 ∑    
 
    will be as given in Equation (3.10). 
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 ∑   

 

   

   
 
 ∑  

 

   

    
 
 ∑    

 

   

 

   
 
 ∑   

 

   

 
        ∫     

 

 

                                          

     The asymptotic distribution of the sum of stochastic squares of the random walk 

process can be obtained similarly.  If       statistics is defined as below; 

      [√      ]
  

     The step function        statistics can be obtained as below: 

      

{
  
 

  
                        

 

 
  

 

 
                  

 

 
   

 

 
 

  
 

 
                                

 

     Later; The area of       in the [0,1] interval will be equal to equation ∑
    

 

  
 
   . 

∫      
 

 

   
  

 

  
   

    
 

  
 ∑

    
 

  

 

   

 

     As per the continuous mapping theorem; 

   ∑    
 

 

   

 
   ∫ [    ]    

 

 

 

can be written.When the asymptotic distribution of the products of the statistics 

discussed up to now with t/T, assuming r=t/T, equation (3.11) is obtained. 

     ∑     

 

   

      ∑ 
 

 
     

 

   

 
  ∫      

 

 

                              

     Similarly; 
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   ∑     
 

 

   

    ∑ 
 

 
     

 

 

   

 
   ∫  [    ]    

 

 

 

     Until now, the asymptotic distributions of   and its different functions have been 

investigated. Using the results obtained, one can get information about the 

asymptotic distribution of unit rooted AR (1) model. The operation begins by 

squaring both sides of the AR (1) model. Let  

  
           

      
            

  

       (
 

 
) {  

      
    

 } 

and for     ; 

   ∑      

 

   

 (
 

 
)      {  

 }  (
 

 
)  
 

 
 ∑  

 

 

   

 

   ∑      

 

   

 (
 

 
)       (

 

 
) (

 

 
)∑  

 

 

   

 

are obtained. Here, as per the law of large numbers and the continuous mapping 

theorem, the distributions will be obtained: 

 
 

 
 ∑  

 

 

   

 
    

     
 
   [    ]  

     Here W(1), is a wiener process with N(0,1) distribution. With regard to this 

information  [    ]  will distribute as       and will be equal to the expression 

below: 

   ∑      

 

   

 
 (

 

 
)   [    ]  (

 

 
)    (

 

 
)  [[    ]   ] 
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 (
 

 
)   [       ] 

 

     The asymptotic properties for Univariate Unit Rooted AR(1) process are 

summarized in Table 3.1. 

Table 3.1 The asymptotic distributions of wiener processes 

Functions The asymptotic distributions of 

wiener processes used 

(
 

√ 
)∑  

 
         

 

   ∑      

 

   

 
 (

 

 
)   [[    ]   ]           

  

   
 
 ∑   

 

   

 
        ∫     

 

 

         
W(1)  N(0,1)  

 

∫     
 

 

             

   
 
 ∑    

 

   

 
  ∫     

 

 

         ∫     
 

 

             

   ∑    
 

 

   

 
   ∫ [    ]    

 

 

 [    ]      
  

     ∑     
 
  ∫      

 

 

        

 

   

 

 

  

3.5 Asymptotic Properties for Unit Root Multivariate Time Series  
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     In the previous section the asymptotic properties of univariate AR(1) process and 

naturally the univariate standard Brownian motion W(r) were discussed. Since the 

asymptotic properties of the multivariate VAR(1) process will be discussed in this 

section, information about the multivariate Brownian motion W(r) will be provided. 

W(r) is a (nx1) sized vector which contains n “             ” processes 

independent from each other. 

     The n sized W(r) multivariate standard Brownian motion defined   [   ] has 

the three properties given below. 

a)        

b) For any                time, [           ]   [      

       ] changes have independent and identical distributions. They are normally 

distributed as  [         ]             . 

c) W(r), is a continuous stochastic function with a probability of 1 in the interval in 

which r is defined. 

     Let the  {  }   
 univariate discrete time process with 0 mean and unit variance, 

which are independent and have the same distribution, be defined. 

  
        [         [  ] ] 

     [  ]    expresses the integral function which shows the largest integer value 

which is equal to or smaller than Tr. As per functional central limit theorem, for 

    it was; 

√   
    

 
      

     This situation written for univariate processes can be generalized for multivariate 

processes.  

     For the multivariate {  }   
  vector process with independent variables and the 

same distribution let          and         
     , for the function below 

  
        [         [  ] ]                                     (3.12) 
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It is written as below 

√   
    

 
      

     Later, if the {  }   
  process, with n-size, zero mean vector and   variance - 

covariance matrix, is defined the P matrix can be obtained by applying cholesky 

decomposition for the     variance-covariance matrix. 

      

     If it is assumed that all    are produced from    the equation below can be written 

by using the P matrix obtained from the decomposition. 

       

     When    is expressed with     its initial properties do not change. Its mean and 

variance-covariance matrix are as below: 

                   

      
          

         
    

     The properties of the   
     statistics given in Equation (3.12) will be as below:  

  
        [         [  ] ] 

     [         [  ] ] 

    
     

     As per the continuous mapping theorem, it will distribute as below: 

√   
    

 
       

     For any r,        has N (0, r ) distribution. 

