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APPLICATIONS OF LOGISTIC REGRESSION WITH MISSING DATA 

 

ABSTRACT 

 

     Missing data is a common problem in statistical studies. While ignoring missing 

data is an option, it is possible to contribute to study by analyzing them with various 

statistical methods. Missing data analysis includes methods aiming at missing data 

problem solving. These methods are classified as deletion (Listwise and Pairwise) 

and imputation (Regression imputation, Expectation Maximization and Multiple 

Imputation). 

 

      Logistic regression analysis method, one of the most popular methods applied for 

modeling two dependent variables, has two possible categories of dependent variable 

0 and 1. Logistic Regression Analysis can be expanded according to the dependent 

variable as nominal and ordinal. There is no limitation for independent variables. 

 

     The aim of this study is to examine the methods of missing value analysis and 

logistic regression and to evaluate the performance of different missing value 

analysis methods on logistic regression.  

 

Keywords: Missing data analysis, regression imputation, expectation maximization, 

multiple imputation, logistic regression analysis 
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KAYIP VERİ OLMASI DURUMUNDA LOJİSTİK REGRESYON 

UYGULAMALARI 

 

ÖZ 

 

     Kayıp veri, istatistiksel çalışmalarda sıkça karşılaşılan problemlerden biridir. 

Kayıp verileri göz ardı etmek bir seçenek iken, bunları çeşitli istatistiksel 

yöntemlerle çözümleyerek çalışmaya katmakta mümkündür. Kayıp veri analizi 

araştırmacıların çok sık karşılaştıkları kayıp veri sorununa çözüm getirmeyi 

amaçlayan yöntemler içerir. Bu yöntemler, silme (Liste/Durum Düzeyli ve Çiftler 

Düzeyinde) ve atama (Regresyon Ataması, Hot Deck Ataması, Beklenti 

Maksimizasyonu ve Çoklu Atama) olarak sınıflandırılmıştır.  

 

     İkili bağımlı değişkeni modellemek için uygulanabilen en popüler regresyon 

yöntemlerinden biri olan Lojistik Regresyon Analizi’nde, bağımlı değişken 0 ve 1 

gibi iki olası kategoriye sahiptir. Lojistik Regresyon Analizi, bağımlı değişkenin 

sınıflayıcı ve sıralı olmasına göre genişletilebilir. Burada bağımsız değişkenler için 

kısıtlama getirilmemiştir. 

 

     Bu çalışmanın amacı, kayıp veri analizi ve lojistik regresyon yöntemlerini 

inceleyerek, farklı kayıp veri analizi yöntemlerinin lojistik regresyondaki 

performanslarının değerlendirilmesidir. 

 

Anahtar sözcükler: Kayıp veri analizi, regresyon ataması, beklenti maksimizasyonu, 

çoklu atama, lojistik regresyon analizi 
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CHAPTER ONE 

INTRODUCTION 

 

     In many statistical researches the data may have missing. There are several 

reasons for data is missing. When applying a survey, people may not answer some 

questions as household income. They can refuse from telling their weight or age. In 

longitudinal researches, each participant may drop out the study or lose his life for 

some reason. 

 

     Missing values problems are a widespread problem in many domains of research, 

especially medical researchs, for data analysis. These missing values create a 

problem for analysts using some statistical approaches for data analyses. Because 

some statistical approaches and multivariate methods depend upon full data, a few 

methods have been affirmed for treating the issue of these missing values. Missing 

data reduce the representativeness of the sample and can therefore distort inferences 

about the population. For this reason, the missing data problem must be solved.  

 

     To handling for missing data problem, there are several techniques. Such as, 

listwise/pairwise deletion, the hot deck imputation, the regression imputation, the 

expectation maximization (EM) and multiple imputation (MI).  

 

     To achieve unbiased estimators from the data, the missing data situation must be 

solved. First, the missing data pattern must be built; second, the missingness 

mechanism must be figured; and third, the most suitable imputation method for 

imputing the missing values must be implemented.  

 

     The most popular method of the modeling the binary dependent variable is 

logistic regression. Because of its assumptions are not strict, use of logistic 

regression is easy. When the dependent variable has more than two categories, 

logistic regression methods can be extending. When the dependent variable is 

ordinal, then we can use ordinal logistic regression.  

 



2 
 

     The study is a cross sectional study. In this study, we tried to imputate the missing 

data with the most commonly used and is considered to be the most effective 

methods as complete case, regression imputation, EM algorithm and multiple 

imputation. The data sets were modeling with the logistic regression analysis. This 

model was compared.  

 

     This study includes five chapters. First chapter summarizes the whole study. In 

chapter two, the missing value analysis and its methods are studied. In chapter three, 

logistic regression, ordinal regression and their characteristics are examined. In 

chapter four, chapter two and three are supported with the application. The missing 

data pattern was built, the missingness mechanism was figured. The most appropriate 

imputation methods are implemented. The data sets were modeling with the logistic 

regression analysis. This model was compared to find the best imputation methods.  
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CHAPTER TWO 

MISSING VALUE ANALYSIS 

 

     Many times in statistical research it is hardly possible to aggregate data that is 

complete. Missing data can be present for a many reasons. When applying a 

questionnaire, for instance, people may not answer some questions. For instance, 

participants may not find certain questions applicable. In other situations, the 

questions may be acceptable but the given responses are not. Additionally, some 

participants may simply can reject to answer certain types of questions, and this is to 

say nothing of the rigorous technical dangers associated with impair databases, 

integrating data from different sources, and faulty input. 

 

     Missing values problems are a widespread problem in many domains of research, 

especially medical researches, for data analysis. These missing values create a 

problem for analysts using some statistical approaches for data analyses. Because 

some statistical approaches and multivariate methods depend upon full data, a few 

methods have been affirmed for treating the issue of these missing values. 

 

     To achieve unbiased estimators from the data, the missing data situation must be 

solved. First, the missing data pattern must be built; second, the missingness 

mechanism must be figured; and third, the most suitable imputation method for 

imputing the missing values must be implemented (Patzer, 2009). 

 

2.1 Missing Data 

 

     In statistics, missing data consist when no value is stored for the variable in the 

existent observation. Data are missing for many reasons. These are ordered as:  

 

     Participants in longitudinal studies often leave before the study is finished 

because they have moved away of the area, pass away, no longer see personal benefit 

to participating, or do not like the effects of the treatment. 

3 
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     Questionnaires suffer missing data when participants reject, or do not know the 

answer to or by mistake skip an item. Some questionnaire analysts even design the 

study so that some questions are asked of only a subset of participants. 

 

     Empirical studies have missing values when an analyst is commonly unable to 

collect an observation. Bad weather conditions may render off observation 

impossible in area experiments. An analyst becomes sick or equipment fails. Data 

may be missing in any type of study due to by mistake or data faulty input. An 

analyst drops a tray of test tubes. A data file becomes spoilt. Most analysts can come 

across with one (or more) of these situations. 

 

2.2 Missing Data Patterns 

 

     Rubin (2002) and his colleagues find it appropriate to determine the missing data 

pattern, that defines which values are observed in the data matrix and which values 

are missing, and the missing data mechanisms, that interests the relationship between 

missingness and the values of variables in the data matrix.  

 

     Let ( )ijX x=  express a ( )n K×  rectangular data set without missing values, with 

i th row 
1( ,..., )i i iKx x x= where 

ijx is the value of variable 
jX

 
for subjects i . With 

missing data, assign the missing data indicator matrix ( )
ij

M m= , such as 1
ij

m =
 
if 

ij
x is missing and 0

ij
m =

 
if 

ij
x is present. The matrix M then assigns the pattern of 

missing data.   

 

     In general, missing data pattern can be univariate, which means that missing data 

values only consist of a single dependent variable, or multivariate in the sense that 

missing values consist of more than one variable. Univariate and multivariate data 

patterns are displayed in Figure 2.1(a) and Figure 2.1(b), respectively.  
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X1 X2 X3 X4 X5 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 1 

0 0 0 0 1 

0 0 0 0 1 

0 0 0 0 1 

0 0 0 0 1 

 

        Figure 2.1 (a) Univariate pattern 

 

     For univariate non response, which is diplayed in Figure 2.1 (a), the missing 

values occur on an item 5X but the other items 1 2 3,  ,  X X X and 4X  are completely 

observed. 

 

X1 X2 X3 X4 X5 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 1 1 1 

0 0 1 1 1 

0 0 1 1 1 

0 0 1 1 1 

0 0 1 1 1 

 

       Figure 2.1 (b) Multivariate pattern 

 

     For multivariate patterns, which is displayed in Figure 2.1 (b), the missing values 

occur on an items 3 4,  X X  and 5X but the other items 1X and 2X are completely 

observed.  
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X1 X2 X3 X4 X5 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 1 

0 0 0 0 1 

0 0 0 1 1 

0 0 0 1 1 

0 0 1 1 1 

0 0 1 1 1 

0 1 1 1 1 

0 1 1 1 1 

 

      Figure 2.1 (c) Monotone pattern 

 

     A particular missing data pattern is a monotone pattern, which may occur by 

dropouts in longitudinal studies. In Figure 2.1 (c), items or item groups 1, ..., p
X X  

may be ordered in such a way that if 
j

X  is missing for a unit, then 
1, ...,j p

X X+  are 

missing as well; which shows a monotone pattern. 

 

X1 X2 X3 X4 X5 

0 0 0 1 0 

0 0 0 1 0 

0 0 1 0 0 

0 0 1 0 1 

0 0 0 0 0 

0 1 0 0 0 

0 1 0 1 0 

0 1 0 0 0 

0 0 0 0 1 

0 0 0 0 0 

0 0 0 0 0 

 

      Figure 2.1 (d) General multivariate pattern 
 

     The general multivariate pattern is illustrated in Figure 2.1 (d) above. It can be 

seen that any set of variables may be missing in general multivariate pattern. 
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     The selection of imputation method may be based on the underlying missing data 

pattern such that the exploration of the missing pattern is important and helpful 

(Durrant, 2005). 

 

2.3 Missing Data Mechanisms 

 

     The missing data mechanisms are critical because of the features of missing data 

methods based very strongly on the nature of the dependencies in these mechanisms 

(Rubin, 2002). The types of missing data vary on three categories, which are based 

on the relationship between the missing data mechanism and the missing and the 

observed values. These categories are important to know because the problems arisen 

by missing data and the solutions to these problems are different for the three 

categories. These mechanisms are the Missing Completely at Random (MCAR), the 

Missing at Random (MAR) and the Missing not at Random (MNAR), respectively.  

 

2.3.1 Missing Completely at Random (MCAR) 

 

     We denote the complete data as ( )
ij

X x=  and the missing data indicator matrix as

( )
ij

M m= . The missing data mechanism is qualified by the conditional distribution 

of M given X , ( / , )f M X φ , where φ  denotes unknown parameters. If missingness 

does not relate on the values of the data X , missing or observed, that is, if 

 

( / , ) ( / )f M X f Mφ φ=  for all X ,                                                        (2.1)φ  

 

the data are entitled missing completely at random (MCAR) (Rubin, 2002). Response 

variables are said to be MCAR when the distribution of missingness does not relate 

on the complete data ( )
ij

X x= . Stated in other words the missing value has no 

dependence on any other variable.  
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2.3.2 Missing at Random (MAR) 

 

     If the missingness based only on the components obsX  of X that are observed, and 

not on the components that are missing. That is, 

 

( / , ) ( / , )obsf M X f M Xφ φ=  for all misX ,                                            (2.2)φ  

 

The missing data mechanism is then named the missing at random (MAR) (Rubin, 

2002). Put differently, a participant’s missingness may relate on his or her own 

values for the observed variables, but not the missing variables.  

 

2.3.3 Missing Not at Random (MNAR) 

 

     The mechanism is named the missing not at random (MNAR) if the distribution 

of M depends on the missing values in the data matrix X .  

 

( / , ) ( / , )misf M X f M Xφ φ=  for all obsX ,                                             (2.3)φ  

 

     The missing value depends on other missing values and thus missing data 

imputation cannot be performed from the existing data.  

 

2.4 Interpretation of the Randomness in the Missing Data  

 

     It is important to define that the missing data belongs to that mechanism. Missing 

data mechanisms are used to determine the method to be used for missing data 

analysis. Independences of missing data are tested to identify which missing data 

fixes to which mechanism. There are various statistical methods for this.  

