/S1/69

APPLICATION OF INTERVENTION ANALYSIS
TO TIME SERIES DATA
ON ECONOMIC AND SOCIAL PROBLEMS
(WITH LOGNORMAL NOISE)

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of
Dokuz Eyliil University
In Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy in Statistics

O
\o
N by
g Esin FIRUZAN

January, 2004
IzMiR



I

Ph.D. THESIS EXAMINATION RESULT FORM

We certify that we have read the thesis, entitled “APPLICATION OF
INTERVENTION. ANALYSIS TO TIME SERIES DATA ON ECONOMIC AND
SOCIAL PROBLEMS (WITH LOGNORMAL NOISE)” completed by Esin FIRUZAN
under supervision of Yrd. Dog.Dr. C.Cengiz CELIKOGLU and that in our opinion it is
fully adequate, in scope and in quality, as a thesis for the degree of Doctor of Philosophy.

Yrd. Dog.Dr. C. Cengiz CELIKOGLU

Supervisor

J ONNA 5 Laelps)
Prof. Dr. Serdar KURT Prof. Dr. Senay UYDOGRUK

Jury Member Jury Member
Prof. Dr. Ahtrfet OZMEN P?f.}br. Levent SFNYAY

(4
Jury Member Jury Memb
Approved by the

Graduate School of Natural and Applied Sciences

(VA ,
Prof.Dr. Cahit HELV

Director



ACKNOWLEDGMENT

I would like to express my appreciation and gratitude to my advisor Yard. Dog.Dr.
C.Cengiz CELIKOGLU for his encouragement, advice and support during my study.
1 greatly appreciate the useful dicussions and contributions of Prof. Dr. Ahmet
OZMEN. His valuable suggestions, constant input of creative ideas and enthusiastic
guidance provided me with the great privilege of learning new attitudes towards
research life. I also want to thank my thesis committee Prof. Dr. Serdar KURT and
Prof. Dr. Senay UCDOGRUK for their generosity and helping me throughout the

course of this work.

I also wish to express my special thanks to Umay KOCER, Aylin ALIN and
Tufan ALIN for their special help. I am also grateful to the providers of data set used
in this thesis and especially to Korkut OZKAN that kindly provided the traffic
accident data analyzed in Chapter 4.

I would especially like to dedicate this work to my husband, Yard. Dog. Dr. Ali
Riza FIRUZAN for his support and understanding that I have always received and
for his love, constant support and dedication that are sources of inspiration and

strength for being a better person everyday.

Esin FIRUZAN



ABSTRACT

Traffic accidents have been big problem during the last years because of the
fundamental changes in social economic life. In this study, the effect of radar
application in Izmir was examined by using two approaches. The first approach
consisted of adapting traffic accidents to the lognormal distribution. This approach
depends on assumption that accidents occurred on the routes are correlated each
other. After the adaptation to the lognormal distribution, the estimators of the
parameters of lognormal distribution were estimated by using moment estimation
and modified moment estimation methods. The validity of the underlying assumption

is supported by goodness of fit tests.

The second approach, involved time series model of traffic accidents before
intervention (the radar application) as a Box-Jenkins univariate time series model. As
expected, this model proved to be inadequate in explaining the postintervention
period, and the model was modified to incorporate the expected form of the
intervention effects. Intervention effects were measured quantitatively on time series

of traffic accidents.

Results showed that the radar application produced significant reduction on

accidents occurred on the routes.

Keywords: Time Series, Intervention Analysis, Lognormal Distribution, Traffic

Accident Series
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OZET

Bu calisma, trafik kazalari verilerinin lognormal dagilima adapte edilmesi ve
trafik kazalarinda radar uygulamasinin, kazalarin olusumu iizerindeki etkisini
aragtirma agamalarindan olugsmaktadir. Radar uygulamasi, trafik kazalari serisine
miidahale olarak ele almmis ve miidahalenin trafik kazalari serisi {izerindeki

niceliksel etkisi aragtirilmaya ¢aligilmagtir.

Zaman serisinde miidahale analizi, giirliltii degiskeni igin stokastik bir model,
miidahale i¢in dinamik bir model olmak iizere iki agamada gergeklestirilmistir. Daha
sonra en uygun ARIMA modeli belirlenerek model parametreleri tahminlemeye
¢alisilmigtir. Bunun igin Moment Tahminleme ve Uyarlanmis Moment Tahminleme
Yontemleri kullanmilmigtir. Beyaz giiriiltiiden farkli olmadigindan emin olunan model
artiklan teshis edilerek miidahalenin seriye etkileri 6lgiilmeye ¢alisiimigtir.

Elde edilen sonuglar, radar uygulamasimin yol iizerindeki kazalarin meydana

gelisinde azaltic1 etki yarattifi yoniinde olmustur.

Anahtar Kelimeler :Zaman Serisi, Miidahale Analizi, Lognormal Dagilim, Trafik

Kaza Serisi
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CHAPTER ONE
INTRODUCTION

1.1. Introduction

Much of statistical methodology is concerned with models in which the
observations are assumed to vary independently. In many applications, dependence
between the observations is regarded as a nuisance. Many sets of data in business,
economics, engineering and natural sciences appear as a time series where
observations are dependent and where the nature of this dependence is of interest in
itself. The body of techniques available for the analysis of such series of dependent
observations is called time series analysis. It is necessary to set up a hypothetical
probability model to represent the data. An important part of the analysis of a time
series is the selection of a suitable probability model (or class of models) for the data.
An overview of the time series models contains a non-technical description of five
classes of models such have been developed to deal with a wide range of practical

situations.

First model is univariate models which predict future values of the variable of
interest solely on the basis of the historical pattern of that variable, assuming that the
historical pattern will continue. Another model is transfer function models which are
Box-Jenkins causal models. These models predict future values of a time series on
the basis of past values of the time series and on the basis of values of one or more
other time series related to the time series to be predicted. Time series are frequently
affected by certain external events or circumstances such as holidays, strikes,
advertising promotions and environmental regulations. Methods for estimating

transfer function models based on deterministic perturbations of the input, such as



step, pulse, and sinusoidal changes, have not always been successful. This is because,
for perturbations of a magnitude that are relevant and tolerable, the response of the
system may be masked by uncontrollable disturbances referred to collectively as
noise. Intervention models are used for such as a strike, a holiday or a change in
definition of a variable. Intervention analysis is developed to obtain a quantitative
measure of the impact of the intervention event on the time series of interest. Other
models are Multivariate Stochastic Models and Multivariate Transfer Function
Models. Multivariate stochastic models can represent several dependent series with
mutual interactions. Multivariate transfer function models can be used to relate
several mutually interacting dependent variables to several independent variables. In

this study, intervention models will be focused on.

Many applications have been solved using intervention analysis. Box and Tiao
(1975) used intervention models to study and quantify the impact of air pollution
controls on smog-producing oxidant levels in the Los Angeles area and of economic
controls on the consumer price index in the United States. Then Deutsch and Alt
(1977), Hay and McClearly (1979) applied intervention analysis in the area of gun
control law. Wichern and Jones (1977) analyzed advertising and its impact on market

share using intervention time series.

Cauley and Im (1988) have examined the effects of increasing security measures
on the number of terrorist incidents. Singer and McDowall (1988) considered
intervention in the area of juvenile offender law, Martinez-Schnell and Zaidi (1989)
utilized the intervention analysis model to investigate deaths caused by motor
vehicles. And also Fomby and Hayes (1990) have examined the war on poverty has
been examined to see if it has had an impact on income distribution. Deadman and
Pyle (1993) used intervention analysis to study the influence of the abolition of
capital punishment on the homicide rate in Britain. In addition, Foreman (1993)
aided public policy makers who wished to know if airline industry deregulation has

had an effect on air safety.



Recent increases in the number of traffic accidents and deaths in these accidents
in Turkey make it necessary to conduct many studies on identification of the causes

of these accidents and methods to prevent these accidents.

Government must put into practice some obligations because of the increment in
the number of deaths and injuries due to the traffic accidents. Government forces the
drivers to obey the rules applying not only fines but also various controls. Due to the
improvements in technology, new applications developed in traffic control to make it

easier.

The aim of this study is to obtain quantitative measurement for radar control
which is considered as an intervention on traffic accident series. The impact of radar
application is inspected by selecting a specified route where the radar application has
just started and has intense traffic. The intervention analysis is performed on real
data which are adapted lognormal distribution. It is the first study Which analyses
nonnormal distribution problems. Besides, through intervention analysis, to take
precautions against any unusual \;alues in the time series of traffic accidents that

might have resulted as a consequence of the intervention event.

This study contains five chapters. The general information about the overall
research is in the first chapter. The second chapter contains fundamental concepts
used in intervention analysis. Intervention concepts in time series, application of
intervention analysis and interpretation the impact of the intervention are mentioned
in chapter three. The fourth chapter aims are to find the effect of impact of radar
control on traffic accident series. The fifth chapter contains the results of the study

and some suggestions based on these results.



CHAPTER TWO
FUNDAMENTAL CONCEPTS

2.1. Stochastic Processes

The statistical approach to forecasting is based on the construction of a model. A
model that explains a mechanism, which is regarded as being capable of having
produced the observations in question, is almost invariably stochastic. Stochastic
process is a statistical phenomenon that evolves in time according to probabilistic
laws. Mathematically, a stochastic process may be defined as a collection of random
variables which are ordered in time and defined at time points that are either
continuous or discrete. The time series to be analyzed may then be thought of as one
particular realization, produced by the underlying probability mechanism, of the
system under study. In other words, in analyzing a time series it is regarded as a

realization of a stochastic process.

Z(w, t) are time indexed random variables where @ belongs to a sample space and
t belongs to an index set. For a given o, Z(w, ), as a function of ¢ is called a
realization. The population that consists of all possible realizations is called the
ensemble in stochastic process. {Z,,Z, ,..,Z, } is a finite set of random variables
{Z(wy): t = 0, 1, £2,...} is a stochastic process. The n-dimensional distribution
function is defined by

F(z,,02,)=plo:2(0,t) S 2, 2(@0,1,) < 2, | @2.1)



If its one dimensional distribution function is time invariant a process has to be
the first order stationary in distribution for any integers ¢, & and #;+k; if
F(z, 2, ) = F(2, 452, ,,) for any integers (¢, #..., tx) and k lags, process has to
be the n™ order stationary in distribution. If F (2,592, ) = F (2, 14552, 4 ) 1S tTUE
for any n, a process is strongly and completely stationary. Stationary stochastic

processes are based on the assumption that the process is in a particular state of

statistical equilibrium.
2.2. The Autocovariance and the Autocorrelation Functions

“Time series may be stationary or nonstationary. Stationary series characterized
by a kind of statistical equilibrium around a constant mean level as well as a constant
dispersion around that mean level” (Yaffee,&McGee 2000, p.5). Autocovariance
function plays very important role for describing a stochastic process. When a
stochastic process is stationary, its time domain properties can be summarized by

autocovariance function.

The autocovariance function y, which is the covariance of Z; with Z,. can be

described by following equation.

Y =Cov (Zy Zirk) = E(Z: - W( Zisi - 1) (2.2)

“The autocovariance remains the same regardless of the point of temporal
reference. Under these circumstances, the autocovariance depends only on the
number of time periods between the two points of temporal references” (Yaffee,&
McGee, 2000, pp.5-6).

The autocovariances are standardized by dividing them by the variance of the

process. The autocorrelation function (ACF) is defined by equation (2.3).

COV(Z,’ZH,]() =ZL (2 3)

~ Var@)VarZ,,) 7o

P



For a stationary process the autocovariance function y, and the autocorrelation

Sfunction py have the following properties:
1. w="Var(Z); pp=1
2. [rd<res o<t
3. yo=7_, and p,=p_,, for all k, i.e., % and px are even functions and hence

symmetric about the time origin, k=0. This follows from the fact that the time
difference between Z, and Z.; and Z, and Z.; are the same. Therefore, the

autocorrelation function is often plotted only for the nonnegative lags (Wei, 1990,
p-10).

2.3. The Partial Autocorrelation Functions

The partial autocorrelation (PACF) between Z, and Z,;; which is denoted by Py is
defined by equation (2.4).

Pk — COV[(Z t 21) (Z thk 2 t+k )] (2.4)
Var(Z, =2, )\Var(Z,,, - 2, )

The important point is that its behaviour is the opposite of the behaviour exhibited
by the autocorrelation function. “If a series is stationary, the magnitude of the
autocorrelation attenuates fairly rapidly, whereas if the series is nonstationary, the

autocorrelation diminishes gradually over time” (Yaffee,& McGee, 2000, p.6).

“For a pure AR(p) process, the theoretical partial autocorrelations are zero at lags
beyond p, while for an MA process they die away gradually. If the observations are
generated by an AR(p) process, the sample partial autocorrelations beyond lag p are

normally distributed with mean zero and variance” (Harvey, 1993, p.75).



2.4 Stationary Stochastic Process

Stationary processes are defined as a random process where all of its statistical

properties (such as mean, variance, covariance and higher moments) do not vary with
time or purified from the periodic waves.

2.4.1 The Gaussian Process

If the joint probability distribution of observations associated with any set of times

is a multivariate normal distribution, the stochastic process is called a normal or
Gaussian process.

“A stochastic process X(2), t 20 1is called a Gaussian, or a normal, process if

Xty), ..., X(t,) has a multivariate normal distribution for all #,, ..., #,” (Ross, 1993,
p.476).

If {X(2), t= 0}, then as each of X(t;), X(¢;), ..., X{(¢,) can be expressed as a linear

combination of the independent normal random variables

X)), X(t;) - X(t), X(t3) - X(t3), ..., X(ts) - X{ts-1). This process is called as Gaussian
process.

