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THE CRYSTAL STRUCTURE ANALYSIS OF A DINUCLEAR Rh(I) N-

HETEROCYCLIC CARBENE COMPLEX 

 

 

ABSTRACT 

 

     N-heterocyclic carbene (NHC) complexes, bound to a transition metal atom, 

bearing benzimidazole, imidazole and imidazoline rings that possess various 

biological activities have remarkable importance in organometallic chemistry and 

homogeneous catalysis. After the first reports about the stability of the transition 

metal complexes of NHCs by H. -W. Wanzlick and K. Öfele independently from 

each other, the studies focused on these important type of carbene complexes.  

 

     In the scope of this study, the molecular and crystal structure of Rh(I) N-

heterocyclic carbene complex bearing 2,6-bis(1-pentamethylbenzyl-1-H-

benzimidazole-2-yl) pyridine have been determined by using single crystal X-ray 

diffraction technique. The title compound crystallizes in the monoclinic cell setting 

with space group C12/c1. The coordination geometry around the Rh atom is slightly 

distorted square-planar. The terdentate units act as bis-monodentate ligands resulting 

from the connection between the benzimidazole and [Rh(COD)Cl] units through the 

nitrogen atoms. There exist inter- and intra-molecular interactions of different types 

in the title compound. The effects of these interactions on the geometry of the 

complex and their consequences are investigated and discussed in detail. 

      

Keywords:  N-heterocyclic carbene complexes, benzimidazole, crystal structure. 
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İKİ ÇEKİRDEKLİ Rh(I) N-HETEROSİKLİK KARBEN KOMPLEKSİNİN 

KRİSTAL YAPI ANALİZİ 

 

 

ÖZ 

 

     Pek çok biyolojik aktiviteye sahip benzimidazol, imidazol ve imidazolin halkaları 

içeren, bir geçiş metaline bağlı bulunan N-heterosiklik karben (NHK) kompleksleri, 

organometalik kimya ve homojen katalizde büyük bir öneme sahiptir. NHK‟ler‟in 

geçiş metali komplekslerinin kararlılığı ile ilgili H. -W. Wanzlick ve K. Öfele 

tarafından birbirlerinden bağımsız olarak yayınlanan ilk bildirilerin ardından, 

çalışmalar karben komplekslerinin bu önemli türü üzerinde yoğunlaşmaya 

başlamıştır.  

     Bu çalışma kapsamında, 2,6-bis(1-pentametilbenzil-1-H-benzimidazol-2-yl) 

piridin taşıyan Rh(I) N-heterosiklik karben kompleksinin moleküler ve kristal yapısı, 

tek kristal X-ışını kırınımı yöntemi kullanılarak belirlenmiştir. Söz konusu bileşik 

monoklinik hücre yapısında C12/c1 uzay grubuna sahip olarak kristallenmiştir. 

Bileşikte Rh atomu etrafındaki koordinasyon geometrisi hafifçe bozulmuş kare 

düzlemseldir. Terdentat birimleri, benzimidazol ve [Rh(COD)Cl] birimleri arasındaki 

bağdan dolayı bis-monodentat ligandları gibi davranırlar. Söz konusu bileşikte farklı 

türlerde molekül içi ve moleküller arası etkileşimler bulunmaktadır. Bu 

etkileşimlerin kompleksin tamamı üzerindeki etkileri ve bu etkilerin sonuçları detaylı 

bir şekilde incelenmiş ve tartışılmıştır.  

  

Anahtar kelimeler: N-heterosiklik karben kompleksleri, benzimidazol, kristal yapı. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction 

 

      Before the discovery of X rays by Wilhelm Conrad Röntgen (1845-1923) in 

1895, the structure determination studies of crystal samples were limited with the 

prediction of atomic arrangements by looking the appearance of crystals. But shortly 

after the discovery of X-rays, Max von Laue (1879-1960) and his colleagues W. 

Friedrich and P. Knipping observed a pioneering diffraction between X-rays and the 

electrons of crystal atoms. Thus, an exciting and a fascinating journey into the 

crystals‟ unknown world, crystallography by name, started. 

 

     X-ray crystallography or in other words, single crystal X-ray diffraction is an 

analytical and nondestructive technique for single crystal determination processes. 

 

     In the scope of this thesis, the crystal structure of Rh(I) N-heterocyclic carbene 

complex bearing 2,6-bis(1-pentamethylbenzyl-1-H-benzimidazole-2-yl)pyridine 

abbreviated as [{Rh(COD)Cl}₂L] where L is 2,6-bis(1-pentamethylbenzyl-1-H-

benzimidazole-2-yl) pyridine, has been determined by using single crystal X-ray 

diffraction technique. One of the chemical diagrams of the title compound is given in 

Figure 1.1. 

 

 

Figure 1.1 A chemical diagram of the title compound. 
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     NHC ligands were first reported by Wanzlick & Schönherr (1968) and Öfele 

(1968) independently from each other. The complexes that are formed by N-

heterocyclic carbene ligands abbreviated as NHCs, binding to a transition metal atom 

and bearing a benzimidazole framework take an important place in homogeneous 

catalysis and organometallic chemistry.  

 

     Strong σ-bonding between the NHC and the metal atom is observed in the metal 

complexes including NHCs as ligands. Because while binding to a metal complex, 

NHCs act as strong σ-donors or on the contrary, they act as weak π-acceptors. NHCs 

have manifold catalytic applications as activators in carbon-carbon coupling 

reactions, formation of furans, cyclopropanation, olefin metathesis, etc. 

 

     Benzimidazole is a bicyclic compound containing one imidazole ring bearing two 

lone electron pairs on each nitrogen atom and one benzene ring that is bridged to that 

imidazole ring. Benzimidazoles are used in manifold medicinal applications due to 

their various biological activities such as anti-inflammatory (Leonard et al., 2007), 

anti-oxidant (Kuş, Ayhan-Kılcıgil, Can-Eke & İşcan, 2004, Ateş-Alagöz, Kuş & 

Çoban, 2005), anti-viral (Devivar et al., 1994), anti-tumor (Gellis, Kovacic, Boufatah 

& Vanelle, 2008), anti-ulcer (Bariwal et al., 2008), anti-microbial activity (Leonard 

et al., 2007, M. B. Deshmukh, Suryavanshi, S. A. Deshmukh, Jagtap, 2009, Ansari & 

Lal, 2009). 

 

     In this study, the crystallographic data of the title compound was collected by 

Agilent XCalibur X-ray Diffractometer with EOS CCD detector at X-Ray 

Crystallography Laboratory in the Department of Physics, Faculty of Science, Dokuz 

Eylül University. The structure of the title compound was solved by using SHELXS-

97 (Sheldrick, 1998) software with direct methods and refined by SHELXL-97 

(Sheldrick, 1998) software. All geometrical calculations and molecular graphics were 

created by WINGX (Farrugia, 1999), ORTEP-3 (Farrugia, 1997) and PLATON 

(Spek, 1990) programs. 
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CHAPTER TWO 

X-RAY CRYSTALLOGRAPHY 

 

2.1 X-Ray Diffraction 

 

     A pioneering discovery by W. C. Röntgen in 1895 showed that when the electrons 

emitted from a heated filament (cathode) in a vacuum tube were accelerated by a 

large external potential which was approximately           , towards a metallic 

target (anode) inside of the tube, there appeared an interaction between the 

accelerated electrons and the target. As a result, a new radiation type called X-rays 

was emerged from the tube. The wavelengths of X-rays have different values in the 

interval varying from 0.1 Å to 100 Å.  

 

     In 1912, Max von Laue put forward that crystal planes could be used as 

diffraction gratings by taking advantage of the fact that the magnitude of the inter-

planar distances in a crystal is in the order of angstroms (Å) as the order of the 

wavelength of X-ray beams. This hypothesis was demonstrated by an experiment 

which was carried out by the students of W. C. Röntgen, W. Friedrich and P. 

Knipping under the guidance of von Laue in 1912. At the first attempt, they put the 

photographic film between the radiation source and crystal sample assuming the 

crystal would act like a mirror and reflect the incident beam (Ewald, 1962). 

However, there was nothing that could be observed on the film. Upon this failure, 

they decided to rerun the experiment by placing the film behind the crystal and here 

the legendary success came. According to the results of this precious study, when X- 

rays were diffracted from crystal atoms, each diffracted beam left a black spot on the 

photographic film behind the crystal sample and thus, a characteristic diffraction 

pattern was obtained.  

 

     The first diffraction pattern obtained and the experimental setup used by these two 

young scientists are given in Fig. (2.1) and (2.2), respectively. The diffraction 

patterns of zincblende were also obtained by Friedrich and Knipping that are given in 

Fig. (2.3).  
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Figure 2.1 First diffraction pattern obtained by Friedrich and Knipping. (Ewald, 1962, chap. 4) 

 

 

 

Figure 2.2 The experimental setup used by the young scientists. (Ewald, 1962, chap. 4) 
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Figure 2.3 The diffraction patterns of Zincblende along four-fold (a) and three-fold (b) axes. (Ewald, 

1962, chap. 4) 

 

     The method that was created by von Laue and his group is referred to as Laue 

Method in general which is illustrated simply in Fig. (2.4).  

 

 

 

Figure 2.4 A basic schema for Laue Method. 

 

     Once the diffraction pattern is obtained, one can reach the information about the 

unknown structure of a crystal sample such as inter-atomic distances, bond angles, 

bond lengths. 

 

     The Laue Method was inspirational for many scientists. The first crystal structure 

determined using X-ray diffraction was sodium chloride (NaCl) which was 

performed by W. H. Bragg (1862-1942) and his son W. L. Bragg (1890-1971) in 
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1913. The father-son Braggs showed that X-rays diffracted from crystal lattice planes 

would be in phase and diffraction could be observed if and only if the following 

conditions were satisfied (Bragg & Bragg, 1913): 

 

 The angles of the incident and diffracted (or scattered) beams must be equal 

to each other in magnitude. 

 The path difference (      ) between the incident and diffracted beams must 

be an integral multiple of the wavelength. 

 

     The conditions given above are referred to as Bragg Conditions and they were 

successfully expressed in Eq. (2.1) which is known as the Bragg Equation. 

 

                                                                                                                   (2.1) 

                                                        

In this equation n is an integer, λ is the wavelength of radiation, d is the inter-atomic 

distance in the lattice and θ is the angle of incidence. A diffraction satisfying the 

Bragg Conditions is called the Bragg reflection and a representing picture is given in 

Fig. (2.5). 

 

 

Figure 2.5 The Bragg reflection. 

 

     One can derive Eq. (2.1) simply using the geometry and trigonometry. According 

to the second Bragg Condition given above, to observe diffraction, the total path 
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difference  |     |  in Fig. (2.5), must be equal to an integral multiple of the 

wavelength. Then, one can write the following equation: 

 

                                                          |     |                                               (2.2) 

 

When the basic trigonometry rule for sinus is applied in the triangles CAO and CBO 

to define the lengths of AO and OB line segments (|  |     |  |) in terms of θ,  

 

                                                          
|  |

|  |
 

|  |

|  |
                                               (2.3) 

 

is obtained. It is obvious in Fig. (2.5) that the inter-planar distance d is equal to |  |, 

hence  

 

                                                  |  |  |  |                                                   (2.4) 

 

is obtained and when the relations given in Eq. (2.4) are substituted in Eq. (2.2), the 

gorgeous Bragg formula occurs: 

                               

                                                                                                              

 

2.2 Diffraction Geometry 

 

     A basic schema for a single crystal X-ray diffraction experiment is illustrated in 

Fig. (2.6) that is very similar to that explained in Section 2.1. 
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Figure 2.6 A simple schema showing a single crystal X-ray diffraction experiment: X-rays generated 

by the X-ray tube impact on the crystal sample and diffraction occurs. The diffracted (or scattered) X- 

rays are collected and processed by the detector. The processed data are sent to computer and the 

characteristic diffraction pattern is obtained.  

 

 

     X-rays diffracted from the crystal atoms satisfying the Bragg Conditions, leave 

black spots on the film that stands behind the crystal sample and these spots generate 

a diffraction pattern which varies from crystal to crystal (characteristic diffraction 

pattern). These diffraction spots are arranged on a lattice that is reciprocal to the 

crystal lattice. Each of the spots on the diffraction pattern represents atomic positions 

in the crystal sample, thus by measuring the distances between these spots, unit cell 

dimensions can be obtained. The unit cell is the smallest unit of a crystal lattice that 

possesses all of the features of the crystal and is defined by the geometrical 

properties of its shape such as the lengths of the edges (a, b, c) and angles between 

these edges of the unit cell (α, β, γ). Those parameters are known as unit cell 

dimensions. 

  

     Positions of the spots in a diffraction pattern are dependent on the size of the unit 

cell. When the unit cell grows, the spots approach each other. According to Fig. 

(2.7), it is obvious to realize the difference between the two diffraction patterns 

resulting from the different unit cell dimensions. 
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(a) (b) 

Figure 2.7 A comparison of diagrams of the diffraction patterns with different unit cell dimensions. 

The larger the unit cell, the closer the diffraction spots (a). The picture on the right (b) is the 

diffraction pattern of a smaller unit cell. (Pickworth-Glusker & Trueblood, 2010, chap. 3) 

 

     Shape of the spots in a diffraction pattern is related with the number and 

arrangements of the unit cells within the crystal (Fig. 2.8). 

 

 

 

Figure 2.8 The effect of different crystal lattices on the diffraction patterns. The number of the 

molecules and their arrangements affect the patterns (Pickworth-Glusker & Trueblood, 2010, chap. 3). 

 

     As discussed in the previous section, diffraction process will occur if and only if 

the Bragg conditions are satisfied. Thus, from a geometric point of view, it will be 

possible to observe the diffracted beams or in other words Bragg reflections on the 

film as diffraction spots, in case the reciprocal lattice points lie on the surface of a 

sphere with radius 
 

 
 which was first described by Paul Peter Ewald in 1913 (Ewald, 
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1913). This construction is known as the Ewald sphere and a representing drawing is 

given in Fig. (2.9).  

 

 

Figure 2.9 The Ewald sphere. 

 

     The reciprocal lattice is defined by applying Fourier transform to real space. 

Crystals consist of a large number of planes parallel to each other generating crystal 

lattices. These planes correspond to points that are arranged periodically in reciprocal 

space thereby reciprocal lattice occurs. Hence, these geometric points are called 

reciprocal lattice points. It is clear in Fig. (2.9) that the origin of the reciprocal lattice 

is located at the point O at which the incident beam emerges from the Ewald sphere 

and we assume that the crystal lies on the center of the sphere (Pickworth-Glusker & 

Trueblood, 2010). 

