PEDİATRİK OBEZİTE İLE İLİŞKİLİ YAĞLI KARACİĞER HASTALIĞINDA METABOLİK, OKSİDAN VE ANTIÖKSİDAN SİSTEMİK BELİRTEÇLERİN DEĞERLENDİRİLMESİ

YELİZ ANGIN

BİYOKİMYA PROGRAMI
YÜKSEK LİSANS TEZİ

İZMİR-2009
PEDİATRİK OBEZİTE İLE İLİŞKİLİ YAĞLI KARACİĞER HASTALIĞINDA METABOLİK, OKSİDAN VE ANİOXSİDAN SİSTEMİK BELİRTEÇLERİN DEĞERLENDİRİLMESİ

BIYOKİMYA PROGRAMI
YÜKSEK LİSANS TEZİ

YELİZ ANGIN

Tez Danışmanı PROF. DR. FİLİZ KURALAY

Bu araştırma DEÜ Bilimsel Araştırma Projeleri Şube Müdürlüğü tarafından 2007.KB.SAG.048 sayılı ile desteklenmiştir
İÇİNDEKİLER

TABLO LİSTESİ .. III
ŞEKİL LİSTESİ ... IV
KISALTMALAR .. V
TEŞEKKÜR .. VI
ÖZET .. 1
ABSTRACT ... 3
1. GİRİŞ VE AMAÇ .. 5
2. GENEL BİLGİLER .. 7
 2.1 OBEZİTE TANIMI VE SIKLİLİĞİ ... 7
 2.2 ADİPOZ DOKU VE OBEZİTE .. 8
 2.3 YAĞ HÜCRELERİNDE ve KASTA İNSÜLIN DİRENCİ ... 9
 2.4 KLASİK İNFLAMASYON VE DOÇAL BAÇIŞILIK ... 10
 2.5 OBEZİTE İLE İLİŞKİLİ İNFLAMASYON .. 11
 2.5.1 Çocuklarda Obezite Ve İnflamasyon .. 12
 2.5.2 Obezitede Görülen İnflamasyonun Moleküler Temelleri ... 13
 2.6 NON-ALKOLİK YAĞLI KARACİÇER HASTALIĞI ... 14
 2.6.1 Tanım, Prevelans, Etyopatogenezi ... 14
 2.6.2 NAFLD’de Yağ Dokusu ve Normal Lipid Metabolizması .. 16
 2.6.3 NAFLD’nin Patogenezi ve Moleküler Temelleri ... 18
 2.6.4 Adipoz Dokudan Salılan Sitokinler ve İnflamatuar Belirteçler 24
 2.7 OKSİDATİF STRES VE ANTİOKSİDANLAR ... 28
 2.7.1 KoenzimQ_{10} (CoQ_{10}) ... 29
 2.7.2 α-Tokoferol .. 29
 2.7.3 Retinol .. 30
3. ARAÇ, GEREC VE YÖNTEMLER .. 31
 3.1 ARAÇ VE GERECLERİ ... 31
3.1.1. Cihazlar .. 31
3.1.2. Kimyasal Maddeler .. 32
3.1.3. Kitler ... 32
3.2 OLGULARIN SEÇİMİ, OLGU VE KONTROL GRUPLARININ
OLUŞTURULMASI, ÖRNEKLERİN TOPLANMASI VE SAKLANMASI...... 33
3.2.1. Olguların Seçimi .. 33
3.3 PARAMETRELERİN ÇALIŞILMASI ... 35
3.3.1 İnsulin Direncinin Saptanması .. 36
3.3.2 Yağ Doku Sitokinlerinin Çalışılması .. 36
3.3.3 Oksidasyon Göstergelerinin Çalışılması .. 38
3.3.4 Plazma Antioksidan Düzeylerinin Belirlenmesi..................................... 43
3.4 İSTATİSTİKSEL ANALİZ .. 45
4. BULGULAR ... 46
4.1 TANIMLAYICI BULGULAR ... 46
4.2 OKSİDASYON GÖSTERGELERİNE AİT BULGULAR 50
4.2.1 MDA Bulguları .. 50
4.2.2. Oksidasyon Göstergelerine Ait Bulgular .. 52
4.3 PROİNFLAMATUAR SİTOKİNLER ve İNFLAMASYON
GÖSTERGESİNE AİT BULGULAR ... 54
4.3. ANTİOKSİDAN PARAMETRELERE AİT BULGULAR 57
4.4 YAĞ DOKU SİTOKİNLERİNE AİT BULGULAR .. 61
3.4 IR (+) OLGULAR ve IR (-) OLGULARIN TÜM PARAMETRELER
YÖNÜNDEN KARSILAŞTIRILMASI ... 64
4.5 KORELASYON ANALİZLERİ ... 65
5. TARTIŞMA VE SONUÇ .. 67
KAYNAKLAR ... 76
TABLO LİSTESİ

Tablo 1. NAFLD (+) ve NAFLD (-) obez grupları ile kontrol grubuna ait antropometrik ve sosyodemografik özellikler.

Tablo 2. Obez ve kontrol gruplarına ait antropometrik ve sosyodemografik özellikler.

Tablo 3. NAFLD (-) obez, NAFLD (+) obez ve kontrol gruplarına ait rutin biyokimyasal parametrelerinin karşılaştırılması.

Tablo 4. Obez ve kontrol gruplarına ait rutin biyokimyasal parametrelerin karşılaştırılması.

Tablo 5. IR (+) obez olgular ve IR (-) obez olguların rutin biyokimyasal parametrelerinin karşılaştırılması.

Tablo 6. NAFLD (-) obez, NAFLD (+) obez ve kontrol gruplarına ait oksidasyon göstergelerinin (ox-LDL ve MDA) karşılaştırılması.

Tablo 7. Obez ve kontrol gruplarına ait oksidasyon göstergelerinin (ox-LDL ve MDA) karşılaştırılması.

Tablo 8. NAFLD (+) obez, NAFLD (-) obez ve kontrol gruplarına ait proinflamatuar parametrelerin (IL-6, TNF-α) ve CRP’nin karşılaştırılması.

Tablo 9. Obez ve kontrol gruplarına ait proinflamatuar parametrelerin (IL-6, TNF-α) ve CRP’nin karşılaştırılması.

Tablo 10. NAFLD (+) obez, NAFLD (-) obez ve kontrol grubuna ait plazma antioksidan (CoQ10, retinol ve α-tokoferyl) düzeylerinin karşılaştırılması.

Tablo 11. Obez ve kontrol grubuna ait plazma CoQ10, retinol ve α-tokoferyl düzeylerinin karşılaştırılması.

Tablo 12. NAFLD (+) obez, NAFLD (-) obez ve kontrol gruplarına ait serum adipositokin (leptin, adiponektin ve rezistin) düzeylerinin karşılaştırılması.

Tablo 13. Obez ve kontrol gruplarına ait adipositokin (leptin, adiponektin ve rezistin) düzeylerinin karşılaştırılması.

Tablo 14. IR (+) obez olgular ile IR (-) obez olgulara ait leptin ve IL-6 düzeylerinin karşılaştırılması.

Tablo 15. Parametreler arası korelasyon analizleri.
ŞEKİL LİSTESİ

Şekil 1. Hücresi içi potansiyel inflamatuar sinyal yolları.
Şekil 2. Normal lipid metabolizması.
Şekil 3. Hepatik steatoya moleüler mekanizması.
Şekil 4. Karaciğer hücrelerinde ROS oluşumu ve lipid peroksidasyonu.
Şekil 5. Mitokondriyel fonksiyon bozukluğu ve artmış mitokondriyal ROS oluşumunda muhtemel mekanizmalar.
Şekil 6. MDA kalibrasyon grafiği.
Şekil 7. MDA standartına ait kromatogram.
Şekil 8. Bir örneğe ait MDA kromatogramı.
Şekil 9. NAFLD (+) obez, NAFLD (-) obez ve kontrol gruplarına ait plazma ox-LDL düzeylerinin karşılaştırılması.
Şekil 10. NAFLD (+) obez, NAFLD (-) obez ve kontrol gruplarına ait plazma MDA düzeylerinin karşılaştırılması.
Şekil 11. NAFLD (+) obez, NAFLD (-) obez ve kontrol gruplarına ait plazma IL-6 düzeylerinin karşılaştırılması.
Şekil 12. NAFLD (+) obez, NAFLD (-) obez ve kontrol gruplarına ait plazma TNF-α düzeylerinin karşılaştırılması.
Şekil 13. NAFLD (+) obez, NAFLD (-) obez ve kontrol gruplarına ait serum CRP düzeylerinin karşılaştırılması.
Şekil 15. α-Tokoperol Kalibrasyon Eğisi.
Şekil 17. NAFLD (+) obez, NAFLD (-) obez ve kontrol gruplarına ait plazma CoQ10, retinol ve α-tokoperol düzeylerinin karşılaştırılması.
Şekil 18. NAFLD (+) obez, NAFLD (-) obez ve kontrol grubuna ait serum adiponektin ve rezistin düzeylerinin karşılaştırılması.
Şekil 19. NAFLD (+) obez, NAFLD (-) obez ve kontrol grubuna ait serum leptin düzeylerinin karşılaştırılması.
KISALTMALAR

ACC1 : Asetil Co A karboksilaz 1
AGE : İleri glikozilasyon son ürünleri (advanced glycation end product)
ChREBP : Karbohidrat yant elementi bağlanma proteini (carbohydrate response element-binding protein)
CPT-1 : Karnitin açı transferaz 1
CRP : C reaktif protein
DNL : De novo lipogenez
HDL : Yüksek dansiteli lipoprotein
HOMA : Homeostasis Model Assessment
IL-6 : İnterklökin-6
IRS 1 : İnsülin reseptor substrat 1
LDL : Düşük dansiteli lipoprotein
MDA : Malondialdehit
MS : Metabolik Sendrom
NAFLD : Non- alkolik yağlı karaciğer hastalığı
NEFA : Esterleşmemiş yağ asitleri (non esterified fatty acid)
NF-κB : Nükleer Transkripsiyon faktör kappa B
PKC : Protein Kinaz C
PPAR : Peroksizom proliferatif aktive reseptörü (peroxisome proliferative activated receptor)
RAGE : İleri glikozilasyon son ürünleri için reseptör (receptor for advanced glycation end products)
ROS : Reaktif oksijen türleri
SREBP1-c : Sterol düzenleyici element bağlanma proteini (Sterol regulatory element-binding protein)
Ox-LDL : Okside LDL
TNF-α : Tümör Nekrozis Faktör Alfa
VLDL : Çok düşük dansiteli lipoprotein
TEŞEKKÜR

Biyokimya Yüksek Lisans eğitimin süresince, manevi desteklerini ve güler yüzlerini esirgemeyen Biyokimya Anabilim Dalı öğretim üyeleri ve tüm çalışanlarına;
Tez konumun seçiminde ve çalışmalarım süresince bilimsel açıdan yardımcı olan ve kolaylık sağlayan danışmanım Sayın Prof. Dr. Filiz Kuralay’a; her zaman bilimsel ve manevi açıdan destekini esirgemeyen Anabilim Dalı Başkanümüz Sayın Prof. Dr. Banu Önvural’a,
Tez çalışmalarım sırasında hasta seçimiyile bizzat ilgilenen ve her zaman bilimsel desteğini tereddütsüz sunan Sayın Doç. Dr. Nur Arslan’a, hastalardan kan örneklerinin toplanmasında çok fazla emeği geçen Sayın Nimet hemsireye,
Tez örneklerini çalışma süresince bana kolaylık sağlayan ve yardımcı esirgemeyen Sayın Dr. Memduh Bülbül’e ve Araştırma Laboratuvarlarının imkanlarından sonuna kadar yaralanmamı sağlayan ve her konuda yardımcı olmaya çalışan Sayın Doç. Dr. Halil Resmi ve Sayın Prof. Dr. Gül Güner’e;
Tez çalışmalarım sırasında ben olmadığım zamanlarda örneklerimin toplanmasında emeği geçen ve manevi desteklerini hiçbir zaman esirgemeyen tüm arkadaşlarımı, yüksek lisans arkadaşlarıyla ve özellikle Ali Burak’a,
Son anda çıkan aksiliklere çözüm getirilmesinde yardımcı olan Sayın Yrd.Doç.Dr.Murat Örmen’e, Sayın Öğr.Gör.Uzm. Dr. Ali Rıza Şişman’a, Sayın Uzm. Dr. Tuncay Kümé’ye ve merkez laboratuar çalışanlarına,
Güler yüzleriyle desteklerini esirgemeyen, adı geçmeyen tüm arkadaşlarla, enstitü çalışanlarına, Hale ve Fulya ablama, Anabilim Dalı sekreterimiz Eda ablama,
Ve son olarak beni bugünle getiren, her zaman yanında olan, bana duyduğu inanç ve güvenlerini hiçbir zaman yitirmeyen, manevi desteklerini esirgemeyen canım aileme en içten dileklerimle teşekkür ederim.

Yeliz Angın
Amaç: Obez ve obeziteye ikincil gelişen alkolik olmayan yağlı karaciğer hastalığı (Non-alcoholic fatty liver disease, NAFLD) olan çocuklarda proinflamatuar sitokinler olan interleukin 6 (IL-6) ve tümör nekrozis faktör alfa (TNF-α) inflamasyon göstergesi olan C-reaktif protein (CRP), oksidasyon göstergeleri olan okside LDL (oxLDL) ve malondialdehid (MDA), antioksidan savunma mekanizmalarının sistemik parametreleri olan alfa-tokoferol (α-tokoferol: E vitamini), retinol (A vitamini) ve ubikinon (UQ) ve yağ dokuyla ilgili hormonlar olan leptin, adiponektin, rezistin düzeylerini ölçerek kontrol grubu düzeyleriyle karşılaştırmaktır.

Gereç ve Yöntem: Çalışmaya Dokuz Eylül Üniversitesi Tıp Fakültesi, Pediatrik Gastroenteroloji ve Beslenme-Metabolizma Polikliniği’nde eksojen obezite tanısı alan (BMI >95 olan) yaşları 11 ile 18 arasında değişen, 47 obez hasta ve 19 sağlıklı kontrol grubu olmak üzere toplam 66 olgu alındı. Antropometrik verilerine göre obezite tanısı alan çocuklarda, karaciğer ultrasonografisi yapılarak NAFLD yağlı karaciğer varlığı arandı. Olgular NAFLD (+) obez, NAFLD (-) obez ve sağlıklı kontrol grubu olarak üçe ayrıldı. On iki saat açıktan sonra tüm hastalardan sodyum sitratlı tüpe ve düz tüpe alınan kanlar santrifüj edildi ve analize kadar -80°C’de saklandı. Tüm olguların rutin biyokimyasal analizleri olan glukoz, karaciğer enzimleri, lipid profilili, CRP, insülin ve hemogramları çalışıldı. İnsülin ve açlık glukoz değerlerinden elde edilen HOMA indeksi sonuçlarına göre (2,7’nin üzerindeki olgular) insülin direnci olan hastalar belirlendi. Plazma MDA düzeyleri floresan dedektörlü HPLC sistemi ile, antioksidan vitaminler UV dedektörlü HPLC sistemi ile, diğer proinflamatuar sitokinler (TNF-α, IL-6) ile oksidasyon göstergelerinden ox-
LDL ve adipokinler (adiponektin, leptin, rezistin) ise sandviç ELISA yöntemi ile ölçüldü. İstatistiksel analiz SPSS 15.0 programında gerçekleştirildi.

Bulgular ve Sonuç: Çalışma grupları yaş ortalamaları arasında anlamlı fark yoktur. Antropometrik verilerden BMI ve boyada ağırlık oranları her iki obezite grubunda kontrol grubuna göre anlamlı yüksektir. Rutin biyokimyasal analizlerden karaciğer fonksiyon testleri (AST, ALT, GGT), insülin, HOMA indeksi ve lipid parametrelerden TG düzeyleri obez grupa kontrol grubuna göre anlamlı olarak yüksektir. Obez gruba ait TKOL, HDL ve LDL düzeyleri kontrol grubuna göre daha yüksek bulunmakla birlikte istatistiksel olarak farklı değildir. Yağlı karaciğer olmayan obez grupta TNF-α, CRP ve leptin düzeyleri kontrol grubuna göre anlamlı olarak yüksektir ve adiponektin düzeyleri ise anlamlı olarak düşük iken; yağlı karaciğerli olan obezlerde bu parametrelerle ilaveten IL-6 düzeyleri de anlamlı olarak artmıştır. Retinol düzeylerindeki kontrol grubuna göre anlamlı artış ise sadece yağlı karaciğerli olan obez olgularda saptanmıştır. Sonuç olarak obezite ve obezite ile ilişkili karaciğer yağlanmasının ayrımında karaciğer ultrasonografisi yansımasına inflamatuar belirteçlerden IL-6 ve antioksidan belirteçlerden retinol düzeylerinin değerlendirilmesi yararlıdır.

