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MULTIPLE LIFE INSURANCE 

 

ABSTRACT 

 

In this thesis, multiple life insurance products are investigated in the case of two 

lives. Initially two types of joint life policies, joint-life and last-survivor products, 

have been examined under the independence assumption of future lifetimes. In the 

case of married couples, the use of dependent mortality model have been studied the 

impact on pricing of last-survivor policies. The first purpose of the study is to 

compare the premium values of last - survivor products with the independence and 

dependence assumption of lifetimes of spouses. The second aim is to search whether 

using age difference factor in the model has the impact on dependence structure and 

premium valuation. Thus, Gumbel-Hougaard copula with Weibull marginal 

distribution function was chosen to generate the dependence structure because of its 

convenient functional form. Then, the parameters of Weibull survival distributions 

related to Turkey have been estimated for females and males according to three 

models: Independent, dependent and dependent with age difference variable. As a 

result, under the fixed interest rate assumption, the actuarial present values of joint 

last survivor insurances and annuities for all models have been calculated based on 

these parameter estimations related to Turkey, and the results have been compared as 

ratios together with three dimensional plots.      

      

Keywords : Multiple life insurance, last-survivorship, joint life, actuarial present 

value, lifetime dependence, dependent mortality model, copula.
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ÇOKLU YAŞAM SİGORTALARI 

 

ÖZ 

 

Bu tezde, iki yaşamın olduğu durumda çoklu hayat sigortası ürünleri 

incelenmiştir. İlk olarak bileşik hayat poliçelerinin iki türü, bileşik-yaşam ve son-

hayatta kalan ürünleri, geriye kalan ömürlerin bağımsızlığı varsayımı altında 

incelenmiştir. Evli çiftlerin olduğu durumda, bağımlı ölüm modeli kullanımının son - 

hayatta kalan poliçelerinin fiyatlaması üzerindeki etkisine çalışılmıştır. Çalışmanın 

ilk amacı son-hayatta kalan ürünlerinin prim değerlerini eşlerin yaşamlarının 

bağımlılığı ve bağımsızlığı varsayımına göre karşılaştırmaktır. İkinci amaç modelde 

yaş farkı faktörü kullanımının bağımlılık yapısı ve prim değerlemesi üzerinde etkisi 

olup olmadığını araştırmaktır. Bu amaçla, fonksiyonel yapısının uygun olmasından 

dolayı bağımlılık yapısını oluşturmak için Gumbel-Hougaard copula ile Weibull 

marjinal dağılım fonksiyonu seçilmiştir. Daha sonra, Türkiye'ye ilişkin Weibull sağ 

kalım dağılımının parametreleri kadınlar ve erkekler için şu üç modele göre tahmin 

edilmiştir : Bağımsız, bağımlı ve yaş farkı değişkenin olduğu bağımlı model. Sonuç 

olarak, sabit faiz oranı varsayımı altında, bütün modeller için son - hayatta kalan 

sigortaları ve anüitelerinin aktüeryal peşin değerleri Türkiye' ye ilişkin parametre 

tahminlerine dayalı olarak hesaplanmış ve sonuçlar oran olarak üç boyutlu grafikleri 

ile birlikte karşılaştırılmıştır.          

 

Anahtar sözcükler : Çoklu hayat sigortası, son-sağkalım, bileşik yaşam, aktüeryal 

peşin değer, yaşam bağımlılığı, bağımlı ölüm modeli, copula.
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CHAPTER ONE 

INTRODUCTION 

 

Life insurance is a contract between the insurance company (insurer) and the 

policy holder so that insurer promises to provide contingent payment contained in the 

policy and to help reduce financial adverse effects upon the death of the insured 

person. An important type of life insurance is multiple life insurance which is an 

extension of single life. These types of contracts cover two or more persons where 

the death benefit payable according to order of deaths. Multiple life insurances are 

usually preferred by couples to guarantee the future lifetime of the surviving spouse 

when one of the spouses dies. Also, these policies are used for family protection by 

parents. Moreover in business life, the companies prefer this policy type to guarantee 

their employers lifetime so-called group insurance. For these reasons, multiple life 

contracts are much more preferable by the policyholders. In this thesis, we will 

restrict our studies to situations covering two lives which are married. 

 

Mainly, multi-life policies for two lives consist of two distinct statuses which give 

different benefits due to the order of deaths of insured and spouse. The first status 

exists if all members of group survive and fails upon the first death which is called as 

a joint-life status. The second status valids provided that at least one member is 

survive and fails upon the last death is known as a last-survivor status. In addition, 

various policies can be definable. These policy types are studied in detailed in 

Chapter 2. Understanding of multiple life insurance requires intensive mathematical 

background, and there are several beneficial references about multiple life insurances 

and annuities in actuarial literature. The good references for multi-life theory are 

Bowers et all (1986), Jordan (1991) and Dickson et all (2009). Chen (2010) is an 

excellent overview into analysis of joint life insurance with stochastic interest rate. 

Also Matvejevs and Matvejevs (2001), Das (2003), Bi (2008) and Hürlimann (2009) 

give good explanations for joint life insurance and its applications. Youn, Shemyakin 

and Herman (2002) presents a modified versions of some formulas involving basic 

relationships in multi-life functions related joint-life and last-survivor random 

variables. 
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Generally in insurance industry, organizations assume that mortalities of 

individuals are independent in case of more than one life, but the deaths of couples 

are not independent in real life. Some studies on this subject have showed 

dependency between age at deaths of individuals especially for married couples due 

to some factors such as common lifestyle, common disaster and broken-heart factor. 

Common life style is related to the partners' physical age, and it has a direct effect to 

the correlation between ages at death of spouses. The other two factors represent 

incidents occurring simultaneously such as traffic accident and catastrophe (common 

disaster) or close in calendar time (broken-heart factor). Particularly the third factor 

increases the mortality rate after the mortality of one's spouse. Such effects may have 

significant influence on present values related to multiple life actuarial functions 

(Dhaene, Vanneste and Wolthuis, 2000). Hürlimann (2009) showed that the models 

based on independence assumption overestimates the joint life net single and level 

premiums and underestimates the last survivor net single and level premiums. The 

dependency structure of future lifetimes of couples and the premium computations 

provided with the help of copula functions and common shock models. In this thesis, 

we focused on only copula functions to modeling the dependency of age at deaths, 

and it examined in detail in Chapter 3. 

 

In recent years, the copula models have became an important part of actuarial 

science to construct dependencies between random variables and to calculate 

premium computations. The thing that makes it so appealing is its simplicity. Also, 

using copulas, it is possible to construct various dependence structures by using 

parametric or non-parametric models of the marginal distributions of lifetimes. The 

most useful reference using copulas in actuarial sciences and finance is Frees and 

Valdez (1998). They introduced actuaries to the concept of copulas, a tool for 

understanding relationships among multivariate outcomes. Also, Frees, Carriere and 

Valdez (1995) and Shemyakin and Youn (2006) give an overview to construction of 

copula models to investigate dependence effects on joint last survivor annuity values 

using parametric copulas. They fitted several copulas to the same data for actuarial 

calculations. Purwono (2005) briefly summarizes the foundations of construction of 
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Gaussian, Student and Archimedean models from parametric families of bivariate 

copulas, and have achieved joint last-survivor probabilities using copula and 

conditional copula models of joint survival assuming that the marginal survival 

functions are distributed two-parameter Weibull. Also, Shemyakin and Youn (2000) 

and Youn and Shemyakin (2001) examined the joint last survivor insurance valuation 

with dependent mortality models adding age difference between the spouses. 

Dhaene, Vanneste and Wolthuis (2000) handle the net single premiums of insurances 

and annuties based on more than one life statuses using Frechet lower and upper 

bounds. Denuit and Cornet (1999) deal with dependent future lifetimes on the 

reversionary annuity values taking into account Frechet-Hoeffding bounds and 

Norberg's Markov model. Luciano, Spreeuw and Vigna (2010) compared the values 

of reversionary annuities of three different generations under dependent mortality for 

couples, and achieved the result that dependence parameters located in copula of 

these generations should be distinct. 

 

In this thesis, we examined both single and joint life insurances and annuities with 

its products, and these are presented detailed in Chapter 2. Chapter 3 includes 

exhaustive information about parametric copula families, and how the copulas using 

to construct dependency of couples lifetimes. In Chapter 4, we estimate the 

parameters of bivariate Gumbel-Hougaard copula functions of males and females for 

three models: Independent, dependent and dependent with age differences by using 

mortality table constructed for Turkey. We also calculate the actuarial present values 

of premiums of joint last-survivor insurances and annuities. The results are presented 

and compared as ratios of benefits for these models. The results given in Chapter 4 

reveal that according to measures of association, the future lifetimes of spouses are 

actually dependent. In addition, age difference captures an extra dependency between 

survival functions of partners which may have a considerable impact of last survivor 

pricing. Calculations were performed in EXCEL. 
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CHAPTER TWO 

MULTIPLE LIFE INSURANCES AND ANNUITIES 

 

2.1 The Notion of Status 

In applications of the life insurance and annuity, survival characteristics of several 

lives may be required for calculations of survival and failure probabilities and the 

payments. Thus, the concept of status has a great importance especially for life 

insurance products involving more than one life. Status is an artificially established 

life form for which there is a definition of survival and failure. The examples to 

understand concept of status would be a single life aged (x), which defines a status, 

fails when (x) dies exactly. Another example is a “life” n  that defines a status so-

called term certain status. This status survives for exactly n unit times and then dies 

at the end of n unit times. The random variable of remaining lifetime of (x) denoted 

by T(x) will be considered as the period of survival of status, also can be considered 

as the time-until-failure of the status. Definition of status which depends on the type 

of insurance, brings about change of notations and formulations. For instance,  the 

subscript 
1

:x n  shows that the payments are made if the first failure belongs to life 

n . The other subscript 
1

:x n  indicates us that the payments are made if the life (x) 

dies as first. The first of given examples is used to representation of the actuarial 

present value of pure endowment life insurance while the second is used to denote 

actuarial present value of term life insurance. If we consider from this perspective, 

these examples involve two lives, and we can perceive them as  different types of 

multiple life statuses. When there are several lives, more complicated statuses are 

definable in various forms. Thus, firstly the status and its survival and failure should 

be well defined, and then we can apply based on definition in order to improve 

products of life annuities and insurances. 