 

     During data collection process, the crystal is rotated around its center to scan all 

of the surfaces or in other words crystal planes. At each rotation, some of the 

reciprocal lattice points hit the surface of the Ewald sphere and the Bragg conditions 

are then satisfied. As a result, a characteristic diffraction pattern is obtained. 

 

     Now let us have a closer look into the geometry of the Ewald construction. 

According to Fig. (2.9), A is the point on the surface from where the incident beam 

enters into the sphere, B is the reciprocal lattice point and |  | is the norm of the 
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diffraction vector (  ). The length of the line segment BO equals to 
 

    
  where      

is the lattice constant (or inter-planar distance). We can prove that equality by doing 

some mathematical operations on the angles of the triangle ABO in Fig. (2.9). Then, 

 

                                                               
|  |

|  |
                                                    (2.5) 

 

can be written. |  | is the diameter, hence 

 

                                                         
|  |

|  |
 

|  |
 

 

                                              (2.6) 

                                                     

                                                      (
 

|  |
)                                                       (2.7) 

 

For    , the Bragg equation that is given by Eq. (2.1) takes the following form: 

 

                                                                                                                   (2.8) 

 

When Eq. (2.7) is substituted in Eq. (2.8), we have 

 

                                               (
 

|  |
)                                                      (2.9) 

 

and we obtain the last equation for the lattice constant: 

 

                                                                
 

|  |
                                                  (2.10) 

 

     If the inter-atomic distance in a crystal lattice (      is smaller than λ/2 or the 

diffraction vector    is larger than 2/λ, then it cannot be possible to observe 

diffraction (Giacovazzo et. al., 2002). The reason is that there isn‟t any reciprocal 

lattice point intersecting the Ewald sphere in that case and thus, Bragg conditions are 

not satisfied. When the Ewald sphere is rotated around   -origin (Fig. 2.10), a new 
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construction occurs called limiting sphere with radius 2/λ which is a limit to observe 

a diffraction as mentioned above.  

 

 

Figure 2.10 The limiting sphere surrounding the Ewald sphere. 

 

 

2.3 Single Crystal X-ray Diffraction 

 

2.3.1 Introduction: Diffraction Methods 

 

     The first discovery of X-ray diffraction from crystal atoms in 1912 by Max von 

Laue, opened a new gate to microstructures world. Laue Method which is the 

simplest, but adopted as a milestone of crystallography divided into different 

branches over time by transforming its form in terms of application. Experimental 

techniques that have been inspired by Laue Method are summarized as follows: 

 

I. Rotating Crystal Method: A crystal sample is rotated around one axis under a 

monochromatic beam. The photographic film and rotation axes are in 

cylindrical form. This method provides convenience to determine the unit cell 

dimensions of a single crystal. 
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II. Debye-Scherrer Method: Polycrystalline samples that are quite small and 

randomly oriented crystallites are used in this technique. Crystalline sample 

in powder form is put in a sample holder and placed on the center of a 

powder diffractometer. A monochromatic beam impinges on the powder and 

then diffracted beams are recorded on a cylindrical film. The method was first 

created by P. J. W. Debye and P. Scherrer in 1916.   

 

     There is a third method known as single crystal X-ray diffraction which will be 

explained in detail. But first, mentioning about different radiation sources that are 

used in diffraction experiments would not be irrelevant. 

 

     The type of a radiation used in experiment varies according to the unit cell 

dimensions of sample. To observe the molecular structure, the order of the 

wavelength of a radiation must be similar to that of the inter-atomic distance of the 

sample (Pickworth-Glusker & Trueblood, 2010). X-rays produced by sealed tubes 

also known as the bremsstrahlung radiation that has a continuous spectrum which 

occurs when a charged particle often an electron is accelerated by an electric field of 

another charged particle. Besides this, synchrotron radiation that is approximately 

     times stronger than the brehmsstrahlung radiation, and neutrons from a nuclear 

reactor are used in structure analysis. The principle of the neutron diffraction is based 

on the nuclear interactions between the sample and neutrons. 

 

     In the first diffraction experiments, polychromatic radiation that consists of 

various wavelengths, was used which caused an obscuration in the diffraction 

patterns resulting from overlaps of the reflections from various single crystal planes. 

This is the disadvantage of the Laue Method, thus it can just be used to determine the 

crystal axes in general. But it is possible to analyze a single crystal structure using a 

monochromatic radiation of X-rays which is known as single crystal X-ray 

diffraction or X-ray crystallography shortly, and the method has a cruel importance 

mainly in materials science, chemistry and condensed matter physics. 
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2.3.2 Crystal Selection for Single Crystal XRD 

 

     A crystal is a solid in which all of the atoms, molecules or ions have a regular and 

periodic arrangement. This periodicity is observed perfectly in single crystals (Fig. 

2.11). 

 

 

Figure 2.11 Difference between the atomic arrangements in solids (Barber & Best, n. d.). 

 

     The primary and the most important step for diffraction experiment is obtaining a 

suitable crystal or crystalline sample. Thus, a great care must be taken while 

selecting a single crystal. The reason is that almost all of the crystals have impurities, 

disorders or defects naturally. Crystal twinning is one of them.  

 

     Sometimes two or more crystals grow together sharing the same symmetry 

element which is called twin planes. The crystals that have such formation are called 

twin crystals. In a more explanatory fashion, according to Giacovazzo et. al. (2002), 

“Twins are regular aggregates consisting of individual crystals of the same species 

joined together in some definite mutual orientation” (chap. 2). The diffraction pattern 

of a twin crystal is a superposition of two symmetrical patterns as can be seen from 

Fig. (2.12). 
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Figure 2.12 Reciprocal lattice plots of twin crystals (A and B). C shows the superposition of these two 

symmetrical crystals (Müller, Herbst-Irmer, Spek, Schneider & Sawaya, 2006, chap. 7). 

 

     Crystal twinning and structural distortions reduce the quality of crystals and may 

change their electrical, optical or magnetic properties. Thus, a crystal can be 

examined under a microscope by using polarized light where the waves vibrate along 

one direction. In addition, some single crystals are susceptible to humidity, air, high 

and/or low temperature or pressure, etc. resulting with a negative change in the 

structure that are the disadvantages of the single crystal X-ray diffraction. On the 

other hand, the method has many advantages that cannot be ignored. It is an 

analytical and nondestructive technique, and detailed information about the 

molecular structures of single crystals can be obtained examining the three-

dimensional picture of the crystal sample.  

 

     As explained by Pickworth-Glusker and Trueblood (2010), “Once this 

information is available, and the positions of the individual atoms are therefore 

known precisely, one can calculate inter-atomic distances, bond angles, and other 

features of the molecular geometry that are of interest” (chap. 1).  
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     Another important point that should be addressed in this section is the importance 

of the geometrical dimensions of a crystal sample for a diffraction experiment. When 

the dimensions of a sample is larger than the diameter of the collimator located at the 

tip of the X-ray tube, then some surfaces of the sample cannot be detected and this 

will cause regular decreases in the intensity data, for this reason, one may need to cut 

the crystal (Karabıyık, 2008). 

 

2.3.3 Technical Equipment for Single Crystal XRD 

 

     Crystal structure determination experiments by X-rays or other radiation sources 

that we discussed briefly in the Subsection 2.3.1, can be grouped under three stages: 

 

1. Data collection 

2. Diffraction pattern analysis 

3. Data refinement 

 

     The first stage data collection involves experimental measurement of the 

directions of diffracted beams, hence a unit cell can be selected and its dimensions 

are measured (Pickworth-Glusker & Trueblood, 2010). The beams diffracted by 

single crystal atoms are collected, recorded, and then converted into an electrical 

signal by a detector. The diffraction pattern that is a sum of all of the electrical 

signals reveals the positions of atoms within the unit cell. At the second stage, a 

model structure is suggested which calculated by the crystallographer. The observed 

intensities of diffracted beams are compared with the calculated model in order to 

obtain a molecular structure that is closest to the real one. At the last stage, errors 

that occur between the calculated and observed models are tried to be minimized by 

use of refinement methods in order to obtain the crystal structure in three-dimension 

correctly.  

 

     Above all of these stages, selection of a suitable single crystal sample has priority 

as we discussed in the previous section. Besides this, technical equipment that is used 

during data collection has a cruel importance.  
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     Crystal symmetry, crystal lattice parameters and diffraction data are collected and 

measured with a diffractometer which varies according to whether the sample that 

will be analyzed a polycrystalline or a single crystal. The operation principles of 

these machines are very similar to those used in 1912 (Fig. 2.2). A diffractometer 

consists of a radiation source (X-ray tube, synchrotron radiation or neutrons), 

goniometer and a detector basically (Fig. 2.13). 

 

 

Figure 2.13 Devices of a single crystal X-ray diffractometer. (1) CCD-detector, (2) beamstop, (3) 

cooling device, (4) glass fibre, (5) gonimeter head, (6) collimator of radiation beam.  

 

 

     A very thin glass fiber lies on the top of the goniometer on which the crystal 

sample is placed. The detection system can be an image plate, a charge-coupled 

device (CCD) or a photographic film. When the X-rays are impinged on the crystal 

atoms, scattered beams are collected and then processed by a detector. The most 

common one of them is CCD detectors. These detectors can collect lots of Bragg 

reflections at one time. A CCD detector consists of two radiation sensitive metal-

oxide semiconductor (abbreviated as MOS) capacitors that store and transport the 

charge. According to Rivas et al. (2013), “To operate the CCDs, digital pulses are 

applied to the top plates of the MOS structures. The charge packets can be 

transported from one capacitor to its neighbour capacitor” (chap. 16). The beamstop 

collects the beam that has passed the crystal atoms directly without interaction, to 

prevent superpositions of spots on the diffraction pattern. The collimator aligns the 

rays in one direction to block scatterings out. 

  

     Before the technological improvements of these devices, it had been a problem to 

center the crystal in the diffractometer. The reason is that if the crystal does not take 
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place in the center, some crystal surfaces cannot be detected and some of the atomic 

positions are lost resulting with an incorrect diffraction pattern. In addition, a great 

care must be taken when aligning the crystal on the goniometer head, otherwise 

insecure mounting cause noise to occur on the diffraction pattern and/or poor data 

about the crystal structure (Blake et. al., 2009). Thus, there are some different 

techniques used to mount the sample (Fig. 2.14). Glass fibre must be thick enough 

not to allow the crystal to vibrate and must be thin enough not to cause extra 

diffraction spots appear on the pattern. 

 

 

 

Figure 2.14 Crystal mounting techniques. The crystal is on a glass fibre (a), on a two-stage fibre (b), 

mounted on a fibre with some glass wool (c), within a capillary tube (d), in a solvent loop (e) (Blake 

et. al., 2009, chap. 3). 

 

 

     It is now possible to analyze every kind of crystal structure by new generations of       

diffractometers. One of them is the four-circle diffractometer that allows us to 

determine all the unit cell dimensions and to measure the Bragg reflections definitely  

(Shmueli, 2007). The diffraction data are collected by rotating the crystal at four 

different angles (χ, 2θ, ϕ, ω) by using these diffractometers that are illustrated in Fig. 

(2.15). 
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                             (a)                                                                                      (b) 

Figure 2.15 A four circle diffractometer with Eulerian (a) and Kappa (b) geometries. In both pictures, 

the beams numbered with 1 and 2 represent diffracted and direct beams, respectively (Pickworth-

Glusker & Trueblood, 2010, chap. 4). 

 

     Let us have a deeper look into the two different geometries of a four-circle 

diffractometer: 

             

a. Eulerian Geometry: According to Fig. 2.15 (a), crystal, radiation source and 

detector lie on the same plane which is called the diffraction plane and it is 

horizontal with respect to the main axis that passes through the crystal. Thus, 

the detector is constrained to rotate about the main axis (Shmueli, 2007,  

chap. 4). It is clear in the Fig. 2.15 (a) that the crystal is rotated around three 

axes ϕ, χ, and ω. The rotation axes and their roles in the machine can be             

summarized as follows: 

 

 Phi (ϕ) axis: The rotation axis around the goniometer head where the crystal 

is mounted.  

 Chi (χ) axis: Passes through the center of the crystal and the crystal rolls 

over the closed circle that is called χ circle. 

 Omega (ω) axis: This is the axis that allows the χ circle to rotate around it, 

or in other words the whole goniometer moves around ω axis. 

 2-Theta (2θ) axis: The detector rotates around 2θ axis that is coaxial with ω 

axis. 
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b. Kappa Geometry: It is an alternative geometry that does not have a χ circle, 

but ϕ and 2θ axes are identical to those in Eulerian geometry (Ripoll & Cano, 

n. d.) and there are two new axes, κ and   , instead of χ axis. According to 

Fig. 2.15 (b), the first (kappa) block rotates around the base plate of the 

diffractometer whilst the second (omega) block rotates around the first one. 

These movements of the blocks do not cause any coincidence between the 

axes during the experiment which cannot be observed for the diffractometers 

designed to operate on the principle of Eulerian geometry.   

 

2.3.4 Measurement of Intensity: Scanning Angles of Diffractometer 

 

     There are three methods in order to measure the diffraction intensity depending on 

the movements of crystal and detector: 

 

 Rotating crystal - Rotating detector: This method corresponds to the ω/2θ-

scan of the diffractometer. The crystal rotates around ω-axis while the 

detector rotates in the 2θ-circle. The equation below shows the relation 

between the angular velocities of detector and crystal.    and    indicate the 

velocities of detector and crystal, respectively. 

 

       

 

 Rotating crystal - Fixed detector: This method corresponds to the ω-scan of 

the diffractometer. The detector is fixed at 2θ position, while the crystal 

rotates around ω-axis. 

 

 Fixed crystal - Fixed detector: The detector and crystal are stationary at 2θ 

and reflection position, respectively. 
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CHAPTER THREE 

CRYSTAL STRUCTURE SOLUTION    

 

3.1 Introduction 

 

     The aim of a diffraction experiment is to obtain the intensities of Bragg 

reflections to calculate the electron density maps and therefore obtaining a three-

dimensional image of the crystal sample. 

 

     The intensities of Bragg reflections are mainly depend on the atomic 

arrangements within the unit cell and interference of X-rays scattered by crystal 

atoms. In addition, the intensity of diffracted beams is proportional to the square of 

the amplitude of the structure factor. 