     The    vector in the multivariate VAR (1) process can be written as dependent    

vectors using the functional central limit theorem. 
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   ∑      

 

   

 

     Let     be the ith line and jth column element of the matrix   . The lineer 

weights of    obtained as    vectors should be smaller than infinite for each i and j, 

as per the stability and convertibility condition. This condition is stated below:  

∑ |   |

 

   

   

     Since the unit root VAR (1) models are under discussion, at this point it is 

necessary to give information about the Beveridge-Nelson decomposition. 

Beveridge-Nelson decomposition is used for dividing a scalar time series vector    

into two parts as total random walk component and stationary component.Thus, 

information about the asymptotic properties of the unit root component can be 

obtained.  

     Beveridge-nelson decomposition shows that an I (1) process can be written as the 

initial conditions of the sum of random walks and as the linear components of a 

stationary process.  The way to obtain the decomposition is given in Equation 3.13 

from its beginning to the end. 

∑  

 

   

         ∑      

 

   

 ∑      

 

   

   ∑      
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∑  

 

   

     ∑  

 

   

                                              

     In the equation above,                    and     ∑       
 
    are 

in the form of                   . The term      ∑   
 
    in equation 

3.13 shows the random walk part, the      term shows the stationary part and       

shows the initial conditions.  

     The step function, used in investigating the asymptotic properties for the 

univariate unit root time series, can be used with the same purpose for multivariate 

unit root time series. For the equation 

       
 

 
 ∑   

[  ] 

   

 

     The equation below is written using Beveridge-Nelson decomposition, 

√         
 
      ∑  

 

   

  [  ]      

     The expression  [  ]     approximates to zero value for     . In other 

words it approximates zero. 

   
         

     |   [  ]      |
 
   

     (Hamilton 1995). At this point, using the previously given asymptotic properties 

the equation below is written: 

√      
 
       √   

    
 
            

                 process has the                       distribution. 
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     It was previously mentioned that  matrix is decomposed as     using the 

cholesky decomposition.The properties below can be used for investigating the 

asymptotic properties for all multivariate unit rooted series. 

              ∑        

 

   

               

   [

    
    
 

    

]         

       
 
   [

         
        
 

     

 
     

 
 

 
  

] 

                      

                                 

     Table 3.2 is an attempt to summarize all asymptotic properties. 
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Table 3.2 Asymptotic properties for multivariate unit rooted time series  

  
 

 ∑   
 
   

 
       ; 

  
 
 ∑  

 

   

   
 
                       

   ∑  

 

   

     
 
    

   ∑      
 
         

 
    

 

   

 
 {

                                  

             ∑   

   

      

              
 

   ∑    

 

   

   
 
  {∫             

 

 

}   ∑   

 

   

 

   ∑    

 

   

   
 
  {∫             

 

 

}   

     ∑    

 

   

 
  ∫       

 

 

 

     ∑     

 

   

 
  {     ∫       

 

 

}           

   ∑         

 

   

 
  {∫            

 

 

}   

     ∑     

 

   

 
  ∫        

 

 

 

   ∑          

 

   

 
  {∫             

 

 

}   
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CHAPTER FOUR 

 

COINTEGRATED VAR (1) PROCESSES 

     The first definition of cointegration was put forth by Engle and Granger (1987) 

with a theory which argued that the linear combinations of non-stationary series were 

stationary. They defined the stationary combination of these non-stationary series as 

cointegration and showed this with the CI (d,b) notation. Here d indicates the 

integration level of the non-stationary processes, and b indicates the number of linear 

cointegrations between the non-stationary processes. If      ve     the linear 

combination of two different I(1) series, is  stationary [I(0)], then it is said that these 

two I(1) series are cointegrated and the CI(1,1) notation is used. 

    Engle and Granger give the definitions below for a CI (d,b)  

                    vector process with n variables: 

a) All n components of the     vector process are cointegrated at     level.  

b) For the   vector, different from zero,             is stationary and   vector is 

the cointegration vector. 

                                                                 (4.1) 

     In equation 4.1,    matrix has a 0<r<n dimensional reduced rank, herefore it can 

be written as       . Here   and   are (nxr) dimensional and have a rank of r.    

is the cointegration matrix,   is the adjustment coefficient (loading)matrix, and   
    

is a unit rooted process. If r=0 then     is a stationary VAR process, and if r=n then  

   is a stationary process. 

4.1 Bivariate Cointegrated VAR (1) Process 

     To be understood more easily, the cointegrated VAR (1) process and the 

acquisition of cointegration matrix will be explained over a bivariate lateral vector 

autoregressive process.              
   vector time series is written in terms of a 

vector autoregressive process in Equation 4.2. 

                                                                (4.2) 
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     The roots of the characteristics equation of the coefficient matrix A, under the 

assumption that the one of the two roots of 4.2 model would have unit root and the 

other one would be smaller than one, will be as follows: 

|     |    

                  

     Since      ,    and     is first order cointegrated and A matrix has a full rank. 

Therefore A matrix is expressed as eigenvalues and eigenvectors corresponding these 

eigenvalues. 