Since the multivariate normal distribution is uniquely characterized by its
moments of first and second order, strictly stationary and weakly stationary are

equivalent for a Gaussian process. Many areas in statistics, most time series results
are established for Gaussian processes.

Noise

The term “noise” was first used in communication engineering as a result of the
undesired acoustic effects accompanying spontaneous electric fluctuations in
receivers. Noise means something that interferes with the undesired signal. In many

statistical methods such as regression analysis and categorical data analysis, the noise



is the randomly fluctuating part and the signal is the unknown deterministic
parameter.

Noise is treated as a stochastic process of irregular fluctuations. In applications,
the noise process is often assumed to be stationary and ergodic. That is, its statistical
properties can be described completely by just one sample over a long period. “The
analysis of autocorrelation functions is useful in fitting autoregressive-moving
average (ARMA) models to the noise process” (Canada, 1985, p.252).

The Gaussian Noise

“In many cases, noise is best described as a Gaussian process. The assumed
normality can be justified by the central limit theorem if the noise is composed of
many small independent (or weakly dependent) random effects” (Canada, 1985,
p.253).

The main advantage of using the Gaussian assumption is that, the best
linear estimators of the signal is optimal under the criterion of mean squared
error. It means that there is no need to consider nonlinear theory in signal
estimation in Gaussian systems. In signal detection, the likelihood ratio statistic is
an optimal test statistic, and many results have been established on absolute
continuity and the Radon- Nikodym derivative between the two measures induced
by pure noise and signal plus noise, when both measures are Gaussian (Canada,
1985, p.253).

Even though optimal statistics can be obtained under the Gaussian condition,
robust statistics are desired so that decisions based on statistics are less sensitive to
the Gaussian assumption. “Various kinds of Non-gaussian noise take place in
different situations. Some are generated from Gaussian noise through nonlinear
devices.” (Canada, 1985, p.254) Sometimes the noise is simply measurement error;

in engineering applications the noise may be interference some kind of process.



2.4.2 White Noise Process

Once examining the characteristics of nonlinear models, distinguishing between
independent and uncorrelated random variables can be very important. White noise
is defined as a sequence of independent and identically distributed (i.i.d.) random
variables with constant mean and variance. It is sometimes possible to make non-
trivial predictions from the series which have the white noise property. When
successive values are merely uncorrelated it is called strict white noise. “If
successive values follow a normal (Gaussian) distribution, then zero correlation
implies independence so that Gaussian uncorrelated white noise is strict white noise.
However, with nonlinear models, distributions are generally nonnormal and zero

correlation need not imply independence” (Chatfield, 1999, pp.197-198).

White noise is a stationary stochastic process with constant spectral density. The
term white is borrowed from optics, where white light has been used to signify
uniform energy distribution among the colors. Actually the analogy is not correct
since in optics the uniform energy distribution of white light is based on wavelength
rather than frequency. “Discrete white noise is simply an uncorrelated wide-sense
stationary time series with zero mean. ARMA processes are derived by discrete-time
white noise. Continuous-time white noise X{(z) statisfies formally E(X(?)) = 0 and
E[X(t)X(t+s)] = o’ &t-s), where &) is the Dirac delta function” (Canada, 1985,
p.254).

Since an entirely flat spectral density distribution implies infinite power, white
noise does not exist in practice. Nevertheless, the use of a white noise model is
Justified in many aspects. Many real data sets, such as aircraft flight test data
radar return data, and passive conar detection data, involve an additive random
noise that has large bandwidth compared to that of the signal. In some other
problems, noise may be best described as a linear transformation of white noise
More importantly, it is often much easier analytically and computationally to deal

with white noise (Canada, 1985, p.254).
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A stationary white noise process {a,}has;

2
o k=0 . .
Ve = { a the autocovariance function

1 k=0
Pu = {0 Py the partial autocorrelation function

The ACF and PACF of a white noise process are shown in Figure 2.1 (Wei, 1990,
p.16).

Pr P
1.0 1.0+
0.5 0.5 —
PPN sessssssses P |
A 5 10 5 10
5 — 0.5 .
1.0- 1.0 4

Figure 2.1. ACF and PACF of a white noise process

2.4.3 Autoregressive (AR) Process

When the value of a series at a current time period is a function of its
immediately previous value plus some error, then underlying generating mechanism
is called an autoregressive process. In this process, the current value of the process is

expressed as a finite, linear aggregate of previous values of the process and a shock

a. Let Z,,Z, ,,Z,,,... denote the values of a process at equally spaced times
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t, t-1, t-2,... This process is denoted by AR(p). Then, the nature of this relationship

may be expressed as follows:

Z,=¢,Z_,+..+¢,Z, ,+q, 2.5)
or

$,(B)Z, =aq, (2.6)
where ¢y(B)=(I1-¢;B-...-4,B°).

g P
Since er: jl = Z|¢ jl <, the process is always invertible. To be stationary, the
i=l Jj=1

roots of ¢,(B)=0 must lie outside of the unit circle.

2.4.4 Moving Average (MA) Process

Moving average processes are useful in describing phenomena in which events
produce an immediate effect that only lasts for short periods of time. The moving

average process is denoted as MA(g). It is given by

Z =a,-0a,_,-..-0,4a,, 2.7

or
Z,=0(B)a, (2.8)
where 6,(B)=(1-0,B-...-6,B%).

Because 1+67 +...+6] <o, a finite moving average process is always

stationary. This moving average process is invertible if the roots of 6(B) = 0 lie

outside of the unit circle.
2.4.5 Autoregressive Moving Average (ARMA) Process

In general, a large number of parameters reduce efficiency in estimation. Thus, in

model building, it may be necessary to include both autoregressive and moving



12

average terms in a model. This leads to the following useful mixed autoregressive

moving average (ARMA) process:

$,(B)Z, =0,(B)a, 2.9)

If the roots of 6,(B)=0 lie outside the unit circle, the process will be invertible. If
the roots of ¢,(B)=0 lie outside the unit circle, the process is stationary. Also, it is
assumed that 6,(B)=0 and ¢,(B)=0 share no common roots. This process is denoted
by ARMA(p,q).

2.5 Nonstationary Stochastic Process

Many applied time series, particularly from economic and business areas, are
nonstationary and in particular do not vary about a fixed mean. Although the general
level about which fluctuations are occurring may be different at different times, the
broad behaviour of the series, when differences in level are allowed for, may be
similar. It is illustrated the construction of a very useful class of homogenous
nonstationary time series models- the autoregressive integrated moving average

(ARIMA) models.

2.5.1 Random Walk and Drift

The random walk plays a central role in all principal model-building procedures.
At each point in time, the series moves randomly away from its current position. The
stochastic processes were stationary. Although stationarity is a fundamental concept
for the analysis of the time series, stationary models are clearly not appropriate for

modeling a series. The simplest non-stationary process is the random walk

Vi =0y + & (2.10)
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which can be obtained by setting ¢ =1. It means the current observation is equal to
the previous observation plus a random disturbance term. There is no parameter to

estimate since ¢ is equal to one. The first difference of this model is stationary.

“Even if the series is a random walk, there is nothing to prevent fitting an AR(1)
model by regressing y; on y,.;. The consequences of doing so are that the resulting

estimator is biased downwards.” (Harvey, 1990, p.29)

Nonstationarity is described by random walk, drift, trend, or changing variance. If
each realization of the stochastic process appears to be random fluctuations, the
series of movements will be a random walk. If the series exhibits sparse movements
around a level before the end of the time horizon under consideration, it exhibits

random walk plus drift. Drift is random variation around a nonzero mean.

2.5.2 The General Nonseasonal Autoregressive Integrated Moving Average

Process

ARIMA models are associated primarily with Box and Jenkins (1976). They
developed a model selection methodology based on identification, estimation and
diagnostic checking. If the model fails the diagnostic checks entire cycle will be
repeated until a satisfactory model is obtained. This methodology is essentially

applied on modeling stationary processes.

The attraction of the ARMA(p,q) model is providing a restrictive representation of
a stationary stochastic process. It may be extended to encompass a much wider class
of nonstationary models by differencing. If the difference operator is applied d times
before an ARMA (p,q) representation is appropriate, the variable is said to follow an
autoregressive integrated moving average process of order (p,d,g). This is

abbreviated as ARIMA(p,d,q).



14

Predictions for an ARIMA model are made by depicting it as a nonstationary
ARMA model as in Equation (2.11) and then proceeding exactly as in the stationary
case. The general stationary ARMA(p,q) process,

¢,(B)(1-B)°Z; = 6y+6, (B) a; (2.11)

where the stationary AR operator ¢,(B)=(I-¢§B-...-¢,B") and the invertible MA
operator 6,(B)=(1-6,B-...-6,B%) share no common factor. The parameter -6 plays
very different roles for d = 0 and d > 0. If d = 0 original process is stationary and has
an ARIMA(p,0,q). If a series requires first, differencing to convert it stationary, then
it is distributed ARIMA(p, 1,q). The series is then investigated for autoregressive or

moving average components.

2.5.3 The General Seasonal Autoregressive Integrated Moving Average

Models

Traditional methods presented in the previous section are based on assumptions
that the seasonal component is deterministic and independent of other nonseasonal
components. However, many time series are not so well behaved. More likely, the
seasonal component may be stochastic and correlated with nonseasonal components.
Seasonal model as well as regular ARIMA models has parameters that must meet the
bound of stationarity and invertibility. The seasonal autoregressive models ARIMA
(p,d,q)(P,D,Q)s need to be stationary for analysis. For stationarity to exist, both the

regular and the seasonal autoregressive parameters need to lie within the bounds of

stationarity. Thatis, — 1 <¢,, @, <+I.

The bounds of invertibility similarly must hold for multiplicative seasonal moving

average models. Hence, the series
Z,=(1-6,B)(1-0,B" )e, 2.12)

would have to possess regular and seasonal parameters that lie within the same

bounds of invertibility (|9 ’ |, 6.| < +1) for the mixed seasonal moving average model
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to be stationary. If the moving average parameters were confined to this range, the

product of these factors would also be confined to these bounds.



CHAPTER THREE

INTERVENTION ANALYSIS IN TIME SERIES

3.1 Intervention in Time Series

Policy changes or sudden decisions in public and private sectors are result in

effect some changes in certain response variables occurring in the form of time

series. Such intrusions to a time series are usually referred to as interventions.

Examples of specific events of such intervention effects are given in the real life as

follows:

the effect on inflation of the creation of the Canadian Anti-inflation Board
in October 1975,

the impact on the number of the traffic fatalities of introducing the 55
miles-per-hour speed limit in the United States in 1974,

the influence on sales of a change in advertising strategy,

the impact of the Arab oil embargo,

the impact of air pollution control,

the impact of the politics on economy.

Interventions can affect the response variable in several ways. They can not only

change the level of a series abruptly or after a short delay but also deflect a series

going downward, causing it to drift up, or effect some other form of change. “When

the intervention occurred, it must be determined whether there is evidence to suggest

that a corresponding change has occurred in the time series and if so, in determining

the nature and magnitude of this change.” (Abrahamé& Ledolter, 1986, p.355)
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3.2 Description of Intervention Variables

An intervention variable is active only for limited period over the whole length of
data record being analyzed, and is used to describe either exceptional or abnormal
events or variables with infrequent movements. “An intervention variable may only
be used as independent variable.” (McLead, 1983, p.10-5)

In the setting of intervention analysis, it is assumed that an intervention event has
occurred at a known point in time I’ of a time series. It concerns to determine
whether there is any evidence of a change or effect, of an expected kind, on the time

series Y; under study associated with the event.

It is considered that transfer function models are used for estimating the
magnitude of the effects of intervention, modeling the nature of intervention and
possible abnormal behaviour in associated time series. Box and Tiao (1975) have
provided a strategy for modeling the effect of interventions. They consider transfer

function-noise models of the form as following;

_ r w(B)B’
Yt _V(B)ét +Nt - 5(3)

& +N, 3.1

where the term v(B) &, represents the effects of the intervention event in terms of the
deterministic input series &,, and N, is the noise series which represents the
background observed series ¥; without the intervention effects in equation (3.1). “It
is assumed that N, follows an ARIMA(p,d,q) model, @(B)N, =6(B)a,, with
@(B) = ¢(B)(1- B)?. Multiplicative seasonal autoregressive integrated moving-

average (ARIMA) time series models can also be included for N..” (Box etal., 1994,
p.463)

“The intervention variables &, in equation (3.1) are usually taken as indicator

variables indicating the intervention at =7 (Canada, 1985, p.209). There are two

common types of deterministic input variables &, that have been found useful to
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represent the impact of intervention events on a time series. Both of these are
indicator variables taking only the values 0 and 1 to denote the nonoccurrence and

occurrence of intervention respectively.

One type represents an intervention occurring in time T that remains in effect
thereafter. That is, the intervention is a step function,

s =]° t<r (32)
I 1>T

SV is usually referred to as a step input and this denotes the nonoccurrence
and occurrence of interventions. It is typically used to represent the effects of an

intervention that are expected to remain permanently after time T to some extent.

The other one type represents an intervention taking place at only one time
period. Thus, it is a pulse function,

1 t=1T,
P = d 3.3
’ {0 t#T G-3)

The pulse input P/ takes the value 1 at the time of intervention and zeros
elsewhere. It represents the effects of an intervention that are temporary or transient
and will die out after time T. (Box etal, 1994, p.463)

The pulse function can be produced by differencing the step function S™ in
Equation (3.4). That is,

" =57 -5, =1-B)s" (3.4)

“Therefore, an intervention model can be represented equally well with the step
function or with the pulse function. The use of a specific form is usually based on the

convenience of interpretation” (Wei, 1990, p.185).
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These indicator input variables are used in many situations where the effects of
the intervention cannot be represented as the response to a qualitative variable,
because such a qualitative variable does not exist or it is impractical or impossible to

obtain measurements on such a variable.