 

2.2 Multiple Life Statuses 

As mentioned above, one of the main and well-known statuses is the single life 

status. In insurance market, the applications of multiple life are widespread as well as 
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single life. We are familiar to the joint-life status which is one of the typical multiple 

life status, and the simplest form of this status is :x n . In this form, n  is the 

artificial life form, but we examine the statuses as combination of two or more 

individual lives. Such models are referred as multi-life models in actuarial science. 

Two well-known specific types of multiple life statuses are the joint-life and the last-

survivor statuses. In this thesis, we restrict our interest to survival and failure of the 

status for two lives since we focus on some types of life insurances and annuities in 

which the time of the benefit payment based on two lives. But it can be extended for 

more than two lives if desired. In applications of life insurance, the future lifetime of 

two lives are assumed to be independent unless otherwise stated. In this case, the 

probabilistic expressions for single life can easily be expanded for multiple life. The 

same is true also for the formulas of the benefit payments. Briefly, under the 

independence assumption, actuarial functions of multiple-life can be expressed by 

means of single-life functions. On the other hand, the recent studies about future 

lifetime of two or more lives indicate that their future lifetimes are dependent 

because of some factors which are explained in detailed in Chapter 3. In dependent 

case, the future lifetimes are modelled by some copula functions which are also 

explained in Chapter 3. 

 

2.2.1 The Joint-Life Status 

The joint–life status is one of the common types of multiple life statuses. A joint 

life status involves several individual lives, and it requires the survival of all of these 

individual lives. In this case, it fails upon occurrence of the first death of one of its 

component lives. Joint-life status is denoted by  1 2... mx x x  for m lives with ages 

1 2, ,..., mx x x . The notation of this status for two lives with currently ages x and y is 

denoted by (xy) or (x:y). In this chapter, we examined the joint-life functions which 

are used in calculations of the actuarial present values of benefit payments of various 

life insurance policies. Also, we investigate the joint–life functions separately as 

continuous and discrete (or curtate) functions of joint–life status. 
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2.2.1.1 Continuous Joint-Life Functions 

In continuous joint–life functions, the functions are obtained in terms of 

continuous future lifetime (or complete future lifetime) variable. In actuarial science, 

it is usually neccessary making probabilistic expression about this random variable. 

Therefore, we give essential formulas and notations based on this variable. 

 

Let X represents a newborn's age-at-death random variable, assumed to be non-

negatively continuous, and T(x) represents the future lifetime random variable of an 

individual aged x, given that a newborn has survived to age x, is denoted as 

following: 

 

( ) |T x X x X x     (2.1) 

 

which is defined on the interval [0,wx] where wx states the difference between the 

ultimate age of the lifetable and x. In the joint-life status, the two lives are regarded 

as a single entity which exists as long as both of them are alive, and fails upon the 

first death. In this case, time-to-failure random variable states the waiting time from 

now until either (x) or (y) dies and it is denoted as T(xy). It equals the smaller of 

individuals's future lifetimes, T(x) and T(y), that are non-negative continuous random 

variables. The time-until-failure of the joint-life status is mathematically defined as: 

 

    
( )   ( ) ( )

( ) min ,
( )   ( ) ( )

T x T x T y
T xy T x T y

T y T x T y


  


 (2.2) 

 

In most of the life insurance applications, survival probabilities are one of the 

necessary elements. At this stage, the survival function describes the probability of 

survival of a newborn until the age of x. The survival distribution function (sdf) of X, 

denoted by  Xs x  is defined in equation (2.3). 

 

0( ) 1 ( ) ( )      0X X xs x F x P X x p x       (2.3) 
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where ( )XF x  is the probability of death of a newborn at or prior to age  x also 

denoted by 0x q . The survival function of future lifetime random variable also 

denoted as t xp  gives the probability of attaining age x+t of (x) is given as: 

 

      

( ) ( ) ( ( ) ) ( | )

                                  
( ) ( )

( )
                                  

( )

T x

X
t x

X

s t P T x t P X x t X x

P X x t X x P X x t

P X x P X x

s x t
p

s x

     

     
 

 


 

   (2.4) 

 

The existence of joint-life status requires the survival of all component lives in t 

years so that the event,  ( )T xy t , and it is the intersection of two independent 

events,  ( )T x t and  ( )T y t . 

 

     ( ) ( ) ( )T xy t T x t T y t      (2.5) 

 

Then, the joint sdf of T(xy) also denoted by 
t xyp  is obtained as: 

 

      

    

   

( ) ( ) min ( ), ( )

            ( )   ( ) ,

            ( ) ( )

T xys t P T xy t P T x T y t

P T x t and T y t X x Y y

P T x t X x P T y t Y y

   

    

    

 (2.6) 

 

which equals to product of the marginal survival probabilities  t xy t x t yp p p . 

 

The probability of death of life-aged-x within t years, which is expressed by the 

cumulative distribution function (cdf) of the future lifetime variable, is obtained as: 

 

     

 

( ) ( ) |

                                  1 |

T x

t x

F t P T x t P X x t X x

P X x t X x q

     

     
 (2.7) 
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To obtain the cdf of the time–until–failure random variable   of the joint–life 

status, the event,  ( )T xy t , should be examined. This event is equal the union of 

the two events as  ( )T x t  and  ( )T y t  since these two events are not mutually 

exclusive events. 

 

     ( ) ( ) ( )T xy t T x t T y t      (2.8) 

 

The cdf of T(xy) gives the probability of the failure of the joint–life status when  

the first death occurs or both lives fails upon within time t. Then, this function is 

reflected as 

 

    

 

     

( ) ( ) ( ) min ( ), ( )

            ( )   ( )         

            ( ) ( ) ( )   ( )

T xyF t P T xy t P T x T y t

P T x t or T y t

P T x t P T y t P T x t and T y t

   

  

      

 (2.9) 

 

It can be expressed by using standard actuarial notations 

 

 t xy t x t y t x t yq q q q q    (2.10) 

 

The probability density function (pdf) of a random lifetime variable X is an 

instantaneous measurement of death for a given age, and it relates to the any point in 

time when the sdf and the cdf give the probabilities on time intervals. When the 

derivative of the cdf or the survival function exists, the pdf of X is given by: 

 

 
   

           0
X X

X

x x

dF x ds x
f x x

d d
     (2.11) 

Also, this function is obtained by 

       0  X X xf x s x x p x    (2.12) 



9 
 

where  x  denotes the force of mortality at age x. The pdf for the future lifetime 

random variable represents the conditional density at age x+t, given survival to age x. 

We can get an expression for the probability density function of T(x) of a single life: 

     

 

 

 

 

 
 

( ) ( ) 0

( )

0

0

0    

 
( )

1

  
            

T x T x X X x t

T x

X X x

x t x

t x

x survival function force of mortality

dF t ds t f x t f x t p x t
f t

dt dt F x s x p

p p x t
p x t

p






  
     




  

 (2.13) 

 

In terms of joint-life status, the pdf of time-until-failure random variable is 

obtained by using survival distribution function  t xy t x t yp p p . 

 

   
       

      
   

 

 

               

               

             

              

T xy T xy t xy t x t y

T xy

t yt x
t y t x

t x t y t y t x

t x y t y xt t

t x t y

dF t ds t d p d p p
f t

dt dt dt dt

d pd p
p p

dt dt

p x t p p y t p

p x t p p y t p

p p x t

 

 



      

   
     

    

      

   

     

    
  

             t xy

survival function force function

y t

p x t y t



 



   

 (2.14) 

 

The force of mortality has an important role in mortality analysis. The force of 

mortality at age x defines the probability of death between the ages of x  and x x  

for a newborn, and this probability is conditioned on the survival to age x where x  

represents the short time interval. This conditional instantaneous measure provides a 

distribution which specify the probability of death in a very short period of time for a 

life of attained age x. Briefly, it is the conditional death rate at age x given survival to 

age x. Also, the terms failure rate or hazard rate function are used in reliability 

theory. The hazard rate  is obtained depending on the definition as follows; 
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 
   

 

   

 1

X X X X

X X

F x x F x F x x F x
P x X x x X x

F x s x

   
     


 (2.15) 

Since  
 X

X

dF x
f x

dx
 , we can write 

   
 X X

X

F x x F x
f x

x

 



. Therefore, 

 

   

 
X

X

P x X x x X x f x

x s x

   



 (2.16) 

 

In this case, the force of mortality at age x which is non-negative and piece-wise 

continuous function is  denoted by x  or  x  and it is obtained as follows: 

 
   

 

 

 0
lim

1

X X

x
X X

P x X x x X x f x f x
x

x s x F x


 

   
  

 
 (2.17) 

 

If we examine the force function in terms of future lifetime variable T(x), it has 

similar meaning with lifetime variable X. The force of mortality of T(x) which is 

denoted by 
   T x

t  states the probability of the death at age x+t given survival to 

age x+t. 

   
    

0
lim

T x
t

P t T x t t T x t
t

t


 

   



 (2.18) 

Since  T x X x   the equation 2.18 holds as   

   
 

 

 

0

0

lim

           lim

           

T x
t

t

P t X x t t X x t
t

t

P x t X x t t X x t

t

x t





 

 

      




       




 

 (2.19) 

The force function of time until-failure-random variable T(xy) of joint-life status 

represents the probability of occurrence of the first death in the future instant under 
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the condition of the survival of both lives x and y for t years. The force function of 

T(xy) denoted as 
   T xy

t  or  xy t  can be derived in a similar way with single life. 

