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ABSTRACT

In this study, a problem of an infinitely long solid cylinder containing a ring
shaped-crack is considered. The ring-shaped crack is embedded in the mid-plane of
the infinite cylinder. The problem is formulated for a transversely isotropic material
by using integral transform technique and solved under the effect of uniform load.
Due to the geometry of the configuration, Hankel and Fourier integral transform
techniques are chosen and the problem is reduced to a singular integral equation.
This integral equation is solved numerically by using Gaussian Quadrature Formulae
and the values are evaluated for discrete points. The plastic zone widths are obtained
by using the plastic strip model. They are plotted for various ring-shaped crack sizes

and transversely isotropic materials.

Keywords: Transversely isotropic material, ring-shaped crack, singular integral

equations, plastic zone.
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OZET

Bu ¢alismada yiiziikk seklinde ¢atlaga haiz sonsuz uzun bir silindir ele alinmigtir.
Yiuiziik seklindeki catlak sonsuz silindirin orta diizleminde bulunmaktadir. Problem
enine izotrop bir malzeme igin integral doniigiim teknigi kullamilarak formiile edilmis
ve diizgiin yayili yiik etkisi altinda ¢6ziilmiistiir. Problemin geometrisi geregince
Hankel ve Fourier integral donitsiim teknikleri se¢ilmis ve problem bir tekil integral
denklemine indirgenmigtir. Bu integral denkleminin belli noktalardaki degerleri
Gauss Quadrature formiilii kullanilarak sayisal olarak elde edilmistir. Plastik bolge
genislikleri, plastik bant modeli kullamlarak elde edilmistir. Cesitli yiiziik catlak
boyutlar1 ve degisik enine izotrop malzemeler i¢in plastik bélge genislikleri grafik

olarak verilmistir.

Anahtar Kelimeler : Enine izotrop malzeme, yiiziik seklinde gatlak, tekil integral
denklemi, plastik bolge.
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CHAPTER ONE
INTRODUCTION

1. Introduction

Composite materials have a long history of usage. Their beginning are unknown,
but all recorded history contains references to some form of composite material. For
instance straw was used to strengthen mud bricks. More recently, fiber reinforced
resin composites that have high specific strength and specific modulus have become

important in weight sensitive applications.

Composite materials are conceptually simple. They offer unique opportunities in
design beyond being lighter substituties of conventional materials. The structural
performance offered by composite materials is much more versatile than can be

realized with conventional materials.

Fiber reinforced composite materials with- equal number of fibers in two
perpendicular directions have been characterized as a transversely isotropic medium
having five elastic constants [1,2]. Graphite-epoxy, barium titanate, E-glass can be
treated as transversely isotropic materials. Hexagonal materials such as magnesium,

cadmium and zinc are also transversely isotropic.

Axially symmetric deformation of a transversely isotropic body of revolution has

been studied by Lekhnitskii [3].

The distribution of stress in a transversely isotropic cylinder containing penny-
shaped crack has been investigated by Parhi & Atsumi [4]. Dahan [5,6] has searched
both stress intensity factor and stress distribution in a transversely isotropic solid

containing a penny shaped crack. Singular stresses in a transversely isotropic circular
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cylinder with circumferential edge crack have been examined by Atsumi & Shindo
[7]. Konishi [8,9] has studied crack problems in transversely isotropic strip and
medium. Fildis has studied stress intensity factors for an infinitely long transversely

isotropic solid cylinder containing a ring shaped cavity [10].

In addition to the numerous studies stated above, plastic deformations have also
been considered by some researches. Notably among them Olesiak & Shadley [11]
determined the plastic zone in a thick layer with a disk shaped crack. Crack opening
displacements in an orthotropic strip have been found by using the plastic strip
model [12]. Plastic deformations in a transversely isotropic layer and cylinder have
been studied by Danyluk et al. [13,14]. All the above mentioned work related to
plastic studies are based on the Dugdale’s hypothesis [15]. The Dugdale model of a
crack in a ductile material was introduced to investigate the inelastic zone at the ends
of a stationary slit in steel sheets under static tension. The Dugdale model predictions

agree closely with the experimental results.

In this study, the governing elasticity equation for the transversely isotropic
axisymmetric problem in cylindrical coordinates, is obtained in terms of a Love type
stress function. Hankel and Fourier sine transforms are applied on the stress function
because of the geometry of the configuration and boundary conditions. The stress
function is expressed as the summation of two solutions of the governing equation.
Using the boundary conditions, the problem is reduced to a singular integral
equation. This singular integral equation is solved by using the Gaussian Quadrature.
Then the stress intensity factors at the crack tips are determined. Kaya & Erdogan’s

approach was modified to obtain the plastic zone widths at the crack tips.

The numerical results have been obtained for various ring-shaped crack sizes. The
plastic zone widths are obtained for axial loading. The results are illustrated by

graphs.

The stress intensity factors and plastic zone lengths may be used in any
calculations to predict fracture, for example, in cylindrical machine parts and the
general mathematical methods and techniques of this analysis may also be used in

the solutions of any other axisymmetric elasticity problems.
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CHAPTER TWO
DEFINITION OF THE PROBLEM

2. Basic formulation

The generalized Hooke’s law relating strains to stresses can be written in

contracted notation as

g =a,c. i,j=1.6 @.1)

where ¢; are the strain components, ajj is the strain coefficient matrix, and the o;

are the stress components.

Comparison between tensor and contracted notation for stresses and strains is

available in [1].

The strain coefficient matrix, aj;, has 36 constants in Eq. 2.1. It is symmetric and

hence has 21 independent constants.

The Eq. 2.1 can be written in matrix notation

€, 1 @y 8y Ay Ay 8y (|0,
€ a a a a a a (o)
3 13 3 A 3 Qa5 Ay 3
< = 2 3 < (2.2)
Y2 Ay Ay Ay Ay, Ay Ay (O

&S| ;s Qs 835 Ay Ass 8 (103

(Yi2) L[81s 82 83 84 855 g |(Oyy)

If at every point of a material there is one plane in which the mechanical

properties are equal in all directions, then the material is termed transversely



isotropic. If, for instance, the 1-2 plane is the special plane of isotropy, then the 1 and
2 subscripts on the strain coefficients are interchangeable. The strain-stress relation

then has only five independent elastic constants and these are

€ 2, a, a, 0 0 0 (o]
€, a, a; a; 0 0 0 O,
J83 |3 %5 2s 0 0 0 193 $ 2.3)
Yo 0 0 0 a, 0 0 O
Y 0 0 0 0 a, 0 (o
v LO 0 0 0 0 2(a,-2a,)](on)

2.1. Axisymmetric deformation

Let us consider the axisymmetric elasticity problem for a transversely long
cylinder shown in Fig. 2.1. In this problem a single ring-shaped crack lies at z=0

plane. Elasto-plastic long cylinder is subjected to an axial load.
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Figure 2.1. Geometry of the problem



It is convenient to select the cylindrical coordinate system for solving the

problem. Let a body of an elastic homogeneous transversely isotropic material be

referred to a cylindrical co-ordinate system r, 0, z with the origin placed at some

point on the geometrical axis, the z axis directed along this axis, and the polar r axis

directed arbitrarily in the plane of cross section. The generalized Hooke’s law

equations are written as in a Cartesian system, namely

€ =a,0, +a,,6, +a,;0,

€y —4,,0, +2,,G4 +2,50

€, =a,;30, +a,30, +a;0,

Yo = 244006,
er = a446rz
Yo =2(a;, —

a1,)04

2.4)

For the materials considered in this study, the numerical values of the modulii c;;

(1,j=1..4) are taken from Huntington [16] and they are tabulated below.

Table 2.1. Values of Elastic Constants ( in GPa)

Material (5 Cia C13 C33 Cy4
Magnesium 59.7 26.2 21.7 61.7 16.4
Cadmium 115.2 39.7 40.5 51.2 20.3
Barium-titanate 168.0 78.0 71.0 189.0 5.46
c;=c;g 1,j=1.6 2.1

Substituting Eq. (2.1) into o =cgg;

(i,j=1..6) the strain coefficients a;

(i,j=1..4) can be easily evaluated in terms of c; by using matrix operation rules.

These are



2 2
_C11C33 —Cy3 _ —(CcpCa3 — C13)

ad; = A, =
" OP. 2 O.P.
Cc;3(C, —Cyy) 0121 _0122 1
13- a3 = Ay =— (25)
O.P. ¥ OP. Cu-
here
OP.=(c;; = )(€),€55 = 2€7; +C1,Cy5) (2.6)

The strain coefficients a; may also be expressed in terms of the engineering

constants
1 v 1 L'
TE TTp Ty WTTE
1 20+v) 1
A, =— 2(a;; —a,)= =— 2.7
“T G (ay 12) E G @2.7)

Where E and E’ are Young’s modulii for tension and compression in the plane of
isotropy and in a direction to perpendicular it, v is Poisson’s ratio characterizing
contraction in the plane of isotropy for tension in the same plane, v’ is Poisson’s ratio
characterizing contraction in a direction normal to the plane of isotropy for tension in
this plane. G = E/2(1+v) and G’ are the shear modulii for the plane of isotropy and

perpendicular (radial) planes.

The elastic properties of isotropic materials become different in any direction due
to certain technological processes such as rolling and the condition of anisotropy
must be considered. Steel, copper, and aluminum may be considered as a slightly
anisotropic material. Only steel is considered in this study. The engineering constants

of steel are obtained experimentally and given in Table 2.2.

Table 2.2. Values of engineering constants of steel ( modulii are in GPa)

Material E E v V' G’
Steel 220 210 0.3 0.3 80.77




The calculated a;; values for the materials are give in appendix C.

Because of the symmetry of the force distribution and the elastic symmetry the
radial sections remain plane and the body remains a body of revolution in the

strained condition, i.e.,
u, =u (1,2) u, =0 o =o(r,z) (2.8)

It follows that yo,=Yw =0 and to,=16=0, the other components of strain are

independent of 6,
ou u 0w Oou, 0w
= r — r - - r —_— 2.9
8r ar 89 r 8z 62 'Y 4 62 + ar ( )

In the absence of body forces, the four non-trivial components of stress satisfy

two equilibrium equations,

%0, 80, 970 _g (2.10)
or o0z r
oc 66, ©

= L —F = 2.11
or * 0z d r g ( )

The compatibility equations are,

Oe
—gy—1—>=0 (2.12)

& or

r

o’s, 0%, 0oy,

r Z

o2 o’ ozor

=0 (2.13)
Substituting the expressions for the strains from Eq. 2.4, we obtain,

a,0, +a,,0, +a;30, —g[r(aucr +2a,,0y +a130'z)]=0 (2.14)



62

—T(ancr +2,,04 "'alzo'z)"'

5 - (2.15)
?(alzcr +a,,04 +a13cz)_a44 &a;z =0

2.2. Stress function

The equation of equilibrium (Egs. 2.10 and 2.11) can be satisfied by a stress
function ¢(r, z) which is a generalization of the stress function for a transversely

isotropic body are the form [3],

0
c.=—F—

(@, 22, 2
T\ Tt ar

+a—5
oz*

o(. 2% 180 azq)j
Ge__az(bér2+r8r+a622

o( 0% cob az¢j
=—|c—>+-——+d—5 1

c, az(c 2+r6r+d622 (2.16)

o(o* 180 az¢j
6”_&[&2+r6r+a622

0%

u, =—(1-b)a, —-a, )(br—az)
u, =0

2

2’0 109 o)
W=a, (g{ + ;E) +(a;d— 23,13a):,3z—2
where the constants a, b, ¢, and d are,

a,,{a;; —a
a= ]3( 11 122)

apdy; —ap



_a(a; +a,)—anay,

2
apa33 — a3

b

= a;;(a, —a,)+a,3,

3 2.17)
451833 ~ a3
2 2
4, —ap
d=—"""5
a8z —ag

To be able to find ¢(r, z) let us substitute Eq. 2.16 into the equilibrium equation
2.11. We obtain the following homogeneous partial differential equation for the

stress function.

2 2 2 2 2 2
_6_2_}.12 a_j)_f_l@l_ka_@_? +£2_ Ca_;£+£-a-g+d—a———?— =O (218)
or° ror\ér° ror 0z or or r or oz

Equation (2.18) can be written in another form,

o' 20% 10% 1 b
Tt S skt
ot ror o o

(2.19)

4 3 4
0" a+06¢+d6¢=0

+(a+c +
( )6r2622 r Oroz’ oz*

The solution of (2.19) can be obtained by adding two functions. ¢i(r, z) is a
function to satisfy the boundary conditions at z =0 and ¢»(r, z) is another function to

satisfy the boundary conditions at r = R.