“Model 3.1 is really a special case of the transfer function model with the input
variables are indicator variables. It can also be seen as a distributed lag model
discussed extensively in the econometrics literature with the exogenous variables
taken as indicator variables” (Canada, 1985, p.209). The transfer function v(B) is
usually estimated from data in the transfer function modeling, whereas in the
intervention analysis it is postulated on the basis of the change expected. “Because of

the deterministic nature of the indicator input series &, in equation (3.1),

identification of the structure of the intervention model operator v(B) cannot be based
on the technique of prewhitening” (Box etal., 1994, p.463). Instead, it is desirable to
postulate the form of the intervention model through consideration of the
mechanisms that might cause the change or effect and the implied form of the change
that would be expected. “In addition, the identification may be aided by direct
inspection of the data to suggest the form of effect due to the known event, and
supplementary evidence may sometimes be available from examination of the
residuals from a model fitted before the intervention term is introduced”(Box etal.,

1994, p.463).

Several different response patterns are possible through different choices of the
transfer function. Table 3.1 and Table 3.2 show the responses for various simple

transfer functions with both step and pulse indicators as input.
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Different combinations of step and pulse inputs can produce various responses.

For example, the response function may be as following in Figure 3.1.

Response Function Output
[ a) a)
—_— Iﬁ)o
_ 98 ), ps® ol [[1] @>0a>0
toa-em)t L 741

b) b)

COMBINED INPUTS
A

wOB R colB P(T) T+1

I;=[(l_53)1(1_3)] f o ﬁj [T @=te=t

Figure 3.1.Response Functions

The model that is shown in Figure 3.1.a or Figure 3.1.b is useful to represent the
phenomenon in which an intervention response process that tapers off gradually but
leaves a permanent residue effect in the system. The impact of an intervention such
as advertising on sales can be represented as shown in Figure 3.1 (a), and the effect

of a price or a tax increase on imports may be represented in Figure 3.1. (b).

More generally, a response may be represented as a rational function

o(B)B?
6(B)

are polynomials in B, b is the time delay for the intervention effect, and the weights

where o(B) = w, —®,B~...—w,B* and 5(B)=1~6,B-6,B> —..—6 B’

@’s in the polynomial w(B) often represent the expected initial effects of the
intervention. The polynomial 5(B), on the other hand, measures the behaviour of the
permanent effect of the intervention. The roots of §(B) = 0 are assumed to be on or

outside the unit circle. The unit root represents an impact that increases linearly, and
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the root outside the unit circle represents a phenomenon that has a gradual

response. (Wei, 1990, p.187)

The following additional points concerning the intervention models are worthy of
note. “The function Y; represents the additional effect of the intervention event over
the noise or “background” series N, Hence when possible, the

model N, = [B(B)/ gp(B)]a, for the noise is identified based on the usual procedures

applied to the time series observations available before the date of the intervention,
that is, Y;, t < T (Box etal., 1994, p.465). Also, it is assumed in Model (3.1) that only
the level of the series is affected by the intervention and, in particular, that the form
and the parameters of the time series model for &, are the same before and after the
intervention. “One should also recognize that there can be considerable differences in
the accuracy with which the intervention model parameters can be estimated
depending on whether the noise A, is stationary or nonstationary, as well as on

whether permanent or transitory effects are postulated” (Box etal., 1994, p.465).

“For multiple intervention inputs, the general class of models is as follows:

b
Y = k Ct)j(B)B p Q(B)

I TE® v

(3.5)

where &;,j=1, 2, ...,k are intervention variables. These intervention variables can -

be either step or pulse functions” (Wei, 1990, p.187). Moreover, the parameter
estimates and their standard errors for the intervention model are obtained by the

least squares method of estimation for transfer function-noise.

More generally, they can be proper indicator variables. The form

b.
® (B)B / / 0 j (B) for the jth intervention is postulated based on the expected form

of the response given knowledge of the intervention. The main purpose of the models
is to measure the effect of the interventions. Thus, with respect to the intervention

variables &, the time series free of intervention is called the noise series and denoted
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by N, and its model is hence known as the noise model. The noise model

[B(B)/ l//(B)] a, is usually identified using the unmivariate model identification

procedure based on the time series Z, before the date of intervention. If diagnostic
checking of the model reveals no model inadequacy, then it can make appropriate
inferences about the intervention. Otherwise, appropriate modifications must be

made to model, and estimation and diagnostic checking repeated. (Wei, 1990, p.187)

3.3 Procedure for Building an Intervention Model

In some situations, it is known that exceptional external events have affected the
variables being forecast. Such exceptional external events involve some temporary
inducement to change other variables and sometimes it is difficult to quantify these
effects. “The effect of an exceptional event, such as a strike, or holiday, may be to
produce one or more large residuals in the univariate model. Such large residuals
may be a distorting influence on the structure of the model tentatively entertained at
the identification stage, the values of estimated parameters and the magnitude of the
residual variance”(McLead, 1983, p.9-8). For a particular time (month, year, etc.),
these external activities took place are characterized by a dummy variable in the form
of an impulse of unit height and in the same particular time states which there is no
external event are characterized by zeros. Some other series can be related to the
external series by a transfer function model. This transfer function model can be used
to explore various hypotheses concerning the dynamic (or lagged) relationship
between two variables. Such dynamic models, involving the dummy variables as
independent variables, are called intervention models. Practical applications of
intervention analysis have included the following:

o The effect of different kinds of promotional activity on sales,
e The effect of changes in politics or legislation (represented by a step function
consisting of zeros before the policy change and ones after the change) on

business and time series in economy.

An intervention analysis, performed by the user’s request, may be employed to

avoid extreme values that would influence the next steps of the analysis:
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specification, estimation, test for adequacy, and forecasting (Mélard,&Pasteels 2000,
p. 501). In the intervention analysis, the input series will be in the form of a simple
pulse or step indicator function to indicate the presence or absence of the event.
Initially, it will be assumed that the timing of the intervention event is known. “The
method is then generalized to study the impact of the events when the timing of
interventions is unknown and hence leads to the general time series outlier analysis”

(Wei, 1990, p.188).

Traditionally a Student’s t-test is used for estimating and testing for a change in
the mean levels before and after intervention. “Such a test may not be adequate when
the data occur in the form of a time series. This is because (a) in these cases the
successive observations are usually serially correlated and often nonstationary, and
(b) the form of the change may not be a step as required by the t-test but it could be a
gradual increase (decrease), a ramp increase (decrease), or any other form of the

change”(Box&Tiao, 1975, p.70).

When the intervention variable is being used to describe an exceptional or
abnormal event, the user has to formulate the variable from his/her knowledge of the
“event. The formulation must produce an intervention variable, which is consistent

with the dependent series to which it is to be related.

The length of an intervention variable is conditioned by the dependent series to
which it is to be related. Because, in general, it is not possible to back forecast an
intervention variable without knowledge of the mechanism used for generation, then
it is necessary to supply back forecasts for any intervention variables for which the
generating mechanism are not known. In all cases, 21 back forecasts must be

provided.

Thus, an intervention variable must always have 21 more observations than its
corresponding dependent variable. It is assumed that the first 21 observations are

backforecasts. When an intervention variable is used for forecasting, both backwards



26

and forward forecasts must be provided. The number of backward and forward
forecasts required is

e backward forecasts = 21

e forward forecasts = forecast lead time (LT)

Thus, an intervention variable used for forecasting must always have 21 + LT
more observations than its corresponding dependent variable. It is assumed that the
first 21 observations are the backforecasts, and the last LT observations are the
Sforward forecasts. (McLead, 1983, p.10-5)

Building the intervention model is the iterative process illustrated as Figure 3.2.
The data requirements and the situations in which continuous and intervention

variables can be used are summarized in Table 3.3. (McLead, 1983, 10-7)

Residuals » | MODEL IDENTIFICATION-DETECTION
Y
MODEL IDENTIFICATION- HYPOTHESIS
Other —»
Information
MODEL IDENTIFICATION -FORMULATION
i MODEL ESTIMATION
y
REFORMULATION MODEL DIAGNOSTIC CHECKING
Unacceptable
model l
Forecasting

Figure 3.2. Stages in the Iterative Approach to Model Building
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Table 3.3. Data Requirements for Transfer Function/Intervention—Noise Models

Purpose Variable Variable Series Number
Description Type Length of
Allowed Data
IDENTIFICATION |Dependent (Y;) | Continuous /_/-\/\rv'/\/
and —> N
Independent (X;) N
Dependent (¥;) | Continuous r/\/\W/\/
N
«—>
N
ESTIMATION Independent (X;) | Continuous IJ\/\N/\/
AND N
CHECKING N
Independent (&) | Intervention |
S R N+21
21 N
r/\/\n’/v N
—>
N
Dependent (Y;) | Continuous /M
<+—>p«——>» | N+LT
FORECASTING N LT
Independent Intervention l
ependent () N+LT+21
>
21 N LT

N: Number of data points in dependen.t variable, LT: Forecast lead-time

(McLead, 1983, p.13-8)
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Iterative Process of the Intervention Analysis

An overall strategy for performing an intervention analysis is outlined in the
Jfollowing steps.

1. Using the preintervention data, build a time series model for Z; adopting the
iterative strategy of specification, estimation and diagnostic checks.

2. Given knowledge of the interventions, frame models for change that
describe what is expected to occur.

3. Estimate the parameters of the joint model, perform diagnostic checks,
modify the structure if necessary, and arrive at a final model.

4. Make appropriate inferences about parameters (Canada, 1985, p.211).

A\

Assumptions of the Intervention Analysis

It should be emphasized that the analysis described assumes that
1. the time series model and its parameters before and after the intervention are
the same, and
2. there are no other events or interventions coinciding with the particular one
being considered.
It is important to keep these assumptions in mind when drawing conclusions about

any intervention (Canada, 1985, p.212).
3.3.1 Model Identification

Model building for a process containing an intervention cannot proceed by pre-
whitening since the input variable is predetermined and the shock occurs once. The
investigator must consider whether the effect is likely to be permanent or temporary,
whether the onset will be subject to a delay and whether the impact will be sudden or
gradual. As in other cases, the choice is not irrevocable, but a good initial

specification will help to ensure convergence of the estimation procedure.
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Using & to denote P; or S; as appropriate and v(B) to denote its impulse function,
the model becomes
6(B)

Y, = v(B)S, +M£t (3.6)

The next step in model identification is the usual one of selecting the ARIMA

scheme and the available tools.

A problem arises in that a major jump caused by & would distort estimates of the
autocorrelations. One of four possible approaches may be used, depending on the
particular series:

a) use only observations prior to the intervention or, less commonly, only some
time after the intervention;

b) use observations both before and after but exclude all pairs using
observations in the interval [ty ,ty+k], in which the effects of the intervention
are deemed to have worked themselves out;

c) estimate the residuals ignoring any error structure, and then plot the sample

autocorrelation functions;

&= _{)(‘B)gt (3.7

d) use the whole series, ignoring the effects of the intervention.

Each method has its atiractions, depending upon the behaviour of the
phenomenon under consideration; use of (c) is advised whenever the effects of the
intervention are large and fairly sudden, whereas (b) is probably best for rather

short series (Kendall&Ord, 1992, p.227).
3.3.1.1 Model Identification-Intervention Detection
In most cases, an exceptional event is detected from the presence of one or more

different from normal or usual residuals, which may occur after fitting a univarite

stochastic or transfer function-noise model.
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When data set is fitting any univariate or transfer function-noise model, it is
important to examine the residual series values. There are two points to examine the
residual series. The latter is whether the residuals would be expected on the
assumption of a normal distribution and whether any of these residuals are associated
with a known exceptional event. The former is direction of behaviours of the residual
series. “Especially it is looked forward that whether any groups or runs of residuals,
which appears to behave in an untypical way, associated with a known exceptional
event. After the examination of the residuals against a quantified test, the residuals

are normally tested against twice their standard deviation.” (McLead, 1983, p. 13-5)

There is a class of problem requiring the use of intervention analysis, which does
not involve the detection step. Typical of this type of problems are situations in
which price and advertising effects are being investigated and in which the value of
the series moves only occasionally. This type of problem is one in which a priori
knowledge would suggest a relationship should exist, but where it is by no means
certain that the effect of movements in the intervention variable is going to be

reflected in abnormally large residuals, or groups or runs of large residuals.

3.3.1.2 Model Identification- Hypothesis

The objective of developing an intervention model is obtain a quantitative
measure of the effect of an exceptional event. A necessary intermediate step in
obtaining this quantitative measurement is a qualitative description of the

intervention.

The qualitative description draws together all the known facts about the
exceptional events and its effects, and is aimed in particular at describing the nature
of the exceptional events and the possible range of effects that have been induced in

the series being analysed.

The hypothesis is based almost exclusively on the model builders’ knowledge of
the situation and only relies on the time series data being analysed at the point at
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which the question is asked; “Does the hypothesis make sense in the light of the
data?” It is not unusual at this point for a hypothesis to be rejected because it is so
obviously at variance with the behaviour of the data.” (McLead, 1983, p.13-5)

For the exceptional event, there are two crucial points. One important point is that
whether the event occurs at one point in time or permanent. For example, a strike
normally only occurs at one point in time and is permanent. As another example, a
change in the law only occurs at one point in time but is permanent. Another
important point is that if the event occurs at more than one point in time, it is crucial
whether all the individual instances can be considered simultaneously or they have to
be considered separately. And also whether the event can be quantified in any way or

not is another important point.