Anahtar kelimeler: Alkolik olmayan yağlı karaciğer hastalığı, obezite, adipokinler, oksidasyon, inflamasyon.
Evaluating of Metabolic, Oxidant and Anti-Oxidant Systemic Determinants in Non-Alcoholic Fatty Liver Disease Relevant to Pediatric Obesity

Yeliz ANGIN
Dokuz Eylul University Health Science Institute Biochemistry Programme
İnciraltı, 35340, İzmir /TURKEY

Objectives: Comparing the levels of C-reactive protein (CRP), interleukin 6 (IL-6), oxidized LDL (ox-LDL), malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), the systemic indicators of oxidation and inflammation, alphatocopherol (α-tocopherol: vitamin E), retinol (vitamin A), ubiquinone (UQ), the antioxidant defence mechanisms, leptin, adiponectin, rezistin, the adipokines of obese children and children with nonalcoholic fatty liver disease (NAFLD) secondary to obesity with the healthy control group.

Patients and Methods: A total of 47 obese children [n=20, NAFLD (+) obese, n=27, NAFLD (-) obese] and 30 healthy children with age interval 11-18 years, diagnosed as exogen obesity (BMI>%95) at the department of Pediatric Gastroenterology, Nutrition and Metabolism, Medical School of Dokuz Eylul University were enrolled to the study. The presence of fatty liver was identified by liver ultrasonography in obese children diagnosed according to antropometric data.

Study cases were divided into three groups as NAFLD (+) obese, NAFLD (-) obese and healthy control. Routine biochemical analyses such as glucose, liver enzymes, lipid profile, CRP, insulin and hemogram were carried out. Patients with insulin resistance were determined by HOMA index results (over 2.7) obtained from insulin and fasting glucose values. The levels of plasma MDA and antioxidant vitamins were measured by HPLC systems with UV-detector, other proinflammatory cytokins (TNF-α, IL-6), oxidation indicator (ox-LDL) and adipokines released from adipose tissue (adiponectin, leptin, resistin) by sandwich ELISA. Statistical analyses were performed by SPSS 15.0 programme.
Results and Conclusion: There is no significant difference between average ages of study groups. BMI and the percentages of weight to height of antropometric data are significantly higher in both obese groups than the control group. Liver function tests (AST, ALT, GGT), insulin, HOMA index and TG levels of routine biochemical analyses are significantly higher in obese group [NAFLD (+) obese plus NAFLD (-) obese] than the control group. Total cholesterol, HDL and LDL levels of obese group are higher than the control group, however, this difference is not statistically significant. While TNF-α, CRP and leptin levels are significantly increased and adiponectin levels are significantly decreased in obese patients without fatty liver compared to the control group; in addition to these parameters IL-6 levels are also significantly increased in obese children with fatty liver. Significant increase in retinol levels compared to the control group is determined only in obese cases with fatty liver. In conclusion, the evaluation of the levels of retinol, antioxidant marker, and IL-6, inflammatory marker, is beneficial in discriminating obesity and obesity related hepatic steatosis in addition to liver ultrasonography.

Key words: non-alcoholic fatty liver disease, obesity, adipokines, inflammation.
1. GİRİŞ VE AMAÇ

Obezite, çocuk ve adolesanların %25-30’unu etkileyen önemli bir beslenme problemidir. Çocukluk çağı obezitesi özellikle gelişmiş ülkelerde olmakla beraber bütün dünyada artan bir prevalansa sahiptir. Obeziteye bağlı problemlerin yanı sıra, çocukluk çağında obez olanlarda, erişkin dönemde morbide ve mortalitenin artması durumu ile adolesan döneme obez girenlerin % 50’sinin erişkin dönemde de obez olması durumu, çocukluk çağı obezitesini önemli bir sağlık sorunu yapmaktadır (1).

Non-alkolik yağlı karaciğer hastalığı ‘NAFLD’ (Non-alcoholic fatty liver disease), alkol almayan kişilerde alkole bağlı yağlı karaciğer hastalığının histolojik bulgularını olduğu bir karaciğer hastalığıdır. 1980’lerden sonra dünyada görülme hızla artan, yetişiğin yaklaşık %30’unu, çocukların %20’sini etkileyen ve özellikle endüstrileşmekte olan ülkelerde artan prevalans gösteren metabolik bir hastalık olan NAFLD, basit steatozdan (kareciğin yağ hücrelerinin trigliserit ile dolması) steatohepatit, ilerlemiş fibrozis ve siroza kadar ilerleyen geniş spektrumlu bir karaciğer hasarı tanımlar (2).

Yağlı karaciğer ve siroz gibi fibrotik karaciğer hastalıklarının altında yatan belirli başlı nedenler obezite ve insülin direncidir. Günümüzde çocuklarda obezite ve insülin direncinin prevalansı giderek artmaktadır. Bu durum da, NAFLD’yı çocuklarda potansiyel olarak en yaygın görülecek karaciğer hastalığı yapmaktadır (2). Bu nedenle progresif seyreden ve ciddi etkileri olan NAFLD’nin altında yatan patofizyolojik mekanizmaları anlamak ve etkin tedavi stratejileri geliştirmek önemlidir.

Bu çalışmanın amacı, 1) pediatrik obez ve yağlı karaciğer hastası olan NAFLD’li grupta proinflamatuar sitokinler olan interleukin 6 (IL-6) ve tümör nekrozis faktör alfa (TNF-α), inflamasyon göstergesi olan C reaktif protein (CRP); oksidatif stresin sistemik parametreleri olan tiyobarbitürik asit ile reaksiyonu giren maddelerden malondialdehit (MDA), okside LDL (oxLDL), ve antioksidan savunma mekanizmalarının sistemik parametreleri olan α-tokoferol (E vitamini), retinol (A vitamini), ubikinon (UQ); adipokinler olan leptin, adiponectin, rezistin düzeylerinin
tespit edilmesi, 2) metabolik belirteçler olan ve rutin olarak gerçekleştirilen karaciğer fonksiyon testleri, glukoz ve insülin değerlerinden yola çıkılarak belirlenen insülin direnci (IR) değeri, lipit parametrelerine ilişkin değerler (HDL-K, LDL-K), boya göre ağırlık (weight for height) verilerini kontrol grubununun ile karşılaştırmaktır.
2. GENEL BİLGİLER

2.1 OBEZİTE TANIMI VE SIKLIĞI

Obezite yağ dokusu fazlalığından kaynaklanan ve sağlık üzerine olumsuz etkileri olan bir durumdur ve kısalmış yaşam süresi, artış mortalite ve morbidite, azalmış üretkenlik ve çalışabilirlik, bireysel sosyal ve ekonomik dilsalanma gibi olumsuz sonuçlar doğurur. İnsülin direnci, tip 2 diyabet, aterosklerotik kalp hastalıkları, alkoli olmayan yaşlı karaciğer hastalığı, hipertansiyon ve hiperlipidemi de çoğu zaman obeziteye eşlik etmektedir. Bununla birlikte obezitenin patogenezi tam aydınlatıl DBNull.

Genellikle kabul edilen yağ dokunun, enfeksiyon ve otoimmün hastalıklarda görülen benzer şekilde inflamatuar belirteçlerle iliskili olarak (3).

Obezitenin Değerlendirilmesi

Beden kitle indeksi boy ile ağırlık (BMI: ağırlık/boy²) arasındaki ilişkiyi veren ve kişinin obezite durumunu değerlendiriren bir ölçümüdür. Dünya Sağlık Örgütünün (WHO) sınıflandırmamasına göre; BMI’i 18.5 altındakiler zayıf, 18.5-25 arası normal, 25 üzeri ise kilolu kabul edilmektedir. BMI’i 25-30 arasında olanlar obez öncesi, 30-35 arası olanlar I. sınıf obez, 35-40 arası olanlar II.sınıf obez ve 40 üzeri olan kişiler ise III.sınıf obez kabul edilirler (10). Obeziteyi değerlendirmede ikinci bir
ölcüm ise, ideal kilodan % 120 fazla olunmasıdır. Çocukluk çağı obezitesinin değerlendirilmesinde ise genelde kullanılan, hesaplanan beden kütte indekslerinin, aynı cinsteki çocukların beden kütte indeksi persantilleri ile karşılaştırılın, 95 persantilin üzerinde olanların obez olarak kabul edilmesidir (10).

2.2 ADİPOZ DOKU VE OBEZİTE

İnsülin yağ dokusunun gelişiminde ve fonksiyonunun kontrolünde büyük bir rol oynar. Sadece lipogenezi regüle etmez aynı zamanda lipoliz hızını ve NEFA akış hızında düzenler. Yetişkinlerde adipoz doku, dokunun yerleşimine bağlı olarak iki
tipe ayrılır: subkutan ve viseral (intraperitoneal: omental ve mesenterik yağ). Her iki yağ dokusunda patofizyolojide farklılaşır. İnsülin etkisi subkutan adipoz dokuya kıyasla omental de körşür. Viseral adipozite NAFLD/MS ile daha güçlü bir korelasyon gösterir ve bel/kalça oranı ile ölçülür (14).

2.3 YAĞ HÜCRELERİNDE VE KASTA İNSÜLIN DİRENCİ

Normal kiloda olan bir kişide yemekten sonra kan glukozundaki orta dereceli bir artış, pankreas beta hücrelerinden bir miktar insülin salınımına neden olur. İnsülin adiposit ve kas hücreleri yüzeyindeki reseptörüne etkiyerek, insülin reseptör substratlarının (IRSs) fosforilasyonunu tetikler. Fosforile insülin reseptör substratı, fosfotidil inozitol 3- kinaz ve Akt/ protein kinaz B yi aktive eder, sonucta intraselüler glukoz havuzunda duran glukoz taşıyıcısı GLUT-4 ün adiposit ve miyosit plazma membrannı hareket etmesine neden olur. GLUT-4’lerin adiposit ve kas hücresi plazma membranında çokça eksprese olması etkili bir glukoz alma neden olur, böylece plazma glukoz artışı ve neticede de insülin artışı önlenmiş olur (15).

Bununla birlikte obez insanlarda adipositler daha az GLUT-4 taşıyıcısı üretirler. Daha da önemli ise yağ ile dolu adipositler ve yağdan fakir olan kas hücrelerinin ikisi birden insülin reseptörünün sinyal etkilerine karşı dirençlidir (15).

2.4 KLASİK İNFLAMASYON VE DOĞAL BAĞIŞKLIK

Klinik olarak erken sitokinler prokoagülan bir etkiyi indüklerler ve hepatik protein sentezini akut faz yanıt proteinlerine değiştirirler ve bunlar hasar sonrasında homeostazın yeniden sağlanmasında önemli olan bir dizi hepatik proteindir (28). Kemokinler lökositleri enfeksiyon veya hasar bölgelerine yönlendirir (29). Geç yanıt sitokinleri sıklıkla bu kaskatın sonunda, inflamatuar durumun dereceli olarak azalmasına dolaşımdaki inflamatuar sitokinlerin ve akut faz proteinlerinin normal düzeylerine dönmesine izin verir.

2.5 OBEZİTE İLE İLİŞKİLİ İNFLAMASYON

Obezite, dolaşımdaki sitokin ve akut faz reaktanlarıyla birlikte olan viseral obezite ile, BMI’nin birlikte olduğu ortaya koyan çalışmalarda gösterildiği gibi sistemik inflamasyon ile birliktedir (30-33). Her ne kadar karaciğer obezitenin sistemik inflamasyonuna katılrsa da; klasik inflamatuar yanıtın aksine, baskı kontrol organı adipoz dokudur.

İnflamasyonun birkaç sitokin aracısı adipoz doku tarafından üretilir. Adipoz doku bağ doku matriksine gömülü olan adipositlerden oluşur. Bağ doku fibroblastları, preadipositeri (adiposit öncülleri), makrofajları ve vasküler dokuları içerir. Adipositerin (yağ hücrelerinin) temel fonksiyonu enerjiyi trigliserit formunda depolamak ve salmaktır. Adipoz dokunun bu tutumu organizmanın fizyolojik

2.5.1 Çocuklarda Obezite ve İnflamasyon

Her yasta obez çocukta düşük düzeyde kronik bir inflamasyon olduğuna dair kanıtlar vardır. Bu bağlamda en genç obez çocuk bile, obez olan bir yetişkinden farklı değildir (3). Bazı durumlarda, dolaşımındaki akut faz reaktanları ve sitokinler ile ölçülen inflamasyonun derecesi, insulin direnci, dislipidemi, alkolik olmayan yağlı karaciğer, aterosklerozis, hiperkoagülasyon gibi obeziteye eşlik eden pek çok hastalıkla korelasyon gösterir. Özellikle insulin direnci ve aterosklerozisin patogenezinde doğrudan klinik kanıtları inflamasyon için nedensel bir rol ileri sürer.

doğrudan korelasyon gösterir ve adiponektin ise BMI ile negatif korelasyon gösterir (52,54).

2.5.2 Obezitede Görülen İnflamasyonun Moleküler Temelleri

Şekil 1. Hücre içi potansiyel inflamatuvar sinyal yolları (Shoelson S.E. ve ark 2006).

Obezite ve yağ içeriği yüksek olan diyet, aidpositlerde, hepatositlerde ve ilişkili makrofajlarda IKKβ/NF-κB ve JNK yolları aktive eder. TNF-α, IL-1, Toll veya AGE reseptörleri (TNFR, IL-1R, TLR, veya RAGE), hücre içi stres (ROS ve Endoplazmik Retikulum Stres), seramid ve protein kinaz C’nin (PKC) pek çok izoformunun metabolik disregülasyon durumunda bu sinyal yolaklarını aktive ettiği gösterilmiştir (Şekil 1).
Obezitenin indüklediği IKKβ aktivasyonu, NF-κB transloksasyonuna ve insülin direncine yol açabilen inflamasyonun potansiyel araçları ile birlikte, daha pek çok belirtecin artmış düzeydeki ekspresyonuna yol açar. Obezitenin indüklediği JNK aktivasyonu, IRS-1’in serin kalıntıssından fosforilasyonunu tetikler ve bu durum normal insülin reseptörü/IRS-1 ekseni yoluyla oluşan insülin sinyalizasyonunu ters yönde etkiler (55).

2.6 NON-ALKOLİK YAĞLI KARACİĞER HASTALIĞI

2.6.1 Tanımı, Prevelansı, Etyopatogenezi

Alkolik olmayan yağlı karaciğer hastağı (Nonalcoholic fatty liver disease, NAFLD) karaciğer ile ilişkili olan mortalite ve morbidityin giderek tannan bir nedenidir. Karaciğer yağlanması (hepatik steatos), geçmişte benign bir durumken, simdiler de bu yağlanmanın nekroz, Mallory cisimcikleri, nötrofillerin de dahil olduğu inflamatuar hücre infiltrasyonuna, fibrosise ve hatta bazı hastalarda siroz ailesi kabul edilir (56.57).

neden olur (58). Bu durumda karaciğerlerde insülin direncinin başlaması ve tüm vücudun değişmiş olan metabolik durumunun ileri düzeyde kötüye gitmesine takip edebilir.

Hepatik steatozis yani karaciğer lezyonları artmış diyetsel yağ dağılımı ve fiziksel inaktivite ile de tanımlanabilir. Insülin direnci ve NAFLD’nin obezitedeki aşırı yağlanması bağlı olarak ortaya çıktığı zıt olarak çoğu lipodistrofik durumlarda da görülür. Dolayısıyla adipoz dokunun değişmiş fiziyojisi, insülin direnci, metabolik sendrom ve NAFLD gelişiminde merkezidir.

NAFLD nin prevelansı US popülasyonunun yaklaşık % 20’si (%17’den %30’a) civarındadır (51) Japonya ve İtalya popülasyonlarında da benzer veriler elde edilmiştir (59,60). NAFLD de karaciğer lezyonları; hepatositlerde yani karaciğer hücrelerinde basitçe triaçilgliseridlerin birikiminden (steatozis, hepatic steatosis, HS) hastalığın ileriki evrelerinde fibrozis ve siroz o nedenle inflamasyon ve hepatoselüler balonlaşma hasarı (alkolik olmayan stepteohepatits, non-alcoholic steatohepatitis; NASH) olduğu morfolojik bir spektrumu tanımlar (61). NAFLD’nin teşhisinde aşırı alkol kullanımı (kadınlarda günde 20 mg üzerinde ve erkeklerde günde 40 mg üzerinde) dışlanmalıdır (62). NAFLD, US’də de karşılaşılan vakaların yaklaşık % 80’inde anormal karaciğer fonksiyon testlerinin en sık karşılaştıran nedenidir. Her ne kadar artmış karaciğer enzimleri, kronik karaciğer hasarının -steatozis ve fibrozis-derecesi ile zayıf olarak korele olsa da; sürekli yüksek alanın aminotransferaz (ALT) düzeyleri, daha ileri tanısal değerlendirmi için bir ipucudur. Yeni ALT standardının kabul edilmesiyle birlikte (erkeklerde ≥30U/L, kadınlarda ≥19 U/L), NAFLD erken evrelerde saptanabilir. NASH’nin teşhisini doğrulamada hemen ardından karaciğer biyopsisi gerektirir.

2.6.2 NAFLD’de Yağ Dokusu ve Normal Lipid Metabolizması

Yemek sonrasında diyet ile alınan triaçilgliseritler şilomikronlar aracılığıyla barsaktan karaciğerle taşınır. Ek olarak yemek sonrası serumdaki insülinin etkisi ile yağ asitleri ve gliserolden hepatik triaçilgliserol (TAG) sentezide gerçekleşir. TAG ler çok düşük yoğunluklu lipoproteinler (VLDL) ile, ya yeniden TAG’a esterifiye olarak adipoz dokuda depolanmak ya da yağ asitlerine parçalanıp enerji kaynağı

Şekil 2. Normal lipid metabolizması (Qureshi K. ve ark. 2007).