2.2.1. Evaluating the stress function

The problem is an axisymmetric one and the stress function ¢,(r, z) has to be an
even function of r. Therefore we shall define the Hankel transform pair of order zero

of the function ¢,(r, z) as follows,

0,(r,2) = T)».P(k, 2).J, (\r).dA (2.20)



P(A,z) = u]r.(])1 (r,z).J,(Ar)dr (2.21)

By substituting (2.20) into Eq. (2.18), the following can be obtained,

_(QLEEJ - )a Jar J(AT) P(?; ,z) 0J, a(rm
fn d\ =0 (2.22)
’ . [eraz )6J o (A1) —P(x &)

| 0,00 7202

By differentiating the first order Bessel function with respect to r and arranging
the terms, Eq. (2.22) can be reduced to the following homogeneous ordinary

differential equation of P(A, z),

d'P(,2) d’ P( )

d84

(a+c)—22 4 A*P(A,z) =0 (2.23)

Associated with the fourth order differential equation (2.23) is the algebraic

equation,

ds* —(a+c)s’ +1=0 (2.24)

whose roots are,

_+\/(a+c)+\/(a+c)2 —4d

S, =% - (2.25.a)
Sy = J_r\/ (@+e)-y g: ©) —4d (2.25.b)

The solution of differential equation (2.23) is in the following form,

10



syhz

P(A,z) =me*™ + m,e*™ + m,e™ +m,e*™ (2.26)

From the analysis of s; (i=1..4), in order to have a convergent solution when z
approaches to infinity, the constants m; and m; should be equal to zero. Thus P(A, z)

is reduced to,
P(A,z) = m,e’™ + m ™" (2.27)

Substituting (2.27) into Eq. (2.20), the stress function ¢;(r, z) is expressed as

follows,
0,(r,2) = [Am,e™ +m e )1, (hr).dh (2.28)
0
where,
S2, 54 <0

Since the problem is symmetric about z=0 plane the second solution of
Eq. (2.19), dx(r, z) is an odd function of z. It will be determined by defining the

following Fourier sine transform pair,

o,(1,2) = 2 O]'L(oc, r)sin(ar).do (2.29)
T 0
L(a,r) = °],¢2 (r,z)sin(az)dz (2.30)

By substituting (2.29) into Eq. (2.18), the following is obtained,

27{(§_+13I52L(a,r) +18L(a(rx,r) _aazL(a’r)j

nilor? rar | e’ x
2
—az(c 0 Iég?’r) + & 6L(6(:,r) —dazL(a,r)}] sin(oz)do = 0 (2.31)
r

11



To be able to satisfy equation (2.31) for every z value, the bracketed expression in

Eq. (2.31) should be equal to zero. Thus,

8> 10\ é*L(a,r) 10L(a,1)
__.|..__._ +_ —
o ror or? r or

2
-a’ ca L(?’r)+EaL(a’r)—doc2L(oc,r) =0
or r Or

ao’L(a, r)}
(2.32)

Eq. (2.32) can be written as follows,

2 2
(%2_ +l§—cf(x2)(a Léi?,r) +15L(a(1€,1’) —cgoch(oa,r)] -0 (2.33)
T r

where,

2d

“ =\/(a+c)i,/(a+c)2 —4d
¢, = \/(a+c)i,/(a+c)2 —4d (2.345)

(2.34.2)

2

Since the values of c¢; and ¢, are expressed in terms of the material constants, the
positive values of ¢; and c; are used throughout this study. Actually to be able to
satisfy the boundary conditions in the following sections. This assumption is

necessary.
Eq. (2.33) can also be expressed as,
D,(D,L(a,r))=0 (2.35)

where D; and D, are the operators of Modified Bessel’s differential equation of

order zero and they are defined as,

D=—+-—-cja (2.36.a)

12



8> 16
D, =?+;a—c§a2 (2.36.b)
by defining,
Q(r,a) =D,L(a,r) (2.37)

then equation (2.35) can be written as follows,

D,Q(r,a)=0 (2.38)
the solution of (2.38) is of the form,

Q(r,a) = Al,(c,ar) + BK,(c,ar) (2.39)

where Ip(c;ar) and Ko(cjor) are modified Bessel functions of the first and second
kind of order zero, respectively. By substituting Eq. (2.39) into Eq. (2.37), the

following expression is obtained,
D,L(a,r) = Al (c,ar) + BK,(c,ar) (2.40)

Homogeneous solution of the differential equation given in Eq. (2.40) can be

expressed as follows,
L, (a,r)=ClI,(c,ar)+ DK, (c,ar) (2.41.a)

its particular solution may be obtained by using the method of variation of

parameters as ,
1
L,(o,1) = W[A.Io (c,ar) + BK,(c,ar)] (2.41.b)

Then the general solution of nonhomogeneous differential equation (2.32) can be

expressed as follows,

TC Vimmm 3 7

DORKUMAH s 7 0

iy
by 4
A

LY
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1
L,(o,1)= W[A.IO (c,ar)+ BK, (c,ar)]
+Cl,(c,ar)+D.K,(c,ar)

(2.42)

When r goes to zero, one should get a convergent solution. Therefore B and D

must be equal to zero and finally, the general solution of Eq. (2.32) can be expressed
as follows,

L(ot1) = 2 1, (c,0r) + C1, (cur) (2.43)
o
where,
A
A= PR
1 2

A and C are unknown functions of o to be determined from the boundary

conditions.

The stress function ¢»(r, z) is obtained by substituting Eq. (2.43) into Eq. (2.29),

¢,(r,z) = 2 (]-[i; [,(c,ar)+ClI, (czar)} sin(ar).do (2.44)
Talo

0

Then the complete Love type stress function ¢(r, z) can be obtained by adding two

solution ¢;(r, z) and ¢a(r, z) as follows,

o(r,z) = T[X(mze”“ +m,e*" )Jo (Ar)dA +
0

) (2.45)
L2 J‘(% I,(c,ar)+Cl, (czocr)jsin(az)doc
T \a

2.3. Derivatives of the stress function

In order to find the stresses and displacements, the stress function ¢(r, z) is

differentiated with respect to r and z and the following expressions are found,

14



6(1);,2) — —:[7\.2 (mzeszxz + m4es4?»z )J1 (kr)d?»

o (2.46.a)
+-2- j[é c,,(c,ar) + Cac,l, (czar)) sin(az)do
T\ a
az(l)(ra Z) _ ¥ 3 s)hz s4hz Jl()\'r)
ol —6[7» (mze +m,e Jo(Ar) - . dr
+—2— j A'cf{lo(clar) _Lean (clar)}
To ¢, ar (2.46.b)
+Ccja’ [IO (c,or)— M}} sin(az)da
c,ar
2*0(r,z) w p 9 2
d;g 3 ) __ 6[)& (mze 4 m,e™ ﬂ_ A2 4 r—zJJ] (Ar) —?JO(M)]dx
2% A c,a
+; J{E Cy choﬁ + —2)11 (c,ar)— —;—IO (c]ocr)] (2.46.0)

+Cac, [(c%of + %)Il (c,ar) — il I, (czar)}} sin(az)da
1 1

6¢g‘,2) _ J‘Xz(mZSZeSZAZ +m4s4es4}"z)]0(7ul‘)d7\f
Z 0

) (2.46.d)
+ 2 J’(iz I,(c,ar)+ClI, (czar))oz cos(az)do
o

T

15



0

_% J‘( O%IO (c,ar)+ClI, (czocr))oc2 sin(az)do

0

3
0 g(r;z) J‘}\ﬂ(m SS 52M+m SS 84)»2)] ()ur)dk
Z

~% I(O%IO (c,ar)+Cl, (c2ocr))oa3 cos(oz)da

0

ag;(arzz) j?f (m 5,6 +m,s,e S““)J (Ar)da

+= I(é— ¢l (c,ar) + Cac,I, (czocr)Jon cos(az)da
T\ a

0

2’9(r, Z) 4 sz s4hz _Ti(an)
o J.k(mse +m,s,e (J(X) J

Ar
—z*f{ < [Io<clar>-\l‘(°‘°“)}
T c,ar

+Ccla? [ I, (c,ar) - M”a cos(aiz)da
or

€,

(2.46.¢)

(2.46.9)

(2.46.g)

(2.46.h)
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63 r,z ¥ 5,02 s4hz
\8?;22 ) _ —J)J‘(mzs;e #2 1 m,s2et* )JI (Ar)da

0

) (2.46.3)
_2 J'(é ¢,1;(c,ar) + Cac, 1, (czocr)Joc2 sin(oz)do;
nila

2.4. Stresses and strains

By substituting (2.46.a-1) into Egs. (2.16), the following stress and displacement
expressions are obtained,

0

o, = 'fk"(rnzszesz’”z +m4s.4es“"z{J0 (A1) —M}lk
Ar

0

A'cf(lo(clar)—\—ll(c]ar) +
—g? Clocr
T

° Cazcg[lo (c,ar) - M) |

c,or

cos(az)do

. (]‘F (mzszesﬂ“Z +m,s,e )J, (kr)dk]
0

+__

1

r 0
-— J(é ¢, I, (c,ar) + Cac,], (czar))a cos(az)da
LA

0

0

(2.47.2)
+a

0

+ % J’(% Iy (c,ar) +CI, (czocr))oc3 cos(ocz)docJ
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,—J‘xl (mzszeszkz +m4s4es4u{Jo (Ar) - Jl}(f\'r))d?\.
0

I

C,=b A'C1 [Io(c]ar)—MJ.,_

J‘ c,ar

0(020cr)J
Ca’c)| I,(c ar) ~ ~ 19200
i ( |

c,ar

{ ].}\’3 (mzszesz}uz +m4s4es4)‘z )I, (Ar)da
L]0

0

- k“ (mZS;eSzM + m4szes4kZ)J0 (}\,r)dk
+a

+

A0 ce 8

f (% Iy(cor)+ClI, (czocr))oc3 cos(oz)do

0

®

0 Ar
o, =c Avc;[lo(w)_m
27 c,ar
2]
T
0 +COLZC§[IO(c2ar)_M
c,or

J acos(az)do

8

= [ (m,s, 1 ms )1 o

+

diNn ©

].( ¢, (c,ar) + Cac,I,(c ocr))oc cos(az)do

0

J‘}f (mzs;eSZAz + m4sies4hz)JO (kl’)dk
+d °

- i:: J( 0‘% Iy(c,ar)+ClI, (czocr))oc3 cos(az)da

0

]

o cos(oz)do

|

]

r o A
_2 f(—clll (c;ar) + Ca,], (czocr)Ja cos(az)do
g\ o

(2.47.b)

(2.47.c)
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O 2‘]‘?»3(m2e32“ +m4e5‘“{(—k xz JJ (Ar) - % (M)J

I
A'c (c a+
+ Cazcg[(cza +

c,or

I

)

c,or

2
5 JII (c,ar

2 JL (c,0r) ~ \IO (Czar)L

y Io(clocr)J ]
r

sin(oz)do

r

l_J'kz(mzesz"z +m e )JI(Kr)dx |
+ 4 0
r’ N
- J.(——CXI1 (c,ar) + Coc,], (czar)da)sin(ocz)doc
EHT j
M w
= _Pf (mzeszkZ +m " {JO (Ar) - 1,0) (M)]dk
;s Ar
+1 I
r A cf(lo(clar)—mj+
4 c,ar
+ J'E sin(oz)do
0 n I (
Cazci[lo(czar)—wj
| c,ar |
[« |
J.?C'(m 5767 + m,s2e )I, (Ar)da
0
-a
+._

Ty

J(écll, (c,ar) + Cac,], (c,ar)
o

Jaz sin(az)do |

(2.47.d)
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-]

0 T

A.c]z(lo(clar%m}

~ [ (m,e + m e (JO (hr) — 2120

sin(az)da

® C]O!.r
+2]

s

AP L (c,01)
Cacy| I, (c,or) - ————
c,0r
w=a,

— J‘)\’Z (mzeszkz + m4es4kz)ll (lr)dk

1 0

+_
r

L}
—c,I,(c,ar)
[='s] a
+_

"0l 4 Cac,, (c,ar)
271 2

-]

[ (m,s2e +m
0

+(a33d—2a13a) .
?IO(clocr)

o©

ol 4 Cl, (c,0r)

sin(oz)da

S o ()

o sin(az)do

(2.47.¢)
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o

- [Pl +m4e“kz{(“7” ’ ,%)Jl (Ar) -M}da
’ r

r

ow
9w _ I
o 2w Al ¢ 0+ 22 I,(C,ar)-M
c,ar Ny
£ sin(az)do,
7TO
2
(Cz(x'f-\\z)l](cz(xr)
+Ca’c? c,ar
IO(czar)
p—

-]

~ [Pl +m4es“h{lo (Ar) - @de
I

0

1
+ =

r A}l T, (c,ary - L (C01)
1 0 i
27 c,ar
+=
I

° c[u>L£\)
c,ar

) Sin( o Z)da

]).7\.2 (mzeszll + m4esglz)}l O\.I’)dk
0

Al
+iz ;c,l,(c]ar)

sin(az)do,
T +Cac,I, (c,ar)

(2.47.)

f)\.‘1 (mzszzes;kz +m4sieS4lz)~rl()\,r)d}\,
4}
_(assd‘zaua

+Z T :{clli(clar)

o’ sin(az)do
ol 4 Cac, I, (c,ar)
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After some straight forward manipulation the Egs. 2.47 can be reduced to
o, (r,z) = J'k“ [(1 —as2)m,s,e™ +(1- asi)m4s4es““]J0 (Ar)dA
0

- ? Q].)f (mzszesﬂz +m,s,e™" )Il (Ar)dA
0

’ (c,* —a)a’I,(c,ar)

(12

+ o (b-1Dal, (c,ar)
I

-— j 0. cos(az)da (2.48)

(022 —a)a’1,(c,ar)
+C

+%2 (b= 1)al, (c,0r)
L r i

Co(1,2) = 0]%‘ :(szb - sga)mzeS2Xz + (s4b - sia)lmes““]Jo (Ar)dxr
0

—(a —~ clzb)A’ocIO (c,ar)

cos(az)da

+
ain
[ —

+ (a -~ cib)CoaSI0 (c,air)

0]?3 (mzszesﬂZ +m,s,e™" )J1 (Ar)dA

0

o]

_2 J(A' I,(c,0r) + CatT, (c,ar) Jeos(oiz)dor (2.49)
T

0

.
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c,(r,z) = ujf?f [(sgd - szc)mzesﬂ‘z + (sid - s4c)m465‘“]J0 (Ar)dA
0

,e (c,zc—d)A’odo(clonr)
+— cos(az)da
s
’ +<czzc—dkoc3lo(czocr)

c,(1,z)= o].?f [(l —~as’ )mzeSzlZ + (l —as’ )m‘,es‘“]J1 (Ar)dA.
0

. (c,3 —cla)A’ocI,(clocr)
+— sin(az)da

n
°| + (cg —c2a)0c>c3l1 (c,ar)

2 s,hz
((a33d ~2a,;a)} ~a, )mze

o(r,z) = (X J, (Ar)d
’ +((a33d—2a13a)si Ay )In4es4lz

. (a44c,2 —a33d+2a13a)A'IO(c10Lr)
+z sin(az)do
0 ( 2 2
+ a44c2-—a33d+2a13a)Coc I,(c,ar)

—(a44 —(ay,d —2a;a)sim, e’
J,(Ar)dr

sghz

2
| +(a, —(apd—2a,a)s;m,e

. _(a44c,2 —a,d+ 2a13a)c]A’ocI] (c,ar)
2 .