Investigator also has to be determining the effect of the exceptional event. He has
to decide that the effect of the exceptional event is transitory or permanent. In
addition, if the effect is transitory over, it is important that what period the effect
lasts. For transitory or permanent effects, it must be determined that what the form

and direction of the effect is.

3.3.1.3 Model Identification — Formulation

Formulation involves the translation of a qualitative description of the
intervention into a form in which it can be quantified. The formulation involves three
distinct steps:

1. Quantification of intervention variable.

2. Designing an intervention mechanism which, when it operates on the
intervention variable, will produce the desired effect on the series being
analysed.

3. Incorporating into the intervention model the features necessary to describe
the behaviour of the major part of the time series which is unaffected by the

intervention variable.
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a. Quantification of Intervention Variable

The quantification of an intervention variable divides itself into two parts as
formulating a structure and deciding upon a precise numerical representation. An
intervention variable may have any of a wide range of structures. In practice two

structures pulse and step are commonly used.

The way in which a precise numerical representation can be assigned to the
intervention variable will depend upon which of two classes the variables fall into:

CLASS 1: which contains variables, which cannot have a meaningful scale of
measurement assigned to them e.g. strikes, changes in a law, etc.

CLASS 2 : which contains variables which are measured on a meaningful scale

e.g. price, promotional activity.

In the case of class 2 variables some scale of measurement is usually available and
it is a relatively simple matter to decide on a precise scale of measurement given that

the structure will already have been formulated.

b. Design of Intervention Mechanism

To be able to design an intervention mechanism, first it is necessary to
understand the response characteristics of the autoregregressive and moving average

operators in a transfer function.

The design of the intervention mechanism involves the selection of a transfer
function, which contains the appropriate autoregressive and moving average
parameters, to ensure that the formulated intervention variable will produce the
desired effect in the series being analysed. In this context the nonseasonal
differencing operator may be used as a special case of an autoregressive operator

with a & value of 1.
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¢. Noise Structure

The formulation of an intervention (variable and mechanism) is designed only to
describe the anomalous behaviour of a time series over a limited period of time. To
complete the description of the time series it is necessary to formulate a structure for
the noise »,. This structure is obtained by univariate stochastic or transfer function-

noise model that has already been developed to describe the time series.

“The univariate stochastic or transfer function-noise model that is used to
determine the structure is normally the model, which was used to originally detect
the presence of the exceptional event”. (McLead, 1983, p.13-18)

It is not always the case that the model used to originally detect the presence of
an exceptional event is used to formulate the noise structure. The reason for this is
that the exceptional event may be distorting the series to such an extent that the true
model structure is hidden, and a model developed on the whole of the series may be
inadequate representation. If it is believed that this situation exists, and sufficient
data is available, a univariate or transfer. function-noise model would be developed
on the longest section of the series which was unaffected by the exceptional event

this model would then be used to formulate the noise structure.

In general, if the noise is at the same structure, it is assumed that the univariate
stochastic model, developed to describe the time series or the noise part of a transfer
function-noise model developed to describe the time series. In both situations these
models may have been developed over a length of the time series, which may or may

not have included the effect of the exceptional event.

There are two fundamental advantages of formulating the noise structure in this
way:
1. The univariate or transfer function-noise model from which the noise is

derived represents the best understanding that will be available of the time
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series and thus provides the most adequate means available to identify the
noise structure.

2. In the event of the intervention mechanism, failing to describe the effect of the
exceptional event, or having parameters which are not significant, then, the
intervention-noise model degenerates the univariate stochastic ( or transfer

Sfunction-noise) model.(McLead, 1983, p.13-18)

In the case in which a transfer function-noise model is being used by a means of
detection and formulating the noise structure, then the fact that the model includes

the effect of specific independent variables must also be taken into consideration.

The introduction of these independent variables may have had one of three effects
on the residuals obtained from the univariate stochastic model of the dependent
series.

1. To have no effect on the abnormal residuals.
2. To reduce, but not completely remove, abnormal residuals.
3. To induce abnormal residuals. (McLead, 1983, p. 13-18)

If situations (1) or (2) have occurred, then the correct formulation of the
intervention model must take into account the effect of the specific independent
variables. This is done by also introducing into the intervention model the transfer
functions, which have previously been established for the specific independent

variables.

If situation (3) has occurred, an intervention model should not being developed to
describe the abnormal residuals associated with the dependent series. The correct
course of action should be to determine what abnormal behaviour exists in the

independent variables- and to correct this abnormal behaviour.
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3.3.2 Model Estimation

“The procedure for estimating the parameters in an intervention model is identical
to that of a transfer function containing a continuous variable. Computationally
intervention variables and ordinary transfer function variables are handled in a
similar way”(McLead, 1983, p.13-22).

As with a transfer function-noise model the estimation process is iterative. To
reduce the amount of computational effort required, and to minimize the risk of
encountering a local minimum in the sum of squares surface, it is desirable to

provide suitable preliminary estimates where possible.

Preliminary estimates may be required for three purposes.

1. For the noise, preliminary estimates may be obtained from either the
univariate stochastic model, or the noise part of the transfer function-noise
model.

2. For the transfer function, in those cases in which a continuous variable (X}

and an intervention variable (&,) are introduced into the model

simultaneously it is possible to obtain appropriate preliminary estimates for
the transfer function for the continuous variable from the previously fitted
transfer function-noise single input model.

3. For the intervention, the intervention mechanism presents some difficulty
concerning preliminary estimates, as there is no previous model building
Jrom which preliminary estimates may be derived. It is, in fact, necessary to
consider each situation in deriving preliminary estimates. Examples of some

typical situations are given in Table 3.4. (McLead, 1983, p.13-23)

In absence of any preliminary estimates, suggested values 0.1 is used.
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Table 3.4. Preliminary Estimates for Intervention Mechanisms

CASE| VARIABLE

INTERVENTION

MECHANISM

STARTING
VALUES

Wy

Set @y equal to
minus the residual
series value at
time ¢.

(@, — »,B)

t t+l

Set @y equal to
minus the residual
series value at
time ¢ and @; equal
to the residual
series value at
time #+1.

(1 - 61B)

Set @y equal to
minus the residual
series value at
time ¢ and d; equal
to 0.2.

@y

As Case 1

0 t

(1-46,B)

As Case 2

(McLead, 1983, p.13-2)
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Residuals Regeneration

The estimation process attempts to determine the parameter values, which
minimize the sum of squares of the residuals (the a¢’s). For this purpose, it is
necessary to generate the residuals, using the identified model structure and the

preliminary or current parameter values.

Tterative Qutput

The iterative nature of the estimation process enables parameter estimates to be
obtained at each iteration; it is recommended that these intermediate estimates are

examined in two respects in situations where convergent estimates are not obtained.

In situations in which the identified model is over parameterised (and the
parameter estimates are highly correlated), the parameter values will oscillate
between successive iterations and convergent parameter values may be impossible to
obtain. An inspection of the iterative output will reveal this situation, which will be

subsequently confirmed during model checking.

The maximum number of iterations allowed for the estimation of the model
parameters may be insufficient to obtain convergent values. If convergent estimates
are not obtained an examination of the iterative output will;

a) confirm that the parameter estimates are moving towards convergent values
b) indicate if the movement in the parameter estimates is still sufficiently large

to warrant restarting the estimation process.

Convergence Criteria

While the objective of parameter estimation is to determine the model parameter
values which minimize the sum of squares of the a;’s, the criterion used to stop the

estimation process is based on the movement in the parameter values at successive
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iterations. The estimation algorithm stops the estimation process when all model

parameter values satisfy the relationship;

Parameter value at iteration 7 - parameter value at iteration 7 - 1

- — < Tolerance
Parameter value at iteration i

A typical value used for tolerance would be 0.00001. The only supplementary
comment that needs be made is that intervention variables have to be handled in a

slightly different way in respect to residual regeneration.

3.3.3 Model Diagnostic Checking

Using the formulated intervention model and preliminary estimates, the model is
estimated in the normal manner, allowing sufficient iterations to achieve convergent

parameter estimates.

At the end of the estimation process the following information should be obtained
for model checking purposes:

e Parameter estimates and their standard errors

e Transfer function/intervention mechanism gains and their standard errors

e Estimated residual variance

e Model in factored form, with the period, frequency and damping factors of any
complex operators

e Correlation matrix of the parameter estimates

e Residual series values and their standard deviation

o Histogram of the residual series values

e Table of anomalous residuals.

e Auto- and partial-autocorrelation function of the residual series values and
associated chi squared statistic

e Cross-correlation function between the residuals and any continuous variables,

but not intervention variables.
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3.3.3.1 Model Checking Strategy

In the checking process, the diagnostic checks produced at the end of the
estimation must be answer to four questions:
¢ Does the intervention adequately describe the effect of the exceptional event?
e Which is the most appropriate intervention in those cases in which more than
one mechanism has been formulated?
e Has the structure of the noise been changed?
e Has the structure of any of the transfer functions describing the effect of the

continuous variables been changed?

The answer to these questions will lead to either an acceptance of the fitted model,
or the provision of information that will enable all or part of the model to be
reformulated. In the discussion that follows the function of each of the diagnostic

checks are examined.
3.3.3.2 Parameter Estimates and Standard Errors

The parameter estimates and their standard errors are used to decide which
parameters are to be retained in the model, and where the parameters are considered
unnecessary to point towards a simplification of the structure in particular parts of
the model. In addition, they are used to deci@e whether the sign and magnitude of the

estimated effects make sense.

“In particular case of the intervention mechanism, it would be expected that if the
mechanism had been formulated correctly, all the parameters would be of sufficient
statistical significance to justify their retention in the model, and the magnitude and
sign of the parameters would confirm the hypothesis that had been formulated”
(McLead, 1983, p.13-25).
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The evidence produced by these tests can point to number inadequacies in the
model in general, and the following inadequacies in the intervention mechanism in

particular.
3.3.3.3 The Gain and Its Standard Error

The gain and its standard error measure the overall or net effect of a continuous
or intervention variable and are used to decide whether the overall effect makes sense

and is significant.

In particular case of intervention mechanism, it would be expected that the gain
could be directly related to the description of the exceptional event that had been

formulated.

By correct formulation of the intervention variable and mechanism it is possible in
particular cases to impose overall constraints in effect to perform a constrained

estimation.
3.3.3.4 Correlation Matrix of Parameter Estimates

The correlation matrix of the parameter estimates provides the means by which it
can be determined whether the parameters describing the intervention mechanism are
estimated independently of the parameters describing the independent series transfer
function and the noise or the parameters describing the intervention mechanism are

estimated independently of each other.

“For well-structured models, it is desirable that the correlation between the
parameter estimates is as small as possible, and preferably zero.” (McLead, 1983, pp.
13-27,13-28)

In practice, the correlation between the estimates is seldom zero, and can be high

(greater than 0.6) if part of the model is badly structured. In situations in which the
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correlation between parameters is high, the particular correlations provide the

evidence that is necessary to decide how the model structure should be simplified.

High parameter correlation can occur either between the parameters describing the
intervention mechanism in which case a simplification of the intervention
mechanism is indicated and/or between the parameters describing the transfer
function, the intervention and the noise —in which case either a simplification of one
part of the model may be required, or complete removal of one part of the model may

be necessary.

Any simplification suggested by the correlation matrix should be checked for its
descriptive implications. This is particularly important if the simplification of second
or higher order autoregressive operators with complex roots suggested. Such
operators are describing cyclical behaviour, and this description will be lost if a
second order operator is simplified to a first order operator, or may be lost if the
order of a higher order operator is reduced. The case that high correlation occurs

between parameters in different parts of the model is seldom.
3.3.3.5 Model in Factored Form

It is important that the models that are developed are inherently stable. The
principles on which the Box-Jenkins approach is based specify very precise stability

criteria.

For any model that is developed it is of prime importance that basic checks are
made concerning model stability. To perform these checks, the model is presented in
factored form. What is mean/t by this is that in those cases which an operator is of
second or higher order should be factorized into real or complex factors. Each of

these factors should then be examined to see if they violate the basic stability criteria.

The factors of any operator may be real and/or complex. Whether the factors are

real or complex they should be tested to ensure that they lie within the acceptable
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region. If factors are found which lie outside the acceptable region the model will be

unstable and the forecast function will be explosive.

In these circumstances, the model structure must be modified to remove the
instability. In addition to providing information on stability, the factored form of the
model provides which will enable a better understanding of the model to be obtained.

The second use of the factors is to suggest modifications to basic transfer function

or intervention mechanism, and/or to the noise structure.

In intervention models, the factors are used in a similar way to that in which they
are used in a transfer function. Two particular characteristics should be looked for in
particular cancellation of autoregressive and moving average operators, and

alterations of basic mechanisms.

If the structure of the intervention mechanism containing both autoregressive and
moving average operators are too complex, there may be factors in the operator

which cancel, and which would point towards simplification.

If the operators describing the intervention mechanism have factors close to
(1-1.0B) and (1-0.0B), this can suggest alterations in the basic mechanism between

the dependent and intervention variables.

3.3.3.6 Estimated Residual Variance

The estimated residual variance provides an absolute measure by determining the
performance of the model by means of comparing two or more models. This test
does not provide means by which the structure of a model may be simplified or

elaborated.
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3.3.3.7 Model Residuals and Histogram of Residuals

The last step of the model identification is examining the residuals. At the end of
the step, it must be found answer to the following questions:
1. Are these residuals which are significant at a particular level, more
important than that of occurred by chance?
2. Have all the symptoms of the effect of an exceptional event been removed?
3. Are the residuals approximately normally distributed?