Lipid metabolizmasının üç aracı moleküldür. Bunlar:
1. Sterol düzenleyici element bağlanma proteini (Sterol regulatory element-binding protein, SREBP1-c), 2. Karbohidrat yanıt elementi bağlanma proteini (carbohydrate response element-binding Protein, ChREBP) ve 3. Peroksizom proliferatif aktive reseptörü (peroxisome proliferative activated receptor, PPAR)

İnsülin, DNL’ye dahil olan pek çok geni transkripsiyonel olarak aktive eden hepatosit hücre membranı üzerindeki SREBP1-c ye etkir (66). SREBP1-c aynı zamanda mitokondri membranında malonil KoA oluşturan ve ACC’nin bir izoformu olan ACC-2’yi aktive eder (67). Malonil KoA’dağı artış β oksidasyonu azaltır çünkü malonil KoA yüksek konsantrasyonda CPT-1’i inhibe eder ve bu yüzden serbest yağ asitlerinin birikmesine neden olur (68).

Hiperglisemi aynı zamanda glikolizin anahtar enzimlerinden biri olan karaciğere özgü pürvat kinazın (liver type pyruvate kinase; L-PK) gen ekspresyonunu indüklüyen ChREBP’yi doğrudan aktive ederek lipogenezi tümüyle etmiş olur. L-PK, fosfoenol pruvatın, piruvata dönüşümünü kataliz eder, piruvat ise sitratı oluşturmak için Krebs döngüsüne girer. Sitrat yağ asidi (fatty acid; FA) sentezinde kullanılan asetil KoA’nın temel kaynağıdır. ChREBP, DNL e dahil olan çoğu enzimin gen
ekspresyonunu stimüle eder. Bu sebepten hiperglisemi glikoliz ve lipogenezin ikisini birden sitüümüle eder. Böylece fazla enerji koşulları altında glukozun yağ asidine dönüşümünü kolaylaştırmış (69).

PPAR-γ karaciğerde oldukça düşük düzeylerde sentezlenir; bununla birlikte IR ve yağlı karaciğerin olduğu hayvan modellerinde ekspresyonu belirgin olarak artmıştır. Çalışmalar SREBP1-c nin transkripsiyonel olarak PPAR-γ’yı aktive ettiği göstermiştir. ob/ob farelerin karaciğerinde hepatik PPAR-γ’nın genetik yoksunluğu hiperinsülinemi ve hipergliseminin varlığında bağımsız olarak hepatik steatoz gelişimini önemli ölçüde azaltır. PPAR-γ’nın aracı olduğu hepatik TAG oluşumunu destekleyen moleküler olaylar henüz tam aydınlatılmamıştır. Aynı zamanda insan yağlı karaciğerinde PPAR-γ ekspresyonunun olup olmadığı tam bilinememektedir (70).

2.6.3 NAFLD’nin Patogenezi ve Moleküler Temelleri

Non alkolik steatohepatit, alkollü kullanmayan kişilerde görülen ve alkolik karaciğer hastalığına benzer histolojik bulgular gösteren ve eninde sonunda karaciğer sirozuna ilerleyen bir karaciğer hastalığıdır. NASH obezite ve insülin direnci ile yakın ilişkisi olması yönünden iyi bilinir. NASH patogenezi mutifaktörlüydür; oksidatif stresi, demir depolanmasını, sitokrom P450E1’in aşırı ekspresyonunu ve TNF-alfa, mitokondriyal anormallikleri içermesi nedeniyle rola girmektedir (71).

Son zamanlarda çoğu karaciğer hastalığına yaygın patojenik mekanizma olarak oksidatif stres ele alınmıştır ve NASH’in patogenezinde de büyük bir rolü olduğu dikkate alınmaktadır. Mitokondri sadece yağ oksidasyonunda ve enerji üretiminde büyük bir rol oynamaz, aynı zamanda reaktif oksijen türlerinin ana kaynağıdır da. ROS aracılığıyla indüklenen lipid peroksidasyon ürünleri solunum zincirini bozar (ETC), ileri aşamada da mitokondriyal ROS üretimi artar. Ek olarak, ROS fazlası antioksidanların tükenmesini indükler, reaktif oksijen türlerinin inaktivasyonuna zarar verir. Bu yüzden de mitokondriyal fonksiyon bozukluğu (aşırı mitokondriyal ROS oluşumu yoluyla) steatozun steatohepatite progresyonuyla yakından ilişkilidir (71).
2.6.3.1 Hepatik Steatozun Moleküler Temelleri

NAD⁺'ya yeniden, daha da iyi oksidasyonuna izin verir. NAD⁺'nin artan yenilenmesi mitokondriyal β-oksidasyon hızının artmasını olanak sağlar. Yağlı karaciğere sahip olan hastalarda yağ asidi oksidasyonunu artıran mekanizmalardan bir diğeri de karaciğer peroksizomlarının çoğalması ve genişlemesi olabilir (74).

Karaciğer hücreleri olan hepatositler bazal durumda (yağ ile dolmamışken) dahi çok miktarda ROS üretirler. Bu ROS’lar mikrozomal sitokrom P-450 2E1 (CYP2E1) ve mitokondriyal solunum zincirinde oluşurulur. Basal durumdaki ROS oluşumu yağlı karaciğerlerde artar (Şekil 3). İlk olarak mitokondriyal ROS oluşumu artabilir. NASH’lı hastalar artış düzeyde hepatik CYP2E1’e sahiptir (77,78). Kupffer hücreleri üzerindeki endotoksin reseptor hem obezite aracılı hem de alkollün neden olduğu hepatik steatozda artar. Bakteriyel endotoksinlere karşı Kupffer hücrelerinin artmış duyarlılığı NAD(P)H oksidazı aktive edebilir ve böylece karaciğer makrofajlarında ROS oluşumu artar. Bu fazlaca ROS oluşumu yağ depolarındaki doymamış lipidleri okside ederek, lipid peroksidasyonuna neden olur (Şekil 3).

Steatohepatit de artmış mitokondriyal ROS oluşumu pek çok döngünün karşılıklı tetiklenmesine neden olabilir. ROS ilk olarak, doğrudan mitokondriyal DNA’ya solunum zinciri polipeptidlerine ve mitokondriyal kardiyolipinlere zarar verir. Sonraki etkisi mitokondriye de zarar verecek olan lipid peroksidasyon ürünlerinin salınmasına neden olur. Bu ters etkiler elektronların solunum zincirindeki akışına engel olur ve sonrasında mitokondriyal ROS üretiminin artmasına yol açar. İkinci olarak, ROS NF-κB yolunun aktivasyonuna neden olur ki bu yol TNF-α’nın karaciğerdeki sentezini indükler. Üçüncü olarak ROS bazı antioksidanların tükenmesine ve ileriki aşamada ROS ile indüklenen hasarın şiddetlenmesine neden olur. Yapılan çalışmalarla steatohepatitde olan obez çocuklarda düşük vitamin E düzeyleri saptanmıştır. Bu çocuklarda vitamin E verilmesinin obez taransaminaz düzeylerini azalttığı gösterilmiştir (83, 84).
Sonuçta ROS, basit steatozun NASH’a seyrinde merkezi bir rol oynamaktadır. ROS 4-hidroksinonenonal (4-HNE) ve malondialdehit (MDA) gibi reaktif aldehitlerin salınımlarında neden olan lipid peroksidasyonundan sorumludur. ROS aynı zamanda pek çok sitokinin ekspresyonunu artırır (transforming growth factor-β, TGF-β; interlekin-8, IL-8; TNF-α ve eFas ligandi).

2.6.4 Adipoz Dokudan Salınan Sitokinler ve İnflamatuar Belirteçler

Adipositokinlerin besin alımı, enerji harcanması ve metabolizma üzerine geniş çeşitlilikte etkileri vardır. Bir hücreden sentezlenen bu adipositokinler ya kendi fonksiyonlarını (otokrin etki) ya da komşu hücre fonksiyonlarını (parakrin etki) değiştirmek üzere salınır.

2.6.4.1 Leptin

Tanımlanan ilk adipokindir (85). “ob” geni tarafından kodalanır. Vücut yağ kültüinesinde değişiklikler ve besinseur duruma yant olarak, birincil olarak olgun adipositlerden sentezlenir ve dolaşıma salınır. Leptin hipotalamusta anorexigenic yollar uyarr ve besin alımını azaltır (85).

Leptinin dolaşımdaki düzeyleri obezlerde yüksektir ve BMI’ne oransaldır (86, 87). Leptin düzeyleri açık veya enerji alma kısıtlaması durumunda azalır (88). Leptinin düşük düzeyleri negatif enerji dengesinin sinyali gibi davranır. Adiposit boyutu ve anatominin olarak présence (subkutanoz) leptin mRNA ekspresyonunun ve salınının en önemli belirleyicisi gibi gözükmeetidir. Aşırı beslenme ve obezite, glukokortikoid, glukoz ve insülin verilmesi dolaşımdaki leptin düzeylerinin artmasına neden olurken (89, 90) açık, uzamsız egzersiz, soğuk maruziyet ve kilo kaybı leptin düzeylerinin azalmasına neden olur (91, 92). Leptin insülin duyarlılığını artırıcı hormon gibi etkir ve miyositlerin, hepatositlerin ve pankreatik β hücrelerinin lipid içeriğini azaltır (93). Kaslarda insülin duyarlılığının artılması yağ asitlerinin mitokondriye geçişini artıran malonil Co-A sentazın inhibisyonu yoluya gerçekleştirebilir (94). Leptin doğrudan, ATP kazanılan katabolik yolları (Beta
oksidasyonu, glikoliz) aktive eden ve ATP tüketen anabolik yolları inhibe eden adenosin monofosfat kinazı uyarır (95). Leptin etkisinden yoksun hayvanlara (leptin geni mutasyonun olduğu ob/ob fareler, leptin reseptör gen mutasyonunun olduğu db/db fareler ve fa/fa sanlanlar) leptin enjeksiyonu yağlı karaciğerlerini ve metabolik anormalliklerini azaltır, onlar obezdirler, insülin dirençleri vardır ve hepatik steatosa sahiptirler (96, 97).

2.6.4.2 Adiponektin

2.6.4.3 Tümör Nekrozis Faktör Alfa (TNF-α)

TNF-α viseral adipositler, stromavasküler hücreler, endotoksin ile aktive olmuş makrofajlar tarafından sentezlenir ve salınır (116). uyarılmamış adipoz doku rölatif olarak düşük miktarlarda TNF-α salar (117). TNF-α’nın etkisi TNF-α reseptörleri ile etkileşimine ve ayrıca yirmiden fazla farklı sitokin reseptörüne bağlıdır. TNF-α reseptörleri de ayrıca adipositler tarafından sentezlenir. TNF-R1 apoptozis ve lipolize aracılık ederken TNF-R2 insülin direnci induksiyonuna katılır (118). TNF-α esasen adipoz dokuda otokrin-parakrin modelde etki eder. Kemirgenlerde insülin direnci gelişiminde merkezi bir rol oynar. Bunu doğrudan GLUT-4’un mRNA ekspresyonunu azaltarak, lipoprotein lipaz aktivitesini azaltarak ve adipoz dokuda hormona duyarlı lipazın ekspresyonunu artırarak yapar. Ayrıca TNF-α, JNK aracılığıyla IRS proteinlerinin serin fosforilasyonu yoluya insülin sinyal yoluğını bozur (38). TNF-α, PPAR-γ’nın aktivasyonuna neden olur. Adipositokinlerden leptinin ekspresyonunu ve salgılanmasını artırır. İnsan adipoz

2.6.4.4 Interlökin -6

IL-6, B ve T hücre fonksiyonlarının regülasyonuyla inflamasyonun konakçı savunmasından doku hasarına kadar pek çok sistemik etkisi olan endokrin bir sitokindir(121). Dolaşımdaki IL-6’ların yaklaşık olarak %33’ü adipoz dokudan kaynaklanır. Adipoz doku matriksinin % 90’ı immün hücreler (monositler), fibroblastlar ve endotel hücrelerden oluşur. Omental yağ subkutan yağdan 3 kat daha fazla IL-6 sentezler. Bununla birlikte subkutan yağdaki IL-6 ekspresyonu yemeği, egzersiz ve kilo değişikliklerini takiben hızla değişir. Plazma IL-6 düzeyleri obezitede artar ve tip 2 diyabet, metabolik sendrom ve kardiyovasküler hastalıkların gelişiminde öngörücdür (122, 123). Adipogenezis üzerine zayıf inhibitör etkisi vardır. Parakrin fonksiyonunda, çevredeki (surrounding) adipositlerden adiponektin salınımını azaltır, endotel hücreler üzerindeki lipoprotein lipazı inhibe eder, (egzersiz sonrası) lipolizi aktive eder.
2.6.4.5. Rezistin

2.7 OKSİDATİF STRES VE ANTİOKSİSDANLAR

Oksidatif stresin insan sağlığı üzerinde etkisi hakkında bilinenler son birkaç on yılın serbest radikal oluşumu ve bu radikallerin antioksidanlar tarafından süpürülmesi arasındaki bozulmuş denge olarak tanımlanmıştır. Oksidatif stresin, pek çok dejenersif hastalığı veya ateroskleroz, kanser, obezite gibi pek çok kronik hastalığın patogenezine katkıda bulunmuştur. İnsanlar da diğer aerobik organizmalarda olduğu gibi, reaktif oksijen türlerinin potansiyel toksik etkilerinden kendilerini koruyabilmek için çeşitli mekanizmalar geliştirilmişlerdir. Katalaz, süperoksid dimutaz gibi enzimleri içeren antioksidan kompleksler, DNA glikozilaz gibi enzimleri onarır. Askorbik asit (vitamin C), α-tokoferol (vitamin E), karotenoidler, retinol (vitamin A) ve koenzimQ10 gibi yağ ve suda çözünen vitaminlerin de antioksidan özellikleri vardır. İnsan plazmasındaki antioksidan düzeylerinin bilinmesi sağlıklı durumun değerlendirilmesinde ve ciddi hastalıkların tedavisinde yardımcı olur. Son otuz yılın gelişmiş ülkelerde antioksidan alınmada gözelebilir derecede bir azalma olduğuna dair bir hipotez vardır ve diyetsel paterndeki değişiklikler oksidatif strese neden olabilir. Klinik ve biyolojik örneklerdeki lipofilik vitaminlerin miktar tayini tip, epidemiyoloji ve bilgisel açıdan önemlidir (126).
2.7.1 Koenzim Q10 (CoQ10)

2.7.2 α-Tokoferol

Vitamin E, kimyasal yapı itibari ile bir tokol olup yağda çözünen önemli bir antioksidandır ve özellikle hücre zarları ve lipoproteinlerde önemli antioksidan fonksiyonları vardır. LDL’nin korunmasında peroksil radikallerinin etkisizleştirilmesinde, hücre membranında bulunan doymamış yağ asitlerinin oksidasyonu korunmasında görevlidir.