 

1) Observations of a variable in data set should be divided into two groups as the 

ones having missing data and the ones not having, and it also should be analyzed 

whether any meaningful difference is available between these two groups according 

to values of the other variables related. This research can be done by t-test that tests 



9 
 

the significance of difference between two group means. Significant difference 

shows the existence of non-random missing data process. Hypothesis is set as: 

 

 
0 1 2

1 1 2

:

:

H

H

µ µ

µ µ

=

≠
        p α> ,  

that means the null hypothesis cannot reject. There is no significant difference 

between the group means, which shows us the existence of random missing data 

process.  

 

2) The coefficient of correlation, also known as the correlation coefficient, is the 

strength of a relationship, measured linearly, between two variables. This measure 

can range from -1 to 1.  

 

     If the coefficient of correlation is equal to; 

     (-1) We have a perfectly negative correlation. As one asset moves in a direction, 

the other asset will move in a perfectly different direction.  

     (0) We have no correlation, positive or negative. 

     (1) We have a perfectly positive correlation as one asset moves in a direction, the 

other asset will move perfectly in the same direction.  

 

( , )
xy

x y

Cov X Y
ρ

σ σ
=                                                                                                        (2.4) 

 

     Variables in data set are divided into two groups as the ones having missing data 

and the ones not having and full data is coded as 1; missing data is coded as 0 and 

correlation coefficient between these variables are calculated. The correlation 

coefficient is indicated strength of the relationship between missing data for each 

variable couple. The small correlation coefficient presents randomness. 

  

3) Little (1988) proposed a multivariate extension of the t-test approach that 

simultaneously evaluates mean differences on every variable in the data set. Unlike 
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univariate t-tests, Little’s procedure is a global test of MCAR that applies to the 

entire data set. 

 

     Like the t-test approach, Little’s test evaluates means differences across 

subgroups of cases that share the same missing data pattern. The test statistic is a 

weighted sum of the standardized differences between the subgroup mean and the 

grand means, as follows: 

 

2 ( ) 1 ( )

1

ˆˆ ˆ ˆ ˆ( ) ( )
J

ML T ML

j j j j j j

j

nχ µ µ µ µ−

=

= − ∑ −∑                                           (2.5) 

 

where j  subscript indicates that the number of elements in the parameter matrices 

and 
j

n  is the number of cases in missing data pattern j , ˆ
j

µ contains the variable 

means for the cases in missing data pattern j , 
( )ˆ ML

j
µ  contains maximum likelihood 

estimates of the grand means, and ˆ
j∑  is the maximum likelihood estimate of the 

covariance matrix. 2χ  is approximately distributed as a chi-square statistic with 

j
k k−∑  degrees of freedom, where 

jk is the number of complete variables for 

pattern j , and k is the total number of variables (Enders, 2010). 

 

     Roderick J. A. Little’s chi-square statistic for testing whether values are the 

missing completely at random (MCAR), the null hypothesis is that the data are 

missing completely at random, and the p-value is significant at the 0.05 level. If the 

p-value is less than 0.05, the data are not missing completely at random. 

 

2.5 Techniques of the Imputation Missing Data 

 

     The issue of missing data occurs many times in practice in applied research 

settings. Imputation is a way to deal with missing data. Imputation techniques are 

quite used in studies that contain missing data, but the parameter estimates can be 

biased and variance estimates can be inappropriate. Shall the imputation technique 
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use does not exactly represent the variability in the data, the resulting confidence 

intervals will be incorrect (Rockhill, n.d.). 

 

     Imputation of missing data on a variable fills that missing by a value that is drawn 

from an estimate of the distribution of this variable. In single imputation, only one 

estimate is used. In multiple imputation, diverse estimates are used, reflecting the 

confusion in the estimation of this distribution.  

 

     Missing data are challenge because most statistical methods entail a value for 

each variable. Missing data can be inspired by missing areas in a database or 

incorrectly entered information. To base on the nature of the data and amount of 

samples available, different imputation methods are available.  

 

     The most common decision is to use the listwise deletion (also called the 

complete case analysis), analyzing only the cases with complete data. Individuals 

with data missing on any variables are removed from the analysis. The advantages of 

this method are easy to use, very simple, and the default in most statistical programs. 

But it has limitations. It can considerably lower the sample size, resulting in a severe 

lack of power. This is especially true if there are many variables implied in the 

analysis, each with data missing for a few cases. It can also lead to biased results, 

depending on why the data are missing.  

 

     Disadvantages stem from the potential lack of information in discarding 

incomplete cases. This lack of information has two outlooks lack of sensitivity, and 

bias when the missing data mechanism is not the MCAR.  

 

     The pairwise deletion (also known as available-case analysis) attempts to reduce 

the loss of data by eliminating cases on an analysis-by-analysis basis. The entire 

values are used by the method; its downside is that the sample base changes from 

variable to variable according to the pattern of missing data (Rubin, 2002). 

 



12 
 

     The listwise and the pairwise deletion are by far the most common missing data 

handling approaches in many fields of the statistical analysis. The primary advantage 

of these methods is that they are convenient to implement and are standard options in 

statistical software packages. However, deletion methods have serious limitations 

that preclude their use in most situations. Most importantly, these approaches assume 

MCAR data and can produce distorted parameter estimates when this assumption 

does not obtain (Enders, 2010). 

 

     Mean imputation takes the seemingly appealing tack of filling in the missing 

values with the arithmetic mean of the available cases. Like other imputation 

techniques, mean imputation is convenient because it generates a complete data set. 

However, convenience is not a compelling advantage because this approach severely 

distorts the resulting parameter estimates, even when the data are MCAR.  

 

     The hot deck imputation is a process in that missing items are replaced with 

values from respondents. A model encourage such procedures is the model in that 

respond probabilities are assumed equal within imputation cells. An influential 

version of the hot deck imputation is characterized for the cell response model and a 

computationally influential variance estimator is given. An approximation to the 

entirely influential process in that a small number of values are imputed for each 

missing is described (Wayne & Jae, 2005). 

 

     It has some advantages: it defends the distribution of item values, it charters the 

use of the same sample weight for all items and results acquired from different 

analyses are logical with one another (Schoier, n.d.).  

 

2.5.1 Regression Imputation 

 

     The regression imputation imputes missing values by estimated values from a 

regression of the missing item on items observed for the unit, usually calculated from 

units with both observed and missing variables present (Rubin, 2002). 
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     The first step of the imputation process is to estimate a set of regression equations 

that predict variables that have missing values from the complete variables. A 

complete-case analysis usually produces these estimates. The second step is to 

produce predicted values for the missing variables. These predicted scores fill in the 

missing values and produce a complete data set.  

 

     Consider univariate nonresponse, with 
1 1,..., kX X −  fully observed and 

kX  

observed for the first r observations and missing for the last n r− observations. 

Regression imputations compute the regression of 
kX on 

1 1,..., kX X − based on the r

complete cases, and then fills in the missing values as predictions. The missing value 

is imputed using the regression equation: 

 

1

0 12... 1 12... 1

1

ˆ . .
k

ik k k kj k ij

j

y xβ β
−

− −
=

= +∑ɶ ɶ
                                                                   (2.6) 

where 0 12... 1
.

k k
β −
ɶ  is the intercept and 12... 1

.
kj k

β −
ɶ is the coefficient of jX in the regression 

of kX on 1 1,..., kX X − based on the r complete cases.  

 

     Regression imputation is largely the same with multivariate data sets but is 

somewhat more complicated to implement. To illustrate, think of a assumptive data 

set with three variables, 1X , 2X  and  3X , all of which have missing data. Not 

including the complete cases, there are six possible missing data patterns. The 

presence of multiple missing data patterns complicates the imputation process 

somewhat because each missing data pattern requires a unique regression equation. 

To illustrate, Table 2.1 shows the regression equations. 1ŷ  is the estimation of 1X , 

2ŷ  is the estimation of 2X  and 3ŷ  is the estimation of 3X . 
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Table 2.1 Equations used by regression imputations 

Missing Variables Regression Equations 

1X  1 0 1 2 2 3ŷ x xβ β β= + +  

2X  2 0 1 1 2 3ŷ x xβ β β= + +  

3X  3 0 1 1 2 2ŷ x xβ β β= + +  

1X  and 2X  1 0 1 3ŷ xβ β= +  and 2 0 1 3ŷ xβ β= +  

1X  and 
3X  

1 0 1 2ŷ xβ β= +  and 
3 0 1 2ŷ xβ β= +  

2X  and 
3X  

2 0 1 1ŷ xβ β= +  and 
3 0 1 1ŷ xβ β= +  

 

     Substituting the observed scores into the relevant regression equations produces 

predicted values for the incomplete variables, and these predicted scores impute in 

the missing values and produce a complete data set. 

  

     Under an MCAR mechanism, we can yield consistent estimates of the covariance 

matrix, meaning that the estimates get closer to their true population values as the 

sample size increases.  

 

2.5.2 EM Algorithm 

 

     EM algorithm is widely used in last years. Algorithm is a re-iteratively method 

that includes the maximum likelihood estimations to calculate the parameter 

predictions in in-complete data problems. EM algorithm helps to find the maximum 

likelihood estimation that is not impossible but seems difficult. EM algorithm uses 

the way of possibility prediction set according to observed and missing data. It is 

possible to estimate the parameters of probability distribution or the probability of 

observed data as a function of parameters with EM algorithm by imputing the 

missing data by maximizing via repetition method.  

 

     The purpose of this algorithm is to achieve the maximum likelihood estimation in 

cases of in-complete data problems appeared in studies. EM algorithm is applied in 

points shall the maximum likelihood estimation of probability distribution in given 

sample (in case the function is complicated) cannot be directly calculated.  
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    2.5.2.1 Formulation of EM Algorithm  

 

     We have model for the complete data X , with associated density ( / )f X θ

indexed by unknown parameterθ . We write ( , )obs misX X X= where 
obsX represents 

the observed part of X and misX denotes the missing part. If the missing data 

mechanism is the MAR (Missing at Random) and the objective is to maximize the 

ignorable likelihood 

  

                     (2.7) 

   

with respect to θ . When the likelihood is differentiable and unimodal, when 

likelihood equation solve, ML estimates can be found 

 

 
ln ( / )

( / ) 0obs
obs

L X
D X

θ
θ

θ

∂
≡ =

∂
ℓ

                                                                          (2.8) 

 

     An alternative computing strategy for incomplete-data problems, which does not 

require second derives to be calculated or approximated, is the Expectation 

Maximization (EM) algorithm, a method that relates ML estimation of θ  from 

( / )obsXθℓ  to ML estimation based on complete-data log likelihood ( / )Xθℓ .  

 

     There are two disadvantages, in some cases, with large fractions of missing 

information, it can be very slow to convergence; and in some problems, the M step is 

difficult and then the theoretical simplicity of EM does not convert to practical 

simplicity (Rubin, 2002). 

 

     2.5.2.2 The E Step and the M Step of EM Algorithm 

 

     The M step is particularly simple to describe: perform ML estimation of θ  just as 

if there were no missing data, which is, as if they had been imputed in. Thus the M 

step of EM uses the same computational method as ML estimation from ( / )Xθℓ .  

 

( / ) ( , / )obs obs mis misL X f X X dXθ θ= ∫
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     The observed data and current estimated parameters are given by the E step finds 

the conditional expectation of the missing data, and then substitute these expectations 

for the missing data.  

 

     Accurately, let ( )tθ  be the present estimate of the parameterθ . The E step of EM 

achieve the expected complete-data log-likelihood if θ  were ( )tθ : 

 

( ) ( )( / ) ( / ) ( / , )                                     (2.9)t t

mis obs misQ x f X X dXθ θ θ θ θ= =∫ ℓ  

 

The M step of EM describes ( 1)tθ +
 by maximizing this expected complete data log-

likelihood: 

 

( 1) ( ) ( )( / ) ( / ),     for all                                                    (2.10)t t tQ Qθ θ θ θ θ+ ≥  

 

     In the convergence of the algorithm, refer that ( 1)tθ +
 is the estimate for θ  which 

maximizes the difference (t)( / )θ θ∆ . Starting with the present estimate forθ , that is, 

(t)θ  we then had that (t) (t)( / ) 0θ θ∆ = . Because ( 1)tθ +  is chosen to maximize (t)( / )θ θ∆  , 

we then have that, (t+1) (t) (t) (t)( / ) ( / ) 0θ θ θ θ∆ ≥ ∆ = , so for each repetition the likelihood 

( )L θ  is non-decreasing.  