4. Do the residuals have constant variance over time?

It is important to ask and answer all these questions. Question 1 and 2 are of

particular importance in intervention analysis.

Significant Residuals

The presence of a significant residual or a group of residuals was the primary way
for the need for intervention analysis was originally detected. After removing the
effect of a particular exceptional event, the presence of further exceptional events
may be revealed. The individual or groups of large residuals should, therefore, be

viewed in the same way in which they were viewed at the detection stage.

Removal of Symptoms

If the intervention has been correctly formulated, its effect will be to reduce the
size of the anomalous residuals identified at the detection stage to acceptable values
not to induce further anomalous residuals immediately before or after the
intervention is active. The failure in removal of the originally identified residuals or
to creating new anomalous residuals is a clear indication that the intervention has not

been correctly formulated.
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3.3.3.8 Autocorrelation and Partialautocorrelation Function of the Residuals

The removal of the effect of the exceptional event can reveal structure in the
noise, which was previously masked. The reason for calculating the autocorrelation
function and partial autocorrelation function of the residuals is to check that there is
no evidence that any new structure should be added to the noise, and if there is any

evidence of the necessity for additional structure to decide what it should be.

The principles and actions involved here are identical to those employed in the
development of a univariate stochastic model, or the noise part of a transfer function-

noise model.

3.3.3.9. Cross-Correlations Between Continuous Variables and the Residuals

The removal of the effect of the exceptional event can reveal structure in a
transfer function that was previously masked. The cross correlation function provides
the means by which a check can be made for the presence of new structure, and if

necessary the form of this structure.

The principles and detailed actions required here are identical to those normally
employed in the development of a transfer function. Because an intervention variable
is active over such a short period of time it is not possible to calculate a meaningful

cross correlation function for either original identification purposes or checking.

In Table 3.5, a summary has been prepared of the purpose of each of the
diagnostic checks, and the use of these checks in answering the four basic questions

being asked about the intervention model.
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3.3.4 Reformulation

As a result of model checking, evidence may be found to suggest that the model is
defective in a number of ways. The reformulation is assessed while supporting the
evidence of defective behaviour and a decision is made on how the structure of the
model changes. This evidence can point towards the need for change in any or all of
three major areas

e the intervention
o the transfer function

e the noise

It is common the evidence to suggest changes in more than one area. In the case
of more than one area, it is not advisable to change more than one part of the
structure at any time. Good general sets of principles are first it should be attempt to
correct the largest defect. Secondly, then if correcting the largest defect fails to

remove the other defects, it should be attempt to remove these defects in order of

importance.

In reformulating the intervention, the diagnostic checks will point investigator

towards three possibilities as illustrated Table 3.6.
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Table 3.6 Possible Situations When Intervention is Reformulation

Simplification Elaboration Complete
Reformulation
Parameter Estimates YES NO YES
Gains NO NO YES
Factored Form YES NO YES
Correlation Matrix YES NO NO
Residual Series NO YES NO

3.3.5 Forecasting

When a model containing an intervention variable is used for forecasting, it is
necessary to provide external forecasts of the intervention variable. These external
forecasts are required because it is not possible to develop a univariate stochastic
model for the intervention variable from which meaningful forecasts can be

produced.

The number of externally supplied intervention variable forecasts which must be
provided must be equal to the required forecast lead time minus any delay in the
intervention mechanism. Given that external forecasts of the intervention variable are
available, the intervention variable is used in exactly the same way that a continuous

variable with externally supplied forecasts are used.
3.4 Advantages and Disadvantages of Intervention Analysis
A time series research design may be required to detect changes in level, slope or

regime of a process. Sometimes the impact of the intervention, treatment or event is

not applied instantaneously. A time series research may be needed to detect a
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gradual, threshold, delayed or varying effect. A principal advantage of intervention
analysis is that it focuses on the sequence of events, some of which may be input and
others of which may be responses. Along with the covariation of input and response,
this sequence of these events is necessary for the inference of causality. The
modeling of the type of response reveals a sense of the response facilitates

understanding of the nature of the effect, as it were.

Intervention analysis may be afflicted with problems that threaten the internal and
external validity of the analysis. The researcher must be sure that the series is
properly defined conceptually and operationally before data collection. Proper
administration of the data collection and maintenance of the records throughout the
process is necessary. The time intervals must be made small enough to capture the
process to be studied. If there is trend, cycle, or seasonality inherent in the series,
then the instrumentation must be calibrated to units of temporal measurement
appropriate to the capture, detection, identification of these components. Without a
large enough sample size for the preintervention and postintervention series, there
will not be enough power to detect the differences of trend, cycle, seasonality, noise,
or impact necessary for modeling and intervention analysis. The sample size plays
very important role in intervention analysis. When the sample size is not enough, the

impact of intervention will be biased.



CHAPTER FOUR
APPLICATION

Recent increases in the number of traffic accidents and deaths in these accidents in
Turkey make it necessary to conduct many studies on identification of the causes of
these accidents and methods to prevent these accidents. In the last 17 years (1984-2002),
4,586,082 traffic accidents occurred in Turkey, 106,488 were killed and 1,748,565 were
injured in these accidents (WEB_1).

The recent amendments in the traffic laws have not only increased the monetary
amounts of fines, but also changed the methods of punishment to persuade people to quit
their habits of committing traffic crimes. Precautions taken for decreasing number of
traffic accidents and deaths affect time series of accidents. The aim of this study is to
obtain quantitative measure of impact of intervention events on time series of traffic
accidents. Besides, another aim is, to take precautions against any unusual values in the
time series of traffic accidents that might have resulted as a consequence of the
intervention event through intervention analysis. This will ensure that the results of the
time series analysis of the traffic accident series, such as the structure of the fitted
model, estimates of model parameters, and forecasts of future values, are not seriously

distorted by the influence of these unusual values.
4.1 Description of Traffic Accident Data
This thesis essentially depends on the validity of two assumptions. The first

assumption is that accidents data are correlated to each other, and so the ratio of traffic

accidents which occurred in the evenings to those taking place in the day time fits with
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lognormal model. The second assumption is that the data are most likely to be affected

by certain intervention. The Box and Tiao method is used to analyze such data.

The data are obtained from the database which is gathered by Traffic Research
Center, General Police Directorships and Ministry of Internal Affairs of Republic of
Turkey. Statistics of traffic accidents resulted in death and injuries occurred in Izmir
between January 2002 and July 2003 are evaluated. The data are arranged weekly for
measuring the effect of intervention more accurate. The data arranged for 83 weeks are

given in Appendix 1.

Yesildere, Yenigehir and Karabaglar routes have been selected for examination in
Izmir. These routes are connected to each other and they are effected by multiplicative
factors. They are also effected by external factors (driver mistakes, characteristics of the
road, driver license issue date etc.). The statistics of traffic accidents resulted in death
and injuries occurred on those routes are examined. The new mobile radar control has
just been started on these routes by Izmir Traffic Control Department. The new radar
control has been put into practice in two different time intervals as day and evening
time. The radar control which has been carried out according to day and evening time is

assumed as an intervention to the series of traffic accidents.

4.2 Adaptation Traffic Accident Data to Lognormal Distribution

In past research, accident predictive models have often been developed with accident
ratios as dependent variable using simple or multiple-linear regression. In this traditional
approach, the dependent variable was modeled as a linear combination of highway-
related interactions, under the assumption that the dependent variable follows a normal
distribution. The results obtained from this approach have generally been disappointing,
both in terms of the proportion of the variation in accident ratios explained by the

models and the generally weak role of geometric design variables as accident predictors.
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Part of the reason for the disappointing results of past research may be that multiple

regression is an inappropriate approach for developing such relationships.

There are several reasons for this concern. First, accident ratios often do not follow a
normal distribution. Traffic accidents are random and discrete events. Even if the traffic
accident ratios are assumed to be a continuous random variable, discrete nature of
accident data do not change. Second, accident frequencies are typically very small
integers. It is unusual to record no accidents in the dimension being examined during the
whole study. In fact, the poisson and negative binomial distributions are often more
appropriate for discrete counts of events that are likely to be zero or small integer during

a given time period.

Lastly, accident frequencies and accident ratios must be non-negative. But in
traditional multiple-regression models there are no constraints to make predictions from
negative accident frequencies or accident ratios, which will lead to meaningless results

in the use of the predicted model.

Lately several studies have implemented nontraditional statistical approaches that are
based on other distribution assumptions rather than normal distribution assumptions. It is
also observed that many researches are conducted where nonparametric analyses are

used for traffic accidents.

4.2.1 Lognormal Distribution on Traffic Accident Data

DYS;; denotes the corresponding traffic accidents resulted in deaths and injuries on
the Yenisehir, Yesildere and Karabaglar routes during day time and EVGS; denotes
traffic accident sample (i =1,2,3) resulted in deaths and injuries that occurred on that
road at time ¢ in evening time for 83 weeks. The ratio is defined between geometric
mean of traffic accidents in the evening time and in the day time by

Ry = GEVGS; | GDYS;, i=1,2,3 and £=1,2,..,83. After examining the traffic accidents of
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evening time, it is found that the intensity of traffic accidents occurred during the
evening time is greater as a result of no radar control. Knowing this fact, existence of a
recursive type interdependency, between the three routes can be assumed. Since
Yenisgehir, Karabaglar and Yesildere routes are connected to each other, any traffic
accident occurred on any these three routes will be dependent to each other and also are
affected from external factors (driver mistakes, characteristics of the road, driver license
issue date etc.), the ratio R, of point i/ at time ¢ can be expressed as in the following

recursive relationship,
Ry=LiR; 1, i=1,2,3; t=0,1,2,..,83

where (L;, Ly, L3) is a positive random vector. Thus,

3
R3=Ry HL,. t=1,2,.,83 4.1)

i=1

where Ry = Ry, the initial value for the ratios. In the notation, R;=R; since Rj is the last

ratio for point i. Then ratio R, can be rewritten as

3 3
R=Rg []‘[L,’”] =Ry [G, t=1,2,.,83 (4.2)

3
where G; is the geometric mean (GM) for L;, Ly, L; (G3 = 3’1—[ L, ). Therefore, from the

i=1
relation (4.2), it can be concluded that the ratio R; which is the geometric mean of the

ratios at the sample routes are proportional.

R, can reflect traffic accident rate increase when it is greater than one, and decrease

when it is less than one, and stability when it is equal to one. It is reasonable to assume
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that the events are effected by multiplicative errors rather than additive, since the error
sources contribute multiplicatively to the ratio R,. Besides, any changes in the traffic on
one route will produce changes in the traffic at the other two routes in a multiplicative
fashion. Depending on above mentioned assumptions and results obtained by Crow and

Schimuzu (1988), R, can be rewritten as,
3
R=Ry [](1+6,) t=1,2,..,83 4.3)
I=l

where {5} is a set of mutually independent and identically distributed random variables

with |6, <1. In fact relation (4.3) can be deducted from (4.1) by letting L, = I+, Using

the Taylor expansion of In (1+¢6; ), In R,

3
InR, =InR,+).6,

i=]

can be approximated by using additive central limit theorem /n R, is asymptotically

normally distributed (Crow, &Schimizu, 1988, p. 5).

The random variable R is said to have a three-parameter lognormal distribution
R~ A(% W o), if the random variable Y= In(R-y), where R > , is distributed normally
(1 6%), o>0. The probability density function of R is given by

1 - 2
fr;vpo) = 0'\/5;(1*—;;) exp ) [ln(r—y)—,u] P<F<® c>0 (4.4)

The three parameter lognormal distribution can confirm the use for the geometric
mean of ratios. On the other hand to overcome the strong dependency between the

measurements on the road, hypothesis concerning differences between frequency of
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traffic accidents in days and evenings has to be tested as opposed to the traditional
differences of transformation of observations. The latter does not rely on a solid
statistical theory; rather it only assumes that taking the difference of the corresponding
observations may eliminate the interdependency among them. On the other hand, it
counts for the left-hand truncation in the observed data values. The procedure followed
in this thesis can not be considered as a simple logarithmic transformation for the
observed data. It is rather a distribution adjustment for the truncation part in the
probability model, which is taken care of by the location; (threshold) parameter y.

4.2.2 Lognormality Plot of Data (Q-Q Plot)

Q-Q plot is the plot of random variable’s quartile versus any quartile of tested
distribution. Probability distribution plot is generally used to see whether data
distribution fits any specified distribution. If chosen variable fits tested distribution then
the plotted points fall approximately on a straight line. Otherwise, it implies that chosen

variable does not fit the tested distribution.