2.7.3 Retinol

3. ARAÇ, GEREÇ VE YÖNTEMLER

3.1 ARAÇ VE GEREÇLER

3.1.1. Cihazlar
Çalışmada kullanılan cihazlar

<table>
<thead>
<tr>
<th>Cihaz Adı</th>
<th>Marka</th>
<th>Model</th>
<th>Üretici Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPLC cihazı</td>
<td>Shimadzu</td>
<td>Shimadzu VP serisi</td>
<td>Shimadzu</td>
</tr>
<tr>
<td>pH metre</td>
<td>Hanna</td>
<td>H19321 microprocessor</td>
<td>Hanna Instrument</td>
</tr>
<tr>
<td>ELISA plak okuyucu</td>
<td>Biotek</td>
<td>Synergy HT</td>
<td>Biotek</td>
</tr>
<tr>
<td>ELISA plak yıkayıcı</td>
<td>Thermo</td>
<td>Wellwash 4 MK2</td>
<td>Thermo</td>
</tr>
<tr>
<td>Soğutmalı santrifüj</td>
<td>Sigma</td>
<td>2K15C</td>
<td>Sigma</td>
</tr>
</tbody>
</table>
3.1.2. Kimyasal Maddeler
Çalışmada Kullanılan Kimyasallar

<table>
<thead>
<tr>
<th>Madde Adı</th>
<th>Kimyasal Formül</th>
<th>Katalog No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-tokoferol</td>
<td></td>
<td>T3251 Sigma</td>
</tr>
<tr>
<td>Koenzim Q_{10}</td>
<td></td>
<td>C-a538</td>
</tr>
<tr>
<td>Retinol</td>
<td>C_{20}H_{30}O</td>
<td>R-7632</td>
</tr>
<tr>
<td>Dipotasyum hidrojen fosfat</td>
<td>K_{2}HPO_{4}</td>
<td>Fluka 60355</td>
</tr>
<tr>
<td>Potasyum hidrojen fosfat</td>
<td>KH_{2}PO_{4}</td>
<td>Fluka 60230</td>
</tr>
<tr>
<td>Sodyum hidroksit</td>
<td>NaOH</td>
<td>Fluka 71689</td>
</tr>
<tr>
<td>Sodyum dodesil sülfat</td>
<td></td>
<td>Fluka 71728</td>
</tr>
<tr>
<td>n-butanol</td>
<td>C_{4}H_{9}OH</td>
<td>Fluka 34867</td>
</tr>
<tr>
<td>Etanol</td>
<td>C_{2}H_{5}OH</td>
<td>Fluka 34870</td>
</tr>
<tr>
<td>Metanol</td>
<td>CH_{3}OH</td>
<td>Fluka 34860</td>
</tr>
<tr>
<td>Hegzan</td>
<td></td>
<td>Fluka 34859</td>
</tr>
</tbody>
</table>

3.1.3. Kitler
Çalışmada Kullanılan Kitler

<table>
<thead>
<tr>
<th>Kit Adı</th>
<th>Yöntem</th>
<th>Firma</th>
<th>Katalog No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptin</td>
<td>Sandwich ELISA</td>
<td>Biosource/Invitrogen</td>
<td>KAC2281</td>
</tr>
<tr>
<td>Adiponektin</td>
<td>Sandwich ELISA</td>
<td>Linco Research</td>
<td>EZHADP-61K</td>
</tr>
<tr>
<td>Rezistin</td>
<td>Sandwich ELISA</td>
<td>Millipore</td>
<td>EZHR-95K</td>
</tr>
<tr>
<td>Interlökin 6</td>
<td>Sandwich ELISA</td>
<td>Biosource/Invitrogen</td>
<td>KCH0061</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Sandwich ELISA</td>
<td>Biosource/Invitrogen</td>
<td>KHC3011</td>
</tr>
<tr>
<td>Okside LDL</td>
<td>Sandwich ELISA</td>
<td>Biomedica</td>
<td>BI-10042</td>
</tr>
</tbody>
</table>
3.2 OLGULARIN SEÇİMİ, OLGU VE KONTROL GRUPLARININ OLUŞTURULMASI, ÖRNEKLERİN TOPLANMASI VE SAKLANMASI

3.2.1. Olguların Seçimi

3.2.1.1 Antropometrik Değerlendirme

Araştırmaya yaşları 11-18 arasında değişen 47 obez çocuk dahil edilmiştir. Tüm hastaların fizik incelemeleri ve antropometrik (boya göre ağırlık ve beden kütle indeksi) ölçümleri yapılmıştır. Hastaların hesaplanan vücut kütle indekleri (Body mass index; BMI, ağırlık/boy²), aynı cinsel çocukların vücut kütle indeksi persantilleri ile karşılaştırıldığında, 95 persantil ötesinde olanlar obez olarak kabul edilmiştir. Boya göre ağırlık (görecelli ağırlık) çocuğun ağırlığını ideal ağırlık ile karşılaşturan bir yöntemdir. Yaşa ve cinsle düzenlenmiş boy ve vücut ağırlığını içeren tablolardan yaralanarak çocuğun boyuna uygun vücut ağırlığı bulundu. Boyun 50 persantilinde olduğu yaşın 50 persantilindeki ağırlığı, o çocuğun ideal ağırlığı olarak kabul edildi. Çocuğun ölçülen ağırlığının ideal oranlanması ile rolatif ağırlık hesaplandı. Rölatif ağırlığın % 120’nin üstünde olması obesite olarak değerlendirildi.

3.2.1.2 Hasta gruplarının oluşturulması

DEU Tıp Fakültesi Çocuk gastroenteroloji ve Beslenme Metabolizması Polikliniğine kilo fazlalığı yakınması ile başvuran ve antropometrik verilerine göre obezite tanısı alan tüm hastalara yağlı karaciğerin varlığını tespit etmek için batin ultrasonografı (USG) rutin olarak yapılmıştır. Ayrıca, yine obezite tanısı alan tüm hastalardan açıklık kan şeker, insülin testi, lipid profili, karaciğer fonksiyon testleri, tam kan sayımı, tiroid fonksiyon testleri gerçekleştirilmiştir. Karaciğer enzimlerinde bozulma ve/veya USG ile yağlı karaciğer saptanan tüm hastalardan enfeksiyöz, metabolik ve otoimmun kaynaklı karaciğer patolojilerini ekarte etmek amacı ile
aşağıdaki parametrelerin çalışılması kısmında belirtilmiş olan incelemeler rutin olarak yapıldı.

USG sonuçlarına göre 47 obez çocuktan 20’sinde derecesi 1 ile 3 arasında değişen yağlı karaciğer hastalığı tespit edilmiştir. Olgular yağlı karacişığı olan obez hastalar [NAFLD (+)] ve yağlı karacişığı olmayan obez hastalar [NAFLD (-)] olarak iki gruba ayrıldı. Kontrol grubunun oluşturulmasında rutin sağlık kontrolü için çocuk polikliniğine başvuran, yaş ve cinsiyet olarak hasta gruplarına benzer olan 20 sağlıklı çocuk araştırmaya dahil edilmiştir.

3.2.1.3 Olguların Araştırmaya Dahil Olma ve Araştırmaya Alınmama Kriterleri

3.2.1.4 Hastalardan Örnek Toplanması

Hasta ve ebeveynlerine sözlü ve yazılı bilgi verilip ve onamları aldıktan sonra, hastaların rutin biyokimyasal incelemeleri, oksidasyon göstergeleri (ox-LDL, MDA), proinflamatuvar sitokinler (IL-6, TNF-α) ve yağ doku sitokinerinden (leptin, adiponektin, rezistin) için 12 saatlik açıktıktan sonra antikoagulansiz tüplere 5 mL kan alınmıştır. Tam kan sayım için K₂-EDTA’lı tüpe 2 mL kan alınmıştır. Antioksidan (retinol, tokoferol, ubikinon) parametrelerin çalışılması için 0.2 mL %3,8’lik sodyum sitrat içeren tüplere 9:1 oranında 3 mL kan alınmıştır. Kan örnekleri 4°C’de 10-15 dakika 3000 g’de santrifüj edildikten sonra plazmaları 300 μL hacimlerde fraksiyonlanıp -80°C’lik derin dondurucuda analize kadar saklanmıştır.
3.3 PARAMETRELERİN ÇALIŞILMASI

DEU Tıp Fakültesi Çocuk Gastroenteroloji ve Beslenme Metabolizması Polikliniğine kilo fazlalığı yakınımlarıyla gelen ve antropometrik ölçümlerine göre obezite tanısı alan hastaların tam kan sayımı, açlık kan şekerleri, aspartat aminotransferaz (AST), alanin aminotransferaz (ALT), gama glutamil transpeptidaz (GGT), total kolesterol, yüksek dansiteli lipoprotein kolesterol (HDL-K), düşük dansiteli lipoprotein kolesterol (LDL-K), trigliserid düzeyleri rutin olarak bakılmaktır. ALT ve AST değerinin 5-45 U/L sınırları içinde olması normal olarak kabul edilmektedir. Bu düzeyin üzerinde ALT veya AST değerleri olan hastalarda ve USG'de yağlı karaciğer ile uyumlu görünüm saptanan hastalarda, standard karaciğer fonksiyon testleri olarak total protein, albumin, total bilirubin ve protrombin zamanı test edilecek, enfeksiyöz, metabolik ve immunolojik kaynaklı karaciğer patojenleri ekarte etmek amacı ile hepatit B ve C virüsü ve TORCH serolojileri, serum bakır ve seruloplazmin düzeyi, serum alfa 1-antitripsin düzeyi, otoantikorlar (anti nükleer antikor, anti düz kas antikoru, anti karaciğer böbrek mikrozomal-1 antikoru) ve tiroid fonksiyon testleri rutin olarak yapılmıştır.

Çalışmamızda bu aşamaları tamamlamış ve yağlı karaciğere sahip olduğu belirlenmiş grupta ve obez çocuk grubunda oksidasyon göstergeleri, proinflamatuar sitokinler, inflamasyon göstergelerinin, antioksidanların ve adipositokinlerin serum veya plazmadaki düzeyleri tayin edilmiştir.

Oksidasyon göstergeleri (ox-LDL), proinflamatuar sitokinler (IL-6, TNF-α), adipokiner (leptin, adiponektin, rezistin) ELISA yöntemi ile, antioksidan (retinol, tokoferol, ubikinon) parametreler UV-dedektörlü HPLC sistemi ile ve oksidasyon göstergelerinden MDA ise floresan-dedektörlü HPLC sistemi ile çalışılmıştır.

3.3.1 İnsülin Direncinin Saptanması

İnsülin direnci homeostaz modeli değerlendirilmesi (HOMA-IR= Homeostasis Model Assessment) diyabetik olan ve olmayan kişilerde, kişi ile ölçülen glukoz ve
insülin değerlerini kullanılarak beta hücre fonksiyonunu ve insülin direncini pratik bir şekilde inceleme imkanı sağlayan bir modeldir.

\[
\text{HOMA} = \frac{\text{açlık insülin değeri (} \mu\text{IU/mL}) \times \text{açlık glukoz değeri (mg/dL)}}{405}
\]

Normal bireylerde HOMA değeri 2,7'den düşük olarak bildirilmektedir. 2,7'nin üzerinde insülin direncini yansıtır (132).

3.3.2 Yağ Doku Sitokinlerinin Çalışılması

3.3.2.1 Adiponektin Düzeylerinin Ölçümü:

Adiponektin düzeyleri serum örneklerinde sandviç ELISA yöntemi ile ölçüldü. Üretici firmannın yöntemi için verdiği çalışma içi varyasyon katsayısı (intra-assay % CV) %7.4, çalışmalar arası varyasyon katsayısı ise (inter-assay % CV) %8.4’dür.

3.3.2.2 Leptin Düzeylerinin Ölçümü:

Leptin düzeyleri serum örneklerinde sandviç ELISA yöntemi ile ölçüldü. Üretici firmanın yöntemi için verdiği çalışma içi varyasyon katsayları (intra-assay % CV) ortalama ve standart sapması giderek artan 3 örnek için düşük değerden başlayarak sırasıyla: %3.0, % 3.8, % 3.9 olarak verilmiştir. Yine aynı şekilde artan düzeyler için çalışmalar arası varyasyon katsayısı (inter-assay % CV) % 3.9, % 5.3, % 4.6 olarak verilmiştir.

3.3.2.3 Rezistin Düzeylerinin Ölçümü

Rezistin düzeyleri serum örneklerinde sandviç ELISA yöntemi ile ölçüldü. Üretici firmanın yöntem için verdiği çalışma içi varyasyon katsayısı (intra-assay % CV) %4.0, çalışmalar arası varyasyon katsayısı ise (inter-assay % CV) %7.7’dir.

3.3.3 Oksidasyon Göstergelerinin Çalışılması

3.3.3.1 Okside LDL Düzeylerinin Ölçümü

Okside LDL düzeyleri serum örneklerinde sandviç ELISA yöntemi ile ölçüldü. Üretici firmanın yöntem için verdiği çalışma içi varyasyon katsayılari (intra-assay % CV) ortalamaya ve standart sapması düşük düzey için % 7.6, yüksek düzey için % 4.0’dır. Yine günler arası varyasyon katsayısı (inter-assay % CV) sırasıyla %10,7, %6,2 olarak verilmiştir.

3.3.3.2 Malondialdehit (MDA) tayini

MDA tayininde kullanılan çözeltiler:
2.8 mmol/l bütillenmiş hidroksitoluen (BHT) etanolde çözülenerek hazırlanırdı. TBA+Asetik asit karışımlı 8g/L TBA, 200mL/l lik asetik asite 1:1 oranında dilue edilir ve karışım pH’sı 2 M NaOH ile 3.5’e ayarlanır. %8.1’lik sodyumdodesil sülfat (SDS) Mobil faz: KH₂PO₄ (potasyum hidrojen fosfat) ve K₂HPO₄ (dipotasyum hidrojen fosfat) konjuge baz çifti ile hazırlanan pH= 7 olan tampon çözeltisinden oluşur.
KH₃PO₄, 1.361 g/L; 0.6805 g/500 mL %30 metanol içerecek şekilde 250 mL hazırlanı.
K₂HPO₄, 1.7418 g/L; 0.8709 g/mL %30 metanol içerecek şekilde 75 mL hazırlanı ve pH=7 ye gelince şekilde iki fosfat tamponu karıştırılırak çözücü tampon hazırlanı.

MDA tayininde kullanılan standart çözeltilerinin hazırlanması:
1,1,3,3 tetraethoksipropan (%97, d=0.92 Sigma T9889) 247 µL’lik stok standart çözeltisi 100’mL ye tamalanarak (Seyretilmeler saf su ile yapıldı)
10 mM 1. ara stok standart hazırlanı. Birinci ara stoktan,
1/10 seyretilme ile 1000 µM’lik 2. ara stok, ikinci ara stoktan,
1/10 seyrelteme ile 100 µM’lik 3. ara stok hazırlanı.
100 µM’lik stok kullanılarak aşağıdaki tabloda verilen seyretilmelerle MDA standart çözeltileri hazırlanı.

<table>
<thead>
<tr>
<th>MDA standart çözeltisi konsantrasyonu (µM)</th>
<th>100 µM’lık çözeltiden seyreltilen hacim (µL)</th>
<th>Eklenen saf su (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>40</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>20</td>
<td>200</td>
<td>800</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>900</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>950</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>970</td>
</tr>
<tr>
<td>1.5</td>
<td>15</td>
<td>985</td>
</tr>
<tr>
<td>0.75</td>
<td>7.5</td>
<td>992.5</td>
</tr>
</tbody>
</table>

Örneklerin hazırlanması:
MDA ölçümünde reaksiyon prensibi MDA’nın alkali pH’da tiyobarbitürik asit ile reaksiyona girmesi sonucu oluşan bileşinin floresans işına yapmasına dayanır. HPLC
sisteminde eksitasyon dalga boyu 515 nm, emisyon dalga boyu 535 nm ve akış hızı 0.8mL/dakika olarak uygulanmıştır.

Olgu ve kontrol gruplarında serum MDA tayini, aşağıda verilen işlem sırasında göre yapılmıştır. 40µL serum örneğine sırasıyla, 100 µL saf su, 20 µL 2.8 mmol/L BHT, 40 µL %8.1’lik SDS ve 600 µL TBA+ Asetik asit karışımlı eklendi. Örnekler 95ºC’lik su banyosunda bir saat bekletildiler. İnkübasyonun ardından tüm örnekler buz üzerine alınarak soğutuldu. Sırasıyla 200 µL saf su, 1000 µL butanol/pridin karışımlı çözelti eklenecek bir dakika vortekslendi, ardından tüpler 2-3 dakika bekletildi. Pembe renkli bir üst fazın oluştuğunu gözlemeli. Üst fazlar ependorflara alını ve 15,000 g’de 5 dakika santrifüj edildi. Santrifüj sonrası süpernatantdan 10 µL alınarak HPLC sistemine enjekte edildi (133).

3.3.3.3 Interlökin-6 (II-6) Düzeylerinin Belirlenmesi

Interlökin-6 düzeyleri plazma örneklerinde sandviç ELISA yöntemi ile ölçülüdı. Üretici firmannın yöntem için verdiği çalışma içi varyasyon katsayıları (intra-assay % CV) ortalaması ve standart sapması giderek artan 3 örnek için düşük değerden başlayarak sırasıyla: %7.7, % 5.7, % 5.1’dir. Yine aynı şekilde artış için çalışmalar arasında varyasyon katsayısı (inter-assay % CV) % 9.3, % 6.5, % 7.8 olarak verilmiştir.

Plazma IL-6 düzeylerini ölçmek için kullanılan bu kit içerisindeki 96 kuyucuklu plakann iç yüzeyi insan IL-6’ s energia spesifik antikorlarla kaplı olup olgu ve standartlara ait örneklerin kuyucuklara eklenesinin ardından, biotitli monoklonal sekonder antikor kuyucuklara eklenir. Böylece IL-6, birincil ve ikincil antikorlar ile inkübe edilmiş olur. İlk inkübasyon sırasında insan IL-6 antijeni kuyucuklara immobilize olan birincil antikora bir yanandan bağlanır. Diğer yanı ise solüsyon fazındaki biotitli antikora bağlanır, böylece IL-6 antijeni iki antikor arasında sıkışmıştır. İnkübasyon sonrasında bağlanmayan ikincil antikorlar çıkararak ortamdan uzaklaştırılır. Plazma örneklerindeki bağlı IL-6 düzeylerini tespit etmek için ortama

3.3.3.4 Tümör Nekrozis Faktör Alfa (TNF-α) Düzeylerinin Ölçümü

TNF-α düzeyleri serum örneklerinde sandviç ELISA yöntemi ile ölçüldü. Üretici firmanın yöntemi için verdiği çalışma için varyasyon katsayları (intra assay % CV) ortalama ve standart sapması giderek artan 3 örnek için düşük değerden başlayarak sırayıla: %5,2, % 4,1, % 3,9'dur. Yine aynı şekilde olan artış için, çalışmalar arası varyasyon katsayısı (inter assay % CV) % 8,5, % 8,2, %.5,9 olarak verilmiştir.