 

     When the algorithm achieves a stable point for some (t)θ  the value (t)θ  maximizes

(t)( / )l θ θ . Because L  and l  are equal at (t)θ  if L  and l  are differentiable at (t)θ , 

then (t)θ  must be a fixed point of L . The fixed point need not, however, be a local 

maximum (Borman, 2004). 
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                              Figure 2.2 Flow chart of the EM algorithm 
 

2.5.3 Multiple Imputation 

 

     Multiple imputation methodology was first proposed to handling with missing 

data by Rubin (1987). In the multiple imputation (MI) each missing value is imputed 

by a list of 1M >  values. Replacing the jth element of each list for the corresponding 

missing value generates M  plausible alternative versions of complete data (Schafer 

and Graham, 2002). All of the data sets is analyzed in the same action by a complete 

Initialize model parameters θ  

E step 

Compute the missing data 

misX from model parameters 

( )tθ  

M step 

Compute maximum 

likelihood estimate of model 

parameters ( 1)tθ + from 

estimated data 
misX  

Converge 

1m m= +  

Exit 

No 

Yes 
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case method. The results are then combined using techniques offered by Rubin 

(1987) to give parameter estimates and standard errors that take into account the 

confusion due to missing values. Schafer (1999) specified that unless there are 

extraordinary high rates of missing data, the optimum is to use five to ten 

imputations. In many practical applications, the additional time and effort required to 

handle 20M = versions than 10M =  has often little consequence (Schafer and 

Graham, 2002).     

 

     Multiple imputation for missing in public consumption files imputes each missing 

value by two or more valid values. The values can be selected to represent both 

uncertainty about which values to impute assuming the reasons for missing are 

familiar and ambiguity about the reasons for missing (Rubin, 1987). 

 

     Schafer and Olsen (1998) note that the multiple imputation (MI) do not have to be 

the MCAR  mechanism but instead need only meet the less strict assumption that the 

missing data are missing at random (MAR). 

 

     Multiple imputation (MI) has several desirable features: 

• Present appropriate random error into the imputation procedures makes it 

possible to get approximately unbiased estimates of all parameters. No 

deterministic imputation method can do this in general settings. 

• Iterated imputation assigns one to get perfect estimates of the standard errors. 

The single imputation methods do not assign for the additional error 

introduced by imputation. 

• Multiple imputation (MI) can be used with any kind of data and any kind of 

analysis without specialized software. 

 

     Of course, certain needs must be met for the multiple imputation (MI) to have 

these adorable features. First, the data must be missing at random (MAR), sense that 

the probability of missing data on a particular variable Y can depend on other 

observed variables, but not on Y itself (controlling for the other observed variables). 

Second, the model used to produce the imputed values must be “correct” in partially. 
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Third, the model used for the analysis must coupling, in some sense, with the model 

used in the imputation. All these conditions have been carefully determined by Rubin 

(1987, 1996).  

 

     The problem is that it’s easy to disrupt these conditions in practice. There are 

often strong causes to distrust that the data are not MAR. Unfortunately, not much 

can be done about this. While it’s possible to formulate and estimate models for data 

that are not MAR, such models are complex, untestable, and require specialized 

software. Hence, any general-purpose method will necessarily invoke the MAR 

assumption. Even when the MAR condition is satisfied, producing random 

imputations that yield unbiased estimates of the desired parameters is not always 

easy or straightforward (Allison, n.d.). 
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CHAPTER THREE 

LOGISTIC REGRESSION 

 

     The logistic regression model is one of the most widely used models in statistics.      

Logistic regression is a mathematical modeling approach that can be used to model 

relationship between one or more independent variables (X) and a dichotomous or 

multicategory dependent variable (Y). To determine the relationship between the 

discrete dependent variable and the independent variables which can be discrete or 

continuous logistic regression models are used (Çolak, E. 2002). To describe logistic 

regression, the conditional mean of Y given X has a different interpretation, it must 

be reconsidered shall the independent variable is a categorical variable Researchers 

try to modeling probabilities in logistic regression. Logistic regression is a procedure 

for modeling categorical dependent variable that does not depend on the assumption 

that the independent variables are normally distributed (Dielman, 2001). 

 

     Logistic regression (LogR) is popular to defeat many of the limiting assumptions 

of ordinary least square (OLS) regression. These assumptions are ordered as follows:  

 

• The LogR does not assume a linear relationship between the dependent and the 

independent variable(s).  

• The dependent variable need not be normally distributed. 

• The dependent variable need not be homoscedastic for each category of the 

independents. It means that there is no homogeneity of variance assumption. 

• Normally distributed error terms are not assumed.  

• The LogR does not desire that the independents be interval.  

 

3.1 Binary Logistic Regression 

 

     In a mainly of regression applications, the dependent variable of interest has only 

two possible qualitative outcomes, and therefore can be corresponded by a binary 

indicator variable taking on values 0 and 1(Neter, 1996). 

 

20 
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3.1.1 Fitting of Simple Logistic Regression 

 

     Let X, y  be a data set with binary outcomes. For each experiment ix  in X the 

outcome is either 1iy =  or 0iy = . When the dependent variable has indicator, 1iy =  

that are said to belong to the positive class, or 0iy =  belong to the negative class 

(Komarek, n.d.).  

 

0 1           0,1          i=1,...,ni i i iY X Yβ β ε= + + =                 (3.1)                  

 

The expected response { }iE Y  has a special meaning. Since { } 0
i

E ε = ,  

 

{ } 0 1i iE Y b b X= +
                 (3.2) 

 

iY  has Bernoulli distribution which probability distribution as follows, 

 

 i i1      P(Y =1)=iY π=                  (3.3) 

 i i0     P(Y =0)=1-iY π=                                       (3.4) 

 

Thus, iπ  is the probability that 1iY = , and1 iπ−  is the probability that 0iY = . From 

expected value of Bernoulli distribution, 

 

{ } 0 1i i i
E Y Xβ β π= + =

                
(3.5) 

 

     There are special problems when dependent variable is binary. One of them is iε  

can also take on only two values: 0 11 iXβ β− −     if   1iY =   and  0 1 iXβ β− −   if 

0iY = . Therefore, iε  cannot be even approximately normally distributed (Ryan, 

1997). This problem refers to nonnormal error terms by Neter, Kutner, Nachtsheim, 

Wasserman (1996). 
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     Second of these problems is nonconstant error variance that error terms do not 

have equal variances as with linear regression.  

 

{ } { }{ } { } { }
22 1i i i i iY E Y E Y E Y E Yσ = − = −                           (3.6) 

 i i iYε π= −                          (3.7) 

 

and 
iπ  is constant. Due to this reason the variance of 

iε  is the same as that of 
iY . 

 

           { } { }{ } { } { }
22 1i i i i iE Y E Y E Y E Yσ ε = − = −                                (3.8) 

 { } [ ][ ]2

0 1 0 1
1

i i i
X Xσ ε β β β β= + − −                            (3.9) 

 

As can be seen equation (3.9) variances of 
iε depend on 

iX  . Thus, using ordinary 

least square would not be appropriate.  

 

     3.1.1.1 Logistic Response Function 

 

     Logistic response functions are used for describing the nature of the relationship 

between the mean response and one or more independent variables.  

 

     The response function plotted in Figure 3.1 is named logistic response function 

and is the form:  

 

             ( )
1

i

i

X

X

e
E Y

e

β

β
=

+                            (3.10) 
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     Figure 3.1 Simple logistic response function 

   

     The response function showed in Figure 3.1 is shaped either as a tilted S and, that 

it is approximately linear except the ends. This response function is often referred to 

as sigmoidal. 

 

3.1.2 Fitting of Multiple Logistic Regression 

 

     The simple logistic regression model is easily expanded to more than one 

independent variable. Take into account a collection of p  independent variables that 

will be denoted by the vector 1 2( , ,..., )px x x x′ = . Multiple logistic regression model is

0 1 1 2 2 ... p pX X Xβ β β β+ + + + . To simplify the formulas, we can use the matrix 

notation: 

 

0 1 1 2 2 ...i i i ip pX X X Xβ β β β β′ = + + + +                                                              (3.11) 

 

With this notation, the simple logistic response function extends to the multiple 

logistic response function as follows: 

 

{ }
exp( )

1 exp( )

i
i i

i

X
E Y

X

β
π

β

′
= =

′+
                                                                                 (3.12) 
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     Like the simple logistic response function, the multiple logistic response function 

is monotonic and sigmoidal in shape with respect to Xβ ′  and is almost linear when 

π  is between 0.2 and 0.8.  

 

     3.1.2.1 Likelihood Function 

 

     The likelihood function is the joint probability (density) function of observable 

random variables but it is investigated as the function of the parameters given the 

carried out random variables.  

 

     In the binary logistic regression each  
iY  observation is a Bernoulli random 

variable. Its probability distribution as follows: 

 

               
1

( ) (1 )                0,1           1,...,i iY Y

i i i i if Y Y i nπ π −= − = =                              (3.13) 

 

 

As the iY  observations are independent, their joint probability function is: 

 

               
1

1
1 1

( ,..., ) ( ) (1 )i i

n n
Y Y

n i i i i
i i

g Y Y f Y π π −

= =

= = −Π Π                                                         (3.14) 

 

To find the maximum likelihood estimates we must working with logarithm of the 

joint probability function: 

 

1

1
1

1 1

log ( ,..., ) log (1 )

                        log log (1 )
1

i i

n
Y Y

e n e i i
i

n n
i

i e e i

i ii

g Y Y

Y

π π

π
π

π

−

=

= =

= −

  
= + −  

−  

Π

∑ ∑
                              (3.15) 
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Since { }i i
E Y π=  for a binary variable, it follows from (3.5) that: 

 

[ ]
1

0 11 1 exp( )i iXπ β β
−

− = + +                                                                               (3.16) 

 

From (3.5) and (3.16) we obtain: 

 

0 1log
1

i
e i

i

X
π

β β
π

 
= + 

− 
                         (3.17) 

 

We can discovery the log-likelihood function for the simple logistic regression model 

as follows: 

( ) [ ]0 1 0 1 0 1

1 1

log , ( ) log 1 exp( )
n n

e i i e i

i i

L Y X Xβ β β β β β
= =

= + − + +∑ ∑
               

(3.18) 

  

The log-likelihood function for multiple logistic regression model can be also expand 

as follows: 

( ) [ ]
1 1

log ( ) log 1 exp( )
n n

e i i e i

i i

L Y X Xβ β β
= =

′ ′= − +∑ ∑                                        (3.19) 

 

     3.1.2.2 Maximum Likelihood Estimation 

 

     Method of the maximum likelihood is the most widely used method of estimating 

the parameters of a logistic regression model. Maximum likelihood estimators are 

generally obtained by maximizing the logarithm of the likelihood function. The 

logarithm of the likelihood function is given by (3.19) and differentiating (3.19) with 

respect to 0β   and then with respect to 1β  produces the two likelihood function, as 

follows: 

 

  0 1 0 1

1 0 0 1

log( ( , )) exp( )

1 exp( )

i i
i i

i

L X X
X Y

X

β β β β

β β β β

∂ +
= −

∂ ∂ + +
∑ ∑                                          (3.20) 
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     The maximum likelihood estimators of 
0β and 

1β  are obtained by setting the right 

side of equation (3.20) equal to zero, and then solving the equations simultaneously 

so as to produce 0
β̂  and 1

β̂ . Iteration would continue until certain convergence 

criteria are met.  

 

3.1.3 Testing for the Significance of the Coefficients 

 

     For testing the significance of the coefficients, the likelihood ratio test and wald 

statistic is used.  

 

     3.1.3.1 Likelihood Ratio Test  

 

     A subset of the X  variables in a multiple logistic regression model can be 

dropped, that is, testing whether the associated regression coefficients kβ  equal zero. 

k is refer to number of regression coefficients. The test procedure we shall employ is 

a general one for use with maximum likelihood estimation, just like the general 

linear test procedure for linear models. The test is called the likelihood ratio test. It 

requires a large sample size and is based on a statistic called model deviance.  

 

     Comparing the log-likelihood of the fitted model to the log-likelihood of a model 

with n  parameters is named the deviance of a fitted model compares that fits the n  

observations perfectly. Such a perfectly fitting model is called a saturated model.  