Based on the previous discussion on methodology and due to the truncated nature of
data, it can be assumed that the data under consideration fits the lognormal distribution
with three parameters (% 4, o). First of al, the ratios of the measurements in the evening
time to the measurements in the day time are calculated and then the geometric means
for successive ratios are obtained. The geometric means can be seen in Appendix 2. In
order to check the data and confirm the goodness of fit of the lognormal model,
histogram of data is plotted in Figure 4.1 and the geometric means of the ratios for the
traffic accidents on a lognormal probability paper plotted in Figure 4.2, which shows an

adequate fit.
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Figure 4.2. Lognormal Probability Plot for Ratios

Examination of the Sample Autocorrelation Function (SACF) of the geometric mean
of the ratios plotted in Figure 4.3 shows no significant SACF at any lag, implying the
independency of the geometric means of these ratios in time ( Al-Khalidi, 2002, 5.694).
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Figure 4.3. Autocorrelation Function for Log Adjusted Ratios
4.2.3 Point Estimation of the Three Parameters of the Lognormal Distribution

The parameters % u and o of the lognormal distribution will be estimated using the
Moment Estimation (ME) and Modified Moment Estimation (MME) (Cohen, &Whitten,
1988, p.76 etal.1985). For an ordered sample of size 83, the estimating equations are

ER) =7 , V(R) =5 and E[In(R;-y)]=In(r;-y) 4.5)

where 7 and s° are the sample mean and variance (unbiased) and R; is the first order
statistic ( a random variable) in a random sample of size 83 and r; is the corresponding

sample value.
Appropriate substitutions of the moments of lognormal into (4.5) yield,

F=y+ete””?
= e*e” (e” -1) (4.6)

r=y+ e’ exp(cEZ, )
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where EZ; , is the expected value of the first order statistic from the standard normal

distribution (0,1). Solving equations (4.6) result in:

p=tle” e -] @“7)

and & can be found using Appendix 3, by entering the table or the figure with

J(n,6)=s>/(F—r,)* to read & . The location (threshold) parameter, y can be estimated

by using the first equation in (4.6).

Using the procedure of this section, J(n,6), &, ¥ for the traffic accidents are

obtained as follows:

7= 8.825 $°=2159 s=4.6464 r=15683 J=0.5515
&= 0.53 (It is obtained using table and figure Appendix 3)

Using equation (4.6), = 1.9587, 7= 0.666 are obtained. According to the foregoing
discussion, the ratios of the geometric means have a lognormal distribution with three

parameters, i.e. R~A(0.666, 1.9587, 0.53) .
The results of ME and MME are given in Table 4.1.

Table 4.1 Estimates of Lognormal Distribution for Ratio

Estimator 7 é i E®)  [Jory BB B
ME 0.7454 0.3362 1.900 7.825 5.9999 1.0793 5.1406

MME 0.6839 0.4813 2.092  9.780 4.6463 1.6650 8.3028
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Here asymptotic standard deviations are not applicable since estimating equations failed
to yield Maximum Likelihood Estimation (MLE). From the central limit theorem,
6:=0.51017.

The differences as seen in Table 4.1 between the MME and ME are quite small
Comparable differences between these estimators have been observed in most
applications where MME were calculated. The superiority of the MME over ME and
MLE in estimating parameters of the three-parameter lognormal distribution has been
demonstrated in numerous practical applications. “ME have the disadvantage that they
are not uniquely determined by their moments and that inherently large sampling errors
of the third moment introduce correspondingly larger sampling errors into parameter
estimates” (Cohen, &Whitten, 1988, p.76). MME are unbiased with respect to
distribution mean and variance. Maximum likelihood estimators lead to inadmissible
estimates and lead to questionable variance-covariance matrices. They are applicable
over the entire parameter space, therefore they are more reliable. Unless a; is smgll, then
the normal rather than the lognormal distribution would be a better choice as a model.
As a result, since MME is more reliable than the other estimation methods, estimation of

parameters of MME is used.
4.2.4 Goodness of Fit Tests of Lognormal Distribution

The ratios are then transformed to zero location by subtracting the corresponding
location parameter 7 from the measurements. After adjusting for location parameter, the
natural logarithmic transformation is applied to the ratios. Depending on the results
obtained in this section, the transformed random variable /n (R-3) will follow a normal
distribution. According to the normality plot in Figure 4.4, the transformed data are

distributed as normal.
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Probability

In(r-gamma)

Figure 4.4 N ormaiity Plot of Transformed Data

According to Figure 4.4, points which are on the straight line or very close to the
straight line indicate that In(r-gamma) are distributed normal. A straight or close to

straight line indicates normality. A lot of curvature indicates non-normal data.

Furthermore, Kolmogorov-Smirmov, Anderson-Darling, and Ryan-Joiner (Similar
Shapiro Wilk) Tests were applied to the data. The results are shown in Table 4.2.

Table 4.2 Goodness-of-Fit Tests for Normal Distribution

Goodness-of-Fit Tests for Normal Distribution
Test Statistic DF p-value
~0.049 Pr>D 0.059

Kolmogorov-Smirnov(D)
Anderson-Darling(A-sq) 0.747 Pr>A-Sq 0.051
Ryan-Joiner(W) 0.987 Pr>W 0.097
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In the entire test, p-value is greater than o (=0.05) therefore the null hypothesis
cannot be rejected, so In(r-gamma) fits normal. Based on these results, it can be

interpreted that (r-gammay) variable fits lognormal model.
4.3 Building Intervention Model for Traffic Accident Data

Traffic Control Department’s assumption that radar control will be effective is not
based on the analysis of available data but on common knowledge. Based on this
assumption, the department expects traffic accidents to show some evidence of the
intervention. In this section, the success of intervention is tested on available data from
the standpoint of statistical significance. Interested parties, such as Traffic Control
Department or Traffic Research Center can then judge that whether present legislation

and its’ enforcements are satisfactory.

There are inherent difficulties in statistical analysis of this kind as the data are in the
form of time series in which successive observations, preintervention and
postintervention are highly correlated. To see the intervention effect, one must isolate
how trend, seasonality and correlated noise structure effect such a series. Box and Tiao
(1975) discussed the technique of intervention analysis in two case studies, one dealing

with environmental pollution and the other with economic measures.

In this thesis, following Box and Tiao (1975), a univariate time series model of the BJ
type is developed by analyzing the autocorrelations and partial autocorrelations of the
response series before intervention. This model is used to calculate forecasts for the
postintervention period with their origin at the last observation in the preintervention
period. The forecasts are compared with actual realizations to test for the effects of

intervention.

If there is a significant difference, then the preintervention model is modified by

certain priori specifications to incorporate the effect of intervention. The modified
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model is then fitted to entire series, preintervention and postintervention, and
conclusions regarding the magnitude and direction of the effect of intervention are

drawn.
4.3.1 Assumptions Used in the Univariate Intervention Analysis

Before attempting to develop a univariate model capturing the effects of the
intervention, it is necessary to list the assumptions under which such an attempt is made.
These assumptions are as follows:

1. The intensity of traffic remained unchanged during the study period,

2. The behaviours of drivers remained unchanged throughout,

3. No other major interventions occurred during the study period,

4. The noise structure of the univariate model remains unchanged preintervention

and postintervention.
4.3.2 Detection of Intervention Variable —-Radar Application

The data consist of weekly observations on traffic accidents which are occurred
during day time and evening time on Yenigehir, Yesildere and Karabaglar connected
road for 83 weeks. The ratio of geometric mean of traffic accidents occurred during the
evening time to those taking place in the day time can be seen in Figure 4.5. Meanwhile,
it is assumed that conditions (weather etc.) are the same during the day time and evening

time.

Since the suggestion that radar control plays important role in decreasing number of
traffic accidents occurred in day time, traffic accidents series occurred in evening time is
called preintervention or without intervention series. Therefore, the analysis is applied to

traffic accidents occurred during evening time.
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Figure 4.5 Time Series Plot of Geometric Mean Data

For the scale of measurement of intervention variable for traffic accident data can be

used as follows:

IMPULSES no radar application =0
radar application =1

& — % Y @0l
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4.3.3 Developing the Preintervention Univariate Model

The graphical presentation of the traffic accidents occurred during evening time in
Figure 4.6, shows a general trend during some periods, implying that the time series
values are not stationary. At the same time, this figure is implying nonstationary
variances. Therefore, a log transformation is necessary to achieve stationarity in variance

(Al-Khalidi, 2002, p.690).

500 —f

400 —

evening

Index 10 20 30 40 50 60 70 80

Figure 4.6 Time Series Plot for Traffic Accidents Occurred in Evenings.

In Figure 4.7 presents sample autocorrelation function of (Z'= In Z). When
examining Figure 4.7, the series shows neither quick cut-off nor quick dying down
toward zero as the lag k increases. Thus, it means that the series values are not stationary

(Al-Khalidi, 2002, p.690)
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. . . . . *
In order to make the series stationary in mean the first difference in Z;, values were

taken. Figure 4.8 is belongs to time series plot of first difference of data.

Inevening 1diff
o
]

2 —

Index 10 20 30 40 50 60 70 80

Figure 4.8. Time Series Plot for First Difference InEvening

Figure 4.9 shows that the SACF values of W, lies within 2o after lag 1, i.e. the SACF
shows cut off after k=1, indicating W, values are stationary in mean (Al-Khalidi, 2002,
p.690).
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Figure 4.10 SPACEF for First Difference InEvening

When examining Figure 4.9 and Figure 4.10, the SACF and SPACF of the new series
W, suggests that the nonseasonal moving average model of the first order

ARIMA(0, 1, 1) have best fit to the series values. The general form of ARIMA (0, 1, 1)

is shown in equation 4.8.

W,= (I - 6:B) &,

66

(4.8)
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The maximum likelihood estimate of 6; is 0.5247, which satisfies the invertibility

condition (|91| <1). The t-value 5.52 implies that 8, is significantly different from zero.

Results, which are MINITAB Output, are shown in Appendix 4.

Finally, the goodness of fit test is carried out using Ljung-Box statistic,

O =n(n' + 2)2 (' -1)7'r2(a") 4.9)

i=1

where ri(a’) , is the sample autocorrelation of the residuals a (RSAC) at lag i, n =n-1,
where 7 is the number of observations in the original series. The calculated value of Q°
(using RSAC for 24 lags) is (10.1), which is less than the tabulated value of x* with 23
degrees of freedom, at significant level @ = 0.05 (35.172), indicating the underlying
model is accepted. MINITAB output is in Appendix 4.

4,3.4 Formulation of Intervention Model

The noise model for N, , the best represents the traffic accidents occurred in the

evening time can be written as;
N;=(1-0.5247B) a, (4.10)

To measure the effect of intervention on the second part of the series, the analysis can

be formulated using equation 4.8 and 4.10, with & as step function as follows:

Z,=R(B) + (I - 0.5247B)a, @.11)
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Dividing both sides of equation 4.11 by (1 — 0.5247B) and simplifying the resulted

equation (using Taylor expansion with a polynomial of 4™, order),

K(B)Z; = K(B)R(B)& + a4 (4.12)

is obtained where K(B) = (I + 0.5247B + 0.2753B° + 0.1445B° + 0.0.76B%), K(B) is a
polynomial in B of order 4.

Model diagnosis entails residual analysis. If the model is properly specified and the
model parameters account for all of the systematic variance, then the residuals should
resemble white noise. Residual analysis is performed with the autocorrelation and partial
autocorrelation function. These correlograms can be examined with reference to
modified Portmanteu tests of their associated significance level. The Portmentau statistic
may inflate the autocorrelation under conditions of short series. For that reason, the
modified Ljung-Box statistic is used to provide better significance test. White noise
residuals do not have significant p-values. These white noise p-values of the residuals
should not be less than 0.05. Graphically, white noise residuals have associated spikes
that do not extend beyond the confidence interval limits. The ACF and PACF plots
reveal these limits as dotted lines spreading out from the midpoint of the plot. When
spikes leap up beyond the limits of two standard errors on each side of the central
vertical axis of no autocorrelation, then the autocorrelation or partial autocorrelation of
the residuals have significant spikes with p-values less than 0.05. Indication of the
significant ACF or PACF residual spikes is empirical evidence of lack of fit. The pattern
of lack of fit will suggest the reparameterization of the model. Slowly attenuating

autocorrelation, functions suggest further differencing.

Combination of ACF and PACF patterns indicate whether the additional terms should
be moving average or autoregressive. Gradual attenuation of the ACF with a few spikes
and sudden decline in PACF magnitude suggest that autoregressive parameters should
be added, whereas gradual attenuation of the PACF and a few finite spikes of the ACF
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with sudden decline of their magnitude suggest moving average terms should be used.
Once these have been properly identified and estimated, the ACF and PACF of the
residuals should appear as white noise. If the parameters are all accounted for in the
model, then the residuals should consist purely of white noise or unsystematic random

variation. Figure 4.11 and Figure 4.12 presents the ACF and PACF of residuals.

Autocorrelation Function for RESI1

o
o
| S I I U}

Autocorrelation
o
o

&
-3
[ |

lag Corm T LBQ lag Cor T 1BQ Ilag Cor T LBQ

1 005 041 018 8 000 001 324 15 003 023 6.9
2 008 055 050 9 005 042 348 16 008 048 727
3 008 055 083 10 005 040 367 17 008 072 803
4 008 081 1.1 1 002 018 37 18 006 046 838
5§ 011 088 212 12 003 028 381 19 002 0.18 841
6 -0.10 -087 3.00 13 000 004 381 20 004 033 4858
7 005 045 324 14 047 152 689

Figure 4.11. ACF of Residuals

Partial Autocorrelation Function for RESI1
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5 009 088 12 002 017 18 002 015
6 009 -08t 13 000 003 20 002 018
7 004 037 14 018 162

Figure 4.12. PACF of Residuals
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After examining ACF and PACF of the residuals, there is evidence that the model is
adequate and residuals appear as white noise. Because no spikes leap up beyond the
limits of two standard errors on each side of the central vertical axis of no

autocorrelation. The result of Portmentau test is given Table 4.3.

Table 4.3. Results of Portmentau Test

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48

Chi-Square 3.8(DF=11) 10.0(DF=23) 33.6(DF=35) 46.2(DF=47)

According to the result of Portmentau test, because the ARIMA model coupled with
this intervention variable control for all systematic variation in the system, the residuals
are white noise.