QP 









0

01
A

 

     P  matrix is the eigenvector matrix of  . 

  [
  
  

]            

     For ease, under the assumption that the determinant value of P matrix is equal to 

one, the elements of A matrix are expressed as below in terms of their own 

eigenvalues and eigenvectors. 

  












)()1(

)1()(

adcbcd

abbcad




 

     When both sides of Equation 4.2 are multiplied with Q matrix, being


















 t

t

t

t

X

X
Q

z

w

2

1
, the equation below is obtained: 

t

t

t

t

t
e

z

w

z

w



























 



1

1

0

01


                                  (4.3) 

tw  and tz variables can be written in terms of tX 1 and tX 2 variables as below: 

ttt bXdXw 21 
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ttt aXcXz 21 
 

     When the equation above is examined, a non-stationary variable such as tz  can be 

obtained from the linear combination of the non-stationary variables tX 1  and tX 2 . In 

this case, tX 1  and tX 2  are cointegrated and [    ]  is the cointegration vector. 

     Another important issue about cointegration is that the cointegration vector is not 

unique. As it is previously mentioned, the error correction model coefficient matrix 

in a cointegrated model could be written as       . Using the (rxr) dimensional 

nonsingular C matrix,         and          are obtained and this disintegration 

shows that the cointegration matrix is not unique. This issue can be removed by 

limiting the cointegration matrix appropriately.    matrix has a rank of r; therefore it 

has r rows linearly independent from each other. Organizing the variables in the 

model appropriate, and using the information that the first r rows of the cointegration 

matrix are independent from each other, the cointegration matrix can be made 

unique.  For this purpose, the cointegration vector can be selected as below: 

   [
  

    
]                                                            (4.4) 

           is the (n-r)xr dimensional matrix, and    is the unit matrix. Organization of 

   as in Equation 4.4 is called normalization. Using this normalization, the 

cointegration vector is made unique. The results of the normalization operation will 

be explained over a trivariate system with a rank of 1 and with all variables first 

order cointegrated (I(1)).  In this system the model that shows cointegration can be 

written as      [     
   

]                  . In order for this 

normalization to apply,      needs to be integrated into the cointegration relationship 

and its coefficient is different from zero. Although     and     are not cointegrated, 

the condition that the variables     ,     and     are cointegrated together leads to the 

result that     is naturally integrated into the cointegration relationship; and therefore 

its coeficient in   vector is different from zero. 
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4.2 Estimation of Bivariate Cointegrated VAR (1) Process 

     Consider bivariate cointegrated VAR (1) process is as follows:  

                                                         (4.5) 

where    is (2x2) matrix of rank r=1 (0<r<2),   and   are (2x1) with rank r=1 and    

is two dimensional white noise process with mean zero and variance-covariance 

matrix   . Also we suppose that    is I (1) process and   
    is an invertible, 

because it is real valued scalar.     and   are orthogonal complements of    and  . 

If r=0, then     is stationary and if r=p=2 then      is stationary.  

     Maximum Likelihood and Unrestricted Least Square estimator of   ,   and   are 

discussed in this section.  Then asymptotic distribution of these related estimators are 

derived.  

     Unrestricted LS estimation method is preferred to LS estimation method due to  

the lack of the variance information. Using normal equations, unrestricted LS 

estimator of   is obtained as follows: 

 ̂  (∑        
  

   )(∑     
 
       

 )
  

                              (4.6) 

if           is replaced instead of     ,  then equation 4.7. is obtained. 

 

 ̂    (∑       
  

   )(∑     
 
       

 )
  

                             (4.7) 

 

     Q (2x2) matrix can be choosen as follows,  

  [
  

  
 ]    ,     

   [             
    

  ] 

     If the left hand side of equation of 4.7 is multiplied by   and the right hand side 

of the equation is multiplied by     , following equation can be obtained 
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 ( ̂   )     (∑     
 

 

   

)      (∑    

 

   

    
 )

  

    

 (∑      
 

 

   

)(∑    

 

   

    
 )

  

 

where         and       . 

     Hence, denoting the first r components of    by   
         which consists of 

the cointegration relationship and therefore the stationarity while the last K-r 

components of    , denoted by     
      

    which contains a K-r dimensional 

random walk because       
   

 is white noise. So,    is separated into two parts - 

former is stationary and latter is nonstationary. 

     To derive the asymptotic properties of the LS estimator, it is useful to rewrite  

 ( ̂   )    

 [∑  

 

   

    
     ∑  

 

   

    
     ]

[
 
 
 
 
 
∑    

   

 

   

    
     ∑    

   

 

   

    
     

∑    
   

 

   

    
     ∑    

   

 

   

    
     

]
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Table 4.1 Assymptotic properties of stationary and nonstationary process 

1 
     ∑     

     
       

     
 
   

   
. 

where   
   

 is the covariance matrix of   
     

2 
   

 

    (∑   
 
       

     )
 
   (    

      ) 

3 
   ∑   

 
       

     
 
   

   
 ∫      

  

 
    

   
[
 

    
]     , 

Where    denotes the standard wiener process       of dimension K. 