Plazma TNF-α düzeylerini ölçmek için kullanılan bu kit içersindeki 96 kuyucuklu plakanın iç yüzeyi insan TNF-α’ ya spesifik olan antikor ile kaplıdır. Olgu ve kontrol grubu örnekleri ile TNF-α içeriği bilinen standart örneklerin uygun kuyucuklara eklenmesinin ardından inkübasyonu geçilir. İlk inkübasyon sırasında örneklerdeki antijen TNF-α ile kuyucuk yüzeyine immobilize TNF-α ya spesifik antikor kompleks oluşturulur. İnkübasyon sonunda yıkama ile ortamındaki farklılar uzaklaştırılırak, TNF-α ya spesifik biotinli monoklonal sekonder antikorlar ile inkübe edilir. İlkinci inkübasyon sırasında immobilize monoklonal antikora bir yanandan bağlı olan insan TNF-α antijeni diğer yandan ise solüsyon fazındaki biotinli antikara bağlanır, böylece TNF-α antijeni iki antikor arasında sıkışmıştır. İnkübasyon sonrasında bağlanamayan ikincil antikorlar yıkılarak ortamdan uzaklaştırılır. Plazma örneklerindeki bağlı TNF-α düzeylerini tespit etmek için ortama streptavidin peroksidaz enzimi eklenir. Bu enzim biotinli antikora bağlanır ve

3.3.4 Plazma Antioksidan Düzeylerinin Belirlenmesi

Yöntem:
KoenzimQ10, alfa-tokoferol ve retinol antioksidan vitaminlerin plazma düzeylerinin tespitinde UV dedektörlü ters faz RP-HPLC (Reversed Phase- High Performance Liquid Chromotography) sistemi ile üç farklı dalga boyunda çalışılmıştır. Retinol, α-tokoferol ve koenzim Q10 analizleri sırasıyla 324, 292 ve 276 nm’lerde karakteristik maksimum UV soğurumu yaparlar. Analizin seçicilik ve duyarlığıını artırmada HPLC-UV dedektörlü ters faz RP-HPLC sistemi ile ayrılmış dalga boyu uzunlukları seçilmiştir. İyi pik alanı ve en iyi ayırmayı yapmak için dakikada 1 mL’lik akış hızında (1mL/dakika) 72.28 oranlarında metanol ve n-hegzan içeren mobil faz kullanıldı. Bu antioksidan vitaminlerin UV dedektörlü HPLC sistemi ile ayrılmışında, vitaminlerin aşağıda belirtilen HPLC kolonunda alkonma süreleri dikkate alınarak izokratik program uygulanmıştır. Buna göre 324 nm’de karakteristik soğurum yapan retinol için cihaz 0 ila 2.8 dakikalar arasında 324 nm de ölçüm yapmıştır. Diğer antioksidanların alkonma sürelerine bağlı olarak oluşturulan izokratik program ve soğurum yaptıkları absorbans değerleri aşağıda verilmiştir.

(İzokratik program/Alkonma süreleri)

<table>
<thead>
<tr>
<th>İşlem</th>
<th>Uzunluk (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2.8</td>
<td>Retinol 324 nm</td>
</tr>
<tr>
<td>2.8-4.5</td>
<td>α-Tokoferol 292 nm, α-Tokoferol Asetat 3.1 dakika, α-Tokoferol Asetat 3.8 dakika.</td>
</tr>
<tr>
<td>4.5-8</td>
<td>Ubikinon 276 nm</td>
</tr>
</tbody>
</table>
Biyolojik örneklerde Retinol, α-tokoferol ve koenzim Q10’nun örneklerdeki miktarının belirlenmesinde, her üç için ayrı ayrı oluşturulan standartların konsantrasyonuna karşı gelen pik alanlarından kalibrasyon eğrisi oluşturuldu. Bu eğeri kullanarak örneklerdeki antioksidan vitamin konsantrasyonları hesaplanmıştır.

Vitamin tayininde kullanılan stok çözelti

0.58 mM CoQ₁₀; 1.20 mM γ-TP; 1.15 mM α-TP stok solüsyonları hazırlanırken substratların uygun miktarları n-hegzanda çözülerek hazırlanı. Retinolün 1.75mM’lık stok solüsyonu etanolün uygun miktarında çözülerek hazırlanı. Analitlerin çalışma solüsyonları stok solüsyonlarının uygun miktarının n-hegzan içinde çözülmesiyle hazırlanı. Tüm standart solüsyonları analize kadar -20°C de saklandı.

Örnek Toplanması:

Kan örnekleri en son yemekten en az 12 saat sonra sabah 8–10 arasında toplanıtır. Kan örnekleri 0.2 mL %3.8’lik sodyum sitrat içeren test tüplerine 9:1 oranında alınır. Kan örnekleri 4 °C de 15dakika 3000 g’de de santrifüj edilir. Elde edilen süpernatantlar - 80°C de analize kadar saklanır.

Örneklerin Hazırlanması:

Donmuş örnekler analiz öncesinde çözülmesi için oda sıcaklığına getirildı. Ardından çözünen plazma örnekleri aşağıda bahseden prosedüre göre işlemelendi. 0.25 mL’lik plazma örnekleri ependorf mikrosantrifüj tüplerine pipetlendi ve 0.5 mL metanol ile deproteinize edildi. Ardından 0.75 mL n-hegzan eklendi. Oluşturulan çözelti 3 dakika vortekslenip ardından ve 6000 g’de de 5-10 dakika santrifüj edildi. Sonra temiz hegzan tabakası başka bir tıba aktarılmış, plazma vitaminleri 0.75 mL n-hegzan ile yeniden ekstrakte edildi. Ekstraktlar tek ependorfta toplandı. Plazma ekstraktları nitrojen gazi altında buharlaştırıldı. Kuru kalıntı 0.25 mL’lik mobil faz içinde çözülüp ve HPLC sistemine enjekte edildi (127).
3.4 İSTATİSTİKSEL ANALİZ

Bulguların istatistiksel olarak değerlendirilmesinde SPSS 15.0 Windows programı kullanıldı. Olgu ve kontrol gruplarına ait tanımlayıcı bulgular ve rutin biyokimyasal parametreler ait değerlerin aritmetik ortalamaları, bu değerlerin grup içi dağılmımını yansıtmak için standart sapma ile birlikte verilmiştir (Ortalama değer ± standart sapma, ort±SD). Olgu ve kontrol gruplarına ait çalışılan diğer tüm parametrelerin aritmetik ortalamasının gruplar arasında karşılaştırılmaktadır, ortalama değerler standart hata ile birlikte verilmiştir (ortalama değer ± standart hata, ort±SEM). Grup ortalamalarının birbirlerine göre anlamlı derecede farklılıkının araştırılmasında hasta sayıları dikkate alınarak nonparametrik testlerden Mann-Whitney U testi kullanılmıştır. Olgu ve kontrol gruplarının tümünde korelasyon analizi için “Pearson korelasyon testi” kullanılmıştır. İstatistiksel anlamlılık değeri p<0.05 anlamlı olarak kabul edilmiştir.
4. BULGULAR

4.1 TANIMLAYICI BULGULAR

Çalışmaya yaşları 11 ile 18 arasında değişen 47 çocuk (21 kız çocuk, 26 erkek çocuk) dâhil edildi. Bu çocukların 20’si USG ile derecesi 1 ile 3 arasında değişen yağlı karaciğer tanısı almıştır. Yaş ve cinsiyet dağılımı olarak olgu grubuna benzer olan 19 sağlıklı çocuk kontrol grubunu oluşturdu. Kontrol, NAFLD (-) obez ve NAFLD (+) obez grubuna ait antropometrik veriler Tablo 1’de verilmiştir.

Tablo 1. NAFLD (+) ve NAFLD (-) obez grupları ile kontrol grubuna ait antropometrik ve sosyodemografik özellikleri.

<table>
<thead>
<tr>
<th>Gruplar</th>
<th>NAFLD(+) obez</th>
<th>NAFLD (-) obez</th>
<th>Kontrol</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>20</td>
<td>27</td>
<td>19</td>
</tr>
<tr>
<td>Erkek çocuk</td>
<td>10</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>Kız çocuk</td>
<td>10</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Yaş</td>
<td>13.85±2.02</td>
<td>12.55±2.02</td>
<td>14.82±1.81</td>
</tr>
<tr>
<td>Ağırlık (kg)</td>
<td>79.94±16.42a</td>
<td>68.8±16.36b</td>
<td>57.87±13.61</td>
</tr>
<tr>
<td>Boy (cm)</td>
<td>163.20±10.51*</td>
<td>156.28±12.27#</td>
<td>165.86±13.04</td>
</tr>
<tr>
<td>Boya göre ağırlık (%)</td>
<td>147.04±17.16a</td>
<td>146.23±14.95b</td>
<td>107.50±14.58</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>29.74±3.67a</td>
<td>28.23±3.57b</td>
<td>20.75±2.93</td>
</tr>
</tbody>
</table>

*a*p<0.001 NAFLD (+) obez ile kontrol grupları arasında anlamlı fark vardır.
*b*p<0.05 NAFLD(+) obez ile NAFLD (-) obez grupları arasında anlamlı fark vardır.
#p<0.05 NAFLD (-) obez ile kontrol grupları arasında anlamlı fark vardır.
*b*p<0.001 NAFLD (-) obez ile kontrol grupları arasında anlamlı fark vardır.
& Adolesan çağında VKI’leri arasında karşılaştırma yapmak uygun görülmediği için boya göre ağırlık istatistiksel olarak karşılaştırırmaya tabi tutulmuştur (10).
NAFLD (-) obez ve NAFLD (+) obez grupları beraber “obez” grup olarak birleştirildiğinde, bu gruba ve kontrol grubuna ait antropometrik ve sosyodemografik özellikler Tablo 2’de verilmiştir.

Tablo 2. Obez ve kontrol gruplarına ait antropometrik ve sosyodemografik özellikler.

<table>
<thead>
<tr>
<th>Gruplar</th>
<th>Obez</th>
<th>Kontrol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erkek çocuk (n=36)</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td>Kız çocuk (n=30)</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>Yaş</td>
<td>13.10±2.10</td>
<td>14.8±1.81</td>
</tr>
<tr>
<td>Ağırlık (kg)</td>
<td>73.54±17.13*</td>
<td>57.87±13.61</td>
</tr>
<tr>
<td>Boy (cm)</td>
<td>159.28±11.93*</td>
<td>165.86±13.04</td>
</tr>
<tr>
<td>Boya göre ağırlık (%)</td>
<td>146.58±15.76*</td>
<td>107.51±14.59</td>
</tr>
<tr>
<td>BMI (kg/cm²)</td>
<td>28.90±3.65*</td>
<td>20.75±2.93</td>
</tr>
</tbody>
</table>

p<0.05; * p<0.001 düzeylerinde obez ile kontrol grupları arasında anlamlı fark vardır.

Tablo 3. NAFLD (-) obez, NAFLD (+) obez ve kontrol gruplarına ait rutin biyokimyasal parametrelerinin karşılaştırılması.

<table>
<thead>
<tr>
<th>Gruplar</th>
<th>NAFLD (+) obez</th>
<th>NAFLD (-) obez</th>
<th>Kontrol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glukoz (mg/dL)</td>
<td>88.30±8.29</td>
<td>86.55±7.59</td>
<td>90.73±7.21</td>
</tr>
<tr>
<td>İnsülin (μU/mL)</td>
<td>16.77±8.37</td>
<td>9.67±5.20</td>
<td>7.28±2.62</td>
</tr>
<tr>
<td>HOMA</td>
<td>3.73±1.91</td>
<td>2.06±1.14</td>
<td>1.57±0.65</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>25.05±7.98</td>
<td>21.27±4.85 c</td>
<td>17.38±4.89</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>37.60±11.05</td>
<td>20.59±11.52 b</td>
<td>11.06±3.45</td>
</tr>
<tr>
<td>GGT (U/L)</td>
<td>22.46±7.63</td>
<td>16.4±5.24 c</td>
<td>12.16±1.60</td>
</tr>
<tr>
<td>TG (mg/dL)</td>
<td>169.3±25.82</td>
<td>179±32.06</td>
<td>147.36±31.74</td>
</tr>
<tr>
<td>TKOL (mg/dL)</td>
<td>56.65±66.10</td>
<td>50.11±12.98</td>
<td>47.71±10.07</td>
</tr>
<tr>
<td>HDL-K (mg/dL)</td>
<td>95.35±26.77</td>
<td>107.67±21.82</td>
<td>85.14±24.7</td>
</tr>
<tr>
<td>LDL-K (mg/dL)</td>
<td>95.35±26.77</td>
<td>107.67±21.82</td>
<td>85.14±24.7</td>
</tr>
</tbody>
</table>
* p <0.05 düzeyinde NAFLD (+) obez ile NAFLD (-) obez grupları arasında anlamlı fark vardır.

a p<0.001 düzeyinde NAFLD (+) ile kontrol; * p<0.05 düzeyinde NAFLD (+) ile kontrol grupları arasında anlamlı fark vardır.

b p<0.001 düzeyinde NAFLD (-) ile kontrol; c p< 0.05 düzeyinde NAFLD (-) ile kontrol grupları arasında anlamlı fark vardır.

Tablo 4. Obez ve kontrol gruplarına ait rutin biyokimyasal parametrelerin karşılaştırılması.

<table>
<thead>
<tr>
<th></th>
<th>Obez</th>
<th>Kontrol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glukoz (mg/Dl)</td>
<td>87.30±7.86</td>
<td>90.73±7.21</td>
</tr>
<tr>
<td>İnsülin (µU/mL)</td>
<td>12.67±7.52</td>
<td>7.28±2.64</td>
</tr>
<tr>
<td>HOMA</td>
<td>2.77±1.71</td>
<td>1.57±0.65</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>23.35±6.76</td>
<td>17.38±4.89</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>27.83±21.16</td>
<td>11.06±3.45</td>
</tr>
<tr>
<td>GGT (U/L)</td>
<td>19.21±7.05</td>
<td>12.16±1.60</td>
</tr>
<tr>
<td>TG (mg/dL)</td>
<td>132.47±73.03</td>
<td>72.00±32.76</td>
</tr>
<tr>
<td>TKOL (mg/dL)</td>
<td>175.06±29.69</td>
<td>147.36±31.74</td>
</tr>
<tr>
<td>HLD-K (mg/dL)</td>
<td>52.89±43.70</td>
<td>47.71±10.07</td>
</tr>
<tr>
<td>LDL-K (mg/dL)</td>
<td>102.42±24.55</td>
<td>85.14±24.73</td>
</tr>
</tbody>
</table>

a p< 0.001, * p< 0.05 düzeylerinde obez ile kontrol grubu arasında anlamlı fark vardır.

Obez ve kontrol grubu arasında glukoz ve kolesterol parametreleri dışındaki diğer rutin parametreler olan insülin, HOMA, AST, ALT, GGT ve TG'anlamlı olarak farklıdır. Özellikle AST, ALT ve TG düzeylerine ait anlamlılık düzeyi daha yüksek bulunmuştur (p<0.001, Tablo 4).
Çalışmaya alınan obez olgular IR yönünden yeniden gruplanarak IR (+) yani HOMA>2.7 olan olgular ile IR(-) yani HOMA<2.7 olan olgular rutin parametreler yönünden kıyaslanmıştır. Tablo 5’de görüldüğü gibi insülin direnci olan obez olguların rutin biyokimyasal testleri, insülin direnci olmayan obez olgular ile karşılaştırıldığında, IR (+) obez gruba ait glukoz, insülin ve HOMA değerleri sırasıyla anlamlı olarak daha yüksek bulunmuştur (p<0.001, p<0.05, p<0.05). IR (+) obez ile IR (-) obez grupları arasında anlamlı fark olmayan rutin biyokimyasal parametreler Tablo 5’de gösterilmemiştir.

Tablo 5. IR (+) obez olgular ve IR (-) obez olguların rutin biyokimyasal parametrelerinin karşılaştırılması.

<table>
<thead>
<tr>
<th>Gruplar</th>
<th>IR (+) Obez</th>
<th>IR (-) Obez</th>
</tr>
</thead>
</table>
| Glukoz (mg/dL)| 90.72±7.75
* | 85.52±6.81 |
| İnsülin (μU/mL)| 20.33±5.45
* | 7.56±2.91 |
| HOMA | 4.55±1.22
* | 1.58±0.57 |

* p< 0.001, * p< 0.05 düzeylerinde IR (+) obez ile IR (-) obez grupları arasında anlamlı fark vardır.
4.2 OKSİDASYON GÖSTERGELERİNE AİT BULGULAR

4.2.1 MDA Bulguları

MDA standartlarına ait floresans ölçüm değerleriyle oluşturulunan kalibrasyon grafiği aşağıdaki gibidir.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500</td>
<td>0.75</td>
<td>67.266.7</td>
<td>112.229.8</td>
<td>19.347</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>750</td>
<td>1.5</td>
<td>90.164</td>
<td>222.951</td>
<td>0.340.061</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1100</td>
<td>3</td>
<td>386.027</td>
<td>364.583</td>
<td>2.353.43</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1750</td>
<td>5</td>
<td>356.828</td>
<td>1064.9</td>
<td>0.688.956</td>
<td>1750</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3120</td>
<td>10</td>
<td>317.309</td>
<td>116.754</td>
<td>0.037.446</td>
<td>3120</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6240</td>
<td>20</td>
<td>205.274</td>
<td>382.034</td>
<td>0.009.009</td>
<td>6240</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10470</td>
<td>40</td>
<td>279.151</td>
<td>145.417</td>
<td>0.311.012</td>
<td>10470</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>13020</td>
<td>50</td>
<td>288.539</td>
<td>0</td>
<td>0</td>
<td>13020</td>
<td></td>
</tr>
</tbody>
</table>

Şekil 6. MDA kalibrasyon grafiği.