     
   

   
   

   

    
   

1

 
            

T xy T xy

xyT xy

T xy T xy

t xy

t xy

f t f t
t t

F t s t

p x t y t
x t y t

p

 

 
 

  


  
    

 (2.20) 

Conditional probabilities are frequently used in the valuation of contingent 

payments. The notation xn
q  represents a probability that a life aged x is alive for n 

years and then dies within the next year, and it is obtained as; 

       

 1

( ) 1 1

     1

      

xn

n x n x n x x n

n x x n

q P n T x n P T x n P T x n

p p p p

p q

 



        

   



 (2.21) 

where n xp  is the probability of survival of a life aged x within n years, and x nq   is 

the probability of death of a life aged x n  within a year. In case of n = 1, the 

prefixes in the notations are omitted and they are shown as xq  and  xp . When there 

are two lives, the probability of joint-life status (x+n:y+n) failing within one year 

can be expressed via probabilities of failures of individual lives as follows: 

  

 

: :1

          1  

          1 1 1

          1 1

          

x n y n x n y n

x n y n

x n y n

x n y n x n y n

x n y n x n y n

q p

p p

q q

q q q q

q q q q

   

 

 

   

   

 

 

   

    

  

 (2.22) 

The conditional probability of joint-life status describes the probability that the 

first death occurs between the nth and n+1th years since the status fails upon the first 

death of component lives. The probability conditional upon the survival of the status 

for n years is expressed as follows: 



12 
 

       

 1 :

:

1 1

      1

       

xyn

n xy n xy n xy x n y n

n xy x n y n

q P n T xy n P T xy n P T xy n

p p p p

p q

  

 

          

   



 (2.23) 

 

2.2.1.2 Curtate Joint –Life Functions 

In life insurance applications, we are interested in individual's curtate future 

lifetime like continuous future lifetime. The curtate future lifetime random variable is 

associated with  the continuous future lifetime random variable. This random 

variable is the integer part of the future lifetime T(x), and it gives the number of 

complete years lived in the future by (x) prior to death. This random variable is 

denoted by K(x) for a life aged x, and it is equal to the greatest integer of T(x);
 

( ) ( )K x T x     . The probability function of K(x) can be expressed as: 

1

|

[ ( ) ] [ ( ) 1]

                    

                     

                     =                   0,1,2,

k x k x

k x x k

k x

P K x k P k T x k

p p

p q

q k





    

 





 (2.24) 

As seen above, this probability function represents the probability that a life aged 

x will survive for k years and then die within the following year. Its distribution 

function is the step function that is defined by: 

( ) | 1

0

( ) [ ( ) ]      k=0,1,2,
k

K x h x k x

h

F k P K x k q q



     (2.25) 

The discrete functions of joint-life status are based on the curtate future lifetime 

random variable. As in single life case, the curtate future lifetime of (xy) describes 

the number of whole years completed by (xy) prior to first death, and it is equal to 

( ) ( )K xy T xy    . The probability mass function of this random variable is  

1

:

|

[ ( ) ] [ ( ) 1]

                    

                     

                     =                   0,1,2,

k xy k xy

k xy x k y k

k xy

P K xy k P k T xy k

p p

p q

q k



 

    

 





 (2.26) 
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The distribution function of the curtate future lifetime variable of the joint - life 

status is obtained as: 

( ) | 1

0

( ) [ ( ) ]      k=0,1,2,
k

K xy h xy k xy

h

F k P K xy k q q



     (2.27) 

 

2.2.2 The Last –Survivor Status 

A last survivor status terminates upon the last death of component members, and 

it survives so long as at least one member remains alive. The status does not exist if 

and only if its all components die. Last - survivor status is denoted by  1 2... mx x x  

which is involving m lives with ages 1 2, ,..., mx x x . Similarly as above, we are 

interested a pair of lives currently ages x and y and in this case the status is 

represented by  xy  or  :x y . 

2.2.2.1 Continuous Last - Survivor Functions 

Continuous functions related to the last-survivor status are obtained by 

considering the distribution of the time-until-failure random variable of this status. 

The time to failure random variable of last-survivor status is the largest of 

individual's remaining lifetimes, T(x) and T(y) because of the status fails on the 

second death in two lives case. Accordingly, the time until failure of the last- 

survivor status is the time until second death in bivariate case or the last death in 

general case. The future lifetime random variable denoted as  T xy  is equal to: 

      
( )   ( ) ( )

max ,
( )   ( ) ( )

T x T x T y
T xy T x T y

T y T x T y


  


 (2.28) 

Survival of this status requires that (x) or (y) have been alive for t years, or both of 

them have remained as alive during t years.  ( )T xy t  represents the second death 

occurs after time t. Thus, the survival of last - survivor status is explained by union 

of two independent events  ( )T x t  and  ( )T y t ; 
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     ( ) ( ) ( )T xy t T x t T y t     . In this case, the sdf is expressed as a 

probability of occurence of this event.  

         

    

        

max ( ), ( )

            ( )  or ( ) ,

            ( ) ( ) ( )  and ( ) ,

T xy
s t P T xy t P T x T y t

P T x t T y t X x Y y

P T x t X x P T y t Y y P T x t T y t X x Y y

   

    

          

 (2.29)  

which is also reflected in actuarial science as; 

 

 

      

t t x t y t x t yxy

t x t y t xy

p p p p p

p p p

  

  
 (2.30) 

 

As it is seen in equation (2.30),  the survival probability of the last-survivor status 

can be obtained by using survival probabilities of joint-life status and single life. The 

cumulative distribution function of  T xy  equals the probability of intersection of 

two independent events  ( )T x t  and  ( )T y t  since the failure of this status 

requires the death both of lives (x) and (y);      ( ) ( ) ( )T xy t T x t T y t     . The 

cumulative distribution function is denoted as; 

 

    

 

   

( )
( ) ( ) max ( ), ( )

            ( )  and ( )

            ( ) ( )

          

T xy
F t P T xy t P T x T y t

P T x t T y t

P T x t P T y t

   

  

  

 (2.31) 

also denoted as actuarial notation as follows; 

   

       

   1 1 + 1 +  

         1 1 1 1 1

          

t t t x t y t xy t x t y t x t yxy xy

t x t y t x t y

t x t y

q p p p p p p p p

q q q q

q q

       

       



                          (2.32) 
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As mentioned earlier, the probability density function is obtained by a product of 

the survival and the hazard rate functions. So the pdf of  T xy  is calculated as; 

                 t xyT xy T xy T xy T xy
f t s t t p t    (2.33) 

Based on the theory of probability, the density function is also stated as the 

derivative of the distribution function.  

   
     

       

     

       

   

 

               

               

                 

     

             1  

T xy t t x t yxy

T xy

t yt x
t y t x

t y t xT x T y

t x t y t y t x

t x t y t y t xT xy

t x t y t

dF t d q d q q
f t

dt dt dt

d qd q
q q

dt dt

f t q f t q

p x t q p y t q

f t p q x t p q y t

p p x t p

 

 



  

 

 

   

   

       

        

         

         

1  

                 

                 

       

y t x

t x t y t x t y t x t y

t x t y t x t y

t x t y t xy xyT xy

p y t

p x t p y t p p x t p p y t

p x t p y t p p x t y t

f t p x t p y t p t



   

   

  

 

       

       

    

 (2.34) 

 

The hazard rate function or also known as the force function equals to the ratio of 

pdf to sdf, and it is denoted by 
   T xy

t . 

     
   

   
   

   1

T xy T xy

xyT xy

T xy T xy

f t f t
t t

F t s t
   


 (2.35) 

In contrast to joint-life status, the hazard rate of  T xy  represents the probability 

of occurence of the second death in the future instant under the condition of survival 

of the status for t years. If the necessary functions are positioned in equation (2.35), 

the hazard rate function is hold as follows; 
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 
   

     

( )

    

   
             

t x t y t y t x

T xy

t x t y t xy

t x t y t xy xy

t x t y t xy

p q x t p q y t
t

p p p

p x t p y t p t

p p p

 


  

  


 

   


 

 (2.36) 

The conditional probability in terms of last-survivor status means that the 

probability of second death occurs between nth and n+1th years conditioned on at 

least one member is alive. This probability is calculated as in equation (2.37). 

 

       
   1 1 1 1

1 1

        

       

n xy

n n n x n y n xy n x n y n xyxy xy

x y xyn n n

q P n T xy n P T xy n P T xy n

p p p p p p p p

q q q

   

         
 

       

  

               (2.37) 

 

2.2.2.2 Curtate Last - Survivor Functions 

The curtate future lifetime random variable of last-survivor status is explained as 

the number of completed years before the status fails. It is denoted by ( )K xy . 

( ) ( )K xy T xy     (2.38) 

The probability function of ( )K xy  is expressed as in equation (2.39). 

 

  

1

:

[ ( ) ] [ ( ) 1]

                     

                      

                       

                        

k kxy xy

k xy x k y k

k x k y k x k y x k y k

k x x k k y y k k x k y x k y k x k

P K xy k P k T xy k

p p

p q

p p p p q q

p q p q p p q q q



 

 

    

    

 



  

     

|

 

                                

y k

k xy

q

q





 (2.39) 

 The cdf of curtate future lifetime variable is 

| 1( )
0

( ) [ ( ) ]  
k

h kK xy xy xy
h

F k P K xy k q q



     (2.40) 
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2.3 Life Annuity and Insurance Models 

The purpose of established insurance organization is to take measures against the 

adverse financial impacts of random events. The basic logic of life insurance is an 

exchange. The policyholder named insured pays a consideration, called the premium, 

in return the insurance organization (insurer) pay a predetermined lump sum which is 

called the sum insured or benefit if the certain event defined in contract occurs.  The 

life annuity and insurance models deal with valuation of the payments contingent on 

the survival or death of the insured and general sense these models are referred to as 

the life contingency models due to this reason. Insureds can change the insurance 

period in their policies if they want to have higher or lower sum insured at the end of 

this period. In this case, benefits which are depend on the amounts paid by the 

insureds need to be recalculated. The life insurance organization can invest the 

premiums and then yields of assets provide to pay the benefits. In the field of life 

contingent payment model, analysis of the payments consists of two important parts. 

The first part is living or death contingency which is modeled by means of 

probability theory. The other is considered as the time value of money in life 

insurance theory. The benefit payments and premiums can take place in different 

ways at various points of time.  

Net single premiums are used to calculate the present value of benefits. Before the 

defining of the formula of net single premium, the present value random variable 

which is changeable according to types of life insurances and annuities should be 

determined. Let bt and vt represent benefit and discount rate, respectively. The 

present value function can be defined as follows; 

t t tz b v
                 (2.41) 

The expected value of equation (2.41) is named as actuarial present value. Since 

the contingent future benefit depends on discount rate by implication timing and the 

death or survival of an insured, the present value of the benefit depends on these 

elements, and it is modeled as a random variable. It should be note that, while benefit 

payments are made at the failure of the status for insurance policy, an annuity is 
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payable provided that the status survives. Furthermore, insurance payments can be 

modelled contingent on the specific order of the deaths of the individuals. 

2.3.1 Life Insurances for Multiple Life Statuses  

In life insurance, benefit payments are provided contingent upon the survival of 

the insured for a certain period, or upon the death of the insured in a certain period. 