4 

     ∑    
    

 

   

    
     

 
    

5 

   ∑    
    

 

   

    
    

 
 [     ]   

 
 (∫     

   
 

 

)  

 
 [

 
    

] 

 

     Ahn & Reinsel (1990) would be helpful for details in derivation of the asymptotic 

distribution of   ̂   . The following information in table 4.1 will use frequently in 

the other sections. 

4.2.1   Limiting Results for the LS Estimator  ̂ 

     D matrix  is considered as follows:  

  [ 
    
  

] 

where its elements,       and T,  are convergence rates. 

     Then 

   [ ( ̂   )    ] 



 

37 

 

 
 [

       
   
    ∑  

   {  

 
  ∫     

   
 

 

    

 
 [

 
    

]  [     ]  

 
  ∫     

   
 

 

   

 
 [

 
    

]   }
] 

 

     The    [ ( ̂   )    ]  is distributed as a combination of normal distribution 

and Wiener process. 

Proof: 

 ( ̂   )     

 [     ∑  

 

   

    
        ∑  

 

   

    
     ]  

[
 
 
 
 
 
∑    

   

 

   

    
     ∑    

   

 

   

    
     

∑    
   

 

   

    
     ∑    

   

 

   

    
     

]
 
 
 
 
 
  

  

 

= 

[     ∑  

 

   

    
        ∑  

 

   

    
     ]

[
 
 
 
 
 
   ∑    

   

 

   

    
        ∑    

   

 

   

    
     

   ∑    
   

 

   

    
        ∑    

   

 

   

    
     

]
 
 
 
 
 
  

 

     Using by partitioned inverse, following matrix is yield as follows: 

 [     ∑  

 

   

    
        ∑  

 

   

    
     ] [

   
      

      
       

      
      

 

         
    

] 

where          
         

      
  . 

By using first information in table4.1, 

       ∑    
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the     is converging in probabilityto variance-covariance matrix    
   

 of stationary 

process  (  
         ). 

     By using 4
th

 information in table 4.1, 

       
     ∑    

   

 

   

    
     

 
     

     

the     is converging in distribution to zero with converging rate  
      

. 

     By using 5
th

 information of Table 4.1 and the continuous mapping theorem; 

       ∑    
   

 

   

    
            

   
         

     The inverse of     convergences to a real-valued scalar 

[     ]   

 

  ∫     
   

 

 
   

 

 [
 

    
]  with convergence rate  

    
 . 

     Using rules of partitioned inverse; 

      
      

     (          
     )

  
      

   

                                              ( 
  
 
 )       ( 

 
 )            

     S* convergences to finite real-valued scalar since   ( 
 

 ) convergences to zero. 

     It can be seen easily,           
      convergences to a real-valued scalar. 

          
            ( 

 
 )       ( 

 
 )      

     Based on continuous mapping theorem, the inverse of           
      also 

convergences to the scalar. 

(          
     )
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     As a result, 

 

   
      

      
       

   (  
   )

  

        ( 
 
 )       ( 

 
 )      

    
   
          

and 

    
      

          ( 
 
 )            

     Thus, 

 [   
 
 ∑  

 

   

    
        ∑  

 

   

    
     ] 

 

[
 
 
 
 
 
    ∑    

   

 

   

    
                   

         ∑    
   

 

   

    
              

]
 
 
 
 
 

 

=[     
 

 ∑   
 
       

         ∑     
    

       
         

                ∑   
 
       

         ∑     
    

       
        ]       

     Finally, 

   [ ( ̂   )    ] 

 

[
 
 
 
 
 
       

 
 ∑  

 

   

    
         ∑    

   

 

   

    
         

       ∑  

 

   

    
     (   ∑    

   

 

   

    
     )

  

 
]
 
 
 
 
 

 

     Using table 4.1, the proof has been completed. 
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 [

       
   
    ∑ 

   {  

 

  ∫     
   

 

 
    

 

 [
 

    
]  [     ]  

 

  ∫     
   

 

 
   

 

 [
 

    
]   }

] 

     The    [ ( ̂   )    ] is still consisting of nonnormal elements. Choosing 

proper convergence rate, the nonnormal part of matrix could be normal. 

     The distribution of unrestricted LSE estimator  ̂ is asymptotically normal, 

  √      ̂    
 
      (  

   )
  

       

     And   (  
   )

  

    is estimated by using     ∑         
  

       

 

4.2.2 Limiting Results for the MLE Estimator  ̂ 

     When the error process is assumed to be Normal distribution, maximum 

likelihood estimator can be used to estimate unknown parameters. If    and  ∑  are 

known,  the maximum likelihood estimator is the same as Generalized Least Sqaure 

(GLS) estimator for   ̂   
 .  The log likelihood function is given as following: 

       
  

 
     

 

 
  |  |  

 

 
∑           

   
  

 

   

            

     Maximizing log-likelihood function is possible just minimizing the following 

determinant. 

|   ∑                      
 

 

   

| 

     For the general case, rank ( ) =r, it means that there are r cointegration 

relationship. We can write      ,  so the determinant is given by 
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|   ∑                          
 

 

   

| 

with respect to   and  . The minimum value of the determinant is attained for 

 ̃  [       ]  ∑        
 

 