 

     We will have n  parameters for the n  observations and can obtain a perfect fit. It 

can be shown that the log-likelihood function (3.21) is maximized if i iYπ = . Hence, 

the maximum likelihood estimator of iπ  for the saturated model, denoted by ˆ
isπ , 

ˆ
is iYπ = . It can be displayed that likelihood of the sample observations evaluated at

ˆ
is iYπ =  , denoted by 1

ˆ ˆ( ,..., )s nsL π π  is equal to 1 so that the log-likelihood is equal to 

0: 

[ ]1

1

ˆ ˆlog ( ,..., ) log ( ) (1 ) log (1 ) 0
n

e s ns i e i i e i

i

L Y Y Y Yπ π
=

= + − − =∑                       (3.21) 
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This log-likelihood value for the saturated model will now be compared with the log-

likelihood value for the fitted model. The maximize log-likelihood function of the 

fitted model as follows: 

 

[ ]0 1

1 1

log ( , ,..., ) ( ) log 1 exp( )
n n

e p i i e i

i i

L b b b Y b X b X
= =

′ ′= − +∑ ∑                           (3.22) 

 

The deviance is depending on the difference between the two log-likelihood values.  

 

[ ]

0 1 1 0 1

1

ˆ ˆ( , ,..., ) 2 log ( ,..., ) 2 log ( , ,..., )

                                 2 log ( ) (1 ) log (1 )

p e s ns e p

n

i e i i e i

i

DEV X X X L L b b b

Y Y

π π

π π
=

= −

= − + − −∑
   

                                                                                                                           (3.23) 

 

where iπ  is the i th fitted value for the logistic regression model. For logistic 

regression, the deviance (also known as residual deviance) is used to determine the 

fit of the overall model. The deviance for a logistic model can be approximated to the 

residual sum of squares in ordinary regression. The smaller deviance is the better to 

fit of the model. The deviance can be contrasted to a chi-square distribution, which 

approximates the distribution of the deviance. 

 

     For aims of determine the significance of an independent variable we compare the 

value of DEV  with and without the independent variable in the equation. The 

variation in DEV  due to including the independent variable in the model is obtained 

as follows: 

 

(for the model without the variable) (for the model with the variable)G DEV DEV= −

 

     This statistic plays the same role in logistic regression as does the numerator of the 

partial F  test in linear regression. Because the likelihood of the saturated model is 
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common to both values of DEV being differenced to compute G, it can be expressed 

as 

 

likelihood without the variable
2 ln

likelihood with the variable
G

 
= −   

                                                  (3.24) 

 

The G statistic is also a likelihood ratio test. It will follow a chi-square distribution 

with p degrees of freedom.  

 

     3.1.3.2 Wald Statistic 

 

     In linear regression, t-statistics are used in assessing the value of individual 

predictor when other predictors are in the model. In logistic regression 

  

ˆ

ˆ

i

iW
s

β

β
=                                                                                                                       (3.25) 

 

is called a Wald statistic. (Hosmer, Lemeshow, 1989) There is no agreement as to the 

general form of what is being called a Wald statistic. Equation (3.25) is given by 

Hosmer and Lemeshow (1989) but 
2

2

ˆ

ˆ

i

i

s
β

β
 , written in a different but equivalent form, is 

termed a Wald statistic by Rao (1973) and also by Wald (1943).  

 

3.1.4 Interpretation of the Coefficients of the Logistic Regression Model 

 

     After fitting model importance alterations from the computation and determine of 

significance of estimated coefficients to interpretation of their values. The estimated 

coefficients for the independent variables represent the slope or rate of change of a 

function of the dependent variable per unit of change in the independent variable. 

Thus interpretation supposes two issues, assessing the functional relationship 
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between the dependent variable and the independent variable, and appropriately 

defining the unit of change for the independent variable.  

 

     Appropriate interpretation of the coefficient in a logistic regression model bases 

on being able to place meaning on the difference between two logits. In the following 

sections, each of the possible measurement scales of the independent variable will be 

consider the interpretation of the coefficients.  

 

     3.1.4.1 Dichotomous Independent Variable 

 

     We assume that x  is coded as either 0 or 1. Under this model there are two values 

of ( )xπ  and equivalently two values of1 ( )− xπ . The odds of the outcome being 

present among individuals with 1=x is assigned as [ ](1) / 1 (1)−π π . In a like manner, 

the odds of the outcome being present among individuals with 0=x is defined as

[ ](0) / 1 (0)−π π . The log of the odds is named the logit and these are 

 [ ]{ }(1) ln (1) / 1 (1)= −g π π  

and  

 [ ]{ }(0) ln (0) / 1 (0)= −g π π  

The odds ratio is defined as the ratio of the odds for 1=x to the odds for 0=x and is 

given by the equation  

 

 
[ ]
[ ]

(1) / 1 (1)

(0) / 1 (0)

 −
=  

− 

π π
ψ

π π
                                                                                                  (3.26) 

 

The log of the odds ratio, termed log-odds ratio, or log-odds is 

 

 

[ ]
[ ]

(1) / 1 (1)
ln( ) ln

(0) / 1 (0)

        (1) (0)

 −
=  

− 

= −g g

π π
ψ

π π                                                                                        (3.27) 
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which is the logit difference.  

 

 

0 1

0 1 0

0

0 0 1

0 1

1

0

1

1 1

1

1 1

  

+

+

+

+

  
  

+ +  =
  
  

+ +  

= =

e

e e

e

e e

e
e

e

β β

β β β

β

β β β

β β
β

β

ψ

                                                                                    (3.28) 

 

For logistic regression with a dichotomous independent variable 

 

 1= e
βψ                                                                                                                                 (3.29) 

 

and the logit difference, or log odds, is 

 

 1

1ln( ) ln( )= =e
βψ β                                                                                                          (3.30) 

 

     The odds ratio is a measure of association that has constructed wide use as it 

approximates how much more similarly (or unsimilarly) it is for the outcome to be 

present among those with 1=x than among those with 0=x . For example, if y

denotes the presence or absence of the having insurance and if x denotes whether or 

not the person has an accident, then ˆ 2=ψ  indicates that having insurance occurs 

twice as often among has accident than among has not in the study.  

 

    The confidence interval of the odds ratio are 

 

 1 11
2

ˆ ˆˆexp ( )z SEαβ β
−

 ±
  

                                                                                                  (3.31) 
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     Importance of the odds ratio as a measure of association, point and interval 

estimates are often found in additional columns in tables presenting the results of a 

logistic regression. If the confidence interval contains 1 then there is no association. 

 

     3.1.4.2 Polytomous Independent Variable 

 

     Suppose that instead of two categories the independent variable has 2>k distinct 

values. For example, we may have variables that denote the county of residence 

within a state, the clinic used for primary health care within a city, or race. Each of 

these variables has fixed number of discrete outcomes and the scale of measurement 

is nominal. Table 3.1 shows that frequencies of groups. 

 

Table 3.1 Cross classification of the data on independent (X) and dependent (Y) 

Y 
X 

Total 
1 2 3 4 

Absent 0 5 20 15 10 50 

Present 1 20 10 10 10 50 

Total 25 30 25 20 100 

Odds Ratio 1.0 8.0 6.0 4.0   

CI   2.3-27.6 1.7-21.3 1.1-14.9   

 

For example, for the third group the estimated odds ratio is (15 20) /(5 10) 6.0× × = . 

The reference group is the first group. The odds ratio and confidence interval (CI) are 

shown in Table 3.1.  

 

     3.1.4.3 Continuous Independent Variable 

 

     When a logistic regression model includes a continuous independent variable, 

interpretation of the estimated coefficient will depend on how it is entered into the 

model and the accurate units of the variable.  
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     To obtain a helpful interpretation for continuous scaled independent variables we 

need to develop a method for point and interval estimation for an arbitrary change of 

“ c ” units in the covariate.  

 

     The log odds for a change of c  units in x is obtained from the logit difference 

1( ) ( )+ − =g x c g x cβ and the associated odds ratio is obtained by exponentiating this 

logit difference, 1( ) ( , ) exp( )= + =c x c x cψ ψ β .  

 

     An estimate of the standard error needed for confidence interval estimation 

provided by multiplying the estimated standard error of 1
β̂  by c . The confidence 

interval estimate of ( )cψ are 

 

 
1 11

2

ˆ ˆˆexp ( )c z cSEαβ β
−

 ±
  

                                                                                              (3.32) 

 

Both the point estimate and endpoints of the confidence interval depend on the 

choice of c , the particular value of c  should be clearly specified in all tables and 

calculations.     

 

3.1.5 Logistic Regression Model Selection Methods 

 

     Method selection permits you to define how independent variables are entered 

into the analysis. Using different methods, you can arrange a variety of regression 

models from the same set of variables. 

 

     3.1.5.1 Forward Selection 

 

     The forward-selection technique starts with no variables in the model. For each of 

the independent variables, the method calculates F statistics that express the 

variable’s contribution to the model if it is included. The p-values for these F 

statistics are compared to the α . If no F statistic has a p-value less than the α , 
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method stops. Otherwise, method adds the variable that has the smallest p-value less 

than α . F statistics are calculated again for the variables still remaining outside the 

model, and the evaluation process is repeated. Thus, variables are added one by one 

to the model until no remaining variable produces a significant F statistic. 

  

     3.1.5.2 Backward Elemination  

 

     The backward-elimination technique starts by calculating F statistics for the full 

model that includes all of the independent variables. Until all the variables remaining 

in the model produce F statistics significant at the α , the variables are deleted from 

the model one by one (Fomby, 2005).  

 

3.2 Ordinal Logistic Regression 

 

     Logistic regression is most commonly used to model the relationship between a 

dichotomous dependent variable and independent variables. However, the dependent 

variable has more than two categories. Logistic regression can still be employed, by 

means of an ordinal logistic regression model. It is also known as polytomous 

logistic regression model. 

 

     In social applications of controlled learning frequently requires situations 

indicating an order among the different categories, e.g. a teacher always rates his/her 

students by giving grades on their term performance. In contrast to measurable 

regression problems, the grades are usually discrete. These grades are also different 

from the class labels in classification problems due to the existence of ranking 

information. For example, grade labels have the ordering F <D < C < B < A. This is 

a learning task of predicting variables of ordinal scale, an establishing bridging 

between measurable regression and classification referred to as ranking learning or 

ordinal regression (Chu, Ghahramani, 2005). 
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     Ordinal logistic regression refers to the case where the dependent variable has an 

order; the multinomial case is contained below. The most common ordinal logistic 

model is the proportional odds model (Flom, n.d.). 

 

3.2.1 Cumulative Probabilities and Their Logits  

 

     Let Y denote an ordinal dependent variable. Let ( )P Y j≤ describe the probability 

that the response falls in category j  or below (i.e., in category 1, 2,..., or j ). This is 

named a cumulative probability. With four categories, for example, the cumulative 

probabilities are  

 

( 1),  

P(Y 2)= ( 1) ( 2),  

P(Y 3)= ( 1) ( 2) ( 3)

P Y

P Y P Y

P Y P Y P Y

=

≤ = + =

≤ = + = + =

  

 

and the final cumulative probability uses the entire scale, so P(Y 4)=1≤ . 

 

     A c -category response has c  cumulative probabilities. The order of forming the 

cumulative probabilities expresses the ordering of the response scale. The 

probabilities satisfy 

 

( 1) (Y 2) P(Y )=1P Y P c≤ ≤ ≤ ≤ ⋅⋅⋅ ≤ ≤  

 

The odds of response in category j or below is the ratio 

 

( )

( )

P Y j

P Y j

≤

>
                                                                                                                   (3.33) 

 

For instance, when the odds equal 2.5, the probability of response in category j  or 

below equals 2.5 times the probability of response above category j . Each 

cumulative probability can transform to an odds. A popular logistic model for an 
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ordinal response uses logits of the cumulative probabilities. With 4c = , for example, 

the logits are 

 

[ ]
( 1) ( 1)

logit ( 1) log log
( 1) ( 2) ( 3) ( 4)

P Y P Y
P Y

P Y P Y P Y P Y

   = =
≤ = =   > = + = + =   

 

                       

                                                                                                                                      (3.34) 

[ ]
( 2) ( 1) ( 2)

logit ( 2) log log
( 2) ( 3) ( 4)

P Y P Y P Y
P Y

P Y P Y P Y

   ≤ = + =
≤ = =   > = + =   

 

                                                             

                (3.35) 

 

[ ]
( 3) ( 1) ( 2) ( 3)

logit ( 3) log log
( 3) ( 4)

P Y P Y P Y P Y
P Y

P Y P Y

   ≤ = + = + =
≤ = =   > =   

 

 

                 (3.36) 

 

Since the final cumulative probability accordingly equals 1, we close out it from the 

model. These logits of cumulative probabilities are called cumulative logits (Agresti, 

2010). 