Usually benefits are payable contingent upon the death of the policyholder in order to 

designated beneficiary receives the payments. If benefit is paid at the moment of 

death, then it is evaluated within continuous model. So present value random 

variable, which is referred to as random present value of benefit payable in some 

sources Z  is a decreasing function of future lifetime T(x). If benefit is payable at the 

end of year of death, it is taken into consideration within the framework of discrete 

models. Thus in such models, present value random variable, Z is a function of 

curtate-future-lifetime K(x). In next subsections we described the features of 

commonly issued life insurance policies.  

2.3.1.1 Whole Life Insurance 

Whole life insurance is one of the traditional products which provides lump sum 

of death benefit to the policyholder or beneficiary when the insured dies at any time 

in the future. Since this type of the life insurance covers whole life, in any case 

benefit payments are made by the insurer when the death of the insured occurs. 

Whole life insurance is the limiting case of n-year term insurance as n  (Bowers 

et al, 1986). There are two models of whole life insurance; discrete and continuous 

life insurance models.  

In discrete model, curtate-future-lifetime of insured at the policy issue which is 

associated with present value of the benefit is used because of the assumption that 

benefits of life insurance are paid at the end of the year of the death. Also this 

assumption simplify the calculations since it enables the use of life tables. For 

discrete life insurance model, the present value random variable in the case of single 

life is 
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( ) 1K xZ v   
(2.42)

 

The net single premium is described by 

  ( ) 1 1 1

|

0 0

 K x k k

x k x x k k x

k k

A E Z E v v p q v q
 

  



 

          
(2.43)

 

When K(xy) denotes the curtate-future-lifetime random variable of joint-life 

status, the present value function of the benefit of a unit payment is given by 

  1K xy

xyZ v


   
(2.44)

 

For a joint life status in which case benefits are paid on the first death, the net 

single premium is obtained as 

( ) 1 1 1

: |

0 0

 K xy k k

xy xy k xy x k y k k xy

k k

A E Z E v v p q v q
 

  

 

 

             
(2.45) 

If we consider the last – survivor status, the present value random variable is a 

function of curtate - future - lifetime variable ( )K xy . 

  1K xy

xy
Z v


   

(2.46)
 

The actuarial present value of a unit payment on the second death is obtained as 

follows; 

 ( ) 1 1 1

: |

0 0

     K xy k k

k x x k k y y k k xy x k y k kxy xy xy
k k

A E Z E v v p q p q p q v q
 

  

   

 

       
        

(2.47)
 

On the other hand, in continuous case, for a single life aged (x), the benefit 

payments are made at the moment of the death of the insured. The present value 

function is demonstrated as the function of continuous future lifetime random 

variable, T(x), as follows: 

( )T xZ v   
(2.48)
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Then benefit of a unit payment at age of issue x for continuous whole life 

insurance model is denoted by xA , and it is calculated by given formula: 

( )

( )

0 0

( ) ( )T x t t
x T x t xA E Z E v v f t dt v p x t dt

 

              
(2.49)

 

If a unit payment is provided immediately on the first death of the pair, random 

present value of the payment is related to T(xy). 

( )T xy
xyZ v   

(2.50)
 

Its first moment is equal to the actuarial present value of joint life insurance which 

is denoted xyA : 

        ( )

( )

0 0 0

( )    T xy t t t
xy xy T xy t xy t x t yT xy

A E Z E v v f t dt v p t dt v p p x t y t dt  
  

                  
(2.51)

 

When we take into account an insurance failed upon the second death of a couple 

lives, the present value random variable depends on the ( )T xy . 

( )T xy
xyZ v   

(2.52)
 

The actuarial present value of last survivor insurance is shown by xyA  and its 

formulation is obtained as follows: 

   

         

( )

( )

0 0

0

( )  

            

      

T xy t t
xy xy tT xy xy T xy

t

t x t y t xy

x y xy

A E Z E v v f t dt v p t dt

v p x t p y t p x t y t dt

A A A



   

 



        

       

  

 

   
(2.53) 

 

2.3.1.2 Term Life Insurance 

In term life insurance which is cheaper than whole life insurance, a lump sum 

benefit is paid only if the insured dies within term of policy's issue. Unless death of 
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the policyholder occurs during the period based on the policy, the indemnity must 

not be paid by the insurer. In case of death of the insured, the term life insurance 

ensures the sum insured to the dependents of the policyholder.  

If insured life-aged (x) dies within n-year period of time, the compensation is paid 

by the insurer and this term insurance is referred to as n-year term life insurance. 

Under the discrete model, benefits are payable at the end of the year of the death as a 

general rule. When we assumes a unit of benefit payment for single life, the present- 

value random variable is obtained as following:  

  1
     0,1,..., -1

0            

K x
v K n

Z
K n

 
 


 

The actuarial present value is denoted by 
1

:x n
A   

 
1 1

1 1 1

|:
0 0

( ( ) )
n n

k k

k xx n
k k

A E Z v P K x k v q
 

 

 

       
(2.54)

 

In joint-life status, n-year term life insurance provides payment if first death 

occurs within n years. The present value random variable is obtained by substituting 

(xy) for (x); 

( ) 1      0,1,..., -1

0             

K xy

xy

v K n
Z

K n

 
 

  

Its actuarial present value is 

1 1
 1 1 1

|:
0 0

( ( ) )
n n

k k

xy k xyxy n
k k

A E Z v P K xy k v q
 

 

 

          
(2.55)

 

In case of last–survivor status, discrete n-year term life insurance pays 1 at the end 

of year of the second death within n years, and its random present value is given by; 

( ) 1      0,1,..., -1

0             

K xy

xy

v K n
Z

K n

 
 

  



22 
 

When last-survivor status is failed in period of n years, the actuarial present value 

of benefit of a unit payment is given as follows; 

1 1
 1 1 1

|:
0 0

( ( ) )
n n

k k

kxy xyxy n
k k

A E Z v P K xy k v q
 

 

 

    
      

(2.56) 

In continuous case, the benefit is payable at the time of the death. The present 

value for continuous n - year term insurance policy is a decreasing function of T(x). 

         

0           

Tv T n
Z

T n

 
 

  

The net single premium of a unit of benefit payment is denoted as

 

 
1

: ( )

0

n

t
x n T xA E Z v f t dt       

(2.57) 

If the first death of lives (x) and (y) occurs within n years, payment of 1 is made at 

the moment of death. The present value is a function of T(xy). 

         

0           

T

xy

v T n
Z

T n

 
 

  

The actuarial present value of the joint-life status is denoted by 
1

:xy nA , and the 

"cup" in the notation shows that the joint - life status must fail before the term certain 

status fails. 

     
 1

: ( )

0 0

 

n n

t t
xy n xy T xy t xy T xy

A E Z v f t dt v p t dt         
(2.58)

 

If the second death of lives (x) and (y) occurs within n years, benefit is payable 

immediately on the death. The random present value is; 

         

0           

T

xy

v T n
Z

T n

 
 

  
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Its actuarial present value is given by as follows; 

     
 1

:
( )

0 0

 

n n

t t
xy n xy tT xy xy T xy

A E Z v f t dt v p t dt        (2.59)
 

2.3.1.3 Pure Endowment 

Insurance company made payments of benefits after n years from the starting date 

of the contract for which is called n-year pure endowment insurance if and only if the 

insureds are alive at the end of n years. The actuarial present value of an n-years pure 

endowment insurance for single life, joint-life and last-survivor statuses are given in 

equations (2.60) - (2.62), respectively. While in joint - life status the benefit is paid if 

the first death does not occur within n years, in last survivor status the benefit is paid 

if the second death does not occur within n years.  

 
   1

:

n

n x n xx n
A E v p    

(2.60)
 

    1

:

n

n xy n xyxy n
A E v p 

 (2.61)
 

    1

:

n

n nxy xyxy n
A E v p   

(2.62) 

 

2.3.1.4 Endowment Life Insurance 

Endowment life insurance or mixed life insurance, which has characteristics of 

risk and savings, is one of the traditional insurance contracts. It is considered as a 

combination of the term insurance and pure endowment insurance. The premiums 

can be higher than other life insurance products since the survival and failure 

probabilities are used in this type of life insurance. In n-year endowment insurance 

policy, if the insured person dies within n years, he or she gets a benefit which is 

equal to the benefit of an n-year term insurance policy. On the other hand, if the 

insured survives at the end of n years, the insured gets a benefit which is equal to the 

benefit of an n-year pure endowment insurance.   
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In discrete model, the benefit is paid to the insured or beneficiary at the policy 

anniversary immediately following the death, and the random present value for this 

case is a decreasing function of K(x), is denoted as; 

               

           (2.63)
 

 

As mentioned above, an n-year endowment policy is the combination of an n-year 

term insurance and n-year pure endowment insurance policies. This is valid for all 

cases (joint -life and last - survivor statuses), and they are given in equations (2.64) - 

(2.66).  

 
1 1

1 1

:
0 0

1    1

: :

( ( ) ) ( ( ) )

       

n n
k n k n

k x n xx n
k k n k

x n x n

A E Z v P K x k v P K x k v q v p

A A

  
 

  

      

 

  
  

(2.64) 

 
1 1

1 1

:
0 0

 1     1

::

( ( ) ) ( ( ) )

       

n n
k n k n

k xy n xyxy n
k k n k

xy nxy n

A E Z v P K xy k v P K xy k v q v p

A A

  
 

  

      

 

  
     (2.65)

 

1 1
1 1

:
0 0

 1     1

: :

( ( ) ) ( ( ) )

       

n n
k n k n

k nxy xy xyxy n
k k n k

xy n xy n

A E Z v P K xy k v P K xy k v q v p

A A

  
 

  

       
 

 

  
       (2.66)

 

In continuous model, the death benefit is paid to the insured immediately on 

death. As in discrete model, the random present value is the function of T(x), and it is 

denoted in equation (2.67). The actuarial present values for three statuses are given in 

equations (2.68) - (2.70). 