   

      

 ̃  (∑        
  

    ̃)(∑  ̃     
 
       

  ̃)
  

. 

where the eigenvalues           and  the associated orthonormal 

eigenvectors          is obtained from the following matrix 

(∑      
 

 

   

)

    

(∑       
 

 

   

)(∑    
 

 

   

)(∑       
 

 

   

)(∑      
 

 

   

)

    

 

     And also  ̃   ̃ ̃  must have same asymptotic results as the unrestricted LS 

estimator of   .  We know that   ̂  does not affect the LS estimator  . And also, 

MLE estimator of   is equal to LS estimator (Lutkepohl  2005).  That is given in the 

following asymptotic results, 

√      ̃ ̃    
 
      (  

   )
  

       

     To reach unique  ̂ , normalized MLE estimator of   should be obtained.  ̆  

[
  

 ̆   
] is normalized MLE estimator  and also the normalized estimator for MLE 

estimator  ̃ can be obtained explicitly.  ̆ and  ̆ estimators are given below: 

 ̆  (∑       
 

 

   

 ̆)(∑ ̆     

 

   

    
  ̆)

  

 

 ̆   
  ( ̆  ̆ 

  
 ̆)

  

 ̆  ̆ 
  

(∑(     ̆    
   )    

    

 

   

)((∑    
   

 

   

    
    )
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     MLE estimators of   ̆,  ̆ and  ̆ have same asymptotic properties as LS estimators 

of   ̂,  ̂ and  ̂. So, asymptotic properties are identical for both estimation techniques. 

 

4.3 Simulation Study for Estimation Under the Unit Root 

     In this section,  finite sample properties of  both estimators are considered through 

Monte Carlo simulation. Cointegrated bivariate model ttt uAXX  1  is simulated 

with following coefficient matrix, 

,
0














A  

  and variance covariance matrix of iid error process  

   [
  
  

] 

     Simulation is performed for different  and values in A matrix.  Characteristic 

roots have only one root, either if 1 and 1   or 1 and 1 . We assume 

cointegrated process with one unit root. 

      The aim of the simulation study is to examine the asymptotic properties of 

   ̂     and     ̂   . Asymptotic properties of these quantities is examined 

under constant   and varying α, then constant α and varying  conditions. The 

important point is that one of these quantities (either α or  ) should not be greater 

than one,  because we consider one unit root and one stationary root in the bivariate 

system. In both conditions,   is the same because its value doesn’t affect the 

stationarity of the system. Then    ̂    and    ̂     are performed for different 

replications T=50, 100, 250 through Monte Carlo simulation. 
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Figure 4.1 Histograms of      ̂    and      ̂      for     and   =0.1 , 0.5 , 0.9   ;       
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Figure 4.2 Histograms of      ̂    and      ̂      for     and   =0.1 , 0.5 , 0.9   ;      
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     When histograms which are illustrated in Figure 4.1 are examined-      and   

=0.1 , 0.5 , 0.9- distributions of       ̂    have smaller variances as T increases for 

any case in  . Also, distributions of    ̂    have smaller kurtosis and narrower 

confidence intervals, and less biasness for all   . Unlike the distributions of    ̂   , 

distributions of     ̂      have not changed for all   under the same conditions.  

     As shown in Figure 4.2, for      ,   =0.1, 0.5, 0.9,      , variances of 

distribution of     ̂    are increasing considerably in contrast to variances of 

distribution    ̂    for sample size of 50. Especially distributions of    ̂    

have smaller variances for all sample size. 

Table 4.2 Mean Square Error of Parameters when     

 

   =1 

  0.1 0.5 0.9 

T=50 
MSE        ̂ 0.0011 0.0013 0.0025 

 MSE  ̂ 0.000474 0.1358 0.6238 

T=100 
MSE        ̂ 0.000277 0.00032 0.00060 

 MSE  ̂ 0.000125 0.1478 0.6344 

T=250 
MSE        ̂ 0.000045 0.000052 0.000092 

 MSE  ̂ 0.000021 0.1551 0.6338 

 

     As it is shown in Table 4.2; for all cases, as time series length increases, mean 

square errors (MSE) of    ̂ and   ̂  parameters decreases. When    approaches to one, 

MSE of parameter   ̂  increases remarkably comparing to  .Reversely, when     

approaches to 1, this increasing rate of MSE of   ̂ and   ̂  parameters is slower  than 

  approaches to 1 as shown in Table 4.3. 
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Table 4.3 Mean Square Error of Parameters when     

 

  =1 

  0.1 0.5 0.9 

T=50 
MSE        ̂ 0.000642 0.001938 0.002818 

 MSE  ̂ 0.000830 0.000545 0.000047 

T=100 
MSE        ̂ 0.000167 0.000492 0.000683 

 MSE  ̂ 0.000215 0.000127 0.000004 

T=250 
MSE        ̂ 0.000030 0.000081 0.000102 

 MSE  ̂ 0.000035 0.000019 0.000000 

 

      When    has unit root, the MSE of parameters has better results. In existence of 

exogenous variables in the bivariate system, the asymptotic properties’ of parameters  

(   and    have better under  =1.  The properties are almost unbiased and consistent. 
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CHAPTER FIVE 

LIKELIHOOD RATIO TESTS FOR COINTEGRATION RANK AND THE 

LOCAL POWER OF THESE TESTS 

     This chapter will discuss the hypothesis tests developed for testing the 

cointegration rank and the power functions of these tests will be evaluated using 

local power analysis. Local power analysis is the investigation of the behaviors of 

power function of the hypothesis tests with neighboring null hypothesis (Macnamus, 

1991). As the sample size increases the local alternative hypothesis becomes closer 

to the null hypothesis and all possible situations are evaluated.  

