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ABSTRACT

The Schridinger operator is one of the fundamental operators in quantum

theory.

In this thesis, we obtain the asymptotic formulas for the eigenvalues of the
self-adjoint Schrodinger operator defined by the differential expression

Lu = —Au+ q(z)u

in d-dimensional paralellepiped F', with the Neumann boundary conditions

ou
%lap =0.



OZET

Schrodinger operatorii kuantum fiziginin temel operatorlerinden biridir.

Bu c¢aligmada, d-boyutlu bir pirizma F' uzerinde
Lu=—Au+ q(z)u

diferansiyel ifadesi ve Neumann sinir kogullar:

ou
%IBF =0

ile tammlanan kendine eg Schrodinger operatoriiniin 6zdegerleri icin asimptotik

formiiller elde edilmigtir.
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CHAPTER ONE
INTRODUCTION

It is well known that the time independent Schrédinger operator,
Lu = —Au + g(z)u,

is fundamental in quantum mechanics. The experimental experience and

Schrodinger’s work have shown that this operator is particularly useful in the
following sense: It explains and improves Bohr’s theory. It also gives a theo-
retical foundation for a number of basic physical effects which were observed

experimentally but could not be explained sufficiently well by older theories.

The Schrodinger operator has different areas of application according to the
properties of the potential g(z). When the potential ¢(z) is a periodic function,
the Schrédinger operator arises in the description of periodic structures of various
kind. This happens in the most natural way in the quantum theory of solids.
Namely, the ions of a metal forming a crystal lattice give rise to a periodic
field, in which a free electron can be considered. Then, in accordance with the
fundamental principles of quantum mechanics, the possible values of the energy of
a free electron belong to the spectrum of the Schrédinger operator with a periodic
potential and the eigenfunctions describe the state of the particle. Therefore, it is

important to have a detailed analysis of the spectral properties of this operator.

Both physicists and mathematicians have been studying the periodic Schrédinger
oper&tor for a long time . The most significant progress has been achieved in
one dimensional case. The crucial property in analysis of the problem in one
dimensional case is that the distance between the consecutive eigenvalues be-
comes larger and larger, so that the perturbation theory can be applied and

asymptotic formulas for sufficiently large eigenvalues can be easily obtained, see

1



(Marchenko,1986), (Naimark,1968), (Birkhoff,1908), (Tamarkin,1917). The two

and three dimensional cases are still of great challenge.

For physical applications, it is important to have a perturbation theory of
the Schrodinger operator in many dimensional cases. In this case, to construct
a perturbation theory turns out to be rather difficult, because the denseness of
the eigenvalues of the free operator increases infinitely with increasing energy.
The eigenvalues of the free operator are situated very close to each other in a
high energy region. Therefore, when perturbation disturbs them, they strongly
influence each other. This presents considerable difficulties as the arbitrarily
small differences become small divisors in an asymptotic expansion, in particular,
"the small denominators problem”. Thus, to describe the perturbation of one of

the eigenvalues, we must also study all the other surrounding eigenvalues.

In this thesis, we consider the d-dimensional Schrédinger operator Ly(g(z)) ,

defined by the differential expression
Lu=—-Au+ q(z)u (1.1)

in F, with the Neumann boundary condition

8
E:fllap =0, (1.2)

where F' = [0, a1] X [0, ag] X ... X [0, ag], a1, ag, ...,aq € R, OF denotes the boundary
of the domain F, z = (z1, Za,...,24) € R%, d > 2, A = % + gfg + ..+ 5‘% is the

Laplace operator in R?, and ¢(z) is a real-valued function in Ly(F).

Our aim is to find the asymptotic formulas for the eigenvalues of this Schrédinger
operator Ly (g(z)) in an arbitrary dimension. For this, we use the method of pa-
pers (Veliev,1987), (Veliev,1988).

For the first time, the asymptotic formulas for the eigenvalues of the Schridinger
operator in parallelepiped with quasiperiodic boundary conditions were obtained
in papers (Veliev,1987), (Veliev,1988) and the eigenvalues of the unperturbed

operator were divided into two groups: Resonance and non-resonance ones.



The ‘method introduced in these papers is general and can be used to solve
all other boundary value problems. By some other methods, the asymptotic
formulas for quasiperiodic boundary conditions in two and three dimensional
cases were also obtained in (Feldman,1990), (Feldman, 1991), (Karpeshina,1992),
(Karpeshina,1996) and (Friedlanger,1990).

The asymptotic formulas for the eigenvalues of the Schrédinger operator with

Dirichlet boundary conditions in two-dimensional case were obtained in (Hald &
McLaughlin,1996).

In Chapter One, some properties of multidimensional periodic functions are
studied and the well known relation between the boundary value problems is

given.

In Chapter Two, the eigenvalue problem for the unperturbed operator Ly (0)
is considered. In order to give the definitions of resonance and non-resonance
eigenvalues, we divide R? into two domains; resonance and non-resonance do-
mains. We obtain the asymptotic formulas for the eigenvalues of the operator
Ln(g(z)) in non-resonance domain. That is we prove that there is an eigenvalue
of the operator Ly(g(z)) which is close to the non-resonance eigenvalue of the

unperturbed operator Ly(0).

In Chapter Three, we consider the problem in resonance domains. We find
the relation between the eigenvalues of the operator Ly(g(z)) and the eigenvalues
of the infinite matrix C(v, 1, ...,7). Finally restricting the problem in a single
resonance domain, we obtain the main result of the chapter: The eigenvalues

of Ly(gq(x)) are close to the eigenvalues of the corresponding one-dimensional
Sturm-Liouville operators T(Q(s), 3).

In Chapter Four, the problem is considered for special case of single resonance
domains and the relation between the eigenvalues of Ly (g(z)) and the eigenvalues
of the one-dimensional Sturm-Liouville operators Te,(Q(s)) is given by a different

approach.



1.1 Properties of the Periodic Functions on R¢

Definition 1.1.1. A function q(z), where z € R?, is said to be periodic if there

are d linearly independent vectors wy, ws, ..., wy such that

q(z + wi) = q(z), kE=1,2,..,d.

Note that, this definition is equivalent to

g(z +w) = ¢q(z), Yw € Q, (1.3)

where

d
Q={w:w= Zmiwi;m,- €Z,i=12,..,d}
i=1

is the lattice generated by the vectors w,, ws, ..., wq.

Hence the function ¢(z) satisfying (1.3) is said to be periodic with respect to

) and related with this lattice, there is a d-dimensional parallelepiped

d
F={) tw;0<t;<1,i=12,..,d}

i=1

called the fundamental domain of 2, which is the period parallelepiped of ¢(z).

We define the dual lattice I of €2, as
I' = 270,

where the lattice

J _
6= {Zni'yi,ni €Z,i=1,2,..,d}

i=1
is called the reciprocal lattice of €2, and the vectors v, s, ..., 74 are linearly in-

dependent vectors satisfying

1,j=k

'LU',’)’>= ik =
A



where {(.,.) is the standard inner product in R%.

Clearly, for any w € Q,y €T

d d d
("U,’Y) = (Z m;wWs, Zm%) = meiwﬂi = 21k,

i=1 i=1 i=1

where k € Z.

The functions eX"® for v € T are periodic with respect to Q. Really,

ei(7:z+w) — ei('Ysm) ei('Yaw) —_ ei('Yxm) ei27l'k — e”:(’y’z).

Let g(z) be a real-valued and periodic (with respect to Q) function of the space

Wi(F) = {f : D*f € Ly(F),V|a| < 1},

where a = (01, ag, ..., ag) € Z%,|a] = |oa| + |ag| + ... + ||, D* = =t

8z710z,2...0z,%"
leNand > &HED 4 4,3

Since {e¥r®)}, r forms an orthonormal basis in Ly(F), we write

q(z) = Z‘héhﬂ),

yerl’

where g, = (g(z), ") = [, q(z)eir®)dz are the Fourier coefficients of g(z).
For simplicity, we can assume that go = [, ¢(z)dz = 0 and F is a d-dimensional

rectangle, say F' = [0,a1] x [0, a3] X ... X [0, a4].

Property 1: Let g(z) be a real-valued function which is periodic with respect
to Q. Then g(z) is a function of Wi(F) if and only if the fourier coefficients ¢,
of g(z) satisfy the following relation

> a2 @+ ®) < oo (1.4)

yerl

Proof. By definition of ¢,, we have

’ a1 pas ag ) ) )
gy = / /(; / Q(l')6—7'(712:1—1'723;2_"'_ded)dl‘ldxg...dmd,
0 0



where v = (71,72,...,¥4) € I'. In the last expression, integrating by parts «;
times with respect to z;, for each i = 1,2, ...,d and using the fact that ¢(z) and

i1} are periodic functions with respect to £, we get

COLNINY Y LOMES
= i{v,x)
= (iy1) . (F7y2)22...(3yq) % Jp OxOz32... axsde dz, (1.5)
where " (
aq m .
- z('sz)
% / or x3?. z¢"dz, (1.6)

for |a| < [, are the Fourier coefficients of the function D%g(z) € Lo(F) with
respect to the basis {¢X7®},cr. Then, by (1.5) and (1.6), we obtain

1
lgy|? < Wlaﬂz (1.7)

from which the relation (1.4) follows. Conversely, if g(z) is periodic and (1.4)
holds, then by (1.5) and (1.6)

D a5 <> P gl? < oo,

yeT ~yerl

which implies that g(z) € Wi(F).

Property 2: For a large parameter p we can write a periodic function g(z) €
g(z) = Z g,€57% 4 0(p7P), (1.8)

yeI(p*')
where

| T(p*)={yeT:0< | <o},
o >0, p=1I1—d, and O(p"’“/) is a function in Ly(F'), with norm of order p"""l.
That is, f(€) = O(g(£)), if there exists a constant ¢, such that | (&)I < ¢ at some
neighborhood of .

Proof. By (1.7) we have

i 1
1> ™ < () lg?)?

=%’ e’
lay? 1 4
ST D (E Y
=pe’ e’ h=p

- = O(p~97')y = 0(p™),



where >°_ 1 |a,[? < oo, since a, = (D%(z), 72} are the Fourier coefficients of
1

Daq(m) € Ly(F), |a| <l and (ZI'YIZP"' #[)5 = O(p~(=D=),

Property 3: For a periodic function g(z) € Wi(F), we have

E lg,| < . (1.9)

~yerl

Proof. Using the relation (1.7) and the Cauchy-Schwarz inequality we have

3 gyl < Zlm-' <X #mz g, < 00

~yel yel’ yerl yel’

where (3.1 W)% converges for I > 4. That is, for [ > ¢ we obtain (1.9).

1.2 The Relation between the Boundary Value

Problems in d-Dimensional Parallelepiped

Associated with the Schrédinger operator in Ly (F') we consider the following

boundary value problems:

i) The Dirichlet problem is defined as :
—Au+ g(z)u = lu

ulBF = O’

where we denote the eigenvalues and the eigenfunctions of the Dirichlet problem

by Ay and W respectively.

i) The Neumann problem is defined as :

—Au +g(z)u = lu

ou
5-lor =0, (1.10)



where 5% denotes differentiation along the outward normal of the boundary 8F.
The eigenvalues and the eigenfunctions of the Neumann problem are denoted by

Ty and @y, respectively.

iii) The quasiperiodic or t-periodic problem is:
—Au+ g(z)u = Au

u(z + w) = u(z)e’ @D, (1.11)
where w € Q, t = 3% viti, {n}L,; is the basis of the dual lattice T', and

t1, 12, ..., tq are real parameters in [0, 1]. We denote the eigenvalues and the eigen-

functions of this problem by Ax and ¢y respectively.

To see the relation between the eigenvalues of the Dirichlet, Neumann and

quasiperiodic problems, see ( Eastham, 1973 ), first we give some definitions.

Let A denote the set of all complex-valued functions f(z) which are continuous
in F and have piecewise continuous first-order partial derivatives in F'. Then the

Dirichlet integral J(f,g) in d-dimension is defined by

If,0) = [ {gradf(@)grady®) + o) @@, (112)
for f(z) and g(z) in A, where
gradf(m):-g{-el—l-gf; ez + .. +§—J;

If in (1.12), g(z) has also piecewise continuous second-order partial derivatives

in F, then a Green’s theorem gives

14,9 = - [ $@H8TE) - a@gl@do+ [ s5las, (1)

where dS denotes an element of surface area of 0F. We consider J(f,g) as
applied first to the quasiperiodic problem. If f(z) and g(z) satisfy the boundary
conditions (1.11), the integral over OF in (1.13) is zero because the integrals over
opposite faces of OF cancel out. In particular, when g(z) = pn(z), (1.13) gives

J(fag) =)‘NfNa (114)



where fv = [ f(z)pn(z)dz is the Fourier coefficient, and we have used the
fact that @n(z) is the eigenfunction of the quasiperiodic problem with the cor-

responding eigenvalue Ay. A particular case of (1.14) is

Av, M=N
J(on, on) =
| (on, om) {O’M?éN
It follows that -
S dwlfvl? < J(f, ) (1.15)
N=0
for all f(z) € A which satisfy (1.11).
From (1.15) we obtain the following
_ . JH)
Ao = mm(fF |f(:z:)|2dm)’ (1.16)

the minimum being taken over all f(z) (# 0) in A which satisfy (1.11). Further-
more, the minimum in (1.16) is attained only when fy = 0 for all N such that
An > Xo , i.e., only when f(z) is an eigenfunction corresponding to Ag. In the
case of the quasiperiodic problems, the eigenfunctions are real valued and there-
fore, for these problems , f(z) can be confined to being real valued in (1.16).
The results (1.14) and (1.16) follow from (1.13) because of the vanishing of the
integral over OF when g(x) is an eigenfunction. Corresponding results hold for
the Dirichlet and Neumann problems. In the first problem, the integral over OF
in (1.13) vanishes if f(z) = 0 on F. In the second problem, the integral vanishes
without any boundary condition on f(z) since, by (1.10), gng- = 0 on OF when

g(z)-is an eigenfunction. Thus, for the Neumann problem , we have

S Twlinl < J(f, ) (L.17)

N=0

for all f(z) € A, where fy = [, f()®n(z)dz, while the corresponding result
holds for the Dirichlet problem if f(z)isin A and f(z) = 0 on 8F. All the above
results are used in the proof of the following theorem, see (Estham,1973).

Theorem 1.2.1. For N > 0,

Ty < Ay < Ay. (1.18)



10

Proof. To prove the left-hand inequality, we first take f(z) = o in (1.17). Since
J(f, f) = Xo by the particular case of (1.14), we obtain
do = ) TnIfn = To ) Ifn]:

N=0 N=0

By the Parseval’s formula, one has

Z |fnl? = /F |f(z)|%dz = 1.