4.3.5 Estimation Intervention and Noise Parameters
Equation 4.12 can be writen as a linear regression equation:
Y, =pX +a (4.13)
where Y;=K(B)Z;, X, =K(B)E; and P=Ry(B)

Since the observation at both time interval are taken at the same time, the same

atmospheric conditions and from the same road, it is assumed that the same white noise

effects a; on the series before and Vafter the intervention effect. Table 4.4 shows the

results of regression analysis.
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Table 4.4 Results of Regression Analysis

Y;=58.0-372X;

Predictor Coef StDev T p-value
Constant 58.001 1.725 33.63 0.000
X -37.223 1.883 -19.77 0.000
S=15.24 R-Sq=71.0% R-Sq(adj) = 70.8%

Table 4.5 Results of Analysis of Variance

Source DF SS MS F p-value
Regression 1 90754 90754 390.90 0.000
Error 160 37146 232

Total 161 127900

Using the transformed time series values of data, the least squares estimates of fis
-37.223. The t-value for S is -19.77 which is greater than the tabulated value of ¢ with
160 degrees of freedom, i.e., it is highly significant indicating significant effect for the
intervention variable. So, radar application plays important role for decreasing number
of traffic accidents. There is eﬁdence that associated with intervention variable is a step

change of approximately -37.223 units in the level of traffic accidents.

Also, the calculated F-value in the ANOVA for the simple linear regression model in
equation 4.13 is 390.90, which is highly significant. When the regression model adapted
from model of one intervention variable and noise has been examined, R-square shows
that intervention variable accounts for the 71% of the total variability within traffic

accident data.




CHAPTER FIVE
CONCLUSION

5.1 Conclusions

The use of intervention analysis and lognormal distribution analysis on economic
and social areas has two main ideas. First, is to show that the data are distributed
lognormal by the use of distribution theory on traffic accidents which is a major
public problem nowadays. Secondly, is to apply the intervention analysis on traffic

accidents.

During the study, three routes are selected where the traffic accidents occur
intensely and the radar controls have just been implemented. Traffic accidents that
occur on the 5 km. long Yesildere road and also Yenigehir and Karabaglar

intersections were examined.

The data between January 2002 and July 2003 are arranged weekly for measuring
the effect of intervention more accurately. Since Yenigehir, Karabaglar and Yesildere
routes are connected to each other and any traffic accident occurred on any these
three routes will be dependent to each other and also are affected from external
factors (driver mistakes, characteristics of the road, driver license issue date etc.),
existence of a. recursive type interdependency between the three routes can be

assumed.

Some of the data needed log-transformation, followed by taking the difference to

achieve stationarity in means and variances. The sample autocorrelation function and
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the sample partial autocorrelation function have been used to identify the orders of

the ARIMA models.

Intervention analysis is applied in two parts as preintervention and post
intervention. For the first part of the series (before intervention), the maximum
likelihood estimates of the parameters of the model is found and also test of
significance using the t-test is carried out (after transforming the noise N; by ARIMA
model into “white” noise). For the second part of the series (after intervention), the
least squares estimates for S is found and significance test using the F-test is carried
out (using the same noise model as before intervention). The results of the
intervention part showed it is highly significant indicating significant effect. So,
radar application plays important role for decreasing the number of traffic accidents.
There is evidence that intervention variable is a step change of approximately -

37.223 units in the level of traffic accidents.

Moreover, the calculated F-value in the ANOVA for the simple linear regression
model is highly significant. When the regression model adapted from model of one
intervention variable and noise has been examined, the R-square value shows that
intervention variable accounts for the 71% of the total variability within traffic

accident data.
5.2 Suggestions

Suggestions based on the study can be classified in two main groups. In this
study, which will be a guiding light for future studies, it is shown that the geometric
mean ratios of the traffic accidents that occur on two different time intervals in Izmir
fit the lognormal model. Based on this fact, fit test of other models can be examined
for similar data. Besides geometric mean ratios, other transformations like
multiplication of random variables, the. multiplication of the powers of random

variables etc. can be used to test for adapting to other distributions.

This study is very important since it is the first study in Turkey on this area.

Intervention analysis can be applied to many data sets in the areas of chemistry,
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economy, physics and social areas as long as there is no intervention on the data. A
study can be conducted on the data of not only Izmir but also Turkey as a whole.
Specific routes, weather conditions and other factors that may affect the occurrence

of the accident can be used as an intervention variable.

In the prediction of intervention variables, nonlinear analysis methods can also be
used. Then the parameter predictions gathered from the nonlinear anaylsis can be

compared with results obtained from linear analysis.

Lastly, intervention analysis can also be applied on economic time series data,
which is the one of the most common time series data in applications. The only
problem that researchers will face is the great reactions of economic data to Turkey’s
daily or even momentary changes as a result of fluctuating economy. In intervention
analysis, it is assumed that there are no other interventions on the periods other then
the intervention examined. The validity of this assumption is not reasonable for
Turkey. For intervention analysis to give meaningful results, long term stable data is
necessary. Multivariate intervention analysis can be applied to economic and many

other data.
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Appendix 1. Traffic accidents belongs to Karabaglar, Yesildere, Yenisehir routes

Weeks |DKarabaglar| DYenisehir| DYesildere | EKarabaglar | EYenisehir | EYesildere
1 3 3 7 13 13 6
2 4 5 6 11 8 12
3 3 2 13 10 12 16
4 4 2 11 8 16 14
5 2 4 6 3 5 15
6 4 2 7 14 7 12
7 3 6 1 7 15 12
8 7 2 4 15 11 13
9 6 1 7 14 13 13
10 1 10 4 17 12 8
11 7 3 8 14 11 10
12 4 6 1 11 14 14
13 8 2 7 15 12 13
14 5 5 5 8 11 15
15 1 7 3 14 9 11
16 2 6 1 12 12 13
17 3 4 8 13 12 15
18 4 6 7 14 13 12
19 1 2 4 15 11 8
20 3 4 6 18 9 7
21 7 2 5 14 12 3
22 6 3 4 5 18 11
23 7 2 5 6 14 15
24 4 2 11 14 16 11
25 1 3 8 8 12 17
26 7 2 5 5 15 12
27 3 8 6 11 17 13
28 4 9 5 12 16 10
29 1 8 4 8 14 18
30 4 2 9 10 15 14
31 3 7 1 7 10 13
32 2 8 6 5 13 12
33 3 1 8 9 11 17
34 4 8 3 11 8 14
35 1 9 7 9 15 11
36 4 6 8 14 6 12
37 3 1 9 9 5 13
38 4 2 1 13 14 8
39 7 5 8 13 8 17
40 4 6 1 11 4 4
41 1 5 7 8 6 16
42 7 2 6 12 5 17
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Appendix 1. continued

Weeks |DKarabaglar|DYenisehir| DYesildere | EKarabaglar | EYenisehir | EYesildere
43 8 4 2 14 11 10
44 8 5 3 15 13 11
45 3 7 9 8 5 12
46 4 8 4 13 12 15
47 3 4 2 7 8 15
48 7 3 1 18 7 13
49 1 8 1 4 13 10
50 3 1 9 9 11 14
51 4 2 7 7 15 13
52 4 3 6 14 13 9
53 1 5 2 6 14 12
54 8 4 6 18 12 8
55 12 4 1 15 14 4
56 4 8 4 10 16 7
57 7 2 8 13 12 6
58 4 1 8 16 13 10
59 3 4 4 12 15 5
60 7 2 6 9 13 12
61 8 1 5 7 11 13
62 4 - 6 1 16 18 3
63 2 2 3 14 17 5
64 7 2 5 7 14 10
65 4 6 2 12 16 12
66 5 1 8 6 15 11
67 8 7 7 14 14 8
68 4 2 3 9 16 13
69 5 8 1 11 15 10
70 6 4 5 15 14 8
71 1 8 3 18 15 9
72 7 4 4 10 11 6
73 3 4 2 9 13 8
74 1 9 4 15 13 11
75 3 3 6 12 19 7
76 1 8 2 7 16 14
77 4 2 6 15 17 7
78 4 6 1 12 12 7
79 3 1 1 8 15 9
80 4 2 8 10 16 8
81 7 5 8 18 12 5
82 7 7 6 13 12 14
83 4 3 8 10 14 9




Appendix 2. Geometric Mean of Evenings (GME) / Geometric Mean of days (GMD)

t GM of day GM of evening GMD/GME
1 3.9791 24.0500 6.0441
2 4.9324 30.1800 6.1187
3 4.2727 - 42.4300 9.9306
4 4.4480 33.1500 7.4529
5 3.6342 26.9000 7.4018
6 3.8259 29.5500 7.7237
7 2.6207 18.8100 7.1774
8 3.8259 33.8900 8.8581
9 3.4760 33.3300 9.5885
10 3.4200 41.7700 12.2136
11 5.5178 43.5500 - 7.8926
12 2.8845 32.9200 11.4127
13 4.8203 13.2700 2.7529
14 5.0000 10.9700 2.1940
15 2.7589 41.1500 14.9152
16 2.2894 52.3200 22.8529
17 4.5789 43.2800 9.4521
18 5.5178 52.9700 9.5998
19 2.0000 30.9700 15.4850
20 4.1602 40.4300 9.7184
21 4.1213 37.9600 9.2107
22 4.1602 29.9700 7.2040
23 4.1213 30.8100 7.4758
24 4.4480 43.5100 9.7820
25 2.8845 11.7700 4.0804
26 4.1213 19.6500 4.7679
27 5.2415 33.4500 6.3818
28 5.6462 42.4300 7.5148
29 3.1748 38.6300 12.1677
30 4.1602 22.8100 5.4830
31 2.7589 29.6900 10.7614
32 4.5789 39.2100 8.5633
33 2.8845 61.8900 21.4561
34 4.5789 20.7200 4.5251
35 3.9791 19.4100 4.8780
36 5.7690 30.0300 5.2054
37 3.0000 38.3700 12.7900
38 2.0000 41.3300 20.6650
39 6.5421 52.0900 7.9622
40 2.8845 5.6100 1.9449
41 3.2711 39.1600 11.9716
42 4.3795 40.0600 9.1471
43 40000 11.5500 2.8875
44 4.9324 52.9000 10.7249

82



Appendix 2. Continued

t GM of day GM of evening GMD/GME
45 5.7388 47.8300 8.3345
46 5.0397 53.2800 10.5721
47 2.8845 9.4400 3.2727
48 2.7589 11.7900 4.2734
49 2.0000 8.0400 4.0200
50 3.0000 11.1500 3.7167
51 3.8259 31.0900 8.1263
52 4.1602 28.7900 6.9204
53 2.1544 10.0300 4.6555
54 5.7690 32.0100 5.5486
55 3.6342 9.4400 2.5975
56 5.0397 10.3800 2.0597
57 4.8203 29.7800 6.1781
58 3.1748 42.7600 13.4686
59 3.6342 9.6500 2.6553
60 4.3795 11.2000 2.5574
61 3.4200 51.0000 14.9125
62 2.8845 19.5200 6.7672
63 2.2894 40.6000 17.7337
64 4.1213 29.9300 7.2623
65 3.6342 33.2100 9.1381
66 3.4200 19.9600 5.8363
67 7.3186 41.6200 5.6869
68 2.8845 12.3200 4.2711
69 3.4200 30.8200 9.0118
70 4.9324 11.8900 24106
71 2.8845 43.4400 15.0598
72 4.8203 8.7100 1.8069
73 2.8845 9.7800 3.3905
74 3.3019 12.9000 3.9068
75 3.7798 53.6900 14.2046
76 2.5198 11.6200 4.6114
77 3.6342 12.1300 3.3377
78 2.8845 41.0300 14.2243
79 1.4422 10.2600 7.1139
80 4.0000 20.8600 5.2150
81 6.5421 10.2600 1.5683
82 6.6494 12.9700 1.9506
83 4.5789 21.8100 4.7632