Şekil 8. Bir örneğe ait MDA kromatogramı.
4.2.2. Oksidasyon Göstergelerine Ait Bulgular

Oksidasyon göstergelerinin her ikisi de hem NAFLD (+) obez, hem de NAFLD (-) obez olgu grubunda kontrol grubuna göre daha düşük bulunmuştur. Ox-LDL düzeylerinin NAFLD (+) obez olan grupta kontrol grubuna göre anlamlı olarak düşük olduğu görülmüştür (Tablo 6).

Tablo 6. NAFLD (-) obez, NAFLD (+) obez ve kontrol gruplarına ait oksidasyon göstergelerinin (ox-LDL ve MDA) karşılaştırılması.

<table>
<thead>
<tr>
<th>Gruplar</th>
<th>NAFLD (+) obez</th>
<th>NAFLD (-) obez</th>
<th>Kontrol</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>20</td>
<td>27</td>
<td>19</td>
</tr>
<tr>
<td>ox-LDL (ng/mL)</td>
<td>3.67±0.40</td>
<td>3.20±0.24</td>
<td>4.80±0.51</td>
</tr>
<tr>
<td>MDA (μmol/L)</td>
<td>4.02±0.24</td>
<td>4.20±0.15</td>
<td>4.51±0.21</td>
</tr>
</tbody>
</table>

*p<0.05 düzeyinde NAFLD (-) obez ile kontrol grubu arasında anlamlı fark vardır.

Obez grup tüm olarak değerlendirildiğinde, ox-LDL ve MDA düzeyleri kontrol grubunda daha yüksektir. ox-LDL düzeylerindeki artış anlamlıdır (p<0.05) ve bu artış yağlı karaciğerı olmayan obez çocuklardan kaynaklanmaktadır (Tablo 7).

Tablo 7. Obez ve kontrol gruplarına ait oksidasyon göstergelerinin (ox-LDL ve MDA) karşılaştırılması.

<table>
<thead>
<tr>
<th></th>
<th>Obez grup (n=47)</th>
<th>Kontrol grubu (n=19)</th>
<th>p değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>ox-LDL (ng/mL)</td>
<td>3.40±0.22</td>
<td>4.80±0.51</td>
<td>< 0.05</td>
</tr>
<tr>
<td>MDA (μmol/L)</td>
<td>4.12±0.13</td>
<td>4.51±0.21</td>
<td>Anlamlı değil</td>
</tr>
</tbody>
</table>
Şekil 9. NAFLD (+) obez, NAFLD (-) obez ve kontrol gruplarına ait plazma ox-LDL düzeylerinin karşılaştırılması.

$p < 0.05$ düzeyinde NAFLD (-) obez ile kontrol grubu arasında anlamlı fark vardır.

Şekil 10. NAFLD (+) obez, NAFLD (-) obez ve kontrol gruplarına ait plazma MDA düzeylerinin karşılaştırılması.
4.3 PROİNFLAMATUAR SİTOKİNLER ve İNFLAMASYON GÖSTERGESİNE AİT BULGULAR

NAFLD (+) olan obez olgularda, TNF-α, IL-6 ve CRP düzeyleri kontrol grubuna göre anlamlı olarak artmıştır (Tablo 8, Şekil 11, 12, 13). NAFLD (-) olan obez olgularda NAFLD (+) obez grubundan farklı olarak, sadece IL-6 düzeylerindeki artış kontrol grubuna göre anlamlı farklı değildir (Tablo 8). Proinflamatuar parametreler açısından iki olgu grubu kendi içinde değerlendirildiğinde de anlamlı bir fark bulunmamıştır.

Tablo 8. NAFLD (+) obez, NAFLD (-) obez ve kontrol gruplarına ait proinflamatuar parametrelerin (IL-6, TNF-α) ve CRP’nin karşılaştırılması.

<table>
<thead>
<tr>
<th>Gruplar</th>
<th>NAFLD (+) obez</th>
<th>NAFLD (-) obez</th>
<th>Kontrol</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>20</td>
<td>27</td>
<td>19</td>
</tr>
<tr>
<td>IL-6 (pg/mL)</td>
<td>4.5±0.51#</td>
<td>4.33±0.55</td>
<td>2.75±0.62</td>
</tr>
<tr>
<td>TNF-α (pg/mL)</td>
<td>4.42±0.85#</td>
<td>4.70±0.91c</td>
<td>1.56±0.70</td>
</tr>
<tr>
<td>CRP (mg/L)</td>
<td>2.45±0.35a</td>
<td>3.57±0.54b</td>
<td>0.95±0.43</td>
</tr>
</tbody>
</table>

a p<0.001 düzeyinde NAFLD (+) obez ile kontrol; # p<0.05 düzeyinde NAFLD (+) ile kontrol grupları arasında anlamlı fark vardır.

b p<0.001 düzeyinde NAFLD (-) obez ile kontrol; c p< 0.05 düzeyinde NAFLD (-) ile kontrol grupları arasında anlamlı fark vardır.

Obez ve kontrol grupları proinflamatuar parametreler ve inflamasyon göstergesi yönünden değerlendirildiğinde, IL-6, TNF-α ve CRP’nin obez grupta kontrol grubuna göre anlamlı olarak arttığı görülmüşdür (Tablo 9).
Tablo 9. Obez ve kontrol gruplarına ait proinflamatuar parametrelerin (IL-6, TNF-α) ve CRP’nin karşılaştırılması.

<table>
<thead>
<tr>
<th></th>
<th>Obez grup (n=47)</th>
<th>Kontrol grubu (n=19)</th>
<th>p değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6 (pg/mL)</td>
<td>4.40±0.38</td>
<td>2.75±0.62</td>
<td><0.05</td>
</tr>
<tr>
<td>TNF-α (pg/mL)</td>
<td>4.58±0.63</td>
<td>1.56±0.69</td>
<td><0.005</td>
</tr>
<tr>
<td>CRP (mg/L)</td>
<td>3.08±0.35</td>
<td>0.95±0.43</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Şekil 11. NAFLD (+) obez, NAFLD (-) obez ve kontrol gruplarına ait plazma IL-6 düzeylerinin karşılaştırılması.

p<0.05 düzeyinde NAFLD (+) obez ile kontrol grubu arasında anlamlı fark vardır.
Şekil 12. NAFLD (+) obez, NAFLD (-) obez ve kontrol gruplarına ait plazma TNF-α düzeylerinin karşılaştırılması.

#p<0.05 düzeyinde NAFLD (+) obez ile kontrol; ¹p< 0.05 düzeyinde NAFLD (-) obez ile kontrol grupları arasında anlamlı fark vardır.

Şekil 13. NAFLD (+) obez, NAFLD (-) obez ve kontrol gruplarına ait serum CRP düzeylerinin karşılaştırılması.

²p<0.001 düzeyinde NAFLD (+) obez ile kontrol; ³p<0,001 düzeyinde NAFLD (-) obez ile kontrol grupları arasında anlamlı fark vardır.
4.3. ANTIOKSİDAN PARAMETRELERE AİT BULGULAR

Antioksidanların UV-dedeksiyonlu HPLC ile tayini için oluşturulan kalibrasyon eğrileri aşağıda verilmiştir.

<table>
<thead>
<tr>
<th>Liner</th>
<th>Area</th>
<th>Amount</th>
<th>RF</th>
<th>Last Area</th>
<th>Rep S/Dev</th>
<th>Rep ARSD</th>
<th>Rep A/A</th>
<th>RETINOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18020</td>
<td>1</td>
<td>18020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18020</td>
</tr>
<tr>
<td>2</td>
<td>67444</td>
<td>3</td>
<td>33123</td>
<td>21648</td>
<td>67444</td>
<td></td>
<td></td>
<td>67444</td>
</tr>
<tr>
<td>3</td>
<td>322736</td>
<td>5</td>
<td>26543</td>
<td>2</td>
<td>322736</td>
<td>26543</td>
<td>132272</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>290072</td>
<td>10</td>
<td>29007</td>
<td>2</td>
<td>290072</td>
<td>29007</td>
<td>29007</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>31891</td>
<td>25</td>
<td>29363</td>
<td>8</td>
<td>31891</td>
<td>29363</td>
<td>97230</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>902506</td>
<td>30</td>
<td>30001</td>
<td>5</td>
<td>902506</td>
<td>30001</td>
<td>902506</td>
<td></td>
</tr>
</tbody>
</table>

Şekil 15. α-Tokoferol Kalibrasyon Eğrisi.

<table>
<thead>
<tr>
<th>Level</th>
<th>Amount</th>
<th>RF</th>
<th>Last Area</th>
<th>Rep SD</th>
<th>Rep %RSD</th>
<th>Rep Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>21100</td>
<td>5391</td>
<td>984</td>
<td>1862</td>
<td>12274</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>5291</td>
<td>1826</td>
<td>1255</td>
<td>2552</td>
<td>12274</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2622</td>
<td>1718</td>
<td>1022</td>
<td>2062</td>
<td>12274</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>8754</td>
<td>3386</td>
<td>570</td>
<td>1143</td>
<td>12274</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>8754</td>
<td>3386</td>
<td>570</td>
<td>1143</td>
<td>12274</td>
</tr>
</tbody>
</table>

Şekil 16. Ubikinon Kalibrasyon Eğrisi.

<table>
<thead>
<tr>
<th>Level</th>
<th>Amount</th>
<th>RF</th>
<th>Last Area</th>
<th>Rep SD</th>
<th>Rep %RSD</th>
<th>Rep Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>21100</td>
<td>63012</td>
<td>4648</td>
<td>4648</td>
<td>4648</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>5412</td>
<td>16618.13</td>
<td>6418</td>
<td>6418</td>
<td>6418</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1564</td>
<td>6024.05</td>
<td>1364</td>
<td>1364</td>
<td>1364</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6024</td>
<td>159713</td>
<td>1597</td>
<td>1597</td>
<td>1597</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>6024</td>
<td>159713</td>
<td>1597</td>
<td>1597</td>
<td>1597</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>6024</td>
<td>159713</td>
<td>1597</td>
<td>1597</td>
<td>1597</td>
</tr>
</tbody>
</table>
Antioksidan standartlarına ait kromatogram aşağıda gösterilmiştir.

Şekil 17. Antioksidan standartlarına ait kromatogram.

Antioksidan parametrelerden sadece retinol düzeylerinde anlamlı fark bulunmaktadır. NAFLD (+) obez grubuna ait retinol düzeyleri, kontrol grubunun kine göre anlamlı olarak yüksek bulunmuştur (p<0.05). NAFLD (+) obezler ile NAFLD (-) obezler arasında antioksidan parametreleri açısından anlamlı bir fark saptanmamıştır. Yine NAFLD (-) obezler ile kontrol grubu arasında da aynı parametreler açısından anlamlı bir fark saptanmamıştır (Tablo 10, Şekil 17).
Tablo 10. NAFLD (+) obez, NAFLD (-) obez ve kontrol grubuna ait plazma antioksidan (CoQ₁₀, retinol ve α-tokoferol) düzeylerinin karşılaştırılması.

<table>
<thead>
<tr>
<th>Gruplar</th>
<th>NAFLD (+) obez</th>
<th>NAFLD (-) obez</th>
<th>Kontrol</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>20</td>
<td>27</td>
<td>19</td>
</tr>
<tr>
<td>CoQ₁₀ (µmol/L)</td>
<td>0.55±0.10</td>
<td>0.58±0.11</td>
<td>0.516±0.06</td>
</tr>
<tr>
<td>Retinol (µmol/L)</td>
<td>3.95±0.34 #</td>
<td>3.68±0.54</td>
<td>3.63±0.52</td>
</tr>
<tr>
<td>α-tokoferol (µmol/L)</td>
<td>30.27±2.79</td>
<td>30.29±2.40</td>
<td>30.45±2.42</td>
</tr>
</tbody>
</table>

p<0.05 düzeyinde, NAFLD (+) obez ile kontrol grubu arasında anlamlı fark vardır.

Çalışma grupları obez ve kontrol grupları olarak ele alındığında ise antioksidan parametrelerin hiçbirinde anlamlı bir fark saptanmamıştır (Tablo 11).

Tablo 11. Obez ve kontrol grubuna ait plazma CoQ₁₀, retinol ve α-tokoferol düzeylerinin karşılaştırılması.

<table>
<thead>
<tr>
<th>Gruplar</th>
<th>Obez grup</th>
<th>Kontrol grubu</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>47</td>
<td>19</td>
</tr>
<tr>
<td>CoQ₁₀ µmol/L</td>
<td>0.56±0.10</td>
<td>0.52±0.06</td>
</tr>
<tr>
<td>Retinol µmol/L</td>
<td>3.79±0.48</td>
<td>3.63±0.52</td>
</tr>
<tr>
<td>α-tokoferol µmol/L</td>
<td>30.28±2.54</td>
<td>30.45±2.37</td>
</tr>
</tbody>
</table>
Antioksidan parametreler

Şekil 17. NAFLD (+) obez, NAFLD (-) obez ve kontrol gruplarına ait plazma CoQ10, retinol ve α-tokoferol düzeylerinin karşılaştırılması.
p<0.05 düzeyinde, NAFLD (+) obez ile kontrol grubu arasında anlamlı fark vardır.

4.4 YAĞ DOKU SİTOKİNLERİNE AİT BULGULAR

Leptin NAFLD (+) obez ve NAFLD (-) obez grupta kontrol grubuna göre anlamlı olarak artış göstermiştir (Tablo 12, Şekil 19).
Serum adiponektin düzeyleri ise her iki olgu grubunda kontrol grubuna göre anlamlı olarak azalmıştır (Tablo 12, Şekil 18). Olgu gruplarının serum rezistin düzeyleri, kontrol grubuna göre azalmıştır ancak rezistin düzeylerindeki azalma anlamlı değildir (Tablo 12). NAFLD (+) obez grup ile NAFLD (-) obez grup arasında adipokinler arasında anlamlı bir fark saptanmamıştır.
Tablo 12. NAFLD (+) obez, NAFLD (-) obez ve kontrol gruplarına ait serum adipositokin (leptin, adiponektin ve rezistin) düzeylerinin karşılaştırılması.

<table>
<thead>
<tr>
<th>Gruplar</th>
<th>NAFLD (+) obez</th>
<th>NAFLD (-) obez</th>
<th>Kontrol</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>20</td>
<td>27</td>
<td>19</td>
</tr>
<tr>
<td>Leptin (µg/mL)</td>
<td>41.02±4.78 ^a</td>
<td>40.84±3.06 ^b</td>
<td>8.38±2.67</td>
</tr>
<tr>
<td>Adiponektin (ng/mL)</td>
<td>4.50±0.77 ^a</td>
<td>5.80±0.64 ^c</td>
<td>8.81±1.16</td>
</tr>
<tr>
<td>Rezistin (ng/mL)</td>
<td>7.40±1.13</td>
<td>7.81±0.82</td>
<td>13.59±2.73</td>
</tr>
</tbody>
</table>

^a^p<0.001 düzeyinde, NAFLD (+) ile kontrol grubu arasında anlamlı fark vardır.

^b^p<0.001 düzeyinde, NAFLD (-) ile kontrol grubu arasında anlamlı fark vardır.

^c^p<0.05 düzeyinde NAFLD (-) ile kontrol grubu arasında anlamlı fark vardır.

Çalışma obez ve kontrol grubu olarak ele alındığında, adipositokinler açısından obez grup serum leptin düzeyleri kontrol grubuna göre anlamlı olarak yüksek (p<0.001), adiponektin düzeyleri ise anlamlı olarak düşük bulunmuştur (p<0.05). Rezistin düzeyleri için anlamlı bir fark saptanmamıştır (Tablo 13, Şekil 18).

Tablo 13. Obez ve kontrol gruplarına ait adipositokin (leptin, adiponektin ve rezistin) düzeylerinin karşılaştırılması.

<table>
<thead>
<tr>
<th></th>
<th>Obez grup</th>
<th>Kontrol grubu</th>
<th>p değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>47</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Leptin (µg/mL)</td>
<td>40.91±2.66</td>
<td>8.38±2.67</td>
<td><0.001</td>
</tr>
<tr>
<td>Adiponektin (ng/mL)</td>
<td>5.23±0.49</td>
<td>8.81±1.16</td>
<td><0.05</td>
</tr>
<tr>
<td>Rezistin (ng/mL)</td>
<td>7.64±0.66</td>
<td>13.59±2.73</td>
<td>Anlamli değil</td>
</tr>
</tbody>
</table>
Şekil 18. NAFLD (+) obez, NAFLD (-) obez ve kontrol grubuna ait serum adiponektin ve rezistin düzeylerinin karşılaştırılması.

