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THE USE OF SPLINE, BAYESIAN SPLINE AND PENALIZED BAYESIAN 

SPLINE REGRESSION FOR MODELING 

ABSTRACT 

 

The nonparametric regression methods which are called spline, penalized spline 

and Bayesian spline bring great advantages such as not depending on the fixed model 

and flexibility in modeling. In particular, penalized spline regression uses the idea of 

nonparametric spline smoothing and it is in fact just a generalization of smoothing 

splines that should allow more flexibility in a choice of the spline model, the basis 

functions, and the penalty. In this study, distribution graph of ratios of export to 

import in Turkey is modeled using the nonparametric regression methods that are 

spline and Bayesian spline regression. For both methods, the knot sequence coincides 

with the end points of the interval. The results of these regression models are 

compared and interpreted. Then, we focus on a penalized spline regression with 

Bayesian perspective on the same data set and the smoothing for a variety of lambda 

values is performed. In addition, the contribution of a prior distribution is explained 

to determine the smoothing parameter. Then, we propose a new smoothing parameter 

by using the amount of information contained in the normal distribution. It has been 

observed that this parameter is very sensitive against small changes. This result 

denotes that the proposed smoothing parameter we obtained is appropriate for using 

in the penalized Bayesian spline regression applications.  

 

Keywords: Spline function, bayesian spline regression, penalized bayesian spline 

regression, mcmc, smoothing parameter. 
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MODELLEME İÇİN SPLAYN, BAYESYEN SPLAYN VE 

CEZALANDIRILMIŞ BAYESYEN SPLAYN REGRESYON KULLANIMI 

 ÖZ  

 

Splayn, cezalandırılmış splayn ve Bayesyen splayn olarak adlandırılan parametrik 

olmayan regresyon yöntemleri modellemede esneklik ve sabit bir modele bağlı 

olmamak gibi büyük avantajlar sağlar. Cezalandırılmış splayn regresyon, parametrik 

olmayan splayn düzeltme düşüncesini kullanır. Bu regresyon aslında splayn 

düzeltme genelleştirilmesidir ve splayn modelin, temel fonksiyonlarının ve cezanın 

seçiminde daha fazla esnekliğe izin verir. Bu çalışmada, Türkiye’de ihracatın ithalatı 

karşılama oranlarının dağılım grafiği parametrik olmayan regresyon yöntemleri; 

splayn ve Bayesyen splayn regresyon kullanılarak modellenmiştir. Her iki yöntem 

için, düğüm noktaları aralıkların uç noktaları ile aynı alınmıştır. Bu regresyon 

modellerinin sonuçları karşılaştırılmış ve yorumlanmıştır. Daha sonra aynı veri seti 

üzerinde Bayesyen perspektif ile cezalandırılmış splayn regresyona uygulanmış ve 

çeşitli lambda değerleri için düzeltme gerçekleştirilmiştir. Ek olarak, düzeltme 

parametresini belirlemede önsel dağılımın katkısı açıklanmıştır. Ayrıca, normal 

dağılımın bilgi içeriği miktarını kullanarak yeni bir düzeltme parametresi 

önerilmiştir. Bu parametrenin küçük değişiklikler karşısında çok hassas olduğu 

gözlemlenmiştir. Bu sonuç; önerilen düzeltme parametresinin cezalandırılmış 

Bayesyen splayn regresyon uygulamalarında kullanılmak için uygun olduğunu 

göstermiştir.  

 

Anahtar Kelimeler: Spline fonksiyonu, bayesyen splayn regresyon,  cezalandırılmış 

bayesyen splayn regresyon, mcmc, düzeltme parametresi.  
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CHAPTER ONE 

INTRODUCTION 

 

There are basically two different philosophical approaches in the science of 

statistics. The classical (Frequentist) approach and Bayesian approach. The classical 

approach shows parallelism with the deductive method, while Bayesian approach 

shows parallelism with the inductive method. These approaches constructs 

alternatives to each other to explicating of axioms in the science of statistics and 

examining many topics and concepts. 

 

The basis of Bayesian methods is based on Bayes Theorem. This theorem 

proposed on the purpose of calculation of posterior probabilities using the prior 

probabilities by the British mathematician Thomas Bayes in the 18th century. 

Bayesian methods were not used too much in the past years due to difficulty of its 

theory and implementation. However, with the improving technology in the recent 

years, an important step was taken with respect to calculations. In this way, many of 

the statistical concepts are interpreted differently and handled with Bayesian 

approach. 

 

Bayesian methods have an important place in statistical inference. The main 

difference between the Classical approach and Bayesian approach is the parameter 

forms of thinking on inference. Parameter is considered as a random variable which 

has a probability distribution in Bayesian approach. Accordingly, prior distribution is 

determined for unknown parameter and posterior distribution of parameter is 

obtained by it combined with existing data. Briefly, all the inference procedures 

related to parameter are made based on posterior distribution in Bayesian analysis. In 

the classical approach, parameter is seen as a fixed unknown. Parameter estimation is 

calculated only on the basis of the existing data. Hence due to fact that the parameter 

itself is not a result of repetition of the real experiments, existence of probability 

distribution is unthinkable. 
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Bayesian methods, nowadays, used to many application areas such as finance, 

biostatistics, econometrics. Some of the scientists engaged in studies using these 

methods in recent years are as follows. Geweke used these methods in the field of 

econometrics in his study in 1999. Carlin and Louis applied these methods to 

empirical Bayes in 2000. O’Hagan (1995), Berger and Pericchi (1996) and Berger 

(1998) benefited from Bayesian methods about model selection. Gersch and 

Kitagawa (1995) with West and Harrison (1997) used these methods in time series 

analysis. Dey and Sinha (1993) studied using these methods about reliability and 

survival analysis. 

 

In this study, Bayesian methods which used in spline regression analysis which 

developed based on regression analysis will be examined. Bayesian regression spline 

and spline regression results will be interpreted by comparing with an application 

made on a real data set. The basic concepts of Bayesian approach in detail described 

in the second section which follows the back of introduction section in study.  In the 

third section, Markov Chain Monte Carlo which is a kind of convergence method 

used to obtain posterior distributions examined and Monte Carlo Integration, Gibbs 

sampling, Metropolis and Metropolis Hastings algorithms described one by one. In 

the fourth section, Bayesian Regression is discussed in summary and its theoretical 

background is described. Also Spline regression, Penalized Spline Regression and 

smoothing parameter term are examined within the outline. Finally, a new definition 

for the smoothing parameter is done in Bayesian framework. 

 

In fifth section, which is a part of application, first, spline regression analysis 

applied to data of export/import rate obtained from Turkish Statistical Institute for  

the state in which the numbers and positions of the knots are known. Bayesian spline 

regression has been applied using WinBUGS programming for the same data and it 

has been interpreted by comparing these results. Then Penalized Spline Regression is 

examined with Bayesian approach and models are established for the different values 

of the smoothing parameter which obtained using prior distributions. The founded 

model for large   value is gradually shown to approaches to simple regression. 
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Lastly, the performance of new smoothing parameter is investigated and is made as a 

proposal performing the application. 
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CHAPTER TWO 

BAYESIAN APPROACH 

 

When the historical development of statistical inference is examined, three main 

approaches are encountered. These are the Bayesian approach, the classical 

approached and the likelihood based approach. The Bayesian approach, which has 

been developed from the Bayes Theorem, introduced into the literature by Thomas 

Bayes in 1761, is known to be influential on the statistical inference methods from 

the end of the 18
th

 century and until the mid-20
th

 century. The classical approach was 

offered by Laplace (1764) at the same period, and later it was developed and 

introduced into the literature by Neyman and Pearson. After these approaches, the 

likelihood based approach developed by Fisher has brought a new dimension to 

statistical inference. Scholars who adopted the classical and likelihood based 

approaches exhibited a critical attitude towards Bayesian approach, since they 

thought that it was an objective method. Due to this attitude, the difficulty of its 

theory and its implementation, Bayesian approach could not be used in statistical 

inference for many years. However, there have been significant improvements in 

calculations due to the developing technology in recent years. Thus, many statistical 

concepts are being reconsidered and interpreted from a different perspective using 

the Bayesian approach. 