 

     In a diffraction experiment one can observe the intensity and therefore the 

amplitude of the structure factor directly. But the electrons of a crystal atom form a 

charge cloud around the nucleus and they scatter the incident beam in all directions, 

thus, phase differences occurring between the scattered rays must be taken into 

account (Omar, 1975). But it is not possible to observe the phases directly during an 

experiment. This annoying situation is known as the phase problem in 

crystallography. 

 

     In this chapter, the structure factor and its relation with the intensity of diffracted 

rays, correction factors that have to be calculated during the data reduction process, 

phase problem and different methods (Direct Methods and Patterson Method) in 

order to cope with the problem will be discussed in detail.  

 

3.2 Structure Factor  

 

     A measure of the power of scattering electrons of an atom in a crystal lattice is 

known as the atomic scattering (or form) factor-   where j represents the jth atom in 

the crystal lattice. The ratio of the amplitude of X-rays scattered from the electrons of 
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a single atom to that scattered from a single electron gives the magnitude of the 

atomic scattering factor-|  |. The wave scattered by all of the atoms in a unit cell is 

known as the structure factor-F and it carries information about where the atoms sit 

in unit cells, and describes how atomic arrangements influence the intensities of 

diffracted beams.  

 

     The structure factor F is obtained by the summation of all the waves diffracted 

from the individual atoms, but scattering by the atom at the origin also must be added 

(Weaver, n. d.). Thus, a complex exponential function is used in order to express the 

scattered waves. Then, the structure factor is said to be a composition of real and 

imaginary components as given below: 

 

                                                                                                        (3.1) 

 

In Eq. (3.1), A is the atom at origin (0, 0, 0), B is the atom at any (x, y, z) position in 

the crystal and (hkl) is a crystal plane from where the incident beam scatters. This 

relation is depicted with a simple graphic (Fig. 3.1). 

 

 

Figure 3.1 Graphical representation of the structure factor. ϕ is the phase difference occurring by the 

shifts between the scattered rays. F(hkl) has two components on real and imaginary axes. 
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     Now consider a crystal including N atoms. The total ray scattered by the entire 

material is the sum of each ray scattered from all the unit cells in a crystal lattice. 

According to Fig. (3.1), A and B are given as follows: 

 

                                                           ∑   
 
                                               (3.2) 

 

                                                           ∑   
 
                                                (3.3) 

 

When Eqns. (3.2) and (3.3) are substituted in Eq. (3.1), the general formula for 

structure factor is obtained: 

 

                              

 

                                ∑   
 
                  

 

                                                                                                                               

                                                                                                                                 (3.4)           

  

                       

A useful representation of Eq. (3.4) is given with the Argand diagram which is a 

diagram of complex numbers that are plotted as points in a two-dimensional plane 

that is composed of real and imaginary axes (Fig. 3.2). 

 

     ∑   
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Figure 3.2 Argand diagram of the structure factor F(hkl) that is a sum of all the waves scattered from 

the whole crystal. 

 

     In Eq. (3.4),    is the phase difference resulting from the shift between the 

scattered rays. The phase difference depends on the arrangements of atoms in a 

crystal and it can be expressed by using the dot product of the reciprocal lattice 

vector   (             ) with the real lattice vector    (              ). 

Hence,   

 

                                                                                                                    (3.5) 

   

                                     (           )                                      (3.6) 

 

                                       [                       ]                            (3.7) 

                                                                  1                    2                   3 

                                                        

                                                                                                         (3.8) 

 

     In Eq. (3.7), the numbers 1, 2, and 3 represent the Laue equations (Kittel, 2005). 

Eq. (3.8) is the general formula for the phase angle of a hkl-reflection at (        ) 

position. When the Eq. (3.8) is substituted in Eq. (3.4), then the following expression 

for the structure factor is obtained: 
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                                                                                                                                 (3.9) 

 

 

     The last equation provides information about which reflections are expected in a 

diffraction pattern obtained from a given crystal structure with atoms located at 

positions (x, y, z), (Weaver, n. d.).  

 

     The amplitude of the structure factor-|      | is the ratio of the amplitude of the 

rays scattered from the whole atoms in a unit cell to that scattered from a single 

electron. |      | is calculated multiplying F(hkl) by its complex conjugate   (hkl) 

and taking the square root of the result. By doing some mathematical operations, 

 

                                                   |      |  √     

                                   √              

 

                                                   |      |  √                                              (3.10) 

 

is obtained. A and B have been described by the Eqns. (3.2) and (3.3), thus when they 

are substituted, the amplitude of the structure factor is calculated as follows: 

 

                                                                                        

                                                                       

                                                                                                                               (3.11) 

 

 

     The intensities of diffracted beams are proportional to the square of the amplitude 

of the structure factor (Eq. (3.12)) and are independent of h, k, and l values whilst 

they are dependent on the atomic arrangements and weights. In a diffraction pattern, 

the spots of the beams diffracted from heavier atoms are brighter and larger than 

others. 

 

     ∑   
                

 

   

 

|      |  √.∑  

 

   

/

 

 ∑  
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                                                                                                                               (3.12) 

 

 

3.3 Data Reduction Process: Corrections to Intensity 

 

     Crystal structure analysis requires definite and accurate determination of the 

diffraction pattern both in terms of the positions of spots and intensities in order to 

comment the crystal structure correctly (Connolly, 2012). The occurrence of the 

systematic errors during a diffraction experiment is a major problem and it must be 

handled before crystal structure solution and refinement processes (Bennett, 2010). 

Thus, data reduction process holds a great importance because of providing 

consistency between the calculated and observed data.  

 

     It had been a problem to bring the experimental results to the same scale with the 

calculated model until a method was introduced by A. J. C. Wilson (Wilson, 1942). 

According to the method, it is possible to convert the proportion between the 

intensity-I and |      |  into an equation by adding some factors which are called 

„correction factors‟ (Eq. (3.13)). 

 

 

                                                                                                                               (3.13) 

 

The letters K, L, T, P, A, and E in Eq. (3.13) are scale, Lorentz, temperature, 

polarisation, absorption, and extinction factors, respectively that are explained in 

detail in the following sections. The diffracted X-ray intensities scaled by these 

factors are called „reduced intensities‟.  

 

3.3.1 Scale Factor  

 

     In order to make a comparison between the observed and calculated models, they 

are brought to the same scale by the scale factor which is represented as K (Sevinçek, 

2006). The scale factor is defined with the ratio given below: 

       |      |  

 

                   |      |  
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                                                                                                                               (3.14) 

 

 

3.3.2 Lorentz Factor 

 

     As the crystal rotates during the diffraction experiment, reciprocal lattice nodes 

rotate with different linear velocities, therefore the length of time that a crystal atom 

remains in diffraction position differs. The intensities obtained from the nodes with 

high velocities are smaller than those obtained from lower ones. As a result, the 

geometry of the diffraction pattern changes. Lorentz (or shortly, L-) factor is a 

geometrical correction factor that is used to reduce this difference between the 

intensities on the diffraction pattern.  

 

     If the diffractometer used in the experiment is a four-circle diffractometer, then 

the reciprocal lattice nodes lie on the equatorial plane where    , therefore the 

following expression is used to perform the Lorentz correction (Gökçe, 2008),  

 

                                                                                                                    (3.14) 

 

when using the diffractometers with area-detectors the above expression changes its 

form as follows (Lipson, Langford & Hu, 2004): 

 

                                                                                                  (3.15)       

        

3.3.3 Temperature Factor 

 

     According to Tilley (2006), “The most important correction term applied to 

intensity calculations is the temperature factor” (chap. 6). The reason is that when 

deriving the expression for structure factor, all the atoms in a unit cell are treated as 

stationary (when the temperature is considered to be absolute zero). However, this is 

not the actual case. Every atom within a crystal vibrates about its lattice position by 

the influence of heat in three-dimensions x, y, and z. The electron cloud around the 

  
〈|         |

 〉

〈|         | 〉
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nucleus of a crystal atom diffuses into a larger volume due to the thermal motion, 

thus the geometrical shape of the atom looks like an ellipsoid and the scattering 

power of the atom decreases exponentially (Eq. (3.16)). If the amplitude of vibration 

of an atom is the same in any direction within the crystal, then the atom is called 

isotropic, otherwise it is called anisotropic.  

 

                                                          (  
     

  )                                         (3.16) 

 

     In Eq. (3.16), f and    are the atomic scattering factors of thermally vibrating atom 

and stationary atom, respectively. The letter B represents the atomic temperature 

factor or rather known as the Debye-Waller factor (Eq. (3.17)), λ is the wavelength 

of radiation, and θ is the Bragg angle.  

 

                                                               〈 〉                                                  (3.17) 

 

     In Eq. (3.17), 〈 〉  represents the square of the mean displacement from the 

equilibrium position and mostly given as      which means isotropic temperature 

factor.  

 

     Now, let us consider the relation between the thermal motion and diffracted 

intensity. When the atomic scattering factor that is given by Eq. (3.16) is substituted 

into the structure factor (Eq. (3.9)),   

 

                                                ∑    
                

 

   
                                        (3.9) 

 

                        ∑      (  (
    

 
)
 

)                      
 

   
  

 

                                 ∑      (     
     

               )
 

   
                    (3.18) 
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is obtained. The diffracted intensity is proportional to the square of the amplitude of 

the structure factor as we discussed before, then the following expression occurs: 

 

                                                                                                                                

                                                                                                                               (3.19) 

 

 

     Consequently, when temperature increases, the amplitude of the atomic scattering 

factor, therefore the amplitude of structure factor and the diffracted intensity 

decreases. Thus, it is needed to correct the intensity with the temperature factor. 

 

3.3.4 Polarisation Factor 

 

     Although there had been many attempts to show the polarisation of X-rays, this 

was first demonstrated successfully by Charles G. Barkla (Barkla, 1905). The X-ray 

beam emerging from the monochromator is unpolarised but, after the beam diffracted 

from the crystal, resultant beam is polarised depending on the Bragg angle-θ (Fig. 

3.3).  

 

 

Figure 3.3 The polarisation of X-rays after diffraction. 

 

     The intensity of the diffracted rays decreases due to the polarisation, hence a 

correction have to be added into the intensity data which indicated as P in Eq. (3.13). 

Thus, if a monochromator isn‟t used during the experiment (Fig. 3.4), then the 

polarisation correction-P is given by Eq. (3.20).  

                                                                                                                                                                                                                       

|    |
  *∑      (     

     

               )
 

   
+
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                                                                                                                               (3.20) 

 

 

 

 Figure 3.4 Diffraction process without a monochromator.  

 

But, if a monochromator is used, we need to write Eq. (3.21).  

  

                                                                                                                               (3.21) 

 

 

In Eq. (3.21),    is the Bragg angle of the monochromator which is a preset constant 

determined by the lattice constant (or inter-planar distance) d (Cockcroft, n. d.). 

Diffraction by a monochromator produces partial polarisation. In this study, graphite 

monochromator was used and a representing schema of the geometry of this setup is 

given by Fig. (3.5). 

 

 

  
       θ      θ

 
 

  

  
        

 
 

 



31 
 

 

Figure 3.5 Diffraction process with a monochromator. 

 

     Before Barkla‟s successful experiments, in 1808, E. L. Malus observed 

polarisation using a calcite crystal, unlike other scientists, and he realized that when 

he rotated the crystal, the intensity of the reflected beam was changing depending on 

the reflection angle (that is Bragg angle)-θ. Therefore, he derived Eq. (3.22) to 

denote the effect of polarisation on the intensity by taking the square of the 

amplitude of the incident wave. This equation is known as Malus’ Law. 

 

                                                                  
                                                 (3.22) 

 

     In the equation above,    is the intensity of the incident beam. According to J. J. 

Thomson, the value of intensity of X-rays scattered by a single electron at a distance 

r from the electron is given with the equation below which is the advanced form of 

Eq. (3.22):     

                                                                                                                           

                                                                                                                               (3.23) 

 

    
  

      
(
        

 
) 
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     Consequently, the intensity of the diffracted beam is dependent on the Bragg 

angle while independent from the diffraction technique used. 

 

3.3.5 Absorption Factor 

 

     While passing through a crystal, some of the X-rays are absorbed by the crystal 

atoms. According to Lambert-Beer‟s Law, the intensity of X-rays travelling through 

an absorbing media depends on the thickness of the media (t) and linear absorption 

coefficient (μ) given with the expression below: 

 

                                                                  
                                                    (3.24) 

 

     In Eq. (3.24)    is the intensity of the incident beam while   is the intensity of the 

beam that is absorbed by the material. It is evident in the equation that the diffracted 

intensity is inversely proportional to μ thus, when analysing crystal structures 

including heavy atoms, absorption factor must be added in order to improve the 

quality of the collected data. 

 

 

3.3.6 Extinction Factor 

 

      “Extinction is the increase in absorption that is to be expected when Bragg 

reflection of X-rays takes place in single crystals, and the corresponding decrease in 

intensity of reflection observed” (Lonsdale, 1947). Extinction correction has two 

components as primary and secondary. When the sample crystal used in diffraction 

experiment is very close to perfection which means a crystal bears the periodicity of 

its atomic arrangement from -  to + , almost each radiation beam transmitted on 

the crystal is reflected by different crystal planes. This situation is referred to as 

multiple reflection (Fig. 3.6). The phase difference between those undergoing 

multiple reflection is   ⁄  and in case the double reflection the difference becomes π. 

If the incident and reflected rays travel in the same direction, destructive interference 
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occurs due to their opposite phases. As a result, the intensity of the incident beam 

decreases. This type of extinction is known as primary extinction (Fig. 3.6).   

 

 

 

Figure 3.6 Primary extinction: Multiple reflection by the atoms sitting in different crystal planes. 

 

     Primary extinction becomes important when the thickness of the layers in crystal 

is larger than 10
-4

 cm that means there are small spacings within the structure. 

Otherwise the number of multiple reflections decrease and primary extinction 

becomes unimportant (Lonsdale, 1947). Besides the primary extinction, the 

important fraction of the incident beam is reflected by the crystal plane which first 

encounters with the beam. Hence, the lower planes in the crystal receive less 

radiation (Giacovazzo et. al., 2002). This type of extinction is known as secondary 

extinction and it causes a decrease in the intensity of the reflected beams (Fig. 3.7). 

We can compare the two extinctions briefly: 

 

 Primary extinction is independent from wavelength, but the secondary is not. 

 

 Crystallite size is important for both primary and secondary extinctions, but 

the size of the entire crystal is also important for secondary extinction.  
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Figure 3.7 Secondary extinction. 