\(^a\)p<0.001 düzeyinde NAFLD (+) obez ile kontrol grubu arasında anlamlı fark vardır.

\(^b\)p<0.05 düzeyinde NAFLD (-) obez ile kontrol grubu arasında anlamlı fark vardır.

Şekil 19. NAFLD (+) obez, NAFLD (-) obez ve kontrol grubuna ait serum leptin düzeylerinin karşılaştırılması.

\(^a\)p<0.001 düzeyinde NAFLD (+) obez ile kontrol grubu arasında anlamlı fark vardır.

\(^b\)p<0.001 düzeyinde NAFLD (-) obez ile kontrol grubu arasında anlamlı fark vardır.
3.4 IR (+) OLGULAR ve IR (-) OLGULARIN TÜM PARAMETRELER YÖNÜNDEN KARŞILAŞTIRILMASI

IR (+) olan obez olgular, IR (-) olan obez olgularla antioksidan parametreler (CoQ10, α-Tokoferol, retinol), oksidasyon göstergeleri (ox-LDL, MDA), inflamasyon göstergesi (CRP,) proinflamatuar sitokinler (IL-6, TNF-α) ve adipositokinler (leptin, rezistin, adiponektin) yönünden karşılaştırıldığında, IL-6 ve leptin dışındaki tüm parametrelerde anlamlı bir fark bulunmamıştır. IR (+) olan olguların hem leptin, hem de IL-6 düzeylerindeki anlamlı fark p<0,05 düzeyinde saptanmıştır (Tablo 14).

Tablo 14. IR (+) obez olgular ile IR (-) obez olgulara ait leptin ve IL-6 düzeylerinin karşılaştırılması.

<table>
<thead>
<tr>
<th>Gruplar</th>
<th>IR (+) obez</th>
<th>IR (-) obez</th>
<th>p değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptin (μg/ml)</td>
<td>48.60± 4.80</td>
<td>36.25±2.99</td>
<td><0.05</td>
</tr>
<tr>
<td>IL-6 (pg/ml)</td>
<td>3.66± 0.45</td>
<td>5.76±0.61</td>
<td><0.05</td>
</tr>
</tbody>
</table>

IL-6 düzeyleri IR (+) olan grupta IR (-) grubu göre anlamlı düşük olduğu bulunmuştur. Leptin düzeyleri IR (+) olan grupta IR (-) olan gruba göre anlamlı yüksek bulunmuştur.
4.5 KORELASYON ANALİZLERİ

İstatistiksel olarak parametreler arası anlamlı korelasyonlar aşağıda verilmiştir.

Tablo 15. Parametreler arası korelasyon analizleri

<table>
<thead>
<tr>
<th>Parametreler</th>
<th>R değeri</th>
<th>p değeri</th>
<th>Parametreler</th>
<th>R değeri</th>
<th>p değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI/Ağırlık</td>
<td>0.811</td>
<td><0.001</td>
<td>BMI/adiponektin</td>
<td>-0.343</td>
<td><0.05</td>
</tr>
<tr>
<td>BMI/ (W/H)*</td>
<td>0.828</td>
<td><0.001</td>
<td>BMI/Leptin</td>
<td>0.557</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI/insülin</td>
<td>0.294</td>
<td><0.05</td>
<td>BMI/Rezistin</td>
<td>-0.340</td>
<td><0.05</td>
</tr>
<tr>
<td>BMI/HOMA</td>
<td>0.289</td>
<td><0.05</td>
<td>BMI/AST</td>
<td>0.422</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI/ox-LDL</td>
<td>-0.293</td>
<td><0.05</td>
<td>BMI/ALT</td>
<td>0.373</td>
<td><0.05</td>
</tr>
<tr>
<td>BMI/CRP</td>
<td>0.286</td>
<td><0.05</td>
<td>BMI/GGT</td>
<td>0.370</td>
<td><0.05</td>
</tr>
<tr>
<td>İnsülin/Ağırlık</td>
<td>0.606</td>
<td><0.0001</td>
<td>İnsülin/BMI</td>
<td>0.593</td>
<td><0.001</td>
</tr>
<tr>
<td>İnsülin/HOMA</td>
<td>0.986</td>
<td><0.0001</td>
<td>İnsülin/(W/H)</td>
<td>0.294</td>
<td><0.05</td>
</tr>
<tr>
<td>İnsülin/Leptin</td>
<td>0.451</td>
<td><0.0001</td>
<td>İnsülin/IL-6</td>
<td>0.397</td>
<td><0.005</td>
</tr>
<tr>
<td>İnsülin/Adiponektin</td>
<td>-0.362</td>
<td><0.005</td>
<td>İnsülin/ALT</td>
<td>0.383</td>
<td><0.005</td>
</tr>
<tr>
<td>İnsülin/GGT</td>
<td>0.388</td>
<td><0.005</td>
<td>İnsülin/AST</td>
<td>0.297</td>
<td><0.05</td>
</tr>
<tr>
<td>HOMA/IL-6</td>
<td>0.378</td>
<td><0.005</td>
<td>HOMA/Adiponektin</td>
<td>-0.392</td>
<td><0.005</td>
</tr>
<tr>
<td>HOMA/Leptin</td>
<td>0.429</td>
<td><0.0001</td>
<td>HOMA/ALT</td>
<td>0.368</td>
<td><0.005</td>
</tr>
<tr>
<td>HOMA/TG</td>
<td>0.378</td>
<td><0.005</td>
<td>(W/H)/ox-LDL</td>
<td>-0.293</td>
<td><0.05</td>
</tr>
<tr>
<td>(W/H)/CRP</td>
<td>0.286</td>
<td><0.05</td>
<td>(W/H)/Adiponektin</td>
<td>-0.343</td>
<td><0.05</td>
</tr>
<tr>
<td></td>
<td>Correlation Coefficient</td>
<td>p-value</td>
<td></td>
<td>Correlation Coefficient</td>
<td>p-value</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------</td>
<td>---------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>(W/H)/Leptin</td>
<td>0.577</td>
<td><0.0001</td>
<td>(W/H)/Rezistin</td>
<td>-0.340</td>
<td><0.05</td>
</tr>
<tr>
<td>Ox-LDL/Leptin</td>
<td>-0.314</td>
<td><0.05</td>
<td>Ox-LDL/Adiponektin</td>
<td>0.247</td>
<td><0.05</td>
</tr>
<tr>
<td>Ox-LDL/Rezistin</td>
<td>0.266</td>
<td><0.05</td>
<td>CRP/TNF-α</td>
<td>0.341</td>
<td><0.05</td>
</tr>
<tr>
<td>CRP/Leptin</td>
<td>0.344</td>
<td><0.05</td>
<td>TNF-α/IL-6</td>
<td>0.268</td>
<td><0.05</td>
</tr>
<tr>
<td>Leptin/IL-6</td>
<td>0.303</td>
<td><0.05</td>
<td>Adiponektin/Leptin</td>
<td>-0.380</td>
<td><0.005</td>
</tr>
<tr>
<td>CoQ_{10}/Adiponektin</td>
<td>-0.253</td>
<td><0.05</td>
<td>CoQ_{10}/Leptin</td>
<td>0.374</td>
<td><0.005</td>
</tr>
<tr>
<td>AST/Adiponektin</td>
<td>-0.387</td>
<td><0.005</td>
<td>TG/Adiponektin</td>
<td>-0.385</td>
<td><0.005</td>
</tr>
<tr>
<td>AST/Rezistin</td>
<td>-0.319</td>
<td><0.05</td>
<td>TG/Leptin</td>
<td>0.279</td>
<td><0.05</td>
</tr>
<tr>
<td>AST/ALT</td>
<td>0.807</td>
<td><0.0001</td>
<td>AST/TG</td>
<td>0.305</td>
<td><0.05</td>
</tr>
<tr>
<td>AST/GGT</td>
<td>0.373</td>
<td><0.05</td>
<td>ALT/GGT</td>
<td>0.596</td>
<td><0.0001</td>
</tr>
<tr>
<td>ALT/TG</td>
<td>0.341</td>
<td><0.05</td>
<td>CRP/TKol</td>
<td>0.335</td>
<td><0.05</td>
</tr>
</tbody>
</table>

(W/H)* boya göre ağırlık (%)
5. TARTIŞMA VE SONUÇ

Alkolik olmayan yağlı karaciğer hastalığı, obez bireylerde karaciğerin önemli bir patolojisidir. Bu hastalık, karaciğer yağlanması (hepatik steatoz) ve inflamatuar lezyonların oluşumu (steatohepatitis) sonucunda siroza kadar ilerleyebilen bir durumdur. Pediatrik obez grupta da giderek artmaktadır olan NAFLD’ye ait patogenez ve hastalığın progresyonu ile ilişkili faktörler henüz netlememiş.

Pediatrik obez hastalarla ilgili çalışmalarında, artan serum ALT düzeylerinin, adiponektin düzeyleri ile korelasyon gösterdiği; ancak TNF-α ve IL-6 düzeylerinin değişmediği gösterilmiştir (139). Yine erken NAFLD bulguları olan pediatrik obezlerde ilgili başka bir çalışmada serum CRP düzeylerinin anlamlı olarak arttığı; ancak TNF-α ve IL-6 düzeylerinin artmadığı bildirilmiştir (140).

Biz bu çalışmada yaşları 11-18 arasında değişen, yaş ve cinsiyet dağılımları arasında anlamlı bir fark olmayan NAFLD (+) obez çocuklar, NAFLD (-) obez çocuklar ve sağlıklı çocuk kontrol olgularının plazma antioksidan, serum oksidasyon göstergeleri, plazma proinflamatuar sitokinleri, inflamasyon göstergesi ve serum adipokin düzeyleri arasındaki farklılığı inceledik. Bu çocukların obezite tanı ölçütünü oluşturan antropometrik verilerine bakıldığında, BMI ve boya göre ağırlık verilerinin obez olgularda kontrol grubuna göre anlamlı olarak yüksek olduğu görülür (Tablo 2, p<0.001). Bu anlamlı farklılık NAFLD ayırımı ile sınıflanan NAFLD (+) ve NAFLD (-) obez gruplar için de geçerli olup bu grupların her ikisinde de kontrol grubuna göre p<0.001 düzeyinde anlamlı olarak yüksek bulunmuştur (Tablo 1).

Karaciğer fonksiyonlarını gösteren ALT, AST, GGT enzim düzeyleri ve lipid parametreleri olan TG ve TKOL düzeyleri NAFLD (-) obez ve NAFLD (+) obez grupta kontrol grubuna göre anlamlı olarak yüksek bulunmuştur (Tablo 3). Bu parametrelerden ALT ve GGT değerlerinin iki obez grup arasında anlamlı farklı
olduğunu ve NAFLD (+) obez gruba ait değerlerin NAFLD (-) obez gruptan daha yüksek olduğunu saptadık (ALT için p<0,05; GGT için p<0,05, Tablo 3).

İnsülin direncini gösteren insülin ve HOMA indeksi değerleri de, NAFLD (+) obez olan grupta hem kontrole (p<0,001), hem de NAFLD (-) obez grubuna (p < 0,05) göre anlamlı olarak yüksek bulunmuştur (Tablo 3). Bununla birlikte NAFLD (-) olan grubun hem insülin değerleri hem de HOMA indeksleri kontrol grubununkilerden yüksek olmasa rağmen, istatistiksel olarak anlamlı değildir. Obez grubun geneline bakıldığında TG dışındaki lipid profillerinde kontrol grubuna göre anlamlı bir fark yoktur (Tablo 4).

Çalışmaya katılan obez olgular IR yönünden yeniden gruplandırıldığında insülin direnci olan 20 olgudan 13’ünün (%72) sağlıklı karaciğer sahip olduğu [NAFLD (+)], geri kalan 7’sinin (%28) ise NAFLD (-) grubuna dahil olduğu görüldü. IR (+) olan olguların, IR(-) ołgulara göre anlamlı derecede yüksek leptin ve IL-6 değerlerine (p<0,5) sahip görüldü (Tablo 5).

İnflamasyon; obezite ve tip 2 diyabet etyopatogenezinde ortak bir özelliği. Obez çocuklarda subklinik inflamasyon siklıkla görülen ve metabolik sendrom ile korelasyon gösteren bir durumdur (102). Yapılan birçok çalışmada prepuberte çağındaki obez çocuklarda subklinik inflamasyonun bir göstergesi olarak CRP düzeylerinin arttığı gösterilmiştir. (108-112). Aeberli ve arkadaşlarının yaptıkları çalışmada yaşantı bağımsız olarak CRP, IL-6 ve leptinin artan vücut yağ oranı ile birlikte anlamlı düzeyde arttığını; TNF-α’nın ise değişmediği gösterilmiştir (119).

korelasyon bulunmaktadır. Bu sonuçlar CRP düzeyinin artan obezite derecesi ile pozitif korelasyon gösteren araştırma sonuçlarıyla örtümsmektedir.

Bazı çalışmalarda dolaşımdaki TNF-α konsantrasyonunun obez çocuklarda anlamlı olarak arttığı gösterilirken (141, 142); bazılarında gösterilememiştir (143). TNF-α’nın öncelikli etkisini adipositerde transmembranal salınım ve parakrin etki tarzında gerçekleştirdiği ve daha sonra sistemik dolaşıma geçerek otokrin etki yaptığı bilinmektedir (144, 145). Bu yüzden adipoz dokudaki TNF-α ekspresyonu artsa da, obez hayvan ve insanlarda TNF-α’nın dolaşımdaki konsantrasyonu sıklıkla tespit edilemeyecek orandadır ve kısmen arttığı düşünülmüştür (145). Hotamışlıgil ve ark. (1998) menapoz öncesi 19 obez kadına TNF-α mRNA’sının adipoz dokudaki ekspresyon paternini değerlendirildikleri çalışmada, obez olan bu kişilerin yağ dokusunda zayıf olan kontrollerine kıyasla 2.5 kat daha fazla TNF-α mRNA’sı eksprese ettiklerini ortaya koymıştır (25) Yine aynı hastalarda hiperinsülinemi ve yağ dokudan eksprese
edilen TNF-α mRNA düzeyleri arasında anlamlı pozitif bir korelasyon bulunmuştur (25)

Dolaşımdaki IL-6 düzeyleri CRP nin hepatik sentezini uyarmaktadır. Obez çocuk ve adolesanlarda CRP ve IL-6’nın artık konsantrasyonlarının metabolik sendrom bileşenleriyle (artan BMI, yüksek trigliserid konsantrasyonları, düşük HDL konsantrasyonları, artık sistolik kan basıncı ve bozulmuş glukoz toleransı) korelasyon gösterdiği bildirilmektedir (42-44, 46). Çalışmamızda obezite, CRP ve TNF-α düzeylerinde anlamlı artışlara neden olurken, yağlı karaciğerli olan obez olgularda ayrıca IL-6 düzeylerinin de anlamlı olarak artış olduğu saptanmıştır. Ayrıca, TNF-α’nın hem CRP, hem de IL-6 düzeyleriley pozitif korelasyon gösterdiği tespit edilmiştir.

MDA düzeyleri beklenenin tersine kontrol grubunda diğer gruplara göre daha yüksek bulunmuştur ancak bu yükseklik anlamlı düzeyde değildir.

İlgincək olarak ox-LDL ve MDA düzeyleri kontrol grubunda her iki obez gruba göre daha yüksek bulunmuştur. Kontrol ox-LDL düzeyleri, NAFLD (-) obez gruba göre anlamlı olarak yüksekktir (p<0.05; Tablo 6). Buna paralel olarak, olguların hepsi obez olarak değerlendirildiğinde kontrol gruba için bu yükseklik yine ox-LDL için anlamlı bulunmuştur (p<0.05; Tablo 7). Oksidasyon göstergelerinin tümü açısından iki obez olgu grubu kendi içinde değerlendirildiğinde anlamlı bir fark bulunmamıştır.

Çalışmamızda NAFLD (+) olan obez olgularda CRP, TNF-α ve IL-6 düzeyleri kontrol grubuna göre anlamlı olarak artmıştır (Tablo 8, Şekil 11, 12, 13). NAFLD (-) olan obez olgularda NAFLD (+) obez grubundan farklı olarak sadece IL-6 düzeylerindeki artış kontrol grubuna göre anlamlı farklı düzeylerde değiştirdir (Tablo 8). Yağlı karaciğer aynıı yapılmadan tüm obez grup ele alındığında ve oksidasyon göstergeleri, proinflamatuar sitokinler ve inflamasyon göstergesi yönünden değerlendirildiğinde; IL-6, TNF-α ve CRP’nin obez grupta kontrol grubuna göre anlamlı olarak arttığını, ox-LDL’nin ise azalığı görülmüştür (Tablo 7, 9). Buna göre oksidasyon göstergeleri ile inflamasyon arasında bir ilişki bulunmamıştır. Oksidasyon göstergeleri olan ox-LDL ve MDA’nın olgu gruplarında kontrol grubuna göre düşük bulunması ve ox-LDL açısından bu farkın anlamlı olması, literatürle de çelişkilidir. Ancak oksidasyon göstergelerinin kişinin sosyo-ekonomik durumu, beslenme alışkanlıklar gibi faktörlerden etkilediği göz önüne alınmadı, olguların saydığımız özellikleri yönünden değerlendirilirsebi bir çalışma planlanması faydalı olacaktır.