N=0
Hence
Ao > Yo
Next we take
f(z) = copo(z) + crp1(z),

where ¢y and c; are constants such that |co|? + |¢;|?> = 1 and

™ L o()@o()dz + ¢4 A 1(2)®o(z)da = 0,

Such a choice of ¢ and c; is always possible. The first condition makes [, |f(z)[?dz =
1 and the second makes fo = 0. By a particular case of (1.14)

J(f) .f) = )\0|CO|2 ot )\1|61|2 < )\1(|COI2 + ICllz) = Ai.

Also, by (1.17) and the fact that fo = 0, we have

I 1) 2 3 TulfnE 2 Ty 1wl =11 [ Iffdo =1

Hence
A>T

The argument can be extended to the general case N. We consider

f(z) = copo(x) + crp1(x) + ... + enn(z),

where ¢; are real constants such that |co|? + |c1]? + ... + |en|? = 1 and f; = 0 for
0 < i < N — 1. These conditions are N linear algebraic equations to be satisfied
by N + 1 numbers Co, C1, ..., ¢y and such numbers do always exist. The proof of
the theorem for general N is same as the proof for N = 1. The proof of the
right-hand side of the inequality in Theorem 1.2.1 is similar and we use (1.15),
instead of (1.17). O



CHAPTER TWO
SEPARATION OF EIGENVALUES
FOR THE UNPERTURBED OPERATOR

In this chapter, we consider the eigehvalue problem for the unperturbed
operator Ly(0). As in papers (Veliev,1987) and (Veliev,1988), we divide the
eigenvalues of the unperturbed operator into two groups: Resonance and non-
resonance eigenvalues. In this chapter, these groups will be introduced and
some estimations including eigenfunctions of the unperturbed operator will be
obtained. These estimations will be used in the next chapters. Also the asymp-
totic formulas for the eigenvalues of the operator Ly(g(z)) are obtained in the

non-resonance domain.

The non-resonance case was considered in (Atilgan et al., 2002). Here, we
write the non-resonance case in an improved and enlarged form which can easily
be used in the later chapters. Moreover it helps very much when reading the

resonarnce case.

11
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2.1 The Eigenvalues and the Eigenfunctions of
the Unperturbed Operator Ly(0)

To begin with, we consider the operator Ly (0) which is defined by the expres-
sions (1.1) and (1.2) in the domain F, when ¢(z) = 0, where

F =1[0,a4] x [0,a9] X ... X [0, ag]- (2.19)
Let
d
Q= {Z myw;;m; € Z,6=1,2,...,d} (2.20)
i=1

be a lattice in R? with the reduced basis

w) = (al, 0) Wy = (0, a2,0,...,0),...,wd= (0,...,0, ad)

and

d
= {Z nY;ing € Z,1=1,2,...d} (2.21)

i=1
be the dual lattice of §, where (w;, ;) = 27d;;.

Lemma 2.1.1. The etgenvalues and the corresponding eigenfunctions of the op-
erator Ly (0) are |7|? and v,(z) = cosy121 cOS YoZ2... COS YaTq Tespectively, where

v = (7,7 7) € 5.

Proof. First we show that
| —Avy = |y|?v,.
Indeed,

907 (H COS YiZ;) = —"j (H COS Y;L3)

=1 i=1
for all k£ = 1,2,...,d, which implies

—Avy = Z o2 =M+ -+t = |7]2v,,

Now, we show that the boundary conditions %’%(x) = ( for z € OF where

OF = {z = (t1a1, t202, ..., tgaq) : t; = 0 or 1 at least for some i,5 = 1,2, ...,d}
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hold. We know that %—’;‘ is the derivative of the function v, in the direction of the
vector n, which is the normal to the boundary OF of F. By definition (2.19) of
F, t'he boundary JF lies in the hyperplanes II = {z € R%: (z,e;) = 0 or on its
shifts azex -+ Ilj, where £ =1,2,...,d; e; = (1,0, ...,0),e2 = (0, 1,0, ...,0), ..., eg =
(0,0,,...,1). So, the normal vector to the hyperplanes II; and aze;+ I are eg or
—ey, respectively. Therefore, %—1;} coincides with the first partial derivatives 2

6.’1.‘]'
or —2% of . Thus,

Oz
Jv, .
7L |zem; = cOSY1Z1... SiNY;T5... COS VaTalz;—0 = O,
c‘?xj
and
Ovy - in i _0
o1 ]meajej+l'lj = COS 7N Z&y... S YjTy... COS ’dedlszaj — Y
3
since v; = %’;’3, m € Z, by definition 2.21 of dual lattice T'. O

Notice that, if for some k£ the component v, = 0, then the corresponding

multiplier cos~y,z, does not take part in v, (z).

Consider the norm of the function v,(z) in Ly(F)

& =l wy(@) lI= 4/ g

where k, (0 < k < d), is the number of components ; of v = (71,72, -..,74) such
that v; = 0.

For the sake of simplicity in the calculations, we shall write v,(z) in the form

d
1 (o,
Uy(z) = (HCOS%‘%') = m Z e,
i=1 acAy
where Ay = {a = (a1, 02,...,aq) € R?: || = |%l,i = 1,2,...,d} and |A,]| is the
number of vectors in A,.

Lemma 2.1.2.

(Z ei('y’,m))(z ei(a,m)) — Z Z ei(a,m), (2.22)

fy’ [V aEAq '7’ €Aq C!EA‘Y+',I

r
for qll 1,7 € 3.
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Proof. The expression (2.22) is equivalent to

Z i) Z et}

{y:y=a+y 7 €Aq, €A} {y:yeAv_H/ A €A}

Therefore, we have only to show that the sets :
C={y:y=oa+7v,7 € 4, a € A,}

and
D={y:ye A7+7f,'y' € A.}

are equal. For this, let y = a4+~ € C. Then, o € A, and v’ € A,, that is, the

components of the vectors are o; = +; and vy, = +a;, by definition. Thus,
y==x(vi+a) or yi=x(vi—a),Vi=12,..4d. (2.23)

Now, let z € D. Then, z € A, +y'y Where 7 € A,. Again, by definition, z; =
+(v; +;), where v; = =a;. Hence,

zi=F(vi+a;)orzy=+(y;—a;),Vi=1,2,..,4d. (2.24)

Then, by (2.23) and (2.24) we have C = D. a

2.2 Resonance and Non-Resonance

Eigenvalues of Ly(0)

As it is mentioned before, the eigenvalues |y|?, for |y| ~ p, of Ly(0) are
divided into two groups, where |y| ~ p means that ¢;p < || < cyp and by ¢;,
i=1,2,..., we denote the positive real constants which do not depend on p. For

this, first R? is divided into two domains as follows:

Lét a< d-l—_125’ ar = 3*a, k=1,2,...,d — 1 and define the following sets

Vi(p™) = {z € R*: |]a* — |z -+ b*| < p™}

E(p™p)= |J V(™)
bel'(pp™)
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U(p™,p) = R\E:(p™, p)

k
E(pp)= | (Vale™)),

Y1¥20eYRED(PPY) =1
where the intersection ﬂ;;l V(0™ in Ey is taken over ~1,7s,...,vx which are
linearly independent vectors and the length of ~; is not greater than the length
of the other vectors in I'() ;R (see Remark 2.2.1). The set U(p™,p) is said
to be a non-resonance domain, and the eigenvalue |y|? is called a non-resonance
eigenvalue if v € U(p™,p). The domains V;(p™), for all b € I'(pp®) are called

resonance domains and the eigenvalue |7y|? is a resonance eigenvalue if v € V,(p™).

Remark 2.2.1. Note that, the elements of the single resonance domain
Vo(p™) = {z € B*: |z]* ~ |z + b*| < p™}
are contained between the two hyperplanes

={z: [z’ - J&+ b = —p*}

and
= {z: |z]* - [z +0]* = p™}.
Since
|z* — |z 4+ b]* = (z,2) — (& + b,z + b) = —2(z, b) — [b]* = Fp™,
P2 _ e _
(,0) + 5~ F 5 =0,
we have
b b b C”b
T I T __ib
H2—{$.(:v+2 2|b]2’b)_0}_nb+(2 2|bP),

where II; = {z : (z,b) = 0} is the hyperplane passing through the origin. It is
clear that the distance between the two parallel hyperplanes IT; and II, is BI‘Z—II
So, without loss of generality, we can consider the resonance domains V4(p™) for
vectors b € I'(pp®) which are minimal in its direction, since Vg(p®*) C Vi(p*)

for all integers s > 1.
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Lemma 2.2.2. The non-resonance domain U(p*, p) has asymptbtically full mea-

sure on R?, i.e.,

w(U(p*,p) 1 B(p))
u(B(p))

where B(p) = {z € R%: |z| < p}.

— 1 asp— o0,

Proof. 1t is clear that V4(p™)() B(p) is the part of B(p) which is contained
between the two parallel hyperplanes II; and II;. Since the distance between

these hyperplanes is %‘;Il’ we have

w(Vo(0™) [\ B(p)) = O(p* 1),

The number of the vectors v in I'(pp®) is O(p?) and u(B(p)) ~ p? where
f(p) ~ g(p) means that there are positive independent on p constants c¢; and c;

such that ¢;1]g(p)| < |f(p)| < c2|g(p)|- Thus,

p( U V(™)) B(p)) = O(p*Hertdey

bel(pp™)
= u(B(p))O(pt 1=, (2.25)

Using that, R? = U(p*,p) | F, and

R B(p) = U (o™, p) [ B(0) | J(E: [ B(p))
we have,

w(B(p)) = w(U(o™,p) (| B(p)) + uw(E1r[ ) B(p)),
which together with (2.25) imply

u(U(p*,) [ B(p)) = (B(p))(1 — O(p***1)). (2.26)

Thus, from (2.26) the result follows, since a; + da < 1. That is, the domain
U(p™,p) has asymptotically full measure on R®. (]

Note that Lemma2.2.2 implies that the number of non-resonance eigenval-

ues ié essentially greater than the number of resonance eigenvalues. Namely, if
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N,(p) denotes the number of v € U(p™,p) (B(2p)\B(p)) and N,(p) denotes
the number of v € Uper(ppe) Vo(p™) N(B(2p)\B(p)), then since a1 +da < 1,

N”'(p) _ a1—1y __
() = O ™) = o(1). (2.27)

Remark 2.2.3. Consider

E = ((\Vu(e™) () Blo)

We turn the coordinate axis so that span{~vi, s, ..., Y&} coincides with the span
of the vectors e; = (1,0,0,...,0),e2 = (0,1,0,...,0),er = (0,0,...,1). Clearly,
Yy = 22‘___1 vVs4e; for s = 1,2,...,k. Therefore, if z € ﬂi;l V4 (p™*), then by

definition, (see Remark 2.2.1) we have

'Ysa m) (Z Vs,i€i, :17) z’ys iy = ak)a

i=1 =1
for s=1,2,...,k and z = (21, z2, ..., Zg)-
Writing the last estimation for all s = 1,2,...,k, we get the system of linear

algebraic equations
Y1,1%1 + T1,2%2 + oo + 14Tk = O(p%*)

Yo1%1 + Yo22 + ... + Yo uZr = O(p™*)

Ye,1T1 + Ve2Z2 + oo + Ve kTh = O(Pak)-

By Crammer’s rule, we obtain

det( )
T, = I =1,2,...,k, 2.28
det('y,,z) (2.28)
where v; = (V15 V.2s s Viks 0,0 ..., 0) , b7y = 7 for n # 4 and b}, = O(p™*)

for n = i . Taking into account that the determinant (v;,) of the system is the
volume of the parallelepiped

k
O bvibie0,1],i=1,2,...,k},

i=1
i.e, greater than some constant and using that |7y;;| < pp®, since v; € T'(pp*), we

obtain the estimation for the components z,, of z € ﬂle V. (%),

Tn, = O(p*+ -0y yn =12, ..., k. (2.29)
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Therefore, for the projection v of z € ﬂle Vo, (p™*) onto the span{yi,¥a, ..., Y&},

we obtain

[v] = O(p*F=De), (2.30)

Lemma 2.2.4. The domain Vy(p®) \ E2 has asymptotically full measure on
Vi(p®1), that is
m((Vo(p™) \ E2) N B(p))
1(Vs(p™) N B(p))

— 1,

as p — oo.

Proof. Let k =2, then for a fixed b € I'(pp®), we consider

E(pp)= | (™) V(™))

v2€T(pp™)

and
B = (%) (| Vau o)) () Bo))

If z € E, then by (2.29), there exists an index ¢ > 2 such that jz;| > £. Define,
E(+i)={z€FE:2;> 8} and E(—i)={z € E:z; < -2}
It is clear that,

B = (JBe) U B,
Using the formulas

,U,(E(-]-Z)) =/ I—x—l-d$1d$2...d$i_1d$i+1...diL'd,
Pr(B(+3)) T4

where Pr{E(+1)) is the projection of E(+i) onto the hyperplane z; = 0, and
p(Pr(E(+))) = O(p" 2+,
which follows from (2.29), doing the same estimation for p(Pr(E(—i))), we get

W(E) = O(pHer+orHd-9),

Then, using that the number of elements in I'(pp®) is O(p%), we have

wEBE)=ul U W) (Vo) () B(K)

26T (pp*)
— O(p2(a2+a)+(d——3)+da). (2‘31)
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Also, we have
wVite™) (N B(o) ~ =— (2:32)
Therefore, by (2.31) and (2.32), we get
- p((Ve(p™) \ E2) N B(p)) _ i{(Ve(p™) N B(p)) — u(E2(1B(p)))

p(Ve(p2)NB(p) #(Vs(p) N B(p))
. w(E2 N B(p))) . O(plate)+(d-3)+day o
u(Vs(p) N B(p)) O(por+d-2)
as p — oo, since
200 —a1 +(d+3)a< 1 (2.33)
and
Qg > 2a1, (234)
hold for o < 0

d+20 :

Notice that v ¢ Ve, (0™) by definition means ||v|? — |y + ex|?| > p™, which
implies that

1
7] > =p™, VE=1,2,..,d. (2.35)

3 b
Lemma 2.2.5. Let v,(z) be an eigenfunction of Ly(0) . Then,

1
va(@)vy () = m Z Un s

for all vy € g, v ¢ Ve, (p™), Vk=1,2,....,d and for all a € T'(p*).