 

3.4 Phase Problem 

 

     In order to obtain the electron density maps, shortly e-maps, one needs knowledge 

about not only the amplitudes of the structure factor, but also the phases of the 

diffracted waves. Unfortunately, as we discussed at the beginning of this chapter, it is 

not possible to recover the phases directly from a diffraction experiment, although 

the amplitude can be obtained directly by its relation with diffracted intensity. This 

trouble is referred to as phase problem that had been recognized presumably by 

Bragg in 1929 (Sayre, 2002). The problem preoccupied crystallographers for a long 

time and since the mid 1900s, some methods which will be described in the 

following sections were presented in order to solve the problem. 

      

     Crystals are solids that consist of periodic arrangements of atoms. Therefore, the  

electron density distribution is periodic or in other words, the distribution remains 

invariant under the translational symmetry operation. Hence, the electron density 

function      where   is the lattice vector, is the same even if the position of the 

atom is translated by a vector   (Eq. (3.25)). 

 

                                                                                                                          (3.25) 

 

     A mathematical representation of the three-dimensional electron density function 

of the lattice vector                can be written as follows by means of 
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Fourier series that are used to decompose the periodic functions into complex 

exponentials:  

 

                                                                                                                               (3.26)  

 

    

where V is the volume of the unit cell and h, k, l are integers (Harker & Kasper, 

1948). The structure factor can be expressed in terms of electron density function, 

 

                                        ∫     
 

   [             ]                          (3.27) 

 

or can be expressed as a wave function which consists of amplitude and phase, hence 

 

                                                         |    | 
                                                 (3.28) 

 

is obtained. If the exponential function is decomposed into its trigonometric 

functions, we obtain Eq. (3.29) for the structure factor.                                 

 

                                                       |    |                                                 (3.29) 

 

     In case the crystal lattice is centrosymmetric that means the crystal possesses an 

inversion symmetry as one of its symmetry elements, then      must be 0˚ or 180˚. 

Thus, the phase problem reduces to selection of the correct sign problem for the 

structure factor amplitudes,       |    |. The number of the possible phase 

combination for n independent reflections is   , while it is    for non-

centrosymmetric structures. In addition, if the crystal lattice is non-centrosymmetric, 

then the phase may have a value from 0˚ to 360˚ by 45˚ increments.                                                                                                                                                                                                                                                                                                                                                              

 

     In order to solve the phase problem, some methods are present such as multiple 

isomorphous replacement, anomalous dispersion, etc. But the most common ones 

which proposed depending on the atomic composition of a crystal are: 

 

     
 

 
∑        [              ]
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 Patterson method 

 Direct methods 

  

3.4.1 Patterson Method 

 

     A remediation to the phase problem was first suggested by Arthur L. Patterson 

(1934). The phase information leads us to determine the positions of atoms that are 

surrounded with electron densities higher than those on the Bragg planes. Patterson 

method does not provide accurate information about that type of atomic positions, 

nonetheless the inter-atomic distances can be obtained directly. In one-dimension Eq. 

(3.30) is written for Patterson function or the average electron density function, 

 

                                                 
 

 
∫             

 

 
                                      (3.30) 

 

where d is the inter-planar distance and t is the amount of displacement (Patterson, 

1934). In three-dimension, the Patterson function is given as follows: 

 

                                                
 

 
∑ |    |

 
     

                                          (3.31) 

 

     Two crystal atoms in real (or crystal) space correspond to one peak in Patterson 

space (shortly P-space) and the distance of the maximum peak from the origin (this 

is the case where    ) corresponds to the distance between two atoms in a unit cell.  

 

     Patterson method is not feasible for light atoms. The reason is that peaks of the 

heavy atoms possess higher intensities and their peaks are more visible than those of 

light ones in P-space. 

 

3.4.2 Direct Methods 

 

     When determining a crystal structure by Patterson method, a previously known 

molecular geometry of the sample including heavy atoms is required. But according 

to a method which was first proposed by Harker and Kasper (1948), the phases of 
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structure factors and the signs of the amplitudes can be obtained directly, without any 

preliminary information about the structure, by applying the Cauchy-Schwarz 

inequalities to the formulas of the structure factors that include information about the 

atomic positions within a crystal structure. Hence, the method which leads us to 

obtain the missing phases directly from the observed amplitudes is referred to as 

direct methods in crystallography. Before the study of Harker and Kasper in 1948, 

some direct solutions to the phase problem had been discovered in 1920s by Ott 

(1927). 

 

     One can obtain very good results for small-sized molecules by direct methods.  

Although any preliminary information about the structure is not required when 

studying with direct methods, the size of the sample bears importance which is a 

limitation for the method. Thus, structure determination of macromolecules such as 

proteins, must be handled by Patterson method. Despite the fact that the first 

inequalities derived by Harker and Kasper (1948) that will be given in the later 

sections were convenient for determination of the phases of structure factors from the 

amplitudes of the reflected intensities (highest ones) of centrosymmetric crystal 

structures, they could not provide satisfactory results. Hence, Karle and Hauptman 

reconfigured these inequalities by transforming them into determinants. There are 

two assumptions in the basis of their study: positiveness of the electron density and 

atomicity. 

 

 Description 1- Positiveness: The sum that is assigned for a Fourier series 

generates a function which is positive in everywhere in the space where it is 

described. The structure factor is expressed by means of Fourier series, 

therefore the electron density distribution has to be positive in everywhere in 

the unit cell         . 

 

     The determinants presented by Karle and Hauptman are given as follows: 
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                                |

                 

                  
    

                  

|                   (3.32) 

    

In Eq. (3.32), the vectors in parentheses represent (hkl), while   corresponds to 

        and n is integer varies from 0 to  . The determinant D which is 

known as Karle-Hauptman determinant belongs to a hermitian matrix
 
which is a 

square matrix with a complex conjugate equals to its transpose, resulting from 

            where    and F are the Fourier coefficients and it is non-negative if 

and only if the electron density is non-negative. The whole expression gives the set 

of Karle-Hauptman inequalities (Blake et. al., 2009) that are very feasible for every 

kind of reflected intensity, i.e. not only the highest ones and provide direct 

information about the phases.  

 

     In order to make Karle-Hauptman inequalities more useful, derivation of 

normalized structure factors that will be discussed in the following section, was 

required. 

   

 Description 2-Atomicity: This condition assumes that the electron density 

around the atomic center are maximum and in the form of peaks showing 

spherical distribution. At the points further away from the center, the values 

of the peaks decrease, even they approach to zero.   

 

     3.4.2.1 Normalized Structure Factors 

 

     The expected value of a reflected intensity which is equal to |  |
 , is given by Eq. 

(3.33) assuming the displacements of each atom in a crystal lattice is isotropic that 

means, every atom in the lattice moves independently and equally (equal atom 

structure): 

 

                                                    〈|  |
 〉  ∑   

 
 

   
                                           (3.33) 
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where h represents (hkl). It is not possible to compare the intensities of the beams 

reflected at different θ-angles. For this reason, a new structure factor which called 

normalized structure factor that eliminates the dependence on θ of the structure 

factor, is defined by means of Eq. (3.33) as follows: 

 

                                                                                                                                                             

                                                                                                                               (3.34) 

 

 

If we calculate the expected value of |  |
  by using Eqns. (3.33) and (3.34), we 

obtain Eq. (3.35) which is true for all crystal structures and all values of θ. 

 

 

                                                                                                                               (3.35) 

 

 

     “If one replaces the real crystal, with continuous electron density     , by an 

idealized one, the unit cell of which consists of N discrete, non-vibrating point atoms, 

then the structure factor    is replaced by the normalized structure factor   ” 

(Hauptman, 1986). Therefore, the general formula for the normalized structure factor 

is: 

 

 

                                                                                                                               (3.36) 

  

                                                                                           

     Eq. (3.36) shows that the dependence on θ does not exist anymore. When the 

angle of scattering is equal to zero, the atomic scattering factor and therefore the 

structure factor reaches to its maximum value that is the atomic number Z (       

 ). Hence, the maximum value of the amplitudes of the reflected waves cannot be 

larger than Z (|    |    . By taking into account this case, let us recall the 

definition of the atomic scattering factor     ; 
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                                                                                                                               (3.37)                                                                                                                                 

 

 

Under the assumption of equal atom structure, we can say that |  | is equal to Z 

(    ). Thus, it is easy to write the denominator of Eq. (3.36) in terms of N and Z.  

 

                                               *∑   
 

 

   
+

  ⁄

 [   ]  ⁄                                      (3.38) 

 

When Eq. (3.38) is substituted in Eq. (3.36), we obtain: 

 

 

                                                                                                                                

 

                                    
 

√ 
∑     [                ]

 

   
                          (3.39) 

 

The maximum possible value of     〈  〉     is equal to 
 

√ 
 √  from Eq. (3.39). 

Before the normalized structure factors are defined, the unitary structure factors      

were used in the direct methods. The relation between    and    is defined by Eq. 

(3.40). 

                                                                                                                               (3.40) 

 

The magnitude of    is written by means of the equality between    and Z as 

follows: 

 

                                                                                                                               (3.41) 

 

 

The denominator of Eq. (3.41) is the maximum possible value of the structure factor 

    , then    varies between 0 and 1 (Eq. (3.42)). 
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                                                                                                                 (3.42) 

 

     The first problem encountered when analysing a crystal structure is whether the 

structure is centrosymmetric or not. Because the distribution of the normalized 

structure factors varies depending on this criteria. According to central limit theorem 

(CLT) which was first introduced by A. J. C. Wilson (1949), if there exist n 

independent variables              distributed identically and randomly, the mean 

(μ) and variance (σ
2
) are the same for each variable. Then, the sum of the variables is 

given as follows: 

 

                                                            ∑   

 

   
                                               (3.43) 

 

     When the mean and variance are considered as       and        the 

probabilistic distribution function (abbreviated as pdf) of the sum    for   , 

 

                                                                                                                               (3.44)

   

  

     The pdf of the structure factor F can be calculated by using the theorem. If a 

crystal structure is centrosymmetric and the origin is the center of symmetry then, the  

structure factor can be written as given in Eq. (3.45): 

 

                                                   ∑   
  ⁄

   
                                            (3.45) 

 

After some mathematical operations the pdf of the | | is, 

 

                                                                                                                               (3.46) 

  

 

where    represents the probability density function for centrosymmetric structures.  
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By the same way, the pdf of the normalized structure factor is calculated, however 

only the resultant equation (Eq. (3.47)) will be given in this thesis. 

 

 

                                                                                                                               (3.47)  

 

For non-centrosymmetric (or shortly, acentric) structures the pdfs of | | and | | are, 

 

                                                                                                                               (3.48)  

 

 

                                                                                                                               (3.49) 

                                                                                                                                   

where    represents the probability density function for acentric structures. Eqns. 

(3.47) and (3.49) are depicted in Fig. (3.8) that shows how the values of   | |  

change with increasing values of | |. 

 

 

Figure 3.8 The probabilistic density function   | |  decreases parabolically while | | increases. In 

the graphic, curve-c and curve-a represent the pdfs of centric and acentric structures, respectively.       
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Table 3.1 Various | | values depending on the crystal structures with different symmetries. 

Average Acentric Centric 

〈| |〉 0.886 0.798 

〈| | 〉 1.000 1.000 

〈|    |〉 0.736 0.968 

 

 

     The symmetry group of a crystal structure can be determined by using the 

numerical values of the normalized structure factors | |  that are given in Table 3.1. 

However, the average of the | |  is 1.000 for both of the crystal structures. 

Therefore, it is not possible to determine the symmetry group of a structure by using  

〈| | 〉 values (Luger, 1980). But 〈|    |〉 can give information about the symmetry  

group. If a crystal contains heavy atoms sitting in the special positions (which mean 

the locations of some symmetry elements of a unit cell are fixed relative to other 

symmetry elements in the unit cell) or it is a twin crystal, then the value of 〈|    |〉 

decreases.  

 

     3.4.2.2 Fundamental Inequalities 

 

     As discussed previously, the first inequalities were derived by Harker and Kasper 

in 1948 and they were convenient for determination of the phases of structure factors 

from the amplitudes of the highest intensities for centrosymmetric crystal structures. 

Harker and Kasper had managed this by using Schwarz inequality which is given by 

Eq. (3.50) where    and    are real or complex numbers. 

 

 

                                                                                                                               (3.50) 

 

The unitary structure factor    can be rewritten as given in Eq. (3.51)  
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                                                (3.51) 
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where ∑   
 
     . Now, assume that    √   and    √               . By 

means of Eq. (3.50) and the assumptions for    and    we obtain Eq. (3.52) for the 

unitary structure factor. 

 

                                                     
    ⁄ [     

 ]                                       (3.52)                                                                           

 

Eq. (3.52) is true if and only if the     is positive, otherwise the inequality fails  

(Shmueli, 2007). One can decide where most atoms site in a unit cell by the signs. 

Thus, the signs can be added into the inequalities of the unitary structure factors as 

follows: 

 

                                                                                                                               (3.53) 

 

In this equation    is the sign of    or more explanatory, represents the sign of the 

reflection travelling on h direction. In case the whole U terms are sufficiently large, 

we have  

 

                                                                                                               (3.54a) 

                                                                                                                               

                                                                                                               (3.54b) 

 

Similarly, if     is sufficiently large, then the sign     will be positive. If some 

unknown phases remain at the further steps of the phase determination process, the 

below equation can be used. 

 

                                                                                                                               (3.55) 

 

 

Harker-Kasper inequalities were regenerated by Karle and Hauptman in 1950 in 

order to reduce the limitations of them. Hence, the determinant D in Eq. (3.32), was 

written for the unitary structure factors as follows: 
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|
|
                  (3.56) 

 

     When we take     and        in Eq. (3.56) for a centrosymmetric crystal 

structure, Eq. (3.52) is obtained, but the case     and       for the same 

structure, the determinant transforms into Eq. (3.57). 

 

                                                                                                                               (3.57) 

 

In order to shorten Eq. (3.57), let us call the left side of   as A and the right side as  

B. Thus, for a non-centrosymmetric structure the determinant transforms into Eq. 

(3.58): 

 

                                                                                                                               (3.58) 

 

Eq. (3.58) tells us that there appears a limitation on the combinations of the three 

phases.  

 

     3.4.2.3 Structure Invariants and Semi-invariants 

 

     In a unit cell, it is possible to select an origin more than one having the same 

surroundings. When the selected origin is the center of symmetry, then all the phases 

will be either 0˚ or 180˚. If the position of the origin is shifted, the phases of the 

structure factors will change. The phases or their linear combinations that are 

independent from arbitrary origin selections are known as structure (or phase) 

invariants. However, the phases or their linear combinations that remain invariant 

with respect to some permissible shifts of the positions of origins are known as 

structure semi-invariants and they can be transformed into structure invariants by 

adding some symmetry equivalent phases (Giacovazzo et. al., 2002).  
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     When a selected origin is shifted by a vector  , then the new amplitude (|     |) 

and the phase (     ) of the structure factor are given in Eqns. (3.59) and (3.60), 

respectively. 