Oksidatif stres, diyabet ve insülin direncinin eşlik ettiği pek çok hastalığın patogenezinde merkezi bir rol alıp, obezitenin kendisi de oksidatif stresi indükleyebilir (126, 159). Bu durum yağ dokudan salnan adipositokinlerin disregülsyonuna ve metabolik sendrom gelişmesine kadar uzanır (52, 114, 128, 146). Obez yetişkinlerde subklinik inflamasyon oksidatif stres belirteçleriyle korelasyon gösterir. Yetişkinlerdeki obezitenin düşük düzeydeki α-tokoferol ve β- karoten ile ilişkili olduğu gösterilmiştir (82, 157). Azalmış antioksidan vitamin konsantrasyonu ve
azalılmış antioksidan kapasite aynı zamanda obez çocuklar için de karakteristik bir bulgu gibi gözükmektedir (155, 156, 159). Puberte çağındaki obez çocuklarda α-tokoferol konsantrasyonu normal sağlıklı çocuklardan anlamlı ölçüde daha düşük ve MDA konsantrasyonu ise anlamlı ölçüde daha yüksetir. Bu anormalliklerin diyet kısıtlamasıyla düzeltilebileceğini de gösterilmiştir (159).

İnsülin direncine sahip obez bireylerde artmış ox-LDL düzeylerinin olduğu gösterilmiştir. Lipofilik antioksidan CoQ₁₀, LDL’ye olan oksidatif hasarın etkili bir inhibitörü olarak bilinir. Bununla birlikte, bazı çalışmalarda, obez çocuklarda plazma CoQ₁₀ konsantrasyonunun azalmadığı ve bunun insülin direnciyle de ilişkili olmadığını ileri sürülmektedir (128).

NAFLD’li kişilerde plazma oksidatif hasar ve antioksidan durumunu değerlendirmek üzere yapılan bir çalışmada ise, lipid peroksidasyonunun ya da oksidatif stresin göstergesi olarak serum MDA düzeylerinin hastalığın derecesine bağlı olarak artış gösterdiğini, vitamin E ve C konsantrasyonlarının ise sağlıklı kontollere göre NAFLD hastalarında azaldığını tespit etmişlerdir (157). NAFLD’ye
sahip hastalarda oksidatif stresin sistemik parametreleri ve antioksidan durumunun değerlendirildiği çalışmada, plazma LDL konsantrasyonunun plazma malondialdehit düzeyleriyle pozitif korelasyon gösterdiği, buna karşın CoQ10, CuZn-süperoksid dismutaz ve katalaz gibi antioksidanların ise malondialdehit düzeyleriyle negatif korelasyon gösterdiği bulunmaktadır (164).

Antioksidan durumu oksidatif stresse karşı savunmada kritik bir rol oynar. Önemli bir zincir kırıcı antioksidan olan α-tokoferol lipid peroksidasyonunu inhibe ederek, hücre zarında oluşacak olan hasarı ve düşük dansiteli lipoproteinlerin modifikasyonunu engeller. Karatenoidler, vitamin E ve C gibi antioksidanlar ile çinko, selenyum ve magnezyum gibi eser elementlerin kandaki düzeylerinin genellikle obez olan çocuklarda ve yetişkinlerde, obez olmayanlara göre daha düşük olduğu bildirilmiştir (130).

Çalışmamızda obez grubun kontrolle göre antioksidan parametreler açısından hiçbirinde anlamlı bir değişiklik göstermediği, bununla birlikte yağlı karaciğerı olan obez çocukların kontrole göre anlamlı derecede yüksek retinol düzeylerine sahip olduklarını saptanmıştır (p<0.05, Tablo 10).

Obezite insülin direnci ve tip 2 diyabet anormal sitokin üretimi, artış akut reaktanlar ile diğer mediatörler ve inflamatuar sinyal yolları ağının aktivasyonu ile karakterize olan kronik inflamasyon ile yakından ilişkilidir (34-36). Ek olarak obez bireylerde artan leptinin proinflamatuar olduğunu göstermiştir (66). Yetişkinlerdeki subklinik inflamasyon tip 2 diyabet ve kardiyovasküler hastalıklar için daha büyük bir risk teşkil eder (67).

Obez bireylerde plazma leptin, rezistin, adiponektin ve ghrelin ile proinflamatuar sitokinler arasındaki ilişkinin değerlendirildiği bir çalışmada IL-6 ve tümör nekrozis faktör-α reseptör düzeylerinin morbid-obezlerde, non-morbid obezlere göre daha yüksek olduğunu göstermiştir. (65).

İlk çalışılan adipokinlerden olan leptin, TNF-α sistemi aktivitesiyle ilişkilidir (125). Adipoz dokudan sentezlenen ve doğrudan karaciğer dokusuna etkilererek, glukoz üretimini inhibe edici etkisi olan bir adipositokendir (123). Adiponektin anti-TNF-α etkisi ile potansiyel bir antiinflamatuardown. Adiponektinin düşük düzeyleri
yüksek orandaki visseral yağ ile ilişkilidir ve bu durum bir anlamda insülin direncini ifade eder. NASH’in fare modellerinde adiponektin verilmesi, hepatik steatoz ve serum ALT düzeylerini azaltmaktadır (125).

Proinflamatuar sitokinlerden TNF-α R1-reseptörü ve IL-6 düzeylerinin morbid- obezlerde, nonmorbid-obezlere göre daha yüksek olduğu ve her ikisinin de ameliyattan sonra kilo kaybının ardından azaldığı gösterilmiştir. Genel olarak obez kişilerde ortalama plazma lipidlerinin artmış olduğu, morbid-obezlerin ise plazma IL-6, adiponektin, leptin ve rezistin düzeylerinin nonmorbid-obezlere göre daha yüksek olduğu, ghrelinin ise azaldığı rapor edilmiştir (115).

Çalışmamızda leptin NAFLD (+) obez ve NAFLD (-) obez grupta kontrol grubuna göre anlamlı olarak artış göstermiştir (tablo 10, şekil 14). Serum adiponektin düzeyleri ise her iki olgu grubunda kontrol grubuna göre anlamlı olarak azalmıştır (tablo 10, şekil 13). Olgu gruplarının serum rezistin düzeyleri, kontrol grubuna göre azalmıştır ancak rezistin düzeylerindeki azalma anlamlı değildir. NAFLD (+) obez grup ile NAFLD (-) obez grup arasında adipokiner yönünden anlamlı bir fark saptanmamıştır. Antropometrik verilerden insülin ve HOMA indeksi leptinle pozitif, adiponektinle negatif olarak korelasyon göstermektedir. İnsülin direnci olan obezlerle, insülin direnci olmayan obez çocuklar karşılaştırıldığında, antropometrik veriler olan glukoz, insülin ve HOMA indeksi dışında leptin ve IL-6 düzeylerinin anlamlı olarak yüksek olduğu; ayrıca insülin, HOMA indeksi, leptin ve IL-6 düzeylerinin her birinin birbirleriyle pozitif yönde korele oldukları saptanmıştır.

Leptinin dolaşımdaki düzeyleri yaş ve cinsiyete göre önemli ölçüde farklılık gösterdiğinden, ileriki çalışmalarla leptin düzeylerinin cinsiyete göre ve daha da bir
yaş aralığında anlamlılığı değerlendirilmemelidir. Bunun daha güvenilir sonuçlar vereceği düşünülmektedir.

Pediatrik obezite ve pediatrik NAFLD ile ilgili şimdide kadar yapılan çalışmalarдан ortaya konan bilgiler hala net değil, tartışmalıdır. Bu durum, pediatrik gruplarda çalışma zorluğu, kan alınımında kısıtlayıcı etkenler, ailenin rıza göstermemesi ve etik kural sınırlamaları ile de yakından ilişkilidir.

Çalışmamızda NAFLD grubuna ait 20 olgu sayımız yetersiz olmakla birlikte, elde ettigimiz sonuçlar obez grubun özellikleri yansıtmakta; hatta ilaveten bu grupta istatistiksel olarak önemli farklılıkları yansıtmaktadır. İleriki çalışmalarda gerek total obez, gerekse yağlı karaciğeri olan olgu sayımız genişleterek özellikle inflamatuar ve antioksidan parametrelerin çalışılması gerekliği açılır. Yağlı karaciğeri olmayan obez grupta TNF-α, CRP ve leptin düzeyleri yüksek ve adiponektin düzeyleri ise düşük iken; yağlı karaciğeri olan obezlerde bu parametrelerin ilaveten IL-6 düzeyleri de anlamlı olarak artmıştır. Retinol düzeyleri ise, yağlı karaciğeri olan obez olgularda artmaktadır ve bu nedenle ayrıntı edici bir parametredir. Sonuç olarak obezite ve obezite ile ilişkili karaciğer yaşlanmasının ayrımda karaciğer ultrasonografisi yanı sıra inflamatuar belirteçlerden IL-6 ve antioksidan belirteçlerden retinol düzeylerinin değerlendirilmesi yararlıdır.
KAYNAKLAR

12. Ahima RS. Adipose tissue as an endocrine organ. Obesity (Silver Spring) 2006; 14 Suppl 5: 242-249

54. Asayama K, Hayashibe H, Dobashi K. Decrease in serum adiponectin level
due to obesity and visceral fat accumulation in children. Obes Res, 2003; 11:
072–1079.
55. Steven E. Shoelson, Jongsoon Lee, Allison B. Goldfine Inflammation and
56. Ludwig J, Viggiano TR, McGill DB, Oh BJ. Nonalcoholic steatohepatitis:
Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc,
57. Clark JM, Brancati FL, Diehl AM. Nonalcoholic fatty liver disease.
Gastroenterology, 2002; 122: 1649-1657.
58. Qureshi K, Abrams AG. Metabolic liver disease of obesity and role of adipose
tissue in the pathogenesis of nonalcoholic fatty liver disease. World J.
Gastroenterol, 2007; 13(26): 3540-3553.
59. Ruhl CE, Everhart JE. Epidemiology of nonalcoholic fatty liver. Clin Liver
Dis, 2004; 8: 501-519, vii
60. Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to
61. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR.
Nonalcoholic steatohepatitis: a proposal for grading and staging the
62. Neuschwander-Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis: summary
63. Begriche K, Igoudjil A, Pessayre D, Fromenty B. Mitochondrial dysfunction
in NASH: causes, consequences and possible means to prevent it. Mitochondrion
2006; 6: 1-28
64. Rao MS, Reddy JK. Peroxisomal beta-oxidation and steatohepatitis. Semin
Liver Dis 2001; 21: 43-55
65. Fromenty B, Robin MA, Igoudjil A, Mansouri A, Pessayre D. The ins and
outs of mitochondrial dysfunction in NASH. Diabetes Metab 2004; 30: 121-
138

68. McGarry JD, Foster DW. Effects of exogenous fatty acid concentration on glucagon-induced changes in hepatic fatty acid metabolism. *Diabetes* 1980; 29: 236-240

84. Chen J, Petersen DR, Schenker S, Henderson GI. Formation of malondialdehyde adducts in livers of rats exposed to ethanol: role of
84

93. Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, Sanna V, Jebb SA, Perna F, Fontana S, Lechler RI, DePaoli AM, O'Rahilly S. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and

127. HPL Karpi´nska J., Mikol´u´c B., Motkowski R., Piotrowska J-Jastrzebska J. HPLC method for simultaneous determination of retinol, α-tocopherol and
131. F. Villarroya, R. Iglesias, M. Giralt Retinoids and Retinoid Receptors in the Control of Energy Balance: Novel Pharmacological Strategies in Obesity and Diabetes. 795-805 (11

160. Olusi SO. Obesity is an independent risk factor for plasma lipid peroxidation and depletion of erythrocyte cytoprotectic enzymes in humans. Int J Obes Relat Metab Disord 2002; 26: 1159–1164

DOKUZ EYLÜL ÜNİVERSİTESİ TIP FAKÜLTESİ
KLINİK VE LABORATUVAR ARASTIRMALARI ETİK KURULU
Tarih ve Sayı: 19.10.2007/ 336

Etik Kurul Üyeleri
Prof.Dr.Taner ÇAMSARI
Prof.Dr.Tunc ALKIN
Doç.Dr.M.Hakan ÖZDEMİR
Doç.Dr.Ayça Arzu SAYINER
Doç.Dr.Vesile ÖZTÜRK
Doç.Dr.Mustafa SEÇİL
Doç.Dr.Murat DUMAN
Doç.Dr.Giyan AŞIAN
Yard.Doç.Dr.Murat ÖRMEN
Öğr.Gör.Uzm.Dr.Ahmet Can BİLGIN
Yunus KARSLI

Etik Kurul Başkanı
Prof.Dr.Taner ÇAMSARI

DOKUZ EYLÜL ÜNİVERSİTESİ TIP FAKÜLTESİ DEKANLIĞINA,

Etik Kuruluzun 18 Ekim 2007 tarih ve 04/22/2007 no.lu toplantısında, 293/2007 Protokol numaralı Biyokimya Anabilim Dalı Öğretim Üyelerinden Prof.Dr.Filiz KURALAY’ın yöneticisi, Yeliz ANGİN’in sorumlulu olduğunu, “Pediatrik obezite ile ilişkili yağlı karaciğer hastalığından metabolik, oksidan ve antioksidan sistemik belirteçlerin değerlendirilmesi” isimli projemin uygulanmasında etik açıdan sakınca yoktur.

Katılanların oy birliği ile karar verilmiştir.

Bilgilerinizi ve gereğini arz ederim.

[İmzası]

Prof. Dr.Taner ÇAMSARI
Klinik ve Laboratuvar Araştırmaları
Etik Kurul Başkanı

Etik Kurul Sekreteri
Hatice İÇİ

Tel: 0232 412 22 54
ONAM FORMU

Sayın anne / baba,

Kilo fazlalığı (obesite veya şişmanlık) gelişmiş ülkelerde olduğu kadar ülkemiz gibi gelişmekte olan ülkelerde de çocuklarda hızla artmaktadır. Bu artışın en önemli nedeni fazla yağ, şeker içeren, ancak vitamin ve mineral içeriği az olan besinleri tüketmememiz ve eskisi kadar çok hareket etmemizdir. Çocuklarınızın düzenli beslenmeleri ve normal kiloda olmaları, hem şimdi, hem de sonraki yaşamları boyunca sağlıklı olmaları açısından büyük önem taşımaktadır.

Hastanemiz Çocuk Gastroenteroloji ve Beslenme, Metabolizma polikliniğine başvurulan ve obesite tanısı konulan 11-18 yaş arası hastaların alındığı bu çalışmaya katılmamız bir kaç aylık veri toplanmasını sağlayacaktır: İlk olarak çocuğunuzdaki bu vitamin düzeylerini ve insülin yüksekliğini olup olmadığını öğrenmiş olacaksınız. İkincisi, şişmanlık tedavisini zor ve başarısız düşünür. Ancak hastamızın bu verileri elimizde olursa, tedavi motivasyonu konusunda çocuğunuzu ikna etmemiz daha kolay olacaktır ve tedaviyi daha uzun süre sürdürbilecektir. Ayrıca eksikliği saptanan vitaminlerin diyette eklenisini de söz konusu olacaktır.

Gönülünün (veli/vası) Adi - soyadı: .. İmzası:
Açıklamaları yapan araştırmacının Adi - soyadı: ... İmzası:
Riza alma işleminin başında sonuna kadar tanıklık eden kuruluş görevlisinin Adi-soyadı: .. İmzası:
Görevi:
Tarih:/....../......
ONAM FORMU

Sayın anne / baba,

Kilo fazlalığı (obesite veya şişmanlık) gelişmiş ülkelerde olduğu kadar ülkemiz gibi gelişmekte olan ülkelerde de çocuklarda hızla artmaktadır. Bu artışın en önemli nedeni fazla yağ, şeker içeren, ancak vitamin ve mineral içeriği az olan besinleri tüketmememiz ve eskisi kadar çok hareket etmememizdir. Çocuklarımızın düzenli beslenmeleri ve normal kiloda olmaları, hem şimdi, hem de sonraki yaşamları boyunca sağlıklı olmalarını açısından büyük önem taşımaktadır.

Bu çalışmaya sağlıklı çocuk olarak katılmınız birkaç açısından önem taşımaktadır: İlk olarak çocuğunuzdaki bu vitamin düzeylerini öğrenmiş olacaksınız. İkincisi, şişman çocukların kan düzeylerinin düşük olup olmadığını anlamamız için zorunlu gibi sağlıklı çocukların kan düzeyleri ile karşılaştırılması gerekli dir. Üçüncüüsü, şişman ve karaciğer yapılanması olan bir çocuk hastaya, tedavisine daha sıkı sarılması için, sizin çocuğunuzun normal değerleri ile kendi değerlerini karşılaştırırmak firsat vermiş olacaksınız.

Gönlüllünün (veli/vası) Adı- soyadı: ... İmzasi:
Açıklamaları yapan araştırmacının Adı- soyadı: İmzasi:
Rıza alma işlemenin başından sonuna kadar tanıklık eden kuruluş görevlisinin Adı-soyadı: ... İmzasi: Görevi:
Tarih:/........./.......