+ = I sin(oaz)da
n 0

+ (a44c§ —a,d+ 2a13a)02Coc3Il (c,ar)

(2.50)

2.51)

(2.52)

(2.53)
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CHAPTER THREE
SOLUTION OF THE PROBLEM

3. Evaluating the unknown functions

Let the ring-shaped crack be embedded in the mid-plane of an infinite cylinder.
The material of the cylinder is a transversely isotropic and elastic-plastic material. In
practice, the curved surface is stress free. Therefore, on the plane z=0, it is required

that

6(R, z)=0 0< |z| <o (3.1.a)
o6(R,2)=0 0<lz| <w (3.1.b)
O (1,0)=0 0<r<R (3.1.c)
oAr,z)=-p(r) ap<r1 < by (3.1.d)
o(t, 0)=0 0<r< ayandb,<r< R G.1.e)

The cylindrical surface at r = R is free from normal and shear tractions.

We are considering an axially-symmetric deformation of the material and under
the Dugdale assumption there are thin annular regions of inelastic deformation
surrounding the ring-shaped crack (see Fig. 2.1). The inelastic zones at inner and
outer crack tips are described by inner radii a, and b, and outer radii a and b,
respectively. A tensile stress Y is uniformly distributed in the inelastic regions.

Therefore, we find that

P a<r<b 32)
p(r)—‘_Y a,<r<aand b<r<b, '

where the pressure py (constant) is prescribed on the crack faces.
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3.1. New unknown function

In order to help to find plastic solution, let us solve the problem regardless the

plastic strip. The plastic strip will be introduced later.

Boundary conditions in Eq. 3.1(a-c) may be used to eliminate three of the four
unknowns. The mixed boundary conditions in Eq. 3.1(d-¢) may be used to obtain a
system of dual integral equations for the fourth unknown function. It is convenient to
reduce the mixed boundary condition to an integral equation. The integral equation
will be singular. In order to avoid strong singularity in the resulting equation, it is
necessary to introduce a new function as the derivative of the displacement w(r, z),

rather than the displacement. The new unknown function will be defined as follows
0w
G(r)=—1(1,0 3.3
(r) Py (1,0) (3.3)

with the help of Eq. (2.53), boundary condition (3.1.¢) and Eq. (2.53) are

equivalent to

G(r) =0 0<r<a b<r<R (3.4)
b
_[G(r)dr =0 (3.5)

Substituting Eq. (2.53) into Eq (3.3) and by using Eq. (3.4), the following

equation can be obtained
.[7”4 [(a44 —(a;,d +2a,;2)s; )mz + (a44 ~(ayd +2a,52)s; )m4 ]JI (Ar)r =G(r) (3.6)
0

Taking inverse Hankel transform and with the help of Eq. (3.4), Eq. (3.6) is

expressed as follows
(84 —(ayyd+2a,,2)s2 Jm, + (2, ~ (a5 +2a,8)s2 Jm, = HQL) (3.7)

where
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b
HO) =5 [pGE), (p2)dp (3.8)

by substituting Eq. (2.51) into Eq. (3.1.¢), we get
(1-as)m, +(1-as;)m, =0 (3.9)
m, and m, can be easily obtained from Egs. (3.7) and (3.9)

m,(A) =-C, HQA) (3.10)
m,(A) =C, HQ) (3.11)
C,, and C_  are given in appendix A.

Now by substituting Eq. (2.48) into boundary condition (3.1.a) and by taking

inverse Fourier-cosine transform,

0]%4J 0 (kr)d?:].[s2 (1-as2 Jm,e* +5,(1-as? Jm,e Jeosazdz
0

o0

Tb:[ J (kr)dl_[[s m,e +s,m,e" ]cosoczdz (3.12)
A )

C,; +C(a)aC,,

By using the closed form integral formula B.1 [17], to Eq. (3.12)
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_ 2 _ 2
- [x 1285 178 o I R)dA

+ I"Rb [ ! —m, + ! ~m, [J,(AR)d\ (3.13)
°ow +(EJ A +[g)
L S, S, i

_A® e c@ac,
o

Substituting Eqgs. (3.10) and (3.11) into Eq. (3.13) and recalling that G(p) = 0 in

the intervals 0Sr<aand b<r<ow

b © 2 2
1—as 1—as
[pG(p)dp [¥’| ——=5C,,, ————5 Cu, [T AR, (pA)dA
: PR+ aj A+ aj
i S, Sy ]
1-b " - -1 1

+= [pG(p)dp Jr ~C, + ~Co. ORI, (PL)AL  (3.14)

S o

— S2 s4 -

_A@We L c@ad,

By using closed form integral formula B.3

f A'(@)
F, [pG(p)dp == =>C,, +aC(a)Cy, (3.15)

Finally by substituting Eq. (2.51) into boundary condition (3.1.b), and by taking

inverse Fourier-sine transform,
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J.?fJ ;(AR)dA f[(l —as)m,e™ + (1 -as])m,e**]sin azdz
0 0 (3.16)

= _|ié'(2i) Cp; +C(a)Cyy }
o

Applying the closed form integral formula B.2 to Eq. (3.16)

b @
[pG(pydp |2 J,(AR)J, (pL)dA.

(3.17)

_A@

2
a

Ci; +C(a)Cy,
Again by using the closed form integral B.3, Eq. (3.13) takes the following form
A

b
E, [pG(p)dp ===Cpy + C(a)Cyg (3.18)

2

A’(a) and C(a) are obtained from Eq. (3.15) and Eq.(3.18)

, 1 ¥
A'(@) = ~(CyFa-CyF0) [pG(p)dp (3.19)
2 a

1 1 y
C(@) = —(CyFa-—CyF) [pG(p)dp (3.20)
2 a

where C11, C12 . C13, C14 F1 s F] and Cz are given in appendix A.

All the unknown functions of the problem m,(A), m4(A), A'(cr), and C(a) are
expressed in terms of the new unknown function G(p).
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3.2. Singular integral equation

In order to find G(p), let us substitute m,(A), mi(A), A'(er), and C(a) into

Eq. (2.50).

P]‘Cap%Jo(?»r)Jl(Xp)d?»

v -

where

] [c F
(cic—d)al,(c,ar)

—(cic—-d)a’l, (czocr)(

C,Fa

C; =C,, (53d-s,0)-C,, (s3d—s,0)

cos azdo

By substituting Eq. (3.21) into boundary condition (3.1.d)

[OOICmMo(wl(xp)dx

L L.

s C.,Fa
3 . (c;c~d)al,(c,ar) ,
N ~CuFa
n 5C, ) ) C,Fa
—(cyc—d)a’I (c,ar) ;
-C,/Fa |

da

[Glpydo  (3.21)

b
6P =20 622

In Eq. (3.22) one can evaluate the first infinite integral in the closed form that is,

o

0
L= [pAd, (i), (o) = —-p—
0

[1,003,(p)n =1

ﬁloar)Jo(xde}

(3.23)

(3.24)
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where K is the complete elliptic integral of the first kind. Differentiating Eq.
(3.24) with respect to x by using following formula (see appendix D),

dK(x)
dx

Ex) K®)

=DK(0)]= x(l - x2) X

(3.25)

where E is the complete elliptic integral of the second kind.

a=-p2] 2(2]]--220lx(2)
=%p2 L E(%JJ%K@

i 2.2
A=1(L+L LE(E)+uK(Rﬂ (3.26)
n\p-r p+r)p \r r.p r

B=2_° 2E(£]=1(L+—1——JE LJ (3.27)

mp -1 p) m\p-r p+r p
[ A, p<r
B, p>r
I=lm(r,p)(_—_—l +-—l ) (3.28)
i p—tr p+r
where

(3.29.a)

m(r,r)=1 (3.29.v)
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Let us define the kernel of Eq. (3.22)

k(r,p) = Ck, (r,p) + 2pk, (1,p) (3.30)
k,(l',p)= m(r,p)—l + m(rap) (331)
p—r p+r
K, (1,p) = ‘]L[(Cfcz— d)al, Sclocr)(CmF]oL -C,Fa%) 3 }da (332)
§ Cy |~ (cie ~d)a’I;(c,ar)C,;Fa - C, F,a’)

The unknown function G(p) can be found as follows,

1% C,

524k (G = —p(r) (3.33)

From the boundary condition (3.1.e) and Eq. (3.3), it is clear that the integral

equation must be solved under the following single valuedness condition.

b
[etpydp =0 (3.34)
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CHAPTER FOUR
NUMERICAL SOLUTION

4.1. Type of the singular equation

Examining the kernel in Eq. (3.33), when r = p it is obvious that the first part of
the kernel, ki(r,p) has a simple logarithmic singularity in the form of
log | p—r1 | (Cauchy type singularity). The second part of the kernel, ki(r, p) is
bounded in the closed interval a < (r, p) <b. This condition means that the crack is a

fully embedded internal crack. In this case Cauchy kernel is the dominant kernel.

A standard numerical technique can be used to find out the unknown function
G(p) [18]. To be able to apply the numerical solution technique to the singular
integral equation, it should be normalized. Normalization is carried out by the

following quantities:

b-a b+a
= + 4.1.a
7 Nt (4.1.2)
b-a b+a
= T+ 4.1b
P=— 5 (4.1.b)

Eqgs. (3.33) and (3.34) become,

% I[ (i3 + K(r,n)]G(r)dT =—p(n) (4.2)
jG(n)dn =0 (4.3)
-1
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where,
b-a
K(t,n) = — k(t,m) 4.4)
The function G(t) in Eq. (4.3) is a flux-type quantity. The end points +1 are points
of geometric singularity. At this points G(t) has an integrable singularity.

The singular behavior of the function G(t) around t=+1 may be obtained by
analyzing the dominant part of integral equation (4.2) through the use of
function—theoretic methods [19]. Following the procedure of [19], it can easily be
shown that the fundamental functions of (4.2) which characterize the singular
behavior of G(t) are given by

R(t)=(1+1)0""2e1—1)"2*P 4.5)

where (a,p =0, £1); (-1 <-12+a<1), (-1<1/2+B < 1) and the index of the
integral equation is k¥ = —(a+p) = £1. Since G(t) has an integrable singularity, o = 0,

B=-1and
R()=(-12)"*, «=I (4.6)

For k=1, the solution of Eq. (4.2) is determined by using single valuedness

condition in Eq. (4.4) [18].

4.2. Evaluating the new unknown function
By expressing the unknown function as

G(t) = R(1).F(1) (4.7)

This method leads to a system of Fredholm integral equations in the new set of
unknown functions F(t) which is bounded and continuous in the interval -1 <t < 1.
However, from the viewpoint of numerical analysis, the method is rather

cumbersome and very laborious.
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An effective approximate method preserving the correct nature of singularities of
the function G(z) is described in [20]. Here noting that the fundamental function R(t)
given by Eq. (4.6) is the weight of Chebyshev polynomials Ti(t).

In this study a more direct numerical method of solving the dual integral
equations (4.2) and (4.3) is used. The method is based on the notion that by selecting
the nodal points 1, and 1 in the interval(-1, 1) properly, the system can be treated as
if it were a system of Fredholm equations and the unknown function G(t) may be

determined by using the conventional collocation technique.

4.3. Solution of singular integral equation

Substituting Eqgs. (4.6) and(4.7) into Eq. (4.2) we obtain

T T-m (1_1_2)1/2

1 J{ <, + K(‘t,n)}—i(‘c)—dt =-p(m) (4.8)

F(t) has to be obtained from Eq.(4.8) subjected to the single-valuedness

condition,

- T g0 4.9
_,!(1_112)1/2 "] ( )

Note that since F(t) and K(n,t) are bounded, the integral equations (4.8) and (4.9)

can be evaluated by using the Gauss-Chebyshev integration formula [21].

LT _fO 4 3ft) _
’n:_'!.(l—tz)”zdt_Z 0 T,(t)=0 (4.10)

Thus from Egs. (4.8), (4.9) and (4.10) we obtain

i%F(m[ Cjn +K(rk,nr)}=—p(nr) (r=1..0-1) (“.11)
k=1 k r
L B(n.)=0 (4.12)

r=1
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T, =cos i(zk—l)) (k=1,.,n) (4.13)
2n

M, =CO0S E] (r:l,..,n—l) (414)

The set of n simultaneous algebraic equations of (4.11) and (4.12) is solved and
one can find n values for F(1i) (i=1..n). In order to determine the stress intensity
factors at the inner and outer crack tips, the values of F(+1) and F(-1) must be
evaluated from the set of F(1;). Evaluation is performed by means of the interpolation

technique [22].