         

         

T

n

v T n
Z

v T n

 
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                            (2.67)

 

1        -1
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 
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   : ( ) ( ) ( )

0 0

1 1
:

:

( )

       

n n

t n t n
x n T x T x T x n x

n

x n
x n

A E Z v f t dt v f t dt v f t dt v p

A A



      

 

  
  

(2.68)
 

   : ( ) ( ) ( )

0 0

1
1

:
:

( )

       

n n

t n t n
xy n xy T xy T xy T xy n xy

n

xy n
xy n

A E Z v f t dt v f t dt v f t dt v p

A A



      

 

  
 (2.69)

 

   :
( ) ( ) ( )

0 0

1
1

:
:

( )

       

n n

t n t n
xy n xy nT xy T xy T xy xy

n

xy n
xy n

A E Z v f t dt v f t dt v f t dt v p

A A



      

 

  
          (2.70) 

 

2.3.2 Life Annuities for Multiple Life Statuses  

In non-random setting a series of payments, which can be equal to each other, 

increasing or decreasing made at regular intervals in time are known as annuity 

certain. A sequence of payments are made (or received) at equal intervals over the 

future lifetime of a person in life annuity. The recipient is called an annuitant 

(Dickson et al, 2009). Since annuities are contingent upon the survival of the 

annuitant which are opposite of life insurances, they are called life annuities also 

known as contingent annuities. A series of benefit payments are contingent on 

survival of policyholder's life, and the future lifetime of the annuitant is unknown, so 

the present values of life annuity benefits are  unknown. Generally, life annuities are 

preferred by older people to obtain additional income during retirement. Buying a 

whole life annuity guarantees that the income will not run out before the annuitant 

dies (Dickson et al, 2009). Life annuities can be classified in various ways according 

to the period covered by annuity. Also like in life insurances, these annuities are 

examined within discrete or continuous model whether payments are made 

continuously or at equal interval. The essential ingredients of the life annuities are 

considered as survival probability and present value of payments. In terms of the 

time of payments, life annuities can be examined basically in three different models. 

If payments are made at the beginnings of each period, then they are called as 

annuities due. If the payments are made at the end of each period, these are known as 
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annuities immediate. The third model is continuous model. In this model, the 

payments are made continuously. Apart from these, payments can be made semi – 

annually, quarterly or monthly etc. but we will not be interested in annuities payable 

more frequently than once a year for calculation of benefits. We are interested in 

annually premium payments. Annuities due and immediate are evaluated as discrete 

models. We wil consider annuity due under the discrete and continuous models of 

life annuity. We examined them for a single life, then we extended them to the  joint 

life and last survivor statuses of two lives. In case of two lives, the major products 

are considered as joint life annuity and last survivor annuity which are particularly 

preferred by married couples. A joint life annuity continues as long as two lives 

survive, and it stops in case of the occurrence of the first death. In a last survivor 

annuity, payments continue to be made provided that at least one of the lives remains 

alive. In discrete model, the random present value is a function of K(x) while in 

continuous model, it is the function of T(x)  We deal with the present values of 

commonly used types of life annutities as net single premiums.  

2.3.2.1 Whole Life Annuity 

A whole life annuity continues until the annuitant dies. When the premiums are 

paid annually, there are a total of K(x)+1 payments since discrete life annuities 

depend on curtate future lifetime of (x). The random present value of a whole life 

annuity - due is given as 

( ) 1K x
Y a


   

(2.71)
 

The actuarial present value of whole life annuity - due for single life is 

0

1k x
x k x

k

A
a v p

d






    

(2.72)
 

The present value function of whole life annuity due paid at the beginning of the 

each period as long as both (x) and (y) are alive. Present value function for joint life 

status is defined as follows; 

  1xy K xy
Y a


   

(2.73)
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The actuarial present value for the status is 

0

1 xyk

xy k xy

k

A
a v p

d






    

(2.74)
 

The whole annuity due for the last survivor status provides payments at beginning 

of the year as long as at least one of (x) and (y) survive and for present value random 

variable of this status, we have; 

  1xy K xy
Y a


   

(2.75) 

The expected present value of whole life annuity due can be obtained as follows; 

0

1
xyk

kxy xy
k

A
a v p

d






    

(2.76) 

The continuous whole life annuity provides a continuous payment stream at the 

rate of 1 per year as long as (x) survives. In this case the random present value of the 

payments is the function of complete future lifetime T(x) and it is stated as;  

( )T x
Y a  

(2.77)
 

The actuarial present value of the annuity for single life can be obtained by using 

current payment technique and also using relationship between annuity and 

insurance. 

0

1 xt
x t x

A
a v p dt






   
(2.78) 

In the joint-life status, the present value function of continuous whole life annuity  

becomes a function of time-until-failure T(xy). 

( )T xy
xyY a

 (2.79) 

The actuarial present value of this joint-life annuity is 
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0

1 xyt
xy t xy

A
a v p dt





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(2.80) 

In continuous model of whole life annuity, the random present value for the last- 

survivor status is stated as a function of  T xy . 

( )
 

T xy
xyY a

 (2.81) 

The expected present value of the last - survivor annuity is given as follows;
 

0

1 xyt
xy t xy

A
a v p dt






 
 

(2.82) 

2.3.2.2 Temporary Life Annuity 

An n–year temporary life annuity continues making payments while annuitant 

survives during the next n years, and temporary life annuities are also known as term 

life annuities. Payments cease on the death of the annuitant and the expiration of n 

years after the date of issue. The random present value of an n-year temporary life 

annuity due of 1 per annum for life (x) can be written as follows: 

( ) 1

( ) 1

1
         ( ) -1

1
                     ( )

K x

K x

n

n

v
a K x n

d
Y

v
a K x n

d





 
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 
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  

(2.83) 

The actuarial present value of benefit of a unit payment of the annuity is denoted by 

:x n
a . 

1
:

:
0

1n
k x n

k xx n
k

A
a v p

d






                                                                

(2.84) 

The subscript in equation (2.84) indicates that the annuity is payable for a life 

aged (x) and payments are not made more than n years. Also, the actuarial present 

value can be calculated by using net single premium related to endowment life 
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insurance. The n–year joint-life annuity make payments at the beginning of the years 

while both spouses are alive in the case of a married couple; it is defined as; 

1
:

:
0

1n
xy nk

k xyxy n
k

A
a v p

d






 

 
(2.85) 

The n – year last - survivor annuity pays benefit of a unit payment at the start of 

the years provided that either spouse is alive, and its actuarial present value is given 

as in equation (2.86); 

1
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0
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k xyxy n
k
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d


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
 

 
(2.86) 

Under the continuous model, the random present value of an n–year temporary 

life annuity is stated as follows depending on T(x). 

 

( )1
        ( )

1
             ( )

T x

n

T x
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a T x n
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a T x n





 
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 
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(2.87) 

The actuarial present value of benefit for a unit payment of the annuity is denoted 

by 
:x n

a . As it can be seen in the notations, bar is used to denote continuous payment. 
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(2.88) 

The expected present value of n–year joint life annuity under continuous model is 

calculated as follows; 

:

:
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xy nt

t xy

A
a v p dt




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(2.89) 

Similarly, the actuarial present value for n–year last survivor annuity of 1 per year 

is as in equation (2.90); 
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:
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a v p dt




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(2.90) 

2.4 Reversionary Annuities 

A reversionary annuity is a special type of annuities which is contingent on two 

lives. Usually couples are interested in this kind of annuity, and a pension package 

can cover the reversionary annuity benefit as a part of pension plan. In reversionary 

annuity, benefits are paid to a specified life as long as this person remains alive, but 

only after another specified life has been failure. In this case, the person who 

receives the payment is referred to as annuitant and the other one is called insured. 

So it can be stated that benefits are not payable so long as the insured survives. If we 

suppose that a unit benefit payment is made to life-aged (y) on the death of (x) so 

long as (y) survives, then the present value of continuously payable reversionary 

annuity is as follows: 

   
   

   

a          

0                 

T y T x
T x T y

Z
T x T y


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 
  

(2.91) 

Assuming independent future lifetimes, the expected present value of this 

reversionary annuity is 

 
0

    t
x y y tt xya E Z v p x t a dt


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(2.92) 

2.5 Contingent Insurances 

In contingent insurances, the payments are made contingent upon the occurence of 

the deaths in a specific order. If the first died is x when y is alive, the actuarial 

present value of contingent insurance is calculated as in equation (2.93). 

 
1

0

  t
xy t y t xA v p p x t dt



 
  

(2.93) 
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In addition, if x dies after the death of y, the actuarial present value of this contingent 

insurance as follows;
 

 
2

0

  t
xy t y t xA v q p x t dt



   

The relationships of contingent insurances according to order of death x and y are 

given in equation (2.95) - (2.97). That is, at first equality, the actuarial present value 

of continuous whole life insurance for life x is the summation of the actuarial present 

value for the case in which if x dies when y is alive and the actuarial present value for 

the case in which if x dies after the death of y. 

1 2

x xy xyA A A    (2.95) 

1 1

xy xy xyA A A   (2.96) 

2 2

xy xy xyA A A   (2.97) 
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CHAPTER THREE 

COPULA 

 

In Chapter 2, survival distributions and premium calculations related to various 

life insurance and annuity products for multiple life statuses were examined 

depending on the independence assumption. In pricing joint-life and last-survivor 

products, the remaining lifetimes of the individuals are assumed to be mutually 

independent since it provides convenience in terms of computation. But, this 

assumption can not be realistic if the policy is issued to workers in the same 

workplace, a married couple or twin. The workers, spouses and twins can be exposed 

to the same risks since they spend time together. There are three types of dependence 

for such situations. One of them is instantaneous dependence which implies 

occurence of two events at the same time such as car or plane crash. The long-term 

dependence structure may appear when the individuals have a common risk 

environment. For instance, two partners often come from the same neighbourhood 

which determines their common risks (Spreeuw and Wang, 2008). The death of one 

life changes the remaining lifetime of other individual but this effect decreases over 

time. This case is explained by short-term dependence. The "broken heart syndrome" 

(as researched in Parkes et al., 1969 and Jagger and Sutton, 1991) is the most well 

known example of short - term dependence (Spreeuw and Wang, 2008). 

 

In this chapter, we deal with dependent future lifetime models for a pair of lives. 

Generally common shock models, multiple state models and some varieties of 

copulas depending of the nature of the data  are used to model dependence in 

mortality. Hougaard (2000) proposes that short-term dependence structure are more 

appropriate than other dependencies for married couples. Marshall and Olkin (1988) 

suggests that common shock models are suitable to model instantaneous dependence. 

The study of Spreeuw (2006) has demonstrated that most common Archimedean 

copulas present long-term dependence. Youn and Shemyakin (2001) show that a 

copula model combined with physical age difference of two partners shows better 

performance than ignoring the age difference. Also, the same authors combined 

Bayesian approach and copula functions to model the dependence structure. In this 
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thesis, we studied with some types of copulas for modelling of dependency structure 

of mortality. 