 

                                                      |     |  |    |                                             (3.59) 

 

                                                                                                     (3.60) 

 

It is evident from Eq. (3.59) that the amplitude of the structure factor is a structure 

invariant. According to Eq. (3.60),      is a structure invariant only if    . The 

multiplication of the structure factors is given with Eq. (3.61). 

 

 

                                                                                                                               (3.61)              

 

 

This multiplication is a structure invariant if the below condition is satisfied: 

 

                                                                  

 

Table 3.2 shows some structure invariants obtained by means of Eq. (3.61) under 

required conditions. 

 

 

Table 3.2 Some structure invariants. 

n Required condition Structure invariant 

1   F(000) 

2         [    ]  

3            Triplet invariant 

4               Quartet invariant 
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The triplet and quartet invariants in Table 3.2 are given by Eqns. (3.62) and (3.63), 

respectively. 

 

                                         |                   | 

                                                                      [                    ]                     (3.62)                                                                            

  

                            |                        

                                                                         | 
 [                             ]     (3.63) 

   

     3.4.2.4 Three-Phase Invariant   

 

     When we take     ,      and      in Eq. (3.56) to transform the 

determinant D into a third-order determinant, we obtain Eq. (3.64), 

         

                                  |

         
             
             

|                       (3.64) 

 

where    represents the third-order determinant. When the above determinant is 

expanded, we have Eq. (3.65) that is similar to Eq. (3.57). 

 

                   |  |
  |  |

  |    |
   |        |                   (3.65) 

 

In this equation                 and only the last term on the right side 

depends on the phase. If the values of the three unitary structure factors approximate 

to 1, then      must be zero (Eq. (3.66)). 

 

                                                                                                    (3.66) 

 

The terms in the parentheses must be zero to satisfy the inequality hence, we have 

Eq. (3.67). 

 



48 
 

                                                                                                             (3.67) 

 

     3.4.2.5 The Sayre Equation and Tangent Formula 

 

     Another method known as the squaring method for phase determination was 

presented by D. Sayre (1952). The method is based on two assumptions: 

 

 A crystal structure is composed of like atoms with spherical symmetry and 

identical isotropic displacement parameters.  

 

 There is a hypothetical crystal structure that has a squared electron density. The 

positions of atomic peaks are the same in both structures. 

 

     The first assumption is hold for organic crystals that contain C, H, N, O atoms. 

Fig. (3.9) shows the atomic peaks obtained for such a crystal by Sayre (1952).   

 

 

Figure 3.9 The unit cell of a one-dimensional crystal composed of identical and non-overlapping 

atoms, showing the similarity between d(x) and d
2
(x). 

 

     According to the assumptions described above, one can write the structure factor 

of a crystal containing similar atoms as follows: 

 

 

                                                                                                                               (3.68)          

                  

                                                                                                                               

     ∑      π      
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where    is the general atomic structure factor that is same for a crystal consisting of 

similar atoms. One can write the structure factor as given in Eq. (3.69) for a 

projected structure which assumed to have a squared electron density where    is the 

general atomic structure factor of this structure. 

 

 

                                                                                                                               (3.69) 

 

     The relation between the structure factors in Eqns. (3.68) and (3.69) can be 

written simply, 

                                                                                                                             

                                                                                                                               (3.70) 

 

     The electron density function at any r for the real crystal is described by Eq. 

(3.71) which we discussed in the previous sections, while the squared electron 

density function for the hypothetical crystal is given by Eq. (3.72). 

 

                                                                                                                               (3.71) 

 

 

                                                                                                                               (3.72) 

 

Here, V is the volume of unit cell. By taking        and      in Eq. (3.72), 

we obtain Eq. (3.73).  

 

                                                                                                                               (3.73) 

 

 

Besides this, Eq. (3.73) can be rewritten in terms of the structure factor of projected 

structure as follows: 
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                                                                                                                               (3.74) 

 

 

Equations (3.73) and (3.74) give the same squared electron density thus, when we 

equate them to each other, 
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and make use of Eq. (3.70), we finally obtain the Sayre equation: 

 

 

                                                                                                                               (3.75) 

                                                                                               

 

where       represents the factor which states the change in atomic shape also 

known as shape factor (Shmueli, 2007). In one- and two-dimensions the original 

forms of Eq. (3.75) are given by the following equations: 

 

                                                                                                                            (3.75a) 

 

 

                                                                                                                            (3.75b) 

 

 

Here l and a are the length and area of the unit cell of the projected crystal and S(h) 

and S(h,k) are the shape factors in one- and two-dimension respectively which are 

identical to      . The equations (3.75a) and (3.75b) are valid whether or not the 
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crystal structure possesses inversion symmetry (Sayre, 1952). If the real and 

imaginary parts of the structure factor given in Eq. (3.75) are proportioned, we obtain                                                                                                                                 

 

                                                                                                                               (3.76) 

 

 

In this equation the structure factor F is replaced by the normalized structure factor E 

in order to obtain the tangent equation (Eq. (3.77)) which is another phase 

determination formula of acentric structures (Karle & Hauptman, 1956). 

 

                                                                                                                               (3.77) 

 

 

     3.4.2.6 Figures of Merit 

 

     At the end of the phase determination process, lots of phase sets are obtained.  

The correct phase set is determined by comparing the calculated electron density 

maps (hereafter abbreviated as E-maps) with the expected ones. However, it is a 

time-consuming and troublesome operation to calculate and comment E-maps for 

each phase set. For this reason, making use of some proper functions that allow us to 

estimate the accuracy of the phase sets is more convenient. These functions are 

referred to as Figures of Merit (FOM) and expected to take a minimum or a 

maximum value for a correct phase set. We can summarize the FOM functions as 

follows: 

 

 ABSFOM: Known as absolute figure of merit. This function gives 

information about the consistency of triplet relations and is given with Eq. 

(3.78). 

 

                                                                                                                         (3.78) 
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In this equation    is a parameter of the Karle and Karle (1966) distribution 

(Eq. (3.79)), 〈  〉 is the expected value of    while 〈  〉    is the expected 

value of    when the phases are supposed to be randomly distributed 

(Cascarano, Giacovazzo & Viterbo, 1987). 

 

 

                                                                                                                               (3.79) 

 

 

In the equation above,       
      

. Eq. (3.78) is often reduced to 

MABS-function given below (Germain, Main & Woolfson, 1970): 

 

                                                                                                                   (3.80) 

 

 

For a random phase set the ABSFOM or MABS function must be zero, while 

it varies between 0.9 and 1.3 for a correct phase set in practice. Thus, the 

values in this range indicate how well the observed and calculated sets 

overlap. 

 

 NQUAL: Measures the consistency between    and   which is defined in Eq. 

(3.81) and NQUAL-function is given by Eq. (3.82). For a correct phase set 

the value of the function is expected to be ‒1. 

 

                                                                                                                               (3.81) 

 

 

                                                                                                                               (3.82) 

 

   : This function is known as residual figure of merit and determines the 

amount of deviation from the expected value of each triplet (Eq. (3.83)).    

must be small for a correct phase set. 
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                                                                                                                               (3.83) 

 

 

   : This function is known as psi-zero figure of merit and first introduced by 

Cochran and Douglas (1957). 

 

                                                                                                                               (3.84) 

 

              

In Eq. (3.84), the summation over h      includes weak reflections that have 

small    values while the summation over         includes strong reflections 

whose phases have been determined. In case the phase sets of    and     are 

correct, then    tends to be small, otherwise it will be larger. 

 

 

     3.4.2.7 Combined Figures of Merit (CFOM) 

 

     Instead of evaluating the FOM functions for each phase set, another function 

known as CFOM (combined figures of merit) produced by combining the coefficients 

of different FOM functions is used in order to obtain the correct phase set. The 

function varies based on the software used. 

 

3.5 Electron Density Map (E-map) 

 

     The last stage of the structure solution is obtaining a three-dimensional image of 

the crystal. If the amplitudes and phases of the structure factors are known, one can 

calculate the electron density function          and thereby plot a map in three-

dimension known as electron density map (E-map) by means of the values of ρ. E-

maps are calculated by using the phase sets that have the best values of FOM-

functions. The maps are obtained by using the normalized structure factors (Es) 

instead of Fs. The reason is that the peaks on the map are sharper than those of Fs. 

For this reason, they are called E-maps (Fig. 3.10).  
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Figure 3.10 E-map presentation. 

 

 

     Each peak on E-maps represents the positions of atoms in a unit cell. The bond 

lengths and bond angles can be obtained by determining the types of the atoms and 

calculating the diameters of atoms within the unit cell. But in some cases no peaks 

are observed where some atoms should be, resulting from the systematic absences 

that mean additional reciprocal lattice points or some symmetry elements (glide 

and/or screw symmetry) within a crystal cause some reflected beams to be absent. In 

such a case, difference Fourier method is used in order to find the missing atoms on 

the map that will be explained in the following chapter.    

 

  

  

 

 

 

 

 

 



55 
 

CHAPTER FOUR 

CRYSTAL STRUCTURE REFINEMENT 

 

4.1 Introduction 

 

     During the crystal structure solution process the missing phase information is 

determined in order to obtain the structure accurately. For this reason, some 

corrections are applied to the diffracted intensity data, E-maps are produced by 

obtaining the missing phase, thereby the positions of atoms within the crystal lattice 

are tried to be determined.   

 

     After these steps, one has obtained atomic coordinates for all non-hydrogen 

atoms. However, some of the coordinates can be incorrect or some atom types cannot 

be assigned at all. Furthermore, structural distortions, positions of lighter atoms have 

to be determined. Thus, the last but the most important step that a crystallographer 

obtains an accurate structure is called refinement. According to Müller, Herbst-Irmer, 

Spek, Schneider & Sawaya (2006), “Depending on the structure, this can be a short 

highway to happiness or a long and rugged road through pain and sorrow” (chap. 2). 

 

     During the refinement process, the consistency between the calculated and 

observed structures is investigated. One can understand whether the model structure 

has been defined accurately or not by following the changes in the values of some 

parameters which depend on the molecular structure of the sample crystal.  

 

     By refining the structure, one can obtain the locations of hydrogen atoms, the 

thermal motions and their orientations within the crystal structure.   

 

     The most common two methods used in the refinement are: 

 

 Difference Fourier Method 

 Least-squares Method 
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4.2 Difference Fourier Method 

      

     By using the difference Fourier method, the difference between the calculated and 

observed electron densities is examined. The electron density function (ρ) is 

calculated by means of Eq. (3.9) as we discussed in chapter three. 

 

 

                                                                                                                                 (3.9) 

 

Hence, the electron density functions can be rewritten by Eq. (3.26) as follows, 

 

                                                                                                                                 (4.1) 

 

 

                                                                                                                                 (4.2) 

 

 

where the indices „obs‟ and „cal‟ represent observed and calculated. When we 

calculate the difference of Eqns. (4.1) and (4.2) we have 
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where    represents the difference of the electron densities. Under the assumption 

that the phases of the calculated and observed structures are identical, we can rewrite 

Eq. (4.4) as given below: 
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     By the aid of Eq. (4.5) which is known as the difference Fourier synthesis, one 

can plot the E-map of the structure and determine the deficiencies of the calculated 

model by examining the map. 

 

     If there is a missing atom in the calculated model,         will be zero and no 

peak will be observed at the corresponding position, while         is maximum and 

shows a peak. As a result, a peak will be observed at the same position on the E-map 

of the difference Fourier synthesis (  -map). When the missing atom is placed to the 

correct position where it stands in the real structure, then                 and 

therefore,        , that means no peak will occur in the   -map at that position. 

Omitting the thermal vibrations of atoms also cause an error in   -map. The peak of 

the real structure becomes smaller and broader than that of calculated structure and a 

negative peak will occur in the map (Fig. 4.1-(a)).  

 

 

Figure 4.1 The atom, misplaced in the calculated model, is moved to the actual position (a), besides 

this neglecting the thermal motions causes    to be negative (b).  

 

     On the other hand, if the thermal vibration of an atom is given with a value that is 

higher than normal, then a positive-small peak will occur in the map.  

 

     When an atom is misplaced in the calculated model,         will be close to a 

negative minimum value, while         is positive maximum in the   -map. For this 
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reason, the position of the misplaced atom is shifted in order to diminish the 

difference (Fig. 4.1-(b)). If the calculated model fully matches with the real structure, 

then the difference synthesis (  ) will be zero.  

 

4.3 The Method of Least-Squares 

 

     The least-squares method that was first created by C. F. Gauss in 1795, is a 

mathematical approach for finding the best straight line through a given set of points 

by minimizing the sum of the squares of the remaining points from the curve (Fig. 

4.2).  

 

   

 

Figure 4.2 The method of least squares gives the best-fitting curve to a given set of points. 

 

 

     In crystallography, the method, first used by Hughes (1941), is applied for 

increasing the sensitivity of the position and isotropic displacement parameters 

obtained from structure solution by minimizing the sum of the squares of the 

structure factors      and      during the refinement process (Eq. (4.6)).  

 

                                                 ∑ (    
      

 )
 
                                     (4.6) 
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Eq. (4.6) can be rewritten as the sum of the amplitudes of the structure factors (Eq. 

(4.7)).   

 

                                                                                                                                 (4.7) 

 

     In the equations above, w is the weighting factor, presented by Cruickshank, 

Pilling, Bujosa, Lovell and Truter (1961), equals to     where σ is the standard 

uncertainty (or elasticity) showing the estimated deviation of a measurement. The 

calculated model is said to be the best for the real structure, if the function   

approaches to zero. Eq. (4.6) is the refinement against   , while Eq. (4.7) 

corresponds refinement against | | that will be explained in the following  

subsection. Let us rewrite the calculated structure factor for a centrosymmetric 

crystal structure and assume that the temperature factor is isotropic (Eq. (4.8)), 

 

 

                                                                                                                                 (4.8) 

 

 

For jth atom, the correct values of the parameters for observed structure factor are 

written as follows: 
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     The difference between the two structure factors in Eqns. (4.8) and (4.9) is, 
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Eq. (4.11) can be used for each reflection and the number of equalities is higher than 

the number of parameters in general.  