4.4. Stress intensity factors

The Mode I stress intensity factors at the crack tips are defined as

k(a) = |im /2@ -1).0,(x.0) (4.15)
k(b) = 1119,/2@ ~b).c, (1,0) (4.16)

k(a) and k(b) can also be expressed in terms of unknown function G( r) [23],

k(@) = [imCs+2(a —1).G(r) = C,[(b—a)/2.F(-1) 4.17)

r—a

k(b) = i C; /2t —b).G(r) = -C, /(b — ) / 2. F(+1) (4.18)

r—b

Under uniform axial tension 6,=6p, the normalized forms of above expressions

are [23],

k(a)
b-a
2

k'(a) = (4.19)

Gy
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k(b)

k'(b) =
®) b-a

(4.20)

4.5. Plastic zone length

It is considered an axially-symmetric deformation of the material and that under.
the Dugdale assumption, there are thin annular regions of inelastic deformation
surrounding the ring-shaped crack tips. A tensile stress Y is uniformly distributed in

the inelastic regions.

Under the given external loading (represented by o ) let the plastic zones spread
to r =ay<a and r =by>b, a and b being the actual crack lengths. Solving now the
integral equation 3.18 with b, replacing b, for the given external loads one may
obtain a stress intensity factor at b,. Also a stress intensity factor at a, may be
obtained by solving singular integral equation with a, replacing a. These stress
intensity factors would be linearly dependent on the magnitude of external load o
and would be functions of by/R and a,/R respectively. Repeating the solutions with
only external load o(0,r) =p(r)=-Y (b<r <byp) and (a,< r <a), may again obtain
stress intensity factors and these would be linearly dependent on Y and would be
functions of b/R and by/R, a/R and ay/R, respectively. Here Y is the yield stress and
represents the yield behavior of the material. Since the stress state at the fictitious
crack tips r = by and r = a, must be bounded, the sum of these two stress intensity

factors must be zero satisfying the following conditions [12].
ok, (b,)+ Yk,,(b,,b) =0 (4.21.a)
ok,(a,)+ Yk, (a,,a)=0 (4.21.b)

Noting that ki, ki, k2s, and kp, correspond to the stress intensity factors
calculated from the respective “unit loads”. The term oc.k; gives the stress intensity

factor under the external load ¢ and Y.k, gives the stress intensity factor under the

TC YOKSEEGG: 710 IR
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yield stress Y. Eqs.4.17.a-b provide a simple means for calculating the plastic zone

lengths (bp-b) and (a-a,) for a given “load ratio” 6/Y in an inverse manner.

4.6. Investigation of the relation between a, and k

From Eqgs. (4.21), load ratios at inner and outer crack tips are obtained as

(P, /Y), = "% (4.22.2)

1b

(P, /Y), =- (4.22.b)

la

Let us define Diff, which will be used determining iteration tolerance in

programming
Diff = (P, /Y), - (P, / Y), (4.23)

The sample results obtained in the investigation of the plastic zone, made with

cadmium material, are given in Table 4.1.

Table 4.1. Iterative approximation results for determining plastic zone width

Cadmium a=0.4 b=05  b,~0.6
a, Diff Kia K1y K2
0.3000000 8.65E-3 -0.3604728 0.3796277 0.2062239
0.2946862 -5.72E-3 -0.3637689 0.3830249 0.2114639
0.2973431 1.39E-3 -0.3621250 0.3813244 0.2088606
0.2960146 -2.20E-3 -0.3629463 0.3821805 0.2101682
0.2966788 -4.09E-4 -0.3625370 0.3817533 0.2095158
0.2970110 4.75E-4 -0.3623282 0.3815430 0.2091901
0.2968449 3.52E-5 -0.3624321 0.3816478 0.2093520

The variations of ki, and ky, with a, have been given in Figs. (4.1) and (4.2). It is

clearly seen from these graphics that the stress intensity factors are linearly
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dependent on a,. It can also be shown with a similar investigation that stress intensity

factors are linearly dependent on by,

a=0.4, b=0.5, b,=0.6

-0.36 1
-0.361

-0.362

k1a

-0.363 1

"0.364 Y T | I— T T T 1

0.294 0.295 0.296 0.207 0298 0299 0.3  0.301
ap

Figure 4.1. Variation of ki, versus a, in cadmium cylinder

a=0.4, b=0.5, b,=0.6

0.2121
0.21 J
I\
D
0.2079 -
0-2058 T L L T L L) L]
0.294 0.295 0.2906 0.297 0.298  0.299 0.3 0.301

ap
Figure 4.2. Variation of kj, versus a, in cadmium cylinder

In the determination of the plastic zone at the crack tip, the load ratio (P¢/Y),
corresponding to the plastic region (bp-b) given beforehand has been determined in
this study. Afterwards, the plastic zone (a-ap) which will give this (P¢/Y) load ratio
has been controllably calculated by iteration. At the beginning of iteration, a second

load ratio (P¢/Y); has been calculated by giving an initial (a-a,) plastic zone once
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more. The (bp-b) and (a-ap) plastic zones and the load ratio (Po/Y) in the Diff where
the difference between two calculated load ratios is less than 1x10™ have been
recorded. In Table 4.1 the determination of the plastic zones by changing the ap

values until the Diff is less than 1x10™ has been exemplified.

It is concluded from the variation of Diff with a, in Fig. (4.3) that there is a linear
relationship between a, and Diff. This property provides us much more ease in
programming. That is, by the calculation of Diff corresponding to any two a, values,
the value of a, which will make Diff zero can be easily determined by interpolation.
This way, the plastic zone sizes and the load ratio can be determined in three steps.
Due to the high accuracy adopted in programming and the precision of data from the

numerical solution, the results are obtained in three or four steps.

a=0.4, b=0.5, b,=0.6
12

T T =T

0.2967 0.2977 0.2987 0.2997

Diff (x10%)

D47

ap

Figure 4.3. Variation of Diff versus a, in cadmium cylinder
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CHAPTER FIVE
RESULTS AND DISCUSSION

An infinitely long cylinder containing a ring-shaped crack in its mid-plane,
subjected to uniform loading, is formulated by using the integral transform technique
for a transversely isotropic material. After being reduced to a singular integral
equation the problem is numerically analyzed and the data obtained is used to

determine the stress intensity factors and the length of the plastic zones.

The stress intensity factors are examined and the results are presented in the form
of graphics in section 5.1. The obtained lengths of the plastic zone are analyzed and
the relation between the stress intensity factor and the length of the plastic zone is put

forward in section 5.2.

Magnesium, cadmium, barium-titanate and steel are used in this work. Mg, Cd,
and barium-titanate are chosen for their characteristic of transverse isotropy while the
steel is picked to be able to make a comparison by using its transversely isotropic

properties.

The term (¢ —c¢3) in the denominator of the Eq.(2.43) becomes equal to zero for

perfectly isotropic materials. Hence the perfectly isotropic materials can not be

analyzed by making use of the formulation given in this problem.

5.1. Mode I normalized stress intensity factor

Stress intensity factors are determined for almost each position of the crack inside
cylinder. The dimensionless inner radius of the crack starts from a/R=0.1 and is

increased to 0.8 by a 0.1 increment. Subsequently, in return for a/R values, the
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dimensionless outer radius b/R starts from a/R+0.1 and increased to 0.9 again by a

0.1 increment.

In Fig. 5.1, the variation of stress intensity factor at the inner tip of the crack in
Mg cylinder subjected to unit load is seen for the case where the a/R ratio is chosen
constant and b/R ratio is increased; which means an increase of the crack length. k(a)
values determined by changing the b/R ratios for each different a/R ratio, can be seen
as different series in the same graphic. The maximum change in k(a) is seen in
a/R=0.1 series. For this series, the value 1.655 which is the greatest K(a) value
reached, corresponds to a/R=0.1 and b/R=0.9 which indicate the greatest crack
length. The increase of k with the increase in crack length is an expected outcome.
As the inner radius a, where the crack initiates, increases, that is, the initiation of the
crack moves farther away from r=0, a slight decrease in k(a) is observed. For
example, the value of k(a) is 0.2538 for the series a/R=0.1, while k(a)=0.22976 for
a/R=0.6. This decrease is even greater for the cases where the crack length increases.
For example, for (b-a)=0.6 and a/R=0.1, k(a)=1.03742, k(a)=0.8894 for a/R=0.2 and
k(a)=0.872 for a/R=0.3. In summary, for investigations carried out with the constant

crack length (b-a), it can be said that the initiation of the crack effect the k(a) value.

0.7 4

o~ 0.5 1 —o—alR=0.1
= —E—aR=02
< —A—a/R=0.3
—»—aR=0.4
0.3 - —¥—alR=0.5
—e—a/R=0.6

0.1 T T T T J

0 0.2 04 0.6 0.8 1

b/R

Figure 5.1. Mode I S.LF.” s at inner crack tip versus b/R in a magnesium cylinder

subjected to unit load
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In Fig. 5.2, the variation of the stress intensity factor k(b) at the outer tip of the
crack with the increase in b/R ratio keeping a/R constant in Mg cylinder subjected to
unit load is seen. The variation of k(b) displays similar characteristics with the
variation of the stress intensity factor k(a) at the inner tip of the crack shown in Fig.
5.1.

0.7 -
0.5
) ——aR=0.1
X —B—aR=02
—A—aR=03
—%—aR=0.4
0.3 4 —¥—aR=0.5
—e—alR=0.6
0.1 ' ' v T )
0 0.2 0.4 0.6 0.8 1

b/R

Figure 5.2. Mode I S.I.F.” s at outer crack tip versus b/R in a magnesium cylinder

subjected to unit load

As seen from Figs. 5.1 and 5.2, the stress intensity factor at the inner tip of the
crack is always greater than the stress intensity factor at the outer tip of the crack.
This situation in log cylinders generally occurs as a result of the spreading of the
inner defects inward[10]. Although the stress intensity factors at the inner and outer
tips of the crack increase as the crack length increases, the increase at the outer tip of

the crack is smaller. This increase accelerates as the value of b/R goes to 1.

The variation of stress intensity factor at the inner tip of the crack with b/R in a
Cd cylinder under the effect a unit load is shown in Fig. 5.3. The characteristic of
the variation is similar to that the Mg cylinder given in Fig.5.1. The only difference
is the more accelerated increase in k(a) as b/R goes to 1 in the series a/R=0.1, 0.2,

and 0.3.
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Figure 5.3. Mode I S.I.F.” s at inner crack tip versus b/R in a cadmium cylinder

subjected to unit load

In Fig. 5.4 the variation of stress intensity factor at the outer tip of the crack with
b/R in a Cd cylinder under the effect a unit load is shown. The characteristic of the

variation is similar to that drawn in Fig.5.2 for the Mg cylinder.

0,8

o 0,6 1 —eo—aR=0.1
=) —B—aR=02
< 04 - —&—aR=03
—%—alR=04
—%—alR=0.5
0.2 1 —e—a/lR=08

0 T T T ,

0 0,2 0,4 0,6 0,8 1

b/R

Figure 5.4. Mode I S.IF.” s at outer crack tip versus b/R in a cadmium cylinder

subjected to unit load

The variation of Mode I stress intensity factor at the inner and outer tips of the
crack subjected to a unit load with b/R in a Barium-titanate cylinder are seen in
Figs. 5.5 and 5.6. The variations display similarity to those given for the Mg cylinder
in Figs.5.1 and 5.2.
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Figure 5.5. Mode [ S.I.F.’ s at inner crack tip versus b/R in a barium-titanate

cylinder subjected to unit load
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Figure 5.6. Mode [ S.ILF.” s at outer crack tip versus b/R in a barium-titanate

cylinder subjected to unit load

In Figs. 5.7 and 5.8, the variation of Mode I stress intensity factor at the inner and
outer tips of the crack in a steel cylinder subjected to a uniform unit load are given.

The variations are similar to those given for the Cd cylinder in Figs.5.3 and 5.4.
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Figure 5.7. Mode [ S.ILF.” s at inner crack tip versus b/R in a steel cylinder

subjected to unit load
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Figure 5.8. Mode I S.I.F.” s at outer crack tip versus b/R in a steel cylinder

Among the graphics given in Figs. 5.1 to 5.8, the series where the crack length is
greatest is the one a/R=0.1 for b/R=0.2 at the crack inner tip in Mg, where the first
investigation is carried out, the value of k(a), as b/R reaches to 0.9, increases
approximately 6.52 times. This increase at the outer tip of the crack is 3.72 times.

Increases in other materials and the engineering constants are given in Table 5.1.
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Table 5.1 Increments of Mode I S.L.F. in the series of a/R=0.1 and engineering

constants
Material Increment at|Increment at|E E’ v G’
inner crack tip | outer crack tip | (GPa) (GPa) (GPa)
Mg 6.52 3.72 45.24 50.76 | 0.35 16.58
Cd 7.82 3.92 77.52 27.11 0.12 15.63
Ba-titanate 5.53 3.45 122.7 147.9| 0.36 5.46
Steel 9.63 433 220.0 210.0| 0.30 80.77

The increase in stress intensity factors with the increase in crack length is greatest
in steel while it is lowest in barium-titanate. The difference in increase for these two

materials is 42.6%.

5.2. Plastic zone length

The work for determining the length of developed plastic zone in various
cylinders necessitated solving the singular integral equation (3.33) using a
appropriate values of the elastic constants. The results are tabulated in Table (E.1) to
(E.12) and given in appendix E. Each table for a different material and different
crack configuration. When the values from Table E.1 to E.12 are examined, it is seen
that Po/Y ratio in which a plastic zone is formed, is smallest in steel while it is
greatest in barium-titanate. The difference between the values obtained for each
material is maximum 4.5% and minimum 0.006%. Therefore, it has been considered
adequate only to include the plastic zone variations for magnesium and these
variations have been given in the form of graphics in Figs. 5.9 to 5.14. In plastic zone
examinations, the dimensions of the plastic zone have been determined by equation
4.21 without calculating the yield stress of the materials. Since the load ratio Py/Y
has been considered instead of yield stress Y, the difference among the plastic zone

dimensions obtained for each material is very little.