 

3.1 Copula Models 

In recent years, the copula models have became an important part of actuarial 

science to construct dependencies between random variables and to calculate 

premium computations. The thing that makes it so appealing is its simplicity. Also 

using copulas, it is possible to construct various dependence structures by using 

parametric or non-parametric models of the marginal distributions of lifetimes. A 

copula is a function that links univariate marginals to their multivariate distribution 

(Frees and Valdez, 1998). A copula function defined as    
2

: 0,1 0,1C   satisfies 

the following properties. 

1.    ,0 0, 0C u C u   for any  0,1u           

2.    ,1 1,C u C u u   for any  0,1u  

3. For all 1 20 1u u    and 1 20 1v v    

4.             1 1 2 2 2 2 1 2 2 1 1 1, , , , , , 0C u v u v C u v C u v C u v C u v       

The first of them implies the groundedness property, and the last one is 2-

increasing property. The presence of both properties gives the non – decreasing 

property in each place. The arguments u and v are univariate distribution functions 

denoted as  1F x  and  2F y , then the copula function     1 2,C F x F y  produces a 

joint distribution function at  ,x y ,  ,F x y  . More generally any joint distribution 

functions  ,H x y  with continuous marginal distribution functions introduces a 

general representation as a copula function by using Sklar's theorem. 

Sklar's Theorem (Sklar, 1959) ; 

Let  1F x  and  2F y  be marginal distribution functions for every   2,x y  . Then  
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i. If 'C  is any subcopula whose domain is    1 2Range F Range F , then 

    1 2' ,C F x F y  is a bivariate distribution function whose marginals are 

 1F x  and  2F y . 

ii. On the contrary, if  ,F x y is a bivariate distribution function whose 

marginals are  1F x  and  2F y , a unique subcopula 'C  exists with domain 

   1 2Range F Range F ; 

      1 2, ' ,F x y C F x F y  

 

Based on these two definitions, if  1F x  and  2F y  are continuous then the 

subcopula is a copula. Otherwise, a copula C exists for every 

     1 2,u v Range F Range F   such that    , ' ,C u v C u v . Then a unique 

representation of a copula function as follows: 

 

      1 1

1 2, ,C u v H F u F v   (3.1) 

 

where 1

1F   and 1

2F   are quasi - inverses of the marginals. 

 

There are several copula families including Gaussian, Student-t, Archimedean etc. 

Archimedean copula famiy includes Frank, Gumbel-Hougaard and Clayton copulas. 

The simplest way to obtain Gaussian and Student-t copula families is to use the 

inverse function of distribution families given by equation (3.1). For bivariate 

version of the Gaussian copula can be represented by this way as follows: 

 

      
  

 

1 1

2 1 1

2 2

22

, :

1
                 exp

2 12 1

u v

C u v u v

x xy y
dxdy





 

 

 

 

 

   

   
  

   
 

  (3.2) 

 

where  x  is the standart normal distribution function and  is the correlation 

coefficient between the marginals. Alike the bivariate version of Student-t copula is 

obtained as 
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      
  

 

1 1

2 1 1

,

1 /22
2 2

2

, : ,

1 1
                    

2 1
1

1

t u t v

C u v t t u t v

dxdy

x xy y

 

   



 

  

 

 

 



 




    

 
  

   (3.3) 

 

where   t x is the function of t distribution with   degrees of freedom and  is the 

correlation coefficient between the marginals. On the other hand, generator function 

  which uniquely determines its copula is used to obtain Archimedean copulas. The 

function H is called as generator of copula functions. Suppose that    : 0, 0,1    

is a strictly decreasing convex function so that  0 1  . Then the general way to 

obtain Archimedean copulas is as follows; 

 

        1 1, : ,      , 0,1C u v u v u v        (3.4) 

where   is the parameter of association. Table 3.1 represents the commonly used 

Archimedean copulas, their generators and bivariate versions. 

 

Table 3.1 Archimedean copulas and their generators 

Family Generator

 t  

Dependence 

Parameter   

Bivariate Version 

Independence 

 
ln t  - uv  

Frank (1979) 1
ln

1

te

e








 

     1 11
ln 1

1

u ve e

e

 



  
 
 
 

 

Gumbel (1960), 

Hougaard (1986) 

 

 ln t


  1   
    

1/

exp ln lnu v


     
 

 

Clayton (1978), 

Cooke - Johnson 

(1981), Oakes 

(1982) 

1t    1    
1/

1u v


 


    
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In the Archimedean copulas, the measure of association is calculated by two 

measures. These are Kendall's and Spearman's correlation coefficients. Let 1X  and 

2X  be any two random variables, and 
1g  and 2g  be strictly increasing over the range 

of 1X  and 2X . Then the study of Schweizer and Wolff (1981) show that the 

transformed random variables of 1X  and 2X such that  1 1g X  and  2 2g X  have the 

same copula as 1X  and 2X . The authors also showed that Kendall's and Spearman's 

correlation coefficients could be stated in terms of copula function. Kendall's 

correlation coefficient is defined as  

 

         
   

* * * *

1 2 1 1 2 2 1 1 2 2, 0 0

                , , 1

X X P X X X X P X X X X

C u v dC u v

        

 
 (3.5) 

 

where  .  is the laplace transformation and P  is the probability function. 

Spearman's correlation coefficient is defined as  

 

        

  

1 2 1 1 2 2, 12 1/ 2 1/ 2

                 12 ,

X X E F x F x

C u v uv dudv

   

 
 (3.6) 

 

This measure depends on both copula and marginal distributions. Table 3.2 

summarizes the calculation of this two correlation measures for Archimedean 

copulas. It should be note that the correlation coefficient of Frank's copula depends 

on Deibye functions which is defined as  

 

 
0

          1,2
1

x k

k k t

k t
D x dt k

x e
 

  (3.7) 

 

There is one-to-one relationship between the correlation coefficients and 

association parameter  .  As it is shown in Table 3.1, Clayton /Cook-Johnson/ 

Oakes and Gumbel-Hougaard copula families have the limited dependence parameter 
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space. These families allow only non - negative correlations. On the other hand, 

Frank's family allows both positive and negative dependence. 

 

Table 3.2 Measures of dependence of Archimedean Copulas 

Family Bivariate Copula Kendall's   Spearman's   

Independence 

 

uv  0 0 

Frank (1979)   1 11
ln 1

1

u ve e

e

 



  
 
 
 

 
  1

4
1 1D 


  

 

    2 1

12
1 D D 


   

 

Gumbel 

(1960), 

Hougaard 

(1986) 

 

    
1/

exp ln lnu v
     

 

 

11    No closed form 

Clayton 

(1978), Cooke 

- Johnson 

(1981), Oakes 

(1982) 

 
1/

1u v


 


    
2



 
 

Complicated 

form 

 

Correlation measures give useful informations about dependence and association 

between the random variables in terms of copula functions. For this reason, it is 

possible to specify the copula forms by using these measures. Let 

   11 21 1 2, ,..., ,n nX X X X  be a random sample of bivariate observations. Assume that 

F  be the distribution function of Arcimedean copula C . We can identify the form of 

  by using the procedure of Genest and Rivest (1993). This procedure works with 

unobserved random variable  1 2,i i iZ F X X  has distribution function 

   iK z P Z z  . It has been shown that in the study of Genest and Revest (1993), 

this distribution function is related to the generator function of Archimedean copula. 

 

 
 

 '

z
K z z

z




   (3.8) 

 

The algorithm of identifying   is as follows: 
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Step1. Kendall's   is estimated by using nonparametric or distribution-free 

techniques 

  
1

1 1 2 2
2

n

n i j i j

i j

sign X X X X




         
  

Step2. Construct a nonparametric estimate of K 

 Let     1 2 1 1 2 2#  of , :  and / 1      1,...,i i j j i j iZ X X X X X X n i n      

represents the pseudo - observations. 

 The estimation of K is constructed as  nK z   proportion of 'iz s z . 

Step3. Construct a parametric estimate of K by using  

 
 

 '

z
K z z

z





   

In this thesis, we are interested in the future life lengths of several lives. Since our 

application is the modelling of dependence structure of married couples, we restrict 

our interest with two lives. Let 1L  and 2L  be the associated pairs of lives during a 

limited period of time T . Let 1a  and 2a  represent the entry ages for lives 1L  and 2L , 

respectively. In survival analysis, this situation is called as left-truncation. In 

addition, if the life 
jL  is terminated by before the age 

ja T  or by the end of the 

observation period, the death will not be observed which represents the right - 

censoring. The right-censoring is generally represented by an indicator function such 

that  

0,   (censoring)

1,   (no censoring)

ij

ij

ij

t T
c

t T


 



 

In terms of our application, it is important to estimate the future life length 

probabilities for given entry ages. For joint-life status, the probability of future life 

length for two lives 

 

    
1 2

1 1 2 2 1 1 2 2

; ,

min , | min , 0

JLp t a a

p X a X a t X a X a      
 (3.9) 
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and this probability for last - survivor status is  

 

    
1 2

1 1 2 2 1 1 2 2

; ,

max , | min , 0

LSp t a a

p X a X a t X a X a      
 (3.10) 

To estimate  1 2; ,JLp t a a  and  1 2; ,LSp t a a , it requires the estimation of bivariate 

survival function  1 2,S t t  which defined in Chapter 2. The estimations of  1 2,S t t  

for  1 2; ,JLp t a a  and  1 2; ,LSp t a a  are given in equations (3.11) and (3.12), 

respectively. 

 
 

 
1 2

1 2

1 2

,
; ,

,
JL

S a t a t
p t a a

S a a

 
  (3.11) 

 
     

 
1 2 1 2 1 2

1 2

1 2

, , ,
; ,

,
LS

S a a t S a t a S a t a t
p t a a

S a a

     
  (3.12) 

Estimation of  1 2,S t t  is constructed in two approaches. In first approach, the 

marginal survival functions  1 1S t  and  2 2S t  are estimated by using some 

nonparametric methods such as Kaplan-Meier or by using some parametric models 

such as Gompertz or Weibull distribution. In second approach, the estimated survival 

functions are combined with some copula models. In this approach,  the association 

parameter   is estimated by maximum likelihood method. In second approach, the 

bivariate survival function is estimated by using a copula.  