 

In other approaches, which were developed independently of the Bayesian 

approach, the concepts and methods defined for inference are totally different. In 

Bayesian methods, inferences are made depending on the present, priori knowledge. 

This dependence on subjectivity is one of the most prominent criticisms to Bayesian 

methods. Proponents of the classical approach criticize the priori knowledge due to 

departure from objectivity. Proponents of the Bayesian approach, on the other hand, 

argue that some knowledge from the past could not be neglected and the objective 

information obtained from the data and the priori knowledge should be incorporated; 

and also they think that too much hypotheses in the classical approach would yield to 

deceptive and misleading results. According to Bayesian statisticians, lack of 

flexibility in the classical approach is another negative treat. 
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The major difference between the classical approach and the Bayesian approach is 

the way they think of the parameter while performing inferences. In the Bayesian 

approach the parameter is thought as a stochastic variable with a probability 

distribution. In this respect, for the predictor of the parameter, prior probability 

distribution is determined. It is combined with the present data and the posterior 

probability distribution of the parameter predictor is obtained. To summarize, all 

inference operations related to the parameter is done based on the posterior 

distribution in the Bayesian approach. In the classical approach, on the other hand, 

the parameter is considered as a constant. Parameter prediction is only calculated 

based on the present data at hand. Therefore, since the parameter itself is not the 

result of the repeated actual trials, it cannot be argued that there is a probability 

distribution. The differences between the Bayesian and the classical approaches are 

presented as a table below: 

 

Table 2.1 Differences between Frequentist and Bayesian approach 

Concept Bayesian Frequentist 

  Random Fixed but unknown 

 

 ̂ 

 

Fixed 

 

Random 

 

Randomness 

 

Subjective 

 

Sampling 

Distribution of interest Posterior Sampling Distribution 

 

2.1 Basic Concepts of the Bayesian Approach 

In this chapter, the Bayes theorem, which is the basis of the Bayesian approach, 

and the basic concepts used in the Bayesian analysis will be introduced. 

 

Bayes Theorem: Let us consider the            discrete events set, whose 

combination gives the sample space,  . If   is an event defined in the sample space, 

 , then 
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  (  | )  
 (    )

∑  (    )
 
   

 
 (  ) ( |  )

∑  (  ) ( |  )
 
   

          (2.1)  

  

It can be shown ∑  (  | ) 
     .  (  )        probabilities are called the 

prior probabilities.  (  | )         probabilities are called the posterior 

probabilities. These are the probabilities after knowing the results of the experiment. 

2.2 Bayesian Inference 

In Bayesian approach, where the probability distribution of the parameter to be 

predicted is considered as a random variable; let us consider that   indicates the 

unknown parameter vector and   indicates the observed value. We can write the 

equation below, with reference to the Bayes theorem: 

 

  ( | )  
 (   )

 ( )
 

 ( | ) ( )

 ( )
 (2.2)  

 

 ( | ) in Equation (2.2) expresses the likelihood function,  ( ) expresses the prior 

distribution. As for  ( ), it expresses the marginal likelihood and is represented as 

below: 

 

  ( )  ∫ ( | ) ( )   (2.3)  

 

 ( ), which is the marginal likelihood, is called as the normalizing constant in the 

literature, and at the same time it ensures that the integral of the posterior distribution 

result equal to 1. Also, in order to obtain Bayesian inferences, some integrals should 

be solved to obtain the posterior distribution as it is seen in the formula in Equation 

2.3. 

 

As there is no any expression about   in the normalizing constant, this coefficient 

is a constant independent of the   parameter. As the distribution of   is to be 

obtained in Equation 2.2, and since normalizing constant is constant value 
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independent of  , the equation in 2.2 can be rewritten as below, using a 

proportionality expression: 

 

  ( | )   ( | ) ( ) (2.4)  

 

Equation (2.4) can be explained as the product of prior distribution and the 

likelihood function is proportional to the posterior distribution (Carlin & Louis, 

2009). All inferences and calculations about the   parameter are done using the 

 ( | ) posterior distribution. In Bayesian statistics, a posterior distribution obtained 

from an analysis, can be used as a prior distribution for the next analysis. 

 

Prior distribution has some parameters. These parameters are called as 

hyperparameter. The parameter values of a hyperparameter can be undetermined or 

unknown. In that case, a distribution is assigned to the hyperparameter and this 

distribution is included in the analysis. The distribution of the hyperparameter is 

called as the hyperprior. The Bayesian models, in which the hyperprior distribution is 

used, are called the hierarchical Bayesian models. The basic representation of 

Bayesian hierarchical models is as follows: 

 

  (   | )   ( | ) ( | ) ( ) (2.5)  

 

  in Equation 2.5 represents the hyperparameter. When the equation is examined, it 

is seen that the hyperparameter is not included in the probability function. The reason 

for this is that   does not influence the observed values directly, but does via  . 

Therefore,   hyperparameter is not generally included in the probability functions 

belonging to hierarchical models (Ntzoufras, 2009). 

2.3 Prior Distributions and Their Selection 

In Bayesian approaches, a distribution is determined for the   parameter, 

depending on the prior knowledge. These knowledge can be the personal beliefs of 

the researcher or expert opinions, or they can be obtained from previous studies. The 
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researcher reflects the prior knowledge into the analysis and combines it with the 

data and obtains the posterior distribution. 

 

As it is emphasized in the previous sections, the major objection to Bayesian 

approaches is the prior distributions since they disrupt objectivity. Selection of a 

prior distribution appropriate for the study to be conducted may cancel all these 

objections. Different posterior distributions can be obtained by using different prior 

distributions for the same data. Thus, the selection of the prior distribution is one of 

the most important issues in Bayesian approach. A misspecified prior distribution 

may have a negative effect on inference (Beaumont & Rannala, 2004). Therefore, it 

would be useful to select a prior distribution after examining the previously used 

prior distribution for the research subject at hand. 

 

The size of the data is another important issue in Bayesian approaches. The 

increase in the number of data may decrease the dominance of the prior distribution 

in obtaining the posterior distribution, and the likelihood function may become 

dominant. In that case, results similar to the ones in the classical approaches could be 

drawn. The distribution pattern of the likelihood function is another issue to be 

considered. If the likelihood function is sharp and the prior distribution is more 

oblate, than the contribution of the prior distribution to the posterior distribution 

would not be much (Box & Tiao, 1973). 

 

In previous years, the applicability of the Bayes theorem was an issue to be 

considered while choosing the prior distribution. For instance, since the cases where 

the size of   increased caused integrals that were impossible to solve, they prevented 

the posterior distribution to be obtained. In that case, the prior distribution which was 

necessary to obtain the posterior distribution was used. However, in recent years, 

these kinds of hinders have come to an end due to the methods developed under the 

name of Markov Chain Monte Carlo. Now integrals that are impossible to solve 

analytically can be easily solved with these methods. Thus the limitation of the prior 

distribution to easily obtain the posterior distribution disappeared. 
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In Bayesian models, it may not always be possible to determine the posterior 

distribution with various calculation methods after determining the prior distribution. 

The researcher, in such cases, may prefer a prior distribution which would enable 

obtaining the posterior distribution more easily. Sometimes, prior knowledge could 

not be trusted and a data-driven analysis may be required, or sometimes the 

researcher wants to include the powerful knowledge at hand into the analysis. For 

these reasons, prior distributions are categorized among themselves. There are three 

different distribution types in the literature. These are conjugate priors, informative 

priors and noninformative priors.  

2.3.1 Noninformative Priors 

If there is no any information about the   parameter to be predicted, or the 

information at hand is not trusted, or the posterior distribution is wanted to be 

obtained as a result of a data-driven inference, the prior distribution to be used is 

called the noninformative prior distribution.  