Proof. By (2.22), we have

Vo(Z)vy (T 7 @) i)
a(,)’)‘() |AHA,Y|(Z )(Z )

'€Aq a€Ay
1 1
= - ionT) _
p A mP IR Mty DI (2:39)
¥ €A, aeA‘H-‘Y’ ¥ €A,
since |[4,| = [4,./| = 24, because all components of v and v+~ are different

from zero. Indeed, y ¢ V., (p™) implies |yvx| > 1p™, VEk = 1,2,...,d. Also,
if a € T'(p®), then v € T'(p*) and thus |v,| < p*, Vk = 1,2,...,d. Therefore,
e+ %l 2 [l = el > 3% O
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2.3 On the Potential of the Neumann Problem

It-is known that the system {v, = I—Al—/l Y aca, ei(a””}v/eg is complete, i.e.
) Y Y
form an orthogonal basis in Ly(F). Hence, the potential ¢(z) in the operator

Ln(g(z)) can be written in the following form,;

Z qyrv ! (2.37)

ek
where g» = (q(z),v.,(z)) are the Fourier coefficients of the potential ¢(z) with
respect to the basis {v./}. /¢ r, (-,.) is the inner product in Ly(F). Without loss
of generality we take go = 0, otherwise we replace ¢(z) by ¢(z) — #ﬁ,)
In this work, we assume that the Fourier coefficients of the potential ¢(z)

satisfies the condition

D gy P+ 1 *) < oo, (2.38)

T
YEG

Wherel>&t2—02w—'—12+d+3.

Therefore, we can write

a@)= 3 oy +0(), (2.39)

v €r(p)

wherep=1—d,T(p*)={y € L: 0 < [¥| < p*},a < (@gy and p is a large

parameter.

Indeed, by (2.38) we have (see section 1.1)

1 Iq ,‘21,)/|2z 1
Z 2y Uy Z lq’r )7 = Z 7lez )?
I [>p Iy |>pe [v'|>p
’ 1 1 = —(l—d)x —pe
SO gy P A W); = O(p~0=%%) = O(p™).
[ ]>p> 7' 1>p

Also, we have

S oyt = S T (3 A it <o
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and thus, one can define

M= lgyl- (2.40)
IEE

Remark 2.3.1. Notice that, if q(a:) is sufficiently smooth (g(z) € W(F)) and the

support of gradg(z) = (2% B am2 " %{;) is contained in the interior of the domain
F, then g(z) satisfies the condition (2.38).
There is also another class of functions ¢(z), such that g(z) € W}(F), and

g(z) = Z g0y,
y'er

which is periodic with respect to {2 and thus also satisfies the condition (2.38).

Lemma 2.3.2.

Yo ayvy@m@) = Y gyv.p(@) (2.41)

7' eT(p®) ' €T (p=)

for ally € 5, v & Ve, (0™).

Proof. From Lemma 2.2.5, for all v € £, v ¢ V., (p*) and for all a € I'(p®), we

have

va(Z)vy(2) = [A|ZU7+7

v €Aa

The set A, consists of the vectors al,d?, ..., a®, where s = |A,| and since
Ap = Agp = = A= Ay, Vgt = gz = . = Ugs = g, (2.42)

in the above expression, the vector a can be replaced by a', a?, ..., %, that is

1
Vet (T)vy(7) = [A | Z 'y+'7 IA | < Z Uyt (%),

Y ‘eA,

ak

for all k = 1,2, ..., s. Therefore, summing the obtained s equalities, we get

Z_}vak(z)u, IA P Z Uy Z Vo (2

EAO. eAa
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or equivalently

Z z)vy(z) = z (O

’)‘I €Aq Y '€Aa
Thus,
> gl () = Y arv, (@), (2.43)
’Y,eAa 'Y,GAG

since ¢, = g, for all v € A, (see (2.42)).
Clearly, there exist vectors ay, as, ..., a4y € g such that

n

T(p*) = As;y Ag;NAg, =0, Vij#k (2.44)

Jj=1

In (2.43), replacing a by a; for j = 1,2,...,n, summing all obtained n equality
and using (2.44), we have

n
Z Z gy vy (z)vy(7) = Z Z Oy Uy gy ()
3=1 o' € Aa; 7=1 +'€Aa;
which is equivalent to

Z Gy vy (2)vn(2 Z Gy V1o ()

7' €r(p) 7' €T(p2)

2.4 Asymptotic Formulas For the Eigenvalues

In the Non-Resonance Domain

In this section , we consider the non-resonance eigenvalue |7y|? of the unper-
turbed operator Ly(0), i.e., v € U(p™,p) and prove that there exists an eigen-
value YTx of the operator Ly(g) which is close to the non-resonance eigenvalue

7| of the operator Ly (0).

Let the sets F', Q and I" be as defined in (2.20), (2.21), and (2.19) re-

spectively. To obtain the asymptotic formulas for the eigenvalues of the operator
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Ly(g(z)) in the non-resonance domain, we use the following formula for the oper-

ators Ly(g(z)) and Ly(0), which we call the binding formula for these operators,
that is;
(Tn — W) (@w,vq) = (B, g(2)vy), (2.45)

where (.,.) is the inner product in Ls(F).

The binding formula (2.45) can be obtained as follows: By multiplying both

sides of the equation
—Ay(2) + ¢(@)Bn(z) = Tun(a) (2.46)
by v,(z) , We get
(~ADx(2) + g(2)Bx(2), 15(2)) = (Yn (), v,()),

using the properties of inner product, we obtain

(=A@ N (x),v4(2) + (g(2)2n(2), v4(2)) = T (Dn (), v4(2)),

since Ly(0) = —A is a self-adjoint operator, v,(z) is the eigenfunction of the
operator Ly(0) corresponding to the eigenvalue |y|2 and ¢(z) is a real valued

function, we have
(®n(z), —=Av,(2)) + (2N (2), 9(2)vy(2)) = Tn(Pn(2), v4()),

Iv*(@n(z), vy(2)) + (®n(z), g(z)v,(2)) = Tn(Pn (), v, (),
which gives (2.45).

In order to start iteration, we substitute the decomposition (2.39) of ¢(z) into

the formula (2.45),i.e.,

(Tn = ) (@, o) = (BN, D GnUpty) + O(07P). (2.47)
ner(p®)

Since v € U(p™, p) implies v ¢ V, (p™), we can use Lemma 2.3.2 to obtain

(Tw = 171*)(@n,y0y) = (@n, Z GpVyiys) + O(p7"%)
€l (p%)

= Z O (PN, Uy ) + O(p7P%). (2.48)

mEer(p™)
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Similarly, the expressions (2.45) and (2.39) also imply that

(®n, q(z)vy) (PN, Vyriy) _
0] N = 2N T E AEN YA par
(o) T =P e (p®) o Ty =[P + 0™, (2:49)
1

for every vector 7' € L, satisfying the condition
112 1 (71
T =P > 5™, (2.50)
which is called the iterability condition.

Lemma 2.4.1. Let v € U(p™,p) , i.e. |7|? be a non-resonance eigenvalue of

Ln(0) and TN be the eigenvalue of Ly(q(z)) satisfying the inequality
2 1 (63
Ta = 1Pl < 50

Then,
1
[T = [y + b2 > 207,
for all b € T'(pp®).

Proof. 1f v € U(p*, p), then for all b € T'(pp*) we have the following inequality
I =y + b7 > p™
which, together with the inequality |Tx — |y[?| < 0™, implies
1T — by + 0| = [T = [y + 0 = |72 + [7[?]

> [l[9f = b+ B = [Ty = 12l 2 1% = 57,

the result follows. O

We say that |y|? is of the order of p? if |y|2 ~ p?.

Lemma 2.4.2. Let |y|? be an eigenvalue of the operator Ly(0) of the order of
p>. Then, there is an integer N, such that [Ty — |7|%] < 2M, and

—(d-1)
[(®n,vy)| > c3p™ 7, (2.51)

where M is the number defined in (2.40).
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Proof. The set {®n}%_, of eigenfunctions of the self-adjoint operator Ly(g(z))
is an orthonormal basis for Le(F). So, we have

(o]

u(2) = > (Bn(2),0,(2))On (),

N=1

and the Parseval’s identity (without loss of generality we assume |[v,[ = 1):

L=l P =3 1@nwu)f = D> |@vu)l+ D (w2

NATN~IvI2|>2M NY v ~{y[2[<2M

Using the binding formula (2.45), Bessel’s inequality and (2.40) we have,

S ewep= Y (@wa@v)r

— ~[212
N:T n—[7i2[>2M N:TN—P[2|>2M [Tw =%

1 2 _1 2y, (2 1
<up 2 @na@m)P < gEld@) vl <
N:Yw—|y?21>2M

Therefore, by Parseval’s identity,

3
Z l(q)Na'Uﬁ')lz 2 4

N:TN—]y?|<2M

On the other hand, it is well known that if a ~ p then the number of v € %
satisfying ||v|2 — a?| < 1 is less than c4p®*. Therefore the number of eigenvalues
of Ly(0) lying in (a? — 1,a® + 1) is less than csp?!. And since, by the general
perturbation theory, the N-th eigenvalue of Ly(g(z)) lies in M-neighborhood of
the N-th eigenvalue of Ly(0), the number of the eigenvalues Ty of the operator
Ly(g(z)) in the interval I = [|v]? — 2M, |y|> + 2M] is less than cgp®1. By this
fact and the above inequality , there exists N € I such that

1w

<Y @) < e (@, )
N Tn—ly?|<2M

That is,
. d—1

(@ (), vy (2)] > cap™ T

Hence, the lemma is proved. O
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Theorem 2.4.3. For every non-resonance eigenvalue,}y|2 ~ p?, of the operator
Ln(0), there exists an eigenvalue Yy of the operator Ly(q(z)) satisfying the

following formula:

T = |y>+0(p™). (2.52)

Proof. By Lemma 2.4.2, there is an index NV, such that
L, _ =)
T = 7P S 2M < 50, |(@w(a), 0y (2)] > o™ T, (2.53)

We prove that this eigenvalue satisfies the formula (2.52). By the first inequality
in (2.53) and Lemma2.4.1, the vector y+71, for 4 € I'(p®), satisfies the iterability
condition (2.50). Therefore in (2.49), one can replace v’ by v + ¥ and obtain

(PN Vytyits) —pary
(PN, Uyy) = q + O(p™).
fe ”erz(pa) PYn =l +ml?

Substituting this into the right-hand side of the equation (2.48), we get

(O =YD @Nv) = ) ¢ (@, vyam) + O(07™)

11€T(p*)
((I)N1 v ) _
F— Z q’n%z»r — ;;14_712 + O(p™").
71,726 (p>) N mn

Isolating the terms with coefficient (®y,v,) in the last expression, we obtain

(T = 1Y) (@, vy)

— Z G\ q (@N, ’U,y)
- v, Gz — 3
71,72ET(p%) Tn l'Y + 'Yll

Y1+v2=0

(q)N s Uyt +"/2) —
+ ¥ +0(p).
Q’qu’YzTN "+ mf? (p™™)

¥1,¥2€T(p%)
v1+72#0

Since v; + 72 € I'(2p*), by (2.53) and Lemma2.4.1, the vector v + 1 + 72 satisfy

the iterability condition, i.e.,
2 1 (23}
ITN—I’Y+’71+’)’2||>§P :

Thus, again in the formula (2.49) replacing 4’ by v + v + 72 and putting the
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obtained equation into the second sum of the last expression, we obtain

(Tw — ) (@n,vy)

= > Gl T

¥1,72€0(p%)
1 +ve=0

((I)Nyv'y)
=~ +mP

(®n, Vb +y2+73)

N + O(p™P*).
Z y1Gv2 s (T =y +7)(Ty — v + 71 + 72 )
71,72, ¥3E€T (p*)

Again, isolating the terms with coefficient (®x,v,) in the above expression,

we have

(Tw = ") (@, vy)

— § Gy q (@Na vfy)
- Y1472 — 2
7172 €T (%) Tn h’ + '71!
~1+v2=0

(q)Nav"/)
-+ 2
z Gy 9rv29vs (T — Iy +7m1P)Tn — Iy + 71+ 2[?)

Y1,72:73ET (p%)
71+v2+v3=0

(q)N ' Uyt +"/2+73) _
+ z Gy 92973 5 - +O(p pary
71:72:73€T (%) (T =y +nP)(Tn ~ Iy + 71+ %)
Y1+ +v3#0

By the same method, repeating the iteration p; = [%1] times and isolating each

time the terms with multiplicand (®y,v,), we get

p1
(Tx = ) (@n,vy) = (O 8:)(@w, vy) + Cpy + O(p77%), (2.54)

i=1

where
y q’)‘l e ’q’Yi+1
Si(rx)= > > ~  (2.55)
e €0(0%) (T =y +71® (v =y + 7+ o+ %)%
Cm — Z q71’°’q7p1+1 ((I)N’ v’7+"/1+~-+’)’p1+1)

(T =Py +mn) . (In=y+1+ o+ ?)

V110 Yp41 ET(0%)
T1HY2+ et Ypy $17#0

v € T'(p®) and |y1 + 7o + ... + 7] < p1p®, for all i = 1,2, ..., p1, Therefore, using
Lemma 2.4.1 and the estimation (2.40), we have
|0y |-+ 1Gyi3
S' TN) — i+
5t 71,,,,,”2”,,5,) T =y Pl T = |y 7+ 5P
i+1
. (3020)"

(2.56)
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that is,
Si(Tn) = O(p™™) (2.57)

for i =1,2,..., p;, which implies

P1
> Si(Tn) = 0(p™). (2.58)
i=1
Similarly,
IC | = Z Iq’)’l“"lq’yp1+1||(¢N1U7+71+...+—yp1+1)l
" V13- Yp+1ET(P*) ITN - l’)’ + 71|2I"'ITN - 17 +7 4.+ 'ypllzl
MPi+l
= (%)plpplal
and thus,
Cp, = O(p™7*). (2.59)

Note that to obtain(2.58), we have only used the condition Y € I, hence we

may write

i Si(a) = O(p™™) , Ya € I. (2.60)

If we substitute (2.58) and (2.59) into (2.54), we get

(Tw = Y1) (@ vy(2))
= 0(p™* ) (O, v4(z)) + O(p™7) + O(p™P%). (2.61)
Dividing both sides of the equation (2.61) by (®x,v,(z)), using (2.51) and using
that p; = (2], p1 > 2, oy = 3 > 20 ,pro > por we obtain

O(p™™)

ITn — 1’| = O(p™) + 050

Choosing p such that p > 42:&1- + 1, the result follows. O
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Let us define ¢ = [£2] + 1, where [£1] is the integer part of £ then in

Lemma?2.4.2, instead of (2.51), we have
(@, v)| > pF) > o, (2.62)

Theorem 2.4.4. Let vy € U(p™,p), |y| ~ p. Then, there is an eigenvalue Ty of
the operator Ly(q(z)) satisfying the formulas

Tw = [7* + Fr1 + O(p~F), (2.63)

for a:ll k=1,2,..p—c, where

|g[?
Fo=0F= Z o 2
y1ET(pe) |7| - I7 - ’Yll
J
E’f = ZS"‘(I’)IIZ + F.'i—l)’ j=2,3,...p—c
=1

Proof. The proof is done by mathematical induction on k.