      As it was mentioned in the previous chapters, the number of the independent 

linear cointegration relations of the multivariate time series    was being expressed 

with the rank (r) of the   matrix in the model below: 

             

    The number of the relations in question can be tested with the hypothesis tests. 

These hypothesis tests are called as the Trace test by Johansen (1988) and the 

Maximum EigenValue Test (1995). These two alternative tests differ from each other 

in terms of the hypotheses formed. The hypothesis for Trace test, varible number 

being n, is as below: 

                

               

     On the other hand the alternative hypothesis in the Maximum  EigenValue  test  is 

formed as below: 

                                                                           

                    

 

       If hypothesis    is true, then   matrix is written as     and hypothesis 

             Here   and   are (nx  ) dimensional and    ranked matrices. On 

the other hand, if              then   matrix is expressed as below: 
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  [    ] [
  

  
 ]          

  

     The following local alternative hypothesis is formed for local power analysis: 

                    
  

     By generating simulation data under the assumption that the local hypothesis is 

true,  the asymptotic distribution is obtained for    . 

 

5.1 Johansen Trace Test and Its Power Under Local Alternative Hypothesis 

     The model used here does not contain a linear trend without constant terms. This 

model is as below: 

                                                                                                              (5.1) 

     Here the variable matrix   , is I(1) first order cointegrated and the   coefficient 

matrix of the model has a reduced rank feature. In other words,   matrix is expressed 

as a product of    .  In this test the aim is to test the hypotheses below: 

        

       

     Since the local power of the Johansen Trace test is at issue here, the local 

alternative hypothesis is as below: 

                    
  

     When the model 

                                       

                                                                             

is considered,     and    are (nx1) dimensional, m>n,    is (mx1) dimensional, A and 

B matrices are (nx    and  (mx  ) dimensional respectively. If the error term is 

formed as a form of     
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the local hypothesis can be tested.    and    matrices are (nx(r-  )) and (mx(r-  )) 

dimensional respectively, r-  >0 and    is the error term. The reduced rank 

estimators of A and B matrices are found as follows.  ̂     ̂   being the 

eigenvalues, the  ̂     ̂  eigenvectors obtained by the solution of the equation 

below 

          
              

       ∑    
 

 

   

           
     ∑    

 

 

   

             ∑    
 

 

   

     

corresponds to the   ̂     ̂  eigenvalues. Such that these eigenvalues and 

eigenvectors provide the equation below: 

       
       ̂      ̂    

     In addition the eigenvectors are normalized as follows to reduce the change and to 

convert the size of the eigenvectors into units: 

 ̂ 
     ̂  {

          
           

 

     Later, if the reduced regression estimators of the coefficients  ̂  [ ̂     ̂ ] and  

   are regressed on  ̂    using the least square method  ̂ matrix will be obtained. 

Let the reduced rank equity in the Equation 5.2 to be defined as such that the error 

term    be equal to,    and the local alternative hypothesis can be tested. For this 

purpose Equaiton 5.3 is obtained by multiplying Equation 5.2 by  ̂ 
 .   

                                               ̂ 
      ̂    ̂                                                              

 ̂   ̂         ̂    ̂ 
              ̂ 

      ve        ̂ 
      ̂ 

    ̂        

     In Equation 5.3 the real value of the coefficient R is zero and the following test 

statistics is used for testing the alternative hypothesis: 
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        [      ( ̂  
 )        ( ̂  )]                                         

     In Equation 5.4, let  

                  ̂      ∑  ̂ 
     ̂ ̂   ̂ ̂  

 

   

  ̂ 
     ̂ ̂   ̂ ̂  

                           

                              ̂  
     ∑  ̂ 

     ̂  ̂    ̂ 
     ̂  ̂  

 

 

   

                                   

and  ̂   and   ̂  
  are the estimators of the variance-covariance matrix belonging to 

the error term in Equation 5.4, respectively R=0 being restricted and     being 

unrestricted.  ̂ and  ̂ are the least squares estimators of the parameters in Equation 

5.3.  ̂  is the estimator under R=0 restriction. 