 

With the use of these priors, the influence of the prior distribution on the posterior 

distribution is at minimum. The results obtained by using the noninformative priors 

are expected to be similar to the results obtained with the classical approach. The 

reason for this is that in this approach the inference is made with only the 

information obtained from the data. The most widely used noninformative priors in 

the literature are the uniform prior and Jeffreys prior. 

 

Uniform Prior: The uniform prior can be listed among the most widely used 

noninformative priors. Bayes and Laplace argued that when nothing is known about 

the   parameter,  ( ) prior distribution should be uniformly distributed and all the 

possible results of   should be the same. This is also known as the principle of 

insufficient reason (Syversveen, 1998). 

 

Jeffreys Prior: Jeffreys offered this noninformative prior distribution, called after 

him, in 1961. The Fisher Information Matrix is used while obtaining this prior 

distribution. Jeffreys prior distribution can also be given an example to the improper 
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prior distributions; because it is not a probability function or a probability density 

function. However, the posterior distributions obtained by using these priors are 

probability functions or probability density functions. The table below presents some 

Jeffreys priors. 

 

Table 2.2 Jeffreys priors 

Likelihood Parameters Priors 

Normal (When    is 

known) 
    1 

 

Normal (When   is 

known) 

 

    

 

    

 

Normal 

 

      

 

    

 

Bernoulli 

 

    

 

(  )     

Normal     ( )     

 

 

Another definition for prior distributions is made according to being proper or 

improper. If the determined prior distribution is not a probability function or a 

probability density function, this prior distribution is called as the improper prior 

distribution. There is no requirement for a proper prior distribution to obtain the 

posterior distribution. Priors (improper) which are not probability functions or 

probability density functions can be used in the analyses. However, even though 

these priors are used, it is a requirement for the posterior distribution to result as a 

probability function or a probability density function. Use of improper priors may 

result in improper posterior distributions. Therefore, they should be used carefully.   

2.3.2 Informative Priors 

Informative priors enable the researchers to incorporate their prior knowledge into 

the analysis. Information obtained from previous studies can be given as an example. 
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However, even though there is some information, it may be difficult to express these 

with a distribution. Also, use of informative priors, contrary to noninformative priors, 

seriously influences the posterior distribution. Therefore, one should be extremely 

sensitive in selecting the informative priors. 

2.3.3 Conjugate Priors 

If the prior distribution and the posterior distribution determined for the   

parameter is the same, these are called the conjugate priors. Analyses in which the 

posterior distribution is normal when the prior distribution is normal too, or the 

posterior distribution is inverse gamma when the prior distribution is inverse gamma, 

can be given example to conjugate priors. Conjugate priors are useful since they 

enable obtaining the posterior distributions in closed form. However, conjugate 

priors should be used carefully; because these priors show very specific prior 

knowledge. Some conjugate prior distributions are given in the table below: 

 

Table 2.3 Conjugate priors 

Likelihood Prior Distribution Posterior Distribution 

 

Normal (When    is 

known) 

Normal Normal 

Normal (When   is 

known) 
Inverse Gamma Inverse Gamma 

Poisson Gamma Gamma 

Exponential Gamma Gamma 

Uniform Pareto Pareto 

Bernoulli Beta Beta 

Binomial Beta Beta 
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2.3.4 Some Basic Bayesian Models 

In terms of being an example for obtaining the posterior distribution, some basic 

Bayesian models for situations with a given likelihood function and a prior 

distribution, are discussed below. 

 

Normal & Normal Model: The Bayesian model has two basic steps. These are 

the specification of the  |   ( | ) likelihood function and the    ( ) prior 

distribution. The simplest Bayesian analysis is the one in which the prior distribution 

is known (Carlin & Louis, 2009). 

 

The situation, ( (    )), in which the data is normally distributed with the   

average and    variance, will be examined. When the distribution of  , in case    is 

known, is to be obtained, there is no need to assign the prior distribution to variance, 

since the prior distribution is only assigned to the unknown. Accordingly, the 

likelihood function can be written as below: 

 

  ( | )   ∏ (  | )  (
 

√   
)
  

   

 
  

∑(   ) 

    (2.6)  

 

Here, let us assume that the prior distribution specified for   is normal, too. Let   

distribute normally with   and    hyperparameters ( (    )). Since   and    are the 

parameters of the prior distribution, they show the hyperparameters and it is assumed 

that they are known. The form of the prior distribution for   can be expressed as 

below: 

 

  ( )  (
 

√   
)  

  
(   ) 

    (2.7)  

 

Using these information, the posterior distribution can be obtained as in Equation 

2.8: 
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  ( | )  
 ( | ) ( )

 ( )
  

.
 

√   
/  

  
(   ) 

   .
 

√   
/
 

 
  

∑(   ) 

   

∫ .
 

√   
/  

  
(   ) 

   .
 

√   
/
 

 
  

∑(   ) 

     

 (2.8)  

 

As it was mentioned in the previous section, since we are interested only in the 

distribution of  , the expression which do not include   can be removed and a 

proportional expression can be used. In that case, the equation below is obtained: 

 

  ( | )   
  

(   ) 

    
  

∑(   ) 

    
 

(2.9)  

 

In order to obtain the posterior distribution from Equation 2.9,  ̅ is inserted into and 

subtracted from the expression ∑(   )  and the equations below are obtained: 

 

 ∑(   )  ∑(   ̅   ̅   )  (2.10)  

 

 ∑(   )  ∑(   ̅)   (   ̅)  (2.11)  

 

 ( | ) can be rewritten proportionally as below:  

  

  ( | )   
  

(   ) 

    
  

∑(   ̅)   (   ̅) 

    (2.12)  

 

The posterior distribution can be obtained by subtracting the expression independent 

from   from Equation 2.12, as below: 

  

  ( | )   
  

(   ) 

    
  

 (   ̅) 

    (2.13)  

  

  ( | )   
  

 

 
(
  (      )   (  ̅      

    )
 

 

(2.14)  
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 ( | )   

  
 

 
(

(    
        ̅

      ) 

    

      

)

 

 

 

(2.15)  
 

As it is seen in Equation 2.15, the final form of the posterior distribution is a 

normal distribution with a 
        ̅

       average and a 
    

       

variance( ( | )  .
        ̅

      
 

    

      
/). As it can be understood from this example, 

when the prior distribution is specified as normal distribution, the posterior 

distribution is also distributed normally. When the parameters of the posterior 

distribution are examined,    being greater than    means that prior information is 

more precise. The increase in the value of    causes the prior distribution to lose its 

influence gradually. In case of     , the results converge to the classical 

approach. 

 

Another issue to be addressed in Bayesian approach is the concept of precision. 

This concept has a direct relation with variance. Precision is expressed as 1/variance. 

As it can be seen from this expression, there is an inverse proportion between 

precision and variance. A decrease in variance approximates precision to  . The 

variance of the prior distribution and the data can be expressed with the precision 

concept. Let  ̅  
 

   indicate the precision of the prior distribution, and   
 

   ⁄
 

indicate the precision of the sample. According to this information, the average and 

the variance of the posterior distribution can be written in terms of precision. 

Variance of the posterior distribution has the form 
 

    

      

. This expression can be 

simplified as  ( | )  
 

 

   
 

  

. When the expression is examined, it is seen that the 

precision of the posterior distribution is the sum of the precision of the prior 

distribution and the precision of the sample.  

 

Normal & Inverse Gamma Model: When variance is known and when the prior 

is specified as normal distribution for the average, the posterior distribution in 

Equation 2.15 is obtained. Let us consider the opposite of the situation in this section. 

Let us obtain the posterior distribution when the average is known but the variance is 
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not known. Let us assume that the likelihood function is distributed normally with 

the parameters   and    and the prior distribution of the variance has the   (     ) 

inverse gamma distribution with    and    parameters.  