 

     The anisotropic thermal motions are given by six independent variables: 

                          that are obtained from the determinant D which was 

described before. The first three variable shows the amount of vibration through 

three ellipsoidal axes perpendicular to each other while the remaining three showing 

the amount of deviation of the ellipsoidal axis with respect to the crystal axis. One 

can determine the number of parameters by a simple calculation. Suppose that there 

exist 10 anisotropically refined atoms in a molecule thus, this molecule will have 

        parameters. At this point, the least-squares method is activated and the 

number of the parameters is minimized.  

 

     The observed structure factors are adopted to be correct in practice. Hence, in 

order to ensure the best convergence between the real and calculated structures, Eq. 

(4.6) must be zero: 

 

                                            ∑ (    
      

 )
 
                                  (4.12) 

 

     The least-squares method is more advantageous than the difference Fourier 

method. The reason is that one can refine the temperature and scale factors by using 

this method. In addition, the number of position and isotropic displacement 

parameters obtained from direct methods or Patterson method are minimized by 

applying the method (Barut, 2010).   

 

4.3.1 Refinement Against     

 

     The refinement against | |-values causes problems. The reason is that measured 

intensities are directly related with the square magnitude of the structure factors, thus 

taking the square root of Eq. (4.7) leads to mathematical problems for weak or 

negative measured reflections. The only way in order to overcome the problem is 

setting the negative intensities to zero. But this will lead us lose the weak intensities, 
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thereby the information about the structure. By taking into account this problem and 

the relation between the measured intensity and the structure factor (  | | ), the 

refinement against    is preferred (Müller, Herbst-Irmer, Spek, Schneider & 

Sawaya, 2006).  

 

4.4 Constraints and Restraints 

 

     “For every atom in the model that is located on a general position in the unit cell, 

there are three atomic coordinates and one or six atomic displacement parameters 

(one for isotropic, six for anisotropic models) to be refined” (Müller, Herbst-Irmer, 

Spek, Schneider & Sawaya, 2006, chap. 2). In order to determine a crystal structure 

accurately, we need additional parameters defining the position and orientation of a 

molecule within the crystal structure as well as atomic parameters. The reason of the 

need for additional information about the structure is the sheer number of parameters. 

Thus, constraints or restraints must be performed on the parameters to be refined. 

 

     In 1960s, performing least-squares method by using the diffraction data obtained 

had been a problem and it was debated whether to refine crystal structures by using 

constraints or restraints (Immirzi, 2009). Constraints are the invariable mathematical 

expressions while the restraints are variable under certain limits. 

 

4.4.1 Constraints  

 

     The crystal structures consist of exactly known atom groups can be incorporated 

to the refinement process as rigid groups by fixing the bond lengths and bond angles 

of them. Thus, the refined parameters can be added into the least-squares equations 

by performing the required constraints on them.  

 

     Instead of refining the three positional parameters for each atom, one can select a 

pivot atom from the group and refine the three position and orientation parameters of 

that atom which reduces the number of parameters dramatically (Massa, 2004). 
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     Constraints are produced by space-group symmetry relations and generally used 

for determining the positions of hydrogen atoms and displacement parameters. 

Resulting from the difficulty of determining the positions of hydrogen atoms from 

electron density maps, one can refine the structure including hydrogen atoms by 

constraining them to sit in the actual distances from the atom they will be bound to 

with isotropic displacement parameters or in other words, by placing the hydrogen 

atoms on geometrically calculated positions with constant bond lengths and bond 

angles. 

 

     Site occupancy factor is also refined by using constraints. If an atom is present at 

a certain site in every unit cell, which means there does not exist a disorder, then the 

factor is fixed to unity (Müller, Herbst-Irmer, Spek, Schneider & Sawaya, 2006).  

 

4.4.2 Restraints 

  

     “Soft, flexible constraints (say restraints) may be imposed to some functions of 

the parameters in order to permit only realistic deviations of their values from fixed 

standard ones. These functions are used as supplementary observations” (Giacovazzo 

et. al., 2002, chap. 2). Possible bond lengths and bond angles can be added as 

additional data which we call restraints. Thus, the number of observed data 

increases. However there does not occur a decrease in the number of refined 

parameters.  

 

     In many cases, restraints are not required. If a crystal structure includes disorder 

or pseudo-symmetry or one has weak data, then the usage of restraints may be 

needed. If restraints are used when refining the structure, then the minimization 

function   which was given by Eq. (4.6) changes its form and the new equation is 

written as follows: 

 

 

                                                                                                                               (4.13) 
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Here, the weighting factor w is taken as   ⁄  and      and      are the values of the 

target function calculated from structure parameters. In contrast to constraints, the 

values of additional data can be changed when using restraints, thereby one can 

determine the rate of restraints that will contribute the refinement process. 

 

4.5 The Quality of a Refinement: Residual Parameters 

 

     There are some parameters which known as residual parameters or rather R-

factors in order to see the consistency between the calculated and observed structures 

after the refinement process thus, these parameters should converge to minimum 

values during the refinement.  

 

     We can summarize the most commonly used ones as follows: 

 

 Reliability (R)-factor: Also known as   -factor and it gives the mean of the 

standard deviation of the calculated and observed structure factors and also 

depends on the quality of the collected data. This factor is based on the 

refinement against-| |. For an ideal model the R-factor is zero, but we can 

never reach to that value because of the random errors thus, for a good set of 

data, the R-factor must be lower than 0.06. 

 

                                                                                                                   (4.14) 

 

 

 Weighted reliability (wR or w  )-factor: Based on the squares of the 

structure factors. It is tried to reduce the effects of the data with low 

reliability on the refinement process. By taking into account the weighting 

factor w, we can write the equation below, 

 

 

    (4.15) 
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            For a good set of data, the wR-factor must be lower than 0.15. 

 

 Settlement (S)-factor: Also known as GooF or GOF which means goodness of 

fit.  Based on the number of observed reflections and the refined parameters. 

The values about 1 indicate a good result. If S is higher than 1, then one can 

say that the model is better than the collected data which means there is a 

problem. On the other hand, if S equals to 1, then we observe that the 

calculated and observed structures fully match as identical twins.  

 

 

                                                                                                                               (4.16) 

 

 

In Eq. (4.16) m and n represent the number of independent reflections and 

refined parameters, respectively.   

 

 

4.6 Problems in Refinement 

 

     The atoms of a crystal structure can be determined from the difference electron 

density map and can be used in the refinement. Hydrogen atoms within the structure 

may not be determined by the map thus, they must be added to the correct positions 

externally. Before adding hydrogen atoms, displacement parameters are refined 

anisotropically, otherwise they are refined isotropically.  

 

     The estimated standard deviation and corrections of the coefficients of refined 

parameters are performed at the last stage of refinement process.   

 

     There are other problems in refinement that should not be overlooked: disorder 

and twinning. Thus, it must be taken into account whether the structure of sample 

crystal includes disorder that will be explained further, solvent molecules or twinning 

in order not to skip any information about the structure.  

       ,
∑  [|       |  |       | ]  

   
-
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4.6.1 Disorder 

 

     In some cases, more than one molecule occupies the same position in an 

asymmetric unit of a crystal or the orientations of some atoms differ randomly in 

different unit cells. This is known as disorder which has different types as given 

below: 

 

 Substitutional Disorder: The same position in two unit cells in a crystal is 

occupied by different atoms. This type of disorder occurs due to extremely 

large or small displacement parameters. 

 

 Positional Disorder: One atom occupies more than one position in a single 

unit cell (dynamic disorder) or in two unit cells (static disorder) within a 

crystal. 

 

     In order to overcome the difficulty of disorder during the refinement, the electron 

density that spreads into a large volume is allocated in two different atomic positions 

(Sheldrick, 2008). Fig. (4.3) displays the disorder of a crystal atom. 

 

 

Figure 4.3 Disorder in a crystal structure before (a) and after the refinement (b).  

 

In SHELXL software, one can refine the disordered atoms by using the command 

„PART‟. 
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4.6.2 Twinning 

 

     As we described in the Subsection 2.3.2, sometimes two or more crystals grow 

together sharing the same symmetry element which is called twin planes. The 

crystals that have such formation are called twin crystals (Fig. 4.4). 

 

 

 

Figure 4.4 Twin crystal and the twinning plane. 

 

 

     One can understand that a crystal is a twin crystal by observing the mean values 

of variance given by |    | that can be calculated by using the direct methods. For 

centric crystal structures this value is approximately 0.97 while it is 0.74 for acentric 

structures. Higher values of variance cause the difference in the collected intensities 

to become higher. For twin crystals, variance can be lower than what one expects. 

The reason is that each intensity on the diffraction pattern is the sum of two 

intensities in practice. Thus, a great care must be taken during the crystal structure 

solution and refinement processes.  

 

     The intensity data is not coherent for twin crystals thus, the whole intensity is the 

sum of two intensity components as given below: 

 

                                              |    |
    |  |

    |  |
                                  (4.17) 
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where    and    are the parameters, used in the refinement, representing the 

fractions corresponding to each component.  

 

     There are some important signs that give alerts of twinning. For example, 

         , inconsistent systematic absences, trigonal or hexagonal space groups 

can be the signs of twin crystals. Additional information about twins was given in the 

Subsection 2.3.2 while discussing the selection of a single crystal. 
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CHAPTER FIVE 

RESULTS AND DISCUSSION 

 

     A suitable crystal sample of the title compound [{Rh(COD)Cl}2L] where L is 2,6-

bis(1-pentamethylbenzyl-1-H-benz imidazole-2-yl) pyridine, was chosen for the 

crystallographic study and then placed on the goniometer head of an Agilent 

XCalibur X-Ray Diffractometer with EOS CCD detector. All diffraction 

measurements were performed at room temperature (     ) within the θ range of 

           and graphite monochromatized (graphite crystal monochromator 

          Å) Mo-   was used as radiation source. Absorption corrections were 

based on multiple scans. The title compound crystallizes in monoclinic cell setting 

with space group C12/c1.  

 

     The crystal structure was solved by using SHELXS-97 (Sheldrick, 1998). Direct 

methods using WinGX implementation (Farrugia, 1999) of SHELXS-97 were used 

to determine the structure. A total of 15,414 reflections were collected for      

   ,         ,         ,        , and         ,        . 6,812 

reflections of the total 15,414 are unique while 4,524 of them satisfy the criterion for 

observed reflections (       ).  

 

     The refinement of the structure was carried out by full-matrix least-squares 

techniques on the positional and anisotropic temperature parameters of the non-

hydrogen atoms, or equivalently corresponding to 335 parameters using SHELXL-97 

(Sheldrick, 1998) software. Hydrogen atoms were placed in the calculated positions 

and treated as riding atoms with C-H distances in the range 0.93-0.97 Å. The thermal 

ellipsoid plots were generated by using ORTEP-3 (Farrugia, 1997) and OLEX 

(Dolomanov, Blake, Champness & Schröder, 2003) softwares. The crystallographic 

data, the details of data collection and refinement of the title compound are given in 

Table 5.1. The selected bond distances and angles of the title complex are given in 

Tables 5.2. 
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Table 5.1 Crystallographic data, details of data collection and refinement of the title compound. 

Chemical formula                

Formula weight (Mr) (u) 1294.76  

Crystal size (mm) / colour 0.127 x 0.328 x 0.409 / yellow 

Cell setting / Space group Monoclinic, C12/c1 

Unit cell dimensions 

                   26.8865(12)    

                    10.0794(4)                                                                                                       

                    23.4752(15)    

    90˚,   110.681(6)˚ 

Unit cell volume (  )   5951.8(5)   

Number of molecules in units (Z) 4 

F(000) 2664 

Calculated density (  ) (Mg.m
-3

) 1.4450(1) 

Absorption coefficient (μ) (mm
-1

) 0.866 

Reflection Data 

Measured reflections 15,414 

Unique reflections 6,812 

Observed reflections  4,524 

Criterion for observed reflections         

Rint 0.0268 

Temperature (˚K) 293 

          (˚) 3.0 / 29.2 

h, k, l values (from min. to max.) ‒36  ‒32, ‒12   12, ‒18   29 

Radiation used / wavelength (Å)   MoKα / 0.71073 

No. of reflections/parameters/restraints 6,812 / 335 / 0 

Refinement Details 

GooF on F
2 

1.031 

Final R indices [       ]     0.0458,     0.1045 

R indices (all data)    0.0830,     0.1195 

               
    0.581, -0.588 
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     In this thesis, the crystal and molecular structure of {Rh(COD)Cl}2L have been 

determined by single crystal X-ray diffraction method. The title compound is a 

dimetallic complex consisting of one half molecule and one dichloromethane solvent 

in the asymmetric unit as shown in Fig. (5.1).  

 

 

 

 

Figure 5.1 ORTEP-3 view of the title compound drawn with 50% probability. 
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     The complete molecular structure is generated by the implementation of the 

crystallographic two-fold rotation axis that bisects the pyridine ring by crossing 

midway between N3 and C4 atoms which is illustrated in Fig. (5.2).  

 

 

 

 

Figure 5.2 The complete view of the title compound in OLEX2 software. 
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     Each benzimidazole ring connects to the [Rh(COD)Cl] units through the nitrogen 

atoms, thus the terdentate units act as bis-monodentate ligands in the compound 

(Bénech, Piguet, Bernardinelli, Bünzli & Hopfgartner, 2001). The bond distances and 

angles of carbene ring are in agreement with standard values (Allen et. al., 1987). 

The selected bond distances and angles of the title complex are given in Table 5.2.  

 

Table 5.2 Selected bond distances (Å) and angles ( ) of the title complex. 