 

3.2.2 Cumulative Logit Models for an Ordinal Response 

 

     A model can concurrently characterized the impression of an independent variable 

on all the cumulative probabilities for Y . For each cumulative probability, the model 

looks like an ordinary logistic regression, where the two outcomes are low = 

“category j  or below” and high = “above category j .” This model is  

 

[ ]logit ( ) ,       1,2,..., 1
j

P Y j x j cα β≤ = − = −  

 

for 4c = , for example, this single model describes three relationships: the effect of 

x  on the odds that 1Y ≤  instead of 1Y > , the effect of x  on the odds that Y 2≤  
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instead of 2Y > , and the impression of x  on the odds that Y 3≤  instead of Y>3 . 

The model desires a different intercept parameter 
jα  for each cumulative 

probability.  

 

     If 0β > , when x  higher cumulative probabilities are lower. But cumulative 

probabilities being lower means it is less likely to observe relatively low values and 

thus more likely to observe higher values of Y . So, this parameterization accords 

with the usual formulation of a positive association, in manner of speaking that a 

positive β  corresponds to a positive association (higher x  tending to occur with 

higher Y ).  

 

     The parameter of main interest, β  defines the impressions of x  on Y . When

0β = , each cumulative probability does not change as x changes, and the variables 

are independent. If β  increases, then the impression of x  increases. In this model, 

β  does not have a j  subscript. It has the same value for each cumulative logit. To 

put it in a different way, the model assumes that the impression of x  is the same for 

each cumulative probability. This cumulative logit model with this common 

impression is often named the proportional odds model. 

 

3.2.3 Odds Ratio 

 

      After the proportional odds model is fit and the parameters estimated, the process 

for computing the odds ratio is the same as in standard logistic regression. We will 

first evaluate the special case where sustain is the only independent variable and is 

coded 1 and 0. Recall that the odds comparing Y j≤ vs. Y j>  is e to the 
jα  minus 

1β  times 1X . To determine the impression of the exposure on the outcome, we 

formulate the ratio of the odds of Y j≤ for comparing 1 1X = and 1 0X = . 

 

1

1

1 1

( / )
( )

( / )

                  exp( )j

P Y j X
odds Y j

P Y j X

Xα β

≤
≤ =

>

= −

                                                                             (3.37) 
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The odds ratio is 

 

1

1 1

1 1

1 1

1

( / 1) / ( / 1)

( / 0) / ( / 0)

exp (1) exp( )

exp( )exp (0)

j j

jj

P Y j X P Y j X

P Y j X P Y j X

e
β

ψ

α β α β

αα β

≤ = > =
=

≤ = > =

 − − = =
 − 

=

                                                        (3.38) 

 

     Confidence interval estimation is the similar to standard logistic regression. 

 

1 11
2

ˆ ˆˆexp ( )z SEαβ β
−

 ±
  

                                                                                          (3.39) 

 

If the 95% confidence interval contain the value 1, the association is not statistically 

significant at α . 

 

3.2.4 Likelihood Function  

 

     In the proportional odds model, we model the probability of Y j≤ . To access an 

expression for the probability of Y j= , can be use the relationship that the 

probability ( Y j= ) is equal to the probability of Y j≤ minus the probability of 

Y j< . For instance, the probability that 2Y =  is equal to the probability that 2Y ≤  

minus the probability that 2Y < . In this way we can use the model to access an 

expression for the probability that an individual is in a specific outcome category for 

a given pattern of covariates (X).  

 

1

1 0

( / ) ij

n J
g

i j

P Y j X
−

= =

=∏∏  
1 if the th subject has Y=j

0 if otherwise
ij

j
g


= 


         

 

                                                                                                                                                    (3.40) 
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3.2.5 Testing of Parallel Lines 

 

     The test of parallel lines is designed to make a test concerning the adequacy of the 

model. The null hypothesis establishes that the related regression coefficient is equal 

across all categories of the dependent variable. The alternative hypothesis establishes 

that the related regression coefficients are different across all categories of dependent 

variables. According to the test of parallel lines results, we make interpretation 

whether there are significant or are not significant difference for the corresponding 

regression coefficients across the dependent variable categories.  

 

3.2.6 Pseudo-R
2
  

 

     As a starting point, recall that a non-pseudo R-squared is a statistic expanded in 

ordinary least squares (OLS) regression that is often used as a goodness-of-fit 

measure.  In OLS, 

 

 

2

2 1

2

1

ˆ( )

1

( )

n

i i

i

n

i i

i

y y

R

y y

=

=

−

= −

−

∑

∑
                                                                                             (3.41) 

 

where n  is the number of observations in the model, y is the dependent variable, y  

is the mean of the y values, and ŷ  is the value predicted by the model. The 

numerator of the ratio is the sum of the squared differences between the actual y 

values and the predicted y values.  The denominator of the ratio is the sum of squared 

differences between the actual y values and their mean.   

 

     When analyzing data with a logistic regression, an equivalent statistic to R-

squared does not exist.  The model estimates from a logistic regression are maximum 

likelihood estimates arrived at through an iterative process.  They are not calculated 

to minimize variance, so the OLS approach to goodness-of-fit does not 

apply.  However, to evaluate the goodness-of-fit of logistic models, several pseudo 

R-squared have been developed (Long, Freese, 2006) 
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      3.2.6.1 Mc Fadden’s 

 

     The log likelihood of the intercept model ( ˆlog ( )
Intercept

L M ) is treated as a total 

sum of squares, and the log likelihood of the full model ( ˆlog ( )FullL M ) is treated as 

the sum of squared errors. The ratio of the likelihoods suggests the level of 

improvement over the intercept model offered by the full model. 

 

2
ˆlog ( )

1
ˆlog ( )

Full

Intercept

L M
R

L M
= −                                                                                        (3.42) 

 

     A likelihood falls between 0 and 1, so the log of a likelihood is less than or equal 

to zero.  If a model has a very low likelihood, then the log of the likelihood will have 

a larger magnitude than the log of a more likely model.  Thus, a small ratio of log 

likelihoods indicates that the full model is a far better fit than the intercept model.  

  

     If comparing two models on the same data, McFadden's would be higher for the 

model with the greater likelihood.  

 

     3.2.6.2 Cox and Snell 

 

     The ratio of the likelihoods reflects the improvement of the full model over the 

intercept model (the smaller the ratio, the greater the improvement).  

 

2/

2
( )

1
( )

N

Intercept

Full

L M
R

L M

 
= −  

 
                                                                                     (3.43) 

 

     Consider the definition of L(M).  L(M) is the conditional probability of the 

dependent variable given the independent variables. If there are N observations in the 

dataset, then L(M) is the product of N such probabilities.  Thus, taking the n
th

 root of 

the product L(M) provides an estimate of the likelihood of each Y value.  Cox & 
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Snell's presents the R-squared as a transformation of the -2ln[L(MIntercept)/L(MFull)] 

statistic that is used to determine the convergence of a logistic regression.   

 

     Note that Cox & Snell's pseudo R-squared has a maximum value that is not 1: if 

the full model predicts the outcome perfectly and has a likelihood of 1, Cox & Snell's 

is then 1-L(MIntercept)
2/N

, which is less than one.   

 

     3.2.6.3 Nagelkerke 

 

     Nagelkerke adjusts Cox & Snell's so that the range of possible values extends to 

1. To achieve this, the Cox & Snell R-squared is divided by its maximum possible 

value, 1-L(MIntercept)
2/N

.  Then, if the full model perfectly predicts the outcome and 

has a likelihood of 1, Nagelkerke R-squared = 1.  When ( ) 1FullL M = , then 2 1R = , 

when ( ) ( )Full InterceptL M L M= , then 2 0R = . 

 

2/

2

2/

( )
1

( )

1 ( )

N

Intercept

Full

N

Intercept

L M

L M
R

L M

 
−  
 =
−

                                                                                    (3.44) 
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CHAPTER FOUR 

APPLICATION 

 

4.1 Introduction 

 

     Data of Family Practice Thesis of Gizem LĐMNĐLĐ, doctor of Dokuz Eylül 

University Faculty of Family Medicine Department, have been used in application. 

Data has obtained from four high schools in Đzmir, Balçova. Doctor Gizem LĐMNĐLĐ 

has used this data in her thesis of “the prevalence of obesity in high school students 

aged 15-17 in Balçova regions and the relationship between obesity and health 

promoting behaviors”. This data is used only with the purpose of statistical analysis.  

 

     The purpose of this application is to fill the missing in data with the methods of 

regression imputation, expectation maximization and multiple imputation, and to set 

mathematical models using logistic regression analysis for dependent variable.       

 

4.2 Description of Data Set 

 

     The study is cross sectional and sample width is 1089. Dependent variable is 

Body Mass Index group of teen in high school (BMIgrp). Body mass index has 

divided into 3 groups based on World Health Organization limits. The groups are 

defined according to body mass indexes as; the ones smaller than 18.5 are the 1
st
 

group(low-weight), the ones between 18.5 and 23.9 are the 2
nd

 group (normal 

weight) and the ones bigger than 23.9 are the 3
rd

 group (obese). There are 15 

independent variables in data set. The continuous ones of independent variables are 

lined up with units as age(years), skin folds(centimeter), waist largeness(centimeter), 

haunch largeness(centimeter) and relative weight ((weight/ideal weight)*100).  

 

     Obesity is a medical condition in that overload body fat has cumulative to expand 

that it may have a reverse effect on health, leading to reduce life expectancy or 

increased health problems. Body Mass Index (BMI) is a value calculated from an 

individual’s weight and height. BMI obtains a confidential indicator of body fatness 

41 
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for most individuals and is used to screen weight categories and health problems 

associated with weight. 

 

     For adults, the ones with body mass index (BMI) bigger than 25 are described as 

over-weight and the ones bigger than 30 are obese. Children with percentile >85 are 

classified as over-weight and children with percentile >90 are as obese by using BMI 

percentile curves according to age and gender. Other diagnostic procedures used are 

body weight according to age, weight according to height and measurement of skin 

fold thickness. Table 4.1 shows the discrete independent variables in data set. 

 

Table 4.1 Discrete independent variables and their codes and frequency distributions 

Name Codes Frequencies 

Gender 
1= Girl 656 

2= Boy 433 

N 

 

1089 

Missing 

 

0 

Class 

1 = High School 1 546 

2 = High School 2 385 

3 = High School 3 158 

N 

 

1089 

Missing 

 

0 

Mother Obese 
1= Yes 26 

0= No 1063 

N 

 

1089 

Missing 

 

0 

Father Obese 
1= Yes 21 

0= No 1068 

N 

 

1089 

Missing 

 

0 

Mother’s 

Education 

Level 

1= High School 943 

2= University 145 

N 1088 

Missing 1 

Father’s 

Education  

Level 

1= High School 816 

2= University 272 

N 1088 

Missing 1 



43 
 

 

Table 4.1 is continued 

Name Codes Frequencies 

Health     

Perceptiveness 

1= Top of Average 265 

2= Average and 

sub of Average 
823 

N 1088 

Missing 1 

Carbonated 

Drink 

1= Yes 488 

0= No 600 

N 1088 

Missing 1 

Fastfood 
1= Yes 738 

0= No 350 

N 1088 

Missing 1 

Percentile 

1= <15p 158 

2= 15p-50p 319 

3=50p-85p 193 

4= >85p 78 

N 848 

Missing 241 

     

     Table 4.2 – 4.11 crosstabs show frequencies of independent variables according to 

dependent variables and chi-square values belong to them. 