In magnesium cylinder, the variation of the plastic zone length at the crack outer
tip with the load ratio Py/Y for a/R=0.2 is given in Fig. 5.9. In this graphic, plastic

zone dimensions for seven different crack positions have been shown. A constant
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plastic zone is formed at lower load ratios as the crack length increases. For example,
while (bp-b)/R=0.1 is met in b/R=0.3 series at Po/Y=0.721, in b/R=0.5 and b/R=0.8
series, where the crack length increases, it is met at Po/Y=0.504 and Py/Y=0.317,
respectively. Since the stress intensity factor will increase with the increase of the
crack, Po/Y ratio will decrease. This result is as expected in connection with the

variation of the stress intensity factor along the crack length.

0.4 1 n
Tt
0.3 - T
/]
1
o
o)
=~ 0.2 Vi
i —e—b/R=0.3
g . —=—04
—A—0.5
0.1 4 2 ——0.6
— —%—07
X - ——0.38
(? ()‘A =
X S o
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P /Y

Figure 5.9 Variation of the plastic zone at outer crack tip in a cylinder of

magnesium for a/R=0.2

For all series in Fig. 5.9 prior to plastic zone reaching the cylinder radius R,
relatively small increase in the plastic zone length is observed against comparatively
large increase in Py/Y ratio. As it reaches the cylinder radius R, although the Po/Y
increases slightly the plastic zone increases rapidly. This cases arises from the fact
that, the stress intensity factor increases rapidly as the crack approaches the cylinder
outer surface. The dimension of the final plastic zone for the series given in graphics,
is the length (R-b) between the crack outer radius and the cylinder outer radius in
which the plastic zone will be greatest for the crack outer tip. Therefore, all of the

series has ended at a point approaching this value.
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Figure 5.10 Variation of the plastic zone at inner crack tip in a cylinder of

magnesium for a/R=0.2

In Fig. 5.10, the variation of the plastic zone length at inner tip of the crack in
magnesium cylinder by the load ratio Py/Y for a/R=0.2 is given. Plastic zone
dimensions for seven different crack positions are given in this graphic. As observed
at the crack outer tip in Fig. 5.9, a constant plastic zone is formed at lower load ratios
as the crack length increases. In all series, the plastic zone expands gradually with
the increase in Py/Y ratio and its increase accelerates as the plastic zone approaches
r=0.In the numerical solution of stress intensity factors, the solution goes to infinity
for a=0. Therefore, as the plastic zone approaches r=0, the stress intensity factor
calculated at the end of the plastic zone increases rapidly. This effect can be observed
in plastic zone dimensions. In the graphics, each of the series has been terminated as

it approaches a, where the plastic zone will be greatest.

Another solution observed in the examination of the plastic zone carried out for
a/R=0.2 is the following: the load ratio P¢/Y corresponding to any plastic zone at the
inner tip of the crack for each b/R series, is lower than the load ratio Py/Y

corresponding to the same plastic zone at outer tip of the crack. For any crack
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position, the stress intensity factor at the inner tip of the crack is always greater than
that at the outer tip of the crack( see section 5.1). Therefore, since the stress intensity
factor at the inner tip of the crack is large, the Py/Y ratio is also lower compared to
the outer tip of the crack. Greater stress intensity factor causes wider plastic zone. On
the contrary, the plastic zone occurring at the inner tip of the crack for any load ratio
is greater than that occurring at the outer tip of the crack. For example, as seen from
Table E.1, while the plastic zone length occurring at the crack outer tip for the load
ratios Py/Y=0.627874 at b/R series is 0.06, the plastic zone at the crack inner tip is

0.09566. This case is seen for each crack position and load ratios.

Figure 5.11 Variation of the plastic zone at outer crack tip in a cylinder of

magnesium for a/R=0.4

The variation of the plastic zone length at the crack outer tip with the load ratio
Po/Y in magnesium cylinder for a/R=0.4 is drawn for five different crack positions,
Fig. 5.11. The variation of each series in this graphic is similar to that drawn in Fig.

5.9.
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Figure 5.12 Variation of the plastic zone at inner crack tip in a cylinder of
magnesium for a/R=0.4

The variation of the plastic zone length at the crack inner tip with the load ratio
Po/Y in Mg cylinder for a/R=0.4 is drawn for five different crack positions, Fig. 5.12.

The variation of each series in this graphic is similar to that drawn in Fig. 5.10.
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Figure 5.13 Variation of the plastic zone at outer crack tip in a cylinder of
magnesium for a/R=0.6
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The plastic zone lengths at the crack outer and inner tips for a/R=0.6 in
magnesium cylinder are given in Figs. 5.13 and 5.14 for three crack positions,

respectively. The plastic zone variations in these graphics are similar to those given
in Figs. 5.9 and 5.10.
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Figure 5.14 Variation of the plastic zone at inner crack tip in a cylinder of

magnesium for a/R=0.6

The plastic zone investigation for a penny-shaped crack in an infinite transversely
isotropic cylinder is given in [14]. In this study graphite-epoxy, e-glass, magnesium,
and zinc have been used as materials. The plastic zone length obtained from this
study has been made dimensionless by dividing it to crack radius and its variation
with the load ratio A has been presented graphically. Whether the plastic zone
expands up to the outer radius of cylinder is not clear from these graphics. In our
study, though, this phenomenon can be easily observed. The methods followed in the
solution of the problem given in [14] are entirely dissimilar to the methods employed
in our study. Therefore, it is not possible to carry out a through comparison due to

the differences both in crack types and the methods employed.
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CONCLUSIONS

In this study, an infinitely long solid cylinder containing a ring shaped crack
embedded at its mid plane is investigated under the effect of uniform load. The
problem is formulated for a transversely isotropic material by using integral
transform technique and then is reduced to a singular integral equation. This integral
equation is solved numerically. Plastic zone lengths at the outer and the inner crack
tips are determined for various crack configurations. All the numerical values

obtained are presented as tables and graphs.

Depending on the crack geometries, the greatest stress intensity factor occurs in
the steel cylinder followed by cadmium, magnesium, and barium-titanate cylinders,
respectively. On the contrary, the plastic zone lengths decrease in the reverse order
for the above cylinders. The largest increase in stress intensity factors is observed in
steel, the difference between the steel and barium-titanate in which the smallest
increase is observed, being 43%. This huge difference between the stress intensity
factors is not met however in plastic zone lengths where the largest value in
approximately 4.5%. The small difference between the plastic zones compared to the
relatively large difference in stress intensity factors, arises from the fact that plastic

zones are determined by the load ratio Py/Y instead of P,,.

Finally, we expect that the results of this study will be useful in practice.
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APPENDIX A

A. ABBREVIATIONS

2
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Cz = C11(:14 - C12C13
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APPENDIX B

B. CLOSED FORM INTEGRALS

)

. a
Je * cos(mx Jdx = PEaE (a>0)
T m
_[e”‘”‘ sin(mx )dx = — (a>0)
; a“+m

J.Xp.—u+1+2n Jp(ax)lu(bx) d

X
= (-1)"c* ] (be)K
| O e (oK, o)

(@b>0, R, -2n+21> R, >-n-1, n>0 and an integer)

J‘x v-p+l+2n JlLl (ax)lu (bx) 2dx o= (_ l)n cu—u+2nIlu (ac)Kv (bC)
F X" +C

(b>a>0, R, -2n+21>R,>-n-1,n>0 and an integer)

(B.1)

(B.2)

(B.3)

(B.4)

57



APPENDIX C

C. STRAIN COEFFICIENTS (in 10"?xPa™)

Material an an; a3 as; Aus

Magnesium 22.1 -1.7 -4.9 19.7 60.3
Cadmium 12.9 -1.5 -9.3 36.9 64.0
Barium-titanate 8.15 -2.96 -1.95 6.76 183.1
Steel 4.5 -1.35 -1.43 4.76 12.38
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APPENDIX D

D. COMPLETE ELLIPTIC INTEGRALS OF FIRST AND SECOND KIND

n/2 dG
Kx)= |——2
6[ V1-x%sin?0

n/2

E(x) = J.\/l—xz sin 0dO
0

Differentiation rules for elliptic functions

dK(x) _ E(x) K(x)
dx x(1-x%) X

dE(x) E(x)-K(x)
dx X

dEx)-K(x)]  xEx)
dx Cx2-1

[1, o0, (poda = m, (1,p)
0

m,, (r,p) = [

(D.1)

(D.2)

(D.3)

D4

(D.5)

(D.6)

(D.7)
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my, (r,p) = _1_ o>t
p
L pe<r
m,,(r,p) = r’
0, p>r

my, (I', p) = )
r p p

(D.7)

(D.8)

(D.7)

where K(x) and E(x) are the complete elliptic integral of the first and second kind

respectively.
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APPENDIX E

E. NUMERICAL VALUES OBTAINED

Py/Y: Load ratio

a/R: Dimensionless radius of the inner tip of the crack

b/R: Dimensionless radius of the outer tip of the crack
(a - ap)/R: Dimensionless plastic zone length occurs at the inner tip of the crack
(b - b)/R: Dimensionless plastic zone length occurs at the outer tip of the crack

Table E.1. Numerical values obtained for magnesium cylinder for a/R=0.2

B/R=0.3 b/R=0.4
PyY (bp-bYR |(a-a)/R _ |[PyY (b-bYR |(a-ap)R

0 0 0 0 0 0
0.1023244 0.001]0.001209125] 0.0732856 0.001| 0.00141178
0.2028467 0.004|0.004928857| 0.1463066 0.004| 0.00580488
0.2644555 0.007]0.008719742| 0.1919953 0.007] 0.01025046
0.3116852 0.01] 0.01257317| 0.2277483 0.01| 0.01481847
0.4212313 0.02| 0.02597898| 0.3138496 0.02] 0.03072809
0.4947286 0.03| 0.04041603| 0.3749325 0.03| 0.04860936
0.5496547 0.04]| 0.05612780| 0.4228313 0.04| 0.06892537
0.6278740 0.06| 0.09566031| 0.4952478 0.06| 0.13291010
0.7211655 0.10 0.5899754 0.10
0.7855355 0.15 0.6620325 0.15
0.8238092 0.20 0.7075495 0.20
0.8484581 0.25 0.7380536 0.25
0.8649913 0.30 0.7585250 0.30
0.8764596 0.35 0.7721577 0.35
0.8841472 0.40 0.7805061 0.40
0.8916823 0.50 0.7859236 0.50

b/R=0.5 b/R=0.6
Py/Y (b-bYR |@-a/R__ |PyY (bp-bYR_|(a-ap)R

0 0 0 0 0 0
0.0610325 0.001| 0.00168528| 0.0518762 0.001| 0.00187098
0.1196941 0.004| 0.00661922| 0.1018266 0.004| 0.00748615
0.1572689 0.007] 0.01170649| 0.1339051 0.007| 0.01329103

Y DHSEES s )
SOKMANTASYON 5
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Table E.1. 2/R=0.2 magnesium ......(continued)

0.1868040 0.01] 0.01705872] 0.1591821 0.01] 0.01928486
0.2587121 0.02] 0.03581861| 0.2209948 0.02] 0.04091883
0.3110926 0.03] 0.05736813| 0.2663744 0.03|  0.06729360
0.3524964 0.04] 0.08397510] 0.3024514 0.04] 0.10272240
0.4166913 0.06 0.3587795 0.06
0.5036890 0.10 0.4357533 0.10
0.5721122 0.15 0.4962314 0.15
0.6159338 0.20 0.5340907 0.20
0.6448751 0.25 0.5579553 0.25
0.6634195 0.30 0.5727306 0.30
0.6746476 0.35 0.5850902 0.35
0.6806952 0.40

b/R=0.7 b/R=0.8
Py/Y (bp-b)/R |(a-a))R __|PyY (by - BY/R | (a- ag)/R

0 0 0 0 0 0
0.0446886 0.001] 0.00209902| 0.0382549 0.001|  0.00231724
0.0877334 0.004| 0.00833066| 0.0750727 0.004]  0.00921056
0.1153894 0.007| 0.01480466] 0.0987021 0.007] 0.01646852
0.1371905 0.01| 0.02156423| 0.1173019 0.01| 0.02404276
0.1905334 0.02] 0.04632130] 0.1626730 0.02]  0.05297081
0.2297038 0.03| 0.07858466| 0.1958123 0.03|  0.09340102
0.2608341 0.04| 0.13640980| 0.2219950 0.04
0.3093269 0.06 0.2624174 0.06
0.3749732 0.10 03165011 0.10
0.4252693 0.15 0.3624126 0.15
0.4562114 0.20
0.4804285 0.25

b/R=0.9
Poy/Y (b, - bYR |(a - a,)/R

0 0 0
0.0319639 0.001] 0.00255819
0.0626758 0.004| 0.01047400
0.0823348 0.007] 0.01878963
0.0977796 0.01] 0.02762093
0.1353533 0.02] 0.06327848
0.1628059 0.03] 0.14861840
0.1848122 0.04
0.2215870 0.06
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Table E.2. Numerical values obtained for magnesium cylinder for a/R=0.4