For k =1 ; by Theorem 2.4.3, Ty satisfies the equation
Ty =P+ Fo+0(p™™),

where Fj, = 0.

For k = j ; assume that

Tn = 71’ + Fj1 + O(p™). (2.64)
Now; we prove that, for k = j + 1, (2.63) holds, i.e.,

Ty = [yl + Fj + O(p~ 0+, (2.65)

For this, we put the expression (2.64) into S;(T ) in formula (2.54)

(Tw = YP)(@w,vy) = (_Z Si(l7? + Fj—1 + O(p7°2))) (@, vy) + Cpy + O(p7)

i=1

and divide both sides of the above equation by (®n(z), vy). Using (2.62), we get

p1
Ty =P+ Sil7f + Fj1 + O(p77)) + O(p~®=9). (2.66)

i=1
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Adding and subtracting the term $>7_ S;(|7|2 4+ Fj_;) in (2.66) , we have
J
Ty = [y + D Sl + Fyoa + 0(07)) = Silly]? + Fy_1)]
i=1
p1 . J
+ 3 Sl + Fioa+ 0(p77)) + Y Silly? + Fjt) + O(p~®™e) (2.67)
i=j+1 i=1
Notice that, (2.57) implies
p1 ] ) »
D S+ Fis + 0(579)) = O(p 0 0),
i=j+1
So, we need only to show that the expression in the square brackets in (2.67) is

equal to O(p~U+Ye1), First we prove by induction that
F;=00p"%), Vji=0,1,2,..,p1. (2.68)
By Theorem 2.4.3, Fp = 0. Suppose Fj_; = O(p~%), then by (2.60) we have

Fy = S + Fia) = O(p), since a = [y + Fys = [y2 + O(r) € I

By (2.68) and Lemma2.4.1, we obtain
g 1
IV + Fiex + 0(07%) =y + o+ + 4l > 50

and '
2 2 1 (253
7] + Fjor = [y +m + o+ 7l |>'§P ;
foralli=1,2,...,p1.

Hence, by direct calculations and using the above inequalities:

1S1([7 + Fj—1 + O(p77°4)) = Si(|7]? + Fy—1)

— Z ( |q71||qul _ | |lgm | )
oy P+ Eia+0(pe) = [y +ml?) (WP + B = [y + mP)
— Z _O(p_ja)lq’h”%!zl
" (Y% + Fjo1 + O(p72) — |y + m (VP + Fjo1 — |y + 1f?)

T1,¥2€T(0%)

—O(p i 1@, —it2a
<l . (p(%pcleglg lonl) _ oot

71,726l (p%)
and

1S2(1712 + Fj_1 + O(p77)) — Sy(|y)? + Fy_1)| = O(p~ 03,
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since

- . |93 11922191 ’ | _
(VP + Fjoa 4+ O(p791) = [y + mP)(I1? + Fier + O(p77) = |y + 1 + 12f?)

|9 1197199 | = O(p~ G+
(7P + Eor = Iy + PP+ Foa = Iy +m + 72]?)

Similarly, we can calculate
ISi(1? + Fya 4+ 0(573)) — Sy + Fy_y)| = O(p=G+en)

forall :=1,2,..,7.
Therefore, the expression in the square brackets in (2.67) is equal to O(p~U+1e),

where 1 < 7+ ¢ < p — ¢, from which the theorem follows. 1



CHAPTER THREE
ASYMPTOTIC FORMULAS
FOR THE EIGENVALUES
IN THE RESONANCE DOMAIN

In this chapter, without loss of generality we assume that v ¢ V¢, (p*), for
k=1,2,..,d, where e; = (Z,0, ...,0),e2 = (0, 2,0, ..., 0), ..., ea = (0, ..., 0, a—’;)

' ag?

3.1 Estimations for the Eigenvalues in the

Resonance Domain

Let |7|? be a resonance eigenvalue of the operator Ly (0), i.e. v € (NE, Vo, (0)\
Ept1, k> 1.

Define the following sets :

k
1
Bk(’Yl,'YZa v')lk) = {b b= an’y“nz (= Z, lbl < 5p%ak+1}

=1
By(7) = v+ Be(v1, %2y s M) = {7+ b: b € Bi(71,721 -, ) }

Br(7v,p1) = Be(v) + T'(p10%).

First, we shall prove that, if |y|? is a resonance eigenvalue of the operator

Ln(0), then the corresponding eigenvalue of the operator Ly(g) is close to the

32
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eigenvalue of the matrix C(vy, 71, ..., ) defined as :

qh,;—hj 9 i # .7

CYs Vs s M) = (Ci5) = { hif?, i =73,

for 4,5 = 1,2, ..., b, where by h; we denote the vectors of Bi(v,p1) and by is

the number of vectors in By(7y,p1).

Theorem 3.1.1. Let v € (N Vo (0™)) \ Biar, k= 1,2,.,d — 1, 4] ~ p.
Then, for any eigenvalue Ty of Ln(q) satisfying

1
Tn = < 5o and  |(2, )] > c1ap™,
there exists an eigenvalue \;(7y) of the matriz C(y, 11, ..., V) such that

T = Ai(y) + O(p~ @789,

Proof. The binding formula for Ly(q) and Ly(0), (see 2.45) and (2.48) gives:
(Tx = [yPe@,7) = Y apeN,y—7)+0(p),
7' er(p%)
where we use the notation (®n,v,) = ¢(N,v). Then, writing this equation for

all h; € By(,p1) we have :
(Cw = RlP)e(N,h) = D~ gye(N,hi—v) +O(p). (3.69)
' er(p=)

First, we will show that for h; — v & By(7,p1), we have
(N, hi —7') = O(p™) (3.70)

and thus,
> gue(N,hi—v)=0(p™). (3.71)

7 &)
hi— €Bg(v,p1)

To prove this, we use the inequality

, 1
T = b =7 == %= =Wl > 20, (3.72)



34

where h; € Bi(y,p1), hi = € Bi(y,p1), and v € T(p*); i = 1,2,...,s ;8=
0,1,2,...,p1 — 1. It is clear that, the relations h; € By(7,p1), hi = ¢ Br(7,p1),
p > 2p; and |7, [71l, s [¥pi~1] < p® imply that

as=hi—% = — 7 — . — Y € Br(7,p) \ Bi(7)
for s=0,1,...,p1 — 1. To prove (3.72) we use the decomposition

a; =vy-+b+a,

where b € By, and a € I'(pp®). Clearly, |b] < %p%ak“ and |a] < p1p®. First let us
show that

1
[y +b+af” = ' > Zp™. ~ (3.73)
To prove (3.73), we consider two cases :

Case 1: If a € P = span{vi,7a,-.-; Yk}, then a+b € P and y+b+a ¢ Bi(y) =
v+ By imply that a +b € P\ By, i.e.

lo-+ 8] > sphewn,

Now, consider the orthogonal decomposition of v as ¥ = z + v, where v € P and
¢ 1 v. Using that, (z,a) = (z,b) = (z,v) =0, |a+b] > %—p%"‘k“, and |v] < p™,
(see 2.2.2), we get :

lly+b+al>~ Pl =|lz+v+b+al*— |z + v

1

=l +b+al® -] > %pzo‘k“

Thus, for Case 1, (3.73) is proved.
Case 2: If a ¢ P, then by definition of v € (ﬂle V3 (0%)) \ E+1, we have

Iy + al? — [y > p™+2. (3.74)
Consider the difference
Y+ b+ a2 = |42 = ]y + b+ af* = [y + b2 + |y + B> = [7}?),

where
d =y +b+af’ — [y + b = |y +af* = |7]* + 2(a, b),

and thus by (3.74) and |2(a, b)| < 2a||b] < pp®p3°*+1 < L™+ it is clear that

|dy[ > gpa"“~
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Using that, |y 4 b+ al> — |v|* = v + b+ a|? — |v]? and taking a = 0, we get
e =y b =y = o+ b = o = (jo+b] = [v]) (v + Bl + [o]),
and thus

1
;d2l < gpak+1.

Then,
1
lds] = [dal] > e

So, in any case (3.73) is true.

Therefore , [Ty — [7/?| < £p™ and (3.73) imply that
1
[Tn =y +b+al’] =T — |7 = [y + b+ af? - |72 > A,

which completes the proof of (3.72).
Now, applying the formula (3.69) p; times and using the inequality (3.72) we

have-
(N, b =)
_ Z i (N hi =9 — 71— oo — Yy 1)
- YiHY2°4Yp1~1 yp1—1 b AT
VL/¥20ee Yoy —1 ED(P) jf—.o (TN lhz v k=1 ’Yklz)
1 e , v
< ('6,0 k) Z |97 lgva-+ @y o le(N s — 7 — T T Vpr-1)|

Y15Y250+5Ypy —1 GF(pa)

< Mpl“l(_é_pak+1)'"p1 = O(p_p"‘)

since p1og41 > pras > pa.
Thus, (3.71) is true.

Therefore, the formula (3.69) becomes :

(Tn = ha?)e(Nyh) = Y gpe(Nhi— ) = O(p7P%), (3.75)
7' €r(p®)
where the sum is taken under the condition h; — v € By(vy,p1). Writing the
equation (3.75) for all h; ,i=1,2, ..., by and using the notation h; = h; — ', we
obtain the following system of equations :

(Tw = [hae(M,h) = Y guonse(dV, hy) = O(o77%),

hi—h;€T(p*)
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(T — |hal?)e(N, he) — Z Gha—n; (N, hy) = O(p7P%),

ha—h;€T(p=)

(TN - Ihbklz)c(Na hbk) - Z qhbk—hjc(N7 hj) = O(p_pa)
by, —h;i €T(p>)

or briefly :
(C = YTNI)[e(N, h1),e(N, ha), ..., (N, hy, )]
= [0(p™),0(p7"%), ..., O(p™P*)]. (3.76)
Then, one has
[c(N, h1),c(N, hg), ..., (N, by, )] = (C — TnI)HO(p™P*), O(p7P%), ..., O(p7P)].
Taking the norm and using the Cauchy-Schwarz inequality in the last expression

we get :

br
O leV, m)I1)E < I(C = TNI)H|(B:O(p7*)%)E < [[(C — Tad) ™|V boep™.

i=1

By, 2.51 we also have,

b
O le(N, ha)[2)E > pe,
i=1

and thus

~cot+po

Ve

where maximum is taken over all \j(7),7 = 1,2,...,b,. Using that the number of

(€ = TauD)™Y| = max| Ty — X! > 12

vectors in By, is | Bg| = O(p5*+1), the number of vectors in L(p1p®) is [T(p1p*)| =
O(p*) and do < o4, we get

b, = O(pda+§ak+1) — O(p%ad) _ O(pg?’da)

forall k=1,2,...,d — 1. Therefore,
min|Ty — A < p~C-e-i839a,
where minimum is taken over all A\;(v),% = 1,2, ..., bg, and the result
Ty =X\+ O(p—(p—c—%d?’)a)

follows. O
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Corollary 3.1.2. Every eigenvalue Ty ~ p? of the operator L(q(z)) satisfies
either

Tn = 1>+ 0(p™®) , forvy € U(p™,p)

or
Tn = Mi(y) + O(p~ @180,

fOT’)’ € (ﬂf:l V:Yi(pak)) \ Ek-i—l 3 k= 1) 2; ey d—1

Proof. Let Ty be any eigenvalue of L{g(z)) of the order of p?. Since {vy(a:)},reg

forms a complete system in Ly(F') , then &y = Zyeg (®n, vy)vy, and

Y. l@wu)lP=

YITn—]2[>3pm YT N~Y2[> 5%
1 _
= 7° y > (q(z)@w, v,

YT —y[2> 5021

P @) @n]* = 0o~

(Pn, q(z)vy) ?

Tn — |7

1
< =
— 4

Then, by Parseval’s identity

Yo @) =1-0()

Y[ TN—|y|2[<Fp1

Since the number of v in [Tx — |7[%] < 2p™ is O(p?"!), we have

[1—0(p~2 1-d
ma'X'y:]TN—]'yIz|<%p°‘1|(®N7v’7)| > % > Ci5p 2.

Thus the proof follows from Theorem 2.4.3 and Theorem 3.1.1. O

Theorem 3.1.3. Let v € (ﬂle V(o) \ Eky1, k= 1,2,...,d—1, |y ~ p.
Then, for every eigenvalue Ai(7) of the matriz C(y, v, ..., V) Satisfying
X — [7?] < 3p*, there is an eigenvalue T of the operator Ly(q) such that

T = Mi(y) + O(p~ @139+,
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Proof. By the general perturbation theory, there is T such that Ty —7?] <

%pzal. Therefore, we can use the system from Theorem 3.1.1,

(C — YND)[e(N, by), (N, hy), ..., ¢(N, b, )]
= [0(p7"),0(p7"%), ..., O(p™P¥)]. (3.77)

Let A; be any eigenvalue of the matrix C' and v; = (v;1,vi2, ..., Uip,) be the
corresponding normalized eigenvector (||v;|| = 1). Multiplying (3.77) by v; we

have,
((C - TNI)[C(Na hl)) C(N’ h2): ooy C(N, hbk)]? vz')
=([0(p7™),0(p7), ..., O(p™P*)], w3},

and by the Cauchy-Schwarz inequality one has

[{[O(p™*), O(p™%), ..., O(p™P*)], wi) |

< c16V/bi(p 7Rl = O(p~®= 4592,
Using that C' is a symmetric matrix and that Cv; = A;v; we have,
([e(N, h1), (N, o), ..y (N, b, )], (C = T I)vs) = O(p~ @789,

that is ,
k
(Tw = X)) > e(N, hy)uyg = O(p~ =139,

j=1
or explicitly

(T = %) (Zvuvh,,@v) = O(p o), (3.78)

So, we need to prove that there exists an integer N such that

bx
E VijUh;, Oy
Jj=1

from which the theorem follows. For this, we first consider the decomposition of

—1

>enp 2, (3.79)

the matrix C(7y, 71, ..., ) as C = A + B, where the matrix A is defined as:

0,i#7

A= (ay) = Ihyf?, § =
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for i, = 1,2,...,bg, and clearly, B = C — A. Here |h;|? is an eigenvalue of the
diagenal matrix A and e; = (0,0, ..., 1, ...0) is the corresponding eigenvector, that
is, Ae; = |h;|%e;. We denote by vz(h i) = (u;, €5) = v;5, the j-th component of the

vector v;.