 

Atom label Value Atom label Value 

Rh1 Rh1 8.083 Rh1-C11 2.102(4) 

Rh1-M1 2.010 Rh1-C12 2.091(4) 

Rh1-M2 1.980 Rh1-C16 2.121(4) 

Rh1-N1 2.102(3) Rh1-C15 2.129(4) 

Rh1-Cl1 2.3815(10) N3-C2 1.338(4) 

N1-C1 1.320(4) C2-C3 1.387(5) 

N1-C10 1.390(4) C2-C1 1.475(4) 

N2-C1 1.357(4) C3-C4 1.376(4) 

N2-C5 1.393(4) C5-C10 1.395(4) 

N1-Rh1-M1 175.52 M2-Rh1-N1 91.36 

Cl1-Rh1-M2 176.61 M1-Rh1-Cl1 93.49 

M1-Rh1-M2 87.53 N1-Rh1-Cl1 87.86(8) 

Cl3-C40-Cl2 113.0(3) C16-Rh1-Cl1 92.78(12) 

C12-Rh1-N1 91.60(14) N1-Rh1-C11 90.97(12) 

C12-Rh1-Cl1 157.44(13) C11-Rh1-Cl1 164.12(13) 

C15-Rh1-Cl1 93.81(12) N1-C1-C2 121.4(3) 

C1-N1-Rh1 126.0(2) C10-N1-Rh1 127.9(2) 

C1-N1-C10 105.7(3) C1-N2-C5 106.9(3) 

N3-C2-C3 123.4(3) N3-C2-C1 117.8(3) 

N1-C1-N2 112.6(3) N2-C1-C2 125.9(3) 

N1-C10-C5 109.4(3) N2-C5-C10 105.4(3) 
 

 

 

     In Table 5.2, M1 and M2 represent the midpoints of the olefinic bonds C15-C16 

and C11-C12, respectively. N1 atom in the benzimidazole ring directly connects to 

the Rh metal center in the complex which is an abnormal situation for an NHC-

complex. Although both of the C-N bonds in the NHC rings are single bonds, the 

bond distances of N2-C1 and N1-C1 are different from each other as seen from Table 

5.2. The most possible situation that arises here is the presence of π-electron donation 

from the N1 atom of the imidazole unit into the Rh1, C1 and C10 atoms. But the N2 

atom in the imidazole unit that connects with the pentamethylbenzyl ring by C20 
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atom donates its π-electrons only into the carbon atoms. As a result, the bond 

distances of N1-C1 and N1-C10 (1.320(4) Å and 1.390(4) Å, respectively) are 

shorter when compared with the bond distances of N2-C1 and N2-C5 (1.357(4) Å 

and 1.393(4) Å, respectively). In additon, the bond distance of Rh1-N1 is shorter 

(2.102(3) Å) due to the π-back bonding when compared with the related studies 

(Bénech, Piguet, Bernardinelli, Bünzli & Hopfgartner, 2001).  

 

     The coordination geometry around Rh1 atom formed by the coordination to the 

metal of the two olefinic bonds of the cyclooctadiene (COD) ligand, is a slightly 

distorted square-planar resulting from the difference in the bond angles of trans-trans 

conformation.  

 

     The pyridine framework connects to the Rh(I) metal atoms through the N1-C1 

atoms bridge. The pyridine and the benzimidazole rings are approximately coplanar 

as expected. The Rh-N(NHC) and Rh-Cl bond distances of 2.102(3) Å and 

2.3816(12) Å respectively , are within the expected range and in agreement with the 

related complexes reported previously (Bénech, Piguet, Bernardinelli, Bünzli & 

Hopfgartner, 2001 and Takenaka & Osakada, 2000).  

 

    The geometry of the intra- and inter-molecular interactions of the title compound 

is tabulated in Table 5.3.  

 

 

Table 5.3 The intra- and inter-molecular interactions within the title compound (Å, ˚).  

                     

C3 ‒ H3   Cl1 2.82 3.643(4) 148 

C40 ‒ H40B   Cg1 2.39 3.356(6) 173 

C34 ‒ H34A   Cg1
ii 2.79 3.459(7) 127 

C14 ‒ H14A   Cg2
iii 2.90 3.733(6) 144 

C18 ‒ H18B   Cl3
iv 2.80 3.586(6) 138 

C40 ‒ H40A   Cl1
v 2.53 3.496(5) 177 
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     In Table 5.3, the letters D and A represent the donor and acceptor atoms and H is 

the symbol of hydrogen atom. In the table, Cg1 and Cg2 are the centroids of the C5-

C10 and C21-C26 rings, respectively. Symmetry codes are given as follows: (ii) 1/2-

x,-1/2+y, 1/2-z, (iii) x, 1-y, 1/2+z, (iv) –x, 1-y, 1-z, (v) x, -1+y, z. 

  

     The intra-molecular interaction of type C3‒H3 Cl1 generates a six-membered 

S(6) hydrogen ring motif in the compound that is illustrated in Fig. (5.3) (Bernstein, 

Davis, Shimoni & Chang, 1995).  

 

 

 

Figure 5.3 Intra-molecular interactions within the structure. The intra-molecular interaction of C3-

H3
…

Cl1 generates a six-membered ring, producing S(6) hydrogen ring motif. 

 

 

     The pentamethylbenzyl ring connected to the NHC unit by N2‒C20 atoms bridge 

to the benzimidazole framework with the dihedral angle of 89.09(12)˚. The bond 

distance between the C11‒C12 olefinic bond of the COD ligand trans to NHC unit is 

longer (1.379(6) Å) when compared with the distance between the metal atom and 

the midpoint of the C15‒C16 olefinic bond (1.376(6) Å) that is trans to the chloride 
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atom. This type of binding of COD unit reveals the larger trans influence of the NHC 

ligand when compared with chloride (Gülcemal, Gökçe & Çetinkaya, 2013). 

 

     The dihedral angle between the least-squares planes of the five- and six-

membered ring components of the benzimidazole framework is 0.55(19) with 

maximum deviation from the least-squares plane of -0.013(3) Å for N1 atom. The 

5,6-dimethyl arms of the pentamethylbenzyl ring are slightly deviated from planarity. 

The interplanar angle occurs between the pyridine ring and the benzimidazole side 

arms is 48.75(13)˚. The COD ring exhibits a boat conformation with the Rh-C(COD) 

bond distances ranging from 2.091(4) to 2.121(4) Å.  

 

     There exist three inter-molecular interactions of type C‒H   and C‒H Cl in 

the crystal structure of the title compound. The first interaction occurs between a 

carbon atom of the solvent molecule and a six-membered ring component of the 

benzimidazole ring system (Fig. 5.4).  
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Figure 5.4 Inter-molecular interaction of type C40‒H40B Cg1 and C34‒H34A Cg1
ii
. 

 

 

     The second one occurs by means of C34 atom in the molecule at position (x, y, z) 

acting as a C‒H   hydrogen bond donor to C5‒C10 ring component of the 

benzimidazole framework (Fig. 5.4). The last interaction is observed between C14 

atom of the COD ring at (x, y, z) and the pentamethylbenzyl ring (C21‒C26) in the 

molecule at (      
 

 
  ) as shown in Fig. (5.5).  
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Figure 5.5 Inter-molecular interaction of type C14 ‒ H14A   Cg2
iii

. 

 

 

In addition, the title compound possesses inter-molecular interactions of type 

C‒H Cl. C18 and C40 atoms at (x, y, z) position act as C‒H Cl bond donors to the 

Cl3 atom in the molecule at (–          ) and the Cl1 atom in the molecule at 

           respectively, leading to a centrosymmetric   
      dimer (Bernstein, 

Davis, Shimoni & Chang, 1995) as shown in Fig. (5.6).  
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Figure 5.6 Inter-molecular interaction of type C18 ‒ H18B   Cl3
iv 

and C40 ‒ H40A   Cl1
v
. 
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APPENDICES  

 

1. The Fractional Coordinates & Equivalent Isotropic Temperature Parameters  

 

     The full set of the fractional coordinates (x, y, z) and equivalent isotropic 

temperature parameters (   ) of the atoms is given in the following table.   

 

 

Atom label x y z    (Å
2
) 

Rh(1) 0.091860(10) 0.75085(3) 0.428410(10) 0.03521(9) 

Cl(1) 0.15494(4) 0.90385(11) 0.41640(6) 0.0596(4) 

N(1) 0.11709(10) 0.6151(3) 0.37624(12) 0.0310(9) 

N(2) 0.11386(10) 0.4813(3) 0.29953(12) 0.0316(9) 

N(3) 0 0.5886(4) 1/4 0.0279(12) 

C(1) 0.09100(12) 0.5834(3) 0.31885(14) 0.0290(10) 

C(2) 0.04350(12) 0.6579(3) 0.28141(14) 0.0292(10) 

C(3) 0.04558(14) 0.7954(3) 0.28173(17) 0.0394(11) 

C(4) 0 0.8643(5) 1/4 0.0453(17) 

C(5) 0.15851(12) 0.4434(3) 0.34866(15) 0.0312(10) 

C(6) 0.19730(14) 0.3470(4) 0.35669(17) 0.0430(12) 

C(7) 0.23645(14) 0.3392(4) 0.41306(18) 0.0492(14) 

C(8) 0.23845(14) 0.4255(4) 0.46034(17) 0.0462(12) 

C(9) 0.20089(14) 0.5217(4) 0.45301(16) 0.0405(11) 

C(10) 0.16031(12) 0.5294(3) 0.39592(15) 0.0313(10) 

C(11) 0.02295(15) 0.6384(4) 0.41585(19) 0.0475(12) 

C(12) 0.06295(18) 0.5978(4) 0.46825(19) 0.0554(16) 

C(13) 0.0663(3) 0.6317(6) 0.5319(2) 0.090(2) 

C(14) 0.0641(3) 0.7753(5) 0.5427(2) 0.088(3) 

C(15) 0.08021(19) 0.8607(4) 0.5001(2) 0.0589(17) 

C(16) 0.04468(17) 0.9039(4) 0.4452(2) 0.0561(16) 

C(17) -0.01297(18) 0.8668(5) 0.4194(3) 0.079(2) 

C(18) -0.02354(18) 0.7226(5) 0.4136(3) 0.077(2) 

C(20) 0.09215(14) 0.4205(4) 0.23853(16) 0.0468(14) 

 



88 
 

Atom label x y z    (Å
2
) 

C(21) 0.13367(13) 0.3637(4) 0.21594(15) 0.0405(11) 

C(22) 0.13839(16) 0.2248(4) 0.21152(18) 0.0480(14) 

C(23) 0.17408(17) 0.1755(4) 0.18528(19) 0.0551(17) 

C(24) 0.20421(17) 0.2622(5) 0.1647(2) 0.0593(16) 

C(25) 0.20122(16) 0.3980(5) 0.17120(19) 0.0566(14) 

C(26) 0.16500(15) 0.4490(4) 0.19625(17) 0.0462(14) 

C(32) 0.1058(2) 0.1315(5) 0.2344(2) 0.077(2) 

C(33) 0.1776(2) 0.0251(5) 0.1767(3) 0.093(3) 

C(34) 0.2409(3) 0.2061(6) 0.1334(3) 0.104(3) 

C(35) 0.2340(2) 0.4924(6) 0.1481(3) 0.089(3) 

C(36) 0.1611(2) 0.5977(5) 0.2021(2) 0.0717(17) 

C(40) 0.1143(2) 0.2252(5) 0.4353(3) 0.092(3) 

Cl(2) 0.05193(8) 0.26085(16) 0.38099(10) 0.1137(8) 

Cl(3) 0.11548(7) 0.23742(16) 0.50812(9) 0.1020(7) 

 

 

2. Anisotropic Displacement Parameters 

 

     The anisotropic displacement parameters of the title compound are given in the 

table below in Å
2
 units. 

 

 

Atom 

label 
                        

Rh(1) 0.03314(16) 0.03460(16) 0.03940(16) -0.01030(12) 0.01469(11) -0.00388(13) 

Cl(1) 0.0494(6) 0.0514(6) 0.0898(8) -0.0321(6) 0.0391(6) -0.0238(5) 

N(1) 0.0290(15) 0.0314(15) 0.0341(15) -0.0053(12) 0.0129(12) -0.0006(12) 

N(2) 0.0238(14) 0.0389(16) 0.0320(15) -0.0076(12) 0.0099(11) 0.0006(13) 

N(3) 0.025(2) 0.030(2) 0.032(2) 0.00000 0.0141(16) 0.00000 

C(1) 0.0243(16) 0.0295(17) 0.0352(18) -0.0028(13) 0.0131(14) -0.0012(14) 

C(2) 0.0264(18) 0.0318(17) 0.0321(17) 0.0002(13) 0.0136(14) -0.0014(15) 

C(3) 0.036(2) 0.0346(18) 0.045(2) -0.0050(15) 0.0112(17) -0.0085(17) 

C(4) 0.051(3) 0.024(3) 0.056(3) 0.00000 0.013(3) 0.00000 
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Atom 

label 
                        

C(5) 0.0238(17) 0.0357(19) 0.0349(18) -0.0026(14) 0.0113(14) 0.0003(15) 

C(6) 0.036(2) 0.045(2) 0.048(2) -0.0066(17) 0.0149(17) 0.0070(18) 

C(7) 0.031(2) 0.052(2) 0.058(3) 0.0020(19) 0.0077(18) 0.0111(19) 

C(8) 0.036(2) 0.052(2) 0.042(2) 0.0042(18) 0.0032(17) 0.0034(19) 

C(9) 0.037(2) 0.044(2) 0.0358(19) -0.0028(16) 0.0072(16) -0.0021(18) 

C(10) 0.0273(17) 0.0310(18) 0.0362(18) 0.0003(14) 0.0119(14) -0.0036(15) 

C(11) 0.047(2) 0.047(2) 0.057(2) -0.0208(19) 0.029(2) -0.021(2) 

C(12) 0.075(3) 0.047(2) 0.054(3) 0.003(2) 0.035(2) -0.003(2) 

C(13) 0.132(5) 0.095(4) 0.053(3) 0.003(3) 0.044(3) -0.015(4) 

C(14) 0.126(5) 0.096(5) 0.050(3) -0.018(3) 0.042(3) -0.002(4) 

C(15) 0.068(3) 0.057(3) 0.060(3) -0.031(2) 0.033(2) -0.015(2) 

C(16) 0.062(3) 0.038(2) 0.081(3) -0.013(2) 0.041(3) 0.003(2) 

C(17) 0.054(3) 0.078(4) 0.112(4) 0.007(3) 0.037(3) 0.016(3) 

C(18) 0.046(3) 0.101(5) 0.088(4) -0.026(3) 0.030(3) -0.011(3) 

C(20) 0.034(2) 0.065(3) 0.039(2) -0.0210(19) 0.0101(16) 0.0050(19) 

C(21) 0.0284(19) 0.057(2) 0.0324(18) -0.0130(17) 0.0062(15) 0.0102(18) 

C(22) 0.042(2) 0.060(3) 0.041(2) -0.0129(18) 0.0135(17) -0.001(2) 

C(23) 0.055(3) 0.056(3) 0.054(3) -0.014(2) 0.019(2) 0.013(2) 

C(24) 0.049(2) 0.076(3) 0.062(3) -0.002(2) 0.031(2) 0.016(2) 

C(25) 0.045(2) 0.076(3) 0.052(2) 0.002(2) 0.021(2) 0.007(2) 

C(26) 0.042(2) 0.058(3) 0.038(2) -0.0028(18) 0.0134(17) 0.011(2) 

C(32) 0.082(4) 0.071(4) 0.087(4) -0.012(3) 0.040(3) -0.015(3) 

C(33) 0.113(5) 0.070(4) 0.106(5) -0.020(3) 0.053(4) 0.016(3) 

C(34) 0.105(5) 0.119(5) 0.122(5) -0.015(4) 0.084(4) 0.030(4) 

C(35) 0.078(4) 0.106(5) 0.102(4) 0.014(4) 0.056(3) -0.002(3) 

C(36) 0.080(3) 0.062(3) 0.073(3) 0.010(2) 0.027(3) 0.008(3) 

C(40) 0.087(4) 0.048(3) 0.168(7) 0.016(3) 0.080(4) 0.001(3) 

Cl(2) 0.1149(14) 0.0963(12) 0.1330(16) 0.0170(10) 0.0477(12) 0.0057(10) 

Cl(3) 0.0887(11) 0.1019(12) 0.1336(14) 0.0144(10) 0.0620(10) 0.0120(9) 
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3. Bond Distances 

 

     The bond distances of the title complex are given in the following table in Å units. 