Theorem 5.1.  The        statistics in Equation 5.4 is equal to testing the 

              null hypothesis against              alternative hypothesis 

for the           model. (saıkkonen &lutkepohl 1999) 

Proof: (saıkkonen & lutkepohl 1999) 

     If the least squares method is used for the estimation of the parameters in the 

model in 5.2; 

                                           ̂     ̂                                                                       

will be obtained. The likelihood ratio statistics for the               null 

hypothesis is expressed as below: 

                                              ∑    (   ̂ )                                                    

 

      

 

     Here  ̂     ̂   eigenvalueas are obtained by the solution of the equation 

      ̂    ̂
    ̂     .  ̂     ̂  normalized eigenvectors correspond to the, 

 ̂     ̂  eigenvalues. Thus the following equation is obtained: 
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( ̂    ̂
   ̂  ̂  )     

      Let the Gaussian maximum likelihood estimator of   [       ] matrix be 

 ̂  [ ̂     ̂ ], the equation below is obtained: 

 ̂   ̂ 
    

 ̂  ̂                

     Let  ̂  [ ̂     ̂ ] ,   ̂  [ ̂       ̂ ] and   ̂  [ ̂       ̂ ], if we multiply 

Equation 5.7 by [ ̂  ̂ ]
  under the assumption that r    null hypothesis is true, we 

obtain the following equation: 

 ̂     ̂    ̂     ̂   ̃ 

                                                ̂ 
     ̂ 

   
 ̂ 
     ̂ 

   ̃                                                    

 

     Here let  ̂      [ ̂     ̂ ],  ̂  [ ̂       ̂ ], the likelihood ratio statistics in 

Equation 5.8 is obtained using  ̂ 
   

 in Equation 5.9. This indicates that when the 

model in Equation 5.7 is multiplied by an appropriate matrix the likelihood ratio 

statistics can be obtained. If we are to explain this situation in a more comprehensible 

way, we can write the following equation using Equation 5.9 with the expression  

[ ̂  ̂ ]
  [ ̂  ̂ ]

   : 

    ̂ ̂
 
  ̂     ̂  ̂ 

 
  ̂ 

      ̃ 

                                            ̂ ̂     ̂  ̂ 
      ̃                                                     

     Here the expressions   ̂   ̂ ̂
 

   and  ̂   ̂  ̂ 

 

   are written. In other words, the 

solution of the model in 5.10  with reduced regression method is equal to the model 

below:  

                           

          
       

     Thus we can conclude that, testing the models below  
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using the following alternative local hypothesis 

 

                    
  

is equal to testing the alternative hypothesis  

       

     In the following model:  

          

     In order to obtain the asymptotic properties of the Johansen Trace test statistics 

under local alternative hypothesis the process should be first order integrated, i.e. 

      vector’s eigenvalues should be limited between the values    (Johansen, 

1995). This can be mathematically written follows: 

|          |    

 

Theorem 5.2 (Johansen 1995)    

     Let               
      ; it has the distribution below: 

  
 
   

  [  ]
       

     Let  [  ]
  be the stepwise function for   [   ],      is defined as Ornstein-

Uhlenbeck process in the literature.  Ornstein-Uhlenbeck process is expressed as 

follows: 

       
 ∫    (     

         )      
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     W represents the Brownian motion with p dimensional Ω matrix. Also   

     
    

    .      process provides the stochastic integral equation below: 

       
        

     
      

    
  ∫       

 

 

 

Theorem 5.3 (Johansen 1995) 

     When the             null hypothesis is examined under the          

           
   local alternative hypothesis, if |          |    then the 

asymptotic distribution of Johansen Trace test is as follows 

                                    {∫         [∫        
 

 

]

  

∫         
 

 

 

 

}                         

     Here    is the p-r dimensional Ornstein-Uhlenbeck process, and it provides the 

equation below:  

                           ∫   
 

 

                      [   ]                                             

      In Equation 5.12,      is a p-r dimensional Brownian process. Also a and b 

coefficients are as follows: 

                         
     

      
                 

     
       

    
    

             

      By calculating the differential of both sides of equation 5.12, the following 

equation is obtained:  

                                                                                                                  

     Especially, equation 5.13 will be used in data generation in the simulation section.  
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5.2 Johansen Maximum EigenValue Test and its Power Under Local Alternative 

Hypothesis 

     The procedure pertaining to the reduced rank regression used for obtaining the 

asymptotic properties of Johansen Trace test is used to obtain the asymptotic 

properties of Johansen Maximum EigenValue test in this section. More detailed 

information can be found in Lüthkepohl, Saikkone & Trenkler (2000). When the 

reduced regression model  

                                             

                                                                            

is considered, here    and    are (nx1) dimensional, m>n,    is (mx1) dimensional, 

and A and B matrices are (nx    and (mx  ) dimensional respectively. If the form of 

the error term    is constituted as below 

          
           

     The local alternative hypothesis can be tested. 

                    
  

     Under the local hypothesis the test statistics is  

                   ̂      

and  ̂     ̂  eigenvalues are obtained with the solution of the equation below:  

          
                 

       ∑    
 

 

   

           
     ∑    

 

 

   

             ∑    
 

 

   

     

     The asymptotic distribution of the            statistics under the local alternative 

hypothesis is as follows: 

               
 
     {∫         [∫        

 

 

]

  

∫         
 

 

 

 

}                    
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     Here    is a p-r dimensional Ornstein-Uhlenbeck process and this process 

provides the following equation: 

                        ∫   
 

 

                      [   ]                                                

    In Equation 5.15      is  a p-r dimensional Brownian process. Also the a and b 

coefficients are as follows:  

                         
     

      
                 

     
       

    
    

             

     By calculating the differential for boths sides of Equation 5.16 the following 

equation is obtained: 

                                                                                                                  

    This equation will be used in the simulation section. 