b/R=0.5 b/R=0.6
Po/Y (bp-b)YR |[(a-ap)/R Py/Y (bp-b)/R |(a-ap/R
0 0 0 0 0 0
0.1031129 0.001| 0.00115299| 0.0732328 0.001| 0.00125817
0.2004135 0.004| 0.00449672| 0.143312 0.004] 0.00493267
0.2610416 0.007| 0.00788668 | 0.1878932 0.007| 0.00872773
0.3074915 0.01| 0.01133272| 0.2227169 0.01] 0.01245791
0.4151667 0.02] 0.02285159| 0.3064327 0.02| 0.02513373
0.4880573 0.03] 0.03478286| 0.3662498 0.03| 0.03831020
0.5421673 0.04] 0.04700834| 0.4127277 0.04| 0.05189011
0.6194953 0.06] 0.07277620| 0.4830348 0.06| 0.08059663
0.7118781 0.10] 0.13127420| 0.5744787 0.10] 0.14765220
0.7751567 0.15] 0.23419100| 0.6426556 0.15] 0.35037650
0.8120152 0.20 0.6426556 0.20
0.8351599 0.25 0.7110094 0.25
0.8499863 0.30 0.7287301 0.30
0.8597118 0.35 0.7442759 0.35
0.8661086 0.40
b/R=0.7 b/R=0.8
Po/Y (b, -b)/R |(a-a,)/R Po/Y (bp-b)R |(a-ap)/R
0 0 0 0 0 0
0.0588847 0.001| 0.00138539| 0.0490096 0.001] 0.00149611
0.1154532 0.004| 0.00539503| 0.0961336 0.004| 0.00584844
0.1516566 0.007| 0.00948465| 0.1263309 0.007| 0.01023716
0.1800888 0.01] 0.01359111| 0.1500726 0.01] 0.01469111
0.2491730 0.02] 0.02738661| 0.2078542 0.02| 0.02973792
0.2993142 0.03] 0.04177228| 0.2499314 0.03| 0.04535770
0.3387807 0.04| 0.05680662| 0.2830934 0.04] 0.06148681
0.3995355 0.06] 0.08815500| 0.3342089 0.06| 0.09629166
0.4804231 0.10| 0.16496510| 0.4027093 0.10{ 0.18853110
0.5419256 0.15 0.4610169 0.15
0.5804781 0.20
0.6111421 0.25
b/R=0.9
PO/Y (bp-b)R |[(a-ap)/R
0 0 0
0.0406730 {0.001 0.00164601
0.0797520 0.004 0.00641725
0.1047679 10.007 0.01128188
0.1244207 ]0.01 0.01604828
0.1722284 10.02 0.03258851
0.2071763 |0.03 0.05045965
0.2351511 ]0.04 0.06920418
0.2816513 ]0.06 0.11608160
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Table E.3. Numerical values obtained for magnesium cylinder for a/R=0.6

b/R=0.7 b/R=0.8
Po/Y (b,-b)/R |(a-a)R | Py/Y (b, - b)/R | (a-a,)/R

0 0 0 0 0 0
0.1021747 0.001] 0.00114405] 0.0715441 0.001]  0.00117445
0.1977019 0.004| 0.00435370| 0.1399442 0.004]  0.00466359
0.2586243 0.007] 0.00760615] 0.1833935 0.007| 0.00817240
0.3046093 0.01] 0.01093107| 0.2172824 0.01] 0.01160604
0.4111190 0.02] 0.02191800] 0.2984835 0.02] 0.02341163
0.4830995 0.03| 0.03318393| 0.3561699 0.03]  0.03538084
0.5364218 0.04]| 0.04455298| 0.4007052 0.04]  0.04732698
0.6123308 0.06] 0.06778723| 0.4674016 0.06]  0.07193536
0.7020825 0.10| 0.11691680| 0.5526178 0.10] 0.12369720
0.7621922 0.15] 0.18439110] 0.6194153 0.15| 0.20371920
0.7965547 0.20] 0.26309270
0.8211141 0.25

b/R=0.9
Po/Y (b, - YR | (a-ap)/R

0 0 0
0.0557856 0.001] 0.00129801
0.1092486 0.004| 0.00495887
0.1433416 0.007| 0.00871766
0.1700239 0.01] 0.01242340
0.2344382 0.02] 0.02495700
0.2808501 0.03| 0.03764915
0.3174199 0.04] 0.05061245
0.3763297 0.06] 0.07939214
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Table E.4. Numerical values obtained for cadmium cylinder for a/R=0.2

b/R=0.3 b/R=0.4
Po/Y (b, -bYR |(a-a )R |Pg/Y (b, - /R | (a-a)/R

0 0 0 0 0 0
0.102250 0.001] 0.00120917| 0.073032 0.001] 0.00141244
0.202690 0.004| 0.00493012] 0.145783 0.004] 0.00580780
0.264239 0.007] 0.00871916] 0.191285 0.007] 0.01025605
0.311415 0.01] 0.01257244 0.226878 0.01] 0.01482725
0.420798 0.02] 0.02598748| 0312522 0.02]  0.03088492
0.494139 0.03] 0.04041776] 0373192 0.03] 0.04866226
0.548909 0.04] 0.05614099| 0.420691 0.04]  0.06904015
0.626808 0.06] 0.09576435| 0.492319 0.06] 0.13443470
0.719423 0.10 0.585445 0.10
0.782879 0.15 0.655407 0.15
0.820160 0.20 0.698720 0.20
0.843737 0.25 0.726913 0.25
0.859114 0.30 0.744985 0.30
0.869330 0.35 0.756161 0.35
0.875661 0.40 0.762102 0.40
0.880181 0.50 0.765132 0.50
0.877859 0.60

b/R=0.5 b/R=0.6
Po/Y (b, -b)/R |(a-a )R |Py/Y (b, - bYR | (a- ag)R

0 0 0 0 0 0
0.060480 0.001| 0.00168909| 0.050931 0.001] 0.00188538
0.118584 0.004| 0.00663486| 0.099938 0.004| 0.00755253
0.155776 0.007| 0.01181966] 0.131377 0.007| 0.01341845
0.184990 0.01] 0.01711392] 0.156124 0.01] 0.01949614
0.256009 0.02] 0.03597039| 0.216505 0.02] 0.04151344
0.307613 0.03] 0.05768000] 0.260669 0.03] 0.06870839
0.348291 0.04] 0.08479864| 0.295640 0.04] 0.10741860
0.411092 0.06 0349912 0.06
0.495372 0.10 0.423102 0.10
0.560411 0.15 0.479303 0.15
0.600868 0.20 0.513609 0.20
0.626550 0.25 0.535395 0.25
0.642159 0.30 0.551920 0.30
0.651342 0.35 0.580814 0.35
0.658088 0.40
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Table E.4. a/R=0.2 cadmium ......(continued)

b/R=0.7 b/R=0.8
Py/Y (b,-b)R |(a-a/R _ |Py/Y (b, - b)/R | (a-ap)/R
0 0 0 0 0 0
0.043304 0.001| 0.00216094]  0.036563 0.001] 0.00249434
0.084978 0.004] 0.00855863 0.07173 0.004] 0.00998005
0.111718 0.007| 0.01525687|  0.094282 0.007] 0.01791123
0.132768 0.01] 0.02225703|  0.112019 0.01] 0.02631301
0.184133 0.02] 0.04867041|  0.155236 0.02] 0.06039535
0.221683 0.03] 0.08397209] 0.186779 0.03| 0.12836070
0.251392 0.04 0.211731 0.04
0.297386 0.06 0.250549 0.06
0.359040 0.10 0305397 0.10
0.406522 0.15 0370316 0.15
0.439539 0.20
0.482972 0.25
Bb/R=0.9
Po/Y (b, -b)R_|(a-a)/R
0 0 0
0.030889 0.001| 0.00329129
0.060681 0.004 | 0.01334469
0.079878 0.007| 0.02481881
0.095078 0.01] 0.03776287
0.132850 0.02] 0.12686180
0.161866 0.03
0.187055 0.04
0.238606 0.06
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Table E.5. Numerical values obtained for cadmium cylinder for a/R=0.4

b/R=0.5 b/R=0.6
Po/Y (b, -bYR |(a-a )R |Py/Y (b, - bYR |(a-ay)R
0 0 0 0 0 0
0.102974 0.001] 0.00115231| 0.072811 0.001] 0.00125960
0.200128 0.004| 0.00449479| 0.142460 0.004] 0.00498116
0.260648 0.007| 0.00789955| 0.186743 0.007| 0.00874808
0.307002 0.01] 0.01133198] 0.221313 0.01] 0.01247755
0.414391 0.02] 0.02287748| 0.304318 0.02] 0.02523509
0.487010 0.03] 0.03481710] 0.363505 0.03| 0.03849295
0.540854 0.04] 0.04703864| 0.409393 0.04] 0.05213431
0.617651 0.06] 0.07282028| 0.478578 0.06] 0.08147994
0.708972 0.10] 0.13206600| 0.567937 0.10] 0.15044650
0.770939 0.15] 0.23934250] 0.633864 0.15
0.806551 0.20 0.673938 0.20
0.828593 0.25 0.700490 0.25
0.842615 0.30 0.721333 0.30
0.852191 0.35 0.751164 0.35
0.860097 0.40
b/R=0.7 b/R=0.8
Po/Y (bp-bYR |(a-a)R | Py/Y (b, - /R |(a-a,)R
0 0 0 0 0 0
0.058101 0.001| 0.00139874] 0.047976 0.001] 0.00153717
0.113886 0.004| 0.00545141| 0.094093 0.004] 0.00607836
0.149560 0.007| 0.00951493| 0.123636 0.007| 0.01065654
0.177554 0.01] 0.01374906| 0.146857 0.01] 0.01537171
0.245463 0.02] 0.0279052] 0.203366 0.02] 0.03123432
0.294626 0.03] 0.04264402| 0.244552 0.03] 0.04839057
0.333228 0.04] 0.05804637| 0.277102 0.04] 0.06658930
0.392470 0.06] 0.09121329| 0.327735 0.06] 0.10877080
0.471118 0.10] 0.1800886]| 0.399140 0.10
0.531877 0.15 0.478931 0.15
0.574462 0.20
0.624629 0.25
b/R=0.9
PO/Y (bp - b)R |(a- ap)/R
0 0 0
0.040371 0.001] 0.00187364
0.079296 0.004| 0.00737903
0.104365 0.007| 0.01326787
0.124197 0.01] 0.01924193
0.173352 0.02] 0.04095101
0.210870 0.03] 0.06762967
0.243000 0.04] 0.10375060
0.306257 0.06
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Table E.6. Numerical values obtained for cadmium cylinder for a/R=0.6

b/R=0.7 b/R=0.8
Po/Y (bo-bYR |(a-a)R | Py/Y (b, - bYR |(a-ag)R

0 0 0 0 0 0
0.101981 0.001] 0.00110745| 0.071111 0.001 0.001194
0.198178 0.004| 0.00435078] 0.139944 0.004|  0.00466359
0.258079 0.007| 0.00764936| 0.182255 0.007|  0.00827301
0.303935 0.01] 0.01087373] 0.215919 0.01] 0.01180124
0.410071 0.02| 0.02188915] 0.296572 0.02]  0.02373260
0.481715 0.03]| 0.03319794]| 0.353898 0.03] 0.03607863
0.534726 0.04| 0.04464549] 0.398231 0.04]  0.04863793
0.610078 0.06| 0.06820142] 0.465020 0.06]  0.07509595
0.699057 0.10] 0.11887610| 0.553337 0.10] 0.13733750
0.759293 0.15] 0.19481050| 0.637584 0.15
0.796383 0.20] 0.32931320
0.831539 0.25

b/R=0.9

Po/Y (b, - BYR | (a-a,)/R

0 0 0
0.055930 0.001| 0.00136358
0.109656 0.004] 0.00539863
0.144058 0.007] 0.00943887
0.171111 0.01] 0.01365167
0.237273 0.02] 0.02806652
0.286431 0.03| 0.04373437
0.327127 0.04] 0.06134403
0.401690 0.06] 0.11461210
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Table E.7. Numerical values obtained for barium-titanate cylinder for a/R=0.2

b/R=0.3 b/R=0.4
Po/Y (b, -bYR |(a-a))R | Po/Y (b, - BYR |(a-a,)/R

0 0 0 0 0 0
0.102394 0.001| 0.00120910] 0.073528 0.001| 0.00141142
0.202993 0.004| 0.00493227| 0.146809 0.004] 0.00580335
0.264658 0.007| 0.00871806] 0.192677 0.007] 0.01024756
0.311938 0.01] 0.01256657| 0.228584 0.01] 0.01481391
0.421637 0.02] 0.02596843|  0.315128 0.02] 0.03084016
0.495282 0.03| 0.04040220] 0.376612 0.03| 0.04857123
0.550358 0.04] 0.05612083| 0.424902 0.04] 0.06883056
0.628882 0.06] 0.09558994| 0.498096 0.06] 0.13190590
0.722824 0.10 0.594428 0.10
0.788088 0.15 0.668626 0.15
0.827344 0.20 0.716432 0.20
0.853065 0.25 0.749360 0.25
0.870758 0.30 0.772333 0.30
0.883471 0.35 0.788455 0.35
0.892468 0.40 0.799081 0.40
0.902639 0.50 0.806243 0.50
0.904178 0.60

b/R=0.5 b/R=0.6

Po/Y (b, -bYR |(a-a)/R _ |Py/Y (b, - b)/R | (a- a,)/R

0 0 0 0 0 0
0.061580 0.001| 0.00168322] 0.052857 0.001| 0.00186300
0.120795 0.004| 0.00661089| 0.103791 0.004] 0.00743330
0.158751 0.007] 0.01169097| 0.136539 0.007| 0.01319636
0.188607 0.01] 0.01703788] 0.162373 0.01] 0.01916483
0.261408 0.02| 0.03575253| 0.225704 0.02]  0.04062590
0.314578 0.03| 0.05717926] 0.272391 0.03] 0.06655145
0.356724 0.04| 0.08352658| 0.309671 0.04]  0.10071060
0.422362 0.06 0.368275 0.06
0.512233 0.10 0.449564 0.10
0.584331 0.15 0.515114 0.15
0.631880 0.20 0.557339 0.20
0.664451 0.25 0.583937 0.25
0.686187 0.30 0.597609 0.30
0.699493 0.35 0.598613 0.35
0.704942 0.40
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Table E.7. a/R=0.2 barium-titanate......(continued)