83



Appendix 3. Table and Figures using Parameter Estimation of Lognormal
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Distribution
N 10 15 20 25 30 35 40 15
o1 | .42615  .33575  .20061  .26272  .24341  .22006  .21786  .208S
02 | 43007  .33975  .20457  .26664  .24727  .23288  .22164  .2125
‘03 | 43411  .31386  .20864  .27065  .25123  .23679  .22551  .21G3
‘01 | (43826 34807  .30261  .27476  .25520  .24080  .22947  .2203
05 | 44253  .35239  .30708  .27897  .25045  .24491  .23354  .2243
10 | .46574  .37572  .33011  .30168  .28186  .26706  .25546  .2460
‘15 | 40230 10216  .35617  .32736  .30722  .29214  .28030  .2706
‘20 | (52257 43212  .38565  .35643  .33503  .32055  .30845  .298G
‘25 | (55700  .46603  .41901  .38933  .36845  .35275  .34038  .3303
30 | .59609  .50444  .45678  .42660  .40532  .38928  .37663  .36G3
35 | .64046  .54793  .49959  .46885  .44715  .43077  .41783  .4072
20 | .e%079 50723 .54811  .51682  .49467  .47793  .46470  .4538
‘45 | .74792 65317 60322  .57132  .54871  .53161  .51807  .5070
50 | .81279  .71670  .66587  .63334  .61026  .50278  .57894  .5676 .
's5 | .gsess  .78s97  .73719  .70402  .68045  .66259  .64844  .63GS
60 | .o70s0  .87129  .81852  .78467  .76061  .74237  .72792  .T160
‘65 | 1.08620  .06522  .91142  .87688  .85231  .83369  .81894  .806S
70 | 1.17548 1.07261 1.01773  .98248  .95741  .93840  .92335  .9lI0
75 | 1.30051 1.19562 1.13962 1.10364 1.07806 1.05868 1.04333  1.0307
‘80 | 1.44387 1.33683 1.27966 1.24205 1.21686 1.19710 1.18145 1.1686
85 | 1.60860 1.49928 1.44091 1.40345 1.37685 1.35672. 1.34079 1.3277
‘00 | 1.79834 1.68661 1.62700 1.58879 1.56168 1.54119 1.52499  1.5117
‘94 | 1.97105 1.85730 1.79667 1.75785 1.73034 1.70955 1.69314 1.6797
‘05 | 2.01746 1.00319 1.84230 1.80333 1.77571 1.75486 1.73840 1.7249
‘96 | 2.06524 1.05045 1.88931 1.85018 1.82247 1.80154 1.78502 1.7715
o7 | 2.11446 1.00914 1.93774 1.89845 1.87064 1.84964 1.83307 1.8195
‘o8 | 2.16515 2.04020 1.96763 1.94819 1.92027 1.89921 1.88250  1.8690
‘00 | 2.21736 2.10097 2.03904 1.99945 1.97143 1.95020 1.93362  1.9200
1.00 | 2.27116 2.15422 2.09202 2.05228 2.02416 2.00295 1.98623 1.9726
1.05 | 2.56573 2.44508 2.38244 2.34191 2.31320 2.20174 2.27477  2.2609
1.10 | 2.90875 2.78605 2.72112 2.67980 2.65068 2.62879 2.61158  2.5976
115 | 3.30941 3.18361 3.11725 3.07513 3.04551 3.02328 3.00584 2.9916
1.20 | 3.77887 3.64980 3.58196 3.53903 3.50891 3.48635 3.46868 3.4543
1.25 | 4.33073  1.19823 4.12886 4.08509 1.05447 4.03150 4.01369  3.9902
1.30 | 4.98165 4.84552 4.77456 4.72005 1.69882 4.67561 4.65750  4.6428
1.35 | 5.75206 5.61211 5.53950 5.49101 5.46236 5.43883 5.42050 5.4057
1.40 | 6.66717 6.52316 6.41882 6.40244 6.37026 6.34639 6.32785 6.3129
1.45 | 7.75811 . 7.60980 7.53366 T.48634 7.45362 7.42941 7.41064 7.3955
1.50 | 9.06354 §.91066 8.83263 8.78433 8.75104 8.72649 8.70750 8.6922
1.55 |10.63161 10.47387 10.39383 10.34451 10.31064 10.28573 10.26650 10.2511
1.60 [12.52251 12.35050 12.27743 12.22703 12.19254 12.16725 12.14776 12.1322
1.65 [14.81178 11.64330 14.55889 14.50735 14.47221 '14.44G52 14.42680 14.4111
1.70 |17.59453 17.42010 17.33329 17.28054 17.24471 17.21860 17.19860 17.1827
1.75 [20.99102 20.81020 20.72082 20.6G678 20.63021 20.60365 20.58335 20.5672
2.00 |54.27287 51.05161 53.94619 53.88409 £3.84202 53.81319 53.79132 53.7739
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Appendix 3. Continued
o\ 50 55 60 65 70 7% 50 S5
.01 .20131 10494  .18946  .18467  .18044  .17666  .17327  .1701
.02 | .20501  .19862  .19311  .18829  .18404  .18024  .17682  .1737
.03 | .20881 20238 .19685  .19201 J18773 183901 L8047 L1773
.04 | .21270  .20625  .20068  .19581 .19151 18767  .18421 .1810
.05 | .21660  .21021  .20461  .19972  .19539  .19153  .18S05  .1849
.10 | .23823  .23159  .22584  .22082  .21637  .21239  .208S1 .2055
.15 | .26267  .25585  .24995  .24479  .24021  .23612  .23243  .2990
.20 | .20039  .28340  .27735  .27204  .26733  .26312  .25932  .2558
.25 32189  .31471  .30850  .30304  .29821  .20387  .268996  .2S64
.30 35769  .35033  .34395  .33835  .33338  .32892  .32489  .3212
.35 | .39843  .39088  .38434  .37858  .37348  .36800  .36476  .3609
.40 44483  .43709  .43038  .42448  .41924  .41454  .41029  .40G+4
.45 | .49774  .48981  .48293  .47688  .47151  .40669  .46233  .4583
.50 | .58813 55002  .54208  .53678  .53127  .52634  .52187  .5178
.55 62717  .61887  .61166  .60533  .50969  .50464  .59007  .5850
.60 | .70618  .69770  .69034  .68386  .67810  .67291  .66827  .6640
65 | .79674  .78809  .78057  .77396  .76809  .76282  .75805  .7537
.70 | .00070  .s0188  .88422  .87748  .87150  .86613  .S6128  .85G8
.75 | 1.02025 1.01126 1.00346  .99661 .99052  .98506  .98012  .975G
.80 | 1.15796 1.14882 1.14085 1.13392 1.12773 1.12218 1.11718 1.1126
.85 | 1.31690 1.30761 1.29955 1.29248 1.28620 1.28058 1.27550 1.2708 |
.90 | 1.50071 1.49128 1.48311 1.47594 1.46958 1.46389 1.45875 1.4540
.94 | 1.66857 1.65004 1.65078 1.64354 1.63712 1.63138 1.62620 1.6214
.05 | 1.71375 1.70419 1.69592 1.68866 1.68223 1.67647 1.67128 1.6GG5
.96 | 1.76031 1.75073 1.74243 1.73516 1.72871 1.72294 1.71774 1.7130
.07 | 1.80829 1.79868 1.79036 1.78307 1.77661 1.77083 1.76562 1.760S
.98 | 1.85774 1.84810 1.83977 1.83246 1.82599 1.82020 1.81498 1.8102
.99 | 1.90870 1.89905 1.89069 1.88337 1.876SS 1.87108 1.86585 1.8611
1.00 | 1.96124 1.95156 1.94319 1.93585 1.92935 1.92354 1.91830 1.9135
1.05 | 2.24945 2.23966 2.23119 2.22379 2.21723 2.21137 2.20610 2.2013
1.10 | 2.58595 2.57606 2.56751 2.56004 2.55313 2.54754 2.51223  2.5374 |
1.15 | 2.97992 2.96903 2.96131 2.95378 2.04713 2.94120 2.93587 2.9310
1.20 | 3.44248  3.43240 3.42372 3.41614 3.40916  3.40350 3.30815  3.3933 |
1.25 | 3.98722 3.97707 3.96833 3.96071 3.05399 3.94801 3.04264  3.9377
1.30 | 4.63077 4.62054 4.61174 4.60408 4.50731 4.50134  4.58596  4.5811
1.35 | 5.39352 5.38321 5§.37437 5.36668 5.35001 56.35300 5.34852  5.3116
1.40 | 6.30062 6.20025 6.28136 G.27364 6.26685 6.26083 G.25044  6.2505
1.45 | 7.38317 7.37273 7.36380 7.35605 7.34921 7.34321 7.33782  7.3329
1.50 | 8.67978 8.66927 8.66020 8.65251 K.GIHG0  8.G30G6  8.63426 §.620i
1.55 [10.23852 10.22795 10.21892 10.21111 10.20428 10.19823 10.19284 10. 1879
1.60 [12.11953 12.10888 12.09981 12.09198 12.08512 12.07907 12.07368 12.068%
1.65 [14.30827  14.38754 14.37842 14.37055 14.3636G7 14.35761 14.35221 14,3473
1.70 [17.16976 17.16806 17.14977 17.14187 17.13497 17.1288) 17.12349 171186
1.75 120.55419  20.54320  20.63405 20.52610 20.51918 9051308 20 50767 205,029
2.00 [63.75008 5374844 HA.TI8T4 53.73046 H3.72320 LATIT03 HA. 7150 63, 7006
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o\ 90 95 100 125 150 200 100 1000 4
.01 L16738  .16480  .16243  .15283 14576 .13582  .11654  .10j0
.02 | 17000 .16831 J16592 15625 .14913 13011 J11965 L1106
.03 | .17451 17190 .16950  .15076  .15259 . 14249 12286 L1134
.04 | 17822 .17550 17317 .16337  .15614 14596 J12616 L1109
.05 | .18202  .17938  .17694  .16707  .15979  .14953 (12056 L1203
.10 | .20258  .19986  .19734  .1S8713  .17959  .16892 .14807  .1383 |
.15 | .22601 22320  .22060  .21004  .20223  .19115 (16942 L1582
.20 | .25270  .24980  .24712  .23621 22812 .21664 .19403  .1834
25 | .28314  .28015  .27739  .26613  .25776  .24588 22240  .2113
.30 | .31788  .31480  .31195  .30034  .29170  .27942 25510  .2436
.35 | 35755 35437 35144 .33048  .33058  .31791 .20278  .25809
40 | .40287  .39962  .39660  .38430  .37515  .36209 .33620 .3239
.45 | .45472  .45138  .44828  .43566  .42625  .41284 38622  .3736
50 | .51408  .51065  .50748  .49454  .48489  .47115  .44387  .4309
.55 58210  .57859  .57534  .56210  .55224  .53818 51030 L4971
.60 | .e6013  .e5654  .65323  .53971  .62064  .61529 58689  .5735
.65 | .74975  .74609  .74272  .72894  .TI868  .70408 67523  .6GIG
.70 | .s5282  .84910  .84566  .83164  .82122  .S0640 77719 7635
.75 | .97153 .96775  .96425  .95003  .93546  .92445 89496  .8S12
80 | 1.10845 1.10462 1.10108 1.08667 1.07598 1.06082 1.03113 1.0173
.85 | 1.26667 1.26279 1.25920 1.24463 1.23384 1.21857 1.18876 1.1749
.90 | 1.44982 1.44550 1.44228 1.42758 1.41671 1.40135 1.37152 1.3577 !
.94 | 1.61719 1.61324 1.60960 1.5048! 1.58389 1.56850 1.53870 1.5250
.05 | 1.66226 1.65830 1.65465 1.63985 1.62892 1.61352 1.58374 1.5701
.96 [ 1.70870 1.70474 1.70109 1.68627 1.67533 1.65993 1.63016 1.6165
.07 | 1.75657 1.75261 1.74895 1.73411 1.72316 1.70776 1.67801  1.6644
.08 | 1.80591 1.80194 1.79828 1.78342 1.77247 1.75706 1.7273¢ 1.7137
.99 | 1.85677 1.85280 1.84913 1.83426 1.82330 1.80789 1.77820 1.7G1G -

1.00 | 1.90921 1.90523 1.S0155 1.88667 1.87571 1.86030 1.83064 1.8171

1.05 | 2.19694 2.19294 2.18925 2.17431 2.16334 2.14795 2.11848  2.1051

1.10 | 2.53303 2.52001 2.52531 2.51034 2.49937 2.48403 2.45452 2.4917

1.15 | 2.92664 2.92260 2.91889 2.90392 2.89208 2.87771 2.84882 2.8359 .

1.20 | 3.38889 3.38485 3.38114 3.36618 3.35528 3.34011 3.31158 3.2089 !

1.25 | 3.93337 3.92033 3.92562 3.91070 3.890961 3.88480 3.85667 3.8

1.30 | 4.57669 4.57265 4.56894 4.55407 4.54328  4.52837  4.50068 4.4330;

1.35 | 5.33024  5.33521  5.33151 5.31669 5.30598 5.20123 5.26400 5.2522:

1.40 | 6.24617  6.24215 6.23815 6.22371 6.21308 6.19849 6.17175  G.1602

1.45 | 7.32856 7.32455 7.32087 7.30620 7.29566 7.28124 7.25499 7.2438

1.50 | 8.62501 S.62101 8.61734 8.60276 8.59230 8.57806  8.55232  8.0edl4 |

1.55 [10.18361 10.17961 10.17596 10.16145 10.15109 10.13703 10.11179 10.1012

1.60 [12.06445 12.06047 12.05683 12.04241 12.03214 12.01825 11.99350 11.08732

1.65 [14.34300 14.33003 14.33540 14.32105 14.31087 14.20716 14.27289 14,2608

1.70 {17.11428 17.11032 17.10670 17.009243 17.08233 17.06878 17.04199 17.03h2,

1.76 [20.49846 20 40450  20.49089 20.47669  20.46667 20.4H328  20.42004 20 4201

2.00 [H3.T0216 H3.GA817  H3.GHHG 6368049 53,6705 H3.60796  H3.63640  H1.628]
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Appendix 4. ARIMA Model
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ARIMA model for Inevening

Estimates at each iteration

Iteration SSE Parameters
0 66.9875 0.100
1 59.8159 0.250
2 55.5837 0.400
3 543922 - 0.546
4 54.3478 0.523
5 54.3476 0.525
6 54.3476 0.525

Relative change in each estimate less than 0.0010

Final Estimates of Parameters
Type Coef  StDev T

Type Coef StDev
MA 1 0.5247 0.0951
Constant 0.00207 0.04341
Differencing: 1 regular difference
Number of observations: Original series 83, after differencing 82
Residuals: SS =54.3465 (backforecasts excluded)
- MS=0.6793 DF=80
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag 12 24 36
Chi-Square 3.8(DF=11) 10.1(DF=23) 33.9(DF=35)

Forecasts from period 83

95 Percent Limits
Period Forecast Lower
84 3.34037 1.72459
85 3.34244 1.55346
86 3.34451 1.39767
87 - 3.34658 1.25376
88 3.34865 1.11939
89 3.35071 0.99290
90 3.35278 0.87306
91 3.35485 0.75895
92 3.35692 0.64982

93 3.35899 0.54507

0.104
0.052
0.019
0.001
0.002
0.002
0.002

5.52
0.05

48

46.2(DF=47)

Upper

4.95616
5.13143
5.29135
5.43940
5.57790
5.70853
5.83250
5.95075
6.06402
6.17290