      1 2 1 2 1 1 1 2 2 2, : , , : , : ;S t t C S t S t       (3.13) 

where j  are parameters of the margins and   is the association parameter. Let 

 1 2 1 2 1 2, , , , ,i i i i i i iy a a t t c c  represents the vector of associated pair of lives  1 2,i iL L . 

Then the likelihood function for parameter vector  1 2, ,     in case of presence 

of right - censoring is as follows 
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     
 

 
 

 
  

1 2

1 2

1 2 1 2

1

1 2 1 2 1 1 2 1 2

1

1 1 1

2 1 2 1 2 1 2 1 2

| , ; , , ; ,

, ; , , ; ,

i i

i i

i i i i

c cn
c c

i i i i

i

c c c c

i i i i

l y f x x f x x

f x x S x x

    

   





  

 
 (3.14) 

where 

   

   

2

1 2 1 2 1 2 1 2

1 2

1 2 1 2 1 2 1 2

, ; , , ; ,

, ; , , ; ,j

j

f x x S x x
x x

f x x S x x
x

   

   



 





  

and 
ij ij ijx a t  . 

One of the most commonly used model is two parameter Weibull distribution 

which survival function denoted as  

    exp ,         0

j

j j j

j

t
S t p X t t





   
       

   

 (3.15) 

where 
j  and 

j  represent scale and shape parameters, respectively. The Gumbel- 

Hougaard copula for this model is  

      
1 2

1/

1 2 1 1 1 2 2 2

1 2

, ; , , ; , ; exp
t t

S t t C S t S t

 

    
 

      
        
       

 (3.16) 

In addition, the studies of Youn and Shemyakin (2001) showed that some 

additional dependence between the couples mortalities could be captured by using an 

additional factor d  which describes the age difference between husband and wife. In 

this case, the association parameter   depends on d  while in the original case   is 

not allowed to depend on d . The choice of Hougaard's copula versus Frank's copula 

is explained in Youn and Shemyakin (2001) as to get a convenient functional form of 

dependence  d  . The Hougaard's copula with Weibull survival functions with 

  1d   is described as  
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        
     

1 2
1/

1 2 1 1 1 2 2 2

1 2

, ; , , ; , ; exp

d
d d

d

t t d
S t t d C S t S t d d


   

    
 

      
          
       

 (3.17) 

In 3.17, only the parameter of association changes with d  where   is a Cauchy-type 

function   2
: , 1

1
d

d


  


 


 with hyper parameters  ,  .  
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CHAPTER FOUR 

APPLICATION 

 

In this chapter, we analyzed the premiums of last - survivor insurances and 

annuities for married couples under the independence and dependence assumption of 

future lifetimes. Our purpose is to examine the impacts of different mortality 

assumptions on the premiums of last - survivor insurance and annuity. We studied 

the modelling of dependency between married couples for Turkey by using the 

dependence structures of the studies suggested by Frees, Carriere and Valdez (1995), 

Youn and Shemyakin (2001). The calculations are made by using the average ages of 

females and males from the mortality table of Turkey obtained by Taylan (2012). To 

construct and analyze the dependence structure of the future lifetimes for married 

couples, we used Hougaard's copula. The reason of choosing of this copula model is; 

when the Weibull marginals are used, it provides a convenient functional form of 

dependence for ( )d  . Hence, the association parameter   only depends on age 

difference factor "d", not marginal distributions. Also, we investigated the 

importance of the age difference factor between spouses in pricing of the last-

survivor products for Turkey.  

To illustrate the importances of dependence and age difference factor, we studied 

with three different models. For all models, we assumed that the marginal survival 

functions of females and males are defined by two - parameter Weibull distributions 

with scales i  and shapes i , where i=1 represents the male mortality and i=2 to 

female mortality. We calculated the net single premium of last - survivor insurance 

and annuity for whole life for all models. In Model I, it is assumed that the 

mortalities of the spouses are independent. Since there is no association in this 

situation, the value of   is 1. In model II,  the mortalities of the spouses are 

dependent, and   is fixed. In Model III, the mortalities of the spouses are dependent 

as in Model II but   depends on age difference of spouses. The age difference is 

calculated as M FE E , where ME  and FE  denote the entry ages of males and 

females, respectively. In this model, the values of parameter ( )d  were calculated 
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by help of the function 
2

( ; , ) 1
1

a d
d


 


 


 where   and   are the hyper-

parameters. In literature, such studies perform with the same data. It is not easy to 

find the data to carry out these analyses. To obtain the calculations, we used the same 

data with  Frees, Carriere and Valdez (1995), Youn and Shemyakin (2001). The data 

set is obtained from a large Canadian insurance company which has 14,947 last - 

survivor annuity contracts. The time period of these contracts is December 29, 1988 

through December 31, 1993. Since there are some repetitive and single sex contracts, 

11,457 contracts are used to obtain results.  

In parameter estimations, we assumed that the lifetimes of married couples live in 

Turkey has the same variance with this data set. Also, the values of association 

parameter are estimated by using the same data. To calculate the Weibull parameters 

for Turkey, we shifted the mean of the distributions of lifetimes for males and 

females according to the mortality table obtained by Taylan (2012). A random 

variable X has a two - parameter Weibull distribution with parameters   and   if 

the pdf of X is 

 
1 exp          0

; ,

0                                          0

x
x x

f X

x









   


   
    

     




 (4.1)  

where 0, 0   . If the random variable X has a weibull distribution, the mean and 

variance is calculated as follows, respectively 

 
1

 1E X 


 
   

 
  (4.2) 

   
2

22 22 1 2
 1 1  1V X E X 

  

       
                    
        

 (4.3)  

Then, to estimate the parameters we used the property of Gamma function as,  

   1  x x x     (4.4) 
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Finally, to solve the equation 2 2
 1



 
  
 

 we used the iterative methods. The 

parameter estimates for all models are given in Table 4.1. As it is seen from this 

table, the association parameter   has the maximum value at Model III. In addition, 

the Model II has bigger   value than Model I. This means that, there is a dependent 

structure between the lifetimes of males and females so that we can not assume they 

are independent. Moreover, with the age difference factor some additional 

dependence can be captured. Since there is a direct relationship between   and 

Kendall's   such that 
1





 . Since the value of   increases with high  , the 

dependent measures of the models can be ordered as Model III > Model II > Model I. 

To calculate the actuarial present values, firstly we calculated the survival 

probability of the last–survivor status corresponding to the curtate future lifetime of 

the status for each model. Then by using the products of the discount rates and the 

probabilities, we calculated the actuarial present value of last - survivor annuity. 

0

k

kxy xy
k

a v p




  (4.5) 

where the present value factor 
1

1
v

i



 and interest rate is i = 0.05. The actuarial 

present values for all models are given in Tables 4.2 - 4.4. Also, to compare the 

actuarial present values of last - survivor annuities for all three models, we calculated 

the ratios of dependent to independent models given in Tables 4.5 and 4.6. From 

Table 4.5, it is seen that, when dependent mortality model is used and age difference 

is negative, there is some reduction in annuity values until the female age 75.  After 

the female age 75, the annuity values are increased. On the other hand, when age 

difference is positive, the annuity values generally tend to be increased. The same 

comments are valid for Table 4.6. Depending on these comments and Figures 4.1-

4.4, we can conclude that, the ratios of actuarial present values are change with both 

time and age difference. So, the mortalities of women and men are dependent. 
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Table 4.1 Parameter estimations for all models 

 Parameters Model 1 Model 2 Model 3 

 

Male 1  79.104 79.231 

 
79.192 

 

1  7.192 6.971 7.037 

 

Female 2  83.773 83.644 83.604 

2  8.924 9.236 9.335 

 

 

 

Association 

(0)  1 

 

1.64 

 

2.02 

 

(5)  1 

 

1.64 

 

1.76 

 

(10)  1 

 

1.64 

 

1.33 

 

  0.021 

 

0 

 

0 

 

  1.018 0.64 0 

 

 

Table 4.2 Actuarial present values of last - survivor annuity  for Model  I 

Female 

Age 

Age Difference 

-10 -5 0 5 10 

50 17.5666 17.1081 16.6941 16.3492 16.0786 

55 16.6611 16.0991 15.5977 15.1854 14.8659 

60 15.5627 14.8912 14.3013 13.8247 13.4608 

65 14.2707 13.4951 12.8265 12.2975 11.9002 

70 12.8108 11.9509 11.2249 10.6649 10.2510 

75 11.2375 10.3278 9.5749 9.0113 8.6006 

80 9.6291 8.7123 7.9642 7.4271 7.0387 

85 8.0709 7.1893 6.4642 5.9840 5.6343 

90 6.6368 5.8181 5.0782 4.6958 4.4043 
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Table 4.3 Actuarial present values of last - survivor annuity  for Model  II 

Female 

Age 

Age Difference 

-10 -5 0 5 10 

50 17.0484 16.5675 16.2741 16.1730 16.2176 

55 16.1203 15.5508 15.2169 15.1206 15.2002 

60 15.0586 14.3930 14.0135 13.9195 14.0328 

65 13.8809 13.1134 12.6801 12.5799 12.7188 

70 12.6164 11.7454 11.2487 11.1290 11.2774 

75 11.3037 10.3353 9.7677 9.6137 9.7495 

80 9.9876 8.9379 8.2950 8.0971 8.1957 

85 8.7117 7.6051 6.8772 6.6403 6.6797 

90 7.5072 6.3635 5.4846 5.2475 5.2175 

 

Table 4.4 Actuarial present values of last - survivor annuity  for Model  III 

Female 

Age 

Age Difference 

-10 -5 0 5 10 

50 17.2430 16.4983 16.1377 16.1498 16.1616 

55 16.3312 15.4674 15.0671 15.1011 15.0688 

60 15.2658 14.2971 13.8587 13.9072 13.8033 

65 14.0549 13.0094 12.5310 12.5773 12.3780 

70 12.7222 11.6398 11.1160 11.1356 10.8305 

75 11.3090 10.2362 9.6592 9.6256 9.2245 

80 9.8708 8.8530 8.2150 8.1078 7.6410 

85 8.4684 7.5409 6.8283 6.6443 6.1576 

90 7.1524 6.3247 5.4692 5.2435 4.8031 
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Table 4.5 Ratio of actuarial present values of last - survivor annuities (Model II / Model I) 