 

Table 4.2 BMIgrp versus class tabulation count 

 

 
BMIgrp 

Total 
<18.5 18.5< <23.9 > 23.9 

Class 

High School 1 65 276 76 417 

High School 2 50 202 60 312 

High School 3 12 80 27 119 

Total 127 558 163 848 

Chi-square = 3.294 df = 4  p-value = 0.510  
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Table 4.3 BMIgrp versus gender tabulation count 
 

 
BMIgrp 

Total 
<18.5 18.5< <23.9 > 23.9 

Gender  
Girl 68 341 85 494 

Boy 59 217 78 354 

Total 127 558 163 848 

Chi-square = 5.532 df = 2 p-value = 0.632  

 

Table 4.4 BMIgrp versus mother obese tabulation count 
   

 
BMIgrp 

Total 
<18.5 18.5< <23.9 > 23.9 

Mother 

Obese  

No 124 547 156 827 

Yes  3 11 7 21 

Total 127 558 163 848 

Chi-square = 2.827 df = 2 p-value = 0.243  

 

Table 4.5 BMIgrp versus father obese tabulation count 
 

 
BMIgrp 

Total 
<18.5 18.5< <23.9 > 23.9 

Father 

Obese  

No 126 547 160 833 

Yes  1 11 3 15 

Total 127 558 163 848 

Chi-square = 0.841 df = 2 p-value = 0.657  

 

Table 4.6 BMIgrp versus mother education tabulation count 
   

 
BMIgrp 

Total 
<18.5 18.5< <23.9 > 23.9 

Mother 

Education  

High School 112 498 125 735 

University 15 60 38 113 

Total 127 558 163 848 

Chi-square = 17.527 df = 2 p-value = 0.000  
 

Table 4.7 BMIgrp versus father education tabulation count 
   

 
BMIgrp 

Total 
<18.5 18.5< <23.9 > 23.9 

Father 

Education  

High School 101 428 108 637 

University 26 130 55 211 

Total 127 558 163 848 

Chi-square = 8.917 df = 2 p-value = 0.012  
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Table 4.8 BMIgrp versus fast food tabulation count   

 

 
BMIgrp 

Total 
<18.5 18.5< <23.9 > 23.9 

Fast 

food 

No 40 203 46 289 

Yes  87 355 117 559 

Total 127 558 163 848 

Chi-square = 4.182 df = 2 p-value = 0.124  

 

Table 4.9 BMIgrp versus carbonated drink tabulation count   
 

 
BMIgrp 

Total 
<18.5 18.5< <23.9 > 23.9 

Carbonated 

Drink 

No 67 324 91 482 

Yes  60 234 72 366 

Total 127 558 163 848 

Chi-square = 1.273 df = 2 p-value = 0.529  

 

Table 4.10 BMIgrp versus health tabulation count 
   

 
BMIgrp 

Total 
<18.5 18.5< <23.9 > 23.9 

Health 

Average and sub of 

average 
30 145 43 218 

Top of Average 97 413 120 630 

Total 127 558 163 848 

Chi-square = 0.350 df = 2 p-value = 0.839  

 

Table 4.11 BMIgrp versus percentile tabulation count 
   

 
 BMIgrp  

Total 
<18.5 18.5< <23.9 > 23.9 

Percentile 

< 15p 54 98 6 158 

15p-50p 65 239 24 319 

50p-85p 16 206 71 293 

> 85p 1 15 62 78 

Total 127 558 163 848 

Chi-square = 292.254 df = 6 p-value = 0.000 
 

 

     Pearson chi-square test analyzes independence of variables. Null hypothesis is set 

as “variables are independent” and alternative hypothesis is as “variables are not 

independent”. Degrees of freedom is (r-1)*(c-1) and r defines row number, c defines 

column number. p α<  shows the hypothesis is rejected and therefore variables are 

not independent. 
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    Table 4.12 shows descriptive statistics and Table 4.13 shows correlation 

coefficients of continuous independent variables.    

 

Table 4.12 Descriptive statistics of continuous independent variables 

Variables N Missing Mean Std. Dev. 

Age 1089 0 17.84 0.77 

Skin Folds 848 241 13.51 5.27 

Waist 848 241 72.44 8.19 

Haunch 848 241 96.15 7.67 

Relative Weight 848 241 105.16 16.26 

 

Table 4.13 Correlation table of continuous independent variables 

  
Age Skin Folds Waist Haunch Relative Weight 

Age 1 
 

Skin Folds -0.050 1       

Waist 0.051 0.350 1     

Haunch 0.081 0.509 0.768 1   

Relative Weight 0.032 0.601 0.721 0.789 1 

 

     In Table 4.12 there is no missing observation in “age” variable however there are 

241 units of loss in other continuous independent variables. In Table 4.1 there are 

241 units of loss in “percentile” variable in discrete independent variables. Besides, 

there is no loss in variables in discrete independent variables. 
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     Histograms in Figure 4.1 show values of continuous independent variables.     

 

 

 

   Figure 4.1 Histograms of continuous independent variables 

 

 

Table 4.14 Results of Kolmogorov Smirnov test 

  

Variables Statistic df p-value 

Skin Folds 0.052 848 0.000 

Waist 0.136 848 0.000 

Haunch 0.095 848 0.000 

Relative Weight 0.090 848 0.000 
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     Figure 4.1 shows us the independent variables are not normally distributed. It can 

be supported by Kolmogorov Smirnov test which is the normality test. The null 

hypothesis is the sample data are not significantly different than a normal population. 

In Table 4.14 shows us the independent variables are significantly different than a 

normal population. 

 

4.3 Missing Data Analysis 

 

     Determining missing data mechanism play role effectually in choosing the correct 

analysis for the solution of missing data problem and choosing the right analysis is 

important for reaching the right result for data evaluation. Table 4.15 shows which 

missing data is on which variable and unit. 

 

Table 4.15 Missingness data patterns 

Missing Patterns 

Number 

of 

Cases 

Waist Haunch 
Relative 

Weight 

Skin 

Folds 
Percentile BMIgrp 

Complete 

if 

848       
848 

241 X X X X X X 1089 

 

     Table 4.15 shows the dependent variable “BMIgrp” and there are 241 missing 

observations in independent variables and 848 observations have seen in all 

variables. Missing values in variables are in same units. This missing data pattern fits 

to multivariate pattern.   

 

     There can be several reasons for these missing values. For instance, person has 

not responded the question for any reason or known the reply. In medical studies, 

there may be cases like discontinuity, refusing treatment, death, or etc.  

 

4.3.1 Questioning Missing Data Process 

   

   There are three different methods for questioning missing data process. The first 

method used for determining the missing data mechanism is to examine whether 
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there is any significant difference between or not the values of observed and missing 

data for specific variables. This research can be done with “t test” that analyzes the 

significant of difference between two means. Significant difference shows the 

presence of missing not at random data process. Table 4.16 shows “t-test” and “p-

values”. 

 

Table 4.16 Separate variance t-tests 

    
Age 

Skin 

Folds 
Waist Haunch 

Relative 

Weight 

Skin Folds 

t 0.958 . . . . 

df 377.387 . . . . 

# Present 848 848 848 848 848 

# Missing 241 0 0 0 0 

Mean(Present) 17.851 13.513 72.435 96.152 105.162 

Mean(Missing) 17.797 . . . . 

p-value 0.330         

Waist 

t 0.958 . . . . 

df 377.387 . . . . 

# Present 848 848 848 848 848 

# Missing 241 0 0 0 0 

Mean(Present) 17.851 13.513 72.435 96.152 105.162 

Mean(Missing) 17.797 . . . . 

p-value 0.330         

Haunch 

t 0.958 . . . . 

df 377.387 . . . . 

# Present 848 848 848 848 848 

# Missing 241 0 0 0 0 

Mean(Present) 17.851 13.513 72.435 96.152 105.162 

Mean(Missing) 17.797 . . . . 

p-value 0.330         

Relative 

Weight 

t 0.958 . . . . 

df 377.387 . . . . 

# Present 848 848 848 848 848 

# Missing 241 0 0 0 0 

Mean(Present) 17.851 13.513 72.435 96.152 105.162 

Mean(Missing) 17.797 . . . . 

p-value 0.330         
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obs mis
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     When independent variable “age” values in places where “skinfolds” independent 

variable is observed and not observed are compared, p α> , namely 0.330 >0.05 

means that there is no significant difference between them. This result means that the 

reason for the data of missing is not depended on the variable observed or not 

observed. In the light of this, missing data mechanism fits MAR (missing at random) 

mechanism. As the missingness are in same unit in all independent variables, average 

values of groups are same for the other independent variables. 

 

     Second method for questioning randomness is to analyze the correlation of 

variables. Variables in data set are categorized as the ones having missing value and 

the ones not having missing value. Present values are coded as 1 and missing values 

as 0 and correlation coefficients between these variables are calculated. Obtained 

correlation coefficients define the degree of relationship between missing values for 

each variable pair. Small correlation coefficient means randomness. Table 4.17 

shows us the correlation coefficients of variables. (See the appendix for Table 4.17.).  

 

     Chi-Square statistics has been developed to test whether Roderick J. A. Little’s 

missing data mechanism present or not. 

 

     Like the t-test approach, Little’s test evaluates means differences across 

subgroups of cases that share the same missing data pattern. The test statistic is a 

weighted sum of the standardized differences between the subgroup mean and the 

grand means. Table 4.18 has SPSS output of Little’s MCAR tests. 

 

Table 4.18 Continuous independent variables’ covariance and Little’s MCAR test 

  
Skin_Folds Waist Haunch Relative_Weight 

Skin_Folds 27.728       

Waist 15.100 67.004     

Haunch 20.574 48.199 58.839   

Relative_Weight 51.414 95.963 98.468 264.381 
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Little’s MCAR test: chi-square 0.952 f=1  p-value=0.329d=  

 

     0

1

H :The data are missing completely at random

H :The data are not missing completely at random
  

 

According to the Little’s MCAR test,  p α>  namely 0.329>0.05 means missing data 

mechanism fits to MCAR mechanism. Missingness in data set can be filled as well as 

be ignored. 

 

4.3.2 Regression Imputation 

 

     Regression imputation imputes missing values by estimated values from a 

regression of the missing item on items observed for the unit, usually calculated from 

units with both observed and missing variables present (Rubin, 2002). Table 4.19 

shows correlation table of continuous independent variables on result of regression 

imputation. 

 

Table 4.19 Correlation of regression imputation 

  
Skin Folds Waist Haunch Relative Weight 

Skin Folds 1       

Waist 0.285 1     

Haunch 0.430 0.649 1   

Relative Weight 0.481 0.547 0.601 1 

 

     Analyzing the correlation among continuous independent variables in regression 

imputation (Table 4.13) and correlation among continuous independent variables in 

complete case, relationship ratios among variables applied regression imputation is 

decreased. 

 

     When the assumption of the MCAR mechanism is satisfied and imputations 

depend on the present values of other independent variables then the coefficients of 

ordinary least square is consistent. It means the estimations are almost unbiased.  
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4.3.3 EM Algorithm 

 

     EM algorithm estimates parameter for missing values in estimated distribution of 

E step and  continues in M step till the estimated parameter’s likelihood function 

become non decreasing. 

 

Table 4.20 Correlation of EM algorithm 

  
Skin Folds Waist Haunch Relative Weight 

Skin Folds 1 

Waist 0.350 1 

Haunch 0.509 0.768 1 

Relative Weight 0.600 0.721 0.789 1 

 

     Correlation among the continuous independent variables in complete case and 

correlation among the continuous independent variables in EM algorithm (Table 

4.13) are seen not to be different. 

 

4.3.4 Multiple Imputation 

 

     Every missing data is valued as M>1 in multiple imputation. In our application, 

M=5 is used and multiple imputation method SOLAS package software has been 

used. Table 4.21 and 4.22 show standard deviation and estimated averages of 

independent variables filled by different methods. 

 

Table 4.21 Summary of estimated means 

  
Skin Folds Waist Haunch Relative Weight 

Complete Case 13.513 72.435 96.150 105.162 

EM 13.516 72.430 96.140 105.156 

Regression 13.510 72.429 96.050 105.278 

M=1 13.495 72.183 96.000 104.850 

M=2 13.507 72.323 96.117 105.010 

M=3 13.482 72.519 96.146 105.120 

M=4 13.540 72.476 96.220 105.330 

M=5 13.498 72.500 96.116 105.140 
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Table 4.22 Summary of estimated standard deviations 

  
Skin Folds Waist Haunch Relative Weight 

Complete Case 5.266 8.185 7.670 16.260 

EM 5.266 8.186 7.671 16.260 

Regression 5.294 8.126 7.692 16.451 

M=1 5.327 8.462 7.712 16.306 

M=2 5.269 8.355 7.716 16.525 

M=3 5.306 8.184 7.853 16.280 

M=4 5.241 8.128 7.585 16.291 

M=5 5.206 8.098 7.559 16.373 

 

     Missing 241 units could not be predicted by missing regression analysis in 

dependent variable due to their presence in same units for all variables. Continuous 

form of dependent variable has been filled with EM and regression imputation 

method, and then they have been converted into ordinal data. In multiple imputation 

method, dependent variables are filled ordinally.  