b/R=0.7 b/R=0.8
Py/Y (b, -b)/R |(a-a )R |PJY (b, - b)R | (a-ay)/R

0 0 0 0 0 0
0.046224 0.001| 0.00202252|  0.040332 0.001| 0.002171203
0.090795 0.004] 0.00818396|  0.079193 0.004] 0.008764103
0.119479 0.007| 0.01455754]  0.104174 0.007| 0.01562263
0.142128 0.01] 0.02116638]  0.123869 0.01]  0.02273571
0.197735 0.02] 0.04526919|  0.172054 0.02]  0.04886220
0.238798 0.03| 0.07583482|  0.207386 0.03| 0.08309518
0.271620 0.04] 0.12379710]  0.235367 0.04] 0.17066200
0.323173 0.06 0.278501 0.06
0.394004 0.10 0334029 0.10
0.448606 0.15 0.366614 0.15
0.478913 0.20
0.489259 0.25

b/R=0.9

Po/Y (b, - bR | (a-a,)/R

0 0 0
0.033856 0.001| 0.00223729
0.066321 0.004] 0.00886142
0.087025 0.007] 0.01567157
0.103214 0.01] 0.02265285
0.142042 0.02] 0.04761000
0.169363 0.03]| 0.07751138
0.189818 0.04] 0.12170500
0.217436 0.06
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Table E.8. Numerical values obtained for barium-titanate cylinder for a/R=0.4

b/R=0.5 b/R=0.6
Po/Y (b -b)R [(a-ay/R Po/Y (bp-b)R |(a-ap)/R
0 0 0 0 0 0
0.103254 0.001[0.001152188| 0.073689 0.001] 0.001256108
0.200705 0.004 |0.004495412| 0.144235 0.004] 0.00496462
0.261443 0.007| 0.00788343| 0.189143 0.007 | 0.008650005
0.307991 0.01| 0.01131779| 0.224245 0.01[ 0.01239845
0.415963 0.02] 0.02289343| 0.308751 0.02| 0.02508092
0.489137 0.03| 0.03483015| 0.369280 0.03{ 0.03827375
0.543527 0.04| 0.04700688| 0.416436 0.04| 0.05179131
0.621424 0.06| 0.07270026| 0.488064 0.06| 0.08038935
0.714978 0.10| 0.1311412| 0.582091 0.10] 0.14661650
0.779767 0.15] 0.2321277| 0.653321 0.15] 0.28918140
0.818145 0.20 0.697475 0.20
0.842725 0.25 0.725415 0.25
0.858720 0.30 0.741221 0.30
0.868969 0.35 0.746338 0.35
0.874355 0.40
b/R=0.7 b/R=0.8
Po/Y (b -b)R [(a-ap)/R Po/Y (bp-b)R |(a-ap)/R
0 0 0 0 0 0
0.059815 0.00110.001377672| 0.050467 0.001| 0.001462162
0.117319 0.004 {0.005362958| 0.099033 0.004| 0.005706221
0.154163 0.007]0.009426057| 0.130192 0.007| 0.009980887
0.18313 0.01| 0.01342091| 0.154719 0.01| 0.01420546
0.253677 0.02| 0.02716631| 0.214537 0.02| 0.02865747
0.305077 0.03| 0.04139671| 0.258215 0.03| 0.04354057
0.345692 0.04] 0.05603394| 0.292687 0.04| 0.05872923
0.408565 0.06| 0.08706954| 0.345701 0.06| 0.09061447
0.493072 0.10{ 0.15968990| 0.414301 0.10] 0.15887810
0.557296 0.15 0.457089 0.15] 0.25765660
0.594006 0.20
0.610001 0.25
b/R=0.9
PO/Y (bp-b)/R [(a-ap)R
0 0 0
0.041996 0.001| 0.00149030
0.082276 0.004| 0.00568149
0.107975 0.007| 0.00986475
0.128081 0.01{ 0.01410908
0.176379 0.02] 0.02789795
0.210529 0.03| 0.04133198
0.236256 0.04| 0.05408657
0.271635 0.06| 0.07663962
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Table E.9. Numerical values obtained for barium-titanate cylinder for a/R=0.6

b/R=0.7 b/R=0.8
Po/Y (b, - b)/R |(a-ap)/R Po/Y (by - b)/R |(a-ay)/R

0 0 0 0 0 0
0.102425 0.001] 0.00108278| 0.072276 0.001| 0.00120163
0.198178 0.004| 0.00435078| 0.141417 0.004| 0.00462991
0.259335 0.007| 0.00763637| 0.185376 0.007| 0.00811052
0.305492 0.01| 0.01092410| 0.219692 0.01| 0.01154172
0.412515 0.02| 0.02187914| 0.302052 0.02| 0.02316123
0.484978 0.03| 0.03315705| 0.360699 0.03| 0.03490222
0.538767 0.04| 0.04441237| 0.406049 0.04| 0.04674649
0.615578 0.06) 0.06762129| 0.473953 0.06| 0.07044601
0.706943 0.10| 0.11621390{ 0.558943 0.10{ 0.11701980
0.768244 0.15| 0.18053810| 0.612441 0.15] 0.16488860
0.801382 0.20| 0.24473540
0.817318 0.25| 0.29446180

b/R=0.9
Py/Y (b, -b)/R |[(a-ay)/R

0 0 0
0.056637 0.001}0.001230597
0.110869 0.0040.004707396
0.145390 0.007]0.008286595
0.172342 0.01| 0.01165789
0.236888 0.02| 0.02302384
0.282339 0.03! 0.03409737
0.316590 0.04| 0.04448378
0.364139 0.06| 0.06276536
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Table E.10. Numerical values obtained for steel cylinder for a/R=0.2

b/R=0.3 b/R=0.4
Po/Y (b,-bYR |(a-a )R |Py/Y (b, - bYR | (a—a,)/R

0 0 0 0 0 0
0.1021897 0.001] 0.00120920] 0.0728203 0.001] 0.00141287
0.2025624 0.004] 0.00492999| 0.1453449 0.004] 0.00580964
0.2640621 0.007| 0.00871891] 0.1906899 0.007]  0.01025948
0.3111942 0.01] 0.01257189| 0.2261483 0.01] 0.01483254
0.4204446 0.02] 0.02596822| 0.3114066 0.02] 0.03089364
0.4936565 0.03| 0.04039468| 0.3717247 0.03| 0.04870096
0.5482965 0.04] 0.05614823| 0.4188827 0.04]  0.06915337
0.6259289 0.06] 0.09582806] 0.4898297 0.06]  0.13556990
0.7179745 0.10 0.5815390 0.10
0.7806396 0.15 0.6495717 0.15
0.8170307 0.20 0.6907352 0.20
0.8395978 0.25 0.7164939 0.25
0.8538130 0.30 0.7317581 0.30
0.8626666 0.35 0.7396220 0.35
0.8673613 0.40 0.7415954 0.40
0.8673002 0.50 0.7357788 0.50
0.8582995 0.60

b/R=0.5 b/R=0.6
Po/Y (b,-b)R |(a-a )R |PyJ/Y (b, - bYR |(a-ay)/R

0 0 0 0 0 0
0.0600006 0.001| 0.00169157| 0.0500653 0.001| 0.00189485
0.1176204 0.004] 0.00664483 | 0.0982040 0.004] 0.00761128
0.1544782 0.007| 0.01184067] 0.1290515 0.007| 0.01350470
0.1834107 0.01] 0.01715240] 0.1533052 0.01] 0.01961564
0.2536470 0.02] 0.03605734| 0.2123382 0.02] 0.04187781
0.3045574 0.03] 0.05790077| 0.2553356 0.03] 0.06964636
0.3445809 0.04] 0.08531465| 0.2892255 0.04] 0.11060920
0.4061048 0.06 0.3414295 0.06
0.4878021 0.10 0.4105583 0.10
0.5494004 0.15 0.4615352 0.15
0.5860771 0.20 0.4903798 0.20
0.6075237 0.25 0.5067700 0.25
0.6183678 0.30 0.5203226 0.30
0.6223888 0.35 0.5696589 0.35
0.6254157 0.40
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Table E.10. a/R=0.2 steel ......(continued)
' b/R=0.7 b/R=0.8
Py/Y (bp -b)R |(a-ay)/R Po/Y (bp-b)YR |(a-ay)R
0 0 0 0 0 0
0.0419192 0.001| 0.00218977| 0.0345733 0.001| 0.00263062
0.0822132 0.004| 0.00871727| 0.0677735 0.004| 0.01055947
0.1080199 0.007| 0.01556636| 0.0890099 0.007| 0.01902029
0.1282988 0.01| 0.02274813| 0.1056726 0.01] 0.02808987
0.1775852 0.02| 0.05014159| 0.1460679 0.02] 0.06708696
0.2133755 0.03| 0.08813476) 0.1753231 0.03
0.241484 0.04 0.1983004 0.04
0.2844944 0.06 0.2338143 0.06
0.3406104 0.10 0.2853079 0.10
0.381958 0.15 0.3717864 0.15
0.4121855 0.20
0.4786541 0.25
b/R=0.9
Py/Y (bp, - b)R |(a-ay)/R
0 0 0
0.0287862 0.001| 0.00395787
0.0566083 0.004| 0.01684564
0.0746149 0.007| 0.03218003
0.0889553 0.010] 0.05159523
0.1252798 0.020
0.1547182 0.030
0.1828039 0.040
0.2579062 0.060
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Table E.11. Numerical values obtained for steel cylinder for a/R=0.4

b/R=0.5 b/R=0.6
Po/Y (b -b)R |(a-ap)/R Po/Y (bp-bYR |(a-ap)/R
0 0 0 0 0 0
0.1028492 0.001]0.001153111| 0.0724045 0.001] 0.00125951
0.1998690 0.0040.004499674 | 0.1416384 0.004| 0.00498816
0.2602906 0.007]0.007898778 | 0.1856294 0.007| 0.00876093
0.3065577 0.01] 0.01134777| 0.2199512 0.01{ 0.01249927
0.4136837 0.02] 0.02291283| 0.3022506 0.02] 0.02525532
0.4860513 0.03| 0.03485233| 0.3608011 0.03| 0.03854361
0.5396449 0.04| 0.04704142| 0.4060810 0.04| 0.0522789%4
0.6159365 0.06| 0.0728634| 0.4740746 0.06] 0.08174142
0.7062070 0.10 0.132066| 0.5610614 0.10] 0.15188710
0.7667834 0.15] 0.2424998| 0.6240150 0.15
0.8009165 0.20 0.6612497 0.20
0.8213976 0.25 0.6856161 0.25
0.8338344 0.30 0.7071669 0.30
0.8420383 0.35 0.7556103 0.35
0.8500051 0.40
b/R=0.7 b/R=0.8
Py/Y (bp-b)R |(a-ap)/R Py/Y (bp-b)/R [(a-ayR
0 0 0 0 0 0
0.0572636 0.001| 0.00140798| 0.0466251 0.001| 0.00159121
0.1122064 0.004| 0.00548983| 0.0914030 0.004| 0.00625032
0.1473028 0.007| 0.00965980| 0.1200476 0.007| 0.01096755
0.1748133 0.010| 0.01385343| 0.1425337 0.010| 0.01578972
0.2413949 0.020| 0.02814341| 0.1971129 0.020| 0.03257760
0.2894102 0.030| 0.04305425| 0.2367553 0.030] 0.05075714
0.3269539 0.040| 0.05851126| 0.2680114 0.040| 0.07059300
0.3842164 0.060| 0.09284908| 0.3166742 0.060| 0.12112530
0.4592941 0.100| 0.19162920| 0.3877600 0.100
0.5167560 0.150 0.4931509 0.150
0.5602031 0.200
0.6349040 0.250
b/R=0.9
PO/Y (bp-b)R |(a-ap)/R
0 0 0
0.0391265 0.001| 0.00214437
0.0769426 0.004| 0.00860563
0.1014100 0.007| 0.01541090
0.1208780 0.010| 0.02262792
0.169989%4 0.020| 0.05151561
0.2092230 0.030| 0.09621584
0.2455492 0.040
0.3339868 0.060
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Table E.12. Numerical values obtained for steel cylinder for a/R=0.6

b/R=0.7 b/R=0.8
Po/Y (b,-b)R |(a-a )R |Py/Y (b, - BYR |(a- ag)/R

0 0 0 0 0 0
0.1017502 0.001]0.001108468]  0.07044 0.001] 0.001229465
0.1977019 0.004]0.004353702| 0.1377356 0.004| 0.004759669
0.2574234 0.007|0.007655025 | 0.1804383 0.007| 0.008351207
03031212 0.010] 0.01089501| 0.2137130 0.010] 0.01198834
0.4087847 0.020] 0.02197665] 0.2933139 0.020] 0.02404445
0.4799861 0.030] 0.03325462| 0.3497775 0.030 0.036672
0.5325689 0.040] 0.04464865] 0.3933901 0.040] 0.04960287
0.6070935 0.060| 0.06839746] 0.4591669 0.060] 0.07747161
0.6945902 0.100| 0.11983500] 0.5483289 0.100] 0.1514364
0.7537106 0.150| 0.20108700| 0.6526501 0.150
0.7921729 0.200
0.8402433 0.250

b/R=0.9
Po/Y (b, - bR |(a-a,)/R

0 0 0
0.0552832 0.001| 0.00145781
0.1084692 0.004| 0.00577724
0.1426229 0.007] 0.01020467
0.1695811 0.010| 0.01473719
0.2362802 0.020| 0.03114617
0.2873946 0.030| 0.05051363
0.3320854 0.040] 0.07599807
0.4277665 0.060| 0.14526000
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F. MAIN PART OF THE DEVELOPED PROGRAM (CODED IN QBasic)

APPENDIX F

ITTTIIIIIIIIIITIIITIIIIIIIIITITIITIIIIIIIIIIIIIIITIIIIINIIIINIIII
ITITII THIS PROGRAM '~ CALCULATES THE PLASTIC ZONES IIIII
ITIIII FOR A MATL. HAS A RING-SHAPED CRACK ITIII
ITIIT REVISED BY MESUT UYANER ON 07.02.1999 IITIII
ITIIITITITITITITITITITIITIIIIIIIIITITITIITIIIIIIIIIIIINIIIIIIII

Po/Y and ap/R are determined under the effect of uniform unit

load.