 

Accordingly, the posterior distribution can be written as the equation below: 

 

  (  |   )   ( |    ) (  ) (2.16)  

 

  (  |   )  ∏
 

√   
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(    ) 
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(  )
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Since we are interested in the distribution of   , expression independent of    can be 

dropped from Equation 2.17. 
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The posterior distribution of    can be found as below by making some 

mathematical corrections on Equation 2.19. 
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When we specify the prior distribution as inverse gamma, the posterior 

distribution is also obtained as inverse gamma, as it can be seen in Equation 2.22. 

The parameters of the posterior distribution    and    are found     
 

 
 and    

 .
∑ (    )  

   

 
/ respectively. After all these operations, the posterior distribution will 

be inverse gamma again for the situations in which the data is distributed normally 

and the prior distribution pertaining to the variance is specified as inverse gamma.  
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CHAPTER THREE 

BAYESIAN COMPUTATION 

 

 

When complex problems are encountered in Bayesian approaches, it may not be 

possible to obtain the posterior distribution due to the inability to take the required 

integrals. The increase in the size of the   parameter is another factor affecting the 

insolubility. It becomes difficult to obtain marginal posterior distributions of the 

parameters as the size increases, and generally these cannot be expressed in 

mathematical form. In recent years, methods known as the Markov Chain Monte 

Carlo, enable the use of Bayesian approaches in complex problems. This section will 

discuss the Markov Chain Monte Carlo (MCMC), which is the most widely used, a 

asymptotic approach and a stochastic simulation method known as the Bayesian 

central limit theorem.  

3.1 Bayesian Central Limit Theorem 

If the number of the observation in the data set is very large, the likelihood will be 

quite peaked, and small changes in the prior will have little effect on the resulting 

posterior distribution. In this condition, the following theorem, which is called 

Bayesian Central Limit Theorem, shows that the posterior distribution  ( | ) will 

be approximately normal. 

 

Theorem:         be a random sample from the distribution   (  | ) and thus 

likelihood function is  ( | )  ∏   (  | ) 
   . Suppose the prior  ( ̂) and  ( | )  

are positive and   ̂  the posterior mode of   . Then  the posterior distribution  ( | )  

for large n can be approximated by a normal distribution having mean equal to 

posterior mode ( ̂ ), and covariance matrix equal to minus the inverse Hessian 

matrix ,(  ( ))-   of the log posterior evaluated at the mode, 

  ( | )  ( ̂   ( ̂ )
  

). Hessian matrix ,(  ( ))-   is generalized observed 

Fisher information matrix for  . This matrix is given in equation (3.1). 
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 ( )   *

  

      
    ( | ) ( )+

(   ̂ )

 (3.1)  

 

3.2 Markov Chain Monte Carlo Methods 

In the past, while the Bayesian technique has always been powerful, it has not 

always been practical. Initially Bayesian analysis was generally limited to problems 

involving a very small set of statistical distributions to describe the prior information 

and the likelihood of the observed data. These so-called “conjugate” distributions 

have the property that when the prior distribution and the likelihood function for the 

data are combined with Bayes theorem, the posterior distribution is of the same type 

as the prior but with updated parameters. If the analysis involved “conjugate” 

distributions, the posterior distribution could be derived analytically. However, 

computational advances have made it possible to evaluate complex Bayesian models 

by using numerical approximation and simulation techniques. This has increased the 

range of problems and sophistication of analyses now accessible to Bayesian 

techniques far beyond those limited to that small set of statistical distributions 

accessible previously. One of these computational techniques applies Markov Chain 

Monte Carlo (MCMC), which is essentially Monte Carlo integration using Markov 

chains, simulation. 

 

The Monte Carlo method is based on a simple idea: one can learn anything about 

a posterior distribution by repeatedly drawing from it and empirically summarizing 

those draws. For instance, we might be interested in computing the posterior 

expected value, which can be done analytically by computing a high dimensional 

integral: 

 

  , | -  ∫  ( | )
 

   (3.2)  

 

If we were able to produce a random sequence of K draws  ( )  ( )    ( ) from 

 ( | ), we can approximate the posterior expected value by taking the average of 

these draws: 
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  , | -  ∫  ( | )
 

   
 

 
∑   

 

   

 (3.3)  

 

The precision of the estimate depends solely on the quality of the algorithm 

employed, and the number of draws taken from the posterior distribution what all of 

these methods have in common is that they serve to compute high-dimensional 

integrals using simulation. A great deal of work in numerical analysis is devoted to 

understanding the properties of algorithms; for such a discussion of commonly used 

methods in Bayesian statistics, see Tierney (1994). 

 

To use the Monte Carlo method to summarize posterior distributions, it is 

necessary to have algorithms that are well-suited to producing draws from commonly 

found posterior distributions. Two algorithms, the Gibbs sampling and Metropolis-

Hastings algorithms, have proven to be very useful for applied Bayesian work. Both 

of these algorithms are MCMC methods, which mean that the sequences of 

 ( )  ( )    ( ) draws are dependent; each draw  (   ) depends only on the 

previous draw  ( ). The sequence of draws thus forms a Markov chain. Algorithms 

are constructed such that the Markov chain converges to the posterior density (its 

steady state) regardless of the starting values. The most commonly usages of the 

MCMC algorithms are presented in this section.  

3.2.1 Gibbs Sampling 

The Gibbs sampler (Geman & Geman, 1984) has its origins in image processing. 

It is thus somewhat ironic that the powerful machinery of MCMC methods had 

essentially no impact on the field of statistics until rather recently. 

 

The Gibbs sampler is a special case of Metropolis-Hastings sampling wherein the 

random value is always accepted. The task remains to specify how to construct a 

Markov Chain whose values converge to the posterior distribution. The key to the 

Gibbs sampler is that one only considers univariate conditional distributions. Such 

conditional distributions are far easier to simulate than complex joint distributions 

and usually have simple forms.  Thus, one simulates n random variables sequentially 
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from the n univariate conditionals rather than generating a single n-dimensional 

vector in a single pass using the full joint distribution.  

  

Suppose that our parameter vector   has m components, making our target 

distribution  (          | ). To use the Gibbs sampler, one begins by choosing 

starting values   
( )   

( )     
( )

 (these are usually chosen near the posterior mode 

or the maximum likelihood estimates). One then repeats, for T = 1,...,t iterations 

(making sure to store the sequence of draws at each iteration):  

 

Draw   
( )

from  (  |  
(   )   

(   )     
(   )  ) 

Draw    
( )

 from  (  |  
( )   

(   )     
(   )  ) 

Draw    
( )

 from  (  |  
( )   

( )   
(   )     

(   )  ) 

  

Draw   
( )

from  (  |  
( )   

( )   
( )       

( )  ) 

  

Repeating this process t times, generates a Gibbs sequence of length t. To obtain 

the desired total of m sample points, one samples the chain (i) after a sufficient burn-

in to removal the effects of the initial sampling values and (ii) at set time points 

following the burn-in. The Gibbs sequence converges to a stationary distribution that 

is independent of the starting values, and by construction this stationary distribution 

is the target distribution we are trying to simulate (Tierney, 1994).  

 

To illustrate the Gibbs sampling algorithm in practice, example shows sampling 

from a Poisson/Gamma hierarchical model, where   |          (    ),     (   ) 

and     (   ) respectively. Here let us assume that    and the hyperparameters   

and   are known. The mathematical form of these distributions is as below: 

 

  (  |  )  
  (    )(    )

  

   
           (3.4)  
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  (  | )  
  

        ⁄

 ( )  
         (3.5)  

 

  ( )  
   ( ⁄  )

 ( )      
         (3.6)  

 

The gamma prior distribution and poisson likelihood function are conjugate with 

the inverse gamma hyperprior and the gamma prior distribution. Here the aim is to 

obtain the marginal posterior distribution of    using these priors. A close form could 

not be obtained for the marginal posterior distribution of   . However, the full 

conditioned distributions of    and   can be easily found using the Gibbs sampling 

(Carlin & Louis, 2009). 