 

     Table 4.23 shows ANOVA values of continuous independent variables filled by 

different methods.  

 

0 CC EM REG M=1 M=5

1

: ...

: at least one variable is different

H

H

µ µ µ µ µ= = = = =
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Table 4.23 One way ANOVA  

 

 Sum of 

Squares df 

Mean 

Square F p-value 

Skin 

Folds 

Between 

Groups 
2.251 7 0.322 0.012 1.000 

Within 

Groups 
228426.536 8458 27.007 

  

Total 228428.786 8465    

Waist 

Between 

Groups 
92.044 7 13.149 0.200 0.985 

Within 

Groups 
555013.373 8458 65.620 

  

Total 555105.417 8465    

Haunch 

Between 

Groups 
32.348 7 4.621 0.081 0.999 

Within 

Groups 
480655.691 8458 56.829 

  

Total 480688.039 8465    

Relative 

Weight 

Between 

Groups 
169.637 7 24.234 0.093 0.999 

Within 

Groups 
2196197.789 8458 259.659 

  

Total 2196367.426 8465    

 

     When group averages of variables filled with different methods are compared, it 

can be said that there is no difference between averages for all variables as p α> . 

 

4.4 Logistic Regression Analysis  

 

     After obtaining descriptive statistics of data set, it is determined that missings are 

in which variable and where. Logistic Regression analysis will be applied to four 

different types of data. The first of these is the data set obtained by ignoring the 

losses rather than any missing data filling process. Second is data set whose losses 

are filled by Expectation Maximization, third is by Regression Imputation and fourth 

is by Multiple Imputation. 



55 
 

     Shall Wald statistics of dependent variables’ in model are bigger than 2, this 

means that variables are significant (Neter, 1996). P-value of Wald statistics also 

supports this significant. Confidence interval of odds ratio not containing 1 shows 

that there is a meaningful relationship between independent variable and dependent 

variable. 

 

     It can be deduced from p-value of G statistics whether model is appropriate or 

not. Test of parallel lines is a test analyzing whether the calculated independent 

variables correlations are same or not with all levels of dependent variable. Null 

hypothesis is set as regression coefficients are equal for all levels of dependent 

variable and alternative hypothesis is set regression coefficients are not equal for all 

levels of dependent variable. 

 

4.4.1 Logistic Regression Model of Complete Case Analysis  

 

     Before applying the logistic regression to data, we select the independent 

variables using methods of forward selection. Table 4.24 has been obtained in 

conclusion of logistic regression analysis done with these variables. 

 

Table 4.24 Logistic regression model of complete case  

 
Coef  

(SE coef) 

Z 

(p-value) 
Wald 

Odds 

ratio 

OR CI 

Lower 

OR CI 

Upper 

Threshold 
BMIgrp=1 

42.398 

(3.254) 

13.03 

(0.000) 169.715    

BMIgrp=2 
54.642 

(4.039) 

13.53 

(0.000) 183.062    

Location 

Waist 
0.138 

(0.025) 

5.52 

(0.002) 30.439 1.148 1.093 1.206 

Relative 

Weight 

0.360 

(0.028) 

13.06 

(0.000) 170.574 1.433 1.358 1.514 

Skin folds 
0.095 

(0.031) 

3.07 

(0.000) 9.935 1.099 1.035 1.169 

 

     Considering Table 4.24, odds ratio of “Skin folds” variable is 1.099.  Unit of 

continuous independent variables is very important for odds ratio interpretation. 10 

cm increase in skin folds results in s k i n  f o l d sc
e

β namely 10*0.095 2.59e = unit change in 



56 
 

dependent variable. Confidence interval of odds ratio not containing 1 shows that 

there is a meaningful relationship between it and dependent variable. 

 

     Table 4.25 has information on model fitting for complete case Table 4.26 gives 

values of test whether regression coefficients are parallel or not.  

 

Table 4.25 Model fitting information of complete case 

Model 
-2 Log 

Likelihood 
Chi-Square df P-value 

Intercept 

Only 
1485.569    

Final 424.969 1060.600 3 0.000 

 

1458.596 424.969

  1060.600

G = −

=
 

 

     Regarding p-value of G statistics distributed chi-square with 3 degree of freedom, 

it is said that the model is appropriate.   

 

Table 4.26 Test of parallel lines of complete case 

Model 
-2 Log 

Likelihood 
Chi-Square df P-value 

Null 

Hypothesis 
424.969    

General 423.139 1.829 3 0.609 

 

     Considering Table 4.26, null hypothesis cannot be rejected as p α> . Regression 

coefficients are same for all levels of dependent variable. 

 

4.4.2 Logistic Regression Model of EM Algorithm  

 

   Missing values of original data are filled using EM algorithm and Table 4.26 has 

been achieved.   
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Table 4.27 Logistic regression model of imputed by EM algorithm  

 
Coef  

(SE coef) 

Z 

(p-value) 
Wald 

Odds 

ratio 

OR CI 

Lower 

OR CI 

Upper 

Threshold 
BMIgrp=1 

43.721 

(3.162) 

13.83 

(0.000) 191.162    

BMIgrp=2 
56.353 

(3.908) 

14.42 

(0.000) 207.979    

Location 

Waist 
0.142 

(0.025) 

5.67 

(0.000) 32.136 1.15 1.097 1.212 

Relative 

Weight 

0.371 

(0.027) 

13.83 

(0.000) 191.152 1.45 1.376 1.606 

Skin folds 
0.099 

(0.031) 

3.15 

(0.002) 9.942 1.11 1.038 1.175 

 

     In Table 4.27, the odds ratio of “Relative Weight” variable is 1.45. Unit of 

continuous independent variables is very important for odds ratio commentary. %25 

increase in “Relative Weight” results in 0.25*0.371 1.097e = unit change in dependent 

variable. . Confidence interval of odds ratio not containing 1 shows that there is a 

relationship between it and dependent variable. 

 

    Table 4.28 gives information on model fitting for EM algorithm. Table 4.29 gives 

results whether regression coefficients are ame or not of the model obtained by data 

set filled with EM algorithm. 

 

Table 4.28 Model fitting information of EM algorithm 

Model 
-2 Log 

Likelihood 
Chi-Square df P-value 

Intercept 

Only 
1658.404    

Final 427.344 1231.060 3 0.000 

 

1658.404 427.344

  1231.060

G = −

=
 

 

    Regarding p-value of G statistics distributed chi-square with 3 degree of freedom, 

it is said that the model is appropriate.   
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Table 4.29 Test of parallel lines of EM algorithm 

Model 
-2 Log 

Likelihood 
Chi-Square df P-value 

Null 

Hypothesis 
427.344    

General 426.088 1.256 3 0.740 

 

    Null hypothesis cannot be rejected as the α  is bigger than p-value. This means, 

regression coefficients are same for all levels of dependent variable. 

 

4.4.3 Logistic Regression Model of Regression Imputation  

    

    Missing values of original data are filled using regression imputation and Table 

4.30 has been achieved.   

 

Table 4.30 Logistic regression model of imputed by regression imputation  

 
Coef  

(SE coef) 

Z 

(p-value) 
Wald 

Odds 

ratio 

OR CI 

Lower 

OR CI 

Upper 

Threshold 
BMIgrp=1 

39.093 

(3.548) 

11.01 

(0.000) 121.400    

BMIgrp=2 
50.977 

(4.172) 

12.22 

(0.000) 149.267    

Location 

Haunch 
0.101 

(0.030) 

3.37 

(0.001) 11.345 1.11 1.042 1.174 

Relative 

Weight 

0.358 

(0.028) 

12.79 

(0.000) 164.177 1.43 1.354 1.509 

Percentile=1 
2.250 

(0.699) 

3.22 

(0.001) 10.349 9.49 2.408 37.338 

Percentile=2 
1.806 

(0.664) 

2.72 

(0.006) 7.409 6.09 1.659 22.354 

Percentile=3 
1.519 

(0.624) 

1.86 

(0.015) 5.926 4.57 1.344 15.503 

Percentile=4 0 . . . . . 

 

     Missing data of data set has been filled with regression imputation method and 

logistic regression analysis applied to obtained data is shown in Table 4.30. 

Percentile independent variable is a categorical variable. If the first level of this 

variable increases 9.49 units then dependent variable will be 1 increase unit. 
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     Table 4.31 gives information on model fitting for regression imputation. Table 

4.32 gives results whether regression coefficients are same or not of the model 

obtained by data set filled with regression imputation. 

 

Table 4.31 Model fitting information of regression imputation 

Model 
-2 Log 

Likelihood 
Chi-Square df P-value 

Intercept 

Only 
1459.804    

Final 404.831 1054.973 5 0.000 

 

1459.804 404.831

  1054.973

G = −

=
 

 

     Regarding p-value of G statistics distributed chi-square with 5 degree of freedom, 

it is said that the model is appropriate.   

 

Table 4.32 Test of parallel lines of regression imputation 

Model 
-2 Log 

Likelihood 
Chi-Square df P-value 

Null 

Hypothesis 
404.831    

General 397.038 7.793 5 0.168 

 

     Null hypothesis cannot be rejected as the p-value is bigger than α . This means, 

regression coefficients are same for all levels of dependent variable. 

 

4.4.4 Logistic Regression Model of Multiple Imputation  

 

     5 data set (M=1, M=2 … M=5) has been obtained from variables filled with 

multiple imputation method. Each data set is applied logistic regression. Table 4.33 

gives results of M=1 data set obtained by multiple imputation. 
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Table 4.33 Multiple imputation M=1 

 
Coef  

(SE coef) 

Z 

(p-value) 
Wald 

Odds 

ratio 

OR CI 

Lower 

OR CI 

Upper 

Threshold 
BMIgrp=1 

31.820 

(2.086) 

15.25 

(0.000) 232.654    

BMIgrp=2 
41.088 

(2.496) 

16.46 

(0.000) 271.034    

Location 

Relative 

Weight 

0.283 

(0.018) 

15.72 

(0.000) 247.404 1.33 1.281 1.376 

Skin Folds 
0.056 

(0.024) 

2.33 

(0.018) 5.573 1.06 1.010 1.108 

Waist 
0.065 

(0.018) 

3.61 

(0.000) 12.559 1.07 1.029 1.106 

Father 

Obese=0 

1.585 

(0.662) 

2.39 

(0.017) 5.736 4.88 1.334 17.832 

Father 

Obese=1 
0 . . . . . 

Helath=1 
0.476 

(0.231) 

2.06 

(0.039) 4.264 1.61 1.024 2.529 

Health=2 0 . . . . . 

 

     Considering odds ratio of Father obese variable in Table 4.33, we can deduce that 

1 unit change in this variable result in 4.88 unit change in dependent variable. 

Children of high school whose fathers are obese are more prone to be obese.     

 

     Table 4.34 gives information on model fitting for M=1. Table 4.35 gives results 

whether regression coefficients are same or not of the model obtained by the first 

data set filled with multiple imputation. 

 

Table 4.34 Model fitting information of M=1 

Model 
-2 Log 

Likelihood 

Chi-

Square 
df P-value 

Intercept 

Only 
1979.061    

Final 709.201 1269.859 5 0.000 

 

1979.061 709.201

   1269.859

G = −

=
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     From Table 4.34, regarding p-value of G statistics distributed chi-square with 5 

degree of freedom, it is said that the model is appropriate.   

 

Table 4.35 Test of parallel lines of M=1 

Model 
-2 Log 

Likelihood 
Chi-Square df P-value 

Null 

Hypothesis 
709.201    

General 708.367 0.834 5 0.975 

 

     Null hypothesis cannot be rejected as the p-value is bigger than α . This means, 

regression coefficients are same for all levels of dependent variable. 

 

     Results of M=2 data set obtained with multiple imputation is given on Table 4.36. 

 

Table 4.36 Multiple imputation M=2 

 
Coef  

(SE coef) 

Z 

(p-value) 
Wald 

Odds 

ratio 

OR CI 

Lower 

OR CI 

Upper 

Threshold 
BMIgrp=1 

28.518 

(2.102) 

13.57 

(0.000) 184.144    

BMIgrp=2 
38.455 

(2.528) 

15.22 

(0.000) 231.339    

Location 

Waist 
0.048 

(0.020) 

2.40 

(0.015) 5.931 1.05 1.009 1.090 

Relative 

Weight 

0.302 

(0.019) 

15.89 

(0.000) 258.103 1.35 1.303 1.404 

Percentile=1 
1.666 

(0.515) 

3.24 

(0.001) 10.458 5.29 1.927 14.527 

Percentile=2 
1.381 

(0.481) 

2.87 

(0.004) 8.264 3.98 1.553 10.206 

Percentile=3 
0.983 

(0.449) 

2.19 

(0.029) 4.792 2.67 1.108 6.443 

Percentile=4 0 . . . . . 