 

Atom label Bond length Atom label Bond length 

            2.3816(12)            1.400(5) 

           2.102(3)              1.379(6) 

            2.102(4)             1.496(7) 

            2.091(4)             1.504(7) 

            2.128(5)             1.474(8) 

            2.121(4)             1.495(7) 

          1.320(4)              1.376(6) 

           1.390(4)             1.499(7) 

          1.356(4)             1.478(7) 

          1.393(4)             1.508(5) 

           1.475(5)             1.413(6) 

          1.338(4)             1.392(6) 

           1.338(4)             1.402(6) 

          1.475(5)             1.508(7) 

          1.387(4)             1.389(7) 

          1.376(5)             1.537(6) 

          1.389(5)             1.383(7) 

           1.395(5)             1.531(9) 

          1.372(5)             1.401(6) 

          1.396(6)             1.521(8) 

          1.366(6)             1.512(6) 

 

 

4. Bond Angles 

 

     The complete set of the bond angles (˚) of the title complex is given with the table 

below. 
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Atom label Angle Atom label Angle 

Cl(1)-Rh(1)-N(1) 87.86(9) C(3)-C(4)-C(3)a 119.4(4) 

Cl(1)-Rh(1)-C(15) 93.82(13) N(2)-C(5)-C(6) 133.7(3) 

N(1)-Rh(1)-C(12) 91.59(14) C(5)-C(6)-C(7) 117.1(3) 

C(11)-Rh(1)-C(12) 38.41(17) C(8)-C(9)-C(10) 116.8(3) 

C(12)-Rh(1)-C(15) 81.28(17) C(5)-C(10)-C(9) 121.6(3) 

Rh(1)-N(1)-C(1) 126.0(2) C(12)-C(11)-C(18) 125.3(4) 

C(1)-N(2)-C(5) 106.9(3) C(11)-C(12)-C(13) 124.9(5) 

C(2)-N(3)-C(2)a 117.1(3) Rh(1)-C(15)-C(14) 112.8(3) 

N(2)-C(1)-C(2) 125.9(3) Rh(1)-C(16)-C(15) 71.4(3) 

C(1)-C(2)-C(3) 118.7(3) C(16)-C(17)-C(18) 114.9(4) 

Cl(1)-Rh(1)-C(11) 164.12(12) C(20)-C(21)-C(22) 119.9(4) 

Cl(1)-Rh(1)-C(16) 92.79(13) C(21)-C(22)-C(23) 118.5(4) 

N(1)-Rh(1)-C(15) 165.31(14) C(22)-C(23)-C(24) 120.2(4) 

C(11)-Rh(1)-C(15) 91.31(18) C(23)-C(24)-C(25) 121.4(4) 

C(12)-Rh(1)-C(16) 96.45(17) C(24)-C(25)-C(26) 119.1(4) 

Rh(1)-N(1)-C(10) 128.0(2) C(21)-C(26)-C(25) 120.3(4) 

C(1)-N(2)-C(20) 124.7(3) N(2)-C(5)-C(10) 105.4(3) 

N(1)-C(1)-N(2) 112.6(3) C(6)-C(7)-C(8) 122.2(4) 

N(3)-C(2)-C(1) 117.9(3) N(1)-C(10)-C(5) 109.4(3) 

C(2)-C(3)-C(4) 118.4(3) Rh(1)-C(11)-C(12) 70.4(3) 

Cl(1)-Rh(1)-C(12) 157.44(13) Rh(1)-C(12)-C(11) 71.2(2) 

N(1)-Rh(1)-C(11) 90.98(14) C(12)-C(13)-C(14) 113.7(4) 

N(1)-Rh(1)-C(16) 156.78(14) Rh(1)-C(15)-C(16) 70.8(3) 

C(11)-Rh(1)-C(16) 82.12(17) Rh(1)-C(16)-C(17) 110.2(3) 

C(15)-Rh(1)-C(16) 37.79(17) C(11)-C(18)-C(17) 115.1(4) 

C(1)-N(1)-C(10) 105.6(3) C(20)-C(21)-C(26) 119.5(4) 

C(5)-N(2)-C(20) 128.3(3) C(21)-C(22)-C(32) 120.9(4) 

N(1)-C(1)-C(2) 121.4(3) C(22)-C(23)-C(33) 119.4(4) 

N(3)-C(2)-C(3) 123.4(3) C(23)-C(24)-C(34) 119.2(5) 

C(24)-C(25)-C(35) 121.1(4) C(15)-C(16)-C(17) 125.2(4) 
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C(21)-C(26)-C(36) 120.8(4) N(2)-C(20)-C(21) 114.3(3) 

C(6)-C(5)-C(10) 120.9(3) C(22)-C(21)-C(26) 120.5(4) 

C(7)-C(8)-C(9) 121.5(4) C(23)-C(22)-C(32) 120.6(4) 

N(1)-C(10)-C(9) 129.1(3) C(24)-C(23)-C(33) 120.3(4) 

Rh(1)-C(11)-C(18) 112.5(3) C(25)-C(24)-C(34) 119.4(4) 

Rh(1)-C(12)-C(13) 112.1(3) C(26)-C(25)-C(35) 119.8(4) 

C(13)-C(14)-C(15) 114.3(5) C(25)-C(26)-C(36) 118.9(4) 

C(14)-C(15)-C(16) 122.7(5)   

 

 

5. Torsion Angles 

 

     The following table provides information about the whole set of the torsion angles 

(˚) of the title complex. 

 

 

Atom label Angle Atom label Angle 

Cl(1)-Rh(1)-N(1)-C(1) -104.5(3) C(8)-C(9)-C(10)-C(5) -0.4(5) 

C(11)-Rh(1)-N(1)-C(10) -111.8(3) C(9)-C(10)-N(1)-Rh(1) -7.8(5) 

Cl(1)-Rh(1)-N(1)-C(10) 84.0(3) C(12)-C(11)-Rh(1)-C(15) -74.2(3) 

C(12)‒Rh(1)‒N(1)-C(1) 98.1(3) C(18)-C(11)-Rh(1)-C(12) 121.1(5) 

C(11)-Rh(1)-N(1)-C(1) 59.7(3) Rh(1)-C(11)-C(12)-C(13) 104.3(5) 

C(12)-Rh(1)-N(1)-C(10) -73.4(3) Rh(1)-C(11)-C(18)C(17) 1.0(6) 

C(16)-Rh(1)-N(1)-C(1) -12.4(5) C(11)-C(12)-Rh(1)-N(1) -89.6(2) 

N(2)-C(1)-N(1)-C(10) 0.7(4) C(13)-C(12)-Rh(1)-Cl(1) 61.2(6) 

N(1)-C(1)-N(2)-C(5) 0.2(4) C(13)-C(12)-Rh(1)-C(15) -17.7(4) 

C(2)-C(1)-N(2)-C(20) -5.2(5) C(11)-C(12)-C(13)-C(14) -54.7(8) 

N(2)-C(1)-C(2)-N(3) 51.8(4) C(13)-C(14)-C(15)-C(16) 88.8(7) 

C(3)-C(2)-N(3)-C(2)a -1.3(4) C(14)-C(15)-Rh(1)-C(12) 5.7(4) 

C(2)-C(3)-C(4)-C(3)a -1.2(4) C(16)-C(15)-Rh(1)-C(11) -75.3(3) 

C(10)-C(5)-N(2)-C(1) -0.9(4) C(14)-C(15)-C(16)-Rh(1) -105.4(4) 
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C(10)-C(5)-C(6)-C(7) 1.1(5) C(15)-C(16)-Rh(1)-N(1) 176.3(3) 

C(6)-C(5)-C(10)-N(1) -179.7(3) C(17)-C(16)-Rh(1)-Cl(1) 145.8(3) 

C(6)-C(7)-C(8)-C(9) 0.8(6) C(17)-C(16)-Rh(1)-C(12) -54.9(4) 

C(15)-C(16)-C(17)-C(18) -55.5(7) C(13)-C(12)-Rh(1)-C(16) -52.4(4) 

C(21)-C(20)-N(2)-C(5) -33.6(5) C(12)-C(13)-C(14)-C(15) -22.8(9) 

C(20)-C(21)-C(22)-C(23) 174.4(3) C(14)-C(15)-Rh(1)-Cl(1) -152.1(4) 

C(26)-C(21)-C(22)-C(32) 178.2(4) C(14)-C(15)-Rh(1)-C(16) 118.3(5) 

C(22)-C(21)-C(26)-C(25) 0.7(6) C(16)-C(15)-Rh(1)-C(12) -112.5(3) 

C(21)-C(22)-C(23)-C(33) -176.6(4) C(14)-C(15)-C(16)-C(17) -3.4(7) 

C(22)-C(23)-C(24)-C(25) 2.1(7) C(15)-C(16)-Rh(1)-C(11) 102.5(3) 

C(33)-C(23)-C(24)-C(34) 0.0(7) C(17)-C(16)-Rh(1)-N(1) 54.7(6) 

C(34)-C(24)-C(25)-C(26) 175.8(4) C(17)-C(16)-Rh(1)-C(15) -121.6(5) 

C(24)-C(25)-C(26)-C(36) -178.8(4) C(16)-C(17)-C(18)-C(11) -17.8(8) 

C(16)-Rh(1)-N(1)-C(10) 176.1(4) N(2)-C(20)-C(21)-C(22) 109.4(4) 

C(2)-C(1)-N(1)-Rh(1) 9.7(5) C(20)-C(21)-C(22)-C(32) -5.6(5) 

N(1)-C(1)-N(2)-C(20) 177.0(3) C(20)-C(21)-C(26)-C(25) -175.6(3) 

N(1)-C(1)-C(2)-N(3) -130.6(3) C(22)-C(21)-C(26)-C(36) -178.6(4) 

N(2)-C(1)-C(2)-C(3) -129.9(4) C(32)-C(22)-C(23)-C(24) -179.6(4) 

N(3)-C(2)-C(3)-C(4) 2.6(5) C(22)-C(23)-C(24)-C(34) -177.0(5) 

C(6)-C(5)-N(2)-C(1) -179.6(4) C(23)-C(24)-C(25)-C(26) -3.3(7) 

C(10)-C(5)-N(2)-C(20) -177.6(3) C(34)-C(24)-C(25)-C(35) -0.4(7) 

N(2)-C(5)-C(10)-N(1) 1.4(4) C(35)-C(25)-C(26)-C(21) 178.2(4) 

C(6)-C(5)-C(10)-C(9) -0.3(5) N(2)-C(1)-N(1)-Rh(1) -172.4(2) 

C(7)-C(8)-C(9)-C(10) 0.1(6) C(2)-C(1)-N(1)-C(10) -177.2(3) 

C(5)-C(10)-N(1)-Rh(1) 171.6(2) C(2)-C(1)-N(2)-C(5) 177.9(3) 

C(9)-C(10)-N(1)-C(1) 179.3(4) N(1)-C(1)-C(2)-C(3) 47.7(5) 

C(12)-C(11)-Rh(1)-C(16) -110.9(3) C(1)-C(2)-N(3)-C(2)a 176.9(3) 

C(18)-C(11)-Rh(1)-C(15) 47.0(4) C(1)-C(2)-C(3)-C(4) -175.6(3) 

C(18)-C(11)-C(12)-Rh(1) -104.2(4) C(6)-C(5)-N(2)-C(20) 3.7(6) 

C(12)-C(11)-C(18)-C(17) 82.3(7) N(2)-C(5)-C(6)-C(7) 179.7(4) 
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C(11)-C(12)-Rh(1)-C(15) 103.3(3) N(2)-C(5)-C(10)-C(9) -179.2(3) 

C(13)-C(12)-Rh(1)-N(1) 149.4(4) C(5)-C(6)-C(7)-C(8) -1.4(6) 

C(8)-C(9)-C(10)-N(1) 179.0(4) C(15)-C(16)-Rh(1)-Cl(1) -92.6(3) 

C(5)-C(10)-N(1)-C(1) -1.3(4) C(15)-C(16)-Rh(1)-C(12) 66.8(3) 

C(12)-C(11)-Rh(1)-N(1) 91.3(3) C(17)-C(16)-Rh(1)-C(11) -19.1(3) 

C(18)-C(11)-Rh(1)-N(1) -147.6(4) Rh(1)-C(16)-C(17)-C(18) 25.5(6) 

C(18)-C(11)-Rh(1)-C(16) 10.2(4) C(21)-C(20)-N(2)-C(1) 150.3(3) 

C(18)-C(11)-C(12)-C(13) 0.0(8) N(2)-C(20)-C(21)-C(26) -74.3(4) 

C(11)-C(12)-Rh(1)-Cl(1) -177.8(2) C(26)-C(21)-C(22)-C(23) -1.9(6) 

C(11)-C(12)-Rh(1)-C(16) 68.6(3) C(20)-C(21)-C(26)-C(36) 5.1(5) 

C(13)-C(12)-Rh(1)-C(11) -121.0(5) C(21)-C(22)-C(23)-C(24) 0.5(6) 

Rh(1)-C(12)-C(13)-C(14) 27.3(7) C(32)-C(22)-C(23)-C(33) 3.4(6) 

C(13)-C(14)-C(15)-Rh(1) 7.7(7) C(33)-C(23)-C(24)-C(25) 179.2(5) 

C(14)-C(15)-Rh(1)-C(11) 42.9(4) C(23)-C(24)-C(25)-C(35) -179.5(5) 

C(16)-C(15)-Rh(1)-Cl(1) 89.6(3) C(24)-C(25)-C(26)-C(21) 1.9(6) 

Rh(1)-C(15)-C(16)-C(17) 102.0(4) C(35)-C(25)-C(26)-C(36) -2.5(6) 
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