The full conditioned distribution distributions of    can be obtained as below: 

 

  (  |        )   (  |  ) (  | ) (3.7)  

 

  (  |        )    
          (      ) (3.8)  

 

  (  |        )   (  |     (      )  ) (3.9)  

 

Similarly, the full conditioned distribution for   can be obtained as below: 
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In the Equations 3.16 and 3.20 above, full conditioned distributions for    and   

were obtained in two forms.Using conjugate priors and selecting a hierarchical 

structure eased the operations. 

 

When a conjugate prior is not selected in Bayesian methods, the full conditioned 

distributions may not transform into a known distribution. In such a case, it is more 

appropriate to use another MCMC algorithm, the Metropolis Hasting Algorithm.  

3.2.2 Metropolis Hasting Algorithm 

Another algorithm that enjoys common use in applied Bayesian statistics is the 

Metropolis-Hastings algorithm, first introduced by Metropolis et al. (1953) and 

generalized by Hastings (1979). It is also the case that the Gibbs sampling algorithm 

is a special case of the Metropolis-Hastings algorithm. 

 

Metropolis algorithm includes a unnormalized posterior distribution  ( ) and a 

proposal distribution. In order to implement the Metropolis algorithm, first the 

proposal distribution  (  | (   )) should be specified. It is assumed that the 

proposal distribution in the Metropolis algorithm is symmetrical. M-H algorithm 

does not require such an assumption. If the proposal distribution is not well chosen, 

all of the candidate views are rejected and the chain remains stuck in certain points 

for the great proportion of the time. Therefore, the selected proposal distribution and 

the MCMC expression should be formed more carefully by confirming the tendency 

of the algorithm (Koop, 2003).  

 

Contrary to the Gibbs sampling, the candidate point is not always accepted in the 

Metropolis algorithm. An initial value is specified for each parameter, and the 

algorithm is continued until convergence is obtained. Algorithm steps are as below: 

Step 1: Initial values  ( ) are specified.                        

Step 2:   
 (  )

 (    ))
 probability is computed. Since it is not a requirement for the 

proposal distribution to be symmetrical in M-H algorithm ( (    )|  )  

 (  |    ))), probability is computed as below: 
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 (  ) (    )|  )

 (    )) (  |    ))
 (3.14)  

 

Step 3: If     then the candidate point is accepted and expressed as      ; 

later, another candidate point is selected. If for the selected candidate point, than this 

point is accepted with the probability; if not it is rejected with the probability. If the 

proposal distribution is not well chosen, all the candidate views are rejected and the 

chain remains stuck in certain points for the great proportion of the time. Therefore, 

the selected proposal distribution and the MCMC expression should be formed more 

carefully by confirming the tendency of the algorithm (Koop, 2003). 

 

With the algorithm above, a Markov chain is formed. In this chain, each 

simulation value is only linked to the previous value. After reaching the required 

iteration number, the convergence is obtained. Therefore, the desired posterior 

distribution is obtained.  
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CHAPTER FOUR 

BAYESIAN AND SPLINE REGRESSION 

 

Regression analysis is one of the most widely used statistical tools. Nowadays, 

this analysis is carried out with different alternative approaches. The most commonly 

used alternative approaches in the literature are called Bayesian methods and Splines.  

In this chapter provides a brief summary of the Bayesian and Spline regression 

methods. 

4.1 Bayesian Regression 

Regression analysis is used to answer questions about how one variable depends 

on the level of one or more other variables. Recently, this analysis is carried out with 

different alternative approaches. Bayesian methods are one of these approaches. In 

some situations there is an advantage of being Bayesian when fitting a regression 

model. These situations where it pays to be Bayes include: 

 

 When there is prior information about the regression coefficients. 

 When we are interested in estimating functions of regression coefficients. 

 When the regression model is non-linear. 

 When the distribution of the errors is non-normal. 

 When we have repeated measurements on some sample units. 

 

In this chapter provides a brief summary of the Bayesian regression methods. 

 

In the usual multiple regression problem, we are interested in describing the 

variation in a dependent (response) variable   in terms of k independent (predictor) 

variables          . We describe the mean value of   , the response for the ith 

individual, as 

 

  (  |   )                                 (4.1)  
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where           are the independent values for the ith individual and 

          are unknown regression parameters. The {  } are assumed to be 

conditionally independent given values of the parameters and the independent 

variables. In the ordinary linear regression setting, we assume equal variances, where 

var(  |    )    . Finally, we assume that the errors         (  |   ) are 

independent and normally distributed with mean 0 and variance    ,    (    )-. 

Also, error terms are independent of each other. 

 

The usual regression models can be easily formulated within a Bayesian 

framework. Bayesian methods can be used for any probability distribution. Methods 

presented in section (4.1) come from the Bayesian theory for normally distributed 

random variables. 

 

In the classical regression, the distribution of   is assumed to provide no 

information about the conditional distribution of   given   (Gelman et al, 2004) but  

in Bayesian regression, the distribution of the independent variables is included the 

likelihood function. For this reason regarding distribution of the independent variable 

is eliminated with proportional expression. As a result, Bayesian regression does not 

deal with the distribution of the independent variable. The mathematical presentation 

of this situation is given below. 

 

Let   denote the parameter vector of  .  If prior distribution is independent, 

           
  and  , we can write this equation,  

 

  (      )   ( ) (    ) (4.2)  
  

Then, posterior distributions can be divided two factors, 

 

  (      |   )   ( | ) (    |   ) (4.3)  

 

Since the distribution of the independent variables is included the likelihood 

function, we can write proportional equation is given below. 
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  (    |   )   (    ) ( |      ) (4.4)  

 

A similar result is obtained the distribution of independent variable. 

4.1.1 Bayesian Regression Model 

In linear regression, the observations consist of a response variable in a vector   

and one or more predictor variables in a matrix  . The parameters are the regression 

coefficients   and the error variance of the fitted model,   . The model that relates 

observations and parameters is written:  

 

  |        (      ) (4.5)  

 

The matrix notation of this model is, 

 

         (4.6)  

 

  ( |      )  (
 

    
)      { 

 

   
(    ) (    )} (4.7)  

 

Bayesian regression analysis begins with a prior distribution. Since a 

noninformative prior distribution assigns the same probability to each possible value 

of the parameters, it is most commonly used in linear regression. A noninformative 

prior distribution that is commonly used for linear regression is 

 

  (   )  
 

 
 (4.8)  

 

Using the likelihood function and prior distributions which are obtained from 

equations (4.7) and (4.8), we achieved the posterior distribution of   given   .  

 

  (   |   )  
 

    
    * 

 

   
0    (   ̂)

 
   (   ̂)1+ (4.9)  

 

where     (    ) (    ) and      . 
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The marginal posterior probability distribution of   which is derived by 

integrating the posterior distribution of   given    over all possible values of    . 

 

  ( | )  ∫  (   | )   ∫  ( |   ) ( | )  
 

 

 

 

 (4.10)  

 

  ( | )  ,  
 

 
(   ̂) 

   

  
(   ̂)-  

(   )

  (4.11)  

 

Equation (4.11) is written ( | )                         (     ̂   ). The 

multivariate Student t distribution has three parameters, the degrees of freedom 

(   ), the mean  ̂ , and the scale factor   . 

 

A similar process can follow for   . The marginal posterior distribution of    (i.e. 

the integral over all possible values of   of the joint distribution of   and   ) is 

 

 

  ( | )  ∫  (   | )  
 

  

 (4.12)  

 

  ( | )  
 

    
    ( 

   

   
 ) (4.13)  

 

Equation (4.15) is written   |               (      ) and it says that the 

probability distribution of    given   follows an inverse     distribution.  

 

The other purpose of regression analysis is prediction. Let  ̃ denote the matrix of 

independent variables and  ̃ denote the values of the dependent variable. The 

predictive distribution,  ̃ , given a new set of predictors   ̃ has mean 

 
 

  ( ̃| )   ̃  (4.14)  

 

The marginal posterior distribution of the variance of this prediction is 

 

    ( ̃|    )  (     ̃   ̃  )   (4.15)  
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where   is the identity matrix. This variance formula has two components,     for 

sampling variance of the new observations and  ̃   ̃     for uncertainty about  . 