 

     Percentile independent variable is a categorical variable. If the first level of this 

variable increases 5.29 units then the dependent variable will be increase 1 unit.    
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     Table 4.37 gives information on model fitting for M=2. Regarding p-value of G 

statistics distributed chi-square with 5 degree of freedom, it is said that the model is 

appropriate.   

 

Table 4.37 Model fitting information of M=2 

Model 
-2 Log 

Likelihood 
Chi-Square df P-value 

Intercept 

Only 
1927.515    

Final 642.030 1285.485 5 0.000 

 

1927.515 642.030

   1285.485

G = −

=
 

 

Table 4.38 Test of parallel lines of M=2 

Model 
-2 Log 

Likelihood 
Chi-Square df P-value 

Null 

Hypothesis 
642.030    

General 637.521 4.508 5 0.479 

 

     Table 4.38 gives results whether regression coefficients are same or not of the 

model obtained by data set filled with multiple imputation. Null hypothesis cannot be 

rejected as the p-value is bigger than α . This means, regression coefficients are 

same for all levels of dependent variable.  

 

     Table 4.39 shows results of M=3 data set obtained with multiple imputation. 10 

cm increase in Haunch independent variable results in 10*0.084 2.32e = unit increase in 

dependent variable. 
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Table 4.39 Multiple imputation M=3  

 
Coef  

(SE coef) 

Z 

(p-value) 
Wald 

Odds 

ratio 

OR CI 

Lower 

OR CI 

Upper 

Threshold 
BMIgrp=1 

35.069 

(2.435) 

14.40 

(0.000) 207.461    

BMIgrp=2 
44.918 

(2.875) 

15.62 

(0.000) 244.030    

Location 

Haunch 
0.084 

(0.022) 

3.82 

(0.000) 14.111 1.088 1.041 1.136 

Relative 

Weight 

0.309 

(0.020) 

1.55 

(0.000) 247.797 1.362 1.310 1.414 

 

 

     Table 4.40 gives information on model fitting for M=2. Regarding p-value of G 

statistics distributed chi-square with 2 degree of freedom, it is said that the model is 

appropriate.   

 

Table 4.40 Model fitting information of M=3 

Model 
-2 Log 

Likelihood 
Chi-Square df P-value 

Intercept 

Only 
1901.694    

Final 607.925 1293.769 2 0.000 

 

1901.694 607.925

   1293.769

G = −

=
 

 

Table 4.41 Test of parallel lines of M=3 

Model 
-2 Log 

Likelihood 
Chi-Square df P-value 

Null 

Hypothesis 
607.925    

General 606.017 1.908 2 0.385 

 

     Table 4.41 gives results whether regression coefficients are same or not of the 

model obtained by data set filled with multiple imputation. Null hypothesis cannot be 
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rejected as the p-value is bigger than α . This means, regression coefficients are 

same for all levels of dependent variable. 

 

     Table 4.42 shows results of M=4 data set obtained with multiple imputation.      

Table 4.42 Multiple imputation M=4  

 
Coef  

(SE coef) 

Z 

(p-value) 
Wald 

Odds 

ratio 

OR CI 

Lower 

OR CI 

Upper 

Threshold 
BMIgrp=1 

26.329 

(1.548) 

17.00 

(0.000) 289.430    

BMIgrp=2 
35.656 

(2.002) 

17.81 

(0.000) 317.321    

Location 

Skin Folds  
0.074 

(0.026) 

2.85 

(0.004) 8.182 1.077 1.023 1.133 

Relative 

Weight 

0.293 

(0.017) 

17.24 

(0.000) 291.985 1.341 1.296 1.385 

Gender=1 
0.645 

(0.217) 

2.97 

(0.003) 8.835 1.906 1.246 2.915 

Gender=2 0 . . . . . 

 

If the gender independent variable increases 1 unit then the dependent variable 

increases 1 unit. Boys in high school are more prone to be obese than girls in high 

school.    

 

     Table 4.43 gives information on model fitting for M=4. Regarding p-value of G 

statistics distributed chi-square with 3 degree of freedom, it is said that the model is 

appropriate.   

 

Table 4.43 Model fitting information of M=4 

Model 
-2 Log 

Likelihood 
Chi-Square df P-value 

Intercept 

Only 
1929.957    

Final 710.623 1219.334 3 0.000 
 

1929.957 710.623

   1219.334

G = −

=
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Table 4.44 Test of parallel lines of M=4 

Model 
-2 Log 

Likelihood 
Chi-Square df P-value 

Null 

Hypothesis 
710.623    

General 708.942 1.680 3 0.641 

 

     Table 4.44 gives results whether regression coefficients are same or not of the 

model obtained by data set filled with multiple imputation. Null hypothesis cannot be 

rejected as the p-value is bigger than α . This means, regression coefficients are 

same for all levels of dependent variable. 

 

Table 4.45 shows results of M=5 data set obtained with multiple imputation. 

  

Table 4.45 Multiple imputation M=5 

 
Coef  

(SE coef) 

Z 

(p-value) 
Wald 

Odds 

ratio 

OR CI 

Lower 

OR CI 

Upper 

Threshold 
BMIgrp=1 

26.340 

(1.735) 

15.18 

(0.000) 230.372    

BMIgrp=2 
36.113 

(2.193) 

16.47 

(0.000) 271.267    

Location 

Relative 

Weight 

0.313 

(0.019) 

16.47 

(0.000) 283.370 1.37 1.319 1.419 

Percentile=1 
1.834 

(0.482) 

3.80 

(0.000) 14.501 6.26 2.435 16.087 

 
Percentile=2 

1.338 

(0.446) 

3.00 

(0.003) 9.022 3.81 1.592 9.134 

 
Percentile=3 

1.028 

(0.429) 
2.39 5.735 2.79 1.206 6.482 

 Percentile=4 0 . . . . . 

 

     In Table 4.45, the odds ratio of “Relative Weight” variable is 1.37. Unit of 

continuous independent variables is very important for odds ratio commentary. %25 

increase in “Relative Weight” results in 0.25*0.313 1.081e = unit change in dependent 

variable. . Confidence interval of odds ratio not containing 1 shows that there is a 

relationship between it and dependent variable.  
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     Table 4.46 gives information on model fitting for M=5. Regarding p-value of G 

statistics distributed chi-square with 4 degree of freedom, it is said that the model is 

appropriate. 

 

Table 4.46 Model fitting information of M=5 

Model 
-2 Log 

Likelihood 
Chi-Square df P-value 

Intercept 

Only 
1814.411    

Final 555.544 1258.867 4 0.000 

 

1814.411 555.544

   1258.867

G = −

=
 

 

Table 4.47 Test of parallel lines of M=5 

Model 
-2 Log 

Likelihood 
Chi-Square df P-value 

Null 

Hypothesis 
555.544    

General 552.909 2.635 4 0.621 

 

     Table 4.47 gives results whether regression coefficients are same or not of the 

model obtained by data set filled with multiple imputation. Null hypothesis cannot be 

rejected as the p-value is bigger than α . This means, regression coefficients are 

same for all levels of dependent variable. 

 

4.4.5 Comparison of methods  

 

     Pearson chi-square and deviance statistics are shown Table 4.48. These statistics 

are intended to test whether the model is appropriate. 

 

     The model M=2 and the model M=5 is not appropriate. Those statistics are both 

sensitive to empty cells. When estimating models with continuous independent 

variables, there are often many empty cells, as in this application. Therefore, you 
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shouldn't rely on either of these test statistics with such models. Because of the 

empty cells, you can't be sure that these statistics will really follow the chi-square 

distribution, and the significance values won't be accurate.      

 

Table 4.48 Compare of methods 

 Goodness of fits R_square 

Pearson Deviance 
Cox and 

Snell 
Nagelkerke McFadden 

Complete 

case  

1097.608 

(1.000) 

423.582 

(1.000) 
0.714 0.863 0.713 

EM 
1212.079 

(1.000) 

425.958 

(1.000) 
0.677 0.866 0.742 

REG 
1255.615 

(1.000) 

378.256 

(1.000) 
0.712 0.861 0.709 

M=1 
2220.893 

(0.165) 

707.815 

(1.000) 
0.689 0.822 0.641 

M=2 
2240.071 

(0.000) 

628.846 

(1.000) 
0.693 0.833 0.662 

M=3 
1567.781 

(1.000) 

561.962 

(1.000) 
0.696 0.833 0.661 

M=4 
1252.754 

(1.000) 

702.069 

(1.000) 
0.674 0.810 0.629 

M=5 
1877.310 

(0.000) 

486.792 

(1.000) 
0.686 0.824 0.649 

 

 

     As can be seen also from Table 4.47, Cox and Snell R
2 

determination coefficient 

is found to be 71.4% in complete-case situation, 67.7% in EM analysis and 71.2% in 

regression imputation analysis in method comparisons. When situations compared, 

the lowest determination coefficient is seen in EM algorithm. For all methods, the 

highest determination coefficient is the complete case analysis. The highest 

determination coefficient of Cox and Snell R
2 
is 71.4% in complete case. Nagelkerke 

and Mc Fadden have the highest determination coefficient in EM.  
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CHAPTER FIVE 

CONCLUSION 

 

     Missing data is a common problem in statistical studies. While ignoring missing 

data is an option, it is possible to contribute to study by analyzing them with various 

statistical methods. Before the applying the methods, we have to determine the 

missing data mechanism. Data set contains 15 independent variables. The continuous 

independent variables; Skin folds, Waist, Haunch and Relative weight have missing 

values. Discrete independent variable Percentile has missing value and dependent 

variable also has missing values. There are 241 missing observations in independent 

variables and 848 observations have seen in all variables. Missing values in variables 

are in same units. This missing data pattern fits to multivariate pattern. Missing data 

mechanism fits to MCAR mechanism. 

 

     The methods used here are complete case analysis, EM algorithm, regression 

imputation and multiple imputation. The complete case analysis also called listwise 

deletion, analyzed only the cases with complete data. Individuals with data missing 

on any variables were dropped from the analysis. EM Algorithm is a re-iteratively 

method that includes the maximum likelihood estimations to calculate the parameter 

predictions in in-complete data problems. The normal distribution was used as a 

likelihood function. In the regression imputation the first step of the imputation 

process is to estimate a set of regression equations that predict the in complete 

variables from the complete variables. While the regression imputation was applied, 

the linear regression model was used. A complete-case analysis usually generates 

these estimates. The second step is to generate predicted values for the incomplete 

variables. These predicted scores fill in the missing values and produce a complete 

data set. In the multiple imputation each missing value is replaced by M >1 values. 

  

     After that imputation operation logistic regression was applied. Dependent 

variable is BMIgrp which denotes the body mass index group. The groups are 

defined according to body mass indexes as; the ones smaller than 18.5 are the 1st 

group (low-weight), the ones between 18.5 and 23.9 are the 2nd group (normal 
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weight) and the ones bigger than 23.9 are the 3rd group (obese). The regression 

equations were found for the 8 data set. The regression models were compared. 

Pearson chi-square and deviance statistics are intended to test whether the model is 

appropriate. The model M=2 and the model M=5 is not appropriate although the 

regression coefficients are significant.  

 

     Cox and Snell R
2
 determination coefficient is found to be %71.4 in complete-case 

situation, %67.7 in EM analysis and %71.2 in regression imputation analysis in 

method compares. When situations compared, the lowest determination coefficient 

are seen in EM algorithm. For all methods, the highest determination coefficient is 

complete case analysis. The highest determination coefficient of Cox and Snell R
2
 is 

71.4% in complete case. Nagelkerke and Mc Fadden have the highest determination 

coefficient in EM. 

 

     In this study, there is no difference between the methods of “missing value 

analysis”. However it does not mean that any difference will not appear. It is 

concluded that the obtained results can differ according to the characteristics of the 

study and the data, number of missing data/observation when the different methods 

are applied. Therefore it is understood that strict interpretations while judging results 

should be avoided especially for cases close to meaningfulness in researches that 

“imputation” technique is used and bear such situations.  
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