Remark 3.1.4. Note that, B is a symmetric operator for which the diagonal
elements are zero, and the sum of the elements in each row of B is less than
M=3 . r lg,|. Therefore, the eigenvalues of B are less than M and the norm
of B satisfies the inequality || B]] < M.

Now, multiplying the equation Cv; = A\v; by e; and using that A and B are

symmetric matrices we have -
(Cuyye5) = ((A+ B)vs, e5) = (v, Aej) + (vs, Be;)
= |hy|*vi(hy) + (vi, Bej) = Nilui, e5),
which gives the binding formula for the matrices C and A, that is
(A = [hs|")vi(hs) = (v, Bey). (3.80)

Using the formula (3.80) and the Bessel’s inequality we obtain :

Y mwp- Y jmrul 38

FilAa—lhs 2> 1p1 i i=lhs[2[> § o1
(Buse _ 1 _
= T—___liﬁlFﬁE < &P 1Bl
FP=lhyl21> 50
M2
< ~201 __ o) —2x1
a1 ” (p™)

To prove (3.79) , we consider the Parseval’s identity

by 2
Zvi(hj)vhj
—-ZIZ’UZ vh_,a(I)Nl

N=1 j=1

br
= > D vilhs)on,, @)1

NiTn-h?<iprr 3=

+ Z I(Z vi(h;Yvn;, BN (3.82)

N{tN-E>ge 5=
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First, we give an estimate for the second sum in the last expression, that is

bx
> (D vilhs)ony, &)

N:ITN_I'YI2|>%P2°‘1 j=1

= Y Y uhmew)
NATN—Iy2I>30%01  jilhihy[2(<F ot

Do vk, @)

F1Ae—|hj2]> 3 p™1

<2 Z I( Z vi(h;)vn,;, Bn)|?

N{TN—P2>30%%1 i hi—lhs[2l<gp™

+2 > 0 D wlhy)v, en)P (3.83)

N:TN—l2[>3p%01  jifas—|hs[2|>3p%1
Now, notice that |X; — |h;|?| < §p® and the condition of the theorem

|Ai — [7[?| < £p>t together imply that |||? — |hs|?| < 2p°. Therefore, using the
binding formula (3.80) and the well-known formula

1 1
T =Thil (T - 1?0 - B0
1 |1 = I (|12 = |y[2)*2 )
= + + ...+ L O(p-F+Da1y (384
Tw—hP " (Tw = PP (ty—ppyr TOPTTTT) (384

for |[Tx — [7[?| > 30°* and [|7]? — |hyl?| < 3p™, we have

Z I Z v’i(hj)(vhja (I)N)I2

NITN~Ir2I>30%1 jilhi—lhs[2l<dpet

- X Y Figopg

NTn—[RI>36%1 Gih—|hg?|<gp™

F(j 9
DD YR I DR s ]

NTN—PI>4p21 il hi—|hs[2|<Fo™

SN DRI DI o (e o

NiTN=hRI>ge%1 Jidi—lhyl2<gpt

SCET D DU D DI o e G o

NTN—2[>3p%1 jilhi—|hj|2|<Fp™

+(k+1) > | Y. O e (P2, (3.85)

NiTn—p2l> 301 Gl l2<go
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where
F(]) = (vi(hj)Q(w)vhﬁ CDN)'

To calculate the order of each term in (3.85)we use the Bessel’s inequality with

respect to the basis {®nx}%_;, and the orthogonality of the eigenfunctions

vp,; (). Thus, we obtain:

(.7) 2 2\s—112
3 > _FU) ey

. ] ‘ X (TN _ |7|2)3 (]7] ] .7] ) l
NITn=172|>50%1  G:Ai—|hs[2< 50"

Sy 0@

(T = [v1?)e
NTn—2> 3021 i hi~lhgl2l< o™

Oy

Z [(a(z) Z ”i(hj)vhj(x)(l’YP - lhjiz)s—l: ‘rr———zg)P
. 2] L p2e s I\ —[Bs |2l L g ( N——I’YI)
N:TN—pv]?|>5p0% Fildi—hj]2l< g
< cigp™ > a@) DY wlby)um @) = ), w) P
N:|Tn-I2>30%01 3xi—lhi|2l< g™

e (g(@) DY, wllhy)ua @) (I = 1R

Jlhi—lhs(2|< po1
Sew M 3T )bl = PO
FilAi=lhji[2l< g o1
< Clgp~4sa1 M2p2(s-—1)a1 Z I'Ui(hj)lz _ O(p_2(s+1)°‘1)

Fhi—|hi 2| <o

fors=0,1,..., k.

Now, let Ny be the number of h;, satisfying |X; — |h;|?| < §p**, then the order

of the last term is:
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> | > O(p~ 1) (v (hy)g(z)vn (z), Bw)I?

NYN—12[>1p%1  jii—lhs)2l< o™

<M Z Z Io(p_(k+1)a1)!2|('ui(hj)|2l(q(x)vhj (x);(I)N)lz
NYn—1112[> 5021 f:hi—lhs]2 <3 p™

o

< c1pNyp 2D Z |(wi(hy)|? Z |(a(z)vn; (z), O)|?

F:lxi—[hji2<Fp™ NYN—|72[> 502
< c1pNyp 2D > | (g(2)vn; ()]

Filxe—lhs 2| < g

< c1oN? M? p—2(k+1)a1 = le()(p—2(k+1)a1) = O(p~2),
since Ny = O(p%*¢), and we can always choose k in O(p~2%+Da1) guch that

N120(p—2(k+1)a1) — O(p—2a1 )

Also, using the Bessel’s inequality, the orthogonality of the eigenfunctions and
(3.81) we have

> IC D, wilhy)vn, BN
NAYN—[1121>5p%%1 | Ai—|hs|21> 3021 ;

<l > byl

Fia b 21> 3%t

= > ulP=0(p") (3.86)

F:xi—hs 121> 2 p>1
Therefore, by (3.82) it is clear that
b
> 1O vilh)on;, @) =1 — O(p™) (3.87)
NiYn—|yf2<Gp?er J=1
Now, taking into account that the number of indexes N satisfying |Tn — |7|%] <

10?1 is less than cyop®™?, we get (3.79)

bk —20] de1
() wells)on,, @) > \/ U= 5 gt

So, dividing both sides of (3.78) by (3.79) we get the result
O(p~tr—339)
O(p=F")

Ty =X+ = O(p~ =13t G,
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3.2 Asymptotic Formulas for the Eigenvalues in

a Single Resonance Domain

Now, we investigate in detail the eigenvalues of Ly (g(z)) in a single resonance
domain. Namely, we find the relation between the eigenvalues of Ly(¢(z)) in a
single resonance domain and the eigenvalues of the Sturm-Liouville operators. In
order the inequalities (2.33) and (2.34) to be satisfied, we can choose o, a; and

oy as follows
1
a:.____’ a1=._p2_’ a2=.2_p?__l__1.,
d+p d+p

+
where p; = [25%] — 1 and [252] is the integer part of the number 232

=
Let v € V5(p®) \ Ea, 6 € £, where ¢ is minimal in its direction. Consider the
)

following sets :
Bi(d)={b:b=nd,ne Z, b < %p%az},
Bi(y) =7+ Bi(8) ={y+b: b€ Bi(9)},
By(7,p1) = Bi(v) + T'(p1p).

As before, denote by h;, ¢ = 1,2, ...,b; the vectors of By(v, p:1), where b; is the
number of vectors in Bj(y,p1). Then the matrix C(v,d) is defined as :

_ ) Qnenyt# T
C(7,8) = (&) = { B i
where i,5 = 1,2, ..., b;.
Also we define the matrix D(y,6) = (¢;;) for 4,7 = 1,2, ..., a1, where hy, hg, ..., hq,
are the vectors of By(y,p1)({y+nd : n € Z}, and a; is the number of vectors

in Bi(v,p1)({v+nd:n € Z}. Clearly a; = O(p%%),

Lemma 3.2.1. a) If ); is an eigenvalue of the matriz C(7y,d) such that
|Ai — |hs)?| < M fori=1,2,...,a; , then

1
A = [hyl?"| > 2% for Vi=01+1,00+2,...b1.

b) If \; is an eigenvalue of the matriz C(v,6) such that |\, — |m|%| < M fori =
a1+ 1,01 +2,...,b1 , then

1
X = [hgl?| > ZP"Z forvVi=12,...,a;.
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Proof. First we prove
112 = [hal*] > %POQ’ Vi<ai, Vj>a. (3.88)
By definition, if ¢ < a; then h; = 7y + nd, where |nd| < %p%” +pp* Ifj>a
then h; = v+ 86 + a, where 8] < %p%az, a € I'(p1p®) \ §R. Therefore
|hj|? — |hil® = 2{y,a) + 25(3, a) + 2s(v,6) + |s6]* + |a|* — 2n(y, 8) — |né|2.
Since v ¢ Vo (p*?), |a| < p1p®, we have
12(7, a)| > p°* — cop*®.
The relation v € V5(p*) and the inequalities for s and n imply that
25(7,8) + 25(7,0) + [af’ ~ 2n(y,8) = O(pi*++),
1562 = 8P| < 707 + crgpherre.

Thus (3.88) follows from these relations, since o + 01 < ap and 2os + o < as.

The eigenvalues of D(v, §) and C(v,9) lay in M-neighborhood of the numbers
|h|? for k= 1,2, ...,a1 and for k = 1,2, ..., by, respectively. The inequality (3.88)
shows that one can enumerate the eigenvalues A; (1 = 1,2,...,by) of C(, §) such
that -A; for ¢ < a; lay in M-neighborhood of the numbers |hg|? for k£ < a; and A
for i > a; lay in M-neighborhood of the numbers |A|? for k > a;.Then by (3.88),
we get

A= [hgf?] > 20, (3.89)
fori<a;,7>a;andi>a, 7 <a;. O

Theorem 3.2.2. Let v € Vs(p*) \ E2 and |y| ~ p. Then, for any eigenvalue
Ai(7y) of the matriz C(v,8) satisfying | A — |hi)?| < M,i= 1,2, ...,a1, there exists
an eigenvalue Xk(i) of the matriz D(vy,6) such that

X = Mgey + O(p592),

Proof. Let )\; be an eigenvalue of C(v,4d), and v; = (vi1, vz, ..., Vsp,) De the cor-
responding normalized eigenvector. Denote by e; = (0,0, ..., 1,0, ..., 0) the eigen-
vector of A(%y,d) corresponding to the j-th eigenvalue |h;|?, where

0,2#7
P, i=7,

A(7,0) = (ay) = {
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fori,5=1,2,...,b;.
The binding formula for C(v, ) and A(v, §), (see 3.80) is :

(X = [hi|*)vi; = (i, Be;). (3.90)

Substituting the orthogonal decomposition Be; = Zill(Bej, e, ek, in equation

3.90, we get

by by
(X — 15P)vig = (vi, Y (Bej, ex)en) = D (Bey, ex, v,
k1 k=1
al b1
= Z(Bej, ek1>1)ik1 + Z <B6j, ekl)v,-kl.
‘ky=1 ki=ai+1

It is clear that, (Bej, ex,) = gny, —n;, and thus one has

ay bl ’
(N = hs[*)vi; — Z Qhie, —hyViky = Z Qhi, ~h; Viks - (3.91)
k1=1 ki=a;+1

Now, taking any \; € [|hi|®* — M, |W|> + M|}, i = 1,2,...,a1 and writing the

equation (3.91) for all h; ,j = 1,2,...,ay, we get the system of linear algebraic

equations:
2
(s = 1P1*)vir = Gy Viz = oo = QhoymmaViar = D Qhy—haViky
ki1=a1-+1
2
~Ghy—hy Vi1 + (M — [Ba|*)viz = o = Qhyy —hyVia, = E | Qi —haViky
ki1=a3+1

—Qhy—hay Vil = Qhy—ha, Viz — -+ (i — |10 |*)Viay = Z Qhsy —hay Viky  (3.92)
ki=a1+1

Using the binding formula (3.90) and the Lemma 3.89, we find an estimation
for the right hand side of the above system. That is,

b1 b
{v;, Bey,)
Z Qhey ~hoVika| = | Z s =ho 3 g [2 lhk1|2i
1

k1=a1+1 ki1=a1+1
b1
luillll Blllles |l _ 1 o
< Y |Qhk1—hslm M Z [
ky=a1+41 ki=a;+1

< 2P M = 0(p™?)

L
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for Vs = 1,2, ...,a;. Then, the system (3.92) becomes

(D(’)’, (S) bt )\iI)[’Uﬂ,'U,;g, veny ’U,,;aI]t = [O(p"o""),O(p_‘”), ceey O(p“az)]t,

or

[’Uﬂ, Vi2y veey ’U,;al]t = (D(’)’, (S) — /\if)_l[O(p_az), O(p_o‘z), ceny O(p_a2)]t (393)

Using the binding formula (3.90) and Lemma 3.89 we have :

b b b
3 e SO Bl g (Bue)P
AN o 212 o 2|2
k1=a1+1 ky=01+1 i = [Py ] ky=ai+1 i = [

1
< __M2 —202 — —20a .
< gMe O(p*2)

and thus, by Parseval’s identity we get :

D gl > 1—0(p722). (3.94)

k1=1

Now, taking the norm of (3.93) and using the above inequality we have :

b1
=0 ) < (Y tgP) < 1(00,8) — WD) [O(Vaze™)

ki=a1+1
Thus,
~ 1 —0(p2e
maz|A; — gy 7t > (ioa ),
Vaip=
or

min| A — Xe| = O(v/a1p™*?) = O(p~%%)

where the maximum (minimum) is taken over all Xk(i) ,0=1,2,...,a;. So, the

result follows. O

Theorem 3.2.3. For any eigenvalue Xj of the matriz D(v,d), there exists an

eigenvalue Ai(;) of the matriz C(vy,6) such that

i) = A + O(p72%2)

Proof. Define the matrix D'(v,8) = (dj;) as; di; = |hif?i = 5,4 = 1,2,...,by,

di; = Ghj-h, 4 # J, 4,5 = 1,2,...,a1 and dj; = 0, otherwise. Then the spectrum
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of the matrix D’(v, d) is

spec(D') = spec(D) U{lhal+1l2’ ]h01+2|2! s |h'b1|2}
= {3\,1,}2, -'-7Xa.1; Ihal+l|21 [ha1+2l2) orey Ihb1 I2}

Let us denote by w; = (wj1, Wj2, ..., Wja;, 0, ..., 0) the normalized eigenvector cor-
responding to the j-th eigenvalue of the matrix D', when j = 1,2,...,a; and by
we = (0,0,....,1,0,...0) the eigenvector corresponding to the k-th eigenvalue of

D' whenk=a;+1,a;+2,...,b.