The marginal posterior distribution of  ̃ given   is 

 

  ( ̃| )  ∫ ( ̃|    ) (    | )      (4.16)  

 

Equation (4.16) is written  (  | )                         ,     ̃ ̂ (   

  ̃   ̃  )  - 

4.2 Spline Regression 

  Spline Regression is one of the most popular and powerful techniques in 

nonparametric regression. Spline regression models have been used in many fields 

such as operation, econometrics, medicine and agriculture. Effective results are 

obtained with the application of spline regression on datum which is not explained by 

linear and high degree regression. 

 

Regression models in which the function changes at one or more points along the 

range of the predictor are called splines, or piecewise polynomials, and the location 

of these shifts are called knots. If the knots are fixed by the analyst, then splines can 

be fitted quite easily with the regression procedure. A spline model is hypothesized 

when the analyst expects that the relationship between the predictor and the response 

variable is altered at some value or values along the range of the predictor. The shift 

at the knot points could involve a change in the form of the relationship, such as a 

shift from a linear to a quadratic relationship, the addition or subtraction of a constant 

to all predicted response values to the right of the knot, or simply a change in the 

slope, acceleration, etc. of the regression function. The general form of the spline 

regression model is described below. 

 

  (  )                 
  ∑   (    ) 

 

 

   

 (4.17)  
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where    are fixed and known knots,   are the number of knots, 

                    are unknown regression coefficients in the model. Also,   

indicate the degree of spline regression model and (    ) 
 

 statement is included as 

basis function in the model. An important characteristic of function (    ) 
 

  is that 

equal to 0 value as minimum and it is positive definite. Ġf the value of independent 

variables smaller than knot value; the value of function will be equal to 0. Otherwise, 

if the value of independent variables greater than knot value, the value of function 

will be equal to the degree of  th of the valueof independent variable minus knot 

value. 

 

We have been assuming that the knots are known. In general, they are unknown, 

and spline regression problem can be formulated as an ordinary regression problem 

with a transformed predictor, it is possible to apply variable selection techniques 

such as back-ward selection to choose a set of knots. The usual approach is to start 

with a set of knots located at a subset of the order statistics of the predictor. Then 

backward selection is applied, using the truncated power basis form of the model. 

Each time a basis functions eliminated, the corresponding knot is eliminated. Once 

the knots are fixed, spline regression is a parametric regression. Figure 4.1 and 

Figure 4.2 exhibit an example of a least-squares spline with manually-selected knots, 

applied to a data set consisting of the ratios of exports to imports. 

 

 

 

Figure 4.1 A least-squares spline fit to ratios of export to import data using the manually-selected 

knots.  The knots used were 18, 50, 59. 
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Figure 4.2 A least-squares spline fit to ratios of export to import data using the manually-selected 

knots. The knots used were6, 12, 18, 30, 36, 50, 54, 59. 

 

A substantial improvement can be obtained by manually selecting additional 

knots. Adjusting the knot that was already there improves the fit as well. As it is seen 

from figures, the same data set is examined with different number of knots. The first 

and second figure, respectively, 3 and 8 knots are determined. In this way, 

appropriate data set for spline regression is interested; analysis can be made on the 

data set by determining knots via researchers. Scatterplots encountered in the daily 

life, selection of knots location and determination of the number of knots is very 

difficult. Because locations and number of knots not always clearly apparent. In such 

circumstances, researchers can constitute more than one model. Then, which model 

is better to be decided by making comparisons between models. There is a set of 

criteria that can be used in decision making. Some of these criteria F statistic, R-

Squared, Adjusted R-Squared, whether regression coefficients are statistically 

significant can be listed in the form. 

4.2.1 Penalized Spline Regression 

Penalized spline regression models are a popular statistical tool for curve fitting 

problems due to their flexibility and computational efficiency. It is a nonparametric 

regression technique that relies on principles of statistical theory to minimize the 

possibility of overfitting (Keele, 2008). The basic idea behind penalized regression 

methods is to quantify the notion of roughness of a curve through a suitable penalty 

functional and then to pose the estimation problem in a way that makes explicit the 
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necessary compromise between bias and variability in curve fitting. Spline regression 

needs to choose the number of knots and their positions but estimation is sensitive to 

this choice. Penalized spline regression uses a penalization parameter ( ), which is 

related to the fluctuations of the regression function, to reduce the impact of this 

choice. Consider the regression model; 

 

     (  )      (4.18)  
 

where  ( ) is a smooth function which is defined as, 

 

  ( )          ∑    (     ) 

 

   
 (4.19)  

 

The aim of the regression analysis to estimate the regression function  , where 

 ( | )   ( ). Here, we directly solve for the function   that minimizes the 

following objective function, a penalized version of the least squares objective: 

 

 ∑ *    (  )+
 

 

   
  

 

 
     (4.20)  

 

where   (                 ) is the vector of unknown regression coefficients. 

The first term captures the fit to the data, while the second penalizes curvature. Here, 

  is the smoothing parameter, the selection of the   smooth parameter is of great 

importance in penalized spline regression. The case   = 0 corresponds to the 

unconstrained case. Increasing the value of   downweights the influence of the knots 

and gives a less rough fit. If we take   to be very large, then the effect of the knots 

diminishes and the least-squares line is approached. There exist some methods for 

choosing   and the knot locations from the data. 

 

In equation (4.21),   is a known positive semi-definite penalty matrix. It is 

defined as follows; 

 

   *
 (   ) (   )  (   )  

   (   )    + (4.21)  
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In Bayesian approach to avoid overfitting, we penalize the b’s by assuming that the 

coefficients of  (    ) 
 

 are normally distributed random variables with mean 0 and 

variance   
  to be estimated. (Gimenez et al, 2009)  This is the reason why this 

approach is referred to as penalized splines (Ruppert et al, 2003). The selection of the 

smooth parameter           
   

 ⁄   is of great importance in penalized Bayesian 

spline regression. The small value of   corresponds oversmoothing. The large value 

of   corresponds undersmoothing. In this study, we proposed a new smoothing 

parameter using the information content of normal distribution in Bayesian 

framework. Under the assumption of the coefficients of basis functions are normally 

distributed, the new smoothing parameter is defined as the ratio of the information 

content of normal distribution, (       ,  (   )   -      ,  (   )   -). The 

performance of this parameter will be investigated in the application chapter. 
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CHAPTER FIVE 

APPLICATION 

 

This chapter presents an application to compare the performance of spline, 

Bayesian spline and penalized Bayesian spline models.  Our aim is to compare the 

performance of three different models in terms of their value of coefficient of 

determination. The models are illustrated with an application to ratios of export to 

import data set given in Turkish Statistical Institute (TÜĠK). These data consist of 

sixty-seven month periods (May 2007 to November 2012). The independent variable 

and dependent variable are defined respectively as month and the ratio of export to 

import. 

 

Then spline regression was applied for this data set. In this data set we specified 

four interior knots given by (17, 49, 53, 57) and the degree of the spline is one. Using 

the R code and then uses least squares to construct the regression model for ratios of 

export to import data set. The results of spline regression are given in Table 5.1. 

 

Table 5.2 The results of Spline Regression 

 

 

From the Table 5.1; intercept, the coefficient of independent variable and 

coefficient of the basis functions in the model were obtained. All of these 

coefficients are statistically significant. According the value of F-statistic, the model 

is valid. Coefficient of determination (R-Squared) for this model is obtained as 
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0.6691. Thereaftere we investigated the data to satisfy the regression assumptions 

and were obtained from following graphs. 

 

 

Figure 5.1 Plots for regression assumptions 

 

We saw that all assumptions were satisfied out of correlated residuals. Since we 

are interested in nonparametric regression techniques, we assume the residuals are 

uncorrelated. 