  

5.3 Simulation: Comparison of the Power Functions of Johansen Trace Test and 

Maximum Eigenvalue Tests Under Local Alternative Hypothesis 

     Due to the non-standard distributions of the local power function in Equation 

5.11, the relative efficiency of the test is not clear. The discrete version of the 

Ornstein-Uhlenbeck process  K(s)  is generated by the simulation and the local power 

is calculated.  

Theorem 5.3 (Johansen 1995) 

     Under               
    local alternative the asymptotic power only 

depends on the     
       and   (  

   (  
    )

  
  
   )    

         

   
     

  parameters. Here       
    

     . 

    Using Equation 5.13, the data are generated in the simulation from the process 

below: 
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  {

         
           
           
             

 

  
  {

         
           
           
             

 

    From these data the following hypotheses are tested using the Johansen Trace test 

and the Maximum EigenValue tests, and the local powers of the tests obtained for 

t=30 and 400: 

             

                    
  

    2000 trial are made for n=1,2,3 and 4.  Using the    process for both tests, let   

      ∑         

 

   

              ∑        

 

   

 

the limit distributions of the trace and maximum eigenvalue test statistics are 

calculated as below: 

     
   

                  
 
   

      

     Using the critical values obtained by G. MacKinon, A.Haug, L.Michelis (1998) 

for the calculated test statistics in each trial the rejection frequency, i.e. local power 

is calculated. These calculations are repeated for different time spans and variable 

numbers,  and it is tried to determine which test has better power value for different 

situations. The results are presented in tables 5.1, 5.2 and figures 5.1 and 5.2.   
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Figure 5.1 Local Power Values variably calculated for T=30 for Johansen Trace  and Maximum 

Eigen-Value Tests 
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Figure 5.2 Local Power Values calculated for T=400 for Johansen Trace and Maximum Eigen-Value 

Tests
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     With regard to the results obtained in the simulations, the power value decreases 

for both tests as the number of variables increases. Also, for smaller time span 

(T=30), the maximum eigenvalue test gives better results than trace test, as the 

number of the variables increases. On the other hand, for greater time span, both tests 

have the same power values.  
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CHAPTER SIX 

CONCLUSION 

     The results obtained from this study are listed below:  

 The asymptotic distributions of the  ̆,  ̆ and  ̆ maximum likelihood 

estimators for the                                      model is 

the same as the asymptotic distributions of and they present properties 

pertaining to normal distribution. In addition to this, knowing the 

cointegration matrix    does not affect the asymptotic properties of the 

estimators of   matrix.  

 













0
A   being the coefficients matrix, unit root for the cointegrated 

             model is obtained in two different cases. These cases are 

obtained by selecting either 1  and 1   or 1  and 1 . For 1  

and 1  case, the mean square error value of the       parameters yields 

better results.  

 The local powers for the        confidence level were found for the 

Johansen Trace and Maximum Eigenvalue tests, used for determining the 

presence of cointegration. For the comparison of these local powers the 

increasing time intervals and the number of variables in the model are 

critically selected. In case the time intervals are wide, the local power values 

for both test methods are equal. When narrower time intervals are selected, 

presence of one or two variables in the system yields equal local power 

values; however, when there are three or more variables in the system 

maximum eigenvalue test gives better results than trace test.  

 In this study, there is not any constant, variable and/or linear trend in the 

system. All analyses conducted can be repeated considering this situation. 

Besides, only the long term relations of the economic variables are handled in 

the system (simple model). In addition to the long term relations, a model 

should be constructed including short term relations and the results should be 

re-evaluated.  
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APPENDIX 1  

MATLAB CODES 

clear 

    max=0; 

    tra=0;     

for i=1:2000 

    i 

   

Spec=vgxset('AR',{[0.9475,0,0,0;0.03,1,0,0;0,0,1,0;0,0,0,1]},'Q',[1,0,0,0;0,1,0,0;0,0,

1,0;0,0,0,1]); 

    Y = vgxsim(Spec,400); 

    farky=diff(Y); 

    lagy1=Y(1:399,1); 

    lagy2=Y(1:399,2); 

    lagy3=Y(1:399,3); 

    lagy4=Y(1:399,4); 

    lagy=[lagy1,lagy2,lagy3,lagy4]; 

    sonucat=(lagy'*lagy)/400^2; 

    sonucbt=(lagy'*farky)/400; 

    tr=trace(sonucbt'*(sonucat^-1)*sonucbt); 

    [V,D] = eig(sonucbt'*(sonucat^-1)*sonucbt); 

    x=sort([D(1,1),D(2,2),D(3,3),D(4,4)]); 

    sontr(i,1)=tr; 

    sonmax(i,1)=x(1,4); 

    

    if  x(1,4)>24,16  

       max=max+1; 

    end 

     

    if   tr>40.17 

        tra=tra+1; 

    end 

end 

    powmax=max/2000 

    powtra=tra/2000 
 

 