Now, using the system from the previous theorem, we have

(D' — Ail)[vir, vig, v Vit |
= [(D — )\.iI)[’Uﬂ, Uiy oevy Uz‘al]a (lha1+112 — )\i)via1+1; ceey (Ihb1 12 - /\i)'Uibl]
= [O(p_az)7 Ty O(pﬁaz)a ({haﬁ-llz - /\i)'Uia1+17 ocog (Ih'b1 ]2 - /\i)vibl]-

Taking the inner product of the last system by w; , j = 1,2, ..., a1, using that

D’ is symmetric and D'w; = A;w; we have :

(M) = M) szkwgk = Z O(p™**)wsk, (3.95)
k=1

where by the Cauchy-Schwarz inequality one has

1306l < || 0G| S < vl = Oy

k=1

Thus, we get

a1
5y _3
Mgy = A3) D viwwge = O(p™42). (3.96)
So, we need to show that for any j = 1,2, ..., a; there exists wv;(;, such that

ay 1 _ O 202 1
1S v = sl > 4| OLED s e g
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For this, we consider the decomposition w; = Ebl 1{wj, vi)v; and the Parseval’s

identity

1—Z|waavz| —lea’%)l + Z |wJa'Uz

i=1 1=a1+1
First, let us show that

by ‘
> lws, 0l = O(p73e2). (3.98)
i=a1+1
Using that, w; = Y ;% (w;, ex)e , the binding formula for C(v,d) and A(y,4d) ,
the Lemma 3.89, part b) and the Bessel’s inequality we obtain the estimation:

b by ay
> lwsvdfP= ) 1>~ wiker, vi) 2

i—-a1+1 i=a1+1 k=1
ai
Bek V.
Z Izwak<eka”2| = Z 1D _w Wik ( |,hz|>2||2
z=a1+1 k=1 i=a1+1 k=1
Q1

Z p7222(> " [wjkl|(Bex, vi)) Z p‘2"‘2|a112|wjk[ [(Bex, vi)l*
1:a1+1 k=1 i=a+1

< Jasp2e Z Iwak|22| (Bew, u)? < a2 Z 1Bl

< M2|ay)p=202 Z lwsr]? = O(p™7%2).

k=1

Therefore one has o
> wj, v) 2 = 1 - Op~5%2)
i=1

from which it follows that there exists v;(;y such that (3.97) holds. Dividing both
sides of (3.96) by (3.97) we get the result

Migy = A+ O(p~%2).

Now, using the notation h; = v — ()8 if ¢ is even, h; = v + (}51)8 if ¢ is

odd, for i = 1,2,...,a;1, (without loss of generality assume that a; is even) and
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using the orthogonal decomposition for v € g as v = 0+ (I + v(8))d, where
€ Hs={xe€ R :(z,8) =0}, € Z, v € [0,1) we can write the matrix
D(~,6) as :

D(v,8) = BI*I + E(v,9),
where E(v,4) is:

(I +v)?[5) gs q—s . go1s
q_s (I —1+v)%6)? q-25 .
qs g-26 (I+1+0)%82 . .
AT . . o (=% +v)%8)? |
Denote ny = —’5“ if k is even, ng = k-g—l if k is odd. The system

{eimtv)s . k= 1,2,...} is a basis in L[0,27]. Let T'(v,6) = T(Q(s), 8) be the

operator in ¢y corresponding to the Sturm-Liouville operator T, generated by

—16[%" () + Q(s)y(s) = py(s) (3.99)

y(s + 2m) = 2By (s),

where Q(8) = Y o Gn,s€™*, and gy, 5 = (q(x)’ZQGAnkJ ey s = (z,6). Tt
means that T(y, §) is the infinite matrix (TeHmetvls eilltnmtv)s) ko —1 9 ..

Theorem 3.2.4. For every eigenvalue u; of the Sturm-Liouville operator T'(v, §),

there exists an eigenvalue [i; of the matriz FE(vy, ) such that

~ _3
pi = [+ O(p™3%).

proof: Decompose the infinite matrix T'(vy,d) as T'(y,d) = A + B, where the
matrix A = (@i;) is defined by @iy = 0if ¢ # 7, @y = |(I — £ +v)8|? if ¢ is even
and éi,-i =+ 5L+ 0)612 if i is odd, for i,5 = 1,2,... and B =T(v,6) — A
Let p; be an eigenvalue of T'(vy, §), and u; = (u;1, Uiz, Ui, ...) be the corresponding

normalized eigenvector, that is Tu; = p;u;. Denote by e; = (0,0,...,1,0,...) the
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j-th eigenvector of the matrix A. Then, the corresponding j-th eigenvalue of A
is |(j,+’l))5iz, that is Zej = I(j’—[—v)dlzej, where j, = l—% 1fj is even, j’ = l-{--?_;.l
if isodd, for j =1, 2,....

"One can easily verify that
(1 = (G’ + v)8|P)uij = (ui, Bey) (3.100)

and using the orthogonal decomposition Eej = Z,‘Z‘;l(ﬁej, ex)ex, we get

o

(i = (7" +0)0])uy; = Z(Eeju €x) Uik
k=1
and since (ﬁej, ek) = Yne—n;)5>
a) (e o]
(i = |+ 0)P V05 = D Gmng)sthik = D An—ny)6%ik- (3.101)
k=1 k=a;+1

Now take any eigenvalue y; of T'(7, 6), satisfying |u; — |(¢' +v)d]?| < sup|Q(s)|
fori=1,2,...,%, where ¢ = l——% if i is even, ¢/ = I+ %L if ¢ is odd. The relations

v € Vs(p™) and v = B + (L + )8, (B,6) = 0 imply
12¢7,8) + |61 = [T +0)[6]* + [8]7] < o™, 1] < crap™.

Therefore using the definition of ¢ and j’, we have

) a6
(3 + v)d| < %”‘"Czapala

fori=1,2,...% and

. a6
(5" + v)d| > I—;—l — cup™,

for 7 > a;. Since |a;| > 025,0522‘ and o > 20, we have
1(@" +v)8]” = (5" + )d]?| > 0™, (3.102)

for i < 4, j > a;, which implies

s — (7" +v)of]
= |l — (&' + )P = [|(7" + 0)8P"] = |(@" +v)oP| > earp™,  (3.103)
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fori=1,2,...% , 7> a1
Thus,

<uia§ek>
l Z 9(ng—nj) 6uzk| Z |Q(nk—nj)6” |(l~c+v)5l2|

k=a1+1 k=a1i-+1

e WEL D Dl NS

k—a1 +1 k=a1+1

< cigp™

since. ||BH M. Indeed, B corresponds to the operator Q : y — Q(s)y in
L,[0, 27], which has norm sup|Q(s)| < M. Therefore writing the equation (3.101)
for all j = 1,2,..., a1, and using (4.167) we get the following system

(B(v,8) — psl)[ui1, Uiz, -.v Uiay] = [O(p72), O(p™2), ..., O(p™**)].  (3.105)

Using that, u; = )7, usje;, the formula (3.100) and (3.103), we have

5 12 = uvBeJ> 2 _ —2a3

j=a1+1 j=a1+1

and thus ,
a1
Z |uis)* = 1 — O(p~2).
j=1

Taking the norm of the vector (see (4.168))

[Uﬂ, Uiy eeey uial] = (E(')'y 5) - ,u'i-[)’—l[O(pﬁ(‘Q)a cery O(p~a2)],
we ggt |
| T= 00073 = | (B(7,8) - D) |0(/azp™>)
or O(\/El-p~a2) B _%az
1— O(p"2°‘2) - O(p ):

where the minimum is taken over all eigenvalues [i; of the matrix E(v,d). Thus,

the result follows. [J

mjin i — 3] =

Theorem 3.2.5. (Main result) For every § € Hjs ,|B| ~ p and for every
eigenvalue pi(v(B)) of the Sturm-Liowville operator T'(+y, 8), there is an eigenvalue

YTn of the operator Ly(q(x)) satisfying

Tn = B + pi + O(p~5°7).
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proof: From Theorem 3.2.4 and the definition of E(~, §), there exists an eigen-
value Xj(i) of the matrix D(ry, 6), where v has a decomposition v = 8+ (j+v(8))é,
satisfying Xj(i) = |B]2+ p;+ O(p~1°2). Therefore, the result follows from Theorem
3.2.3 and Theorem 3.1.3. O



CHAPTER FOUR
EIGENVALUES
IN A SPECIAL SINGLE RESONANCE
DOMAIN

In chapter three, we obtained the asymptotic formulas for the resonance
eigenvalues |y|2, when v € V;(p*), under the condition
v ¢ Ve, (p*), forall k=1,2,...,d, where e; = (350,...,0),e5 = (0, =0,...,0), ...,
eq = (0,...,0, =

)a'

In this chapter, we investigate the perturbation of the eigenvalue |y|?, when
v € Vs(p*) \ Ex = V{(p*), where § =¢;, i = 1,2,...,d.

4.1 On the Unperturbed Operator Ly(g¢%(z))

Now let
T

™
e; = (0,...,0, a—i,O,,,,,O) c 3
fori=1,2,...,d and

H,={zeR: (z,¢) =0}

= {(ml, ceey Li—1, 0, Tit1, ...,iI)d) Tk € R, k= 1, 2, ,d}

be the hyperplane which is orthogonal to e;. Then, we define the following sets:

33



54

Q, =QNH,
= {(mlal, ...,mi_lai_l,O, mi1Qi+1, ...,mdad) My € Z, Vk = 1, 2, crey d},

mm Ni;_1T ngm
T., = {( P ;i_l .0, o ):ng € Z,Vk=1,2,....d}.

T

Clearly, for all v = (E&J}E’ s %ff) € g, we have the following decompositions

y=ne;+0, PET,, n€l,
or equivalently, redenoting n; by 7, we have

vy=je+PB, BETley, JEL (4.106)

and

mm n;mw Ngm
Uy = COS ——Z3... COS ;... COS — X4
a1 a; aqd

Jr
= COS —T;Vg.
a;

We write the decomposition (2.37) of ¢(z) as follows
Q(.’E) = E q’ylv‘y' ($) = qei (:1;) -+ Z q’yl’l)71 (m), (4107)
veg Yef\eR

where q%(z) = ), ez Gne, cOSNZIT; = P(s), s = (e;,2) = L.

We consider the operator Ly (¢%(z)), as the unperturbed operator, defined by

the differential expression
Lu = ~Au + ¢%(z)u (4.108)

with the Neumann boundary condition

du
5-lor =0. (4.109)

Lemma 4.1.1. The eigenvalues and the corresponding eigenfunctions of Ly (q%(z))

are

Ajei,ﬂ = ,J'jez + lﬂlz
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and

©j.,.8 = i, (8) | [ cos B zx = 4., (s)vs(),
ki

respectively, where 8 = (8, ..., 51,0, 8., B%) € T, 1., and @;, (s) are the
eigenvalues and the corresponding eigenfunctions of the operator T.,(P(s)) defined

by the differential expression
T
Ty(s) = —|;|2y”(s) + P(s)y(s) (4.110)
in [0, 7], with the Neumann boundary conditions

y'(0) =y'(m) =0. (4.111)

Proof. Using the separation of variables method, we seek the solution u(z) of

_ (32u(a:) h 0%u(z)

== I W 5
0z1 0z

+...+ %@) + ¢%(z)u(z) = Iu(z), (4.112)

satisfying the boundary condition (4.109) which coincides with the following
boundary conditions

Ou(z)
a.’IIk

|zp=0 = th:ak =0, Vk=1,2,..,.4d, (4.113)
3$k

(see the proof of Lemma2.1.1) in the form u(z) = uy(z1)...ui(x:)...ug(zq). Sub-
stituting this into (4.112) and dividing both sides of the obtained equation by

u1(21)..- 1 (Z)...ug(zq), we have

_wa(m) L w @) pe o Ug(®a)
(@) vt wil) + P(s)ui(z;)] — ... walza) A

this together with (4.113), give the following eigenvalue problems
—ug(zr) = Meur(ze),  w(0) =w(ar) =0, k#i (4.114)

and
—u (2:) + P(s)us(m:) = (), u;(0) = uy(as) =0,
or equivalently

_|_7£
as

2u; (s) + P(s)ui(s) = Aiui(s),  u;(0) = uj() = 0, (4.115)

where s = (z, ;) = = Ti.
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Thus, the eigenvalues and the corresponding eigenfunctions of the problems

(4.114) are

NEmT nEmT
s |2, uk,nk(wk) = Co8 il (wk),
a; ag

k,ng = l

for k& # i, respectively. Denoting the eigenvalues and the corresponding eigen-
functions of the problem (4.115), i.e. of the operator T, (P(s)), by uj,, and

Pie; (s), we get the eigenvalues and the corresponding eigenfunctions of Ly (g%)

as
T
Niegp = =t b i, e+ == l2 o+ 18,
and
mw ngm
©;.,.8 = cos aLl(mk) + oo + @5, (8) + ... + cos a—d(a:k) = ¥j., (8) + va(z),
respectively, where 8 = (%%, ..., 715, 0, %a . %) € T, O

For the sake of simplicity, let us redenote i, by pj and @, (s) by @;(s), i.e.,

The eigenvalues and the corresponding eigenfunctions of T,(0) are |je;|? and
cosjs, j = 0,1,2,... respectively. It is well known that the eigenvalue y; of
T..(P(s)) satisfying |u; — |jei|?| < sup P(s), together with the corresponding

eigenfunction ¢;(s) satisfy the following relations

LY (4.116)

1
= |je;|? + O(——), (8) = cos js + O(—
N'J |.7 'Ll (Ije'lll) (pJ() (ljezl

The main result of this chapter is that we find connection between the eigenval-
ues of the Schrodinger operator Ly(g) corresponding to the single resonance do-

main V,,(p*') \ E; and the eigenvalues of the Sturm-Liouville operator T,,( P(s)).
Lemma 4.1.2. Let v = je; + 8 € V,,(0**) \ E3 then

lil <7, = pMle ™+ 1 (4.117)
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Proof. v = je;+8 € Ve,(p™*)\ E2, definition of V,,(p**) and Pythagorean relation
(e;LB) imply

1712 — |y + eil?| = llges + BI* — |(G + 1)es + 6|
= |ljesl> + |82 = |G + ei|* — 1812 = |25 + 1]|ei]* < o™,

which implies

) p™
< + 1.
|51 P

Note that, since v = je; + 8 € V,,(p*) \ E,, we have § ¢ V., (p™), for all
k # i. Thus this relation implies that

|8%| > %pal, Vk £ i. (4.118)

By (4.116), to the eigenvalue |v|2 = |8]? + |jei|? of Ly(0), corresponds the
eigenvalue |B|% + p; of Ly(g%). Now we prove that there is an eigenvalue Yy of
Ln(q) which is closed to the eigenvalue |8|? + p; of Ly(g*). For this we use the
following binding formula for Ly(g) and Ly(g*)

(Tw — Xip)(Pn, ©j6) = (P, (9(z) — ¢°())Oj,0)- (4.119)

Now as in the non-resonance case, we decompose (g(z) —¢%(z))©,,3 by ©; g and

put this decomposition into (4.119).