 

Then, we applied Bayesian spline regression analysis for same data set. Prior 

distributions are determined for each parameter which is considered as random 

variables in the model. Parameters and it’s a prior distributions are summarized in 

equation (5.1). 
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 (5.1)  

 

The different prior distribution can be selected for variance in the literature. In this 

analysis, the distribution of precision parameter      
   is taken as gamma 

distribution. Using the WinBUGS code and then least squares to construct the 

Bayesian spline regression model for ratios of export to import data set. There are 

three different stages of WinBUGS program. These are, writing code for interest 

model, loading data and creating the initial values for the parameters respectively. 

The burn-in period, which was used to eliminate the effect of the initial values, was 

consisted 2000 iterations in this example. The WinBUGS code of this application is 

given by in appendix. The results of Bayesian spline regression is given in Table 5.2.  

 

Table 5.2 The results of Bayesian Spline Regression 

 

The values related to the posterior distribution such as posterior mean, posterior 

median, MC error, 2.5% and 97.5% quantiles were obtained. MC error is used to 

decide the parameters convergence or not. If this value is smaller than 0.05 we can 

decide parameter convergence. MC values of all parameters in Bayesian Spline 

Regression model is smaller than 0.05. So we decided that parameters of the models 

convergence. The R-Squared of the model was obtained 0.6697. 

 

When we compared the two regression models, both models shown similar 

characteristics. The coefficients of   and   parameter vectors were very similar and 

the coefficients of determination of two models were obtained the same. But, the 

standard errors of parameter estimations of Bayesian spline regression were smaller 
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than spline regression models. For this reason, we conclude that Bayesian spline 

regression model parameter estimation is more reliable then spline regression model. 

 

Akaike information criterion (AIC), (Akaike, 1973) and Bayesian information 

criterion (BIC), (Schwarz, 1978) are the two most popular information criteria in the 

literature. These information criterias are often used model selection and variable 

selection in Bayesian analysis. To investigate this further we computed the value of 

the AIC and BIC for the spline regression model and for the Bayesian spline 

regression model results are presented in Table 5.3. The results show that the spline 

regression model provides a better fit to the data in terms of lower AIC and BIC. 

 

Table 5.3 The values of AIC and BIC for spline regression and Bayesian spline regression 

Model AIC BIC 

Spline Regression 398.637 414.070 

Bayesian Spline 

Regression 
406.726 422.159 

 

Penalized spline regression models are a popular statistical tool for curve fitting 

problems due to their flexibility and computational efficiency. For this reason, 

Bayesian penalized spline regression analysis was applied for same data set. The 

penalty term,     
   

 ⁄  which was restrict fluctuations of  ̂ was added to Bayesian 

spline model. The coefficient of determination and regression coefficients of this 

model were obtained for different penalty term    . The results are given in Table 

5.4. 
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Table 5.4 Penalized Bayesian Spline Regression Model for different   

Parameter 1/ =0,85 1/ =2,25 1/ =17.1 1/ =267,6 

   1.736 1.689 1.47 0.7639 

   -4.583 -4.239 -2.456 -0.755 

   5.518 4.311 1.352 -0.1455 

   -2.003 -1.302 -0.0028 -0.0057 

  
  20.912 21.669 58.339 357.588 

  
  24.581 9.61 3.411 1.336 

   0.612 0.575 0.458 0.211 

 

From the Table 5.4, we observe that the coefficients of basis functions decrease as 

the penalty term     increase. Also, the coefficient of determination of the model 

gradually diminishes. Another point is that if     is large, the effect of the knots 

diminishes and the model approaches to the least-squares line.  

 

We calculated the coefficient of determination and regression coefficients for 

penalized Bayesian regression model to investigate the performance of the new 

smoothing parameter.  The results are given in Table 5.5. 

 

Table 5.5 Penalized Bayesian Spline Regression Model for different    

Parameter 1/  =1 1/  =1.164 1/  =1.695 1/  =2.787 

   1.726 1.692 1.472 0.7641 

   -4.737 -4.212 -2.465 -0.7558 

   5.293 4.257 1.364 -0.1454 

   -1.876 -1.273 -0.006 -0.0057 

  
  21.169 21.734 58.125 356.454 

  
  21.603 9.437 3.433 1.336 

   0.604 0.578 0.460 0.212 

 

According to Table 5.5, small changes in    have made drastic changes in smoothing 

of the model. So, we conclude that    is more sensitive than  . If the amount of 
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information contained of the distribution of basis functions increases, the value of 

     decreases. It corresponds under smoothing. If the information contained of the 

distribution of error term decreases, the value of       increases. This situation 

corresponds oversmoothing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 39   
 

CHAPTER SIX 

CONCLUSION 

 

This thesis has been mainly motivated by the increased research activity in 

applied and methodological aspects of the nonparametric regression approach. We 

presented the three most common nonparametric regression models, which are called 

spline, Bayesian spline and penalized Bayesian spline, discussing advantages and 

disadvantages of them representations. In addition, we proposed a new smoothing 

parameter using the information content of normal distribution for penalized 

Bayesian spline regression model. The data application included in Chapter 5 

concerned ratios of export to import data set given in Turkish Statistical Institute 

(TÜĠK). These data consist of sixty-seven month periods (May 2007 to November 

2012). Application is used to compare the performance of the regression models to 

that of the splines and different penalty terms. 

 

When we compared the spline and Bayesian spline regression models, both 

models show similar characteristics. The coefficients of   and   parameter vectors 

were very similar and the coefficients of determination of two models were obtained 

same. But, the standard errors of parameter estimations of Bayesian spline regression 

were smaller than spline regression models. For this reason, we conclude that 

Bayesian spline regression model parameter estimation is more reliable then spline 

regression model. AIC and BIC are often used model selection and variable selection 

in Bayesian analysis. To investigate this further we computed the value of the AIC 

and BIC for the spline regression model and for the Bayesian spline regression 

model. The results show that the spline regression model provides a better fit to the 

data in terms of lower AIC. For this reason, classical spline regression is more 

preferable for this data set. 

 

We also compared penalized Bayesian spline models using different penalty 

terms. The different models on the same data set have been set up using different 

value of  . From the results, we observe that the coefficients of basis functions 

decrease as the penalty term     increase. Also, the coefficient of determination of 



 40   
 

the model gradually diminishes. Another point is that If     is large, then the effect 

of the knots diminishes and the model approaches to the least-squares line. The 

selection of the smooth parameter           
   

 ⁄  is of great importance in 

penalized Bayesian spline regression. The small value of   corresponds 

oversmoothing. The large value of corresponds undersmoothing. 

 

In addition, we proposed a new smoothing parameter using the information 

content of normal distribution. Under the assumption of the coefficients of basis 

functions are normally distributed, the new smoothing parameter 

(       ,  (   )   -      ,  (   )   -) is defined as the ratio of the 

information content of normal distribution. According to results, small changes in    

have made drastic changes in smoothing of the model. So, we conclude that    is 

more sensitive than traditional smoothing parameter ( ). If the amount of information 

contained of the distribution of basis functions increases, the value of      decreases. 

It corresponds undersmoothing. If the information contained of the distribution of 

error term decreases, the value of       increases. This situation corresponds 

oversmoothing. We conclude that the proposed smoothing parameter (  ) provides a 

better insight into the different levels of penalization terms that imposed the 

smoothing for spline curve. This can be useful for prior distribution inflection within 

a Bayesian inference framework. Also the proposed smoothing parameter performs 

smoothing as a parallel to known smoothing parameter in the literature and show 

similar characteristics. Accordingly, different smoothing parameters subject to the 

random variable can be identified. 

 

 

 

 

 

 

 

 

 



 41   
 

REFERENCES 

 

Akaike, H., (1973). Information theory and an extension of the maximum likelihood 

principle. 2nd International Symposium Information Theory , 267-281.  

 

Beaumont, M. A., & Rannala, B., (2004). The bayesian revolution in genetics. 

Nature Reviews Genetics, 5, 251-261.  

 

Berger, J. O., & Pericchi, L. R., (1996). The intrinsic bayes factor for model selection 

and prediction, Journal of the American Statistical Association, 91, 109–122. 

 

Box, G. E. P., & Tiao C. G., (1973). Bayesian inference in statistical analysis. 