Female 

Age 

Age Difference 

-10 -5 0 5 10 

50 0.9705 0.9684 0.9748 0.9892 1.0086 

55 0.9675 0.9659 0.9756 0.9957 1.0225 

60 0.9676 0.9665 0.9799 1.0068 1.0425 

65 0.9727 0.9717 0.9886 1.0230 1.0688 

70 0.9848 0.9828 1.0021 1.0435 1.1001 

75 1.0059 1.0007 1.0201 1.0668 1.1336 

80 1.0372 1.0259 1.0415 1.0902 1.1644 

85 1.0794 1.0578 1.0639 1.1097 1.1855 

90 1.1311 1.0937 1.0800 1.1175 1.1846 

 

 

 
Table 4.6 Ratio of actuarial present values of last - survivor annuities (Model III / Model I) 

Female 

Age 

Age Difference 

-10 -5 0 5 10 

50 0.9816 0.9643 0.9667 0.9878 1.0051 

55 0.9802 0.9608 0.9660 0.9944 1.0136 

60 0.9809 0.9601 0.9690 1.0060 1.0254 

65 0.9849 0.9640 0.9770 1.0227 1.0401 

70 0.9931 0.9740 0.9903 1.0441 1.0565 

75 1.0064 0.9911 1.0088 1.0682 1.0725 

80 1.0251 1.0161 1.0315 1.0916 1.0856 

85 1.0492 1.0489 1.0563 1.1103 1.0929 

90 1.0777 1.0870 1.0770 1.1166 1.0905 
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Figure 4.1 Scatterplot3D of female age, age difference and ratio of  actuarial present values of 

annuities for Model II / Model I 

 

 
Figure 4.2  Scatter3D plot of female age, male age and ratio of  actuarial present values of annuities 

for Model II / Model I 

3D Scatterplot of APV
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Figure 4.3 Scatterplot3D of female age, age difference and ratio of  actuarial present values of 

annuities for ModelIII / Model I 

 
Figure 4.4 Scatter3D plot of female age, male age and ratio of  actuarial present values of annuities for 

Model III / Model I 

3D Scatterplot of APV
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After the calculation of actuarial present values of last-survivor annuities 
xy

a  for 

all three models, with the help of insurance - annuity relationship we calculate the 

actuarial present values of last - survivor insurances 
xy

A . 

1  
xy xy

A da   (4.6) 

where 
1

i
d

i



 and i = 0.05.  The actuarial present values of last - survivor insurance 

for all models are given in Table 4.7 - 4.9. As in annuities, similarly we calculated 

the ratios of premium values of insurances. These ratios are given in Table 4.10 and 

Table 4.11. Since premium of insurance is a decreasing function of premium of 

annuity, the comments of insurance tables will be inverse of annuity's. From these 

tables, we can see that, the premium values under the dependence assumption are 

higher than independence assumption. That is, independence assumption 

underestimates the premium values compared to dependence case. We also give the 

3-dimensional plots of ratios of premium values for insurance in Figures 4.5 - 4.8. 

The dependence structure also can be shown from these figures as in previous 

figures. 

Table 4.7 Actuarial present values of last - survivor insurance  for Model  I 

Female 

Age 

Age Difference 

-10 -5 0 5 10 

50 0.1635 0.1853 0.2050 0.2215 0.2343 

55 0.2066 0.2334 0.2572 0.2769 0.2921 

60 0.2589 0.2909 0.3189 0.3417 0.3590 

65 0.3204 0.3574 0.3892 0.4144 0.4333 

70 0.3899 0.4309 0.4655 0.4921 0.5118 

75 0.4648 0.5082 0.5440 0.5709 0.5904 

80 0.5415 0.5851 0.6207 0.6463 0.6648 

85 0.6156 0.6576 0.6922 0.7150 0.7317 

90 0.6839 0.7229 0.7582 0.7764 0.7903 
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Table 4.8 Actuarial present values of last - survivor insurance  for Model  II 

Female 

Age 

Age Difference 

-10 -5 0 5 10 

50 0.1882 0.2111 0.2250 0.2298 0.2277 

55 0.2324 0.2595 0.2754 0.2799 0.2762 

60 0.2829 0.3146 0.3327 0.3372 0.3318 

65 0.3390 0.3755 0.3962 0.4009 0.3943 

70 0.3992 0.4407 0.4643 0.4700 0.4630 

75 0.4617 0.5078 0.5348 0.5422 0.5357 

80 0.5244 0.5744 0.6050 0.6144 0.6097 

85 0.5851 0.6378 0.6725 0.6838 0.6819 

90 0.6425 0.6969 0.7388 0.7501 0.7515 

 

Table 4.9 Actuarial present values of last - survivor insurance  for Model  III 

Female 

Age 

Age Difference 

-10 -5 0 5 10 

50 0.1789 0.2143 0.2315 0.2309 0.2304 

55 0.2223 0.2634 0.2825 0.2808 0.2824 

60 0.2730 0.3192 0.3401 0.3377 0.3427 

65 0.3307 0.3805 0.4033 0.4011 0.4105 

70 0.3942 0.4457 0.4706 0.4697 0.4842 

75 0.4615 0.5126 0.5400 0.5416 0.5607 

80 0.5299 0.5784 0.6088 0.6139 0.6361 

85 0.5967 0.6409 0.6748 0.6836 0.7068 

90 0.6594 0.6988 0.7396 0.7503 0.7713 
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Table 4.10 Ratio of actuarial present values of last - survivor insurances (Model II / Model I) 

Female 

Age 

Age Difference 

-10 -5 0 5 10 

50 1.1511 1.1392 1.0975 1.0375 0.9718 

55 1.1249 1.1118 1.0708 1.0108 0.9456 

60 1.0927 1.0815 1.0433 0.9868 0.9242 

65 1.0580 1.0506 1.0179 0.9674 0.9099 

70 1.0238 1.0227 0.9974 0.9551 0.9046 

75 0.9933 0.9992 0.9831 0.9497 0.9073 

80 0.9684 0.9817 0.9747 0.9506 0.9171 

85 0.9504 0.9699 0.9715 0.9564 0.9319 

90 0.9395 0.9640 0.9744 0.9661 0.9509 

 

Table 4.11 Ratio of actuarial present values of last - survivor insurances (Model III / Model I) 

Female 

Age 

Age Difference 

-10 -5 0 5 10 

50 1.0941 1.1565 1.1292 1.0424 0.9833 

55 1.0759 1.1285 1.0983 1.0141 0.9668 

60 1.0544 1.0973 1.0665 0.9883 0.9546 

65 1.0321 1.0646 1.0362 0.9679 0.9474 

70 1.0110 1.0343 1.0109 0.9545 0.9461 

75 0.9929 1.0086 0.9926 0.9487 0.9497 

80 0.9786 0.9885 0.9808 0.9499 0.9568 

85 0.9693 0.9746 0.9748 0.9561 0.9659 

90 0.9642 0.9667 0.9755 0.9664 0.9759 
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Figure 4.5 Scatterplot3D of female age, age difference and ratio of  actuarial present values of 

insurances for Model II / Model I 

 

 
Figure 4.6 Scatter3D plot of female age, male age and ratio of  actuarial present values of insurances 

for Model II / Model I 

3D Scatterplot of APV
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Figure 4.7 Scatterplot3D of female age, age difference and ratio of  actuarial present values of 

insurances for Model III / Model I 

 

 
Figure 4.8 Scatter3D plot of female age, male age and ratio of  actuarial present values of insurances 

for Model III / Model I

3D Scatterplot of APV
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CHAPTER FIVE 

CONCLUSION 

 

Nowadays the multiple life insurance and annuity contracts have a wide range of 

applications. Such contracts are most commonly preferred by couples who jointly 

organize their financial status and by companies to protect their employers lives 

against to unexpected events, etc.. These types of policies cover two or more lives. In 

this thesis, since we are interested in married couples, we restrict ourselves by two 

lives. These contracts are called joint life contract, and they are based on the first or 

second death. Firstly, we are explored the fundamentals of single life insurances to 

better understand the general structure of multiple life insurances. Then, since the 

standard insurance industry assumes that the lives are independent, we studied the 

mathematical background of multiple life insurance and its various types depend on 

the order of death under independence assumption. But, recent studies about future 

lifetimes of multiple lives and pricing of their contracts showed that they are not 

independent. The dependence structure of multiple lives are commonly examined by 

using copula functions. Chapter 3 has detailed information about copulas and its 

usage for joint survivorship. To model the lifetimes, several families of distribution 

functions can be used. Frees, Carriere and Valdez (1995) who studied the same data 

with us showed that the Gompertz distribution provides satisfactory fit to the data. 

According to him, the main reason of this choosing is the data set has older people. 

On the other hand, Shemyakin and Youn (2000) proposed using Gumbel Hougaard's 

copula with Weibull distribution to capture some additional dependence by using age 

difference factor.  We choose Gumbel-Hougaard's copula with Weibull marginal 

distribution function to generate the dependence structure because of its convenient 

functional form to associate the age difference factor and association parameter.  

We used the same data with Frees, Carriere and Valdez (1995) and Shemyakin 

and Youn (2000, 2006). By using the variance and values of association parameters 

of this data, we shifted the mean of the lifetime distribution according to the expected 

lifetimes of males and females obtained by Taylan (2012). In Chapter 4, we 

estimated the parameters of Weibull survival distributions according to three models. 

Then we calculate the actuarial present values of last-survivor annuity and insurance 
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for Turkey with fixed interest rate (0.05). To compare three models, we also 

calculated the ratios of premium values. Our results in Chapter 4 are consistent with 

the studies of Frees and et al. (1995) and Shemyakin and Youn (2000). According to 

our results, when dependent mortality model is used and age difference is negative, 

there is some reduction in annuity values until the female age 75.  After the female 

age 75, the annuity values are increased. On the other hand, when age difference is 

positive, the annuity values generally tend to be increased. In addition, we get the 

similar results with dependent mortality model by using age difference factor. 

Additionally, we computed the actuarial present values of insurance, and we 

compared three models by using their proportions. Moreover, we plotted the three 

dimensional plots of ratio of actuarial present values, female and male ages (and age 

difference). These plots clearly show that the ratios of premium values change with 

the time and age difference. This means that the lifetimes of spouses are not 

independent. In brief, the premium values of annuities for the second death are 

overestimated when the independent joint survival model is used. On the other hand, 

the premium values of insurances are underestimated. So, in such studies using of 

dependent mortality models is better than independent model. Our findings are 

support this idea as previous studies. 
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