Now, we find this decomposition. Writing (4.106) for every v, € I'(p*) and

using (2.37), we have

d
s
Mm=me;+ b, vy,(z)= Hcos My —~T; = COST150p, (z),

i=1 i

q(z) — P(s) = Z d(B1,n1) cos nysvg, (z) + O(p™P%), (4.120)
(B1,n1)€T’(p*)
where 8; = (8,...,0:1,0,80, ..., B8) € T,
d(B1,n1) = [, a(z) cosnysvg (z) and
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'(p*) = {(B1,n1) : B1 € Te, \ {0},ny € Z,mye; + B1 € T'(p*)}. Clearly for
(B1,n1) € T'(pp®), we have |nie; + 81| < pp® and since (; is orthogonal to e,

1
B1l < pp% Ina] <o fmaf < 511, (4.121)

(see 4.117).

Lemma 4.1.3.
Z d(B1,n1) cosnysvg, (z)vg (z) = Z d(B1,n1) cosnysvg, 1o (),
(Br,ma)el’ (p) (Bim1)er(p*)

for all ' € Te,, B & Ve, (™), k #1.

Proof. We may consider the vectors 81, §’ of I, as the vectors of R%?, since the
ith components of 3; and @’ are zero.Also note that Lemma2.2.5 is proved for
arbitrary dimension d, hence it is true for the (d — 1)-dimensional case under the
condition ' & Ve, (™), k # i. Thus
vs(z)vp (z) = Z Vg e (2
O/GAg

Arguing as the proof of Lemma2.3.2, instead of (2.43), we have

Z d(a/,n1) cos ny svy (2)ve () Z d(d/,ny) cosnysvyyp(z),  (4.122)

&'GAp a’GAg

for all ny € Z, since d(o/,n1) cosnis = d(B,ny) cosnys, for all o € Ag, ny € Z.

Clearly, there exist vectors By, Ba, ..., Bm € I, such that

I'(p™) C (U Ag ) x{m €Z:|ny| < %7’1}. (4.123)

Jj=1
In (4.122), replacing 8 by 5;, for j = 1,2, ...,m, summing all obtained m equa-
tions, we get
m
Z Z d(o/,n1) cos ny sV (z)vg (= Z Z d(¢/,n1) cosnisvar4p (),
Jj=1 o’€Ap j=1
by (4.123), which is equivalent to
Z d(B1,n1) cos nysvg, (z)vg(z) = Z d(B1,n1) cosnisvg, g ().
(Br,m1)El’ (p%) (B1.m1)€l”(p*)
O



59

Now multiplying the both sides of the equation (4.120) by ©; g, where 5
satisfies (4.118) and using Lemma4.1.3 , we get

(a(z) = P(s))Opp = Y.  d(B1,m)cosnysvg, (z)0, + O(p™)

(B1,m1)€T (p*)

= Y d(Bym)cosmusus @)a @)y (s) + O(p ™)

(Brm1)el (p%)

=Y d(Bm) cosmspy(s)uses(s) + O()(4.124)
(B1m1)el (p) ,

To decompose the right hand side of (4.119) by ©; g, we use the following lem-

mas:

Lemma 4.1.4. Let r be a number no less than r, i.e. v > 1, and j,m be
integers satisfying |j| + 1 < r,|m| > 2r. Then
1

(p3(s) cosms) = O(r—=p), (4125)
1
pi(s) = Z (¢j(s), cosms) cosms + O(m) (4.126)
im|<2r
proof. We use the following binding formula for T, (P(s)) and T}, (0)
(5 — |me;|*)(p;(s), cosms) = (p;(s)P(s), cosms) (4.127)
and the obvious decomposition (see (2.38))

P(s) = Z Qiye; €08 115 4+ O(Jme;|~¢—D). (4.128)

|l1ez'|<'m—27ﬂ

Putting (4.128) into (4.127), we get

(/"’j - |me’il2)(()0j(3)’ Cos ms) = (QDJ(S) Z qlye; COS lls, Ccos ms) -+ O(lmeil_(l—l))

1. Imesl
Illez|<7L

= Z Qe ((‘DJ (3), COS l13. cOoS ms) -+ O(lmei|_(l“1))

]llei|<-lm—2§j-l

= Y delpis), %[cos(m +11)s + cos(m — 1)s]) + O(|me;|~¢D)

ltzes|< el

= Y Gualpi(s),cos(m — 1)s) + O(|mes| ¢,

. lmes]
[fres]<
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again using (4.127), we get

Z (p;(s)P(s),cos(m — l1)s) + O(|mes| D,

. — . 2 : =
(1 — |meil*)(@;(s), cosms) = le; pi — [(m — L)eg?

Illezl<ﬂ

Putting (4.128) into the last equation, we obtain

 Imes 12w, _ (;(8),cos(m — I — I)s)
(:uJ |me’l,| )(SOJ (8)’008 mS) - z . qlleiqlzei MJ — l(m — ll)eilz
l1g ;1< t20al,
ligesl< 1753l

—I-O(I-meil“(l"l).

In this way, iterating k& = [%] times and dividing both sides of the obtained

equation by u; — |me;|?, we have

o) = Y ety B = =10
|11e~]<‘l"§i_[ """" Ht-—-O M= I(m -l — .- lt)eil
Itpeql < I3l

+0(|me;|~¢4.129)

where the integers m, [y, ..., [, satisfy the conditions

) < 2li =12,k |jl+1< I_g_ﬂ (see assumption of the lemma). These

o0
conditions imply that ||m —l; — ... = | — |j]| > I%l This together with (4.116)
give -
1 1
= O(|me;|™?),
oy = Tm ==~ Wedl e+ Olghy) —m — i — -~ e~ O™l ™)
(4.130)

for t=0,1,...,k — 1. Hence by (4.129),(4.130) and (2.40), we have

|(;(8), cosms)| < O(|me;|~¢

+ E |QI1ei QZkez”l‘pJ(S)““ COS(m P lk)S”
Ille-]<|‘""e-| t=0 |:U‘J - |(m — ll —_— s~ lt)e’ilzl
”kei|<-[ﬂ5'j-l

= O(jme;]~=Y).

(4.125) is proved. To prove (4.126), for j satisfying |j| + 1 < r, we write the

fourier series of j(s) with respect to the basis {cosms: m € Z}, i.e.,

E (@;(s), cosms) cosms
meZ

= Z (¢j(8), cosms) cosms + z (¢;(s), cosms) cosms.

[m|<2r m>2r
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By (4.125), for |m| > 2r and |j| + 1 < 7, (p;(s),cosms) = O(|me;|~¢~1). Using
this relation, we get
wi(s) = Z (¢;(s), cosms) cosms + O(|me;|~1=2),
|mi<2r
since |me;| > p, (4.126) is proved.(]
Lemma 4.1.5. Let r be a number no less than ry, i.e. 7 > 11, and j be integer

satisfying |7| + 1 < r Then

cosnysp;(s) = Z a(n1, 5,7 + j1)@+q (8) + O(r= ), (4.131)

[51]<6r

for (n1, B1) € I (p1p%),
where a(ny, J, j + j1) = (cosn159;(8), Pj45(8)).

proof. Consider the fourier series of cosnisp;(s) with respect to the basis

{@j15.(8) : g1 € Z}

cosnysp;(s) = E(GOS n159;i(8), Pjt4, (8)) P54, (8)

J1E€Z
= Y a(n,d,j+5)ein () + Y aln, 55+ 51)een(s).
[71l<6r lj11=6r

To prove (4.131), we must prove
> la(ns, .5+ 30| = 06~4) (4.182)
l711>6r

or equivalently

la(ni, 3,5 + 41| = O~ 2), Vi : |51| > 6r- (4.133)

Decomposing ¢;(s) by cosms, we have

©;(s) = z(tpj(s), COS M8) COS MS,

meZ

multiplying this decomposition by cosn;s, we obtain

cosnysp;(s E (¢;(s), cosms) cos ms cosny s,
meZ

= Z((pj(s), cos ms)%[cos(nl +m)s + cos(ny — m)s]

= Z ;i (s), cosms) cos(ny + m)s. (4.134)
mEZ
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Using (4.134) and the decomposition

P+ (8) = Z(%‘Hl (s), cosks) cos ks,
kezZ

we get

a(n1, 5,3 + 1) = (cosn1sp;(s), pj45(s))
= (Z (¢3(s), cosms) cos(ny + m)s, Z((ﬂj-{_jl (s), cos ks) cos ks)

meEZ keZ
= Z (¢(s), cosms) (@i, (8), cos ks)(cos(ny + m)s, cos ks)
m,k€EZ

= Y (#4(s), cos(k — 11)s)(i0j17 (s), cosks).  (4.135)
keZ

Consider the two cases:

Case 1: |k| > 3|j1] > 3r. Since |ni| + 1 < 7 (see 4.121), |k — ny| > 2r. Hence
by (4.126)
1
> l@ils)costh—my)s) = Y O(r———ms) = O(r~0-). (4.136)

i -1/
Ikl> 51711 lk—ni|>2r |(k —n1)ei|

Case 2: |k| < ]j1]. By assumptions |j| < 7 and |j;| > 6r, we have |71+ 7] > 5.
For sny integers [y, ..., [; satisfying |l;| < %1[—, i=1,2,...,t, where t = [ 1, we have
71 + 4] — |k = Iy — ... = Ii] > %|51|. This together with (4.116) give

1
g — k=l — . — Led?|

for i=0,1,...,t. Arguing as the proof of (4.126), we get

O(|s:e:]3), (4.137)

> |(@ies(s), cosks)| = Or=¢-9). (4.138)

[kl< 251

Using (4.136) and (4.138), we have

la(ny, 5,5 + 3l < D (@4(s), cos(k — 12)s)|[(@544, (5), cos ks)|
|k|<3 171l

+ Z (5 (5), cos(k — n1) )| (9544, (s), cos ks)| = O(r~¢2).

k1> 311

Lemma is proved.[]
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Now using (4.124) and (4.131), we get

(a(z) — P(s))©5,5 = O(p™"*)

+ Z d(B1,ma)a(n, 3, 3 + 1) @i+ (8)vg 1 (2),
(B1,m1)€ (p%),|71|<6r

for every j' satisfying |7'| +1 < r, i.e.,
(g(z) — P(s))@j’,ﬂ’ = Z A(jl7 8,3 +1,0 + :81)@.7"+j1ﬁ’+ﬁ1 + O(p™%),

(B1,41)€Q(p=,67)
(4.139)

where

Q(p*, 67) = {(4, B) : |jes| < 67,0 < |B] < p°},
A(jlaﬂ’aj,+jla:8,+ﬁ1) = Z d(ﬂlanl)a(nlajlajl'{_jl)'

n1:(B1,m1)El ()

We rieed to prove the following lemma

Lemma 4.1.6.

Y A, B, + B+ B < cs. (4.140)
(B1,51)€Q(p>,67)

Proof. By definition of A(j', &', 5’ + j1, 8/ + b1), d(61,m1), (2.40) and (4.135), we

have

> JAGLB BB S D [d(By, )| > la(m, 5,5 + j1)l

(B1,31)€Q(p™,67) (B1,m1)€l” (p%) lj1l<6r
<MY [(p5(s),cos(k —n1)s)| > (9444 (8), cosks)].
kez |11 <6r

Hence (4.140) follows from the inequalities

> l(pi(s), cos(k —m1)s)| < e1a, D |(@s45a(8),cosks)| < e,

keZ |j1]<6r

which can be obtained by (4.127). O
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4.2 On the Iterability Condition for the Triples
(N7 j/7 ﬁ/))

The decomposition (4.139) together with the binding formula (4.119) for
Ly(q) and Ly(g%) give

(Tw — Ajrg ) (®n, O4.5) = (v, (9(z) — P(5))Oys,0)

= > A(LB,T + 508+ B) (BN, Opajreem) + O(p 7). (4.141)
(B1.41)€Q(p>,6r)

If the condition (iterability condition for the triple (N, 5, 3))
T = Ay | > c1s (4.142)

holds then the formula (4.141) can be written in the following form

(@, (g(z) — P(5))Oy )

(D 3] =
( N7@J ,ﬁ) TN—)\j',ﬂ’
A ) YARRY 0 / YRS '
_ Z (4, 8,5 + 51,08 + B1)(®n, Ojrijy pr15,) + O(p7P®). (4.143)
Tn —Aj

(B1,51)€Q(p>6r)
Using (4.141) and (4.143), we are going to find T which is close to A; g, where
|7l + 1 < 7. For this, first in (4.141) instead of j/, 3, taking j and 3, hence
instead of r taking r;, we get

(T — 28)(®n, ©5,6) = (B, (a(z) — P(5))O;,6)
= > A(GBI+ 5B+ B) (PN, B pem) + O(p ). (4.144)

(B1,41)€Q(p>,671)
To iterate it by using (4.143) for j' = j + j; and B’ = 8 + (1, we will prove that
there is a number N such that

1
TN = A oeen| > 5%, (4.145)
where |7+71]+1 < Try = ry, since |j]+1 < r; and |f1| < 67;. Then (3471, 8+51)
satisfies (4.142). This means that, in formula (4.143), the pair (j', ') can be
replaced by the pair (§ + j1, 8+ B1). Then, in (4.143) instead of r, taking 7o, we



65

get

(<I)N 3 J+J1,ﬂ+ﬂ1) = O(p_pa)
+ z A(F + 51,8+ Br,J + J1+ G2, B+ B1 + B2)(®w, J+J1+Jzyﬂ+,31+ﬁz)
TN A.1+.11,.3+ﬁ1

(B2,32)€Q(p™,6r2)
Putting the above formula into (4.144), we obtain

(Tw = Ajp)e(N, 5, 8) = O(P_”“) +
Z A(j,ﬁ,jl,lgl)A(jl 161 2 ﬂ2)c(N J ,82)
TN AJI ﬁl

(4.146)

(81.41)€RQ(p%,6r1),
(ﬂz :jZ)GQ(pa ’67‘2)

where ¢(N, j, ) = (®n,©,0), 5* = j+j1+ja+...+jk and 5 = B+51+Bo+...+Fp.
Thus we are going to find a number N such that ¢(N, 7, 8) is not too small and
the condition (4.145) is satisfied.