London: Addison-Wesley. 

 

Carlin, B. P., & Louis, T. A., (2000). Bayes and empirical Bayes methods for data 

analysis  (2nd edition), USA: Chapman and Hall. 

 

Carlin, B. P., & Louis, T. A., (2009). Bayesian methods for data analysis (3rd 

edition), USA: Chapman and Hall. 

 

Ciprian, M. C., Ruppert, D., & Wand, M. P., (2005). Bayesian analysis for penalized 

spline regression using winbugs, Journal of Statistical Software, 14, 1-24 

 

Ciprian, M. C., Ruppert, D., Carroll, R. J., Joshi, A. & Goodner, B., (2007). Spatially 

adaptive bayesian penalized splines with heteroscedastic errors, Journal of 

Computational and Graphical Statistics, 16, 265-288 

 

Demirhan, H., (2004). Logaritmik doğrusal modellerde parametrelerin ve beklenen 

göze sıklıklarının bayesci kestirimi. Master of Science Thesis. Hacettepe 

University. 

Dey, D. K., & Sinha, D., (1999). Bayesian model determination in lifetime data 

analysis, Brazilian Journal of Probability and Statistics, 2, 1-19. 



 42   
 

 

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B., (2004). Bayesian data 

analysis (2nd edition), USA: Chapman and Hall. 

 

Geman, S., & Geman, D., (1984). Stochastic relaxation, gibbs distribution and 

bayesian restoration of images. Retrieved January 5, 2013, from 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4767596. 

 

Gersch, W., & Kitagawa, G., (1995). Smoothness priors analysis of quasiperiodic 

time series. Retrieved December 5, 2013, from 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=540868. 

  

Gimenez, O., Bonner, S. J., King, R., Parker, R. A., Brooks, S. P., Jamieson, L. E et 

al. (2009). WinBUGS for population ecologists: Bayesian modeling using Markov 

Chain Monte Carlo methods, Modeling Demographic Processes In Marked 

Populations Environmental and Ecological Statistics, 3, 883-915. 

 

O’Hagan, A., (1995). Fractional bayes factors for models comparison, Journal of the 

Royal Statistical Society, 57, 99-138. 

 

Hastings, W. K., (1979). Monte Carlo sampling methods using Markov Chains and 

their applications, Biometrika, 57, 97–109.  

 

Ibrahim, J. G., & Chen, M. H., & Sinha, D., (2000). Power prior distributions for 

regression models, Statistical Science, 15, 45-60.  

 

Koop, G., (2003). Bayesian econometrics, USA, John Wiley & Sons Inc. 

 

Keele, L., (2008). Semiparametric regression for the social sciences, United 

Kingdom:  Wiley & Sons, Ltd 

 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4767596
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=540868


 43   
 

Metropolis, N., & Rosenbluth, A. W., & Rosenbluth, M. N., & Teller, A. H., & 

Teller, A., (1953). Equation of state calculations by fast computing machines, The 

Journal of Chemical Physics, 21, 1087–1092.  

 

Ntzoufras, I., (2009). Bayesian modeling using winbugs, John Wiley & Sons. 

 

O’Hagan, A., (1995). Fractional bayes factors for models comparison, Journal of the 

Royal Statistical Society, 57, 99-138. 

 

Schwarz, G., (1978). Estimating the dimension of a model, Annals of Statistics, 6, 

461-464. 

 

Syversveen, A. R, (1998). Noninformative Bayesian Priors. Interpretation And 

Problems With Construction And Applications, USA, Cambridge University. 

 

Tierney, L., (1994). Markov chains for exploring posterior distributions, 

development and communication, Annals of Statistics, 22, 1701-1762. 

 

West, M., & Harrison, J. (1997). Bayesian forecasting and dynamic models biology 

(2nd edition), New York: Springer.  

 

 

 

 

 

 

 

 

 

 

 



 44   
 

APPENDIX 

THE CODES OF PROGRAMS 

 

Appendix 1: The codes of Classical Spline Regression in R programming. 

 

x=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,3

0,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57

,58,59,60,61,62,63,64,65,66,67) 

y=c(65.9,70.3,65.1,68.2,61.6,64.8,60.4,65.5,63.9,66.1,59.3,60.6,59.4,59.8,50.7,57.1,

56.3,52.5,51.8,56.7,54.6,57.4,56.5,57.5,54.8,63.4,57,55.2,59.5,62.6,66.5,62.9,65.9,70

.2,67,66.9,70.6,78.9,67.9,61.2,70.4,66.6,67.6,74.7,77.5,92.9,85,67.7,77.8,65.1,71.5,5

7.4,61.3,60.4,64.6,63.5,67.9,69.1,65.1,60.3,68.1,63.3,62.5,59.5,58.7,62.9,61.2) 

plot(x,y) 

x17 <- ( x - 17 ) 

x17[ x17<0 ] <- 0 

x49 <- ( x - 49 ) 

x49 [ x49<0 ] <- 0 

x53 <- ( x - 53 ) 

x53[ x53<0 ] <- 0 

x57 <- ( x - 57 ) 

x57[ x57<0 ] <- 0 

fit <- lm( y ~ x + x17 + x49 + x53 + x57 ) 

print( summary( fit ) ) 

AIC(fit) 

BIC(fit) 
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Appendix 2: The codes of Bayesian Spline Regression in WinBUGS programming 

 
 

model{  

C<-90.0 

  pi<-3.141593 

for (i in 1:n) 

{response[i]~dnorm(m[i],taueps) 

m[i]<-inprod(beta[],X[i,])+inprod(b[],Z[i,]) 

log.like[i] <- -0.5*log(2*pi)-0.5*log(sigmaeps)-0.5*(response[i]-m[i])*(response[i]-

m[i])/sigmaeps 

     

like[i] <- exp( log.like[i] ) 

} 

dm <- 7 

   

  Deviance <- -2*sum(log.like[1:n]) 

   

  AIC <- Deviance + dm*2 

  BIC <- Deviance + dm*log(n) 

  L <- prod( like[1:n] ) 

   

for (k in 1:nknots){b[k]~dnorm(0,1.0E-6)} 

for (l in 1:degree+1){beta[l]~dnorm(0,1.0E-6)} 

taueps~dgamma(1.0E+1,1.0E-6); 

sigmaeps<-1/(taueps); 

sigma<-sqrt(sigmaeps); 

for (i in 1:n) 

{for (l in 1:degree+1){X[i,l]<-pow(covariate[i],l-1)}} 

for (i in 1:n) 

{for (k in 1:nknots) 

{u[i,k]<-(covariate[i]-knot[k])*step(covariate[i]-knot[k]) 

Z[i,k]<-pow(u[i,k],degree)}} 

for (i in 1:n) { 

numerator[i] <- (m[i] - mean(response[]))*(m[i] - 

mean(response[])) 

 denominator[i] <- (response[i] - 

mean(response[]))*(response[i] - mean(response[])) 

} 

R2  <- sum(numerator[]) / sum(denominator[]) 

for (i in 1:n) 

{} 

}  

 

list(n=67,nknots=4,degree=1, 

knot=c(17,49,53,57),covariate = c( 

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,
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32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,5

9,60,61,62,63,64,65,66,67), 

      response = 

c(65.9,70.3,65.1,68.2,61.6,64.8,60.4,65.5,63.9,66.1,59.3,60.6,59.4,59.8,50.7,57.1,56.

3,52.5,51.8,56.7,54.6,57.4,56.5,57.5,54.8,63.4,57,55.2,59.5,62.6,66.5,62.9,65.9,70.2,

67,66.9,70.6,78.9,67.9,61.2,70.4,66.6,67.6,74.7,77.5,92.9,85,67.7,77.8,65.1,71.5,57.4

,61.3,60.4,64.6,63.5,67.9,69.1,65.1,60.3,68.1,63.3,62.5,59.5,58.7,62.9,61.2)) 

 

list(beta=c(0,0), b=c(0,0,0,0), 

sigmaeps=0.1) 
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