DEFDBL L, V

DECLARE SUB Kernell (ro, sr, kl)

DECLARE SUB Kernel2 (al, sr, ro, AX, BX, CX, DX, S2, S4, CM2, CM4,
Ci, C2, k2)

DECLARE SUB GaussElim (b (), a(), N}

DECLARE FUNCTION IO# (x)

DECLARE FUNCTION In# (x, m, ZI#)

DECLARE FUNCTION BesselK (x, m)

DECLARE FUNCTION Eliptikl (RATIO)

DECLARE FUNCTION Eliptik2 (RATIO)

DECLARE FUNCTION LagEntpl (x(), y{(), m, xV)

CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST

OPEN "Rplast.txt" FOR OUTPUT AS #2
OPEN "DataKaKb.TXT" FOR INPUT AS #3
OPEN "Rplstexc.TXT" FOR OUTPUT AS #4

N = 20

R=1

Pi = 3.141592654#

Po =1 'unit load [MPa]
TOL = .00001

TRUE = -1

FALSE = NOT TRUE

intv = 4

intviii = 8

zero = 0

DIM COEF(N, N), rhs(N), xr(N - 1), tk(N), root(6), weight(6)
DIM WE(N), CO(N, N), ap(2), Diff(2), Ktablo(1l8, 9, intviii)
FOR k = 1 TO intviii

FOR i 1 TO 18

FOR j = 1 TO 8

INPUT #3, Ktablo(i, j, k), a

I
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NEXT j

INPUT #3, Ktablo(i, j, k)
NEXT i

NEXT k

CLOSE #3

FOR iii = 1 TO intviii
SELECT CASE iii
CASE 1
'.... Anisotropic Steel
All = 4.504504E-12
Al2 -1.351351E-12
Al3 -1.428571E-12
A33 = 4.761905E-12
A44 = 1.238095E-11
MATLS = " Anisotropic Steel"”
CASE 2
........ Magnesium .......
= 2.21E-11
-7.7E~-12
Al3 = -4.9E-12
A33 = 1.97E-11
Ad44 = 6.03E-11

]

P
[y
N R
i

MATLS = " Magnesium "
CASE 3

........ Cadmium .........
All = 1.29E-11
Al2 = -1.5E-12
Al3 = -9.3E-12
A33 = 3.69E-11
Ad4 = 6.4E-~-11
MATLS = " Cadmium "
CASE 4

........ Barium Titanate .........
= 8.150854E~12
Al2 = -2.960257E-12

]

=

[
!

Al3 = -1.949906E-12

A33 = 6.756014FE-12

Ad44 = 1.831502E-10
MATLS = " Barium-Titanate"”
CASE 5

........ Graphite -Epoxy .........
All = 1.359636E-10
Al2 = -4.54259E-11
Al3 = -2.972723E-13
A33 = 1.152269E-11

BAd4 = 2.411382E-10
MATLS = " Graphite - Epoxy"
CASE 6

........ E -Glass .
All = 8.396149E-11
Al2 = -3.490218E-11
Al3 = -5,442501E-12
A33 = 2.236262E-11
A44 = 2.107482E-10
MATLS = " E - Glass"

........ Anisotropic Copper .........
All 5.232862E-12

I



PEREY

s2

Al2 = -1.622187E-12

Al3 -1.722222E-12

A33 = 5.555556E-12

Ad44 = 1.455556E-11

MATLS = " Anisotropic Copper"
CASE 8

I

..... Anisotropic Aluminium .......

pd
=
=
[

= 1.31406E-11

-4.204993E-12

= -4.571428E-12

A33 = 1.428571E-11

Ad4 = 3,771428E-11

MATLS = " Anisotropic Aluminium”
END SELECT

o
-
w N
[l

root(l) = -.9324695142#
root(2) = -.6612093865000001#
root(3) = -.2386191861#
weight (1) .1713244924%
weight (2) = .360761573#
weight (3) = .4679139346#

FOR 1 =1 TO 3

root (7 -~ 1) = -root (i)

weight (7 - 1) = weight (i)

NEXT i

XE(1) = .001

XE(2) = 6

XE(3) = 20

XE(4) = 40

XE{(5) = 60 'since k2 is convergent,

'chosen 60 instead of inf

, BX , CX , DX

DN1 = All * A33 - Al3 ~ 2

AX = Al3 * (All - Al2) / DN1
BX = (A13 * (A13 + A44) - Al2 * A33)
CX = (Al3 * (All - Al2) + All * R44)

DX = (All ~ 2 - Al2 ~ 2) / DN1
, S4 , C1 , C2

AC = AX + CX

DET = SQR(AC ~ 2 - 4 * DX)
S2 = -SQR(({AC - DET) / (2 * DX))
S4 = -SQR{(AC + DET) / (2 * DX))

upper limit of the k2 is

inity.

/ DN1
/ DN1

It is adequate...
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T

PRINT #2, "MATERIAL : "; MATLS
PRINT #4, "MATERIAL : "; MATLS

Cl = SQR(2 * DX / (AC + DET))
C2 = SQR((AC + DET) / 2)

CM2 , CM4
DENOM = (82 ~ 2 - S4 ~ 2) * (A33 * DX - 2 * Al3 * AX - A44*AX)
CM2 = (1 - AX * S4 ~ 2) / DENOM
CM4 = (1 - AX * 82 ~ 2) / DENOM
C3 = CM4 * 5S4 *(S4 * S4 * DX - CX) - CM2 * S2 *(S2 * S2*DX-CX)

- CALCULATION OF WEIGHTS, ROOTS & NORMALIZATION OF LHS ARRAY

WEIGHTS:
FOR 1 = 2 TON - 1
WE(i) =1/ (N - 1)
NEXT i
WE(1) =1/ (2 * (N - 1))
WE(N) = WE(1)
NORMALTIZATION
FOR i = 1 TO N
tk(i) = COS(Pi * (1 - 1) / (N - 1))
NEXT i
FOR 1 =1 TON - 1
xr{i) = COS(Pi * (2 * 1 - 1) / (2 * N - 2))
NEXT 1
FOR ia = 1 TO 8
a=.1* 1ia
FOR ib = 1 TO 7 'STEP 3

b=a+ .1 * ib

IF b > .95 THEN EXIT FOR 'ib dongusunden cIk.

PRINT "a/R ="; a, "b/R ="; b

PRINT #2, "a/R ="; a, "b/R ="; Db

PRINT #4, "a/R ="; a, "b/R ="; b

PRINT #4, "Po/Y"; CHR$(9); "(bp - b)/R"; CHRS$(%9); "(a - ap)/R"
PRINT #4, zero; CHRS$S(9); zero; CHRS$(9); zero

ka Ktablo(ia + 1, ib + ia, intviii)

kb = Ktablo(ia + 10, ib + ia, intviii)

ARTIS = ABS(ka / kb) * 1.25

PRINT "k(a)="; ka; "k(b)="; kb, "k(a)/k{(b)="; ka / kb

I

................. Crack starts at r=a
pldurum = FALSE
alt = 1: ust = 4
'lbp Plastik bolge genisligi %verilen ilk deger$
FOR mm = 1 TO 5
SELECT CASE mm
CASE 1
baslangIc = .001: bitis = .008: adIm = .003
CASE 2
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baslangIc
CASE 3
baslangIc =
CASE 4
baslangIc
CASE 5
baslanglc
END SELECT
FOR 1lbp = Db
lap = lbp
bp = b + 1b
IF bp >= .9
ap = a - la
IF ap =0T
alt = 3: us
END IF

IF pldurum

FOR ilap =

FOR m = alt

SELECT CASE

CASE 1
AltSINIR

UstSINIR =

YUK = Po
CASE 2

AltSINIR =

UstSINIR
YUK = -Po
CASE 3
AltSINIR
UstSINIR
YUK = Po
CASE 4
AltSINIR

UstSINIR =

YUK = -Po
END SELECT

PRINT "alt
PRINT #2, "

dTodro = (U

.01l: bitis = .03: adIm = .01
.04: bitis = .06: adIm = .02
.1: bitis = .4: adIm = .05
.5: bitis = .9: adIm = .1
aslangIc TO bitis STEP adIm
'Plastik bolge genisligi %verilen ilk TAHMiN%
P
9 THEN EXIT FOR ' lbp dongusunden cIkIs.
P
HEN
t =4
= TRUE THEN ap = 0
1 TO 8
TO ust
m
b
ap
= a
'represents the flow stress Y
= a
= bp
=b
bp
'represents the flow stress Y
SINIR ="; AltSINIR, "Ust SINIR ="; UstSINIR
alt SINIR ="; AltSINIR, "Ust SINIR ="; UstSINIR

stSINIR - AltSINIR) / 2

MATRIX FORMATION:

FOR j = 1 TON -1

sr = ((UstSINIR - AltSINIR) * xr(j) + UstSINIR + AltSINIR)
FOR i = 1 TO N

ro = ((UstSINIR - AItSINIR) * tk(i) + UstSINIR + AltSINIR)
Kernell ro, sr, kil

TOT = 0

FOR LL = 1 TO intv

aa = XE(LL)

bb = XE(LL + 1)

/
/

2

2
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Al

Y

y

SINGLE VALUEDNESS CONDITION %last row equals to weights %

Differ = (bb - aa) / 2

FOR L. = 1 TO 6
al = ((bb - aa) * root(L) + bb + aa) / 2 'al: alpha

Kernel2 al, sr, ro, AX, BX, CX, DX, 82, S4, CM2, CM4,C1,

TOT = TOT + weight(L) * k2 * Differ
NEXT L, LL

KrRo = C3 * k1l + 2 * ro * TOT

COEF(j, i) = WE(i) * (C3 / (ro - sr) + KrRo) * dTodro
Co(jl l) = COEF(j/ l)

NEXT i

NEXT 3

[=3

FOR i = 1 TO N: COEF(N, i) = WE(i): NEXT i

........ RHS OF EONS...... ...

FOR i =1 TON - 1
rhs (i) = -YUK
NEXT i

rhs(N) =0

GaussElim rhs{(), COEF(), N

- STRESS INTENSITY FACTORS : RING-SHAPED =  -----

SIFconst = C3 * SQR({UstSINIR - AltSINIR) / 2)
SELECT CASE m

CASE 1

kla = SIFconst * rhs(N)
CASE 2

k2a = SIFconst * rhs{(N)
CASE 3

klb = -SIFconst * rhs(1l)
CASE 4

k2b = -SIFconst * rhs(1l)
END SELECT
NEXT m

‘AND *.b

condition *.a: Po*klb(ap,bp) + Y*k2b(b,bp) = 0

condition *.b: Po*kla(ap,bp) + Y*k2a(ap,a) = 0
PoOverYb = -k2b / klb
PoOverYa = -k2a / kla
Diff = PoOverYb - PoOverYa
PRINT " (Po/Y)1l = "; PoOverYb, "(Po/Y)2 = "; PoOverYa
PRINT "Difference = "; Diff

IF ABS(Diff) < TOL THEN
alt = 1: ust = 4
EXIT FOR 'ilap dongusunden cIk.

C2,k2

CALCULATING THE RATIOS OF Po/Y WITH RESPECT TO THE CONDITION *.a
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END IF
IF ap <= 0 THEN

pldurum = TRUE

alt = 3: ust = 4

EXIT FOR 'ilap dongusunden cIkIs. ic bolge tamamen plastik!
END IF

alt = 1: ust = 2

SELECT CASE ilap

CASE 1
ap(l) = ap
Diff (1) = Diff
IF Diff > 0 THEN

ap = a - (lap * ARTIS)
ELSE
ap = a + (lap * ARTIS)
END IF
" IF ap >= a THEN ap = a * .5
CASE 2
ap(2) = ap

Diff(2) = Diff
ap = LagEntpl(Diff (), ap(), 2, 0)

CASE ELSE

ap(l) = ap(2)

ap(2) = ap

Diff (1) = Diff(2)

Diff(2) = Diff

ap = LagEntpl(Diff (), ap(), 2, 0)
END SELECT

IF ap <= 0 OR ap > a THEN
alt = 1: ust = 4

EXIT FOR

END IF

NEXT ilap

PRINT #2, "bp="; bp, "ap="; ap

PRINT #2, "(Po/Y)l = "; PoOverYb; "(Po/Y)2 = "; PoOverYa

IF ap >= 0 AND alt = 1 THEN

PRINT #4, PoCverYb; CHR$(9); bp - b; CHRS$(9); a - ap; CHR$(9)
ELSE
PRINT #4, PoOverYb; CHR$(9); bp - b

END IF

NEXT lbp
NEXT mm

NEXT ib

NEXT ia

NEXT iii

CLOSE #2

CLOSE #4

o 7€ YOESEOCRETE ﬁ@mm?
DOKUMANTASY G MERKEZ
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