Lemma 4.2.1. (a) Suppose hi(z), ha(x), ..., hn(2) € La(F), where m = [3%]+1.

Then for every eigenvalue A;g of the operator Ln(q*), there exists an eigenvalue

Tn of Ly(q) satisfying
(1) |Tn — Ajgl < 2M, where M = sup |¢(z)|,
(it) |c(N, 4, B)| > p~9°, where go = [£ + 2],

(ZZZ) IC(NinB)Iz > 5:1—12:11 '(¢N1 “hz")l2 '(q)N’ "_Z:ﬂ)lza Vi=1,2,...m

(b) Let7 = p+je € ‘/eli(a) and (ﬁl:jl) € Q(pa: 6T1)7 (ﬂkv]k) € Q(paa 6rk); where
re = Trr—1 for k=2,3,...,p. Then fork=1,2,3,...,p1, we have

3
ig = Agege > £p%, VE* # B. (4.147)

proof. (a) Let A, B, C be the set of indexes N satisfying (i), (ii), (iii), respec-
tively. Using the binding formula (??) for Ly(q) and Ly(g%) and the Bessel’s
inequality, we get

3 kv o) = Y {2 LD = PENis)

NgA NgA = Xis

I(g(z) — P(s))©;4l1> < %.

<
~ 4M?
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Hence by Parseval’s relation, we obtain
> eV, 5,8)1 > ~
NeA

Using the fact that the number of indexes N in A is less than p? and by the
relation N ¢ B = |¢(N,7,0)| < p~9*, we have

> e, 5,8 < p*p7 < p°
NcA\B

Since A = (A\ B)JU(A[ B), by above inequalities, we get

—<Z|ch A= >, N0+ Y leN,50)P,

NeA NeA\B NeANB
which implies
3 1
> NGB > 5~ > 5 (4.148)

NeANB
Now, suppose that A(B(C = 0, i.e., for all N € A B, the condition (iii)
does not hold. Then by (4.148) and Bessel’s inequality, we have

1

5 NGAZnBl N]? Ne%%B ;l Ny T ,h “
LI U z=.1_

—_;NGAZQB ‘I’N,m)] <2m;“l}hiljn 5

which is a contradiction.

(b) The definition of A; g gives
Mg — Agegel = (1812 + g ~ 1B + B + ... + Bel* — pue]
> 1812 = 18+ By + .+ Bel?] = |y — pgell. (4.149)

The condition of the lemma v; = G; + nse; € I'(p*) and the relation
= B+ je; € Ve,(p™) \ E; together with |je;| < c160™ (see (4.117) ) and
|nie;] < cip™ (see (4.121)) imply that

P2 < | =y + P = (1817 + el — |Bx]? — [n*el?|
< IIIBIZ"_ lﬁk|2|+cl7pa1a ﬁl++ﬁk7é0:

since [, B, ..., O are orthogonal to e;, that is, we have

1817 = 18k}?] > c18p™
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This last inequality together with (4.149) and the asymptotic formula (4.116)
give
|)\j"3 — )‘jk,ﬁkl > C19[)a2

Lemma is proved. [J

4.3 Asymptotic Formulas

Now we consider the following function

hz(:v) — Z A(],,B,] +j1::8+161) (j+j1:)8+.61:j27:32)6j2,ﬁ2($)

. (4.150
()\J,ﬁ J+y1,ﬁ+ﬁ1 ) ( )

(41.81)
(j2.82)

where (j1,61) € Q(p*, 6r1) and (jz2,82) € Q(p*,6rz). Since {©,2 g2(z)} is a total
system and 5y # 0, by (4.140) and (4.147), we have

> 1 (2), 07

(7".8")
— Z IA(] 183.7 +]1a/8+;61)A( +.717;6+,81,_7 6 )@ 232( )|
!()‘Jﬂ - ’\.7+.71,[3+ﬁ1) i

(41,681}
(i2.82)

S O(p~2ia2)( Z |A(J)ﬂ,.7 +.71H6+ﬂ1)”A(.7 +j1a:6+:81:j2aﬁ2)|)2

(71:81)
(J2,82)

< cpop~2, (4.151)
ie., hi(z) € Lo(F) and ||hs(z)]| = O(p™"%).

Theorem 4.3.1. For every eigenvalue \; of the operator Ly(q*) with B+ je; €

V.. (p™), there ezists an eigenvalue Yy of the operator Ly(q) satisfying

Tn=MXg+ O(p™*2). (4.152)

proof. By Lemmad4.2.1, for the chosen h;(z),i = 1,2,...,m in (4.150), there
exists a number N, satisfying (i), (i), (iii). Since §; # 0, by (4.149), we have

l)‘j,ﬂ — )‘jl,ﬂll > Clgpa2.
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The above inequality together with (i) imply
I Tn — Aju g1} > 1™
Using the following well known decomposition

Z ITN - )‘J .3| O(p—(m+1)a2)’

l’rN )\ ;1 ﬁl ‘A 8 = Jl 31‘

we see that the formula (4.146) can be written as

(T = Ajp)e(N, 4, B) = O(pP%)
+ Z A(j7:8aj'["jlaﬂ'*‘ﬂl)A(j+j17:6+:81,j2a:62)c(N7j2::82)

TN — Ajig
(81.91)€Q(p,6r1), N j+71,68+061
(82,32)€Q(p*,679)

N il @ T+ O )

i=1

Nowdividing both sides of the last equation by ¢(V, 5, 8) and using (ii), (iii), we

have
[(@n i) 1T = Ajsll (@, 7325)|
T = ol < sy I gyl
ITN )\J7l3|( V' l( Ny |hm||)l

- h |l  OQ(p~(mtleatea
[, 3, B)] IAmll + OCo )
< Il + 2MlAal| + ... + (2M)™ || + O(p=(mH1o2Ha2),
Hence by (4.151), we obtain
Ty = A+ 0(p™),

since (m + 1)ag — qa > a,. Theorem is proved.[

It follows from (4.147) and (4.152) that the triples (N, j*, 8¥) for k = 1,2, ..., p1,
satisfy the iterability condition (4.142). By (4.143) instead of j/, 8’ and r taking

42,82 and r3 , we have

2 3

C(N,j2,ﬂ2) — z : ( uB .7 , 8 )(q)N’ 73, 53) (p—pa). (4’153)
_ . Ty — }\ 2,92

(ﬁ3133)€Q(pa767‘3)

To obtain the other terms of the asymptotic formula of Ty, we iterate the formula

(4.141). Now we isolate the terms with multiplicand ¢(N, 4, 8) in the right hand
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side of (4.155)

(Tw = Xig)e(N, 4, 8) = O(p™"*)
A@, 8,5* B A, B 4, B) :
Z TN _ /\jl,ﬁl C(Nijaﬁ)

(B1.41 1€Q(p™ ,6?‘1)
(83.32)€Q(p™,6r3)
(§+3i1+72.8+81+82)=(5.8)

A(]: /Bajlaﬂl)A(jliﬂlaj21ﬁ2)
2

Tn — A g o(N,j%,B%). (4.154)
3%

(B1.d1)EQ(p™,6r1)
(B2,d2)EQ(p™,6r3)
(§+i1+d2,8+81+82)#(5,8)

Substituting the equation (4.153) into the second sum of the equation (4.154),

we get

(Tw — Nig)e(N, 5, 8) = O(p™"%)
A(j)ﬂ)jliﬂl)A(jl)lBI)j)ﬂ) .
> T = o (N, 35,8) +

+
(81.41)€Q(0% 671)
(82.32)EQ(p™ ,613)
(52,82)=(4,8)
Z A(j)ﬁajlyﬁl)A(jliﬁl)jzaﬁz)A(j2a:82,j3?183)
(Tw — M) (T — g2 p2)

-3 13
c(N, 5%, 6°)(4.155)
(81,41)€Q(p2,671)
(B2,32)€Q(p%,672)

432.82)#(3,8)
(J3.083)€Q(p™,673)

Again isolating the terms c¢(N, j, 8) in the last sum of the equation (4.155), we
obtain

3 A(4,8,3%, BY)AY, 8,4, B)

(TN - )\j,ﬁ)c(Najaﬁ) = [ TN —_ Ajl’ﬁl

(B1.J1)EQ(p™,6r1)
(B2,72)EQ(p™,6r2)
(5%,82)=(3,8)

LD e

]C(N’j) ﬂ)

(81,41)€Q(p™,67r1)

(B2,42)€Q(p™,6r3)

(83,43)EQ(p™,673)
(32,62)%(4,8)
(73.8%)=34,8)

Z A(jyﬂ)jl,ﬂl)A(jl1ﬂl’jzaﬁz)A(jZ’ﬂzajg,ﬁa)
(TN - }‘Jl,ﬁl)(TN - )\jZﬁZ)

.3 13

‘ (N, 57, 6°)

(ﬁl:jl)eQ(PQ:Grl)

(B2.J2)€Q(p™,673)

(73:83)€Q(p™,673)
(42,82)#(5.8)
(43,8%)(3.8)

+0(p™7%).(4.156)

In this way, iterating 2p, times, we get

2p2

(Tw = Ap)e(N, 5, 8) = [ Sile(N, 4, 8) + Ciy, + O(077), (4.157)
k=1 .
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where
k i1 gi-1 i pgi ,
STwde) = S (AT gk g )
(81.71)€Q(p*,671),..., i=1 (TN - )\ji‘ﬁi)
(Fe41:8141)EQ(P* 671y 1 1)
(jR+1,gk+1y=(5,8)
(55,89)54(5.8),=2,....k
(4.158)
and
k " P
G= Y ([ACELLE)) gk gt e ghityeq, i, gy
’ 3 ) ) .
(B1.91)€Q(p*,671),..., i=1 (TN - )\]zyﬁl)
(Urt1:Br+1)EQ(P* 671 1)
(55,8%)#(4,8),8=2,...,k+1
(4.159)

Now, we estimate S} and C}. For this, we consider the terms which appear in
the denominators of (4.158) and (4.159). By the conditions under the summations

in (4.158) and (4.159), we have j; + ja + ... + Js # 0 or By + Ba + ... + B; # 0, for
i=23 ..k

If 1 + B2 + ... + B; # 0, then by (4.149) and (4.152), we have

1
ITN — )\ji,ﬁil > §pa2. (4160)

f6+0+...+6 =0, ie., j1+jo+...+ j; # 0, then by well-known theorem
A8 — Ajo,gi] = By — pgs| > ¢
hence by (4.152), we obtain

1

Since By # 0 for all k£ < 2p,, the relation 8; + B2 + ... + B; = 0 implies
B+ B2 + ... + Pix1 # 0. Therefore the number of multiplicands Tx — Aji g in
(4.160) is no less than py. Thus by (4.140), (4.160) and (4.161), we get

S1=0(p2), Cs, =O0(p77). . (4.162)
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Theorem 4.3.2. (a) For every eigenvalue A;g of Lyx(q%) such that B+ je; €

Vi (p™), there exists an eigenvalue Yn of the operator Ln(q) satisfying
Tn = Ajg + Er1 + O(p7"2), (4.163)

where Eo = 0, Eg = Y272 St(Es—1 + Ajgs M)y 8 = 1,2, ...

(b) If
1T — Ajsl < c1a (4.164)
and . :
(N, 5,8)] > p7"* (4.165)
hold then Y satisfies (4.163).

proof. By Lemmad4.2.1 (a)-(b), there exists IV satisfying the conditions (4.164)
and (4.165) in part (b). Hence it suffices to prove part (b). By (4.147) and (4.164),
the triples (N, 5%, %) satisfy the iterability condition in (4.142). Hence we can
use (4.157) and (4.162) . Now, we prove the theorem by induction:

For k = 1, to prove (4.163), we divide both sides of the equation (4.157) by
c(N, 4, 8) and use the estimations (4.162).

Suppose that (4.163) holds for k = s, i.e.,
TN = Aj,'g + E -1+ O(p—sa2). (4166)

To prove that (4.163) is true for k = s+1, in (4.157) we substitute the expression
(4.166) for YTy into Y 27 Si(Tw, Ajp), then we get

2p2

(TN - )\j,ﬁ)C(N, s ,B) = (Z Sl,c()\jﬂ + Es1 + O(p—saz), ’\j,ﬁ))c(N’ Js :6)

k=1
+Oép2 + O(p_pa)

dividing the both sides of the last equality by ¢(V, 7, §) and using Lemma4.2.1-
(i), (4.162), we obtain
2p2

Ty =Xip+ Y Si(Nis + Eso1 + 0(p7°%), j0) + O(p~®~9%).  (4.167)
k=1
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Now we add and subtract the term 3% Si(Es—1 + Ajg, Ajs) in (4.167), then we

have
Ty = Aj,g + Eg + O(p~(p—q)a)
2p2 2p2
+[Z Si(Njg + Eso1 + 0(07°%2), \ig) — Z Si(Ee1+ Mgy Mip)].  (4.168)
k=1

Now, we first prove that E; = O(p~*2) by induction. Ey = 0. Suppose that
E;_{'= 0(p~?), then a = \; g+ E;_1 satisfies (4.160) and (4.161). Hence we get

Si(a As0) = O(p77) = B; = O(52%). (4.169)

So to prove the theorem, we need to show that the expression in the square
brackets in (4.168) is equal to O(p~(*De2). This can be easily checked by (4.169)
and the obvious relation

1 1
Xig+Ee1+0(07°) = Ajigr Mg+ Boo1 — Ajr gt

— O(p—(s+1)a2)’

for B* # . The theorem is proved.[
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